reiserfs: fix warnings with gcc 4.4
[linux-2.6/mini2440.git] / kernel / perf_counter.c
blob29b685f551aac6aa2f5bee8e1356755ae5627001
1 /*
2 * Performance counter core code
4 * Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
5 * Copyright (C) 2008-2009 Red Hat, Inc., Ingo Molnar
6 * Copyright (C) 2008-2009 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
7 * Copyright © 2009 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
9 * For licensing details see kernel-base/COPYING
12 #include <linux/fs.h>
13 #include <linux/mm.h>
14 #include <linux/cpu.h>
15 #include <linux/smp.h>
16 #include <linux/file.h>
17 #include <linux/poll.h>
18 #include <linux/sysfs.h>
19 #include <linux/dcache.h>
20 #include <linux/percpu.h>
21 #include <linux/ptrace.h>
22 #include <linux/vmstat.h>
23 #include <linux/hardirq.h>
24 #include <linux/rculist.h>
25 #include <linux/uaccess.h>
26 #include <linux/syscalls.h>
27 #include <linux/anon_inodes.h>
28 #include <linux/kernel_stat.h>
29 #include <linux/perf_counter.h>
31 #include <asm/irq_regs.h>
34 * Each CPU has a list of per CPU counters:
36 DEFINE_PER_CPU(struct perf_cpu_context, perf_cpu_context);
38 int perf_max_counters __read_mostly = 1;
39 static int perf_reserved_percpu __read_mostly;
40 static int perf_overcommit __read_mostly = 1;
42 static atomic_t nr_counters __read_mostly;
43 static atomic_t nr_mmap_counters __read_mostly;
44 static atomic_t nr_comm_counters __read_mostly;
47 * perf counter paranoia level:
48 * 0 - not paranoid
49 * 1 - disallow cpu counters to unpriv
50 * 2 - disallow kernel profiling to unpriv
52 int sysctl_perf_counter_paranoid __read_mostly;
54 static inline bool perf_paranoid_cpu(void)
56 return sysctl_perf_counter_paranoid > 0;
59 static inline bool perf_paranoid_kernel(void)
61 return sysctl_perf_counter_paranoid > 1;
64 int sysctl_perf_counter_mlock __read_mostly = 512; /* 'free' kb per user */
67 * max perf counter sample rate
69 int sysctl_perf_counter_sample_rate __read_mostly = 100000;
71 static atomic64_t perf_counter_id;
74 * Lock for (sysadmin-configurable) counter reservations:
76 static DEFINE_SPINLOCK(perf_resource_lock);
79 * Architecture provided APIs - weak aliases:
81 extern __weak const struct pmu *hw_perf_counter_init(struct perf_counter *counter)
83 return NULL;
86 void __weak hw_perf_disable(void) { barrier(); }
87 void __weak hw_perf_enable(void) { barrier(); }
89 void __weak hw_perf_counter_setup(int cpu) { barrier(); }
91 int __weak
92 hw_perf_group_sched_in(struct perf_counter *group_leader,
93 struct perf_cpu_context *cpuctx,
94 struct perf_counter_context *ctx, int cpu)
96 return 0;
99 void __weak perf_counter_print_debug(void) { }
101 static DEFINE_PER_CPU(int, disable_count);
103 void __perf_disable(void)
105 __get_cpu_var(disable_count)++;
108 bool __perf_enable(void)
110 return !--__get_cpu_var(disable_count);
113 void perf_disable(void)
115 __perf_disable();
116 hw_perf_disable();
119 void perf_enable(void)
121 if (__perf_enable())
122 hw_perf_enable();
125 static void get_ctx(struct perf_counter_context *ctx)
127 atomic_inc(&ctx->refcount);
130 static void free_ctx(struct rcu_head *head)
132 struct perf_counter_context *ctx;
134 ctx = container_of(head, struct perf_counter_context, rcu_head);
135 kfree(ctx);
138 static void put_ctx(struct perf_counter_context *ctx)
140 if (atomic_dec_and_test(&ctx->refcount)) {
141 if (ctx->parent_ctx)
142 put_ctx(ctx->parent_ctx);
143 if (ctx->task)
144 put_task_struct(ctx->task);
145 call_rcu(&ctx->rcu_head, free_ctx);
150 * Get the perf_counter_context for a task and lock it.
151 * This has to cope with with the fact that until it is locked,
152 * the context could get moved to another task.
154 static struct perf_counter_context *
155 perf_lock_task_context(struct task_struct *task, unsigned long *flags)
157 struct perf_counter_context *ctx;
159 rcu_read_lock();
160 retry:
161 ctx = rcu_dereference(task->perf_counter_ctxp);
162 if (ctx) {
164 * If this context is a clone of another, it might
165 * get swapped for another underneath us by
166 * perf_counter_task_sched_out, though the
167 * rcu_read_lock() protects us from any context
168 * getting freed. Lock the context and check if it
169 * got swapped before we could get the lock, and retry
170 * if so. If we locked the right context, then it
171 * can't get swapped on us any more.
173 spin_lock_irqsave(&ctx->lock, *flags);
174 if (ctx != rcu_dereference(task->perf_counter_ctxp)) {
175 spin_unlock_irqrestore(&ctx->lock, *flags);
176 goto retry;
179 rcu_read_unlock();
180 return ctx;
184 * Get the context for a task and increment its pin_count so it
185 * can't get swapped to another task. This also increments its
186 * reference count so that the context can't get freed.
188 static struct perf_counter_context *perf_pin_task_context(struct task_struct *task)
190 struct perf_counter_context *ctx;
191 unsigned long flags;
193 ctx = perf_lock_task_context(task, &flags);
194 if (ctx) {
195 ++ctx->pin_count;
196 get_ctx(ctx);
197 spin_unlock_irqrestore(&ctx->lock, flags);
199 return ctx;
202 static void perf_unpin_context(struct perf_counter_context *ctx)
204 unsigned long flags;
206 spin_lock_irqsave(&ctx->lock, flags);
207 --ctx->pin_count;
208 spin_unlock_irqrestore(&ctx->lock, flags);
209 put_ctx(ctx);
213 * Add a counter from the lists for its context.
214 * Must be called with ctx->mutex and ctx->lock held.
216 static void
217 list_add_counter(struct perf_counter *counter, struct perf_counter_context *ctx)
219 struct perf_counter *group_leader = counter->group_leader;
222 * Depending on whether it is a standalone or sibling counter,
223 * add it straight to the context's counter list, or to the group
224 * leader's sibling list:
226 if (group_leader == counter)
227 list_add_tail(&counter->list_entry, &ctx->counter_list);
228 else {
229 list_add_tail(&counter->list_entry, &group_leader->sibling_list);
230 group_leader->nr_siblings++;
233 list_add_rcu(&counter->event_entry, &ctx->event_list);
234 ctx->nr_counters++;
238 * Remove a counter from the lists for its context.
239 * Must be called with ctx->mutex and ctx->lock held.
241 static void
242 list_del_counter(struct perf_counter *counter, struct perf_counter_context *ctx)
244 struct perf_counter *sibling, *tmp;
246 if (list_empty(&counter->list_entry))
247 return;
248 ctx->nr_counters--;
250 list_del_init(&counter->list_entry);
251 list_del_rcu(&counter->event_entry);
253 if (counter->group_leader != counter)
254 counter->group_leader->nr_siblings--;
257 * If this was a group counter with sibling counters then
258 * upgrade the siblings to singleton counters by adding them
259 * to the context list directly:
261 list_for_each_entry_safe(sibling, tmp,
262 &counter->sibling_list, list_entry) {
264 list_move_tail(&sibling->list_entry, &ctx->counter_list);
265 sibling->group_leader = sibling;
269 static void
270 counter_sched_out(struct perf_counter *counter,
271 struct perf_cpu_context *cpuctx,
272 struct perf_counter_context *ctx)
274 if (counter->state != PERF_COUNTER_STATE_ACTIVE)
275 return;
277 counter->state = PERF_COUNTER_STATE_INACTIVE;
278 counter->tstamp_stopped = ctx->time;
279 counter->pmu->disable(counter);
280 counter->oncpu = -1;
282 if (!is_software_counter(counter))
283 cpuctx->active_oncpu--;
284 ctx->nr_active--;
285 if (counter->attr.exclusive || !cpuctx->active_oncpu)
286 cpuctx->exclusive = 0;
289 static void
290 group_sched_out(struct perf_counter *group_counter,
291 struct perf_cpu_context *cpuctx,
292 struct perf_counter_context *ctx)
294 struct perf_counter *counter;
296 if (group_counter->state != PERF_COUNTER_STATE_ACTIVE)
297 return;
299 counter_sched_out(group_counter, cpuctx, ctx);
302 * Schedule out siblings (if any):
304 list_for_each_entry(counter, &group_counter->sibling_list, list_entry)
305 counter_sched_out(counter, cpuctx, ctx);
307 if (group_counter->attr.exclusive)
308 cpuctx->exclusive = 0;
312 * Cross CPU call to remove a performance counter
314 * We disable the counter on the hardware level first. After that we
315 * remove it from the context list.
317 static void __perf_counter_remove_from_context(void *info)
319 struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
320 struct perf_counter *counter = info;
321 struct perf_counter_context *ctx = counter->ctx;
324 * If this is a task context, we need to check whether it is
325 * the current task context of this cpu. If not it has been
326 * scheduled out before the smp call arrived.
328 if (ctx->task && cpuctx->task_ctx != ctx)
329 return;
331 spin_lock(&ctx->lock);
333 * Protect the list operation against NMI by disabling the
334 * counters on a global level.
336 perf_disable();
338 counter_sched_out(counter, cpuctx, ctx);
340 list_del_counter(counter, ctx);
342 if (!ctx->task) {
344 * Allow more per task counters with respect to the
345 * reservation:
347 cpuctx->max_pertask =
348 min(perf_max_counters - ctx->nr_counters,
349 perf_max_counters - perf_reserved_percpu);
352 perf_enable();
353 spin_unlock(&ctx->lock);
358 * Remove the counter from a task's (or a CPU's) list of counters.
360 * Must be called with ctx->mutex held.
362 * CPU counters are removed with a smp call. For task counters we only
363 * call when the task is on a CPU.
365 * If counter->ctx is a cloned context, callers must make sure that
366 * every task struct that counter->ctx->task could possibly point to
367 * remains valid. This is OK when called from perf_release since
368 * that only calls us on the top-level context, which can't be a clone.
369 * When called from perf_counter_exit_task, it's OK because the
370 * context has been detached from its task.
372 static void perf_counter_remove_from_context(struct perf_counter *counter)
374 struct perf_counter_context *ctx = counter->ctx;
375 struct task_struct *task = ctx->task;
377 if (!task) {
379 * Per cpu counters are removed via an smp call and
380 * the removal is always sucessful.
382 smp_call_function_single(counter->cpu,
383 __perf_counter_remove_from_context,
384 counter, 1);
385 return;
388 retry:
389 task_oncpu_function_call(task, __perf_counter_remove_from_context,
390 counter);
392 spin_lock_irq(&ctx->lock);
394 * If the context is active we need to retry the smp call.
396 if (ctx->nr_active && !list_empty(&counter->list_entry)) {
397 spin_unlock_irq(&ctx->lock);
398 goto retry;
402 * The lock prevents that this context is scheduled in so we
403 * can remove the counter safely, if the call above did not
404 * succeed.
406 if (!list_empty(&counter->list_entry)) {
407 list_del_counter(counter, ctx);
409 spin_unlock_irq(&ctx->lock);
412 static inline u64 perf_clock(void)
414 return cpu_clock(smp_processor_id());
418 * Update the record of the current time in a context.
420 static void update_context_time(struct perf_counter_context *ctx)
422 u64 now = perf_clock();
424 ctx->time += now - ctx->timestamp;
425 ctx->timestamp = now;
429 * Update the total_time_enabled and total_time_running fields for a counter.
431 static void update_counter_times(struct perf_counter *counter)
433 struct perf_counter_context *ctx = counter->ctx;
434 u64 run_end;
436 if (counter->state < PERF_COUNTER_STATE_INACTIVE)
437 return;
439 counter->total_time_enabled = ctx->time - counter->tstamp_enabled;
441 if (counter->state == PERF_COUNTER_STATE_INACTIVE)
442 run_end = counter->tstamp_stopped;
443 else
444 run_end = ctx->time;
446 counter->total_time_running = run_end - counter->tstamp_running;
450 * Update total_time_enabled and total_time_running for all counters in a group.
452 static void update_group_times(struct perf_counter *leader)
454 struct perf_counter *counter;
456 update_counter_times(leader);
457 list_for_each_entry(counter, &leader->sibling_list, list_entry)
458 update_counter_times(counter);
462 * Cross CPU call to disable a performance counter
464 static void __perf_counter_disable(void *info)
466 struct perf_counter *counter = info;
467 struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
468 struct perf_counter_context *ctx = counter->ctx;
471 * If this is a per-task counter, need to check whether this
472 * counter's task is the current task on this cpu.
474 if (ctx->task && cpuctx->task_ctx != ctx)
475 return;
477 spin_lock(&ctx->lock);
480 * If the counter is on, turn it off.
481 * If it is in error state, leave it in error state.
483 if (counter->state >= PERF_COUNTER_STATE_INACTIVE) {
484 update_context_time(ctx);
485 update_counter_times(counter);
486 if (counter == counter->group_leader)
487 group_sched_out(counter, cpuctx, ctx);
488 else
489 counter_sched_out(counter, cpuctx, ctx);
490 counter->state = PERF_COUNTER_STATE_OFF;
493 spin_unlock(&ctx->lock);
497 * Disable a counter.
499 * If counter->ctx is a cloned context, callers must make sure that
500 * every task struct that counter->ctx->task could possibly point to
501 * remains valid. This condition is satisifed when called through
502 * perf_counter_for_each_child or perf_counter_for_each because they
503 * hold the top-level counter's child_mutex, so any descendant that
504 * goes to exit will block in sync_child_counter.
505 * When called from perf_pending_counter it's OK because counter->ctx
506 * is the current context on this CPU and preemption is disabled,
507 * hence we can't get into perf_counter_task_sched_out for this context.
509 static void perf_counter_disable(struct perf_counter *counter)
511 struct perf_counter_context *ctx = counter->ctx;
512 struct task_struct *task = ctx->task;
514 if (!task) {
516 * Disable the counter on the cpu that it's on
518 smp_call_function_single(counter->cpu, __perf_counter_disable,
519 counter, 1);
520 return;
523 retry:
524 task_oncpu_function_call(task, __perf_counter_disable, counter);
526 spin_lock_irq(&ctx->lock);
528 * If the counter is still active, we need to retry the cross-call.
530 if (counter->state == PERF_COUNTER_STATE_ACTIVE) {
531 spin_unlock_irq(&ctx->lock);
532 goto retry;
536 * Since we have the lock this context can't be scheduled
537 * in, so we can change the state safely.
