4 * Copyright (C) 1992 Rick Sladkey
6 * nfs directory handling functions
8 * 10 Apr 1996 Added silly rename for unlink --okir
9 * 28 Sep 1996 Improved directory cache --okir
10 * 23 Aug 1997 Claus Heine claus@momo.math.rwth-aachen.de
11 * Re-implemented silly rename for unlink, newly implemented
12 * silly rename for nfs_rename() following the suggestions
13 * of Olaf Kirch (okir) found in this file.
14 * Following Linus comments on my original hack, this version
15 * depends only on the dcache stuff and doesn't touch the inode
16 * layer (iput() and friends).
17 * 6 Jun 1999 Cache readdir lookups in the page cache. -DaveM
20 #include <linux/time.h>
21 #include <linux/errno.h>
22 #include <linux/stat.h>
23 #include <linux/fcntl.h>
24 #include <linux/string.h>
25 #include <linux/kernel.h>
26 #include <linux/slab.h>
28 #include <linux/sunrpc/clnt.h>
29 #include <linux/nfs_fs.h>
30 #include <linux/nfs_mount.h>
31 #include <linux/pagemap.h>
32 #include <linux/smp_lock.h>
33 #include <linux/pagevec.h>
34 #include <linux/namei.h>
35 #include <linux/mount.h>
36 #include <linux/sched.h>
39 #include "delegation.h"
43 /* #define NFS_DEBUG_VERBOSE 1 */
45 static int nfs_opendir(struct inode
*, struct file
*);
46 static int nfs_readdir(struct file
*, void *, filldir_t
);
47 static struct dentry
*nfs_lookup(struct inode
*, struct dentry
*, struct nameidata
*);
48 static int nfs_create(struct inode
*, struct dentry
*, int, struct nameidata
*);
49 static int nfs_mkdir(struct inode
*, struct dentry
*, int);
50 static int nfs_rmdir(struct inode
*, struct dentry
*);
51 static int nfs_unlink(struct inode
*, struct dentry
*);
52 static int nfs_symlink(struct inode
*, struct dentry
*, const char *);
53 static int nfs_link(struct dentry
*, struct inode
*, struct dentry
*);
54 static int nfs_mknod(struct inode
*, struct dentry
*, int, dev_t
);
55 static int nfs_rename(struct inode
*, struct dentry
*,
56 struct inode
*, struct dentry
*);
57 static int nfs_fsync_dir(struct file
*, struct dentry
*, int);
58 static loff_t
nfs_llseek_dir(struct file
*, loff_t
, int);
60 const struct file_operations nfs_dir_operations
= {
61 .llseek
= nfs_llseek_dir
,
62 .read
= generic_read_dir
,
63 .readdir
= nfs_readdir
,
65 .release
= nfs_release
,
66 .fsync
= nfs_fsync_dir
,
69 const struct inode_operations nfs_dir_inode_operations
= {
74 .symlink
= nfs_symlink
,
79 .permission
= nfs_permission
,
80 .getattr
= nfs_getattr
,
81 .setattr
= nfs_setattr
,
85 const struct inode_operations nfs3_dir_inode_operations
= {
90 .symlink
= nfs_symlink
,
95 .permission
= nfs_permission
,
96 .getattr
= nfs_getattr
,
97 .setattr
= nfs_setattr
,
98 .listxattr
= nfs3_listxattr
,
99 .getxattr
= nfs3_getxattr
,
100 .setxattr
= nfs3_setxattr
,
101 .removexattr
= nfs3_removexattr
,
103 #endif /* CONFIG_NFS_V3 */
107 static struct dentry
*nfs_atomic_lookup(struct inode
*, struct dentry
*, struct nameidata
*);
108 const struct inode_operations nfs4_dir_inode_operations
= {
109 .create
= nfs_create
,
110 .lookup
= nfs_atomic_lookup
,
112 .unlink
= nfs_unlink
,
113 .symlink
= nfs_symlink
,
117 .rename
= nfs_rename
,
118 .permission
= nfs_permission
,
119 .getattr
= nfs_getattr
,
120 .setattr
= nfs_setattr
,
121 .getxattr
= nfs4_getxattr
,
122 .setxattr
= nfs4_setxattr
,
123 .listxattr
= nfs4_listxattr
,
126 #endif /* CONFIG_NFS_V4 */
132 nfs_opendir(struct inode
*inode
, struct file
*filp
)
136 dfprintk(VFS
, "NFS: opendir(%s/%ld)\n",
137 inode
->i_sb
->s_id
, inode
->i_ino
);
140 /* Call generic open code in order to cache credentials */
141 res
= nfs_open(inode
, filp
);
146 typedef __be32
* (*decode_dirent_t
)(__be32
*, struct nfs_entry
*, int);
150 unsigned long page_index
;
153 loff_t current_index
;
154 struct nfs_entry
*entry
;
155 decode_dirent_t decode
;
158 unsigned long timestamp
;
160 } nfs_readdir_descriptor_t
;
162 /* Now we cache directories properly, by stuffing the dirent
163 * data directly in the page cache.
165 * Inode invalidation due to refresh etc. takes care of
166 * _everything_, no sloppy entry flushing logic, no extraneous
167 * copying, network direct to page cache, the way it was meant
170 * NOTE: Dirent information verification is done always by the
171 * page-in of the RPC reply, nowhere else, this simplies
172 * things substantially.
175 int nfs_readdir_filler(nfs_readdir_descriptor_t
*desc
, struct page
*page
)
177 struct file
*file
= desc
->file
;
178 struct inode
*inode
= file
->f_path
.dentry
->d_inode
;
179 struct rpc_cred
*cred
= nfs_file_cred(file
);
180 unsigned long timestamp
;
183 dfprintk(DIRCACHE
, "NFS: %s: reading cookie %Lu into page %lu\n",
184 __FUNCTION__
, (long long)desc
->entry
->cookie
,
189 error
= NFS_PROTO(inode
)->readdir(file
->f_path
.dentry
, cred
, desc
->entry
->cookie
, page
,
190 NFS_SERVER(inode
)->dtsize
, desc
->plus
);
192 /* We requested READDIRPLUS, but the server doesn't grok it */
193 if (error
== -ENOTSUPP
&& desc
->plus
) {
194 NFS_SERVER(inode
)->caps
&= ~NFS_CAP_READDIRPLUS
;
195 clear_bit(NFS_INO_ADVISE_RDPLUS
, &NFS_FLAGS(inode
));
201 desc
->timestamp
= timestamp
;
202 desc
->timestamp_valid
= 1;
203 SetPageUptodate(page
);
204 /* Ensure consistent page alignment of the data.
205 * Note: assumes we have exclusive access to this mapping either
206 * through inode->i_mutex or some other mechanism.
208 if (page
->index
== 0 && invalidate_inode_pages2_range(inode
->i_mapping
, PAGE_CACHE_SIZE
, -1) < 0) {
209 /* Should never happen */
210 nfs_zap_mapping(inode
, inode
->i_mapping
);
221 int dir_decode(nfs_readdir_descriptor_t
*desc
)
223 __be32
*p
= desc
->ptr
;
224 p
= desc
->decode(p
, desc
->entry
, desc
->plus
);
228 if (desc
->timestamp_valid
)
229 desc
->entry
->fattr
->time_start
= desc
->timestamp
;
231 desc
->entry
->fattr
->valid
&= ~NFS_ATTR_FATTR
;
236 void dir_page_release(nfs_readdir_descriptor_t
*desc
)
239 page_cache_release(desc
->page
);
245 * Given a pointer to a buffer that has already been filled by a call
246 * to readdir, find the next entry with cookie '*desc->dir_cookie'.
