firewire: fw_send_request_sync()
[linux-2.6/mini2440.git] / drivers / firewire / fw-sbp2.c
blob05997cee4f379761baa3282bb28b26424c4babc8
1 /*
2 * SBP2 driver (SCSI over IEEE1394)
4 * Copyright (C) 2005-2007 Kristian Hoegsberg <krh@bitplanet.net>
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License as published by
8 * the Free Software Foundation; either version 2 of the License, or
9 * (at your option) any later version.
11 * This program is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 * GNU General Public License for more details.
16 * You should have received a copy of the GNU General Public License
17 * along with this program; if not, write to the Free Software Foundation,
18 * Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
22 * The basic structure of this driver is based on the old storage driver,
23 * drivers/ieee1394/sbp2.c, originally written by
24 * James Goodwin <jamesg@filanet.com>
25 * with later contributions and ongoing maintenance from
26 * Ben Collins <bcollins@debian.org>,
27 * Stefan Richter <stefanr@s5r6.in-berlin.de>
28 * and many others.
31 #include <linux/blkdev.h>
32 #include <linux/delay.h>
33 #include <linux/device.h>
34 #include <linux/dma-mapping.h>
35 #include <linux/kernel.h>
36 #include <linux/mod_devicetable.h>
37 #include <linux/module.h>
38 #include <linux/moduleparam.h>
39 #include <linux/scatterlist.h>
40 #include <linux/string.h>
41 #include <linux/stringify.h>
42 #include <linux/timer.h>
43 #include <linux/workqueue.h>
44 #include <asm/system.h>
46 #include <scsi/scsi.h>
47 #include <scsi/scsi_cmnd.h>
48 #include <scsi/scsi_device.h>
49 #include <scsi/scsi_host.h>
51 #include "fw-device.h"
52 #include "fw-topology.h"
53 #include "fw-transaction.h"
56 * So far only bridges from Oxford Semiconductor are known to support
57 * concurrent logins. Depending on firmware, four or two concurrent logins
58 * are possible on OXFW911 and newer Oxsemi bridges.
60 * Concurrent logins are useful together with cluster filesystems.
62 static int sbp2_param_exclusive_login = 1;
63 module_param_named(exclusive_login, sbp2_param_exclusive_login, bool, 0644);
64 MODULE_PARM_DESC(exclusive_login, "Exclusive login to sbp2 device "
65 "(default = Y, use N for concurrent initiators)");
68 * Flags for firmware oddities
70 * - 128kB max transfer
71 * Limit transfer size. Necessary for some old bridges.
73 * - 36 byte inquiry
74 * When scsi_mod probes the device, let the inquiry command look like that
75 * from MS Windows.
77 * - skip mode page 8
78 * Suppress sending of mode_sense for mode page 8 if the device pretends to
79 * support the SCSI Primary Block commands instead of Reduced Block Commands.
81 * - fix capacity
82 * Tell sd_mod to correct the last sector number reported by read_capacity.
83 * Avoids access beyond actual disk limits on devices with an off-by-one bug.
84 * Don't use this with devices which don't have this bug.
86 * - delay inquiry
87 * Wait extra SBP2_INQUIRY_DELAY seconds after login before SCSI inquiry.
89 * - power condition
90 * Set the power condition field in the START STOP UNIT commands sent by
91 * sd_mod on suspend, resume, and shutdown (if manage_start_stop is on).
92 * Some disks need this to spin down or to resume properly.
94 * - override internal blacklist
95 * Instead of adding to the built-in blacklist, use only the workarounds
96 * specified in the module load parameter.
97 * Useful if a blacklist entry interfered with a non-broken device.
99 #define SBP2_WORKAROUND_128K_MAX_TRANS 0x1
100 #define SBP2_WORKAROUND_INQUIRY_36 0x2
101 #define SBP2_WORKAROUND_MODE_SENSE_8 0x4
102 #define SBP2_WORKAROUND_FIX_CAPACITY 0x8
103 #define SBP2_WORKAROUND_DELAY_INQUIRY 0x10
104 #define SBP2_INQUIRY_DELAY 12
105 #define SBP2_WORKAROUND_POWER_CONDITION 0x20
106 #define SBP2_WORKAROUND_OVERRIDE 0x100
108 static int sbp2_param_workarounds;
109 module_param_named(workarounds, sbp2_param_workarounds, int, 0644);
110 MODULE_PARM_DESC(workarounds, "Work around device bugs (default = 0"
111 ", 128kB max transfer = " __stringify(SBP2_WORKAROUND_128K_MAX_TRANS)
112 ", 36 byte inquiry = " __stringify(SBP2_WORKAROUND_INQUIRY_36)
113 ", skip mode page 8 = " __stringify(SBP2_WORKAROUND_MODE_SENSE_8)
114 ", fix capacity = " __stringify(SBP2_WORKAROUND_FIX_CAPACITY)
115 ", delay inquiry = " __stringify(SBP2_WORKAROUND_DELAY_INQUIRY)
116 ", set power condition in start stop unit = "
117 __stringify(SBP2_WORKAROUND_POWER_CONDITION)
118 ", override internal blacklist = " __stringify(SBP2_WORKAROUND_OVERRIDE)
119 ", or a combination)");
121 /* I don't know why the SCSI stack doesn't define something like this... */
122 typedef void (*scsi_done_fn_t)(struct scsi_cmnd *);
124 static const char sbp2_driver_name[] = "sbp2";
127 * We create one struct sbp2_logical_unit per SBP-2 Logical Unit Number Entry
128 * and one struct scsi_device per sbp2_logical_unit.
130 struct sbp2_logical_unit {
131 struct sbp2_target *tgt;
132 struct list_head link;
133 struct fw_address_handler address_handler;
134 struct list_head orb_list;
136 u64 command_block_agent_address;
137 u16 lun;
138 int login_id;
141 * The generation is updated once we've logged in or reconnected
142 * to the logical unit. Thus, I/O to the device will automatically
143 * fail and get retried if it happens in a window where the device
144 * is not ready, e.g. after a bus reset but before we reconnect.
146 int generation;
147 int retries;
148 struct delayed_work work;
149 bool has_sdev;
150 bool blocked;
154 * We create one struct sbp2_target per IEEE 1212 Unit Directory
155 * and one struct Scsi_Host per sbp2_target.
157 struct sbp2_target {
158 struct kref kref;
159 struct fw_unit *unit;
160 const char *bus_id;
161 struct list_head lu_list;
163 u64 management_agent_address;
164 u64 guid;
165 int directory_id;
166 int node_id;
167 int address_high;
168 unsigned int workarounds;
169 unsigned int mgt_orb_timeout;
171 int dont_block; /* counter for each logical unit */
172 int blocked; /* ditto */
176 * Per section 7.4.8 of the SBP-2 spec, a mgt_ORB_timeout value can be
177 * provided in the config rom. Most devices do provide a value, which
178 * we'll use for login management orbs, but with some sane limits.