539 if (counter->state == PERF_COUNTER_STATE_INACTIVE) {
540 update_counter_times(counter);
541 counter->state = PERF_COUNTER_STATE_OFF;
544 spin_unlock_irq(&ctx->lock);
547 static int
548 counter_sched_in(struct perf_counter *counter,
549 struct perf_cpu_context *cpuctx,
550 struct perf_counter_context *ctx,
551 int cpu)
553 if (counter->state <= PERF_COUNTER_STATE_OFF)
554 return 0;
556 counter->state = PERF_COUNTER_STATE_ACTIVE;
557 counter->oncpu = cpu; /* TODO: put 'cpu' into cpuctx->cpu */
559 * The new state must be visible before we turn it on in the hardware:
561 smp_wmb();
563 if (counter->pmu->enable(counter)) {
564 counter->state = PERF_COUNTER_STATE_INACTIVE;
565 counter->oncpu = -1;
566 return -EAGAIN;
569 counter->tstamp_running += ctx->time - counter->tstamp_stopped;
571 if (!is_software_counter(counter))
572 cpuctx->active_oncpu++;
573 ctx->nr_active++;
575 if (counter->attr.exclusive)
576 cpuctx->exclusive = 1;
578 return 0;
581 static int
582 group_sched_in(struct perf_counter *group_counter,
583 struct perf_cpu_context *cpuctx,
584 struct perf_counter_context *ctx,
585 int cpu)
587 struct perf_counter *counter, *partial_group;
588 int ret;
590 if (group_counter->state == PERF_COUNTER_STATE_OFF)
591 return 0;
593 ret = hw_perf_group_sched_in(group_counter, cpuctx, ctx, cpu);
594 if (ret)
595 return ret < 0 ? ret : 0;
597 if (counter_sched_in(group_counter, cpuctx, ctx, cpu))
598 return -EAGAIN;
601 * Schedule in siblings as one group (if any):
603 list_for_each_entry(counter, &group_counter->sibling_list, list_entry) {
604 if (counter_sched_in(counter, cpuctx, ctx, cpu)) {
605 partial_group = counter;
606 goto group_error;
610 return 0;
612 group_error:
614 * Groups can be scheduled in as one unit only, so undo any
615 * partial group before returning:
617 list_for_each_entry(counter, &group_counter->sibling_list, list_entry) {
618 if (counter == partial_group)
619 break;
620 counter_sched_out(counter, cpuctx, ctx);
622 counter_sched_out(group_counter, cpuctx, ctx);
624 return -EAGAIN;
628 * Return 1 for a group consisting entirely of software counters,
629 * 0 if the group contains any hardware counters.
631 static int is_software_only_group(struct perf_counter *leader)
633 struct perf_counter *counter;
635 if (!is_software_counter(leader))
636 return 0;
638 list_for_each_entry(counter, &leader->sibling_list, list_entry)
639 if (!is_software_counter(counter))
640 return 0;
642 return 1;
646 * Work out whether we can put this counter group on the CPU now.
648 static int group_can_go_on(struct perf_counter *counter,
649 struct perf_cpu_context *cpuctx,
650 int can_add_hw)
653 * Groups consisting entirely of software counters can always go on.
655 if (is_software_only_group(counter))
656 return 1;
658 * If an exclusive group is already on, no other hardware
659 * counters can go on.
661 if (cpuctx->exclusive)
662 return 0;
664 * If this group is exclusive and there are already
665 * counters on the CPU, it can't go on.
667 if (counter->attr.exclusive && cpuctx->active_oncpu)
668 return 0;
670 * Otherwise, try to add it if all previous groups were able
671 * to go on.
673 return can_add_hw;
676 static void add_counter_to_ctx(struct perf_counter *counter,
677 struct perf_counter_context *ctx)
679 list_add_counter(counter, ctx);
680 counter->tstamp_enabled = ctx->time;
681 counter->tstamp_running = ctx->time;
682 counter->tstamp_stopped = ctx->time;
686 * Cross CPU call to install and enable a performance counter
688 * Must be called with ctx->mutex held
690 static void __perf_install_in_context(void *info)
692 struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
693 struct perf_counter *counter = info;
694 struct perf_counter_context *ctx = counter->ctx;
695 struct perf_counter *leader = counter->group_leader;
696 int cpu = smp_processor_id();
697 int err;
700 * If this is a task context, we need to check whether it is
701 * the current task context of this cpu. If not it has been
702 * scheduled out before the smp call arrived.
703 * Or possibly this is the right context but it isn't
704 * on this cpu because it had no counters.
706 if (ctx->task && cpuctx->task_ctx != ctx) {
707 if (cpuctx->task_ctx || ctx->task != current)
708 return;
709 cpuctx->task_ctx = ctx;
712 spin_lock(&ctx->lock);
713 ctx->is_active = 1;
714 update_context_time(ctx);
717 * Protect the list operation against NMI by disabling the
718 * counters on a global level. NOP for non NMI based counters.
720 perf_disable();
722 add_counter_to_ctx(counter, ctx);
725 * Don't put the counter on if it is disabled or if
726 * it is in a group and the group isn't on.
728 if (counter->state != PERF_COUNTER_STATE_INACTIVE ||
729 (leader != counter && leader->state != PERF_COUNTER_STATE_ACTIVE))
730 goto unlock;
733 * An exclusive counter can't go on if there are already active
734 * hardware counters, and no hardware counter can go on if there
735 * is already an exclusive counter on.
737 if (!group_can_go_on(counter, cpuctx, 1))
738 err = -EEXIST;
739 else
740 err = counter_sched_in(counter, cpuctx, ctx, cpu);
742 if (err) {
744 * This counter couldn't go on. If it is in a group
745 * then we have to pull the whole group off.
746 * If the counter group is pinned then put it in error state.
748 if (leader != counter)
749 group_sched_out(leader, cpuctx, ctx);
750 if (leader->attr.pinned) {
751 update_group_times(leader);
752 leader->state = PERF_COUNTER_STATE_ERROR;
756 if (!err && !ctx->task && cpuctx->max_pertask)
757 cpuctx->max_pertask--;
759 unlock:
760 perf_enable();
762 spin_unlock(&ctx->lock);
766 * Attach a performance counter to a context
768 * First we add the counter to the list with the hardware enable bit
769 * in counter->hw_config cleared.
771 * If the counter is attached to a task which is on a CPU we use a smp
772 * call to enable it in the task context. The task might have been
773 * scheduled away, but we check this in the smp call again.
775 * Must be called with ctx->mutex held.
777 static void
778 perf_install_in_context(struct perf_counter_context *ctx,
779 struct perf_counter *counter,
780 int cpu)
782 struct task_struct *task = ctx->task;
784 if (!task) {
786 * Per cpu counters are installed via an smp call and
787 * the install is always sucessful.
789 smp_call_function_single(cpu, __perf_install_in_context,
790 counter, 1);
791 return;
794 retry:
795 task_oncpu_function_call(task, __perf_install_in_context,
796 counter);
798 spin_lock_irq(&ctx->lock);
800 * we need to retry the smp call.
802 if (ctx->is_active && list_empty(&counter->list_entry)) {
803 spin_unlock_irq(&ctx->lock);
804 goto retry;
808 * The lock prevents that this context is scheduled in so we
809 * can add the counter safely, if it the call above did not
810 * succeed.
812 if (list_empty(&counter->list_entry))
813 add_counter_to_ctx(counter, ctx);
814 spin_unlock_irq(&ctx->lock);
818 * Cross CPU call to enable a performance counter
820 static void __perf_counter_enable(void *info)
822 struct perf_counter *counter = info;
823 struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
824 struct perf_counter_context *ctx = counter->ctx;
825 struct perf_counter *leader = counter->group_leader;
826 int err;
829 * If this is a per-task counter, need to check whether this
830 * counter's task is the current task on this cpu.
832 if (ctx->task && cpuctx->task_ctx != ctx) {
833 if (cpuctx->task_ctx || ctx->task != current)
834 return;
835 cpuctx->task_ctx = ctx;
838 spin_lock(&ctx->lock);
839 ctx->is_active = 1;
840 update_context_time(ctx);
842 if (counter->state >= PERF_COUNTER_STATE_INACTIVE)
843 goto unlock;
844 counter->state = PERF_COUNTER_STATE_INACTIVE;
845 counter->tstamp_enabled = ctx->time - counter->total_time_enabled;
848 * If the counter is in a group and isn't the group leader,
849 * then don't put it on unless the group is on.
851 if (leader != counter && leader->state != PERF_COUNTER_STATE_ACTIVE)
852 goto unlock;
854 if (!group_can_go_on(counter, cpuctx, 1)) {
855 err = -EEXIST;
856 } else {
857 perf_disable();
858 if (counter == leader)
859 err = group_sched_in(counter, cpuctx, ctx,
860 smp_processor_id());
861 else
862 err = counter_sched_in(counter, cpuctx, ctx,
863 smp_processor_id());
864 perf_enable();
867 if (err) {
869 * If this counter can't go on and it's part of a
870 * group, then the whole group has to come off.
872 if (leader != counter)
873 group_sched_out(leader, cpuctx, ctx);
874 if (leader->attr.pinned) {
875 update_group_times(leader);
876 leader->state = PERF_COUNTER_STATE_ERROR;
880 unlock:
881 spin_unlock(&ctx->lock);
885 * Enable a counter.
887 * If counter->ctx is a cloned context, callers must make sure that
888 * every task struct that counter->ctx->task could possibly point to
889 * remains valid. This condition is satisfied when called through
890 * perf_counter_for_each_child or perf_counter_for_each as described
891 * for perf_counter_disable.
893 static void perf_counter_enable(struct perf_counter *counter)
895 struct perf_counter_context *ctx = counter->ctx;
896 struct task_struct *task = ctx->task;
898 if (!task) {
900 * Enable the counter on the cpu that it's on
902 smp_call_function_single(counter->cpu, __perf_counter_enable,
903 counter, 1);
904 return;
907 spin_lock_irq(&ctx->lock);
908 if (counter->state >= PERF_COUNTER_STATE_INACTIVE)
909 goto out;
912 * If the counter is in error state, clear that first.
913 * That way, if we see the counter in error state below, we
914 * know that it has gone back into error state, as distinct
915 * from the task having been scheduled away before the
916 * cross-call arrived.
918 if (counter->state == PERF_COUNTER_STATE_ERROR)
919 counter->state = PERF_COUNTER_STATE_OFF;
921 retry:
922 spin_unlock_irq(&ctx->lock);
923 task_oncpu_function_call(task, __perf_counter_enable, counter);
925 spin_lock_irq(&ctx->lock);
928 * If the context is active and the counter is still off,
929 * we need to retry the cross-call.
931 if (ctx->is_active && counter->state == PERF_COUNTER_STATE_OFF)
932 goto retry;
935 * Since we have the lock this context can't be scheduled
936 * in, so we can change the state safely.
938 if (counter->state == PERF_COUNTER_STATE_OFF) {
939 counter->state = PERF_COUNTER_STATE_INACTIVE;
940 counter->tstamp_enabled =
941 ctx->time - counter->total_time_enabled;
943 out:
944 spin_unlock_irq(&ctx->lock);
947 static int perf_counter_refresh(struct perf_counter *counter, int refresh)
950 * not supported on inherited counters
952 if (counter->attr.inherit)
953 return -EINVAL;
955 atomic_add(refresh, &counter->event_limit);
956 perf_counter_enable(counter);
958 return 0;
961 void __perf_counter_sched_out(struct perf_counter_context *ctx,
962 struct perf_cpu_context *cpuctx)
964 struct perf_counter *counter;
966 spin_lock(&ctx->lock);
967 ctx->is_active = 0;
968 if (likely(!ctx->nr_counters))
969 goto out;
970 update_context_time(ctx);
972 perf_disable();
973 if (ctx->nr_active) {
974 list_for_each_entry(counter, &ctx->counter_list, list_entry) {
975 if (counter != counter->group_leader)
976 counter_sched_out(counter, cpuctx, ctx);
977 else
978 group_sched_out(counter, cpuctx, ctx);
981 perf_enable();
982 out:
983 spin_unlock(&ctx->lock);
987 * Test whether two contexts are equivalent, i.e. whether they
988 * have both been cloned from the same version of the same context
989 * and they both have the same number of enabled counters.
990 * If the number of enabled counters is the same, then the set
991 * of enabled counters should be the same, because these are both
992 * inherited contexts, therefore we can't access individual counters
993 * in them directly with an fd; we can only enable/disable all
994 * counters via prctl, or enable/disable all counters in a family
995 * via ioctl, which will have the same effect on both contexts.
997 static int context_equiv(struct perf_counter_context *ctx1,
998 struct perf_counter_context *ctx2)
1000 return ctx1->parent_ctx && ctx1->parent_ctx == ctx2->parent_ctx
1001 && ctx1->parent_gen == ctx2->parent_gen
1002 && !ctx1->pin_count && !ctx2->pin_count;
1006 * Called from scheduler to remove the counters of the current task,
1007 * with interrupts disabled.
1009 * We stop each counter and update the counter value in counter->count.
1011 * This does not protect us against NMI, but disable()
1012 * sets the disabled bit in the control field of counter _before_
1013 * accessing the counter control register. If a NMI hits, then it will
1014 * not restart the counter.
1016 void perf_counter_task_sched_out(struct task_struct *task,
1017 struct task_struct *next, int cpu)
1019 struct perf_cpu_context *cpuctx = &per_cpu(perf_cpu_context, cpu);
1020 struct perf_counter_context *ctx = task->perf_counter_ctxp;
1021 struct perf_counter_context *next_ctx;
1022 struct perf_counter_context *parent;
1023 struct pt_regs *regs;
1024 int do_switch = 1;
1026 regs = task_pt_regs(task);
1027 perf_swcounter_event(PERF_COUNT_SW_CONTEXT_SWITCHES, 1, 1, regs, 0);
1029 if (likely(!ctx || !cpuctx->task_ctx))
1030 return;
1032 update_context_time(ctx);
1034 rcu_read_lock();
1035 parent = rcu_dereference(ctx->parent_ctx);
1036 next_ctx = next->perf_counter_ctxp;
1037 if (parent && next_ctx &&
1038 rcu_dereference(next_ctx->parent_ctx) == parent) {
1040 * Looks like the two contexts are clones, so we might be
1041 * able to optimize the context switch. We lock both
1042 * contexts and check that they are clones under the
1043 * lock (including re-checking that neither has been
1044 * uncloned in the meantime). It doesn't matter which
1045 * order we take the locks because no other cpu could
1046 * be trying to lock both of these tasks.
1048 spin_lock(&ctx->lock);
1049 spin_lock_nested(&next_ctx->lock, SINGLE_DEPTH_NESTING);
1050 if (context_equiv(ctx, next_ctx)) {
1052 * XXX do we need a memory barrier of sorts
1053 * wrt to rcu_dereference() of perf_counter_ctxp
1055 task->perf_counter_ctxp = next_ctx;
1056 next->perf_counter_ctxp = ctx;
1057 ctx->task = next;
1058 next_ctx->task = task;
1059 do_switch = 0;
1061 spin_unlock(&next_ctx->lock);
1062 spin_unlock(&ctx->lock);
1064 rcu_read_unlock();
1066 if (do_switch) {
1067 __perf_counter_sched_out(ctx, cpuctx);
1068 cpuctx->task_ctx = NULL;
1073 * Called with IRQs disabled
1075 static void __perf_counter_task_sched_out(struct perf_counter_context *ctx)
1077 struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
1079 if (!cpuctx->task_ctx)
1080 return;
1082 if (WARN_ON_ONCE(ctx != cpuctx->task_ctx))
1083 return;
1085 __perf_counter_sched_out(ctx, cpuctx);
1086 cpuctx->task_ctx = NULL;
1090 * Called with IRQs disabled
1092 static void perf_counter_cpu_sched_out(struct perf_cpu_context *cpuctx)
1094 __perf_counter_sched_out(&cpuctx->ctx, cpuctx);
1097 static void
1098 __perf_counter_sched_in(struct perf_counter_context *ctx,
1099 struct perf_cpu_context *cpuctx, int cpu)
1101 struct perf_counter *counter;
1102 int can_add_hw = 1;
1104 spin_lock(&ctx->lock);
1105 ctx->is_active = 1;
1106 if (likely(!ctx->nr_counters))
1107 goto out;
1109 ctx->timestamp = perf_clock();
1111 perf_disable();
1114 * First go through the list and put on any pinned groups
1115 * in order to give them the best chance of going on.
