2 * Copyright (C) 2007 Oracle. All rights reserved.
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
20 #include <linux/blkdev.h>
21 #include <linux/scatterlist.h>
22 #include <linux/swap.h>
23 #include <linux/radix-tree.h>
24 #include <linux/writeback.h>
25 #include <linux/buffer_head.h>
26 #include <linux/workqueue.h>
27 #include <linux/kthread.h>
28 #include <linux/freezer.h>
33 #include "transaction.h"
34 #include "btrfs_inode.h"
36 #include "print-tree.h"
37 #include "async-thread.h"
39 #include "ref-cache.h"
41 #include "free-space-cache.h"
43 static struct extent_io_ops btree_extent_io_ops
;
44 static void end_workqueue_fn(struct btrfs_work
*work
);
47 * end_io_wq structs are used to do processing in task context when an IO is
48 * complete. This is used during reads to verify checksums, and it is used
49 * by writes to insert metadata for new file extents after IO is complete.
55 struct btrfs_fs_info
*info
;
58 struct list_head list
;
59 struct btrfs_work work
;
63 * async submit bios are used to offload expensive checksumming
64 * onto the worker threads. They checksum file and metadata bios
65 * just before they are sent down the IO stack.
67 struct async_submit_bio
{
70 struct list_head list
;
71 extent_submit_bio_hook_t
*submit_bio_start
;
72 extent_submit_bio_hook_t
*submit_bio_done
;
75 unsigned long bio_flags
;
76 struct btrfs_work work
;
79 /* These are used to set the lockdep class on the extent buffer locks.
80 * The class is set by the readpage_end_io_hook after the buffer has
81 * passed csum validation but before the pages are unlocked.
83 * The lockdep class is also set by btrfs_init_new_buffer on freshly
86 * The class is based on the level in the tree block, which allows lockdep
87 * to know that lower nodes nest inside the locks of higher nodes.
89 * We also add a check to make sure the highest level of the tree is
90 * the same as our lockdep setup here. If BTRFS_MAX_LEVEL changes, this
91 * code needs update as well.
93 #ifdef CONFIG_DEBUG_LOCK_ALLOC
94 # if BTRFS_MAX_LEVEL != 8
97 static struct lock_class_key btrfs_eb_class
[BTRFS_MAX_LEVEL
+ 1];
98 static const char *btrfs_eb_name
[BTRFS_MAX_LEVEL
+ 1] = {
108 /* highest possible level */
114 * extents on the btree inode are pretty simple, there's one extent
115 * that covers the entire device
117 static struct extent_map
*btree_get_extent(struct inode
*inode
,
118 struct page
*page
, size_t page_offset
, u64 start
, u64 len
,
121 struct extent_map_tree
*em_tree
= &BTRFS_I(inode
)->extent_tree
;
122 struct extent_map
*em
;
125 spin_lock(&em_tree
->lock
);
126 em
= lookup_extent_mapping(em_tree
, start
, len
);
129 BTRFS_I(inode
)->root
->fs_info
->fs_devices
->latest_bdev
;
130 spin_unlock(&em_tree
->lock
);
133 spin_unlock(&em_tree
->lock
);
135 em
= alloc_extent_map(GFP_NOFS
);
137 em
= ERR_PTR(-ENOMEM
);
142 em
->block_len
= (u64
)-1;
144 em
->bdev
= BTRFS_I(inode
)->root
->fs_info
->fs_devices
->latest_bdev
;
146 spin_lock(&em_tree
->lock
);
147 ret
= add_extent_mapping(em_tree
, em
);
148 if (ret
== -EEXIST
) {
149 u64 failed_start
= em
->start
;
150 u64 failed_len
= em
->len
;
153 em
= lookup_extent_mapping(em_tree
, start
, len
);
157 em
= lookup_extent_mapping(em_tree
, failed_start
,
165 spin_unlock(&em_tree
->lock
);
173 u32
btrfs_csum_data(struct btrfs_root
*root
, char *data
, u32 seed
, size_t len
)
175 return btrfs_crc32c(seed
, data
, len
);
178 void btrfs_csum_final(u32 crc
, char *result
)
180 *(__le32
*)result
= ~cpu_to_le32(crc
);
184 * compute the csum for a btree block, and either verify it or write it
185 * into the csum field of the block.
187 static int csum_tree_block(struct btrfs_root
*root
, struct extent_buffer
*buf
,
191 btrfs_super_csum_size(&root
->fs_info
->super_copy
);
194 unsigned long cur_len
;
195 unsigned long offset
= BTRFS_CSUM_SIZE
;
196 char *map_token
= NULL
;
198 unsigned long map_start
;
199 unsigned long map_len
;
202 unsigned long inline_result
;
204 len
= buf
->len
- offset
;
206 err
= map_private_extent_buffer(buf
, offset
, 32,
208 &map_start
, &map_len
, KM_USER0
);
211 cur_len
= min(len
, map_len
- (offset
- map_start
));
212 crc
= btrfs_csum_data(root
, kaddr
+ offset
- map_start
,
216 unmap_extent_buffer(buf
, map_token
, KM_USER0
);
218 if (csum_size
> sizeof(inline_result
)) {
219 result
= kzalloc(csum_size
* sizeof(char), GFP_NOFS
);
223 result
= (char *)&inline_result
;
226 btrfs_csum_final(crc
, result
);
229 if (memcmp_extent_buffer(buf
, result
, 0, csum_size
)) {
232 memcpy(&found
, result
, csum_size
);
234 read_extent_buffer(buf
, &val
, 0, csum_size
);
235 printk(KERN_INFO
"btrfs: %s checksum verify failed "
236 "on %llu wanted %X found %X level %d\n",
237 root
->fs_info
->sb
->s_id
,
238 buf
->start
, val
, found
, btrfs_header_level(buf
));
239 if (result
!= (char *)&inline_result
)
244 write_extent_buffer(buf
, result
, 0, csum_size
);
246 if (result
!= (char *)&inline_result
)
252 * we can't consider a given block up to date unless the transid of the
253 * block matches the transid in the parent node's pointer. This is how we
254 * detect blocks that either didn't get written at all or got written
255 * in the wrong place.