248 * If the end of the buffer has been reached, return -EAGAIN, if not,
249 * return the offset within the buffer of the next entry to be
253 int find_dirent(nfs_readdir_descriptor_t
*desc
)
255 struct nfs_entry
*entry
= desc
->entry
;
259 while((status
= dir_decode(desc
)) == 0) {
260 dfprintk(DIRCACHE
, "NFS: %s: examining cookie %Lu\n",
261 __FUNCTION__
, (unsigned long long)entry
->cookie
);
262 if (entry
->prev_cookie
== *desc
->dir_cookie
)
264 if (loop_count
++ > 200) {
273 * Given a pointer to a buffer that has already been filled by a call
274 * to readdir, find the entry at offset 'desc->file->f_pos'.
276 * If the end of the buffer has been reached, return -EAGAIN, if not,
277 * return the offset within the buffer of the next entry to be
281 int find_dirent_index(nfs_readdir_descriptor_t
*desc
)
283 struct nfs_entry
*entry
= desc
->entry
;
288 status
= dir_decode(desc
);
292 dfprintk(DIRCACHE
, "NFS: found cookie %Lu at index %Ld\n",
293 (unsigned long long)entry
->cookie
, desc
->current_index
);
295 if (desc
->file
->f_pos
== desc
->current_index
) {
296 *desc
->dir_cookie
= entry
->cookie
;
299 desc
->current_index
++;
300 if (loop_count
++ > 200) {
309 * Find the given page, and call find_dirent() or find_dirent_index in
310 * order to try to return the next entry.
313 int find_dirent_page(nfs_readdir_descriptor_t
*desc
)
315 struct inode
*inode
= desc
->file
->f_path
.dentry
->d_inode
;
319 dfprintk(DIRCACHE
, "NFS: %s: searching page %ld for target %Lu\n",
320 __FUNCTION__
, desc
->page_index
,
321 (long long) *desc
->dir_cookie
);
323 /* If we find the page in the page_cache, we cannot be sure
324 * how fresh the data is, so we will ignore readdir_plus attributes.
326 desc
->timestamp_valid
= 0;
327 page
= read_cache_page(inode
->i_mapping
, desc
->page_index
,
328 (filler_t
*)nfs_readdir_filler
, desc
);
330 status
= PTR_ERR(page
);
334 /* NOTE: Someone else may have changed the READDIRPLUS flag */
336 desc
->ptr
= kmap(page
); /* matching kunmap in nfs_do_filldir */
337 if (*desc
->dir_cookie
!= 0)
338 status
= find_dirent(desc
);
340 status
= find_dirent_index(desc
);
342 dir_page_release(desc
);
344 dfprintk(DIRCACHE
, "NFS: %s: returns %d\n", __FUNCTION__
, status
);
349 * Recurse through the page cache pages, and return a
350 * filled nfs_entry structure of the next directory entry if possible.
352 * The target for the search is '*desc->dir_cookie' if non-0,
353 * 'desc->file->f_pos' otherwise
356 int readdir_search_pagecache(nfs_readdir_descriptor_t
*desc
)
361 /* Always search-by-index from the beginning of the cache */
362 if (*desc
->dir_cookie
== 0) {
363 dfprintk(DIRCACHE
, "NFS: readdir_search_pagecache() searching for offset %Ld\n",
364 (long long)desc
->file
->f_pos
);
365 desc
->page_index
= 0;
366 desc
->entry
->cookie
= desc
->entry
->prev_cookie
= 0;
367 desc
->entry
->eof
= 0;
368 desc
->current_index
= 0;
370 dfprintk(DIRCACHE
, "NFS: readdir_search_pagecache() searching for cookie %Lu\n",
371 (unsigned long long)*desc
->dir_cookie
);
374 res
= find_dirent_page(desc
);
377 /* Align to beginning of next page */
379 if (loop_count
++ > 200) {
385 dfprintk(DIRCACHE
, "NFS: %s: returns %d\n", __FUNCTION__
, res
);
389 static inline unsigned int dt_type(struct inode
*inode
)
391 return (inode
->i_mode
>> 12) & 15;
394 static struct dentry
*nfs_readdir_lookup(nfs_readdir_descriptor_t
*desc
);
397 * Once we've found the start of the dirent within a page: fill 'er up...
400 int nfs_do_filldir(nfs_readdir_descriptor_t
*desc
, void *dirent
,
403 struct file
*file
= desc
->file
;
404 struct nfs_entry
*entry
= desc
->entry
;
405 struct dentry
*dentry
= NULL
;
410 dfprintk(DIRCACHE
, "NFS: nfs_do_filldir() filling starting @ cookie %Lu\n",
411 (unsigned long long)entry
->cookie
);
414 unsigned d_type
= DT_UNKNOWN
;
415 /* Note: entry->prev_cookie contains the cookie for
416 * retrieving the current dirent on the server */
419 /* Get a dentry if we have one */
422 dentry
= nfs_readdir_lookup(desc
);
424 /* Use readdirplus info */
425 if (dentry
!= NULL
&& dentry
->d_inode
!= NULL
) {
426 d_type
= dt_type(dentry
->d_inode
);
427 fileid
= NFS_FILEID(dentry
->d_inode
);
430 res
= filldir(dirent
, entry
->name
, entry
->len
,
431 file
->f_pos
, nfs_compat_user_ino64(fileid
),
436 *desc
->dir_cookie
= entry
->cookie
;
437 if (dir_decode(desc
) != 0) {
441 if (loop_count
++ > 200) {
446 dir_page_release(desc
);
449 dfprintk(DIRCACHE
, "NFS: nfs_do_filldir() filling ended @ cookie %Lu; returning = %d\n",
450 (unsigned long long)*desc
->dir_cookie
, res
);
455 * If we cannot find a cookie in our cache, we suspect that this is
456 * because it points to a deleted file, so we ask the server to return
457 * whatever it thinks is the next entry. We then feed this to filldir.
458 * If all goes well, we should then be able to find our way round the
459 * cache on the next call to readdir_search_pagecache();
461 * NOTE: we cannot add the anonymous page to the pagecache because
462 * the data it contains might not be page aligned. Besides,
463 * we should already have a complete representation of the
464 * directory in the page cache by the time we get here.
467 int uncached_readdir(nfs_readdir_descriptor_t
*desc
, void *dirent
,
470 struct file
*file
= desc
->file
;
471 struct inode
*inode
= file
->f_path
.dentry
->d_inode
;
472 struct rpc_cred
*cred
= nfs_file_cred(file
);
473 struct page
*page
= NULL
;
475 unsigned long timestamp
;
477 dfprintk(DIRCACHE
, "NFS: uncached_readdir() searching for cookie %Lu\n",
478 (unsigned long long)*desc
->dir_cookie
);
480 page
= alloc_page(GFP_HIGHUSER
);
486 desc
->error
= NFS_PROTO(inode
)->readdir(file
->f_path
.dentry
, cred
, *desc
->dir_cookie
,
488 NFS_SERVER(inode
)->dtsize
,
491 desc
->ptr
= kmap(page
); /* matching kunmap in nfs_do_filldir */
492 if (desc
->error
>= 0) {
493 desc
->timestamp
= timestamp
;
494 desc
->timestamp_valid
= 1;
495 if ((status
= dir_decode(desc
)) == 0)
496 desc
->entry
->prev_cookie
= *desc
->dir_cookie
;
502 status
= nfs_do_filldir(desc
, dirent
, filldir
);
504 /* Reset read descriptor so it searches the page cache from
505 * the start upon the next call to readdir_search_pagecache() */
506 desc
->page_index
= 0;
507 desc
->entry
->cookie
= desc
->entry
->prev_cookie
= 0;
508 desc
->entry
->eof
= 0;
510 dfprintk(DIRCACHE
, "NFS: %s: returns %d\n",
511 __FUNCTION__
, status
);
514 dir_page_release(desc
);
518 /* The file offset position represents the dirent entry number. A
519 last cookie cache takes care of the common case of reading the
522 static int nfs_readdir(struct file
*filp
, void *dirent
, filldir_t filldir
)
524 struct dentry
*dentry
= filp
->f_path
.dentry
;
525 struct inode
*inode
= dentry
->d_inode
;
526 nfs_readdir_descriptor_t my_desc
,
528 struct nfs_entry my_entry
;
530 struct nfs_fattr fattr
;
533 dfprintk(VFS
, "NFS: readdir(%s/%s) starting at cookie %Lu\n",
534 dentry
->d_parent
->d_name
.name
, dentry
->d_name
.name
,
535 (long long)filp
->f_pos
);
536 nfs_inc_stats(inode
, NFSIOS_VFSGETDENTS
);
540 res
= nfs_revalidate_mapping_nolock(inode
, filp
->f_mapping
);
547 * filp->f_pos points to the dirent entry number.