180 #define SBP2_MIN_LOGIN_ORB_TIMEOUT 5000U /* Timeout in ms */
181 #define SBP2_MAX_LOGIN_ORB_TIMEOUT 40000U /* Timeout in ms */
182 #define SBP2_ORB_TIMEOUT 2000U /* Timeout in ms */
183 #define SBP2_ORB_NULL 0x80000000
184 #define SBP2_MAX_SG_ELEMENT_LENGTH 0xf000
185 #define SBP2_RETRY_LIMIT 0xf /* 15 retries */
186 #define SBP2_CYCLE_LIMIT (0xc8 << 12) /* 200 125us cycles */
188 /* Unit directory keys */
189 #define SBP2_CSR_UNIT_CHARACTERISTICS 0x3a
190 #define SBP2_CSR_FIRMWARE_REVISION 0x3c
191 #define SBP2_CSR_LOGICAL_UNIT_NUMBER 0x14
192 #define SBP2_CSR_LOGICAL_UNIT_DIRECTORY 0xd4
194 /* Management orb opcodes */
195 #define SBP2_LOGIN_REQUEST 0x0
196 #define SBP2_QUERY_LOGINS_REQUEST 0x1
197 #define SBP2_RECONNECT_REQUEST 0x3
198 #define SBP2_SET_PASSWORD_REQUEST 0x4
199 #define SBP2_LOGOUT_REQUEST 0x7
200 #define SBP2_ABORT_TASK_REQUEST 0xb
201 #define SBP2_ABORT_TASK_SET 0xc
202 #define SBP2_LOGICAL_UNIT_RESET 0xe
203 #define SBP2_TARGET_RESET_REQUEST 0xf
205 /* Offsets for command block agent registers */
206 #define SBP2_AGENT_STATE 0x00
207 #define SBP2_AGENT_RESET 0x04
208 #define SBP2_ORB_POINTER 0x08
209 #define SBP2_DOORBELL 0x10
210 #define SBP2_UNSOLICITED_STATUS_ENABLE 0x14
212 /* Status write response codes */
213 #define SBP2_STATUS_REQUEST_COMPLETE 0x0
214 #define SBP2_STATUS_TRANSPORT_FAILURE 0x1
215 #define SBP2_STATUS_ILLEGAL_REQUEST 0x2
216 #define SBP2_STATUS_VENDOR_DEPENDENT 0x3
218 #define STATUS_GET_ORB_HIGH(v) ((v).status & 0xffff)
219 #define STATUS_GET_SBP_STATUS(v) (((v).status >> 16) & 0xff)
220 #define STATUS_GET_LEN(v) (((v).status >> 24) & 0x07)
221 #define STATUS_GET_DEAD(v) (((v).status >> 27) & 0x01)
222 #define STATUS_GET_RESPONSE(v) (((v).status >> 28) & 0x03)
223 #define STATUS_GET_SOURCE(v) (((v).status >> 30) & 0x03)
224 #define STATUS_GET_ORB_LOW(v) ((v).orb_low)
225 #define STATUS_GET_DATA(v) ((v).data)
227 struct sbp2_status {
228 u32 status;
229 u32 orb_low;
230 u8 data[24];
233 struct sbp2_pointer {
234 __be32 high;
235 __be32 low;
238 struct sbp2_orb {
239 struct fw_transaction t;
240 struct kref kref;
241 dma_addr_t request_bus;
242 int rcode;
243 struct sbp2_pointer pointer;
244 void (*callback)(struct sbp2_orb * orb, struct sbp2_status * status);
245 struct list_head link;
248 #define MANAGEMENT_ORB_LUN(v) ((v))
249 #define MANAGEMENT_ORB_FUNCTION(v) ((v) << 16)
250 #define MANAGEMENT_ORB_RECONNECT(v) ((v) << 20)
251 #define MANAGEMENT_ORB_EXCLUSIVE(v) ((v) ? 1 << 28 : 0)
252 #define MANAGEMENT_ORB_REQUEST_FORMAT(v) ((v) << 29)
253 #define MANAGEMENT_ORB_NOTIFY ((1) << 31)
255 #define MANAGEMENT_ORB_RESPONSE_LENGTH(v) ((v))
256 #define MANAGEMENT_ORB_PASSWORD_LENGTH(v) ((v) << 16)
258 struct sbp2_management_orb {
259 struct sbp2_orb base;
260 struct {
261 struct sbp2_pointer password;
262 struct sbp2_pointer response;
263 __be32 misc;
264 __be32 length;
265 struct sbp2_pointer status_fifo;
266 } request;
267 __be32 response[4];
268 dma_addr_t response_bus;
269 struct completion done;
270 struct sbp2_status status;
273 struct sbp2_login_response {
274 __be32 misc;
275 struct sbp2_pointer command_block_agent;
276 __be32 reconnect_hold;
278 #define COMMAND_ORB_DATA_SIZE(v) ((v))
279 #define COMMAND_ORB_PAGE_SIZE(v) ((v) << 16)
280 #define COMMAND_ORB_PAGE_TABLE_PRESENT ((1) << 19)
281 #define COMMAND_ORB_MAX_PAYLOAD(v) ((v) << 20)
282 #define COMMAND_ORB_SPEED(v) ((v) << 24)
283 #define COMMAND_ORB_DIRECTION ((1) << 27)
284 #define COMMAND_ORB_REQUEST_FORMAT(v) ((v) << 29)
285 #define COMMAND_ORB_NOTIFY ((1) << 31)
287 struct sbp2_command_orb {
288 struct sbp2_orb base;
289 struct {
290 struct sbp2_pointer next;
291 struct sbp2_pointer data_descriptor;
292 __be32 misc;
293 u8 command_block[12];
294 } request;
295 struct scsi_cmnd *cmd;
296 scsi_done_fn_t done;
297 struct sbp2_logical_unit *lu;
299 struct sbp2_pointer page_table[SG_ALL] __attribute__((aligned(8)));
300 dma_addr_t page_table_bus;
304 * List of devices with known bugs.
306 * The firmware_revision field, masked with 0xffff00, is the best
307 * indicator for the type of bridge chip of a device. It yields a few
308 * false positives but this did not break correctly behaving devices
309 * so far. We use ~0 as a wildcard, since the 24 bit values we get
310 * from the config rom can never match that.
312 static const struct {
313 u32 firmware_revision;
314 u32 model;
315 unsigned int workarounds;
316 } sbp2_workarounds_table[] = {
317 /* DViCO Momobay CX-1 with TSB42AA9 bridge */ {
318 .firmware_revision = 0x002800,
319 .model = 0x001010,
320 .workarounds = SBP2_WORKAROUND_INQUIRY_36 |
321 SBP2_WORKAROUND_MODE_SENSE_8 |
322 SBP2_WORKAROUND_POWER_CONDITION,
324 /* DViCO Momobay FX-3A with TSB42AA9A bridge */ {
325 .firmware_revision = 0x002800,
326 .model = 0x000000,
327 .workarounds = SBP2_WORKAROUND_DELAY_INQUIRY |
328 SBP2_WORKAROUND_POWER_CONDITION,
330 /* Initio bridges, actually only needed for some older ones */ {
331 .firmware_revision = 0x000200,
332 .model = ~0,
333 .workarounds = SBP2_WORKAROUND_INQUIRY_36,
335 /* PL-3507 bridge with Prolific firmware */ {
336 .firmware_revision = 0x012800,
337 .model = ~0,
338 .workarounds = SBP2_WORKAROUND_POWER_CONDITION,
340 /* Symbios bridge */ {
341 .firmware_revision = 0xa0b800,
342 .model = ~0,
343 .workarounds = SBP2_WORKAROUND_128K_MAX_TRANS,
345 /* Datafab MD2-FW2 with Symbios/LSILogic SYM13FW500 bridge */ {
346 .firmware_revision = 0x002600,
347 .model = ~0,
348 .workarounds = SBP2_WORKAROUND_128K_MAX_TRANS,
352 * There are iPods (2nd gen, 3rd gen) with model_id == 0, but
353 * these iPods do not feature the read_capacity bug according
354 * to one report. Read_capacity behaviour as well as model_id
355 * could change due to Apple-supplied firmware updates though.