1117 list_for_each_entry(counter, &ctx->counter_list, list_entry) {
1118 if (counter->state <= PERF_COUNTER_STATE_OFF ||
1119 !counter->attr.pinned)
1120 continue;
1121 if (counter->cpu != -1 && counter->cpu != cpu)
1122 continue;
1124 if (counter != counter->group_leader)
1125 counter_sched_in(counter, cpuctx, ctx, cpu);
1126 else {
1127 if (group_can_go_on(counter, cpuctx, 1))
1128 group_sched_in(counter, cpuctx, ctx, cpu);
1132 * If this pinned group hasn't been scheduled,
1133 * put it in error state.
1135 if (counter->state == PERF_COUNTER_STATE_INACTIVE) {
1136 update_group_times(counter);
1137 counter->state = PERF_COUNTER_STATE_ERROR;
1141 list_for_each_entry(counter, &ctx->counter_list, list_entry) {
1143 * Ignore counters in OFF or ERROR state, and
1144 * ignore pinned counters since we did them already.
1146 if (counter->state <= PERF_COUNTER_STATE_OFF ||
1147 counter->attr.pinned)
1148 continue;
1151 * Listen to the 'cpu' scheduling filter constraint
1152 * of counters:
1154 if (counter->cpu != -1 && counter->cpu != cpu)
1155 continue;
1157 if (counter != counter->group_leader) {
1158 if (counter_sched_in(counter, cpuctx, ctx, cpu))
1159 can_add_hw = 0;
1160 } else {
1161 if (group_can_go_on(counter, cpuctx, can_add_hw)) {
1162 if (group_sched_in(counter, cpuctx, ctx, cpu))
1163 can_add_hw = 0;
1167 perf_enable();
1168 out:
1169 spin_unlock(&ctx->lock);
1173 * Called from scheduler to add the counters of the current task
1174 * with interrupts disabled.
1176 * We restore the counter value and then enable it.
1178 * This does not protect us against NMI, but enable()
1179 * sets the enabled bit in the control field of counter _before_
1180 * accessing the counter control register. If a NMI hits, then it will
1181 * keep the counter running.
1183 void perf_counter_task_sched_in(struct task_struct *task, int cpu)
1185 struct perf_cpu_context *cpuctx = &per_cpu(perf_cpu_context, cpu);
1186 struct perf_counter_context *ctx = task->perf_counter_ctxp;
1188 if (likely(!ctx))
1189 return;
1190 if (cpuctx->task_ctx == ctx)
1191 return;
1192 __perf_counter_sched_in(ctx, cpuctx, cpu);
1193 cpuctx->task_ctx = ctx;
1196 static void perf_counter_cpu_sched_in(struct perf_cpu_context *cpuctx, int cpu)
1198 struct perf_counter_context *ctx = &cpuctx->ctx;
1200 __perf_counter_sched_in(ctx, cpuctx, cpu);
1203 #define MAX_INTERRUPTS (~0ULL)
1205 static void perf_log_throttle(struct perf_counter *counter, int enable);
1206 static void perf_log_period(struct perf_counter *counter, u64 period);
1208 static void perf_adjust_period(struct perf_counter *counter, u64 events)
1210 struct hw_perf_counter *hwc = &counter->hw;
1211 u64 period, sample_period;
1212 s64 delta;
1214 events *= hwc->sample_period;
1215 period = div64_u64(events, counter->attr.sample_freq);
1217 delta = (s64)(period - hwc->sample_period);
1218 delta = (delta + 7) / 8; /* low pass filter */
1220 sample_period = hwc->sample_period + delta;
1222 if (!sample_period)
1223 sample_period = 1;
1225 perf_log_period(counter, sample_period);
1227 hwc->sample_period = sample_period;
1230 static void perf_ctx_adjust_freq(struct perf_counter_context *ctx)
1232 struct perf_counter *counter;
1233 struct hw_perf_counter *hwc;
1234 u64 interrupts, freq;
1236 spin_lock(&ctx->lock);
1237 list_for_each_entry(counter, &ctx->counter_list, list_entry) {
1238 if (counter->state != PERF_COUNTER_STATE_ACTIVE)
1239 continue;
1241 hwc = &counter->hw;
1243 interrupts = hwc->interrupts;
1244 hwc->interrupts = 0;
1247 * unthrottle counters on the tick
1249 if (interrupts == MAX_INTERRUPTS) {
1250 perf_log_throttle(counter, 1);
1251 counter->pmu->unthrottle(counter);
1252 interrupts = 2*sysctl_perf_counter_sample_rate/HZ;
1255 if (!counter->attr.freq || !counter->attr.sample_freq)
1256 continue;
1259 * if the specified freq < HZ then we need to skip ticks
1261 if (counter->attr.sample_freq < HZ) {
1262 freq = counter->attr.sample_freq;
1264 hwc->freq_count += freq;
1265 hwc->freq_interrupts += interrupts;
1267 if (hwc->freq_count < HZ)
1268 continue;
1270 interrupts = hwc->freq_interrupts;
1271 hwc->freq_interrupts = 0;
1272 hwc->freq_count -= HZ;
1273 } else
1274 freq = HZ;
1276 perf_adjust_period(counter, freq * interrupts);
1279 * In order to avoid being stalled by an (accidental) huge
1280 * sample period, force reset the sample period if we didn't
1281 * get any events in this freq period.
1283 if (!interrupts) {
1284 perf_disable();
1285 counter->pmu->disable(counter);
1286 atomic_set(&hwc->period_left, 0);
1287 counter->pmu->enable(counter);
1288 perf_enable();
1291 spin_unlock(&ctx->lock);
1295 * Round-robin a context's counters:
1297 static void rotate_ctx(struct perf_counter_context *ctx)
1299 struct perf_counter *counter;
1301 if (!ctx->nr_counters)
1302 return;
1304 spin_lock(&ctx->lock);
1306 * Rotate the first entry last (works just fine for group counters too):
1308 perf_disable();
1309 list_for_each_entry(counter, &ctx->counter_list, list_entry) {
1310 list_move_tail(&counter->list_entry, &ctx->counter_list);
1311 break;
1313 perf_enable();
1315 spin_unlock(&ctx->lock);
1318 void perf_counter_task_tick(struct task_struct *curr, int cpu)
1320 struct perf_cpu_context *cpuctx;
1321 struct perf_counter_context *ctx;
1323 if (!atomic_read(&nr_counters))
1324 return;
1326 cpuctx = &per_cpu(perf_cpu_context, cpu);
1327 ctx = curr->perf_counter_ctxp;
1329 perf_ctx_adjust_freq(&cpuctx->ctx);
1330 if (ctx)
1331 perf_ctx_adjust_freq(ctx);
1333 perf_counter_cpu_sched_out(cpuctx);
1334 if (ctx)
1335 __perf_counter_task_sched_out(ctx);
1337 rotate_ctx(&cpuctx->ctx);
1338 if (ctx)
1339 rotate_ctx(ctx);
1341 perf_counter_cpu_sched_in(cpuctx, cpu);
1342 if (ctx)
1343 perf_counter_task_sched_in(curr, cpu);
1347 * Cross CPU call to read the hardware counter
1349 static void __read(void *info)
1351 struct perf_counter *counter = info;
1352 struct perf_counter_context *ctx = counter->ctx;
1353 unsigned long flags;
1355 local_irq_save(flags);
1356 if (ctx->is_active)
1357 update_context_time(ctx);
1358 counter->pmu->read(counter);
1359 update_counter_times(counter);
1360 local_irq_restore(flags);
1363 static u64 perf_counter_read(struct perf_counter *counter)
1366 * If counter is enabled and currently active on a CPU, update the
1367 * value in the counter structure:
1369 if (counter->state == PERF_COUNTER_STATE_ACTIVE) {
1370 smp_call_function_single(counter->oncpu,
1371 __read, counter, 1);
1372 } else if (counter->state == PERF_COUNTER_STATE_INACTIVE) {
1373 update_counter_times(counter);
1376 return atomic64_read(&counter->count);
1380 * Initialize the perf_counter context in a task_struct:
1382 static void
1383 __perf_counter_init_context(struct perf_counter_context *ctx,
1384 struct task_struct *task)
1386 memset(ctx, 0, sizeof(*ctx));
1387 spin_lock_init(&ctx->lock);
1388 mutex_init(&ctx->mutex);
1389 INIT_LIST_HEAD(&ctx->counter_list);
1390 INIT_LIST_HEAD(&ctx->event_list);
1391 atomic_set(&ctx->refcount, 1);
1392 ctx->task = task;
1395 static struct perf_counter_context *find_get_context(pid_t pid, int cpu)
1397 struct perf_counter_context *parent_ctx;
1398 struct perf_counter_context *ctx;
1399 struct perf_cpu_context *cpuctx;
1400 struct task_struct *task;
1401 unsigned long flags;
1402 int err;
1405 * If cpu is not a wildcard then this is a percpu counter:
1407 if (cpu != -1) {
1408 /* Must be root to operate on a CPU counter: */
1409 if (perf_paranoid_cpu() && !capable(CAP_SYS_ADMIN))
1410 return ERR_PTR(-EACCES);
1412 if (cpu < 0 || cpu > num_possible_cpus())
1413 return ERR_PTR(-EINVAL);
1416 * We could be clever and allow to attach a counter to an
1417 * offline CPU and activate it when the CPU comes up, but
1418 * that's for later.
1420 if (!cpu_isset(cpu, cpu_online_map))
1421 return ERR_PTR(-ENODEV);
1423 cpuctx = &per_cpu(perf_cpu_context, cpu);
1424 ctx = &cpuctx->ctx;
1425 get_ctx(ctx);
1427 return ctx;
1430 rcu_read_lock();
1431 if (!pid)
1432 task = current;
1433 else
1434 task = find_task_by_vpid(pid);
1435 if (task)
1436 get_task_struct(task);
1437 rcu_read_unlock();
1439 if (!task)
1440 return ERR_PTR(-ESRCH);
1443 * Can't attach counters to a dying task.
1445 err = -ESRCH;
1446 if (task->flags & PF_EXITING)
1447 goto errout;
1449 /* Reuse ptrace permission checks for now. */
1450 err = -EACCES;
1451 if (!ptrace_may_access(task, PTRACE_MODE_READ))
1452 goto errout;
1454 retry:
1455 ctx = perf_lock_task_context(task, &flags);
1456 if (ctx) {
1457 parent_ctx = ctx->parent_ctx;
1458 if (parent_ctx) {
1459 put_ctx(parent_ctx);
1460 ctx->parent_ctx = NULL; /* no longer a clone */
1463 * Get an extra reference before dropping the lock so that
1464 * this context won't get freed if the task exits.
1466 get_ctx(ctx);
1467 spin_unlock_irqrestore(&ctx->lock, flags);
1470 if (!ctx) {
1471 ctx = kmalloc(sizeof(struct perf_counter_context), GFP_KERNEL);
1472 err = -ENOMEM;
1473 if (!ctx)
1474 goto errout;
1475 __perf_counter_init_context(ctx, task);
1476 get_ctx(ctx);
1477 if (cmpxchg(&task->perf_counter_ctxp, NULL, ctx)) {
1479 * We raced with some other task; use
1480 * the context they set.
1482 kfree(ctx);
1483 goto retry;
1485 get_task_struct(task);
1488 put_task_struct(task);
1489 return ctx;
1491 errout:
1492 put_task_struct(task);
1493 return ERR_PTR(err);
1496 static void free_counter_rcu(struct rcu_head *head)
1498 struct perf_counter *counter;
1500 counter = container_of(head, struct perf_counter, rcu_head);
1501 if (counter->ns)
1502 put_pid_ns(counter->ns);
1503 kfree(counter);
1506 static void perf_pending_sync(struct perf_counter *counter);
1508 static void free_counter(struct perf_counter *counter)
1510 perf_pending_sync(counter);
1512 atomic_dec(&nr_counters);
1513 if (counter->attr.mmap)
1514 atomic_dec(&nr_mmap_counters);
1515 if (counter->attr.comm)
1516 atomic_dec(&nr_comm_counters);
1518 if (counter->destroy)
1519 counter->destroy(counter);
1521 put_ctx(counter->ctx);
1522 call_rcu(&counter->rcu_head, free_counter_rcu);
1526 * Called when the last reference to the file is gone.
1528 static int perf_release(struct inode *inode, struct file *file)
1530 struct perf_counter *counter = file->private_data;
1531 struct perf_counter_context *ctx = counter->ctx;
1533 file->private_data = NULL;
1535 WARN_ON_ONCE(ctx->parent_ctx);
1536 mutex_lock(&ctx->mutex);
1537 perf_counter_remove_from_context(counter);
1538 mutex_unlock(&ctx->mutex);
1540 mutex_lock(&counter->owner->perf_counter_mutex);
1541 list_del_init(&counter->owner_entry);
1542 mutex_unlock(&counter->owner->perf_counter_mutex);
1543 put_task_struct(counter->owner);
1545 free_counter(counter);
1547 return 0;
1551 * Read the performance counter - simple non blocking version for now
1553 static ssize_t
1554 perf_read_hw(struct perf_counter *counter, char __user *buf, size_t count)
1556 u64 values[3];
1557 int n;
1560 * Return end-of-file for a read on a counter that is in
1561 * error state (i.e. because it was pinned but it couldn't be
1562 * scheduled on to the CPU at some point).
1564 if (counter->state == PERF_COUNTER_STATE_ERROR)
1565 return 0;
1567 WARN_ON_ONCE(counter->ctx->parent_ctx);
1568 mutex_lock(&counter->child_mutex);
1569 values[0] = perf_counter_read(counter);
1570 n = 1;
1571 if (counter->attr.read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
1572 values[n++] = counter->total_time_enabled +
1573 atomic64_read(&counter->child_total_time_enabled);
1574 if (counter->attr.read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
1575 values[n++] = counter->total_time_running +
1576 atomic64_read(&counter->child_total_time_running);
1577 if (counter->attr.read_format & PERF_FORMAT_ID)
1578 values[n++] = counter->id;
1579 mutex_unlock(&counter->child_mutex);
1581 if (count < n * sizeof(u64))
1582 return -EINVAL;
1583 count = n * sizeof(u64);
1585 if (copy_to_user(buf, values, count))
1586 return -EFAULT;
1588 return count;
1591 static ssize_t
1592 perf_read(struct file *file, char __user *buf, size_t count, loff_t *ppos)
1594 struct perf_counter *counter = file->private_data;
1596 return perf_read_hw(counter, buf, count);
1599 static unsigned int perf_poll(struct file *file, poll_table *wait)
1601 struct perf_counter *counter = file->private_data;
1602 struct perf_mmap_data *data;
1603 unsigned int events = POLL_HUP;
1605 rcu_read_lock();
1606 data = rcu_dereference(counter->data);
1607 if (data)
1608 events = atomic_xchg(&data->poll, 0);
1609 rcu_read_unlock();
1611 poll_wait(file, &counter->waitq, wait);
1613 return events;
1616 static void perf_counter_reset(struct perf_counter *counter)
1618 (void)perf_counter_read(counter);
1619 atomic64_set(&counter->count, 0);
1620 perf_counter_update_userpage(counter);
1623 static void perf_counter_for_each_sibling(struct perf_counter *counter,
1624 void (*func)(struct perf_counter *))
1626 struct perf_counter_context *ctx = counter->ctx;
1627 struct perf_counter *sibling;
1629 WARN_ON_ONCE(ctx->parent_ctx);
1630 mutex_lock(&ctx->mutex);
1631 counter = counter->group_leader;
1633 func(counter);
1634 list_for_each_entry(sibling, &counter->sibling_list, list_entry)
1635 func(sibling);
1636 mutex_unlock(&ctx->mutex);
1640 * Holding the top-level counter's child_mutex means that any
1641 * descendant process that has inherited this counter will block
1642 * in sync_child_counter if it goes to exit, thus satisfying the
1643 * task existence requirements of perf_counter_enable/disable.