548 * *desc->dir_cookie has the cookie for the next entry. We have
549 * to either find the entry with the appropriate number or
550 * revalidate the cookie.
552 memset(desc
, 0, sizeof(*desc
));
555 desc
->dir_cookie
= &nfs_file_open_context(filp
)->dir_cookie
;
556 desc
->decode
= NFS_PROTO(inode
)->decode_dirent
;
557 desc
->plus
= NFS_USE_READDIRPLUS(inode
);
559 my_entry
.cookie
= my_entry
.prev_cookie
= 0;
562 my_entry
.fattr
= &fattr
;
563 nfs_fattr_init(&fattr
);
564 desc
->entry
= &my_entry
;
566 nfs_block_sillyrename(dentry
);
567 while(!desc
->entry
->eof
) {
568 res
= readdir_search_pagecache(desc
);
570 if (res
== -EBADCOOKIE
) {
571 /* This means either end of directory */
572 if (*desc
->dir_cookie
&& desc
->entry
->cookie
!= *desc
->dir_cookie
) {
573 /* Or that the server has 'lost' a cookie */
574 res
= uncached_readdir(desc
, dirent
, filldir
);
581 if (res
== -ETOOSMALL
&& desc
->plus
) {
582 clear_bit(NFS_INO_ADVISE_RDPLUS
, &NFS_FLAGS(inode
));
583 nfs_zap_caches(inode
);
585 desc
->entry
->eof
= 0;
591 res
= nfs_do_filldir(desc
, dirent
, filldir
);
597 nfs_unblock_sillyrename(dentry
);
601 dfprintk(VFS
, "NFS: readdir(%s/%s) returns %ld\n",
602 dentry
->d_parent
->d_name
.name
, dentry
->d_name
.name
,
607 static loff_t
nfs_llseek_dir(struct file
*filp
, loff_t offset
, int origin
)
609 mutex_lock(&filp
->f_path
.dentry
->d_inode
->i_mutex
);
612 offset
+= filp
->f_pos
;
620 if (offset
!= filp
->f_pos
) {
621 filp
->f_pos
= offset
;
622 nfs_file_open_context(filp
)->dir_cookie
= 0;
625 mutex_unlock(&filp
->f_path
.dentry
->d_inode
->i_mutex
);
630 * All directory operations under NFS are synchronous, so fsync()
631 * is a dummy operation.
633 static int nfs_fsync_dir(struct file
*filp
, struct dentry
*dentry
, int datasync
)
635 dfprintk(VFS
, "NFS: fsync_dir(%s/%s) datasync %d\n",
636 dentry
->d_parent
->d_name
.name
, dentry
->d_name
.name
,
643 * A check for whether or not the parent directory has changed.
644 * In the case it has, we assume that the dentries are untrustworthy
645 * and may need to be looked up again.
647 static int nfs_check_verifier(struct inode
*dir
, struct dentry
*dentry
)
651 if (!nfs_verify_change_attribute(dir
, dentry
->d_time
))
653 /* Revalidate nfsi->cache_change_attribute before we declare a match */
654 if (nfs_revalidate_inode(NFS_SERVER(dir
), dir
) < 0)
656 if (!nfs_verify_change_attribute(dir
, dentry
->d_time
))
662 * Return the intent data that applies to this particular path component
664 * Note that the current set of intents only apply to the very last
665 * component of the path.
666 * We check for this using LOOKUP_CONTINUE and LOOKUP_PARENT.
668 static inline unsigned int nfs_lookup_check_intent(struct nameidata
*nd
, unsigned int mask
)
670 if (nd
->flags
& (LOOKUP_CONTINUE
|LOOKUP_PARENT
))
672 return nd
->flags
& mask
;
676 * Use intent information to check whether or not we're going to do
677 * an O_EXCL create using this path component.
679 static int nfs_is_exclusive_create(struct inode
*dir
, struct nameidata
*nd
)
681 if (NFS_PROTO(dir
)->version
== 2)
683 if (nd
== NULL
|| nfs_lookup_check_intent(nd
, LOOKUP_CREATE
) == 0)
685 return (nd
->intent
.open
.flags
& O_EXCL
) != 0;
689 * Inode and filehandle revalidation for lookups.
691 * We force revalidation in the cases where the VFS sets LOOKUP_REVAL,
692 * or if the intent information indicates that we're about to open this
693 * particular file and the "nocto" mount flag is not set.
697 int nfs_lookup_verify_inode(struct inode
*inode
, struct nameidata
*nd
)
699 struct nfs_server
*server
= NFS_SERVER(inode
);
702 /* VFS wants an on-the-wire revalidation */
703 if (nd
->flags
& LOOKUP_REVAL
)
705 /* This is an open(2) */
706 if (nfs_lookup_check_intent(nd
, LOOKUP_OPEN
) != 0 &&
707 !(server
->flags
& NFS_MOUNT_NOCTO
) &&
708 (S_ISREG(inode
->i_mode
) ||
709 S_ISDIR(inode
->i_mode
)))
713 return nfs_revalidate_inode(server
, inode
);
715 return __nfs_revalidate_inode(server
, inode
);
719 * We judge how long we want to trust negative
720 * dentries by looking at the parent inode mtime.
722 * If parent mtime has changed, we revalidate, else we wait for a
723 * period corresponding to the parent's attribute cache timeout value.
726 int nfs_neg_need_reval(struct inode
*dir
, struct dentry
*dentry
,
727 struct nameidata
*nd
)
729 /* Don't revalidate a negative dentry if we're creating a new file */
730 if (nd
!= NULL
&& nfs_lookup_check_intent(nd
, LOOKUP_CREATE
) != 0)
732 return !nfs_check_verifier(dir
, dentry
);
736 * This is called every time the dcache has a lookup hit,
737 * and we should check whether we can really trust that
740 * NOTE! The hit can be a negative hit too, don't assume
743 * If the parent directory is seen to have changed, we throw out the
744 * cached dentry and do a new lookup.