358 /* iPod 4th generation. */ {
359 .firmware_revision = 0x0a2700,
360 .model = 0x000021,
361 .workarounds = SBP2_WORKAROUND_FIX_CAPACITY,
363 /* iPod mini */ {
364 .firmware_revision = 0x0a2700,
365 .model = 0x000023,
366 .workarounds = SBP2_WORKAROUND_FIX_CAPACITY,
368 /* iPod Photo */ {
369 .firmware_revision = 0x0a2700,
370 .model = 0x00007e,
371 .workarounds = SBP2_WORKAROUND_FIX_CAPACITY,
375 static void
376 free_orb(struct kref *kref)
378 struct sbp2_orb *orb = container_of(kref, struct sbp2_orb, kref);
380 kfree(orb);
383 static void
384 sbp2_status_write(struct fw_card *card, struct fw_request *request,
385 int tcode, int destination, int source,
386 int generation, int speed,
387 unsigned long long offset,
388 void *payload, size_t length, void *callback_data)
390 struct sbp2_logical_unit *lu = callback_data;
391 struct sbp2_orb *orb;
392 struct sbp2_status status;
393 size_t header_size;
394 unsigned long flags;
396 if (tcode != TCODE_WRITE_BLOCK_REQUEST ||
397 length == 0 || length > sizeof(status)) {
398 fw_send_response(card, request, RCODE_TYPE_ERROR);
399 return;
402 header_size = min(length, 2 * sizeof(u32));
403 fw_memcpy_from_be32(&status, payload, header_size);
404 if (length > header_size)
405 memcpy(status.data, payload + 8, length - header_size);
406 if (STATUS_GET_SOURCE(status) == 2 || STATUS_GET_SOURCE(status) == 3) {
407 fw_notify("non-orb related status write, not handled\n");
408 fw_send_response(card, request, RCODE_COMPLETE);
409 return;
412 /* Lookup the orb corresponding to this status write. */
413 spin_lock_irqsave(&card->lock, flags);
414 list_for_each_entry(orb, &lu->orb_list, link) {
415 if (STATUS_GET_ORB_HIGH(status) == 0 &&
416 STATUS_GET_ORB_LOW(status) == orb->request_bus) {
417 orb->rcode = RCODE_COMPLETE;
418 list_del(&orb->link);
419 break;
422 spin_unlock_irqrestore(&card->lock, flags);
424 if (&orb->link != &lu->orb_list)
425 orb->callback(orb, &status);
426 else
427 fw_error("status write for unknown orb\n");
429 kref_put(&orb->kref, free_orb);
431 fw_send_response(card, request, RCODE_COMPLETE);
434 static void
435 complete_transaction(struct fw_card *card, int rcode,
436 void *payload, size_t length, void *data)
438 struct sbp2_orb *orb = data;
439 unsigned long flags;
442 * This is a little tricky. We can get the status write for
443 * the orb before we get this callback. The status write
444 * handler above will assume the orb pointer transaction was
445 * successful and set the rcode to RCODE_COMPLETE for the orb.
446 * So this callback only sets the rcode if it hasn't already
447 * been set and only does the cleanup if the transaction
448 * failed and we didn't already get a status write.
450 spin_lock_irqsave(&card->lock, flags);
452 if (orb->rcode == -1)
453 orb->rcode = rcode;
454 if (orb->rcode != RCODE_COMPLETE) {
455 list_del(&orb->link);
456 spin_unlock_irqrestore(&card->lock, flags);
457 orb->callback(orb, NULL);
458 } else {
459 spin_unlock_irqrestore(&card->lock, flags);
462 kref_put(&orb->kref, free_orb);
465 static void
466 sbp2_send_orb(struct sbp2_orb *orb, struct sbp2_logical_unit *lu,
467 int node_id, int generation, u64 offset)
469 struct fw_device *device = fw_device(lu->tgt->unit->device.parent);
470 unsigned long flags;
472 orb->pointer.high = 0;
473 orb->pointer.low = cpu_to_be32(orb->request_bus);
475 spin_lock_irqsave(&device->card->lock, flags);
476 list_add_tail(&orb->link, &lu->orb_list);
477 spin_unlock_irqrestore(&device->card->lock, flags);
479 /* Take a ref for the orb list and for the transaction callback. */
480 kref_get(&orb->kref);
481 kref_get(&orb->kref);
483 fw_send_request(device->card, &orb->t, TCODE_WRITE_BLOCK_REQUEST,
484 node_id, generation, device->max_speed, offset,
485 &orb->pointer, sizeof(orb->pointer),
486 complete_transaction, orb);
489 static int sbp2_cancel_orbs(struct sbp2_logical_unit *lu)
491 struct fw_device *device = fw_device(lu->tgt->unit->device.parent);
492 struct sbp2_orb *orb, *next;
493 struct list_head list;
494 unsigned long flags;
495 int retval = -ENOENT;
497 INIT_LIST_HEAD(&list);
498 spin_lock_irqsave(&device->card->lock, flags);
499 list_splice_init(&lu->orb_list, &list);
500 spin_unlock_irqrestore(&device->card->lock, flags);
502 list_for_each_entry_safe(orb, next, &list, link) {
503 retval = 0;
504 if (fw_cancel_transaction(device->card, &orb->t) == 0)
505 continue;
507 orb->rcode = RCODE_CANCELLED;
508 orb->callback(orb, NULL);
511 return retval;
514 static void
515 complete_management_orb(struct sbp2_orb *base_orb, struct sbp2_status *status)
517 struct sbp2_management_orb *orb =
518 container_of(base_orb, struct sbp2_management_orb, base);
520 if (status)
521 memcpy(&orb->status, status, sizeof(*status));
522 complete(&orb->done);
525 static int
526 sbp2_send_management_orb(struct sbp2_logical_unit *lu, int node_id,
527 int generation, int function, int lun_or_login_id,
528 void *response)
530 struct fw_device *device = fw_device(lu->tgt->unit->device.parent);
531 struct sbp2_management_orb *orb;
532 unsigned int timeout;
533 int retval = -ENOMEM;
535 if (function == SBP2_LOGOUT_REQUEST && fw_device_is_shutdown(device))
536 return 0;
538 orb = kzalloc(sizeof(*orb), GFP_ATOMIC);
539 if (orb == NULL)
540 return -ENOMEM;
542 kref_init(&orb->base.kref);
543 orb->response_bus =
544 dma_map_single(device->card->device, &orb->response,
545 sizeof(orb->response), DMA_FROM_DEVICE);
546 if (dma_mapping_error(device->card->device, orb->response_bus))
547 goto fail_mapping_response;
549 orb->request.response.high = 0;
550 orb->request.response.low = cpu_to_be32(orb->response_bus);
552 orb->request.misc = cpu_to_be32(
553 MANAGEMENT_ORB_NOTIFY |
554 MANAGEMENT_ORB_FUNCTION(function) |
555 MANAGEMENT_ORB_LUN(lun_or_login_id));
556 orb->request.length = cpu_to_be32(
557 MANAGEMENT_ORB_RESPONSE_LENGTH(sizeof(orb->response)));
559 orb->request.status_fifo.high =
560 cpu_to_be32(lu->address_handler.offset >> 32);
561 orb->request.status_fifo.low =
562 cpu_to_be32(lu->address_handler.offset);
564 if (function == SBP2_LOGIN_REQUEST) {
565 /* Ask for 2^2 == 4 seconds reconnect grace period */
566 orb->request.misc |= cpu_to_be32(
567 MANAGEMENT_ORB_RECONNECT(2) |
568 MANAGEMENT_ORB_EXCLUSIVE(sbp2_param_exclusive_login));
569 timeout = lu->tgt->mgt_orb_timeout;
570 } else {
571 timeout = SBP2_ORB_TIMEOUT;
574 init_completion(&orb->done);
575 orb->base.callback = complete_management_orb;
577 orb->base.request_bus =
578 dma_map_single(device->card->device, &orb->request,
579 sizeof(orb->request), DMA_TO_DEVICE);
580 if (dma_mapping_error(device->card->device, orb->base.request_bus))
581 goto fail_mapping_request;
583 sbp2_send_orb(&orb->base, lu, node_id, generation,
584 lu->tgt->management_agent_address);
586 wait_for_completion_timeout(&orb->done, msecs_to_jiffies(timeout));
588 retval = -EIO;
589 if (sbp2_cancel_orbs(lu) == 0) {
590 fw_error("%s: orb reply timed out, rcode=0x%02x\n",
591 lu->tgt->bus_id, orb->base.rcode);