257 static int verify_parent_transid(struct extent_io_tree
*io_tree
,
258 struct extent_buffer
*eb
, u64 parent_transid
)
262 if (!parent_transid
|| btrfs_header_generation(eb
) == parent_transid
)
265 lock_extent(io_tree
, eb
->start
, eb
->start
+ eb
->len
- 1, GFP_NOFS
);
266 if (extent_buffer_uptodate(io_tree
, eb
) &&
267 btrfs_header_generation(eb
) == parent_transid
) {
271 printk("parent transid verify failed on %llu wanted %llu found %llu\n",
272 (unsigned long long)eb
->start
,
273 (unsigned long long)parent_transid
,
274 (unsigned long long)btrfs_header_generation(eb
));
276 clear_extent_buffer_uptodate(io_tree
, eb
);
278 unlock_extent(io_tree
, eb
->start
, eb
->start
+ eb
->len
- 1,
284 * helper to read a given tree block, doing retries as required when
285 * the checksums don't match and we have alternate mirrors to try.
287 static int btree_read_extent_buffer_pages(struct btrfs_root
*root
,
288 struct extent_buffer
*eb
,
289 u64 start
, u64 parent_transid
)
291 struct extent_io_tree
*io_tree
;
296 io_tree
= &BTRFS_I(root
->fs_info
->btree_inode
)->io_tree
;
298 ret
= read_extent_buffer_pages(io_tree
, eb
, start
, 1,
299 btree_get_extent
, mirror_num
);
301 !verify_parent_transid(io_tree
, eb
, parent_transid
))
304 num_copies
= btrfs_num_copies(&root
->fs_info
->mapping_tree
,
310 if (mirror_num
> num_copies
)
317 * checksum a dirty tree block before IO. This has extra checks to make sure
318 * we only fill in the checksum field in the first page of a multi-page block
321 static int csum_dirty_buffer(struct btrfs_root
*root
, struct page
*page
)
323 struct extent_io_tree
*tree
;
324 u64 start
= (u64
)page
->index
<< PAGE_CACHE_SHIFT
;
328 struct extent_buffer
*eb
;
331 tree
= &BTRFS_I(page
->mapping
->host
)->io_tree
;
333 if (page
->private == EXTENT_PAGE_PRIVATE
)
337 len
= page
->private >> 2;
340 eb
= alloc_extent_buffer(tree
, start
, len
, page
, GFP_NOFS
);
341 ret
= btree_read_extent_buffer_pages(root
, eb
, start
+ PAGE_CACHE_SIZE
,
342 btrfs_header_generation(eb
));
344 found_start
= btrfs_header_bytenr(eb
);
345 if (found_start
!= start
) {
349 if (eb
->first_page
!= page
) {
353 if (!PageUptodate(page
)) {
357 found_level
= btrfs_header_level(eb
);
359 csum_tree_block(root
, eb
, 0);
361 free_extent_buffer(eb
);
366 static int check_tree_block_fsid(struct btrfs_root
*root
,
367 struct extent_buffer
*eb
)
369 struct btrfs_fs_devices
*fs_devices
= root
->fs_info
->fs_devices
;
370 u8 fsid
[BTRFS_UUID_SIZE
];
373 read_extent_buffer(eb
, fsid
, (unsigned long)btrfs_header_fsid(eb
),
376 if (!memcmp(fsid
, fs_devices
->fsid
, BTRFS_FSID_SIZE
)) {
380 fs_devices
= fs_devices
->seed
;
385 #ifdef CONFIG_DEBUG_LOCK_ALLOC
386 void btrfs_set_buffer_lockdep_class(struct extent_buffer
*eb
, int level
)
388 lockdep_set_class_and_name(&eb
->lock
,
389 &btrfs_eb_class
[level
],
390 btrfs_eb_name
[level
]);
394 static int btree_readpage_end_io_hook(struct page
*page
, u64 start
, u64 end
,
395 struct extent_state
*state
)
397 struct extent_io_tree
*tree
;
401 struct extent_buffer
*eb
;
402 struct btrfs_root
*root
= BTRFS_I(page
->mapping
->host
)->root
;
405 tree
= &BTRFS_I(page
->mapping
->host
)->io_tree
;
406 if (page
->private == EXTENT_PAGE_PRIVATE
)
411 len
= page
->private >> 2;
414 eb
= alloc_extent_buffer(tree
, start
, len
, page
, GFP_NOFS
);
416 found_start
= btrfs_header_bytenr(eb
);
417 if (found_start
!= start
) {
418 printk(KERN_INFO
"btrfs bad tree block start %llu %llu\n",
419 (unsigned long long)found_start
,
420 (unsigned long long)eb
->start
);
424 if (eb
->first_page
!= page
) {
425 printk(KERN_INFO
"btrfs bad first page %lu %lu\n",
426 eb
->first_page
->index
, page
->index
);
431 if (check_tree_block_fsid(root
, eb
)) {
432 printk(KERN_INFO
"btrfs bad fsid on block %llu\n",
433 (unsigned long long)eb
->start
);
437 found_level
= btrfs_header_level(eb
);
439 btrfs_set_buffer_lockdep_class(eb
, found_level
);
441 ret
= csum_tree_block(root
, eb
, 1);
445 end
= min_t(u64
, eb
->len
, PAGE_CACHE_SIZE
);
446 end
= eb
->start
+ end
- 1;
448 free_extent_buffer(eb
);
453 static void end_workqueue_bio(struct bio
*bio
, int err
)
455 struct end_io_wq
*end_io_wq
= bio
->bi_private
;
456 struct btrfs_fs_info
*fs_info
;
458 fs_info
= end_io_wq
->info
;
459 end_io_wq
->error
= err
;
460 end_io_wq
->work
.func
= end_workqueue_fn
;
461 end_io_wq
->work
.flags
= 0;
463 if (bio
->bi_rw
& (1 << BIO_RW
)) {
464 if (end_io_wq
->metadata
)
465 btrfs_queue_worker(&fs_info
->endio_meta_write_workers
,
468 btrfs_queue_worker(&fs_info
->endio_write_workers
,
471 if (end_io_wq
->metadata
)
472 btrfs_queue_worker(&fs_info
->endio_meta_workers
,
475 btrfs_queue_worker(&fs_info
->endio_workers
,
480 int btrfs_bio_wq_end_io(struct btrfs_fs_info
*info
, struct bio
*bio
,
483 struct end_io_wq
*end_io_wq
;
484 end_io_wq
= kmalloc(sizeof(*end_io_wq
), GFP_NOFS
);
488 end_io_wq
->private = bio
->bi_private
;
489 end_io_wq
->end_io
= bio
->bi_end_io
;
490 end_io_wq
->info
= info
;
491 end_io_wq
->error
= 0;
492 end_io_wq