746 static int nfs_lookup_revalidate(struct dentry
* dentry
, struct nameidata
*nd
)
750 struct dentry
*parent
;
752 struct nfs_fh fhandle
;
753 struct nfs_fattr fattr
;
755 parent
= dget_parent(dentry
);
757 dir
= parent
->d_inode
;
758 nfs_inc_stats(dir
, NFSIOS_DENTRYREVALIDATE
);
759 inode
= dentry
->d_inode
;
762 if (nfs_neg_need_reval(dir
, dentry
, nd
))
767 if (is_bad_inode(inode
)) {
768 dfprintk(LOOKUPCACHE
, "%s: %s/%s has dud inode\n",
769 __FUNCTION__
, dentry
->d_parent
->d_name
.name
,
770 dentry
->d_name
.name
);
774 /* Force a full look up iff the parent directory has changed */
775 if (!nfs_is_exclusive_create(dir
, nd
) && nfs_check_verifier(dir
, dentry
)) {
776 if (nfs_lookup_verify_inode(inode
, nd
))
781 if (NFS_STALE(inode
))
784 error
= NFS_PROTO(dir
)->lookup(dir
, &dentry
->d_name
, &fhandle
, &fattr
);
787 if (nfs_compare_fh(NFS_FH(inode
), &fhandle
))
789 if ((error
= nfs_refresh_inode(inode
, &fattr
)) != 0)
792 nfs_set_verifier(dentry
, nfs_save_change_attribute(dir
));
796 dfprintk(LOOKUPCACHE
, "NFS: %s(%s/%s) is valid\n",
797 __FUNCTION__
, dentry
->d_parent
->d_name
.name
,
798 dentry
->d_name
.name
);
803 nfs_mark_for_revalidate(dir
);
804 if (inode
&& S_ISDIR(inode
->i_mode
)) {
805 /* Purge readdir caches. */
806 nfs_zap_caches(inode
);
807 /* If we have submounts, don't unhash ! */
808 if (have_submounts(dentry
))
810 shrink_dcache_parent(dentry
);
815 dfprintk(LOOKUPCACHE
, "NFS: %s(%s/%s) is invalid\n",
816 __FUNCTION__
, dentry
->d_parent
->d_name
.name
,
817 dentry
->d_name
.name
);
822 * This is called from dput() when d_count is going to 0.
824 static int nfs_dentry_delete(struct dentry
*dentry
)
826 dfprintk(VFS
, "NFS: dentry_delete(%s/%s, %x)\n",
827 dentry
->d_parent
->d_name
.name
, dentry
->d_name
.name
,
830 if (dentry
->d_flags
& DCACHE_NFSFS_RENAMED
) {
831 /* Unhash it, so that ->d_iput() would be called */
834 if (!(dentry
->d_sb
->s_flags
& MS_ACTIVE
)) {
835 /* Unhash it, so that ancestors of killed async unlink
836 * files will be cleaned up during umount */
844 * Called when the dentry loses inode.
845 * We use it to clean up silly-renamed files.
847 static void nfs_dentry_iput(struct dentry
*dentry
, struct inode
*inode
)
849 nfs_inode_return_delegation(inode
);
850 if (S_ISDIR(inode
->i_mode
))
851 /* drop any readdir cache as it could easily be old */
852 NFS_I(inode
)->cache_validity
|= NFS_INO_INVALID_DATA
;
854 if (dentry
->d_flags
& DCACHE_NFSFS_RENAMED
) {
857 nfs_complete_unlink(dentry
, inode
);
863 struct dentry_operations nfs_dentry_operations
= {
864 .d_revalidate
= nfs_lookup_revalidate
,
865 .d_delete
= nfs_dentry_delete
,
866 .d_iput
= nfs_dentry_iput
,
869 static struct dentry
*nfs_lookup(struct inode
*dir
, struct dentry
* dentry
, struct nameidata
*nd
)
872 struct dentry
*parent
;
873 struct inode
*inode
= NULL
;
875 struct nfs_fh fhandle
;
876 struct nfs_fattr fattr
;
878 dfprintk(VFS
, "NFS: lookup(%s/%s)\n",
879 dentry
->d_parent
->d_name
.name
, dentry
->d_name
.name
);
880 nfs_inc_stats(dir
, NFSIOS_VFSLOOKUP
);
882 res
= ERR_PTR(-ENAMETOOLONG
);
883 if (dentry
->d_name
.len
> NFS_SERVER(dir
)->namelen
)
886 res
= ERR_PTR(-ENOMEM
);
887 dentry
->d_op
= NFS_PROTO(dir
)->dentry_ops
;
892 * If we're doing an exclusive create, optimize away the lookup
893 * but don't hash the dentry.
895 if (nfs_is_exclusive_create(dir
, nd
)) {
896 d_instantiate(dentry
, NULL
);
901 parent
= dentry
->d_parent
;
902 /* Protect against concurrent sillydeletes */
903 nfs_block_sillyrename(parent
);
904 error
= NFS_PROTO(dir
)->lookup(dir
, &dentry
->d_name
, &fhandle
, &fattr
);
905 if (error
== -ENOENT
)
908 res
= ERR_PTR(error
);
909 goto out_unblock_sillyrename
;
911 inode
= nfs_fhget(dentry
->d_sb
, &fhandle
, &fattr
);
912 res
= (struct dentry
*)inode
;
914 goto out_unblock_sillyrename
;
917 res
= d_materialise_unique(dentry
, inode
);
920 goto out_unblock_sillyrename
;
923 nfs_set_verifier(dentry
, nfs_save_change_attribute(dir
));
924 out_unblock_sillyrename
:
925 nfs_unblock_sillyrename(parent
);
933 static int nfs_open_revalidate(struct dentry
*, struct nameidata
*);
935 struct dentry_operations nfs4_dentry_operations
= {
936 .d_revalidate
= nfs_open_revalidate
,
937 .d_delete
= nfs_dentry_delete
,
938 .d_iput
= nfs_dentry_iput
,
942 * Use intent information to determine whether we need to substitute
943 * the NFSv4-style stateful OPEN for the LOOKUP call
945 static int is_atomic_open(struct inode
*dir
, struct nameidata
*nd
)
947 if (nd
== NULL
|| nfs_lookup_check_intent(nd
, LOOKUP_OPEN
) == 0)
949 /* NFS does not (yet) have a stateful open for directories */
950 if (nd
->flags
& LOOKUP_DIRECTORY
)
952 /* Are we trying to write to a read only partition? */
953 if (IS_RDONLY(dir
) && (nd
->intent
.open
.flags
& (O_CREAT
|O_TRUNC
|FMODE_WRITE
)))
958 static struct dentry
*nfs_atomic_lookup(struct inode
*dir
, struct dentry
*dentry
, struct nameidata
*nd
)
960 struct dentry
*res
= NULL
;
963 dfprintk(VFS
, "NFS: atomic_lookup(%s/%ld), %s\n",
964 dir
->i_sb
->s_id
, dir
->i_ino
, dentry
->d_name
.name
);
966 /* Check that we are indeed trying to open this file */
967 if (!is_atomic_open(dir
, nd
))
970 if (dentry
->d_name
.len
> NFS_SERVER(dir
)->namelen
) {
971 res
= ERR_PTR(-ENAMETOOLONG
);
974 dentry
->d_op
= NFS_PROTO(dir
)->dentry_ops
;
976 /* Let vfs_create() deal with O_EXCL. Instantiate, but don't hash
978 if (nd
->intent
.open
.flags
& O_EXCL
) {
979 d_instantiate(dentry
, NULL
);
983 /* Open the file on the server */
985 res
= nfs4_atomic_open(dir
, dentry
, nd
);
988 error
= PTR_ERR(res
);
990 /* Make a negative dentry */
994 /* This turned out not to be a regular file */
999 if (!(nd
->intent
.open
.flags
& O_NOFOLLOW
))
1005 } else if (res
!= NULL
)
1010 return nfs_lookup(dir
, dentry
, nd
);
1013 static int nfs_open_revalidate(struct dentry
*dentry
, struct nameidata
*nd
)
1015 struct dentry
*parent
= NULL
;
1016 struct inode
*inode
= dentry
->d_inode
;
1018 int openflags
, ret
= 0;
1020 parent
= dget_parent(dentry
);
1021 dir
= parent
->d_inode
;
1022 if (!is_atomic_open(dir
, nd
))
1024 /* We can't create new files in nfs_open_revalidate(), so we
1025 * optimize away revalidation of negative dentries.