592 goto out;
595 if (orb->base.rcode != RCODE_COMPLETE) {
596 fw_error("%s: management write failed, rcode 0x%02x\n",
597 lu->tgt->bus_id, orb->base.rcode);
598 goto out;
601 if (STATUS_GET_RESPONSE(orb->status) != 0 ||
602 STATUS_GET_SBP_STATUS(orb->status) != 0) {
603 fw_error("%s: error status: %d:%d\n", lu->tgt->bus_id,
604 STATUS_GET_RESPONSE(orb->status),
605 STATUS_GET_SBP_STATUS(orb->status));
606 goto out;
609 retval = 0;
610 out:
611 dma_unmap_single(device->card->device, orb->base.request_bus,
612 sizeof(orb->request), DMA_TO_DEVICE);
613 fail_mapping_request:
614 dma_unmap_single(device->card->device, orb->response_bus,
615 sizeof(orb->response), DMA_FROM_DEVICE);
616 fail_mapping_response:
617 if (response)
618 memcpy(response, orb->response, sizeof(orb->response));
619 kref_put(&orb->base.kref, free_orb);
621 return retval;
624 static void sbp2_agent_reset(struct sbp2_logical_unit *lu)
626 struct fw_device *device = fw_device(lu->tgt->unit->device.parent);
627 __be32 d = 0;
629 fw_run_transaction(device->card, TCODE_WRITE_QUADLET_REQUEST,
630 lu->tgt->node_id, lu->generation, device->max_speed,
631 lu->command_block_agent_address + SBP2_AGENT_RESET,
632 &d, sizeof(d));
635 static void
636 complete_agent_reset_write_no_wait(struct fw_card *card, int rcode,
637 void *payload, size_t length, void *data)
639 kfree(data);
642 static void sbp2_agent_reset_no_wait(struct sbp2_logical_unit *lu)
644 struct fw_device *device = fw_device(lu->tgt->unit->device.parent);
645 struct fw_transaction *t;
646 static __be32 d;
648 t = kmalloc(sizeof(*t), GFP_ATOMIC);
649 if (t == NULL)
650 return;
652 fw_send_request(device->card, t, TCODE_WRITE_QUADLET_REQUEST,
653 lu->tgt->node_id, lu->generation, device->max_speed,
654 lu->command_block_agent_address + SBP2_AGENT_RESET,
655 &d, sizeof(d), complete_agent_reset_write_no_wait, t);
658 static void sbp2_set_generation(struct sbp2_logical_unit *lu, int generation)
660 struct fw_card *card = fw_device(lu->tgt->unit->device.parent)->card;
661 unsigned long flags;
663 /* serialize with comparisons of lu->generation and card->generation */
664 spin_lock_irqsave(&card->lock, flags);
665 lu->generation = generation;
666 spin_unlock_irqrestore(&card->lock, flags);
669 static inline void sbp2_allow_block(struct sbp2_logical_unit *lu)
672 * We may access dont_block without taking card->lock here:
673 * All callers of sbp2_allow_block() and all callers of sbp2_unblock()
674 * are currently serialized against each other.
675 * And a wrong result in sbp2_conditionally_block()'s access of
676 * dont_block is rather harmless, it simply misses its first chance.
678 --lu->tgt->dont_block;
682 * Blocks lu->tgt if all of the following conditions are met:
683 * - Login, INQUIRY, and high-level SCSI setup of all of the target's
684 * logical units have been finished (indicated by dont_block == 0).
685 * - lu->generation is stale.
687 * Note, scsi_block_requests() must be called while holding card->lock,
688 * otherwise it might foil sbp2_[conditionally_]unblock()'s attempt to
689 * unblock the target.
691 static void sbp2_conditionally_block(struct sbp2_logical_unit *lu)
693 struct sbp2_target *tgt = lu->tgt;
694 struct fw_card *card = fw_device(tgt->unit->device.parent)->card;
695 struct Scsi_Host *shost =
696 container_of((void *)tgt, struct Scsi_Host, hostdata[0]);
697 unsigned long flags;
699 spin_lock_irqsave(&card->lock, flags);
700 if (!tgt->dont_block && !lu->blocked &&
701 lu->generation != card->generation) {
702 lu->blocked = true;
703 if (++tgt->blocked == 1)
704 scsi_block_requests(shost);
706 spin_unlock_irqrestore(&card->lock, flags);
710 * Unblocks lu->tgt as soon as all its logical units can be unblocked.
711 * Note, it is harmless to run scsi_unblock_requests() outside the
712 * card->lock protected section. On the other hand, running it inside
713 * the section might clash with shost->host_lock.
715 static void sbp2_conditionally_unblock(struct sbp2_logical_unit *lu)
717 struct sbp2_target *tgt = lu->tgt;
718 struct fw_card *card = fw_device(tgt->unit->device.parent)->card;
719 struct Scsi_Host *shost =
720 container_of((void *)tgt, struct Scsi_Host, hostdata[0]);
721 unsigned long flags;
722 bool unblock = false;
724 spin_lock_irqsave(&card->lock, flags);
725 if (lu->blocked && lu->generation == card->generation) {
726 lu->blocked = false;
727 unblock = --tgt->blocked == 0;
729 spin_unlock_irqrestore(&card->lock, flags);
731 if (unblock)
732 scsi_unblock_requests(shost);
736 * Prevents future blocking of tgt and unblocks it.
737 * Note, it is harmless to run scsi_unblock_requests() outside the
738 * card->lock protected section. On the other hand, running it inside
739 * the section might clash with shost->host_lock.
741 static void sbp2_unblock(struct sbp2_target *tgt)
743 struct fw_card *card = fw_device(tgt->unit->device.parent)->card;
744 struct Scsi_Host *shost =
745 container_of((void *)tgt, struct Scsi_Host, hostdata[0]);
746 unsigned long flags;
748 spin_lock_irqsave(&card->lock, flags);
749 ++tgt->dont_block;
750 spin_unlock_irqrestore(&card->lock, flags);
752 scsi_unblock_requests(shost);
755 static int sbp2_lun2int(u16 lun)
757 struct scsi_lun eight_bytes_lun;
759 memset(&eight_bytes_lun, 0, sizeof(eight_bytes_lun));
760 eight_bytes_lun.scsi_lun[0] = (lun >> 8) & 0xff;
761 eight_bytes_lun.scsi_lun[1] = lun & 0xff;
763 return scsilun_to_int(&eight_bytes_lun);
766 static void sbp2_release_target(struct kref *kref)
768 struct sbp2_target *tgt = container_of(kref, struct sbp2_target, kref);
769 struct sbp2_logical_unit *lu, *next;
770 struct Scsi_Host *shost =
771 container_of((void *)tgt, struct Scsi_Host, hostdata[0]);
772 struct scsi_device *sdev;
773 struct fw_device *device = fw_device(tgt->unit->device.parent);
775 /* prevent deadlocks */
776 sbp2_unblock(tgt);
778 list_for_each_entry_safe(lu, next, &tgt->lu_list, link) {
779 sdev = scsi_device_lookup(shost, 0, 0, sbp2_lun2int(lu->lun));
780 if (sdev) {
781 scsi_remove_device(sdev);
782 scsi_device_put(sdev);
784 sbp2_send_management_orb(lu, tgt->node_id, lu->generation,
785 SBP2_LOGOUT_REQUEST, lu->login_id, NULL);
787 fw_core_remove_address_handler(&lu->address_handler);
788 list_del(&lu->link);
789 kfree(lu);
791 scsi_remove_host(shost);
792 fw_notify("released %s, target %d:0:0\n", tgt->bus_id, shost->host_no);
794 fw_unit_put(tgt->unit);
795 scsi_host_put(shost);
796 fw_device_put(device);
799 static struct workqueue_struct *sbp2_wq;
802 * Always get the target's kref when scheduling work on one its units.
803 * Each workqueue job is responsible to call sbp2_target_put() upon return.
805 static void sbp2_queue_work(struct sbp2_logical_unit *lu, unsigned long delay)
807 if (queue_delayed_work(sbp2_wq, &lu->work, delay))
808 kref_get(&lu->tgt->kref);
811 static void sbp2_target_put(struct sbp2_target *tgt)
813 kref_put(&tgt->kref, sbp2_release_target);
817 * Write retransmit retry values into the BUSY_TIMEOUT register.