1645 static void perf_counter_for_each_child(struct perf_counter *counter,
1646 void (*func)(struct perf_counter *))
1648 struct perf_counter *child;
1650 WARN_ON_ONCE(counter->ctx->parent_ctx);
1651 mutex_lock(&counter->child_mutex);
1652 func(counter);
1653 list_for_each_entry(child, &counter->child_list, child_list)
1654 func(child);
1655 mutex_unlock(&counter->child_mutex);
1658 static void perf_counter_for_each(struct perf_counter *counter,
1659 void (*func)(struct perf_counter *))
1661 struct perf_counter *child;
1663 WARN_ON_ONCE(counter->ctx->parent_ctx);
1664 mutex_lock(&counter->child_mutex);
1665 perf_counter_for_each_sibling(counter, func);
1666 list_for_each_entry(child, &counter->child_list, child_list)
1667 perf_counter_for_each_sibling(child, func);
1668 mutex_unlock(&counter->child_mutex);
1671 static int perf_counter_period(struct perf_counter *counter, u64 __user *arg)
1673 struct perf_counter_context *ctx = counter->ctx;
1674 unsigned long size;
1675 int ret = 0;
1676 u64 value;
1678 if (!counter->attr.sample_period)
1679 return -EINVAL;
1681 size = copy_from_user(&value, arg, sizeof(value));
1682 if (size != sizeof(value))
1683 return -EFAULT;
1685 if (!value)
1686 return -EINVAL;
1688 spin_lock_irq(&ctx->lock);
1689 if (counter->attr.freq) {
1690 if (value > sysctl_perf_counter_sample_rate) {
1691 ret = -EINVAL;
1692 goto unlock;
1695 counter->attr.sample_freq = value;
1696 } else {
1697 perf_log_period(counter, value);
1699 counter->attr.sample_period = value;
1700 counter->hw.sample_period = value;
1702 unlock:
1703 spin_unlock_irq(&ctx->lock);
1705 return ret;
1708 static long perf_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
1710 struct perf_counter *counter = file->private_data;
1711 void (*func)(struct perf_counter *);
1712 u32 flags = arg;
1714 switch (cmd) {
1715 case PERF_COUNTER_IOC_ENABLE:
1716 func = perf_counter_enable;
1717 break;
1718 case PERF_COUNTER_IOC_DISABLE:
1719 func = perf_counter_disable;
1720 break;
1721 case PERF_COUNTER_IOC_RESET:
1722 func = perf_counter_reset;
1723 break;
1725 case PERF_COUNTER_IOC_REFRESH:
1726 return perf_counter_refresh(counter, arg);
1728 case PERF_COUNTER_IOC_PERIOD:
1729 return perf_counter_period(counter, (u64 __user *)arg);
1731 default:
1732 return -ENOTTY;
1735 if (flags & PERF_IOC_FLAG_GROUP)
1736 perf_counter_for_each(counter, func);
1737 else
1738 perf_counter_for_each_child(counter, func);
1740 return 0;
1743 int perf_counter_task_enable(void)
1745 struct perf_counter *counter;
1747 mutex_lock(&current->perf_counter_mutex);
1748 list_for_each_entry(counter, &current->perf_counter_list, owner_entry)
1749 perf_counter_for_each_child(counter, perf_counter_enable);
1750 mutex_unlock(&current->perf_counter_mutex);
1752 return 0;
1755 int perf_counter_task_disable(void)
1757 struct perf_counter *counter;
1759 mutex_lock(&current->perf_counter_mutex);
1760 list_for_each_entry(counter, &current->perf_counter_list, owner_entry)
1761 perf_counter_for_each_child(counter, perf_counter_disable);
1762 mutex_unlock(&current->perf_counter_mutex);
1764 return 0;
1768 * Callers need to ensure there can be no nesting of this function, otherwise
1769 * the seqlock logic goes bad. We can not serialize this because the arch
1770 * code calls this from NMI context.
1772 void perf_counter_update_userpage(struct perf_counter *counter)
1774 struct perf_counter_mmap_page *userpg;
1775 struct perf_mmap_data *data;
1777 rcu_read_lock();
1778 data = rcu_dereference(counter->data);
1779 if (!data)
1780 goto unlock;
1782 userpg = data->user_page;
1785 * Disable preemption so as to not let the corresponding user-space
1786 * spin too long if we get preempted.
1788 preempt_disable();
1789 ++userpg->lock;
1790 barrier();
1791 userpg->index = counter->hw.idx;
1792 userpg->offset = atomic64_read(&counter->count);
1793 if (counter->state == PERF_COUNTER_STATE_ACTIVE)
1794 userpg->offset -= atomic64_read(&counter->hw.prev_count);
1796 barrier();
1797 ++userpg->lock;
1798 preempt_enable();
1799 unlock:
1800 rcu_read_unlock();
1803 static int perf_mmap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1805 struct perf_counter *counter = vma->vm_file->private_data;
1806 struct perf_mmap_data *data;
1807 int ret = VM_FAULT_SIGBUS;
1809 rcu_read_lock();
1810 data = rcu_dereference(counter->data);
1811 if (!data)
1812 goto unlock;
1814 if (vmf->pgoff == 0) {
1815 vmf->page = virt_to_page(data->user_page);
1816 } else {
1817 int nr = vmf->pgoff - 1;
1819 if ((unsigned)nr > data->nr_pages)
1820 goto unlock;
1822 vmf->page = virt_to_page(data->data_pages[nr]);
1824 get_page(vmf->page);
1825 ret = 0;
1826 unlock:
1827 rcu_read_unlock();
1829 return ret;
1832 static int perf_mmap_data_alloc(struct perf_counter *counter, int nr_pages)
1834 struct perf_mmap_data *data;
1835 unsigned long size;
1836 int i;
1838 WARN_ON(atomic_read(&counter->mmap_count));
1840 size = sizeof(struct perf_mmap_data);
1841 size += nr_pages * sizeof(void *);
1843 data = kzalloc(size, GFP_KERNEL);
1844 if (!data)
1845 goto fail;
1847 data->user_page = (void *)get_zeroed_page(GFP_KERNEL);
1848 if (!data->user_page)
1849 goto fail_user_page;
1851 for (i = 0; i < nr_pages; i++) {
1852 data->data_pages[i] = (void *)get_zeroed_page(GFP_KERNEL);
1853 if (!data->data_pages[i])
1854 goto fail_data_pages;
1857 data->nr_pages = nr_pages;
1858 atomic_set(&data->lock, -1);
1860 rcu_assign_pointer(counter->data, data);
1862 return 0;
1864 fail_data_pages:
1865 for (i--; i >= 0; i--)
1866 free_page((unsigned long)data->data_pages[i]);
1868 free_page((unsigned long)data->user_page);
1870 fail_user_page:
1871 kfree(data);
1873 fail:
1874 return -ENOMEM;
1877 static void __perf_mmap_data_free(struct rcu_head *rcu_head)
1879 struct perf_mmap_data *data;
1880 int i;
1882 data = container_of(rcu_head, struct perf_mmap_data, rcu_head);
1884 free_page((unsigned long)data->user_page);
1885 for (i = 0; i < data->nr_pages; i++)
1886 free_page((unsigned long)data->data_pages[i]);
1887 kfree(data);
1890 static void perf_mmap_data_free(struct perf_counter *counter)
1892 struct perf_mmap_data *data = counter->data;
1894 WARN_ON(atomic_read(&counter->mmap_count));
1896 rcu_assign_pointer(counter->data, NULL);
1897 call_rcu(&data->rcu_head, __perf_mmap_data_free);
1900 static void perf_mmap_open(struct vm_area_struct *vma)
1902 struct perf_counter *counter = vma->vm_file->private_data;
1904 atomic_inc(&counter->mmap_count);
1907 static void perf_mmap_close(struct vm_area_struct *vma)
1909 struct perf_counter *counter = vma->vm_file->private_data;
1911 WARN_ON_ONCE(counter->ctx->parent_ctx);
1912 if (atomic_dec_and_mutex_lock(&counter->mmap_count, &counter->mmap_mutex)) {
1913 struct user_struct *user = current_user();
1915 atomic_long_sub(counter->data->nr_pages + 1, &user->locked_vm);
1916 vma->vm_mm->locked_vm -= counter->data->nr_locked;
1917 perf_mmap_data_free(counter);
1918 mutex_unlock(&counter->mmap_mutex);
1922 static struct vm_operations_struct perf_mmap_vmops = {
1923 .open = perf_mmap_open,
1924 .close = perf_mmap_close,
1925 .fault = perf_mmap_fault,
1928 static int perf_mmap(struct file *file, struct vm_area_struct *vma)
1930 struct perf_counter *counter = file->private_data;
1931 unsigned long user_locked, user_lock_limit;
1932 struct user_struct *user = current_user();
1933 unsigned long locked, lock_limit;
1934 unsigned long vma_size;
1935 unsigned long nr_pages;
1936 long user_extra, extra;
1937 int ret = 0;
1939 if (!(vma->vm_flags & VM_SHARED) || (vma->vm_flags & VM_WRITE))
1940 return -EINVAL;
1942 vma_size = vma->vm_end - vma->vm_start;
1943 nr_pages = (vma_size / PAGE_SIZE) - 1;
1946 * If we have data pages ensure they're a power-of-two number, so we
1947 * can do bitmasks instead of modulo.
1949 if (nr_pages != 0 && !is_power_of_2(nr_pages))
1950 return -EINVAL;
1952 if (vma_size != PAGE_SIZE * (1 + nr_pages))
1953 return -EINVAL;
1955 if (vma->vm_pgoff != 0)
1956 return -EINVAL;
1958 WARN_ON_ONCE(counter->ctx->parent_ctx);
1959 mutex_lock(&counter->mmap_mutex);
1960 if (atomic_inc_not_zero(&counter->mmap_count)) {
1961 if (nr_pages != counter->data->nr_pages)
1962 ret = -EINVAL;
1963 goto unlock;
1966 user_extra = nr_pages + 1;
1967 user_lock_limit = sysctl_perf_counter_mlock >> (PAGE_SHIFT - 10);
1970 * Increase the limit linearly with more CPUs:
1972 user_lock_limit *= num_online_cpus();
1974 user_locked = atomic_long_read(&user->locked_vm) + user_extra;
1976 extra = 0;
1977 if (user_locked > user_lock_limit)
1978 extra = user_locked - user_lock_limit;
1980 lock_limit = current->signal->rlim[RLIMIT_MEMLOCK].rlim_cur;
1981 lock_limit >>= PAGE_SHIFT;
1982 locked = vma->vm_mm->locked_vm + extra;
1984 if ((locked > lock_limit) && !capable(CAP_IPC_LOCK)) {
1985 ret = -EPERM;
1986 goto unlock;
1989 WARN_ON(counter->data);
1990 ret = perf_mmap_data_alloc(counter, nr_pages);
1991 if (ret)
1992 goto unlock;
1994 atomic_set(&counter->mmap_count, 1);
1995 atomic_long_add(user_extra, &user->locked_vm);
1996 vma->vm_mm->locked_vm += extra;
1997 counter->data->nr_locked = extra;
1998 unlock:
1999 mutex_unlock(&counter->mmap_mutex);
2001 vma->vm_flags &= ~VM_MAYWRITE;
2002 vma->vm_flags |= VM_RESERVED;
2003 vma->vm_ops = &perf_mmap_vmops;
2005 return ret;
2008 static int perf_fasync(int fd, struct file *filp, int on)
2010 struct inode *inode = filp->f_path.dentry->d_inode;
2011 struct perf_counter *counter = filp->private_data;
2012 int retval;
2014 mutex_lock(&inode->i_mutex);
2015 retval = fasync_helper(fd, filp, on, &counter->fasync);
2016 mutex_unlock(&inode->i_mutex);
2018 if (retval < 0)
2019 return retval;
2021 return 0;
2024 static const struct file_operations perf_fops = {
2025 .release = perf_release,
2026 .read = perf_read,
2027 .poll = perf_poll,
2028 .unlocked_ioctl = perf_ioctl,
2029 .compat_ioctl = perf_ioctl,
2030 .mmap = perf_mmap,
2031 .fasync = perf_fasync,
2035 * Perf counter wakeup
2037 * If there's data, ensure we set the poll() state and publish everything
2038 * to user-space before waking everybody up.
2041 void perf_counter_wakeup(struct perf_counter *counter)
2043 wake_up_all(&counter->waitq);
2045 if (counter->pending_kill) {
2046 kill_fasync(&counter->fasync, SIGIO, counter->pending_kill);
2047 counter->pending_kill = 0;
2052 * Pending wakeups
2054 * Handle the case where we need to wakeup up from NMI (or rq->lock) context.
2056 * The NMI bit means we cannot possibly take locks. Therefore, maintain a
2057 * single linked list and use cmpxchg() to add entries lockless.
2060 static void perf_pending_counter(struct perf_pending_entry *entry)
2062 struct perf_counter *counter = container_of(entry,
2063 struct perf_counter, pending);
2065 if (counter->pending_disable) {
2066 counter->pending_disable = 0;
2067 perf_counter_disable(counter);
2070 if (counter->pending_wakeup) {
2071 counter->pending_wakeup = 0;
2072 perf_counter_wakeup(counter);
2076 #define PENDING_TAIL ((struct perf_pending_entry *)-1UL)
2078 static DEFINE_PER_CPU(struct perf_pending_entry *, perf_pending_head) = {
2079 PENDING_TAIL,
2082 static void perf_pending_queue(struct perf_pending_entry *entry,
2083 void (*func)(struct perf_pending_entry *))
2085 struct perf_pending_entry **head;
2087 if (cmpxchg(&entry->next, NULL, PENDING_TAIL) != NULL)
2088 return;
2090 entry->func = func;
2092 head = &get_cpu_var(perf_pending_head);
2094 do {
2095 entry->next = *head;
2096 } while (cmpxchg(head, entry->next, entry) != entry->next);
2098 set_perf_counter_pending();
2100 put_cpu_var(perf_pending_head);
2103 static int __perf_pending_run(void)
2105 struct perf_pending_entry *list;
2106 int nr = 0;
2108 list = xchg(&__get_cpu_var(perf_pending_head), PENDING_TAIL);
2109 while (list != PENDING_TAIL) {
2110 void (*func)(struct perf_pending_entry *);
2111 struct perf_pending_entry *entry = list;
2113 list = list->next;
2115 func = entry->func;
2116 entry->next = NULL;
2118 * Ensure we observe the unqueue before we issue the wakeup,
2119 * so that we won't be waiting forever.
2120 * -- see perf_not_pending().
2122 smp_wmb();
2124 func(entry);
2125 nr++;
2128 return nr;
2131 static inline int perf_not_pending(struct perf_counter *counter)
2134 * If we flush on whatever cpu we run, there is a chance we don't
2135 * need to wait.
2137 get_cpu();
2138 __perf_pending_run();
2139 put_cpu();
2142 * Ensure we see the proper queue state before going to sleep
2143 * so that we do not miss the wakeup. -- see perf_pending_handle()
2145 smp_rmb();
2146 return counter->pending.next == NULL;
2149 static void perf_pending_sync(struct perf_counter *counter)
2151 wait_event(counter->waitq, perf_not_pending(counter));
2154 void perf_counter_do_pending(void)
2156 __perf_pending_run();
2160 * Callchain support -- arch specific
2163 __weak struct perf_callchain_entry *perf_callchain(struct pt_regs *regs)
2165 return NULL;
2169 * Output
2172 struct perf_output_handle {
2173 struct perf_counter *counter;
2174 struct perf_mmap_data *data;
2175 unsigned long head;
2176 unsigned long offset;
2177 int nmi;
2178 int overflow;
2179 int locked;
2180 unsigned long flags;
2183 static void perf_output_wakeup(struct perf_output_handle *handle)
2185 atomic_set(&handle->data->poll, POLL_IN);
2187 if (handle->nmi) {
2188 handle->counter->pending_wakeup = 1;
2189 perf_pending_queue(&handle->counter->pending,
2190 perf_pending_counter);
2191 } else
2192 perf_counter_wakeup(handle->counter);
2196 * Curious locking construct.