1027 if (inode
== NULL
) {
1028 if (!nfs_neg_need_reval(dir
, dentry
, nd
))
1033 /* NFS only supports OPEN on regular files */
1034 if (!S_ISREG(inode
->i_mode
))
1036 openflags
= nd
->intent
.open
.flags
;
1037 /* We cannot do exclusive creation on a positive dentry */
1038 if ((openflags
& (O_CREAT
|O_EXCL
)) == (O_CREAT
|O_EXCL
))
1040 /* We can't create new files, or truncate existing ones here */
1041 openflags
&= ~(O_CREAT
|O_TRUNC
);
1044 * Note: we're not holding inode->i_mutex and so may be racing with
1045 * operations that change the directory. We therefore save the
1046 * change attribute *before* we do the RPC call.
1049 ret
= nfs4_open_revalidate(dir
, dentry
, openflags
, nd
);
1058 if (inode
!= NULL
&& nfs_have_delegation(inode
, FMODE_READ
))
1060 return nfs_lookup_revalidate(dentry
, nd
);
1062 #endif /* CONFIG_NFSV4 */
1064 static struct dentry
*nfs_readdir_lookup(nfs_readdir_descriptor_t
*desc
)
1066 struct dentry
*parent
= desc
->file
->f_path
.dentry
;
1067 struct inode
*dir
= parent
->d_inode
;
1068 struct nfs_entry
*entry
= desc
->entry
;
1069 struct dentry
*dentry
, *alias
;
1070 struct qstr name
= {
1071 .name
= entry
->name
,
1074 struct inode
*inode
;
1075 unsigned long verf
= nfs_save_change_attribute(dir
);
1079 if (name
.name
[0] == '.' && name
.name
[1] == '.')
1080 return dget_parent(parent
);
1083 if (name
.name
[0] == '.')
1084 return dget(parent
);
1087 spin_lock(&dir
->i_lock
);
1088 if (NFS_I(dir
)->cache_validity
& NFS_INO_INVALID_DATA
) {
1089 spin_unlock(&dir
->i_lock
);
1092 spin_unlock(&dir
->i_lock
);
1094 name
.hash
= full_name_hash(name
.name
, name
.len
);
1095 dentry
= d_lookup(parent
, &name
);
1096 if (dentry
!= NULL
) {
1097 /* Is this a positive dentry that matches the readdir info? */
1098 if (dentry
->d_inode
!= NULL
&&
1099 (NFS_FILEID(dentry
->d_inode
) == entry
->ino
||
1100 d_mountpoint(dentry
))) {
1101 if (!desc
->plus
|| entry
->fh
->size
== 0)
1103 if (nfs_compare_fh(NFS_FH(dentry
->d_inode
),
1107 /* No, so d_drop to allow one to be created */
1111 if (!desc
->plus
|| !(entry
->fattr
->valid
& NFS_ATTR_FATTR
))
1113 if (name
.len
> NFS_SERVER(dir
)->namelen
)
1115 /* Note: caller is already holding the dir->i_mutex! */
1116 dentry
= d_alloc(parent
, &name
);
1119 dentry
->d_op
= NFS_PROTO(dir
)->dentry_ops
;
1120 inode
= nfs_fhget(dentry
->d_sb
, entry
->fh
, entry
->fattr
);
1121 if (IS_ERR(inode
)) {
1126 alias
= d_materialise_unique(dentry
, inode
);
1127 if (alias
!= NULL
) {
1135 nfs_set_verifier(dentry
, verf
);
1140 * Code common to create, mkdir, and mknod.
1142 int nfs_instantiate(struct dentry
*dentry
, struct nfs_fh
*fhandle
,
1143 struct nfs_fattr
*fattr
)
1145 struct dentry
*parent
= dget_parent(dentry
);
1146 struct inode
*dir
= parent
->d_inode
;
1147 struct inode
*inode
;
1148 int error
= -EACCES
;
1152 /* We may have been initialized further down */
1153 if (dentry
->d_inode
)
1155 if (fhandle
->size
== 0) {
1156 error
= NFS_PROTO(dir
)->lookup(dir
, &dentry
->d_name
, fhandle
, fattr
);
1160 nfs_set_verifier(dentry
, nfs_save_change_attribute(dir
));
1161 if (!(fattr
->valid
& NFS_ATTR_FATTR
)) {
1162 struct nfs_server
*server
= NFS_SB(dentry
->d_sb
);
1163 error
= server
->nfs_client
->rpc_ops
->getattr(server
, fhandle
, fattr
);
1167 inode
= nfs_fhget(dentry
->d_sb
, fhandle
, fattr
);
1168 error
= PTR_ERR(inode
);
1171 d_add(dentry
, inode
);
1176 nfs_mark_for_revalidate(dir
);
1182 * Following a failed create operation, we drop the dentry rather
1183 * than retain a negative dentry. This avoids a problem in the event
1184 * that the operation succeeded on the server, but an error in the
1185 * reply path made it appear to have failed.
1187 static int nfs_create(struct inode
*dir
, struct dentry
*dentry
, int mode
,
1188 struct nameidata
*nd
)
1194 dfprintk(VFS
, "NFS: create(%s/%ld), %s\n",
1195 dir
->i_sb
->s_id
, dir
->i_ino
, dentry
->d_name
.name
);
1197 attr
.ia_mode
= mode
;
1198 attr
.ia_valid
= ATTR_MODE
;
1200 if ((nd
->flags
& LOOKUP_CREATE
) != 0)
1201 open_flags
= nd
->intent
.open
.flags
;
1204 error
= NFS_PROTO(dir
)->create(dir
, dentry
, &attr
, open_flags
, nd
);
1216 * See comments for nfs_proc_create regarding failed operations.
1219 nfs_mknod(struct inode
*dir
, struct dentry
*dentry
, int mode
, dev_t rdev
)
1224 dfprintk(VFS
, "NFS: mknod(%s/%ld), %s\n",
1225 dir
->i_sb
->s_id
, dir
->i_ino
, dentry
->d_name
.name
);
1227 if (!new_valid_dev(rdev
))
1230 attr
.ia_mode
= mode
;
1231 attr
.ia_valid
= ATTR_MODE
;
1234 status
= NFS_PROTO(dir
)->mknod(dir
, dentry
, &attr
, rdev
);
1246 * See comments for nfs_proc_create regarding failed operations.
1248 static int nfs_mkdir(struct inode
*dir
, struct dentry
*dentry
, int mode
)
1253 dfprintk(VFS
, "NFS: mkdir(%s/%ld), %s\n",
1254 dir
->i_sb
->s_id
, dir
->i_ino
, dentry
->d_name
.name
);
1256 attr
.ia_valid
= ATTR_MODE
;
1257 attr
.ia_mode
= mode
| S_IFDIR
;
1260 error
= NFS_PROTO(dir
)->mkdir(dir
, dentry
, &attr
);
1271 static int nfs_rmdir(struct inode
*dir
, struct dentry
*dentry
)
1275 dfprintk(VFS
, "NFS: rmdir(%s/%ld), %s\n",
1276 dir
->i_sb
->s_id
, dir
->i_ino
, dentry
->d_name
.name
);
1279 error
= NFS_PROTO(dir
)->rmdir(dir
, &dentry
->d_name
);
1280 /* Ensure the VFS deletes this inode */
1281 if (error
== 0 && dentry
->d_inode
!= NULL
)
1282 clear_nlink(dentry
->d_inode
);
1288 static int nfs_sillyrename(struct inode
*dir
, struct dentry
*dentry
)
1290 static unsigned int sillycounter
;
1291 const int fileidsize
= sizeof(NFS_FILEID(dentry
->d_inode
))*2;
1292 const int countersize
= sizeof(sillycounter
)*2;
1293 const int slen
= sizeof(".nfs")+fileidsize
+countersize
-1;
1296 struct dentry
*sdentry
;
1299 dfprintk(VFS
, "NFS: silly-rename(%s/%s, ct=%d)\n",
1300 dentry
->d_parent
->d_name
.name
, dentry
->d_name
.name
,
1301 atomic_read(&dentry
->d_count
));
1302 nfs_inc_stats(dir
, NFSIOS_SILLYRENAME
);
1305 * We don't allow a dentry to be silly-renamed twice.