818 * - The single-phase retry protocol is supported by all SBP-2 devices, but the
819 * default retry_limit value is 0 (i.e. never retry transmission). We write a
820 * saner value after logging into the device.
821 * - The dual-phase retry protocol is optional to implement, and if not
822 * supported, writes to the dual-phase portion of the register will be
823 * ignored. We try to write the original 1394-1995 default here.
824 * - In the case of devices that are also SBP-3-compliant, all writes are
825 * ignored, as the register is read-only, but contains single-phase retry of
826 * 15, which is what we're trying to set for all SBP-2 device anyway, so this
827 * write attempt is safe and yields more consistent behavior for all devices.
829 * See section 8.3.2.3.5 of the 1394-1995 spec, section 6.2 of the SBP-2 spec,
830 * and section 6.4 of the SBP-3 spec for further details.
832 static void sbp2_set_busy_timeout(struct sbp2_logical_unit *lu)
834 struct fw_device *device = fw_device(lu->tgt->unit->device.parent);
835 __be32 d = cpu_to_be32(SBP2_CYCLE_LIMIT | SBP2_RETRY_LIMIT);
837 fw_run_transaction(device->card, TCODE_WRITE_QUADLET_REQUEST,
838 lu->tgt->node_id, lu->generation, device->max_speed,
839 CSR_REGISTER_BASE + CSR_BUSY_TIMEOUT,
840 &d, sizeof(d));
843 static void sbp2_reconnect(struct work_struct *work);
845 static void sbp2_login(struct work_struct *work)
847 struct sbp2_logical_unit *lu =
848 container_of(work, struct sbp2_logical_unit, work.work);
849 struct sbp2_target *tgt = lu->tgt;
850 struct fw_device *device = fw_device(tgt->unit->device.parent);
851 struct Scsi_Host *shost;
852 struct scsi_device *sdev;
853 struct sbp2_login_response response;
854 int generation, node_id, local_node_id;
856 if (fw_device_is_shutdown(device))
857 goto out;
859 generation = device->generation;
860 smp_rmb(); /* node_id must not be older than generation */
861 node_id = device->node_id;
862 local_node_id = device->card->node_id;
864 /* If this is a re-login attempt, log out, or we might be rejected. */
865 if (lu->has_sdev)
866 sbp2_send_management_orb(lu, device->node_id, generation,
867 SBP2_LOGOUT_REQUEST, lu->login_id, NULL);
869 if (sbp2_send_management_orb(lu, node_id, generation,
870 SBP2_LOGIN_REQUEST, lu->lun, &response) < 0) {
871 if (lu->retries++ < 5) {
872 sbp2_queue_work(lu, DIV_ROUND_UP(HZ, 5));
873 } else {
874 fw_error("%s: failed to login to LUN %04x\n",
875 tgt->bus_id, lu->lun);
876 /* Let any waiting I/O fail from now on. */
877 sbp2_unblock(lu->tgt);
879 goto out;
882 tgt->node_id = node_id;
883 tgt->address_high = local_node_id << 16;
884 sbp2_set_generation(lu, generation);
886 lu->command_block_agent_address =
887 ((u64)(be32_to_cpu(response.command_block_agent.high) & 0xffff)
888 << 32) | be32_to_cpu(response.command_block_agent.low);
889 lu->login_id = be32_to_cpu(response.misc) & 0xffff;
891 fw_notify("%s: logged in to LUN %04x (%d retries)\n",
892 tgt->bus_id, lu->lun, lu->retries);
894 /* set appropriate retry limit(s) in BUSY_TIMEOUT register */
895 sbp2_set_busy_timeout(lu);
897 PREPARE_DELAYED_WORK(&lu->work, sbp2_reconnect);
898 sbp2_agent_reset(lu);
900 /* This was a re-login. */
901 if (lu->has_sdev) {
902 sbp2_cancel_orbs(lu);
903 sbp2_conditionally_unblock(lu);
904 goto out;
907 if (lu->tgt->workarounds & SBP2_WORKAROUND_DELAY_INQUIRY)
908 ssleep(SBP2_INQUIRY_DELAY);
910 shost = container_of((void *)tgt, struct Scsi_Host, hostdata[0]);
911 sdev = __scsi_add_device(shost, 0, 0, sbp2_lun2int(lu->lun), lu);
913 * FIXME: We are unable to perform reconnects while in sbp2_login().
914 * Therefore __scsi_add_device() will get into trouble if a bus reset
915 * happens in parallel. It will either fail or leave us with an
916 * unusable sdev. As a workaround we check for this and retry the
917 * whole login and SCSI probing.
920 /* Reported error during __scsi_add_device() */
921 if (IS_ERR(sdev))
922 goto out_logout_login;
924 /* Unreported error during __scsi_add_device() */
925 smp_rmb(); /* get current card generation */
926 if (generation != device->card->generation) {
927 scsi_remove_device(sdev);
928 scsi_device_put(sdev);
929 goto out_logout_login;
932 /* No error during __scsi_add_device() */
933 lu->has_sdev = true;
934 scsi_device_put(sdev);
935 sbp2_allow_block(lu);
936 goto out;
938 out_logout_login:
939 smp_rmb(); /* generation may have changed */
940 generation = device->generation;
941 smp_rmb(); /* node_id must not be older than generation */
943 sbp2_send_management_orb(lu, device->node_id, generation,
944 SBP2_LOGOUT_REQUEST, lu->login_id, NULL);
946 * If a bus reset happened, sbp2_update will have requeued
947 * lu->work already. Reset the work from reconnect to login.