->bio
= bio
;
493 end_io_wq
->metadata
= metadata
;
495 bio
->bi_private
= end_io_wq
;
496 bio
->bi_end_io
= end_workqueue_bio
;
500 unsigned long btrfs_async_submit_limit(struct btrfs_fs_info
*info
)
502 unsigned long limit
= min_t(unsigned long,
503 info
->workers
.max_workers
,
504 info
->fs_devices
->open_devices
);
508 int btrfs_congested_async(struct btrfs_fs_info
*info
, int iodone
)
510 return atomic_read(&info
->nr_async_bios
) >
511 btrfs_async_submit_limit(info
);
514 static void run_one_async_start(struct btrfs_work
*work
)
516 struct btrfs_fs_info
*fs_info
;
517 struct async_submit_bio
*async
;
519 async
= container_of(work
, struct async_submit_bio
, work
);
520 fs_info
= BTRFS_I(async
->inode
)->root
->fs_info
;
521 async
->submit_bio_start(async
->inode
, async
->rw
, async
->bio
,
522 async
->mirror_num
, async
->bio_flags
);
525 static void run_one_async_done(struct btrfs_work
*work
)
527 struct btrfs_fs_info
*fs_info
;
528 struct async_submit_bio
*async
;
531 async
= container_of(work
, struct async_submit_bio
, work
);
532 fs_info
= BTRFS_I(async
->inode
)->root
->fs_info
;
534 limit
= btrfs_async_submit_limit(fs_info
);
535 limit
= limit
* 2 / 3;
537 atomic_dec(&fs_info
->nr_async_submits
);
539 if (atomic_read(&fs_info
->nr_async_submits
) < limit
&&
540 waitqueue_active(&fs_info
->async_submit_wait
))
541 wake_up(&fs_info
->async_submit_wait
);
543 async
->submit_bio_done(async
->inode
, async
->rw
, async
->bio
,
544 async
->mirror_num
, async
->bio_flags
);
547 static void run_one_async_free(struct btrfs_work
*work
)
549 struct async_submit_bio
*async
;
551 async
= container_of(work
, struct async_submit_bio
, work
);
555 int btrfs_wq_submit_bio(struct btrfs_fs_info
*fs_info
, struct inode
*inode
,
556 int rw
, struct bio
*bio
, int mirror_num
,
557 unsigned long bio_flags
,
558 extent_submit_bio_hook_t
*submit_bio_start
,
559 extent_submit_bio_hook_t
*submit_bio_done
)
561 struct async_submit_bio
*async
;
563 async
= kmalloc(sizeof(*async
), GFP_NOFS
);
567 async
->inode
= inode
;
570 async
->mirror_num
= mirror_num
;
571 async
->submit_bio_start
= submit_bio_start
;
572 async
->submit_bio_done
= submit_bio_done
;
574 async
->work
.func
= run_one_async_start
;
575 async
->work
.ordered_func
= run_one_async_done
;
576 async
->work
.ordered_free
= run_one_async_free
;
578 async
->work
.flags
= 0;
579 async
->bio_flags
= bio_flags
;
581 atomic_inc(&fs_info
->nr_async_submits
);
582 btrfs_queue_worker(&fs_info
->workers
, &async
->work
);
584 int limit
= btrfs_async_submit_limit(fs_info
);
585 if (atomic_read(&fs_info
->nr_async_submits
) > limit
) {
586 wait_event_timeout(fs_info
->async_submit_wait
,
587 (atomic_read(&fs_info
->nr_async_submits
) < limit
),
590 wait_event_timeout(fs_info
->async_submit_wait
,
591 (atomic_read(&fs_info
->nr_async_bios
) < limit
),
595 while (atomic_read(&fs_info
->async_submit_draining
) &&
596 atomic_read(&fs_info
->nr_async_submits
)) {
597 wait_event(fs_info
->async_submit_wait
,
598 (atomic_read(&fs_info
->nr_async_submits
) == 0));
604 static int btree_csum_one_bio(struct bio
*bio
)
606 struct bio_vec
*bvec
= bio
->bi_io_vec
;
608 struct btrfs_root
*root
;
610 WARN_ON(bio
->bi_vcnt
<= 0);
611 while (bio_index
< bio
->bi_vcnt
) {
612 root
= BTRFS_I(bvec
->bv_page
->mapping
->host
)->root
;
613 csum_dirty_buffer(root
, bvec
->bv_page
);
620 static int __btree_submit_bio_start(struct inode
*inode
, int rw
,
621 struct bio
*bio
, int mirror_num
,
622 unsigned long bio_flags
)
625 * when we're called for a write, we're already in the async
626 * submission context. Just jump into btrfs_map_bio
628 btree_csum_one_bio(bio
);
632 static int __btree_submit_bio_done(struct inode
*inode
, int rw
, struct bio
*bio
,
633 int mirror_num
, unsigned long bio_flags
)
636 * when we're called for a write, we're already in the async
637 * submission context. Just jump into btrfs_map_bio
639 return btrfs_map_bio(BTRFS_I(inode
)->root
, rw
, bio
, mirror_num
, 1);
642 static int btree_submit_bio_hook(struct inode
*inode
, int rw
, struct bio
*bio
,
643 int mirror_num
, unsigned long bio_flags
)
647 ret
= btrfs_bio_wq_end_io(BTRFS_I(inode
)->root
->fs_info
,
651 if (!(rw
& (1 << BIO_RW
))) {
653 * called for a read, do the setup so that checksum validation
654 * can happen in the async kernel threads
656 return btrfs_map_bio(BTRFS_I(inode
)->root
, rw
, bio
,
660 * kthread helpers are used to submit writes so that checksumming
661 * can happen in parallel across all CPUs
663 return btrfs_wq_submit_bio(BTRFS_I(inode
)->root
->fs_info
,
664 inode
, rw
, bio
, mirror_num
, 0,
665 __btree_submit_bio_start
,
666 __btree_submit_bio_done
);
669 static int btree_writepage(struct page
*page
, struct writeback_control
*wbc
)
671 struct extent_io_tree
*tree
;
672 struct btrfs_root
*root
= BTRFS_I(page
->mapping
->host
)->root
;
673 struct extent_buffer
*eb
;
676 tree
= &BTRFS_I(page
->mapping
->host
)->io_tree
;
677 if (!(current
->flags
& PF_MEMALLOC
)) {
678 return extent_write_full_page(tree