1308 if (dentry
->d_flags
& DCACHE_NFSFS_RENAMED
)
1311 sprintf(silly
, ".nfs%*.*Lx",
1312 fileidsize
, fileidsize
,
1313 (unsigned long long)NFS_FILEID(dentry
->d_inode
));
1315 /* Return delegation in anticipation of the rename */
1316 nfs_inode_return_delegation(dentry
->d_inode
);
1320 char *suffix
= silly
+ slen
- countersize
;
1324 sprintf(suffix
, "%*.*x", countersize
, countersize
, sillycounter
);
1326 dfprintk(VFS
, "NFS: trying to rename %s to %s\n",
1327 dentry
->d_name
.name
, silly
);
1329 sdentry
= lookup_one_len(silly
, dentry
->d_parent
, slen
);
1331 * N.B. Better to return EBUSY here ... it could be
1332 * dangerous to delete the file while it's in use.
1334 if (IS_ERR(sdentry
))
1336 } while(sdentry
->d_inode
!= NULL
); /* need negative lookup */
1338 qsilly
.name
= silly
;
1339 qsilly
.len
= strlen(silly
);
1340 if (dentry
->d_inode
) {
1341 error
= NFS_PROTO(dir
)->rename(dir
, &dentry
->d_name
,
1343 nfs_mark_for_revalidate(dentry
->d_inode
);
1345 error
= NFS_PROTO(dir
)->rename(dir
, &dentry
->d_name
,
1348 nfs_set_verifier(dentry
, nfs_save_change_attribute(dir
));
1349 d_move(dentry
, sdentry
);
1350 error
= nfs_async_unlink(dir
, dentry
);
1351 /* If we return 0 we don't unlink */
1359 * Remove a file after making sure there are no pending writes,
1360 * and after checking that the file has only one user.
1362 * We invalidate the attribute cache and free the inode prior to the operation
1363 * to avoid possible races if the server reuses the inode.
1365 static int nfs_safe_remove(struct dentry
*dentry
)
1367 struct inode
*dir
= dentry
->d_parent
->d_inode
;
1368 struct inode
*inode
= dentry
->d_inode
;
1371 dfprintk(VFS
, "NFS: safe_remove(%s/%s)\n",
1372 dentry
->d_parent
->d_name
.name
, dentry
->d_name
.name
);
1374 /* If the dentry was sillyrenamed, we simply call d_delete() */
1375 if (dentry
->d_flags
& DCACHE_NFSFS_RENAMED
) {
1380 if (inode
!= NULL
) {
1381 nfs_inode_return_delegation(inode
);
1382 error
= NFS_PROTO(dir
)->remove(dir
, &dentry
->d_name
);
1383 /* The VFS may want to delete this inode */
1386 nfs_mark_for_revalidate(inode
);
1388 error
= NFS_PROTO(dir
)->remove(dir
, &dentry
->d_name
);
1393 /* We do silly rename. In case sillyrename() returns -EBUSY, the inode
1394 * belongs to an active ".nfs..." file and we return -EBUSY.
1396 * If sillyrename() returns 0, we do nothing, otherwise we unlink.
1398 static int nfs_unlink(struct inode
*dir
, struct dentry
*dentry
)
1401 int need_rehash
= 0;
1403 dfprintk(VFS
, "NFS: unlink(%s/%ld, %s)\n", dir
->i_sb
->s_id
,
1404 dir
->i_ino
, dentry
->d_name
.name
);
1407 spin_lock(&dcache_lock
);
1408 spin_lock(&dentry
->d_lock
);
1409 if (atomic_read(&dentry
->d_count
) > 1) {
1410 spin_unlock(&dentry
->d_lock
);
1411 spin_unlock(&dcache_lock
);
1412 /* Start asynchronous writeout of the inode */
1413 write_inode_now(dentry
->d_inode
, 0);
1414 error
= nfs_sillyrename(dir
, dentry
);
1418 if (!d_unhashed(dentry
)) {
1422 spin_unlock(&dentry
->d_lock
);
1423 spin_unlock(&dcache_lock
);
1424 error
= nfs_safe_remove(dentry
);
1426 nfs_set_verifier(dentry
, nfs_save_change_attribute(dir
));
1427 } else if (need_rehash
)
1434 * To create a symbolic link, most file systems instantiate a new inode,
1435 * add a page to it containing the path, then write it out to the disk
1436 * using prepare_write/commit_write.
1438 * Unfortunately the NFS client can't create the in-core inode first
1439 * because it needs a file handle to create an in-core inode (see
1440 * fs/nfs/inode.c:nfs_fhget). We only have a file handle *after* the
1441 * symlink request has completed on the server.
1443 * So instead we allocate a raw page, copy the symname into it, then do
1444 * the SYMLINK request with the page as the buffer. If it succeeds, we
1445 * now have a new file handle and can instantiate an in-core NFS inode
1446 * and move the raw page into its mapping.
1448 static int nfs_symlink(struct inode
*dir
, struct dentry
*dentry
, const char *symname
)
1450 struct pagevec lru_pvec
;
1454 unsigned int pathlen
= strlen(symname
);
1457 dfprintk(VFS
, "NFS: symlink(%s/%ld, %s, %s)\n", dir
->i_sb
->s_id
,
1458 dir
->i_ino
, dentry
->d_name
.name
, symname
);
1460 if (pathlen
> PAGE_SIZE
)
1461 return -ENAMETOOLONG
;
1463 attr
.ia_mode
= S_IFLNK
| S_IRWXUGO
;
1464 attr
.ia_valid
= ATTR_MODE
;
1468 page
= alloc_page(GFP_HIGHUSER
);
1474 kaddr
= kmap_atomic(page
, KM_USER0
);
1475 memcpy(kaddr
, symname
, pathlen
);
1476 if (pathlen
< PAGE_SIZE
)
1477 memset(kaddr
+ pathlen
, 0, PAGE_SIZE
- pathlen
);
1478 kunmap_atomic(kaddr
, KM_USER0
);
1480 error
= NFS_PROTO(dir
)->symlink(dir
, dentry
, page
, pathlen
, &attr
);
1482 dfprintk(VFS
, "NFS: symlink(%s/%ld, %s, %s) error %d\n",
1483 dir
->i_sb
->s_id
, dir
->i_ino
,
1484 dentry
->d_name
.name
, symname
, error
);
1492 * No big deal if we can't add this page to the page cache here.
1493 * READLINK will get the missing page from the server if needed.