949 PREPARE_DELAYED_WORK(&lu->work, sbp2_login);
950 out:
951 sbp2_target_put(tgt);
954 static int sbp2_add_logical_unit(struct sbp2_target *tgt, int lun_entry)
956 struct sbp2_logical_unit *lu;
958 lu = kmalloc(sizeof(*lu), GFP_KERNEL);
959 if (!lu)
960 return -ENOMEM;
962 lu->address_handler.length = 0x100;
963 lu->address_handler.address_callback = sbp2_status_write;
964 lu->address_handler.callback_data = lu;
966 if (fw_core_add_address_handler(&lu->address_handler,
967 &fw_high_memory_region) < 0) {
968 kfree(lu);
969 return -ENOMEM;
972 lu->tgt = tgt;
973 lu->lun = lun_entry & 0xffff;
974 lu->retries = 0;
975 lu->has_sdev = false;
976 lu->blocked = false;
977 ++tgt->dont_block;
978 INIT_LIST_HEAD(&lu->orb_list);
979 INIT_DELAYED_WORK(&lu->work, sbp2_login);
981 list_add_tail(&lu->link, &tgt->lu_list);
982 return 0;
985 static int sbp2_scan_logical_unit_dir(struct sbp2_target *tgt, u32 *directory)
987 struct fw_csr_iterator ci;
988 int key, value;
990 fw_csr_iterator_init(&ci, directory);
991 while (fw_csr_iterator_next(&ci, &key, &value))
992 if (key == SBP2_CSR_LOGICAL_UNIT_NUMBER &&
993 sbp2_add_logical_unit(tgt, value) < 0)
994 return -ENOMEM;
995 return 0;
998 static int sbp2_scan_unit_dir(struct sbp2_target *tgt, u32 *directory,
999 u32 *model, u32 *firmware_revision)
1001 struct fw_csr_iterator ci;
1002 int key, value;
1003 unsigned int timeout;
1005 fw_csr_iterator_init(&ci, directory);
1006 while (fw_csr_iterator_next(&ci, &key, &value)) {
1007 switch (key) {
1009 case CSR_DEPENDENT_INFO | CSR_OFFSET:
1010 tgt->management_agent_address =
1011 CSR_REGISTER_BASE + 4 * value;
1012 break;
1014 case CSR_DIRECTORY_ID:
1015 tgt->directory_id = value;
1016 break;
1018 case CSR_MODEL:
1019 *model = value;
1020 break;
1022 case SBP2_CSR_FIRMWARE_REVISION:
1023 *firmware_revision = value;
1024 break;
1026 case SBP2_CSR_UNIT_CHARACTERISTICS:
1027 /* the timeout value is stored in 500ms units */
1028 timeout = ((unsigned int) value >> 8 & 0xff) * 500;
1029 timeout = max(timeout, SBP2_MIN_LOGIN_ORB_TIMEOUT);
1030 tgt->mgt_orb_timeout =
1031 min(timeout, SBP2_MAX_LOGIN_ORB_TIMEOUT);
1033 if (timeout > tgt->mgt_orb_timeout)
1034 fw_notify("%s: config rom contains %ds "
1035 "management ORB timeout, limiting "
1036 "to %ds\n", tgt->bus_id,
1037 timeout / 1000,
1038 tgt->mgt_orb_timeout / 1000);
1039 break;
1041 case SBP2_CSR_LOGICAL_UNIT_NUMBER:
1042 if (sbp2_add_logical_unit(tgt, value) < 0)
1043 return -ENOMEM;
1044 break;
1046 case SBP2_CSR_LOGICAL_UNIT_DIRECTORY:
1047 /* Adjust for the increment in the iterator */
1048 if (sbp2_scan_logical_unit_dir(tgt, ci.p - 1 + value) < 0)
1049 return -ENOMEM;
1050 break;
1053 return 0;
1056 static void sbp2_init_workarounds(struct sbp2_target *tgt, u32 model,
1057 u32 firmware_revision)
1059 int i;
1060 unsigned int w = sbp2_param_workarounds;
1062 if (w)
1063 fw_notify("Please notify linux1394-devel@lists.sourceforge.net "
1064 "if you need the workarounds parameter for %s\n",
1065 tgt->bus_id);
1067 if (w & SBP2_WORKAROUND_OVERRIDE)
1068 goto out;
1070 for (i = 0; i < ARRAY_SIZE(sbp2_workarounds_table); i++) {
1072 if (sbp2_workarounds_table[i].firmware_revision !=
1073 (firmware_revision & 0xffffff00))
1074 continue;
1076 if (sbp2_workarounds_table[i].model != model &&
1077 sbp2_workarounds_table[i].model != ~0)
1078 continue;
1080 w |= sbp2_workarounds_table[i].workarounds;
1081 break;
1083 out:
1084 if (w)
1085 fw_notify("Workarounds for %s: 0x%x "
1086 "(firmware_revision 0x%06x, model_id 0x%06x)\n",
1087 tgt->bus_id, w, firmware_revision, model);
1088 tgt->workarounds = w;
1091 static struct scsi_host_template scsi_driver_template;
1093 static int sbp2_probe(struct device *dev)
1095 struct fw_unit *unit = fw_unit(dev);
1096 struct fw_device *device = fw_device(unit->device.parent);
1097 struct sbp2_target *tgt;
1098 struct sbp2_logical_unit *lu;
1099 struct Scsi_Host *shost;
1100 u32 model, firmware_revision;
1102 shost = scsi_host_alloc(&scsi_driver_template, sizeof(*tgt));
1103 if (shost == NULL)
1104 return -ENOMEM;
1106 tgt = (struct sbp2_target *)shost->hostdata;
1107 unit->device.driver_data = tgt;
1108 tgt->unit = unit;
1109 kref_init(&tgt->kref);
1110 INIT_LIST_HEAD(&tgt->lu_list);
1111 tgt->bus_id = unit->device.bus_id;
1112 tgt->guid = (u64)device->config_rom[3] << 32 | device->config_rom[4];
1114 if (fw_device_enable_phys_dma(device) < 0)
1115 goto fail_shost_put;
1117 if (scsi_add_host(shost, &unit->device) < 0)
1118 goto fail_shost_put;
1120 fw_device_get(device);
1121 fw_unit_get(unit);
1123 /* Initialize to values that won't match anything in our table. */
1124 firmware_revision = 0xff000000;
1125 model = 0xff000000;
1127 /* implicit directory ID */
1128 tgt->directory_id = ((unit->directory - device->config_rom) * 4
1129 + CSR_CONFIG_ROM) & 0xffffff;
1131 if (sbp2_scan_unit_dir(tgt, unit->directory, &model,
1132 &firmware_revision) < 0)
1133 goto fail_tgt_put;
1135 sbp2_init_workarounds(tgt, model, firmware_revision);
1137 /* Do the login in a workqueue so we can easily reschedule retries. */
1138 list_for_each_entry(lu, &tgt->lu_list, link)
1139 sbp2_queue_work(lu, 0);
1140 return 0;
1142 fail_tgt_put:
1143 sbp2_target_put(tgt);
1144 return -ENOMEM;
1146 fail_shost_put:
1147 scsi_host_put(shost);
1148 return -ENOMEM;
1151 static int sbp2_remove(struct device *dev)
1153 struct fw_unit *unit = fw_unit(dev);
1154 struct sbp2_target *tgt = unit->device.driver_data;
1156 sbp2_target_put(tgt);
1157 return 0;
1160 static void sbp2_reconnect(struct work_struct *work)
1162 struct sbp2_logical_unit *lu =
1163 container_of(work, struct sbp2_logical_unit, work.work);
1164 struct sbp2_target *tgt = lu->tgt;
1165 struct fw_device *device = fw_device(tgt->unit->device.parent);
1166 int generation, node_id, local_node_id;
1168 if (fw_device_is_shutdown(device))
1169 goto out;
1171 generation = device->generation;
1172 smp_rmb(); /* node_id must not be older than generation */
1173 node_id = device->node_id;
1174 local_node_id = device->card->node_id;
1176 if (sbp2_send_management_orb(lu, node_id, generation,
1177 SBP2_RECONNECT_REQUEST,
1178 lu->login_id, NULL) < 0) {
1180 * If reconnect was impossible even though we are in the
1181 * current generation, fall back and try to log in again.
1183 * We could check for "Function rejected" status, but
1184 * looking at the bus generation as simpler and more general.
1186 smp_rmb(); /* get current card generation */
1187 if (generation == device->card->generation ||
1188 lu->retries++ >= 5) {
1189 fw_error("%s: failed to reconnect\n", tgt->bus_id);
1190 lu->retries = 0;
1191 PREPARE_DELAYED_WORK(&lu->work, sbp2_login);
1193 sbp2_queue_work(lu, DIV_ROUND_UP(HZ, 5));
1194 goto out;
1197 tgt->node_id = node_id;
1198 tgt->address_high = local_node_id << 16;
1199 sbp2_set_generation(lu, generation);
1201 fw_notify("%s: reconnected to LUN %04x (%d retries)\n",
1202 tgt->bus_id, lu->lun, lu->retries);
1204 sbp2_agent_reset(lu);
1205 sbp2_cancel_orbs(lu);
1206 sbp2_conditionally_unblock(lu);
1207 out:
1208 sbp2_target_put(tgt);
1211 static void sbp2_update(struct fw_unit *unit)
1213 struct sbp2_target *tgt = unit->device.driver_data;
1214 struct sbp2_logical_unit *lu;
1216 fw_device_enable_phys_dma(fw_device(unit->device.parent));
1219 * Fw-core serializes sbp2_update() against sbp2_remove().
1220 * Iteration over tgt->lu_list is therefore safe here.