, page
,
679 btree_get_extent
, wbc
);
682 redirty_page_for_writepage(wbc
, page
);
683 eb
= btrfs_find_tree_block(root
, page_offset(page
),
687 was_dirty
= test_and_set_bit(EXTENT_BUFFER_DIRTY
, &eb
->bflags
);
689 spin_lock(&root
->fs_info
->delalloc_lock
);
690 root
->fs_info
->dirty_metadata_bytes
+= PAGE_CACHE_SIZE
;
691 spin_unlock(&root
->fs_info
->delalloc_lock
);
693 free_extent_buffer(eb
);
699 static int btree_writepages(struct address_space
*mapping
,
700 struct writeback_control
*wbc
)
702 struct extent_io_tree
*tree
;
703 tree
= &BTRFS_I(mapping
->host
)->io_tree
;
704 if (wbc
->sync_mode
== WB_SYNC_NONE
) {
705 struct btrfs_root
*root
= BTRFS_I(mapping
->host
)->root
;
707 unsigned long thresh
= 32 * 1024 * 1024;
709 if (wbc
->for_kupdate
)
712 /* this is a bit racy, but that's ok */
713 num_dirty
= root
->fs_info
->dirty_metadata_bytes
;
714 if (num_dirty
< thresh
)
717 return extent_writepages(tree
, mapping
, btree_get_extent
, wbc
);
720 static int btree_readpage(struct file
*file
, struct page
*page
)
722 struct extent_io_tree
*tree
;
723 tree
= &BTRFS_I(page
->mapping
->host
)->io_tree
;
724 return extent_read_full_page(tree
, page
, btree_get_extent
);
727 static int btree_releasepage(struct page
*page
, gfp_t gfp_flags
)
729 struct extent_io_tree
*tree
;
730 struct extent_map_tree
*map
;
733 if (PageWriteback(page
) || PageDirty(page
))
736 tree
= &BTRFS_I(page
->mapping
->host
)->io_tree
;
737 map
= &BTRFS_I(page
->mapping
->host
)->extent_tree
;
739 ret
= try_release_extent_state(map
, tree
, page
, gfp_flags
);
743 ret
= try_release_extent_buffer(tree
, page
);
745 ClearPagePrivate(page
);
746 set_page_private(page
, 0);
747 page_cache_release(page
);
753 static void btree_invalidatepage(struct page
*page
, unsigned long offset
)
755 struct extent_io_tree
*tree
;
756 tree
= &BTRFS_I(page
->mapping
->host
)->io_tree
;
757 extent_invalidatepage(tree
, page
, offset
);
758 btree_releasepage(page
, GFP_NOFS
);
759 if (PagePrivate(page
)) {
760 printk(KERN_WARNING
"btrfs warning page private not zero "
761 "on page %llu\n", (unsigned long long)page_offset(page
));
762 ClearPagePrivate(page
);
763 set_page_private(page
, 0);
764 page_cache_release(page
);
769 static int btree_writepage(struct page
*page
, struct writeback_control
*wbc
)
771 struct buffer_head
*bh
;
772 struct btrfs_root
*root
= BTRFS_I(page
->mapping
->host
)->root
;
773 struct buffer_head
*head
;
774 if (!page_has_buffers(page
)) {
775 create_empty_buffers(page
, root
->fs_info
->sb
->s_blocksize
,
776 (1 << BH_Dirty
)|(1 << BH_Uptodate
));
778 head
= page_buffers(page
);
781 if (buffer_dirty(bh
))
782 csum_tree_block(root
, bh
, 0);
783 bh
= bh
->b_this_page
;
784 } while (bh
!= head
);
785 return block_write_full_page(page
, btree_get_block
, wbc
);
789 static struct address_space_operations btree_aops
= {
790 .readpage
= btree_readpage
,
791 .writepage
= btree_writepage
,
792 .writepages
= btree_writepages
,
793 .releasepage
= btree_releasepage
,
794 .invalidatepage
= btree_invalidatepage
,
795 .sync_page
= block_sync_page
,
798 int readahead_tree_block(struct btrfs_root
*root
, u64 bytenr
, u32 blocksize
,
801 struct extent_buffer
*buf
= NULL
;
802 struct inode
*btree_inode
= root
->fs_info
->btree_inode
;
805 buf
= btrfs_find_create_tree_block(root
, bytenr
, blocksize
);
808 read_extent_buffer_pages(&BTRFS_I(btree_inode
)->io_tree
,
809 buf
, 0, 0, btree_get_extent
, 0);
810 free_extent_buffer(buf
);
814 struct extent_buffer
*btrfs_find_tree_block(struct btrfs_root
*root
,
815 u64 bytenr
, u32 blocksize
)
817 struct inode
*btree_inode
= root
->fs_info
->btree_inode
;
818 struct extent_buffer
*eb
;
819 eb
= find_extent_buffer(&BTRFS_I(btree_inode
)->io_tree
,
820 bytenr
, blocksize
, GFP_NOFS
);
824 struct extent_buffer
*btrfs_find_create_tree_block(struct btrfs_root
*root
,
825 u64 bytenr
, u32 blocksize
)
827 struct inode
*btree_inode
= root
->fs_info
->btree_inode
;
828 struct extent_buffer
*eb
;
830 eb
= alloc_extent_buffer(&BTRFS_I(btree_inode
)->io_tree
,
831 bytenr
, blocksize
, NULL
, GFP_NOFS
);
836 int btrfs_write_tree_block(struct extent_buffer
*buf
)
838 return btrfs_fdatawrite_range(buf
->first_page
->mapping
, buf
->start
,
839 buf
->start
+ buf
->len
- 1, WB_SYNC_ALL
);
842 int btrfs_wait_tree_block_writeback(struct extent_buffer
*buf
)
844 return btrfs_wait_on_page_writeback_range(buf
->first_page
->mapping
,
845 buf
->start
, buf
->start
+ buf
->len
- 1);
848 struct extent_buffer
*read_tree_block(struct btrfs_root
*root
, u64 bytenr
,
849 u32 blocksize
, u64 parent_transid
)
851 struct extent_buffer
*buf
= NULL
;
852 struct inode
*btree_inode
= root
->fs_info
->btree_inode
;
853 struct extent_io_tree
*io_tree
;
856 io_tree
= &BTRFS_I(btree_inode
)->io_tree
;
858 buf
= btrfs_find_create_tree_block(root
, bytenr
, blocksize
);
862 ret
= btree_read_extent_buffer_pages(root
, buf
, 0, parent_transid
);
865 set_bit(EXTENT_BUFFER_UPTODATE
, &buf
->bflags
);
872 int clean_tree_block(struct btrfs_trans_handle