1495 pagevec_init(&lru_pvec
, 0);
1496 if (!add_to_page_cache(page
, dentry
->d_inode
->i_mapping
, 0,
1498 pagevec_add(&lru_pvec
, page
);
1499 pagevec_lru_add(&lru_pvec
);
1500 SetPageUptodate(page
);
1510 nfs_link(struct dentry
*old_dentry
, struct inode
*dir
, struct dentry
*dentry
)
1512 struct inode
*inode
= old_dentry
->d_inode
;
1515 dfprintk(VFS
, "NFS: link(%s/%s -> %s/%s)\n",
1516 old_dentry
->d_parent
->d_name
.name
, old_dentry
->d_name
.name
,
1517 dentry
->d_parent
->d_name
.name
, dentry
->d_name
.name
);
1521 error
= NFS_PROTO(dir
)->link(inode
, dir
, &dentry
->d_name
);
1523 atomic_inc(&inode
->i_count
);
1524 d_add(dentry
, inode
);
1532 * FIXME: Some nfsds, like the Linux user space nfsd, may generate a
1533 * different file handle for the same inode after a rename (e.g. when
1534 * moving to a different directory). A fail-safe method to do so would
1535 * be to look up old_dir/old_name, create a link to new_dir/new_name and
1536 * rename the old file using the sillyrename stuff. This way, the original
1537 * file in old_dir will go away when the last process iput()s the inode.
1541 * It actually works quite well. One needs to have the possibility for
1542 * at least one ".nfs..." file in each directory the file ever gets
1543 * moved or linked to which happens automagically with the new
1544 * implementation that only depends on the dcache stuff instead of
1545 * using the inode layer
1547 * Unfortunately, things are a little more complicated than indicated
1548 * above. For a cross-directory move, we want to make sure we can get
1549 * rid of the old inode after the operation. This means there must be
1550 * no pending writes (if it's a file), and the use count must be 1.
1551 * If these conditions are met, we can drop the dentries before doing
1554 static int nfs_rename(struct inode
*old_dir
, struct dentry
*old_dentry
,
1555 struct inode
*new_dir
, struct dentry
*new_dentry
)
1557 struct inode
*old_inode
= old_dentry
->d_inode
;
1558 struct inode
*new_inode
= new_dentry
->d_inode
;
1559 struct dentry
*dentry
= NULL
, *rehash
= NULL
;
1563 * To prevent any new references to the target during the rename,
1564 * we unhash the dentry and free the inode in advance.
1567 if (!d_unhashed(new_dentry
)) {
1569 rehash
= new_dentry
;
1572 dfprintk(VFS
, "NFS: rename(%s/%s -> %s/%s, ct=%d)\n",
1573 old_dentry
->d_parent
->d_name
.name
, old_dentry
->d_name
.name
,
1574 new_dentry
->d_parent
->d_name
.name
, new_dentry
->d_name
.name
,
1575 atomic_read(&new_dentry
->d_count
));
1578 * First check whether the target is busy ... we can't
1579 * safely do _any_ rename if the target is in use.
1581 * For files, make a copy of the dentry and then do a
1582 * silly-rename. If the silly-rename succeeds, the
1583 * copied dentry is hashed and becomes the new target.
1587 if (S_ISDIR(new_inode
->i_mode
)) {
1589 if (!S_ISDIR(old_inode
->i_mode
))
1591 } else if (atomic_read(&new_dentry
->d_count
) > 2) {
1593 /* copy the target dentry's name */
1594 dentry
= d_alloc(new_dentry
->d_parent
,
1595 &new_dentry
->d_name
);
1599 /* silly-rename the existing target ... */
1600 err
= nfs_sillyrename(new_dir
, new_dentry
);
1602 new_dentry
= rehash
= dentry
;
1604 /* instantiate the replacement target */
1605 d_instantiate(new_dentry
, NULL
);
1606 } else if (atomic_read(&new_dentry
->d_count
) > 1)
1607 /* dentry still busy? */
1610 drop_nlink(new_inode
);
1614 * ... prune child dentries and writebacks if needed.
1616 if (atomic_read(&old_dentry
->d_count
) > 1) {
1617 if (S_ISREG(old_inode
->i_mode
))
1618 nfs_wb_all(old_inode
);
1619 shrink_dcache_parent(old_dentry
);
1621 nfs_inode_return_delegation(old_inode
);
1623 if (new_inode
!= NULL
) {
1624 nfs_inode_return_delegation(new_inode
);
1625 d_delete(new_dentry
);
1628 error
= NFS_PROTO(old_dir
)->rename(old_dir
, &old_dentry
->d_name
,
1629 new_dir
, &new_dentry
->d_name
);
1630 nfs_mark_for_revalidate(old_inode
);
1635 d_move(old_dentry
, new_dentry
);
1636 nfs_set_verifier(new_dentry
,
1637 nfs_save_change_attribute(new_dir
));
1640 /* new dentry created? */
1647 static DEFINE_SPINLOCK(nfs_access_lru_lock
);
1648 static LIST_HEAD(nfs_access_lru_list
);
1649 static atomic_long_t nfs_access_nr_entries
;
1651 static void nfs_access_free_entry(struct nfs_access_entry
*entry
)
1653 put_rpccred(entry
->cred
);
1655 smp_mb__before_atomic_dec();
1656 atomic_long_dec(&nfs_access_nr_entries
);
1657 smp_mb__after_atomic_dec();
1660 int nfs_access_cache_shrinker(int nr_to_scan
, gfp_t gfp_mask
)
1663 struct nfs_inode
*nfsi
;
1664 struct nfs_access_entry
*cache
;
1667 spin_lock(&nfs_access_lru_lock
);
1668 list_for_each_entry(nfsi
, &nfs_access_lru_list
, access_cache_inode_lru
) {
1669 struct inode
*inode
;
1671 if (nr_to_scan
-- == 0)
1673 inode
= igrab(&nfsi
->vfs_inode
);
1676 spin_lock(&inode
->i_lock
);
1677 if (list_empty(&nfsi
->access_cache_entry_lru
))
1678 goto remove_lru_entry
;
1679 cache
= list_entry(nfsi
->access_cache_entry_lru
.next
,
1680 struct nfs_access_entry
, lru
);
1681 list_move(&cache
->lru
, &head
);
1682 rb_erase(&cache
->rb_node
, &nfsi
->access_cache
);
1683 if (!list_empty(&nfsi
->access_cache_entry_lru
))
1684 list_move_tail(&nfsi
->access_cache_inode_lru
,
1685 &nfs_access_lru_list
);
1688 list_del_init(&nfsi
->access_cache_inode_lru
);
1689 clear_bit(NFS_INO_ACL_LRU_SET
, &nfsi
->flags
);
1691 spin_unlock(&inode
->i_lock
);
1692 spin_unlock(&nfs_access_lru_lock
);
1696 spin_unlock(&nfs_access_lru_lock
);
1697 while (!list_empty(&head
)) {
1698 cache
= list_entry(head
.next
, struct nfs_access_entry
, lru
);
1699 list_del(&cache
->lru
);
1700 nfs_access_free_entry(cache
);
1702 return (atomic_long_read(&nfs_access_nr_entries
) / 100) * sysctl_vfs_cache_pressure
;
1705 static void __nfs_access_zap_cache(struct inode
*inode
)
1707 struct nfs_inode
*nfsi
= NFS_I(inode
);
1708 struct rb_root
*root_node
= &nfsi
->access_cache
;