2198 * We need to ensure a later event doesn't publish a head when a former
2199 * event isn't done writing. However since we need to deal with NMIs we
2200 * cannot fully serialize things.
2202 * What we do is serialize between CPUs so we only have to deal with NMI
2203 * nesting on a single CPU.
2205 * We only publish the head (and generate a wakeup) when the outer-most
2206 * event completes.
2208 static void perf_output_lock(struct perf_output_handle *handle)
2210 struct perf_mmap_data *data = handle->data;
2211 int cpu;
2213 handle->locked = 0;
2215 local_irq_save(handle->flags);
2216 cpu = smp_processor_id();
2218 if (in_nmi() && atomic_read(&data->lock) == cpu)
2219 return;
2221 while (atomic_cmpxchg(&data->lock, -1, cpu) != -1)
2222 cpu_relax();
2224 handle->locked = 1;
2227 static void perf_output_unlock(struct perf_output_handle *handle)
2229 struct perf_mmap_data *data = handle->data;
2230 unsigned long head;
2231 int cpu;
2233 data->done_head = data->head;
2235 if (!handle->locked)
2236 goto out;
2238 again:
2240 * The xchg implies a full barrier that ensures all writes are done
2241 * before we publish the new head, matched by a rmb() in userspace when
2242 * reading this position.
2244 while ((head = atomic_long_xchg(&data->done_head, 0)))
2245 data->user_page->data_head = head;
2248 * NMI can happen here, which means we can miss a done_head update.
2251 cpu = atomic_xchg(&data->lock, -1);
2252 WARN_ON_ONCE(cpu != smp_processor_id());
2255 * Therefore we have to validate we did not indeed do so.
2257 if (unlikely(atomic_long_read(&data->done_head))) {
2259 * Since we had it locked, we can lock it again.
2261 while (atomic_cmpxchg(&data->lock, -1, cpu) != -1)
2262 cpu_relax();
2264 goto again;
2267 if (atomic_xchg(&data->wakeup, 0))
2268 perf_output_wakeup(handle);
2269 out:
2270 local_irq_restore(handle->flags);
2273 static int perf_output_begin(struct perf_output_handle *handle,
2274 struct perf_counter *counter, unsigned int size,
2275 int nmi, int overflow)
2277 struct perf_mmap_data *data;
2278 unsigned int offset, head;
2281 * For inherited counters we send all the output towards the parent.
2283 if (counter->parent)
2284 counter = counter->parent;
2286 rcu_read_lock();
2287 data = rcu_dereference(counter->data);
2288 if (!data)
2289 goto out;
2291 handle->data = data;
2292 handle->counter = counter;
2293 handle->nmi = nmi;
2294 handle->overflow = overflow;
2296 if (!data->nr_pages)
2297 goto fail;
2299 perf_output_lock(handle);
2301 do {
2302 offset = head = atomic_long_read(&data->head);
2303 head += size;
2304 } while (atomic_long_cmpxchg(&data->head, offset, head) != offset);
2306 handle->offset = offset;
2307 handle->head = head;
2309 if ((offset >> PAGE_SHIFT) != (head >> PAGE_SHIFT))
2310 atomic_set(&data->wakeup, 1);
2312 return 0;
2314 fail:
2315 perf_output_wakeup(handle);
2316 out:
2317 rcu_read_unlock();
2319 return -ENOSPC;
2322 static void perf_output_copy(struct perf_output_handle *handle,
2323 const void *buf, unsigned int len)
2325 unsigned int pages_mask;
2326 unsigned int offset;
2327 unsigned int size;
2328 void **pages;
2330 offset = handle->offset;
2331 pages_mask = handle->data->nr_pages - 1;
2332 pages = handle->data->data_pages;
2334 do {
2335 unsigned int page_offset;
2336 int nr;
2338 nr = (offset >> PAGE_SHIFT) & pages_mask;
2339 page_offset = offset & (PAGE_SIZE - 1);
2340 size = min_t(unsigned int, PAGE_SIZE - page_offset, len);
2342 memcpy(pages[nr] + page_offset, buf, size);
2344 len -= size;
2345 buf += size;
2346 offset += size;
2347 } while (len);
2349 handle->offset = offset;
2352 * Check we didn't copy past our reservation window, taking the
2353 * possible unsigned int wrap into account.
2355 WARN_ON_ONCE(((long)(handle->head - handle->offset)) < 0);
2358 #define perf_output_put(handle, x) \
2359 perf_output_copy((handle), &(x), sizeof(x))
2361 static void perf_output_end(struct perf_output_handle *handle)
2363 struct perf_counter *counter = handle->counter;
2364 struct perf_mmap_data *data = handle->data;
2366 int wakeup_events = counter->attr.wakeup_events;
2368 if (handle->overflow && wakeup_events) {
2369 int events = atomic_inc_return(&data->events);
2370 if (events >= wakeup_events) {
2371 atomic_sub(wakeup_events, &data->events);
2372 atomic_set(&data->wakeup, 1);
2376 perf_output_unlock(handle);
2377 rcu_read_unlock();
2380 static u32 perf_counter_pid(struct perf_counter *counter, struct task_struct *p)
2383 * only top level counters have the pid namespace they were created in
2385 if (counter->parent)
2386 counter = counter->parent;
2388 return task_tgid_nr_ns(p, counter->ns);
2391 static u32 perf_counter_tid(struct perf_counter *counter, struct task_struct *p)
2394 * only top level counters have the pid namespace they were created in
2396 if (counter->parent)
2397 counter = counter->parent;
2399 return task_pid_nr_ns(p, counter->ns);
2402 static void perf_counter_output(struct perf_counter *counter, int nmi,
2403 struct perf_sample_data *data)
2405 int ret;
2406 u64 sample_type = counter->attr.sample_type;
2407 struct perf_output_handle handle;
2408 struct perf_event_header header;
2409 u64 ip;
2410 struct {
2411 u32 pid, tid;
2412 } tid_entry;
2413 struct {
2414 u64 id;
2415 u64 counter;
2416 } group_entry;
2417 struct perf_callchain_entry *callchain = NULL;
2418 int callchain_size = 0;
2419 u64 time;
2420 struct {
2421 u32 cpu, reserved;
2422 } cpu_entry;
2424 header.type = 0;
2425 header.size = sizeof(header);
2427 header.misc = PERF_EVENT_MISC_OVERFLOW;
2428 header.misc |= perf_misc_flags(data->regs);
2430 if (sample_type & PERF_SAMPLE_IP) {
2431 ip = perf_instruction_pointer(data->regs);
2432 header.type |= PERF_SAMPLE_IP;
2433 header.size += sizeof(ip);
2436 if (sample_type & PERF_SAMPLE_TID) {
2437 /* namespace issues */
2438 tid_entry.pid = perf_counter_pid(counter, current);
2439 tid_entry.tid = perf_counter_tid(counter, current);
2441 header.type |= PERF_SAMPLE_TID;
2442 header.size += sizeof(tid_entry);
2445 if (sample_type & PERF_SAMPLE_TIME) {
2447 * Maybe do better on x86 and provide cpu_clock_nmi()
2449 time = sched_clock();
2451 header.type |= PERF_SAMPLE_TIME;
2452 header.size += sizeof(u64);
2455 if (sample_type & PERF_SAMPLE_ADDR) {
2456 header.type |= PERF_SAMPLE_ADDR;
2457 header.size += sizeof(u64);
2460 if (sample_type & PERF_SAMPLE_ID) {
2461 header.type |= PERF_SAMPLE_ID;
2462 header.size += sizeof(u64);
2465 if (sample_type & PERF_SAMPLE_CPU) {
2466 header.type |= PERF_SAMPLE_CPU;
2467 header.size += sizeof(cpu_entry);
2469 cpu_entry.cpu = raw_smp_processor_id();
2472 if (sample_type & PERF_SAMPLE_PERIOD) {
2473 header.type |= PERF_SAMPLE_PERIOD;
2474 header.size += sizeof(u64);
2477 if (sample_type & PERF_SAMPLE_GROUP) {
2478 header.type |= PERF_SAMPLE_GROUP;
2479 header.size += sizeof(u64) +
2480 counter->nr_siblings * sizeof(group_entry);
2483 if (sample_type & PERF_SAMPLE_CALLCHAIN) {
2484 callchain = perf_callchain(data->regs);
2486 if (callchain) {
2487 callchain_size = (1 + callchain->nr) * sizeof(u64);
2489 header.type |= PERF_SAMPLE_CALLCHAIN;
2490 header.size += callchain_size;
2494 ret = perf_output_begin(&handle, counter, header.size, nmi, 1);
2495 if (ret)
2496 return;
2498 perf_output_put(&handle, header);
2500 if (sample_type & PERF_SAMPLE_IP)
2501 perf_output_put(&handle, ip);
2503 if (sample_type & PERF_SAMPLE_TID)
2504 perf_output_put(&handle, tid_entry);
2506 if (sample_type & PERF_SAMPLE_TIME)
2507 perf_output_put(&handle, time);
2509 if (sample_type & PERF_SAMPLE_ADDR)
2510 perf_output_put(&handle, data->addr);
2512 if (sample_type & PERF_SAMPLE_ID)
2513 perf_output_put(&handle, counter->id);
2515 if (sample_type & PERF_SAMPLE_CPU)
2516 perf_output_put(&handle, cpu_entry);
2518 if (sample_type & PERF_SAMPLE_PERIOD)
2519 perf_output_put(&handle, data->period);
2522 * XXX PERF_SAMPLE_GROUP vs inherited counters seems difficult.
2524 if (sample_type & PERF_SAMPLE_GROUP) {
2525 struct perf_counter *leader, *sub;
2526 u64 nr = counter->nr_siblings;
2528 perf_output_put(&handle, nr);
2530 leader = counter->group_leader;
2531 list_for_each_entry(sub, &leader->sibling_list, list_entry) {
2532 if (sub != counter)
2533 sub->pmu->read(sub);
2535 group_entry.id = sub->id;
2536 group_entry.counter = atomic64_read(&sub->count);
2538 perf_output_put(&handle, group_entry);
2542 if (callchain)
2543 perf_output_copy(&handle, callchain, callchain_size);
2545 perf_output_end(&handle);
2549 * fork tracking
2552 struct perf_fork_event {
2553 struct task_struct *task;
2555 struct {
2556 struct perf_event_header header;
2558 u32 pid;
2559 u32 ppid;
2560 } event;
2563 static void perf_counter_fork_output(struct perf_counter *counter,
2564 struct perf_fork_event *fork_event)
2566 struct perf_output_handle handle;
2567 int size = fork_event->event.header.size;
2568 struct task_struct *task = fork_event->task;
2569 int ret = perf_output_begin(&handle, counter, size, 0, 0);
2571 if (ret)
2572 return;
2574 fork_event->event.pid = perf_counter_pid(counter, task);
2575 fork_event->event.ppid = perf_counter_pid(counter, task->real_parent);
2577 perf_output_put(&handle, fork_event->event);
2578 perf_output_end(&handle);
2581 static int perf_counter_fork_match(struct perf_counter *counter)
2583 if (counter->attr.comm || counter->attr.mmap)
2584 return 1;
2586 return 0;
2589 static void perf_counter_fork_ctx(struct perf_counter_context *ctx,
2590 struct perf_fork_event *fork_event)
2592 struct perf_counter *counter;
2594 if (system_state != SYSTEM_RUNNING || list_empty(&ctx->event_list))
2595 return;
2597 rcu_read_lock();
2598 list_for_each_entry_rcu(counter, &ctx->event_list, event_entry) {
2599 if (perf_counter_fork_match(counter))
2600 perf_counter_fork_output(counter, fork_event);
2602 rcu_read_unlock();
2605 static void perf_counter_fork_event(struct perf_fork_event *fork_event)
2607 struct perf_cpu_context *cpuctx;
2608 struct perf_counter_context *ctx;
2610 cpuctx = &get_cpu_var(perf_cpu_context);
2611 perf_counter_fork_ctx(&cpuctx->ctx, fork_event);
2612 put_cpu_var(perf_cpu_context);
2614 rcu_read_lock();
2616 * doesn't really matter which of the child contexts the
2617 * events ends up in.
2619 ctx = rcu_dereference(current->perf_counter_ctxp);
2620 if (ctx)
2621 perf_counter_fork_ctx(ctx, fork_event);
2622 rcu_read_unlock();
2625 void perf_counter_fork(struct task_struct *task)
2627 struct perf_fork_event fork_event;
2629 if (!atomic_read(&nr_comm_counters) &&
2630 !atomic_read(&nr_mmap_counters))
2631 return;
2633 fork_event = (struct perf_fork_event){
2634 .task = task,
2635 .event = {
2636 .header = {
2637 .type = PERF_EVENT_FORK,
2638 .size = sizeof(fork_event.event),
2643 perf_counter_fork_event(&fork_event);
2647 * comm tracking
2650 struct perf_comm_event {
2651 struct task_struct *task;
2652 char *comm;
2653 int comm_size;
2655 struct {
2656 struct perf_event_header header;
2658 u32 pid;
2659 u32 tid;
2660 } event;
2663 static void perf_counter_comm_output(struct perf_counter *counter,
2664 struct perf_comm_event *comm_event)
2666 struct perf_output_handle handle;
2667 int size = comm_event->event.header.size;
2668 int ret = perf_output_begin(&handle, counter, size, 0, 0);
2670 if (ret)
2671 return;
2673 comm_event->event.pid = perf_counter_pid(counter, comm_event->task);
2674 comm_event->event.tid = perf_counter_tid(counter, comm_event->task);
2676 perf_output_put(&handle, comm_event->event);
2677 perf_output_copy(&handle, comm_event->comm,
2678 comm_event->comm_size);
2679 perf_output_end(&handle);
2682 static int perf_counter_comm_match(struct perf_counter *counter)
2684 if (counter->attr.comm)
2685 return 1;
2687 return 0;
2690 static void perf_counter_comm_ctx(struct perf_counter_context *ctx,
2691 struct perf_comm_event *comm_event)
2693 struct perf_counter *counter;
2695 if (system_state != SYSTEM_RUNNING || list_empty(&ctx->event_list))
2696 return;
2698 rcu_read_lock();
2699 list_for_each_entry_rcu(counter, &ctx->event_list, event_entry) {
2700 if (perf_counter_comm_match(counter))
2701 perf_counter_comm_output(counter, comm_event);
2703 rcu_read_unlock();
2706 static void perf_counter_comm_event(struct perf_comm_event *comm_event)
2708 struct perf_cpu_context *cpuctx;
2709 struct perf_counter_context *ctx;
2710 unsigned int size;
2711 char *comm = comm_event->task->comm;
2713 size = ALIGN(strlen(comm)+1, sizeof(u64));
2715 comm_event->comm = comm;
2716 comm_event->comm_size = size;
2718 comm_event->event.header.size = sizeof(comm_event->event) + size;
2720 cpuctx = &get_cpu_var(perf_cpu_context);
2721 perf_counter_comm_ctx(&cpuctx->ctx, comm_event);
2722 put_cpu_var(perf_cpu_context);
2724 rcu_read_lock();
2726 * doesn't really matter which of the child contexts the
2727 * events ends up in.