*trans
, struct btrfs_root
*root
,
873 struct extent_buffer
*buf
)
875 struct inode
*btree_inode
= root
->fs_info
->btree_inode
;
876 if (btrfs_header_generation(buf
) ==
877 root
->fs_info
->running_transaction
->transid
) {
878 btrfs_assert_tree_locked(buf
);
880 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY
, &buf
->bflags
)) {
881 spin_lock(&root
->fs_info
->delalloc_lock
);
882 if (root
->fs_info
->dirty_metadata_bytes
>= buf
->len
)
883 root
->fs_info
->dirty_metadata_bytes
-= buf
->len
;
886 spin_unlock(&root
->fs_info
->delalloc_lock
);
889 /* ugh, clear_extent_buffer_dirty needs to lock the page */
890 btrfs_set_lock_blocking(buf
);
891 clear_extent_buffer_dirty(&BTRFS_I(btree_inode
)->io_tree
,
897 static int __setup_root(u32 nodesize
, u32 leafsize
, u32 sectorsize
,
898 u32 stripesize
, struct btrfs_root
*root
,
899 struct btrfs_fs_info
*fs_info
,
903 root
->commit_root
= NULL
;
904 root
->ref_tree
= NULL
;
905 root
->sectorsize
= sectorsize
;
906 root
->nodesize
= nodesize
;
907 root
->leafsize
= leafsize
;
908 root
->stripesize
= stripesize
;
910 root
->track_dirty
= 0;
912 root
->fs_info
= fs_info
;
913 root
->objectid
= objectid
;
914 root
->last_trans
= 0;
915 root
->highest_inode
= 0;
916 root
->last_inode_alloc
= 0;
920 INIT_LIST_HEAD(&root
->dirty_list
);
921 INIT_LIST_HEAD(&root
->orphan_list
);
922 INIT_LIST_HEAD(&root
->dead_list
);
923 spin_lock_init(&root
->node_lock
);
924 spin_lock_init(&root
->list_lock
);
925 mutex_init(&root
->objectid_mutex
);
926 mutex_init(&root
->log_mutex
);
927 init_waitqueue_head(&root
->log_writer_wait
);
928 init_waitqueue_head(&root
->log_commit_wait
[0]);
929 init_waitqueue_head(&root
->log_commit_wait
[1]);
930 atomic_set(&root
->log_commit
[0], 0);
931 atomic_set(&root
->log_commit
[1], 0);
932 atomic_set(&root
->log_writers
, 0);
934 root
->log_transid
= 0;
935 extent_io_tree_init(&root
->dirty_log_pages
,
936 fs_info
->btree_inode
->i_mapping
, GFP_NOFS
);
938 btrfs_leaf_ref_tree_init(&root
->ref_tree_struct
);
939 root
->ref_tree
= &root
->ref_tree_struct
;
941 memset(&root
->root_key
, 0, sizeof(root
->root_key
));
942 memset(&root
->root_item
, 0, sizeof(root
->root_item
));
943 memset(&root
->defrag_progress
, 0, sizeof(root
->defrag_progress
));
944 memset(&root
->root_kobj
, 0, sizeof(root
->root_kobj
));
945 root
->defrag_trans_start
= fs_info
->generation
;
946 init_completion(&root
->kobj_unregister
);
947 root
->defrag_running
= 0;
948 root
->defrag_level
= 0;
949 root
->root_key
.objectid
= objectid
;
950 root
->anon_super
.s_root
= NULL
;
951 root
->anon_super
.s_dev
= 0;
952 INIT_LIST_HEAD(&root
->anon_super
.s_list
);
953 INIT_LIST_HEAD(&root
->anon_super
.s_instances
);
954 init_rwsem(&root
->anon_super
.s_umount
);
959 static int find_and_setup_root(struct btrfs_root
*tree_root
,
960 struct btrfs_fs_info
*fs_info
,
962 struct btrfs_root
*root
)
968 __setup_root(tree_root
->nodesize
, tree_root
->leafsize
,
969 tree_root
->sectorsize
, tree_root
->stripesize
,
970 root
, fs_info
, objectid
);
971 ret
= btrfs_find_last_root(tree_root
, objectid
,
972 &root
->root_item
, &root
->root_key
);
975 generation
= btrfs_root_generation(&root
->root_item
);
976 blocksize
= btrfs_level_size(root
, btrfs_root_level(&root
->root_item
));
977 root
->node
= read_tree_block(root
, btrfs_root_bytenr(&root
->root_item
),
978 blocksize
, generation
);
983 int btrfs_free_log_root_tree(struct btrfs_trans_handle
*trans
,
984 struct btrfs_fs_info
*fs_info
)
986 struct extent_buffer
*eb
;
987 struct btrfs_root
*log_root_tree
= fs_info
->log_root_tree
;
996 ret
= find_first_extent_bit(&log_root_tree
->dirty_log_pages
,
997 0, &start
, &end
, EXTENT_DIRTY
);
1001 clear_extent_dirty(&log_root_tree
->dirty_log_pages
,
1002 start
, end
, GFP_NOFS
);
1004 eb
= fs_info
->log_root_tree
->node
;
1006 WARN_ON(btrfs_header_level(eb
) != 0);
1007 WARN_ON(btrfs_header_nritems(eb
) != 0);
1009 ret
= btrfs_free_reserved_extent(fs_info
->tree_root
,
1010 eb
->start
, eb
->len
);
1013 free_extent_buffer(eb
);
1014 kfree(fs_info
->log_root_tree
);
1015 fs_info
->log_root_tree
= NULL
;
1019 static struct btrfs_root
*alloc_log_tree(struct btrfs_trans_handle
*trans
,
1020 struct btrfs_fs_info
*fs_info
)
1022 struct btrfs_root
*root
;
1023 struct btrfs_root
*tree_root
= fs_info
->tree_root
;
1024 struct extent_buffer
*leaf
;
1026 root
= kzalloc(sizeof(*root
), GFP_NOFS
);
1028 return ERR_PTR(-ENOMEM
);
1030 __setup_root(tree_root
->nodesize
, tree_root
->leafsize
,
1031 tree_root
->sectorsize
, tree_root
->stripesize
,
1032 root
, fs_info
, BTRFS_TREE_LOG_OBJECTID
);
1034 root
->root_key
.objectid
= BTRFS_TREE_LOG_OBJECTID
;
1035 root
->root_key
.type
= BTRFS_ROOT_ITEM_KEY
;
1036 root
->root_key
.offset
= BTRFS_TREE_LOG_OBJECTID
;
1038 * log trees do not get reference counted because they go away
1039 * before a real commit is actually done. They do store pointers
1040 * to file data extents, and those reference counts still get
1041 * updated (along with back refs to the log tree).