1709 struct rb_node
*n
, *dispose
= NULL
;
1710 struct nfs_access_entry
*entry
;
1712 /* Unhook entries from the cache */
1713 while ((n
= rb_first(root_node
)) != NULL
) {
1714 entry
= rb_entry(n
, struct nfs_access_entry
, rb_node
);
1715 rb_erase(n
, root_node
);
1716 list_del(&entry
->lru
);
1717 n
->rb_left
= dispose
;
1720 nfsi
->cache_validity
&= ~NFS_INO_INVALID_ACCESS
;
1721 spin_unlock(&inode
->i_lock
);
1723 /* Now kill them all! */
1724 while (dispose
!= NULL
) {
1726 dispose
= n
->rb_left
;
1727 nfs_access_free_entry(rb_entry(n
, struct nfs_access_entry
, rb_node
));
1731 void nfs_access_zap_cache(struct inode
*inode
)
1733 /* Remove from global LRU init */
1734 if (test_and_clear_bit(NFS_INO_ACL_LRU_SET
, &NFS_FLAGS(inode
))) {
1735 spin_lock(&nfs_access_lru_lock
);
1736 list_del_init(&NFS_I(inode
)->access_cache_inode_lru
);
1737 spin_unlock(&nfs_access_lru_lock
);
1740 spin_lock(&inode
->i_lock
);
1741 /* This will release the spinlock */
1742 __nfs_access_zap_cache(inode
);
1745 static struct nfs_access_entry
*nfs_access_search_rbtree(struct inode
*inode
, struct rpc_cred
*cred
)
1747 struct rb_node
*n
= NFS_I(inode
)->access_cache
.rb_node
;
1748 struct nfs_access_entry
*entry
;
1751 entry
= rb_entry(n
, struct nfs_access_entry
, rb_node
);
1753 if (cred
< entry
->cred
)
1755 else if (cred
> entry
->cred
)
1763 static int nfs_access_get_cached(struct inode
*inode
, struct rpc_cred
*cred
, struct nfs_access_entry
*res
)
1765 struct nfs_inode
*nfsi
= NFS_I(inode
);
1766 struct nfs_access_entry
*cache
;
1769 spin_lock(&inode
->i_lock
);
1770 if (nfsi
->cache_validity
& NFS_INO_INVALID_ACCESS
)
1772 cache
= nfs_access_search_rbtree(inode
, cred
);
1775 if (!time_in_range(jiffies
, cache
->jiffies
, cache
->jiffies
+ nfsi
->attrtimeo
))
1777 res
->jiffies
= cache
->jiffies
;
1778 res
->cred
= cache
->cred
;
1779 res
->mask
= cache
->mask
;
1780 list_move_tail(&cache
->lru
, &nfsi
->access_cache_entry_lru
);
1783 spin_unlock(&inode
->i_lock
);
1786 rb_erase(&cache
->rb_node
, &nfsi
->access_cache
);
1787 list_del(&cache
->lru
);
1788 spin_unlock(&inode
->i_lock
);
1789 nfs_access_free_entry(cache
);
1792 /* This will release the spinlock */
1793 __nfs_access_zap_cache(inode
);
1797 static void nfs_access_add_rbtree(struct inode
*inode
, struct nfs_access_entry
*set
)
1799 struct nfs_inode
*nfsi
= NFS_I(inode
);
1800 struct rb_root
*root_node
= &nfsi
->access_cache
;
1801 struct rb_node
**p
= &root_node
->rb_node
;
1802 struct rb_node
*parent
= NULL
;
1803 struct nfs_access_entry
*entry
;
1805 spin_lock(&inode
->i_lock
);
1806 while (*p
!= NULL
) {
1808 entry
= rb_entry(parent
, struct nfs_access_entry
, rb_node
);
1810 if (set
->cred
< entry
->cred
)
1811 p
= &parent
->rb_left
;
1812 else if (set
->cred
> entry
->cred
)
1813 p
= &parent
->rb_right
;
1817 rb_link_node(&set
->rb_node
, parent
, p
);
1818 rb_insert_color(&set
->rb_node
, root_node
);
1819 list_add_tail(&set
->lru
, &nfsi
->access_cache_entry_lru
);
1820 spin_unlock(&inode
->i_lock
);
1823 rb_replace_node(parent
, &set
->rb_node
, root_node
);
1824 list_add_tail(&set
->lru
, &nfsi
->access_cache_entry_lru
);
1825 list_del(&entry
->lru
);
1826 spin_unlock(&inode
->i_lock
);
1827 nfs_access_free_entry(entry
);
1830 static void nfs_access_add_cache(struct inode
*inode
, struct nfs_access_entry
*set
)
1832 struct nfs_access_entry
*cache
= kmalloc(sizeof(*cache
), GFP_KERNEL
);
1835 RB_CLEAR_NODE(&cache
->rb_node
);
1836 cache
->jiffies
= set
->jiffies
;
1837 cache
->cred
= get_rpccred(set
->cred
);
1838 cache
->mask
= set
->mask
;
1840 nfs_access_add_rbtree(inode
, cache
);
1842 /* Update accounting */
1843 smp_mb__before_atomic_inc();
1844 atomic_long_inc(&nfs_access_nr_entries
);
1845 smp_mb__after_atomic_inc();
1847 /* Add inode to global LRU list */
1848 if (!test_and_set_bit(NFS_INO_ACL_LRU_SET
, &NFS_FLAGS(inode
))) {
1849 spin_lock(&nfs_access_lru_lock
);
1850 list_add_tail(&NFS_I(inode
)->access_cache_inode_lru
, &nfs_access_lru_list
);
1851 spin_unlock(&nfs_access_lru_lock
);
1855 static int nfs_do_access(struct inode
*inode
, struct rpc_cred
*cred
, int mask
)
1857 struct nfs_access_entry cache
;
1860 status
= nfs_access_get_cached(inode
, cred
, &cache
);
1864 /* Be clever: ask server to check for all possible rights */
1865 cache
.mask
= MAY_EXEC
| MAY_WRITE
| MAY_READ
;
1867 cache
.jiffies
= jiffies
;
1868 status
= NFS_PROTO(inode
)->access(inode
, &cache
);
1871 nfs_access_add_cache(inode
, &cache
);
1873 if ((cache
.mask
& mask
) == mask
)
1878 static int nfs_open_permission_mask(int openflags
)
1882 if (openflags
& FMODE_READ
)
1884 if (openflags
& FMODE_WRITE
)
1886 if (openflags
& FMODE_EXEC
)
1891 int nfs_may_open(struct inode
*inode
, struct rpc_cred
*cred
, int openflags
)
1893 return nfs_do_access(inode
, cred
, nfs_open_permission_mask(openflags
));
1896 int nfs_permission(struct inode
*inode
, int mask
, struct nameidata
*nd
)
1898 struct rpc_cred
*cred
;
1901 nfs_inc_stats(inode
, NFSIOS_VFSACCESS
);
1905 /* Is this sys_access() ? */
1906 if (nd
!= NULL
&& (nd
->flags
& LOOKUP_ACCESS
))
1909 switch (inode
->i_mode
& S_IFMT
) {
1913 /* NFSv4 has atomic_open... */
1914 if (nfs_server_capable(inode
, NFS_CAP_ATOMIC_OPEN
)
1916 && (nd
->flags
& LOOKUP_OPEN
))
1921 * Optimize away all write operations, since the server
1922 * will check permissions when we perform the op.
1924 if ((mask
& MAY_WRITE
) && !(mask
& MAY_READ
))
1931 if (!NFS_PROTO(inode
)->access
)
1934 cred
= rpcauth_lookupcred(NFS_CLIENT(inode
)->cl_auth
, 0);
1935 if (!IS_ERR(cred
)) {
1936 res
= nfs_do_access(inode
, cred
, mask
);
1939 res
= PTR_ERR(cred
);
1942 dfprintk(VFS
, "NFS: permission(%s/%ld), mask=0x%x, res=%d\n",
1943 inode
->i_sb
->s_id
, inode
->i_ino
, mask
, res
);
1946 res
= nfs_revalidate_inode(NFS_SERVER(inode
), inode
);
1948 res
= generic_permission(inode
, mask
, NULL
);
1955 * version-control: t
1956 * kept-new-versions: 5