2729 ctx = rcu_dereference(current->perf_counter_ctxp);
2730 if (ctx)
2731 perf_counter_comm_ctx(ctx, comm_event);
2732 rcu_read_unlock();
2735 void perf_counter_comm(struct task_struct *task)
2737 struct perf_comm_event comm_event;
2739 if (!atomic_read(&nr_comm_counters))
2740 return;
2742 comm_event = (struct perf_comm_event){
2743 .task = task,
2744 .event = {
2745 .header = { .type = PERF_EVENT_COMM, },
2749 perf_counter_comm_event(&comm_event);
2753 * mmap tracking
2756 struct perf_mmap_event {
2757 struct vm_area_struct *vma;
2759 const char *file_name;
2760 int file_size;
2762 struct {
2763 struct perf_event_header header;
2765 u32 pid;
2766 u32 tid;
2767 u64 start;
2768 u64 len;
2769 u64 pgoff;
2770 } event;
2773 static void perf_counter_mmap_output(struct perf_counter *counter,
2774 struct perf_mmap_event *mmap_event)
2776 struct perf_output_handle handle;
2777 int size = mmap_event->event.header.size;
2778 int ret = perf_output_begin(&handle, counter, size, 0, 0);
2780 if (ret)
2781 return;
2783 mmap_event->event.pid = perf_counter_pid(counter, current);
2784 mmap_event->event.tid = perf_counter_tid(counter, current);
2786 perf_output_put(&handle, mmap_event->event);
2787 perf_output_copy(&handle, mmap_event->file_name,
2788 mmap_event->file_size);
2789 perf_output_end(&handle);
2792 static int perf_counter_mmap_match(struct perf_counter *counter,
2793 struct perf_mmap_event *mmap_event)
2795 if (counter->attr.mmap)
2796 return 1;
2798 return 0;
2801 static void perf_counter_mmap_ctx(struct perf_counter_context *ctx,
2802 struct perf_mmap_event *mmap_event)
2804 struct perf_counter *counter;
2806 if (system_state != SYSTEM_RUNNING || list_empty(&ctx->event_list))
2807 return;
2809 rcu_read_lock();
2810 list_for_each_entry_rcu(counter, &ctx->event_list, event_entry) {
2811 if (perf_counter_mmap_match(counter, mmap_event))
2812 perf_counter_mmap_output(counter, mmap_event);
2814 rcu_read_unlock();
2817 static void perf_counter_mmap_event(struct perf_mmap_event *mmap_event)
2819 struct perf_cpu_context *cpuctx;
2820 struct perf_counter_context *ctx;
2821 struct vm_area_struct *vma = mmap_event->vma;
2822 struct file *file = vma->vm_file;
2823 unsigned int size;
2824 char tmp[16];
2825 char *buf = NULL;
2826 const char *name;
2828 if (file) {
2829 buf = kzalloc(PATH_MAX, GFP_KERNEL);
2830 if (!buf) {
2831 name = strncpy(tmp, "//enomem", sizeof(tmp));
2832 goto got_name;
2834 name = d_path(&file->f_path, buf, PATH_MAX);
2835 if (IS_ERR(name)) {
2836 name = strncpy(tmp, "//toolong", sizeof(tmp));
2837 goto got_name;
2839 } else {
2840 name = arch_vma_name(mmap_event->vma);
2841 if (name)
2842 goto got_name;
2844 if (!vma->vm_mm) {
2845 name = strncpy(tmp, "[vdso]", sizeof(tmp));
2846 goto got_name;
2849 name = strncpy(tmp, "//anon", sizeof(tmp));
2850 goto got_name;
2853 got_name:
2854 size = ALIGN(strlen(name)+1, sizeof(u64));
2856 mmap_event->file_name = name;
2857 mmap_event->file_size = size;
2859 mmap_event->event.header.size = sizeof(mmap_event->event) + size;
2861 cpuctx = &get_cpu_var(perf_cpu_context);
2862 perf_counter_mmap_ctx(&cpuctx->ctx, mmap_event);
2863 put_cpu_var(perf_cpu_context);
2865 rcu_read_lock();
2867 * doesn't really matter which of the child contexts the
2868 * events ends up in.
2870 ctx = rcu_dereference(current->perf_counter_ctxp);
2871 if (ctx)
2872 perf_counter_mmap_ctx(ctx, mmap_event);
2873 rcu_read_unlock();
2875 kfree(buf);
2878 void __perf_counter_mmap(struct vm_area_struct *vma)
2880 struct perf_mmap_event mmap_event;
2882 if (!atomic_read(&nr_mmap_counters))
2883 return;
2885 mmap_event = (struct perf_mmap_event){
2886 .vma = vma,
2887 .event = {
2888 .header = { .type = PERF_EVENT_MMAP, },
2889 .start = vma->vm_start,
2890 .len = vma->vm_end - vma->vm_start,
2891 .pgoff = vma->vm_pgoff,
2895 perf_counter_mmap_event(&mmap_event);
2899 * Log sample_period changes so that analyzing tools can re-normalize the
2900 * event flow.
2903 struct freq_event {
2904 struct perf_event_header header;
2905 u64 time;
2906 u64 id;
2907 u64 period;
2910 static void perf_log_period(struct perf_counter *counter, u64 period)
2912 struct perf_output_handle handle;
2913 struct freq_event event;
2914 int ret;
2916 if (counter->hw.sample_period == period)
2917 return;
2919 if (counter->attr.sample_type & PERF_SAMPLE_PERIOD)
2920 return;
2922 event = (struct freq_event) {
2923 .header = {
2924 .type = PERF_EVENT_PERIOD,
2925 .misc = 0,
2926 .size = sizeof(event),
2928 .time = sched_clock(),
2929 .id = counter->id,
2930 .period = period,
2933 ret = perf_output_begin(&handle, counter, sizeof(event), 1, 0);
2934 if (ret)
2935 return;
2937 perf_output_put(&handle, event);
2938 perf_output_end(&handle);
2942 * IRQ throttle logging
2945 static void perf_log_throttle(struct perf_counter *counter, int enable)
2947 struct perf_output_handle handle;
2948 int ret;
2950 struct {
2951 struct perf_event_header header;
2952 u64 time;
2953 u64 id;
2954 } throttle_event = {
2955 .header = {
2956 .type = PERF_EVENT_THROTTLE + 1,
2957 .misc = 0,
2958 .size = sizeof(throttle_event),
2960 .time = sched_clock(),
2961 .id = counter->id,
2964 ret = perf_output_begin(&handle, counter, sizeof(throttle_event), 1, 0);
2965 if (ret)
2966 return;
2968 perf_output_put(&handle, throttle_event);
2969 perf_output_end(&handle);
2973 * Generic counter overflow handling.
2976 int perf_counter_overflow(struct perf_counter *counter, int nmi,
2977 struct perf_sample_data *data)
2979 int events = atomic_read(&counter->event_limit);
2980 int throttle = counter->pmu->unthrottle != NULL;
2981 struct hw_perf_counter *hwc = &counter->hw;
2982 int ret = 0;
2984 if (!throttle) {
2985 hwc->interrupts++;
2986 } else {
2987 if (hwc->interrupts != MAX_INTERRUPTS) {
2988 hwc->interrupts++;
2989 if (HZ * hwc->interrupts >
2990 (u64)sysctl_perf_counter_sample_rate) {
2991 hwc->interrupts = MAX_INTERRUPTS;
2992 perf_log_throttle(counter, 0);
2993 ret = 1;
2995 } else {
2997 * Keep re-disabling counters even though on the previous
2998 * pass we disabled it - just in case we raced with a
2999 * sched-in and the counter got enabled again:
3001 ret = 1;
3005 if (counter->attr.freq) {
3006 u64 now = sched_clock();
3007 s64 delta = now - hwc->freq_stamp;
3009 hwc->freq_stamp = now;
3011 if (delta > 0 && delta < TICK_NSEC)
3012 perf_adjust_period(counter, NSEC_PER_SEC / (int)delta);
3016 * XXX event_limit might not quite work as expected on inherited
3017 * counters
3020 counter->pending_kill = POLL_IN;
3021 if (events && atomic_dec_and_test(&counter->event_limit)) {
3022 ret = 1;
3023 counter->pending_kill = POLL_HUP;
3024 if (nmi) {
3025 counter->pending_disable = 1;
3026 perf_pending_queue(&counter->pending,
3027 perf_pending_counter);
3028 } else
3029 perf_counter_disable(counter);
3032 perf_counter_output(counter, nmi, data);
3033 return ret;
3037 * Generic software counter infrastructure
3040 static void perf_swcounter_update(struct perf_counter *counter)
3042 struct hw_perf_counter *hwc = &counter->hw;
3043 u64 prev, now;
3044 s64 delta;
3046 again:
3047 prev = atomic64_read(&hwc->prev_count);
3048 now = atomic64_read(&hwc->count);
3049 if (atomic64_cmpxchg(&hwc->prev_count, prev, now) != prev)
3050 goto again;
3052 delta = now - prev;
3054 atomic64_add(delta, &counter->count);
3055 atomic64_sub(delta, &hwc->period_left);
3058 static void perf_swcounter_set_period(struct perf_counter *counter)
3060 struct hw_perf_counter *hwc = &counter->hw;
3061 s64 left = atomic64_read(&hwc->period_left);
3062 s64 period = hwc->sample_period;
3064 if (unlikely(left <= -period)) {
3065 left = period;
3066 atomic64_set(&hwc->period_left, left);
3067 hwc->last_period = period;
3070 if (unlikely(left <= 0)) {
3071 left += period;
3072 atomic64_add(period, &hwc->period_left);
3073 hwc->last_period = period;
3076 atomic64_set(&hwc->prev_count, -left);
3077 atomic64_set(&hwc->count, -left);
3080 static enum hrtimer_restart perf_swcounter_hrtimer(struct hrtimer *hrtimer)
3082 enum hrtimer_restart ret = HRTIMER_RESTART;
3083 struct perf_sample_data data;
3084 struct perf_counter *counter;
3085 u64 period;
3087 counter = container_of(hrtimer, struct perf_counter, hw.hrtimer);
3088 counter->pmu->read(counter);
3090 data.addr = 0;
3091 data.regs = get_irq_regs();
3093 * In case we exclude kernel IPs or are somehow not in interrupt
3094 * context, provide the next best thing, the user IP.
3096 if ((counter->attr.exclude_kernel || !data.regs) &&
3097 !counter->attr.exclude_user)
3098 data.regs = task_pt_regs(current);
3100 if (data.regs) {
3101 if (perf_counter_overflow(counter, 0, &data))
3102 ret = HRTIMER_NORESTART;
3105 period = max_t(u64, 10000, counter->hw.sample_period);
3106 hrtimer_forward_now(hrtimer, ns_to_ktime(period));
3108 return ret;
3111 static void perf_swcounter_overflow(struct perf_counter *counter,
3112 int nmi, struct pt_regs *regs, u64 addr)
3114 struct perf_sample_data data = {
3115 .regs = regs,
3116 .addr = addr,
3117 .period = counter->hw.last_period,
3120 perf_swcounter_update(counter);
3121 perf_swcounter_set_period(counter);
3122 if (perf_counter_overflow(counter, nmi, &data))
3123 /* soft-disable the counter */
3128 static int perf_swcounter_is_counting(struct perf_counter *counter)
3130 struct perf_counter_context *ctx;
3131 unsigned long flags;
3132 int count;
3134 if (counter->state == PERF_COUNTER_STATE_ACTIVE)
3135 return 1;
3137 if (counter->state != PERF_COUNTER_STATE_INACTIVE)
3138 return 0;
3141 * If the counter is inactive, it could be just because
3142 * its task is scheduled out, or because it's in a group
3143 * which could not go on the PMU. We want to count in
3144 * the first case but not the second. If the context is
3145 * currently active then an inactive software counter must
3146 * be the second case. If it's not currently active then
3147 * we need to know whether the counter was active when the
3148 * context was last active, which we can determine by
3149 * comparing counter->tstamp_stopped with ctx->time.
3151 * We are within an RCU read-side critical section,
3152 * which protects the existence of *ctx.
3154 ctx = counter->ctx;
3155 spin_lock_irqsave(&ctx->lock, flags);
3156 count = 1;
3157 /* Re-check state now we have the lock */
3158 if (counter->state < PERF_COUNTER_STATE_INACTIVE ||
3159 counter->ctx->is_active ||
3160 counter->tstamp_stopped < ctx->time)
3161 count = 0;
3162 spin_unlock_irqrestore(&ctx->lock, flags);
3163 return count;
3166 static int perf_swcounter_match(struct perf_counter *counter,
3167 enum perf_type_id type,
3168 u32 event, struct pt_regs *regs)
3170 if (!perf_swcounter_is_counting(counter))
3171 return 0;
3173 if (counter->attr.type != type)
3174 return 0;
3175 if (counter->attr.config != event)
3176 return 0;
3178 if (regs) {
3179 if (counter->attr.exclude_user && user_mode(regs))
3180 return 0;
3182 if (counter->attr.exclude_kernel && !user_mode(regs))
3183 return 0;
3186 return 1;
3189 static void perf_swcounter_add(struct perf_counter *counter, u64 nr,
3190 int nmi, struct pt_regs *regs, u64 addr)
3192 int neg = atomic64_add_negative(nr, &counter->hw.count);
3194 if (counter->hw.sample_period && !neg && regs)
3195 perf_swcounter_overflow(counter, nmi, regs, addr);
3198 static void perf_swcounter_ctx_event(struct perf_counter_context *ctx,
3199 enum perf_type_id type, u32 event,
3200 u64 nr, int nmi, struct pt_regs *regs,
3201 u64 addr)
3203 struct perf_counter *counter;
3205 if (system_state != SYSTEM_RUNNING || list_empty(&ctx->event_list))
3206 return;
3208 rcu_read_lock();
3209 list_for_each_entry_rcu(counter, &ctx->event_list, event_entry) {
3210 if (perf_swcounter_match(counter, type, event, regs))
3211 perf_swcounter_add(counter, nr, nmi, regs, addr);
3213 rcu_read_unlock();
3216 static int *perf_swcounter_recursion_context(struct perf_cpu_context *cpuctx)
3218 if (in_nmi())
3219 return &cpuctx->recursion[3];
3221 if (in_irq())
3222 return &cpuctx->recursion[2];
3224 if (in_softirq())
3225 return &cpuctx->recursion[1];
3227 return &cpuctx->recursion[0];
3230 static void __perf_swcounter_event(enum perf_type_id type, u32 event,
3231 u64 nr, int nmi, struct pt_regs *regs,
3232 u64 addr)
3234 struct perf_cpu_context *cpuctx = &get_cpu_var(perf_cpu_context);
3235 int *recursion = perf_swcounter_recursion_context(cpuctx);
3236 struct perf_counter_context *ctx;
3238 if (*recursion)
3239 goto out;
3241 (*recursion)++;
3242 barrier();
3244 perf_swcounter_ctx_event(&cpuctx->ctx, type, event,
3245 nr, nmi, regs, addr);
3246 rcu_read_lock();
3248 * doesn't really matter which of the child contexts the
3249 * events ends up in.