1222 list_for_each_entry(lu, &tgt->lu_list, link) {
1223 sbp2_conditionally_block(lu);
1224 lu->retries = 0;
1225 sbp2_queue_work(lu, 0);
1229 #define SBP2_UNIT_SPEC_ID_ENTRY 0x0000609e
1230 #define SBP2_SW_VERSION_ENTRY 0x00010483
1232 static const struct fw_device_id sbp2_id_table[] = {
1234 .match_flags = FW_MATCH_SPECIFIER_ID | FW_MATCH_VERSION,
1235 .specifier_id = SBP2_UNIT_SPEC_ID_ENTRY,
1236 .version = SBP2_SW_VERSION_ENTRY,
1241 static struct fw_driver sbp2_driver = {
1242 .driver = {
1243 .owner = THIS_MODULE,
1244 .name = sbp2_driver_name,
1245 .bus = &fw_bus_type,
1246 .probe = sbp2_probe,
1247 .remove = sbp2_remove,
1249 .update = sbp2_update,
1250 .id_table = sbp2_id_table,
1253 static unsigned int
1254 sbp2_status_to_sense_data(u8 *sbp2_status, u8 *sense_data)
1256 int sam_status;
1258 sense_data[0] = 0x70;
1259 sense_data[1] = 0x0;
1260 sense_data[2] = sbp2_status[1];
1261 sense_data[3] = sbp2_status[4];
1262 sense_data[4] = sbp2_status[5];
1263 sense_data[5] = sbp2_status[6];
1264 sense_data[6] = sbp2_status[7];
1265 sense_data[7] = 10;
1266 sense_data[8] = sbp2_status[8];
1267 sense_data[9] = sbp2_status[9];
1268 sense_data[10] = sbp2_status[10];
1269 sense_data[11] = sbp2_status[11];
1270 sense_data[12] = sbp2_status[2];
1271 sense_data[13] = sbp2_status[3];
1272 sense_data[14] = sbp2_status[12];
1273 sense_data[15] = sbp2_status[13];
1275 sam_status = sbp2_status[0] & 0x3f;
1277 switch (sam_status) {
1278 case SAM_STAT_GOOD:
1279 case SAM_STAT_CHECK_CONDITION:
1280 case SAM_STAT_CONDITION_MET:
1281 case SAM_STAT_BUSY:
1282 case SAM_STAT_RESERVATION_CONFLICT:
1283 case SAM_STAT_COMMAND_TERMINATED:
1284 return DID_OK << 16 | sam_status;
1286 default:
1287 return DID_ERROR << 16;
1291 static void
1292 complete_command_orb(struct sbp2_orb *base_orb, struct sbp2_status *status)
1294 struct sbp2_command_orb *orb =
1295 container_of(base_orb, struct sbp2_command_orb, base);
1296 struct fw_device *device = fw_device(orb->lu->tgt->unit->device.parent);
1297 int result;
1299 if (status != NULL) {
1300 if (STATUS_GET_DEAD(*status))
1301 sbp2_agent_reset_no_wait(orb->lu);
1303 switch (STATUS_GET_RESPONSE(*status)) {
1304 case SBP2_STATUS_REQUEST_COMPLETE:
1305 result = DID_OK << 16;
1306 break;
1307 case SBP2_STATUS_TRANSPORT_FAILURE:
1308 result = DID_BUS_BUSY << 16;
1309 break;
1310 case SBP2_STATUS_ILLEGAL_REQUEST:
1311 case SBP2_STATUS_VENDOR_DEPENDENT:
1312 default:
1313 result = DID_ERROR << 16;
1314 break;
1317 if (result == DID_OK << 16 && STATUS_GET_LEN(*status) > 1)
1318 result = sbp2_status_to_sense_data(STATUS_GET_DATA(*status),
1319 orb->cmd->sense_buffer);
1320 } else {
1322 * If the orb completes with status == NULL, something
1323 * went wrong, typically a bus reset happened mid-orb
1324 * or when sending the write (less likely).
1326 result = DID_BUS_BUSY << 16;
1327 sbp2_conditionally_block(orb->lu);
1330 dma_unmap_single(device->card->device, orb->base.request_bus,
1331 sizeof(orb->request), DMA_TO_DEVICE);
1333 if (scsi_sg_count(orb->cmd) > 0)
1334 dma_unmap_sg(device->card->device, scsi_sglist(orb->cmd),
1335 scsi_sg_count(orb->cmd),
1336 orb->cmd->sc_data_direction);
1338 if (orb->page_table_bus != 0)
1339 dma_unmap_single(device->card->device, orb->page_table_bus,
1340 sizeof(orb->page_table), DMA_TO_DEVICE);
1342 orb->cmd->result = result;
1343 orb->done(orb->cmd);
1346 static int
1347 sbp2_map_scatterlist(struct sbp2_command_orb *orb, struct fw_device *device,
1348 struct sbp2_logical_unit *lu)
1350 struct scatterlist *sg;
1351 int sg_len, l, i, j, count;
1352 dma_addr_t sg_addr;
1354 sg = scsi_sglist(orb->cmd);
1355 count = dma_map_sg(device->card->device, sg, scsi_sg_count(orb->cmd),
1356 orb->cmd->sc_data_direction);
1357 if (count == 0)
1358 goto fail;
1361 * Handle the special case where there is only one element in
1362 * the scatter list by converting it to an immediate block
1363 * request. This is also a workaround for broken devices such
1364 * as the second generation iPod which doesn't support page
1365 * tables.
1367 if (count == 1 && sg_dma_len(sg) < SBP2_MAX_SG_ELEMENT_LENGTH) {
1368 orb->request.data_descriptor.high =
1369 cpu_to_be32(lu->tgt->address_high);
1370 orb->request.data_descriptor.low =
1371 cpu_to_be32(sg_dma_address(sg));
1372 orb->request.misc |=
1373 cpu_to_be32(COMMAND_ORB_DATA_SIZE(sg_dma_len(sg)));
1374 return 0;
1378 * Convert the scatterlist to an sbp2 page table. If any
1379 * scatterlist entries are too big for sbp2, we split them as we
1380 * go. Even if we ask the block I/O layer to not give us sg
1381 * elements larger than 65535 bytes, some IOMMUs may merge sg elements
1382 * during DMA mapping, and Linux currently doesn't prevent this.
1384 for (i = 0, j = 0; i < count; i++, sg = sg_next(sg)) {
1385 sg_len = sg_dma_len(sg);
1386 sg_addr = sg_dma_address(sg);
1387 while (sg_len) {
1388 /* FIXME: This won't get us out of the pinch. */
1389 if (unlikely(j >= ARRAY_SIZE(orb->page_table))) {
1390 fw_error("page table overflow\n");
1391 goto fail_page_table;
1393 l = min(sg_len, SBP2_MAX_SG_ELEMENT_LENGTH);
1394 orb->page_table[j].low = cpu_to_be32(sg_addr);
1395 orb->page_table[j].high = cpu_to_be32(l << 16);
1396 sg_addr += l;
1397 sg_len -= l;
1398 j++;
1402 orb->page_table_bus =
1403 dma_map_single(device->card->device, orb->page_table,
1404 sizeof(orb->page_table), DMA_TO_DEVICE);
1405 if (dma_mapping_error(device->card->device, orb->page_table_bus))
1406 goto fail_page_table;
1409 * The data_descriptor pointer is the one case where we need
1410 * to fill in the node ID part of the address. All other
1411 * pointers assume that the data referenced reside on the
1412 * initiator (i.e. us), but data_descriptor can refer to data
1413 * on other nodes so we need to put our ID in descriptor.high.
1415 orb->request.data_descriptor.high = cpu_to_be32(lu->tgt->address_high);
1416 orb->request.data_descriptor.low = cpu_to_be32(orb->page_table_bus);
1417 orb->request.misc |= cpu_to_be32(COMMAND_ORB_PAGE_TABLE_PRESENT |
1418 COMMAND_ORB_DATA_SIZE(j));
1420 return 0;
1422 fail_page_table:
1423 dma_unmap_sg(device->card->device, sg, scsi_sg_count(orb->cmd),
1424 orb->cmd->sc_data_direction);
1425 fail:
1426 return -ENOMEM;
1429 /* SCSI stack integration */
1431 static int sbp2_scsi_queuecommand(struct scsi_cmnd *cmd, scsi_done_fn_t done)
1433 struct sbp2_logical_unit *lu = cmd->device->hostdata;
1434 struct fw_device *device = fw_device(lu->tgt->unit->device.parent);
1435 struct sbp2_command_orb *orb;
1436 unsigned int max_payload;
1437 int retval = SCSI_MLQUEUE_HOST_BUSY;
1440 * Bidirectional commands are not yet implemented, and unknown
1441 * transfer direction not handled.