1045 leaf
= btrfs_alloc_free_block(trans
, root
, root
->leafsize
,
1046 0, BTRFS_TREE_LOG_OBJECTID
,
1047 trans
->transid
, 0, 0, 0);
1050 return ERR_CAST(leaf
);
1054 btrfs_set_header_nritems(root
->node
, 0);
1055 btrfs_set_header_level(root
->node
, 0);
1056 btrfs_set_header_bytenr(root
->node
, root
->node
->start
);
1057 btrfs_set_header_generation(root
->node
, trans
->transid
);
1058 btrfs_set_header_owner(root
->node
, BTRFS_TREE_LOG_OBJECTID
);
1060 write_extent_buffer(root
->node
, root
->fs_info
->fsid
,
1061 (unsigned long)btrfs_header_fsid(root
->node
),
1063 btrfs_mark_buffer_dirty(root
->node
);
1064 btrfs_tree_unlock(root
->node
);
1068 int btrfs_init_log_root_tree(struct btrfs_trans_handle
*trans
,
1069 struct btrfs_fs_info
*fs_info
)
1071 struct btrfs_root
*log_root
;
1073 log_root
= alloc_log_tree(trans
, fs_info
);
1074 if (IS_ERR(log_root
))
1075 return PTR_ERR(log_root
);
1076 WARN_ON(fs_info
->log_root_tree
);
1077 fs_info
->log_root_tree
= log_root
;
1081 int btrfs_add_log_tree(struct btrfs_trans_handle
*trans
,
1082 struct btrfs_root
*root
)
1084 struct btrfs_root
*log_root
;
1085 struct btrfs_inode_item
*inode_item
;
1087 log_root
= alloc_log_tree(trans
, root
->fs_info
);
1088 if (IS_ERR(log_root
))
1089 return PTR_ERR(log_root
);
1091 log_root
->last_trans
= trans
->transid
;
1092 log_root
->root_key
.offset
= root
->root_key
.objectid
;
1094 inode_item
= &log_root
->root_item
.inode
;
1095 inode_item
->generation
= cpu_to_le64(1);
1096 inode_item
->size
= cpu_to_le64(3);
1097 inode_item
->nlink
= cpu_to_le32(1);
1098 inode_item
->nbytes
= cpu_to_le64(root
->leafsize
);
1099 inode_item
->mode
= cpu_to_le32(S_IFDIR
| 0755);
1101 btrfs_set_root_bytenr(&log_root
->root_item
, log_root
->node
->start
);
1102 btrfs_set_root_generation(&log_root
->root_item
, trans
->transid
);
1104 WARN_ON(root
->log_root
);
1105 root
->log_root
= log_root
;
1106 root
->log_transid
= 0;
1110 struct btrfs_root
*btrfs_read_fs_root_no_radix(struct btrfs_root
*tree_root
,
1111 struct btrfs_key
*location
)
1113 struct btrfs_root
*root
;
1114 struct btrfs_fs_info
*fs_info
= tree_root
->fs_info
;
1115 struct btrfs_path
*path
;
1116 struct extent_buffer
*l
;
1122 root
= kzalloc(sizeof(*root
), GFP_NOFS
);
1124 return ERR_PTR(-ENOMEM
);
1125 if (location
->offset
== (u64
)-1) {
1126 ret
= find_and_setup_root(tree_root
, fs_info
,
1127 location
->objectid
, root
);
1130 return ERR_PTR(ret
);
1135 __setup_root(tree_root
->nodesize
, tree_root
->leafsize
,
1136 tree_root
->sectorsize
, tree_root
->stripesize
,
1137 root
, fs_info
, location
->objectid
);
1139 path
= btrfs_alloc_path();
1141 ret
= btrfs_search_slot(NULL
, tree_root
, location
, path
, 0, 0);
1148 read_extent_buffer(l
, &root
->root_item
,
1149 btrfs_item_ptr_offset(l
, path
->slots
[0]),
1150 sizeof(root
->root_item
));
1151 memcpy(&root
->root_key
, location
, sizeof(*location
));
1154 btrfs_release_path(root
, path
);
1155 btrfs_free_path(path
);
1158 return ERR_PTR(ret
);
1160 generation
= btrfs_root_generation(&root
->root_item
);
1161 blocksize
= btrfs_level_size(root
, btrfs_root_level(&root
->root_item
));
1162 root
->node
= read_tree_block(root
, btrfs_root_bytenr(&root
->root_item
),
1163 blocksize
, generation
);
1164 BUG_ON(!root
->node
);
1166 if (location
->objectid
!= BTRFS_TREE_LOG_OBJECTID
) {
1168 ret
= btrfs_find_highest_inode(root
, &highest_inode
);
1170 root
->highest_inode
= highest_inode
;
1171 root
->last_inode_alloc
= highest_inode
;
1177 struct btrfs_root
*btrfs_lookup_fs_root(struct btrfs_fs_info
*fs_info
,
1180 struct btrfs_root
*root
;
1182 if (root_objectid
== BTRFS_ROOT_TREE_OBJECTID
)
1183 return fs_info
->tree_root
;
1184 if (root_objectid
== BTRFS_EXTENT_TREE_OBJECTID
)
1185 return fs_info
->extent_root
;
1187 root
= radix_tree_lookup(&fs_info
->fs_roots_radix
,
1188 (unsigned long)root_objectid
);
1192 struct btrfs_root
*btrfs_read_fs_root_no_name(struct btrfs_fs_info
*fs_info
,
1193 struct btrfs_key
*location
)
1195 struct btrfs_root
*root
;
1198 if (location
->objectid
== BTRFS_ROOT_TREE_OBJECTID
)
1199 return fs_info
->tree_root
;
1200 if (location
->objectid
== BTRFS_EXTENT_TREE_OBJECTID
)
1201 return fs_info
->extent_root
;
1202 if (location
->objectid
== BTRFS_CHUNK_TREE_OBJECTID
)
1203 return fs_info
->chunk_root
;
1204 if (location
->objectid
== BTRFS_DEV_TREE_OBJECTID
)
1205 return fs_info
->dev_root
;
1206 if (location
->objectid
== BTRFS_CSUM_TREE_OBJECTID
)
1207 return fs_info
->csum_root
;
1209 root
= radix_tree_lookup(&fs_info
->fs_roots_radix
,
1210 (unsigned long)location
->objectid
);
1214 root
= btrfs_read_fs_root_no_radix(fs_info
->tree_root
, location
);
1218 set_anon_super(&root
->anon_super
, NULL
);
1220 ret
= radix_tree_insert(&fs_info
->fs_roots_radix
,
1221 (unsigned long)root
->root_key
.objectid
,
1224 free_extent_buffer(root