3251 ctx = rcu_dereference(current->perf_counter_ctxp);
3252 if (ctx)
3253 perf_swcounter_ctx_event(ctx, type, event, nr, nmi, regs, addr);
3254 rcu_read_unlock();
3256 barrier();
3257 (*recursion)--;
3259 out:
3260 put_cpu_var(perf_cpu_context);
3263 void
3264 perf_swcounter_event(u32 event, u64 nr, int nmi, struct pt_regs *regs, u64 addr)
3266 __perf_swcounter_event(PERF_TYPE_SOFTWARE, event, nr, nmi, regs, addr);
3269 static void perf_swcounter_read(struct perf_counter *counter)
3271 perf_swcounter_update(counter);
3274 static int perf_swcounter_enable(struct perf_counter *counter)
3276 perf_swcounter_set_period(counter);
3277 return 0;
3280 static void perf_swcounter_disable(struct perf_counter *counter)
3282 perf_swcounter_update(counter);
3285 static const struct pmu perf_ops_generic = {
3286 .enable = perf_swcounter_enable,
3287 .disable = perf_swcounter_disable,
3288 .read = perf_swcounter_read,
3292 * Software counter: cpu wall time clock
3295 static void cpu_clock_perf_counter_update(struct perf_counter *counter)
3297 int cpu = raw_smp_processor_id();
3298 s64 prev;
3299 u64 now;
3301 now = cpu_clock(cpu);
3302 prev = atomic64_read(&counter->hw.prev_count);
3303 atomic64_set(&counter->hw.prev_count, now);
3304 atomic64_add(now - prev, &counter->count);
3307 static int cpu_clock_perf_counter_enable(struct perf_counter *counter)
3309 struct hw_perf_counter *hwc = &counter->hw;
3310 int cpu = raw_smp_processor_id();
3312 atomic64_set(&hwc->prev_count, cpu_clock(cpu));
3313 hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
3314 hwc->hrtimer.function = perf_swcounter_hrtimer;
3315 if (hwc->sample_period) {
3316 u64 period = max_t(u64, 10000, hwc->sample_period);
3317 __hrtimer_start_range_ns(&hwc->hrtimer,
3318 ns_to_ktime(period), 0,
3319 HRTIMER_MODE_REL, 0);
3322 return 0;
3325 static void cpu_clock_perf_counter_disable(struct perf_counter *counter)
3327 if (counter->hw.sample_period)
3328 hrtimer_cancel(&counter->hw.hrtimer);
3329 cpu_clock_perf_counter_update(counter);
3332 static void cpu_clock_perf_counter_read(struct perf_counter *counter)
3334 cpu_clock_perf_counter_update(counter);
3337 static const struct pmu perf_ops_cpu_clock = {
3338 .enable = cpu_clock_perf_counter_enable,
3339 .disable = cpu_clock_perf_counter_disable,
3340 .read = cpu_clock_perf_counter_read,
3344 * Software counter: task time clock
3347 static void task_clock_perf_counter_update(struct perf_counter *counter, u64 now)
3349 u64 prev;
3350 s64 delta;
3352 prev = atomic64_xchg(&counter->hw.prev_count, now);
3353 delta = now - prev;
3354 atomic64_add(delta, &counter->count);
3357 static int task_clock_perf_counter_enable(struct perf_counter *counter)
3359 struct hw_perf_counter *hwc = &counter->hw;
3360 u64 now;
3362 now = counter->ctx->time;
3364 atomic64_set(&hwc->prev_count, now);
3365 hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
3366 hwc->hrtimer.function = perf_swcounter_hrtimer;
3367 if (hwc->sample_period) {
3368 u64 period = max_t(u64, 10000, hwc->sample_period);
3369 __hrtimer_start_range_ns(&hwc->hrtimer,
3370 ns_to_ktime(period), 0,
3371 HRTIMER_MODE_REL, 0);
3374 return 0;
3377 static void task_clock_perf_counter_disable(struct perf_counter *counter)
3379 if (counter->hw.sample_period)
3380 hrtimer_cancel(&counter->hw.hrtimer);
3381 task_clock_perf_counter_update(counter, counter->ctx->time);
3385 static void task_clock_perf_counter_read(struct perf_counter *counter)
3387 u64 time;
3389 if (!in_nmi()) {
3390 update_context_time(counter->ctx);
3391 time = counter->ctx->time;
3392 } else {
3393 u64 now = perf_clock();
3394 u64 delta = now - counter->ctx->timestamp;
3395 time = counter->ctx->time + delta;
3398 task_clock_perf_counter_update(counter, time);
3401 static const struct pmu perf_ops_task_clock = {
3402 .enable = task_clock_perf_counter_enable,
3403 .disable = task_clock_perf_counter_disable,
3404 .read = task_clock_perf_counter_read,
3408 * Software counter: cpu migrations
3410 void perf_counter_task_migration(struct task_struct *task, int cpu)
3412 struct perf_cpu_context *cpuctx = &per_cpu(perf_cpu_context, cpu);
3413 struct perf_counter_context *ctx;
3415 perf_swcounter_ctx_event(&cpuctx->ctx, PERF_TYPE_SOFTWARE,
3416 PERF_COUNT_SW_CPU_MIGRATIONS,
3417 1, 1, NULL, 0);
3419 ctx = perf_pin_task_context(task);
3420 if (ctx) {
3421 perf_swcounter_ctx_event(ctx, PERF_TYPE_SOFTWARE,
3422 PERF_COUNT_SW_CPU_MIGRATIONS,
3423 1, 1, NULL, 0);
3424 perf_unpin_context(ctx);
3428 #ifdef CONFIG_EVENT_PROFILE
3429 void perf_tpcounter_event(int event_id)
3431 struct pt_regs *regs = get_irq_regs();
3433 if (!regs)
3434 regs = task_pt_regs(current);
3436 __perf_swcounter_event(PERF_TYPE_TRACEPOINT, event_id, 1, 1, regs, 0);
3438 EXPORT_SYMBOL_GPL(perf_tpcounter_event);
3440 extern int ftrace_profile_enable(int);
3441 extern void ftrace_profile_disable(int);
3443 static void tp_perf_counter_destroy(struct perf_counter *counter)
3445 ftrace_profile_disable(perf_event_id(&counter->attr));
3448 static const struct pmu *tp_perf_counter_init(struct perf_counter *counter)
3450 int event_id = perf_event_id(&counter->attr);
3451 int ret;
3453 ret = ftrace_profile_enable(event_id);
3454 if (ret)
3455 return NULL;
3457 counter->destroy = tp_perf_counter_destroy;
3459 return &perf_ops_generic;
3461 #else
3462 static const struct pmu *tp_perf_counter_init(struct perf_counter *counter)
3464 return NULL;
3466 #endif
3468 static const struct pmu *sw_perf_counter_init(struct perf_counter *counter)
3470 const struct pmu *pmu = NULL;
3473 * Software counters (currently) can't in general distinguish
3474 * between user, kernel and hypervisor events.
3475 * However, context switches and cpu migrations are considered
3476 * to be kernel events, and page faults are never hypervisor
3477 * events.
3479 switch (counter->attr.config) {
3480 case PERF_COUNT_SW_CPU_CLOCK:
3481 pmu = &perf_ops_cpu_clock;
3483 break;
3484 case PERF_COUNT_SW_TASK_CLOCK:
3486 * If the user instantiates this as a per-cpu counter,
3487 * use the cpu_clock counter instead.
3489 if (counter->ctx->task)
3490 pmu = &perf_ops_task_clock;
3491 else
3492 pmu = &perf_ops_cpu_clock;
3494 break;
3495 case PERF_COUNT_SW_PAGE_FAULTS:
3496 case PERF_COUNT_SW_PAGE_FAULTS_MIN:
3497 case PERF_COUNT_SW_PAGE_FAULTS_MAJ:
3498 case PERF_COUNT_SW_CONTEXT_SWITCHES:
3499 case PERF_COUNT_SW_CPU_MIGRATIONS:
3500 pmu = &perf_ops_generic;
3501 break;
3504 return pmu;
3508 * Allocate and initialize a counter structure
3510 static struct perf_counter *
3511 perf_counter_alloc(struct perf_counter_attr *attr,
3512 int cpu,
3513 struct perf_counter_context *ctx,
3514 struct perf_counter *group_leader,
3515 gfp_t gfpflags)
3517 const struct pmu *pmu;
3518 struct perf_counter *counter;
3519 struct hw_perf_counter *hwc;
3520 long err;
3522 counter = kzalloc(sizeof(*counter), gfpflags);
3523 if (!counter)
3524 return ERR_PTR(-ENOMEM);
3527 * Single counters are their own group leaders, with an
3528 * empty sibling list:
3530 if (!group_leader)
3531 group_leader = counter;
3533 mutex_init(&counter->child_mutex);
3534 INIT_LIST_HEAD(&counter->child_list);
3536 INIT_LIST_HEAD(&counter->list_entry);
3537 INIT_LIST_HEAD(&counter->event_entry);
3538 INIT_LIST_HEAD(&counter->sibling_list);
3539 init_waitqueue_head(&counter->waitq);
3541 mutex_init(&counter->mmap_mutex);
3543 counter->cpu = cpu;
3544 counter->attr = *attr;
3545 counter->group_leader = group_leader;
3546 counter->pmu = NULL;
3547 counter->ctx = ctx;
3548 counter->oncpu = -1;
3550 counter->ns = get_pid_ns(current->nsproxy->pid_ns);
3551 counter->id = atomic64_inc_return(&perf_counter_id);
3553 counter->state = PERF_COUNTER_STATE_INACTIVE;
3555 if (attr->disabled)
3556 counter->state = PERF_COUNTER_STATE_OFF;
3558 pmu = NULL;
3560 hwc = &counter->hw;
3561 hwc->sample_period = attr->sample_period;
3562 if (attr->freq && attr->sample_freq)
3563 hwc->sample_period = 1;
3565 atomic64_set(&hwc->period_left, hwc->sample_period);
3568 * we currently do not support PERF_SAMPLE_GROUP on inherited counters
3570 if (attr->inherit && (attr->sample_type & PERF_SAMPLE_GROUP))
3571 goto done;
3573 switch (attr->type) {
3574 case PERF_TYPE_RAW:
3575 case PERF_TYPE_HARDWARE:
3576 case PERF_TYPE_HW_CACHE:
3577 pmu = hw_perf_counter_init(counter);
3578 break;
3580 case PERF_TYPE_SOFTWARE:
3581 pmu = sw_perf_counter_init(counter);
3582 break;
3584 case PERF_TYPE_TRACEPOINT:
3585 pmu = tp_perf_counter_init(counter);
3586 break;
3588 default:
3589 break;
3591 done:
3592 err = 0;
3593 if (!pmu)
3594 err = -EINVAL;
3595 else if (IS_ERR(pmu))
3596 err = PTR_ERR(pmu);
3598 if (err) {
3599 if (counter->ns)
3600 put_pid_ns(counter->ns);
3601 kfree(counter);
3602 return ERR_PTR(err);
3605 counter->pmu = pmu;
3607 atomic_inc(&nr_counters);
3608 if (counter->attr.mmap)
3609 atomic_inc(&nr_mmap_counters);
3610 if (counter->attr.comm)
3611 atomic_inc(&nr_comm_counters);
3613 return counter;
3616 static int perf_copy_attr(struct perf_counter_attr __user *uattr,
3617 struct perf_counter_attr *attr)
3619 int ret;
3620 u32 size;
3622 if (!access_ok(VERIFY_WRITE, uattr, PERF_ATTR_SIZE_VER0))
3623 return -EFAULT;
3626 * zero the full structure, so that a short copy will be nice.
3628 memset(attr, 0, sizeof(*attr));
3630 ret = get_user(size, &uattr->size);
3631 if (ret)
3632 return ret;
3634 if (size > PAGE_SIZE) /* silly large */
3635 goto err_size;
3637 if (!size) /* abi compat */
3638 size = PERF_ATTR_SIZE_VER0;
3640 if (size < PERF_ATTR_SIZE_VER0)
3641 goto err_size;
3644 * If we're handed a bigger struct than we know of,
3645 * ensure all the unknown bits are 0.
3647 if (size > sizeof(*attr)) {
3648 unsigned long val;
3649 unsigned long __user *addr;
3650 unsigned long __user *end;
3652 addr = PTR_ALIGN((void __user *)uattr + sizeof(*attr),
3653 sizeof(unsigned long));
3654 end = PTR_ALIGN((void __user *)uattr + size,
3655 sizeof(unsigned long));
3657 for (; addr < end; addr += sizeof(unsigned long)) {
3658 ret = get_user(val, addr);
3659 if (ret)
3660 return ret;
3661 if (val)
3662 goto err_size;
3666 ret = copy_from_user(attr, uattr, size);
3667 if (ret)
3668 return -EFAULT;
3671 * If the type exists, the corresponding creation will verify
3672 * the attr->config.
3674 if (attr->type >= PERF_TYPE_MAX)
3675 return -EINVAL;
3677 if (attr->__reserved_1 || attr->__reserved_2 || attr->__reserved_3)
3678 return -EINVAL;
3680 if (attr->sample_type & ~(PERF_SAMPLE_MAX-1))
3681 return -EINVAL;
3683 if (attr->read_format & ~(PERF_FORMAT_MAX-1))
3684 return -EINVAL;
3686 out:
3687 return ret;
3689 err_size:
3690 put_user(sizeof(*attr), &uattr->size);
3691 ret = -E2BIG;
3692 goto out;
3696 * sys_perf_counter_open - open a performance counter, associate it to a task/cpu
3698 * @attr_uptr: event type attributes for monitoring/sampling
3699 * @pid: target pid
3700 * @cpu: target cpu
3701 * @group_fd: group leader counter fd
3703 SYSCALL_DEFINE5(perf_counter_open,
3704 struct perf_counter_attr __user *, attr_uptr,
3705 pid_t, pid, int, cpu, int, group_fd, unsigned long, flags)
3707 struct perf_counter *counter, *group_leader;
3708 struct perf_counter_attr attr;
3709 struct perf_counter_context *ctx;
3710 struct file *counter_file = NULL;
3711 struct file *group_file = NULL;
3712 int fput_needed = 0;
3713 int fput_needed2 = 0;
3714 int ret;
3716 /* for future expandability... */
3717 if (flags)
3718 return -EINVAL;
3720 ret = perf_copy_attr(attr_uptr, &attr);
3721 if (ret)
3722 return ret;
3724 if (!attr.exclude_kernel) {
3725 if (perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
3726 return -EACCES;
3729 if (attr.freq) {
3730 if (attr.sample_freq > sysctl_perf_counter_sample_rate)
3731 return -EINVAL;
3735 * Get the target context (task or percpu):
3737 ctx = find_get_context(pid, cpu);
3738 if (IS_ERR(ctx))
3739 return PTR_ERR(ctx);
3742 * Look up the group leader (we will attach this counter to it):
3744 group_leader = NULL;
3745 if (group_fd != -1) {
3746 ret = -EINVAL;
3747 group_file = fget_light(group_fd, &fput_needed);
3748 if (!group_file)
3749 goto err_put_context;
3750 if (group_file->f_op != &perf_fops)
3751 goto err_put_context;
3753 group_leader = group_file->private_data;
3755 * Do not allow a recursive hierarchy (this new sibling
3756 * becoming part of another group-sibling):
3758 if (group_leader->group_leader != group_leader)
3759 goto err_put_context;
3761 * Do not allow to attach to a group in a different
3762 * task or CPU context:
3764 if (group_leader->ctx != ctx)
3765 goto err_put_context;
3767 * Only a group leader can be exclusive or pinned
3769 if (attr.exclusive || attr.pinned)
3770 goto err_put_context;
3773 counter = perf_counter_alloc(&attr, cpu, ctx, group_leader,
3774 GFP_KERNEL);
3775 ret = PTR_ERR(counter);
3776 if (IS_ERR(counter))
3777 goto err_put_context;
3779 ret = anon_inode_getfd("[perf_counter]", &perf_fops, counter, 0);
3780 if (ret < 0)
3781 goto err_free_put_context;
3783 counter_file = fget_light(ret, &fput_needed2);
3784 if (!counter_file)
3785 goto err_free_put_context;
3787 counter->filp = counter_file;
3788 WARN_ON_ONCE(ctx->parent_ctx);
3789 mutex_lock(&ctx->mutex);
3790 perf_install_in_context(ctx, counter, cpu);
3791 ++ctx->generation;
3792 mutex_unlock(&ctx->mutex);
3794 counter->owner = current;
3795 get_task_struct(current);
3796 mutex_lock(&current->perf_counter_mutex);
3797 list_add_tail(&counter->owner_entry, &current->perf_counter_list);
3798 mutex_unlock(&current->perf_counter_mutex);
3800 fput_light(counter_file, fput_needed2);
3802 out_fput:
3803 fput_light(group_file, fput_needed);
3805 return ret;
3807 err_free_put_context:
3808 kfree(counter);
3810 err_put_context:
3811 put_ctx(ctx);
3813 goto out_fput;
3817 * inherit a counter from parent task to child task:
3819 static struct perf_counter *
3820 inherit_counter(struct perf_counter *parent_counter,
3821 struct task_struct *parent,
3822 struct perf_counter_context *parent_ctx,
3823 struct task_struct *child,
3824 struct perf_counter *group_leader,
3825 struct perf_counter_context *child_ctx)
3827 struct perf_counter *child_counter;
3830 * Instead of creating recursive hierarchies of counters,
3831 * we link inherited counters back to the original parent,
3832 * which has a filp for sure, which we use as the reference
3833 * count:
3835 if (parent_counter->parent)
3836 parent_counter = parent_counter->parent;
3838 child_counter = perf_counter_alloc(&parent_counter->attr,
3839 parent_counter->cpu, child_ctx,
3840 group_leader, GFP_KERNEL);
3841 if (IS_ERR(child_counter))
3842 return child_counter;
3843 get_ctx(child_ctx);
3846 * Make the child state follow the state of the parent counter,
3847 * not its attr.disabled bit. We hold the parent's mutex,
3848 * so we won't race with perf_counter_{en, dis}able_family.