1443 if (cmd->sc_data_direction == DMA_BIDIRECTIONAL) {
1444 fw_error("Can't handle DMA_BIDIRECTIONAL, rejecting command\n");
1445 cmd->result = DID_ERROR << 16;
1446 done(cmd);
1447 return 0;
1450 orb = kzalloc(sizeof(*orb), GFP_ATOMIC);
1451 if (orb == NULL) {
1452 fw_notify("failed to alloc orb\n");
1453 return SCSI_MLQUEUE_HOST_BUSY;
1456 /* Initialize rcode to something not RCODE_COMPLETE. */
1457 orb->base.rcode = -1;
1458 kref_init(&orb->base.kref);
1460 orb->lu = lu;
1461 orb->done = done;
1462 orb->cmd = cmd;
1464 orb->request.next.high = cpu_to_be32(SBP2_ORB_NULL);
1466 * At speed 100 we can do 512 bytes per packet, at speed 200,
1467 * 1024 bytes per packet etc. The SBP-2 max_payload field
1468 * specifies the max payload size as 2 ^ (max_payload + 2), so
1469 * if we set this to max_speed + 7, we get the right value.
1471 max_payload = min(device->max_speed + 7,
1472 device->card->max_receive - 1);
1473 orb->request.misc = cpu_to_be32(
1474 COMMAND_ORB_MAX_PAYLOAD(max_payload) |
1475 COMMAND_ORB_SPEED(device->max_speed) |
1476 COMMAND_ORB_NOTIFY);
1478 if (cmd->sc_data_direction == DMA_FROM_DEVICE)
1479 orb->request.misc |= cpu_to_be32(COMMAND_ORB_DIRECTION);
1481 if (scsi_sg_count(cmd) && sbp2_map_scatterlist(orb, device, lu) < 0)
1482 goto out;
1484 memcpy(orb->request.command_block, cmd->cmnd, cmd->cmd_len);
1486 orb->base.callback = complete_command_orb;
1487 orb->base.request_bus =
1488 dma_map_single(device->card->device, &orb->request,
1489 sizeof(orb->request), DMA_TO_DEVICE);
1490 if (dma_mapping_error(device->card->device, orb->base.request_bus))
1491 goto out;
1493 sbp2_send_orb(&orb->base, lu, lu->tgt->node_id, lu->generation,
1494 lu->command_block_agent_address + SBP2_ORB_POINTER);
1495 retval = 0;
1496 out:
1497 kref_put(&orb->base.kref, free_orb);
1498 return retval;
1501 static int sbp2_scsi_slave_alloc(struct scsi_device *sdev)
1503 struct sbp2_logical_unit *lu = sdev->hostdata;
1505 /* (Re-)Adding logical units via the SCSI stack is not supported. */
1506 if (!lu)
1507 return -ENOSYS;
1509 sdev->allow_restart = 1;
1511 /* SBP-2 requires quadlet alignment of the data buffers. */
1512 blk_queue_update_dma_alignment(sdev->request_queue, 4 - 1);
1514 if (lu->tgt->workarounds & SBP2_WORKAROUND_INQUIRY_36)
1515 sdev->inquiry_len = 36;
1517 return 0;
1520 static int sbp2_scsi_slave_configure(struct scsi_device *sdev)
1522 struct sbp2_logical_unit *lu = sdev->hostdata;
1524 sdev->use_10_for_rw = 1;
1526 if (sbp2_param_exclusive_login)
1527 sdev->manage_start_stop = 1;
1529 if (sdev->type == TYPE_ROM)
1530 sdev->use_10_for_ms = 1;
1532 if (sdev->type == TYPE_DISK &&
1533 lu->tgt->workarounds & SBP2_WORKAROUND_MODE_SENSE_8)
1534 sdev->skip_ms_page_8 = 1;
1536 if (lu->tgt->workarounds & SBP2_WORKAROUND_FIX_CAPACITY)
1537 sdev->fix_capacity = 1;
1539 if (lu->tgt->workarounds & SBP2_WORKAROUND_POWER_CONDITION)
1540 sdev->start_stop_pwr_cond = 1;
1542 if (lu->tgt->workarounds & SBP2_WORKAROUND_128K_MAX_TRANS)
1543 blk_queue_max_sectors(sdev->request_queue, 128 * 1024 / 512);
1545 return 0;
1549 * Called by scsi stack when something has really gone wrong. Usually
1550 * called when a command has timed-out for some reason.
1552 static int sbp2_scsi_abort(struct scsi_cmnd *cmd)
1554 struct sbp2_logical_unit *lu = cmd->device->hostdata;
1556 fw_notify("%s: sbp2_scsi_abort\n", lu->tgt->bus_id);
1557 sbp2_agent_reset(lu);
1558 sbp2_cancel_orbs(lu);
1560 return SUCCESS;
1564 * Format of /sys/bus/scsi/devices/.../ieee1394_id:
1565 * u64 EUI-64 : u24 directory_ID : u16 LUN (all printed in hexadecimal)
1567 * This is the concatenation of target port identifier and logical unit
1568 * identifier as per SAM-2...SAM-4 annex A.
1570 static ssize_t
1571 sbp2_sysfs_ieee1394_id_show(struct device *dev, struct device_attribute *attr,
1572 char *buf)
1574 struct scsi_device *sdev = to_scsi_device(dev);
1575 struct sbp2_logical_unit *lu;
1577 if (!sdev)
1578 return 0;
1580 lu = sdev->hostdata;
1582 return sprintf(buf, "%016llx:%06x:%04x\n",
1583 (unsigned long long)lu->tgt->guid,
1584 lu->tgt->directory_id, lu->lun);
1587 static DEVICE_ATTR(ieee1394_id, S_IRUGO, sbp2_sysfs_ieee1394_id_show, NULL);
1589 static struct device_attribute *sbp2_scsi_sysfs_attrs[] = {
1590 &dev_attr_ieee1394_id,
1591 NULL
1594 static struct scsi_host_template scsi_driver_template = {
1595 .module = THIS_MODULE,
1596 .name = "SBP-2 IEEE-1394",
1597 .proc_name = sbp2_driver_name,
1598 .queuecommand = sbp2_scsi_queuecommand,
1599 .slave_alloc = sbp2_scsi_slave_alloc,
1600 .slave_configure = sbp2_scsi_slave_configure,
1601 .eh_abort_handler = sbp2_scsi_abort,
1602 .this_id = -1,
1603 .sg_tablesize = SG_ALL,
1604 .use_clustering = ENABLE_CLUSTERING,
1605 .cmd_per_lun = 1,
1606 .can_queue = 1,
1607 .sdev_attrs = sbp2_scsi_sysfs_attrs,
1610 MODULE_AUTHOR("Kristian Hoegsberg <krh@bitplanet.net>");
1611 MODULE_DESCRIPTION("SCSI over IEEE1394");
1612 MODULE_LICENSE("GPL");
1613 MODULE_DEVICE_TABLE(ieee1394, sbp2_id_table);
1615 /* Provide a module alias so root-on-sbp2 initrds don't break. */
1616 #ifndef CONFIG_IEEE1394_SBP2_MODULE
1617 MODULE_ALIAS("sbp2");
1618 #endif
1620 static int __init sbp2_init(void)
1622 sbp2_wq = create_singlethread_workqueue(KBUILD_MODNAME);
1623 if (!sbp2_wq)
1624 return -ENOMEM;
1626 return driver_register(&sbp2_driver.driver);
1629 static void __exit sbp2_cleanup(void)
1631 driver_unregister(&sbp2_driver.driver);
1632 destroy_workqueue(sbp2_wq);
1635 module_init(sbp2_init);
1636 module_exit(sbp2_cleanup);