->node
);
1226 return ERR_PTR(ret
);
1228 if (!(fs_info
->sb
->s_flags
& MS_RDONLY
)) {
1229 ret
= btrfs_find_dead_roots(fs_info
->tree_root
,
1230 root
->root_key
.objectid
, root
);
1232 btrfs_orphan_cleanup(root
);
1237 struct btrfs_root
*btrfs_read_fs_root(struct btrfs_fs_info
*fs_info
,
1238 struct btrfs_key
*location
,
1239 const char *name
, int namelen
)
1241 struct btrfs_root
*root
;
1244 root
= btrfs_read_fs_root_no_name(fs_info
, location
);
1251 ret
= btrfs_set_root_name(root
, name
, namelen
);
1253 free_extent_buffer(root
->node
);
1255 return ERR_PTR(ret
);
1258 ret
= btrfs_sysfs_add_root(root
);
1260 free_extent_buffer(root
->node
);
1263 return ERR_PTR(ret
);
1270 static int btrfs_congested_fn(void *congested_data
, int bdi_bits
)
1272 struct btrfs_fs_info
*info
= (struct btrfs_fs_info
*)congested_data
;
1274 struct btrfs_device
*device
;
1275 struct backing_dev_info
*bdi
;
1277 if ((bdi_bits
& (1 << BDI_write_congested
)) &&
1278 btrfs_congested_async(info
, 0))
1281 list_for_each_entry(device
, &info
->fs_devices
->devices
, dev_list
) {
1284 bdi
= blk_get_backing_dev_info(device
->bdev
);
1285 if (bdi
&& bdi_congested(bdi
, bdi_bits
)) {
1294 * this unplugs every device on the box, and it is only used when page
1297 static void __unplug_io_fn(struct backing_dev_info
*bdi
, struct page
*page
)
1299 struct btrfs_device
*device
;
1300 struct btrfs_fs_info
*info
;
1302 info
= (struct btrfs_fs_info
*)bdi
->unplug_io_data
;
1303 list_for_each_entry(device
, &info
->fs_devices
->devices
, dev_list
) {
1307 bdi
= blk_get_backing_dev_info(device
->bdev
);
1308 if (bdi
->unplug_io_fn
)
1309 bdi
->unplug_io_fn(bdi
, page
);
1313 static void btrfs_unplug_io_fn(struct backing_dev_info
*bdi
, struct page
*page
)
1315 struct inode
*inode
;
1316 struct extent_map_tree
*em_tree
;
1317 struct extent_map
*em
;
1318 struct address_space
*mapping
;
1321 /* the generic O_DIRECT read code does this */
1323 __unplug_io_fn(bdi
, page
);
1328 * page->mapping may change at any time. Get a consistent copy
1329 * and use that for everything below
1332 mapping
= page
->mapping
;
1336 inode
= mapping
->host
;
1339 * don't do the expensive searching for a small number of
1342 if (BTRFS_I(inode
)->root
->fs_info
->fs_devices
->open_devices
<= 2) {
1343 __unplug_io_fn(bdi
, page
);
1347 offset
= page_offset(page
);
1349 em_tree
= &BTRFS_I(inode
)->extent_tree
;
1350 spin_lock(&em_tree
->lock
);
1351 em
= lookup_extent_mapping(em_tree
, offset
, PAGE_CACHE_SIZE
);
1352 spin_unlock(&em_tree
->lock
);
1354 __unplug_io_fn(bdi
, page
);
1358 if (em
->block_start
>= EXTENT_MAP_LAST_BYTE
) {
1359 free_extent_map(em
);
1360 __unplug_io_fn(bdi
, page
);
1363 offset
= offset
- em
->start
;
1364 btrfs_unplug_page(&BTRFS_I(inode
)->root
->fs_info
->mapping_tree
,
1365 em
->block_start
+ offset
, page
);
1366 free_extent_map(em
);
1369 static int setup_bdi(struct btrfs_fs_info
*info
, struct backing_dev_info
*bdi
)
1372 bdi
->ra_pages
= default_backing_dev_info
.ra_pages
;
1374 bdi
->capabilities
= default_backing_dev_info
.capabilities
;
1375 bdi
->unplug_io_fn
= btrfs_unplug_io_fn
;
1376 bdi
->unplug_io_data
= info
;
1377 bdi
->congested_fn
= btrfs_congested_fn
;
1378 bdi
->congested_data
= info
;
1382 static int bio_ready_for_csum(struct bio
*bio
)
1388 struct extent_io_tree
*io_tree
= NULL
;
1389 struct btrfs_fs_info
*info
= NULL
;
1390 struct bio_vec
*bvec
;
1394 bio_for_each_segment(bvec
, bio
, i
) {
1395 page
= bvec
->bv_page
;
1396 if (page
->private == EXTENT_PAGE_PRIVATE
) {
1397 length
+= bvec
->bv_len
;
1400 if (!page
->private) {
1401 length
+= bvec
->bv_len
;
1404 length
= bvec
->bv_len
;
1405 buf_len
= page
->private >> 2;
1406 start
= page_offset(page
) + bvec
->bv_offset
;
1407 io_tree
= &BTRFS_I(page
->mapping
->host
)->io_tree
;
1408 info
= BTRFS_I(page
->mapping
->host
)->root
->fs_info
;
1410 /* are we fully contained in this bio? */
1411 if (buf_len
<= length
)
1414 ret
= extent_range_uptodate(io_tree
, start
+ length
,
1415 start
+ buf_len
- 1);
1420 * called by the kthread helper functions to finally call the bio end_io
1421 * functions. This is where read checksum verification actually happens
1423 static void end_workqueue_fn(struct btrfs_work
*work
)
1426 struct end_io_wq
*end_io_wq
;
1427 struct btrfs_fs_info
*fs_info
;
1430 end_io_wq
= container_of(work
, struct end_io_wq
, work
);
1431 bio
= end_io_wq
->bio
;
1432 fs_info
= end_io_wq
->info
;
1434 /* metadata bio reads are special because the whole tree block must
1435 * be checksummed at once. This makes sure the entire block is in
1436 * ram and up to date before trying to verify things. For
1437 * blocksize <= pagesize, it is basically a noop
1439 if (!(bio
->bi_rw
& (1 << BIO_RW
)) && end_io_wq
->metadata
&&
1440 !bio_ready_for_csum(bio
)) {
1441 btrfs_queue_worker(&fs_info
->endio_meta_workers
,