3850 if (parent_counter->state >= PERF_COUNTER_STATE_INACTIVE)
3851 child_counter->state = PERF_COUNTER_STATE_INACTIVE;
3852 else
3853 child_counter->state = PERF_COUNTER_STATE_OFF;
3855 if (parent_counter->attr.freq)
3856 child_counter->hw.sample_period = parent_counter->hw.sample_period;
3859 * Link it up in the child's context:
3861 add_counter_to_ctx(child_counter, child_ctx);
3863 child_counter->parent = parent_counter;
3865 * inherit into child's child as well:
3867 child_counter->attr.inherit = 1;
3870 * Get a reference to the parent filp - we will fput it
3871 * when the child counter exits. This is safe to do because
3872 * we are in the parent and we know that the filp still
3873 * exists and has a nonzero count:
3875 atomic_long_inc(&parent_counter->filp->f_count);
3878 * Link this into the parent counter's child list
3880 WARN_ON_ONCE(parent_counter->ctx->parent_ctx);
3881 mutex_lock(&parent_counter->child_mutex);
3882 list_add_tail(&child_counter->child_list, &parent_counter->child_list);
3883 mutex_unlock(&parent_counter->child_mutex);
3885 return child_counter;
3888 static int inherit_group(struct perf_counter *parent_counter,
3889 struct task_struct *parent,
3890 struct perf_counter_context *parent_ctx,
3891 struct task_struct *child,
3892 struct perf_counter_context *child_ctx)
3894 struct perf_counter *leader;
3895 struct perf_counter *sub;
3896 struct perf_counter *child_ctr;
3898 leader = inherit_counter(parent_counter, parent, parent_ctx,
3899 child, NULL, child_ctx);
3900 if (IS_ERR(leader))
3901 return PTR_ERR(leader);
3902 list_for_each_entry(sub, &parent_counter->sibling_list, list_entry) {
3903 child_ctr = inherit_counter(sub, parent, parent_ctx,
3904 child, leader, child_ctx);
3905 if (IS_ERR(child_ctr))
3906 return PTR_ERR(child_ctr);
3908 return 0;
3911 static void sync_child_counter(struct perf_counter *child_counter,
3912 struct perf_counter *parent_counter)
3914 u64 child_val;
3916 child_val = atomic64_read(&child_counter->count);
3919 * Add back the child's count to the parent's count:
3921 atomic64_add(child_val, &parent_counter->count);
3922 atomic64_add(child_counter->total_time_enabled,
3923 &parent_counter->child_total_time_enabled);
3924 atomic64_add(child_counter->total_time_running,
3925 &parent_counter->child_total_time_running);
3928 * Remove this counter from the parent's list
3930 WARN_ON_ONCE(parent_counter->ctx->parent_ctx);
3931 mutex_lock(&parent_counter->child_mutex);
3932 list_del_init(&child_counter->child_list);
3933 mutex_unlock(&parent_counter->child_mutex);
3936 * Release the parent counter, if this was the last
3937 * reference to it.
3939 fput(parent_counter->filp);
3942 static void
3943 __perf_counter_exit_task(struct perf_counter *child_counter,
3944 struct perf_counter_context *child_ctx)
3946 struct perf_counter *parent_counter;
3948 update_counter_times(child_counter);
3949 perf_counter_remove_from_context(child_counter);
3951 parent_counter = child_counter->parent;
3953 * It can happen that parent exits first, and has counters
3954 * that are still around due to the child reference. These
3955 * counters need to be zapped - but otherwise linger.
3957 if (parent_counter) {
3958 sync_child_counter(child_counter, parent_counter);
3959 free_counter(child_counter);
3964 * When a child task exits, feed back counter values to parent counters.
3966 void perf_counter_exit_task(struct task_struct *child)
3968 struct perf_counter *child_counter, *tmp;
3969 struct perf_counter_context *child_ctx;
3970 unsigned long flags;
3972 if (likely(!child->perf_counter_ctxp))
3973 return;
3975 local_irq_save(flags);
3977 * We can't reschedule here because interrupts are disabled,
3978 * and either child is current or it is a task that can't be
3979 * scheduled, so we are now safe from rescheduling changing
3980 * our context.
3982 child_ctx = child->perf_counter_ctxp;
3983 __perf_counter_task_sched_out(child_ctx);
3986 * Take the context lock here so that if find_get_context is
3987 * reading child->perf_counter_ctxp, we wait until it has
3988 * incremented the context's refcount before we do put_ctx below.
3990 spin_lock(&child_ctx->lock);
3991 child->perf_counter_ctxp = NULL;
3992 if (child_ctx->parent_ctx) {
3994 * This context is a clone; unclone it so it can't get
3995 * swapped to another process while we're removing all
3996 * the counters from it.
3998 put_ctx(child_ctx->parent_ctx);
3999 child_ctx->parent_ctx = NULL;
4001 spin_unlock(&child_ctx->lock);
4002 local_irq_restore(flags);
4005 * We can recurse on the same lock type through:
4007 * __perf_counter_exit_task()
4008 * sync_child_counter()
4009 * fput(parent_counter->filp)
4010 * perf_release()
4011 * mutex_lock(&ctx->mutex)
4013 * But since its the parent context it won't be the same instance.
4015 mutex_lock_nested(&child_ctx->mutex, SINGLE_DEPTH_NESTING);
4017 again:
4018 list_for_each_entry_safe(child_counter, tmp, &child_ctx->counter_list,
4019 list_entry)
4020 __perf_counter_exit_task(child_counter, child_ctx);
4023 * If the last counter was a group counter, it will have appended all
4024 * its siblings to the list, but we obtained 'tmp' before that which
4025 * will still point to the list head terminating the iteration.
4027 if (!list_empty(&child_ctx->counter_list))
4028 goto again;
4030 mutex_unlock(&child_ctx->mutex);
4032 put_ctx(child_ctx);
4036 * free an unexposed, unused context as created by inheritance by
4037 * init_task below, used by fork() in case of fail.
4039 void perf_counter_free_task(struct task_struct *task)
4041 struct perf_counter_context *ctx = task->perf_counter_ctxp;
4042 struct perf_counter *counter, *tmp;
4044 if (!ctx)
4045 return;
4047 mutex_lock(&ctx->mutex);
4048 again:
4049 list_for_each_entry_safe(counter, tmp, &ctx->counter_list, list_entry) {
4050 struct perf_counter *parent = counter->parent;
4052 if (WARN_ON_ONCE(!parent))
4053 continue;
4055 mutex_lock(&parent->child_mutex);
4056 list_del_init(&counter->child_list);
4057 mutex_unlock(&parent->child_mutex);
4059 fput(parent->filp);
4061 list_del_counter(counter, ctx);
4062 free_counter(counter);
4065 if (!list_empty(&ctx->counter_list))
4066 goto again;
4068 mutex_unlock(&ctx->mutex);
4070 put_ctx(ctx);
4074 * Initialize the perf_counter context in task_struct
4076 int perf_counter_init_task(struct task_struct *child)
4078 struct perf_counter_context *child_ctx, *parent_ctx;
4079 struct perf_counter_context *cloned_ctx;
4080 struct perf_counter *counter;
4081 struct task_struct *parent = current;
4082 int inherited_all = 1;
4083 int ret = 0;
4085 child->perf_counter_ctxp = NULL;
4087 mutex_init(&child->perf_counter_mutex);
4088 INIT_LIST_HEAD(&child->perf_counter_list);
4090 if (likely(!parent->perf_counter_ctxp))
4091 return 0;
4094 * This is executed from the parent task context, so inherit
4095 * counters that have been marked for cloning.
4096 * First allocate and initialize a context for the child.
4099 child_ctx = kmalloc(sizeof(struct perf_counter_context), GFP_KERNEL);
4100 if (!child_ctx)
4101 return -ENOMEM;
4103 __perf_counter_init_context(child_ctx, child);
4104 child->perf_counter_ctxp = child_ctx;
4105 get_task_struct(child);
4108 * If the parent's context is a clone, pin it so it won't get
4109 * swapped under us.
4111 parent_ctx = perf_pin_task_context(parent);
4114 * No need to check if parent_ctx != NULL here; since we saw
4115 * it non-NULL earlier, the only reason for it to become NULL
4116 * is if we exit, and since we're currently in the middle of
4117 * a fork we can't be exiting at the same time.
4121 * Lock the parent list. No need to lock the child - not PID
4122 * hashed yet and not running, so nobody can access it.
4124 mutex_lock(&parent_ctx->mutex);
4127 * We dont have to disable NMIs - we are only looking at
4128 * the list, not manipulating it:
4130 list_for_each_entry_rcu(counter, &parent_ctx->event_list, event_entry) {
4131 if (counter != counter->group_leader)
4132 continue;
4134 if (!counter->attr.inherit) {
4135 inherited_all = 0;
4136 continue;
4139 ret = inherit_group(counter, parent, parent_ctx,
4140 child, child_ctx);
4141 if (ret) {
4142 inherited_all = 0;
4143 break;
4147 if (inherited_all) {
4149 * Mark the child context as a clone of the parent
4150 * context, or of whatever the parent is a clone of.
4151 * Note that if the parent is a clone, it could get
4152 * uncloned at any point, but that doesn't matter
4153 * because the list of counters and the generation
4154 * count can't have changed since we took the mutex.
4156 cloned_ctx = rcu_dereference(parent_ctx->parent_ctx);
4157 if (cloned_ctx) {
4158 child_ctx->parent_ctx = cloned_ctx;
4159 child_ctx->parent_gen = parent_ctx->parent_gen;
4160 } else {
4161 child_ctx->parent_ctx = parent_ctx;
4162 child_ctx->parent_gen = parent_ctx->generation;
4164 get_ctx(child_ctx->parent_ctx);
4167 mutex_unlock(&parent_ctx->mutex);
4169 perf_unpin_context(parent_ctx);
4171 return ret;
4174 static void __cpuinit perf_counter_init_cpu(int cpu)
4176 struct perf_cpu_context *cpuctx;
4178 cpuctx = &per_cpu(perf_cpu_context, cpu);
4179 __perf_counter_init_context(&cpuctx->ctx, NULL);
4181 spin_lock(&perf_resource_lock);
4182 cpuctx->max_pertask = perf_max_counters - perf_reserved_percpu;
4183 spin_unlock(&perf_resource_lock);
4185 hw_perf_counter_setup(cpu);
4188 #ifdef CONFIG_HOTPLUG_CPU
4189 static void __perf_counter_exit_cpu(void *info)
4191 struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
4192 struct perf_counter_context *ctx = &cpuctx->ctx;
4193 struct perf_counter *counter, *tmp;
4195 list_for_each_entry_safe(counter, tmp, &ctx->counter_list, list_entry)
4196 __perf_counter_remove_from_context(counter);
4198 static void perf_counter_exit_cpu(int cpu)
4200 struct perf_cpu_context *cpuctx = &per_cpu(perf_cpu_context, cpu);
4201 struct perf_counter_context *ctx = &cpuctx->ctx;
4203 mutex_lock(&ctx->mutex);
4204 smp_call_function_single(cpu, __perf_counter_exit_cpu, NULL, 1);
4205 mutex_unlock(&ctx->mutex);
4207 #else
4208 static inline void perf_counter_exit_cpu(int cpu) { }
4209 #endif
4211 static int __cpuinit
4212 perf_cpu_notify(struct notifier_block *self, unsigned long action, void *hcpu)
4214 unsigned int cpu = (long)hcpu;
4216 switch (action) {
4218 case CPU_UP_PREPARE:
4219 case CPU_UP_PREPARE_FROZEN:
4220 perf_counter_init_cpu(cpu);
4221 break;
4223 case CPU_DOWN_PREPARE:
4224 case CPU_DOWN_PREPARE_FROZEN:
4225 perf_counter_exit_cpu(cpu);
4226 break;
4228 default:
4229 break;
4232 return NOTIFY_OK;
4236 * This has to have a higher priority than migration_notifier in sched.c.
4238 static struct notifier_block __cpuinitdata perf_cpu_nb = {
4239 .notifier_call = perf_cpu_notify,
4240 .priority = 20,
4243 void __init perf_counter_init(void)
4245 perf_cpu_notify(&perf_cpu_nb, (unsigned long)CPU_UP_PREPARE,
4246 (void *)(long)smp_processor_id());
4247 register_cpu_notifier(&perf_cpu_nb);
4250 static ssize_t perf_show_reserve_percpu(struct sysdev_class *class, char *buf)
4252 return sprintf(buf, "%d\n", perf_reserved_percpu);
4255 static ssize_t
4256 perf_set_reserve_percpu(struct sysdev_class *class,
4257 const char *buf,
4258 size_t count)
4260 struct perf_cpu_context *cpuctx;
4261 unsigned long val;
4262 int err, cpu, mpt;
4264 err = strict_strtoul(buf, 10, &val);
4265 if (err)
4266 return err;
4267 if (val > perf_max_counters)
4268 return -EINVAL;
4270 spin_lock(&perf_resource_lock);
4271 perf_reserved_percpu = val;
4272 for_each_online_cpu(cpu) {
4273 cpuctx = &per_cpu(perf_cpu_context, cpu);
4274 spin_lock_irq(&cpuctx->ctx.lock);
4275 mpt = min(perf_max_counters - cpuctx->ctx.nr_counters,
4276 perf_max_counters - perf_reserved_percpu);
4277 cpuctx->max_pertask = mpt;
4278 spin_unlock_irq(&cpuctx->ctx.lock);
4280 spin_unlock(&perf_resource_lock);
4282 return count;
4285 static ssize_t perf_show_overcommit(struct sysdev_class *class, char *buf)
4287 return sprintf(buf, "%d\n", perf_overcommit);
4290 static ssize_t
4291 perf_set_overcommit(struct sysdev_class *class, const char *buf, size_t count)
4293 unsigned long val;
4294 int err;
4296 err = strict_strtoul(buf, 10, &val);
4297 if (err)
4298 return err;
4299 if (val > 1)
4300 return -EINVAL;
4302 spin_lock(&perf_resource_lock);
4303 perf_overcommit = val;
4304 spin_unlock(&perf_resource_lock);
4306 return count;
4309 static SYSDEV_CLASS_ATTR(
4310 reserve_percpu,
4311 0644,
4312 perf_show_reserve_percpu,
4313 perf_set_reserve_percpu
4316 static SYSDEV_CLASS_ATTR(
4317 overcommit,
4318 0644,
4319 perf_show_overcommit,
4320 perf_set_overcommit
4323 static struct attribute *perfclass_attrs[] = {
4324 &attr_reserve_percpu.attr,
4325 &attr_overcommit.attr,
4326 NULL
4329 static struct attribute_group perfclass_attr_group = {
4330 .attrs = perfclass_attrs,
4331 .name = "perf_counters",
4334 static int __init perf_counter_sysfs_init(void)
4336 return sysfs_create_group(&cpu_sysdev_class.kset.kobj,
4337 &perfclass_attr_group);
4339 device_initcall(perf_counter_sysfs_init);