1445 error
= end_io_wq
->error
;
1446 bio
->bi_private
= end_io_wq
->private;
1447 bio
->bi_end_io
= end_io_wq
->end_io
;
1449 bio_endio(bio
, error
);
1452 static int cleaner_kthread(void *arg
)
1454 struct btrfs_root
*root
= arg
;
1458 if (root
->fs_info
->closing
)
1461 vfs_check_frozen(root
->fs_info
->sb
, SB_FREEZE_WRITE
);
1462 mutex_lock(&root
->fs_info
->cleaner_mutex
);
1463 btrfs_clean_old_snapshots(root
);
1464 mutex_unlock(&root
->fs_info
->cleaner_mutex
);
1466 if (freezing(current
)) {
1470 if (root
->fs_info
->closing
)
1472 set_current_state(TASK_INTERRUPTIBLE
);
1474 __set_current_state(TASK_RUNNING
);
1476 } while (!kthread_should_stop());
1480 static int transaction_kthread(void *arg
)
1482 struct btrfs_root
*root
= arg
;
1483 struct btrfs_trans_handle
*trans
;
1484 struct btrfs_transaction
*cur
;
1486 unsigned long delay
;
1491 if (root
->fs_info
->closing
)
1495 vfs_check_frozen(root
->fs_info
->sb
, SB_FREEZE_WRITE
);
1496 mutex_lock(&root
->fs_info
->transaction_kthread_mutex
);
1498 mutex_lock(&root
->fs_info
->trans_mutex
);
1499 cur
= root
->fs_info
->running_transaction
;
1501 mutex_unlock(&root
->fs_info
->trans_mutex
);
1505 now
= get_seconds();
1506 if (now
< cur
->start_time
|| now
- cur
->start_time
< 30) {
1507 mutex_unlock(&root
->fs_info
->trans_mutex
);
1511 mutex_unlock(&root
->fs_info
->trans_mutex
);
1512 trans
= btrfs_start_transaction(root
, 1);
1513 ret
= btrfs_commit_transaction(trans
, root
);
1516 wake_up_process(root
->fs_info
->cleaner_kthread
);
1517 mutex_unlock(&root
->fs_info
->transaction_kthread_mutex
);
1519 if (freezing(current
)) {
1522 if (root
->fs_info
->closing
)
1524 set_current_state(TASK_INTERRUPTIBLE
);
1525 schedule_timeout(delay
);
1526 __set_current_state(TASK_RUNNING
);
1528 } while (!kthread_should_stop());
1532 struct btrfs_root
*open_ctree(struct super_block
*sb
,
1533 struct btrfs_fs_devices
*fs_devices
,
1543 struct btrfs_key location
;
1544 struct buffer_head
*bh
;
1545 struct btrfs_root
*extent_root
= kzalloc(sizeof(struct btrfs_root
),
1547 struct btrfs_root
*csum_root
= kzalloc(sizeof(struct btrfs_root
),
1549 struct btrfs_root
*tree_root
= kzalloc(sizeof(struct btrfs_root
),
1551 struct btrfs_fs_info
*fs_info
= kzalloc(sizeof(*fs_info
),
1553 struct btrfs_root
*chunk_root
= kzalloc(sizeof(struct btrfs_root
),
1555 struct btrfs_root
*dev_root
= kzalloc(sizeof(struct btrfs_root
),
1557 struct btrfs_root
*log_tree_root
;
1562 struct btrfs_super_block
*disk_super
;
1564 if (!extent_root
|| !tree_root
|| !fs_info
||
1565 !chunk_root
|| !dev_root
|| !csum_root
) {
1569 INIT_RADIX_TREE(&fs_info
->fs_roots_radix
, GFP_NOFS
);
1570 INIT_LIST_HEAD(&fs_info
->trans_list
);
1571 INIT_LIST_HEAD(&fs_info
->dead_roots
);
1572 INIT_LIST_HEAD(&fs_info
->hashers
);
1573 INIT_LIST_HEAD(&fs_info
->delalloc_inodes
);
1574 INIT_LIST_HEAD(&fs_info
->ordered_operations
);
1575 spin_lock_init(&fs_info
->delalloc_lock
);
1576 spin_lock_init(&fs_info
->new_trans_lock
);
1577 spin_lock_init(&fs_info
->ref_cache_lock
);
1579 init_completion(&fs_info
->kobj_unregister
);
1580 fs_info
->tree_root
= tree_root
;
1581 fs_info
->extent_root
= extent_root
;
1582 fs_info
->csum_root
= csum_root
;
1583 fs_info
->chunk_root
= chunk_root
;
1584 fs_info
->dev_root
= dev_root
;
1585 fs_info
->fs_devices
= fs_devices
;
1586 INIT_LIST_HEAD(&fs_info
->dirty_cowonly_roots
);
1587 INIT_LIST_HEAD(&fs_info
->space_info
);
1588 btrfs_mapping_init(&fs_info
->mapping_tree
);
1589 atomic_set(&fs_info
->nr_async_submits
, 0);
1590 atomic_set(&fs_info
->async_delalloc_pages
, 0);
1591 atomic_set(&fs_info
->async_submit_draining
, 0);
1592 atomic_set(&fs_info
->nr_async_bios
, 0);
1593 atomic_set(&fs_info
->throttles
, 0);
1594 atomic_set(&fs_info
->throttle_gen
, 0);
1596 fs_info
->max_extent
= (u64
)-1;
1597 fs_info
->max_inline
= 8192 * 1024;
1598 setup_bdi(fs_info
, &fs_info
->bdi
);
1599 fs_info
->btree_inode
= new_inode(sb
);
1600 fs_info
->btree_inode
->i_ino
= 1;
1601 fs_info
->btree_inode
->i_nlink
= 1;
1603 fs_info
->thread_pool_size
= min_t(unsigned long,
1604 num_online_cpus() + 2, 8);
1606 INIT_LIST_HEAD(&fs_info
->ordered_extents
);
1607 spin_lock_init(&fs_info
->ordered_extent_lock
);
1609 sb
->s_blocksize
= 4096;
1610 sb
->s_blocksize_bits
= blksize_bits(4096);
1613 * we set the i_size on the btree inode to the max possible int.
1614 * the real end of the address space is determined by all of
1615 * the devices in the system
1617 fs_info
->btree_inode
->i_size
= OFFSET_MAX
;
1618 fs_info
->btree_inode
->i_mapping
->a_ops
= &btree_aops
;
1619 fs_info
->btree_inode
->i_mapping
->backing_dev_info
= &fs_info
->bdi
;
1621 extent_io_tree_init(&BTRFS_I(fs_info
->btree_inode
)->io_tree
,
1622 fs_info
->btree_inode
->i_mapping
,
1624 extent_map_tree_init(&BTRFS_I(fs_info
->btree_inode
)->extent_tree
,
1627 BTRFS_I(fs_info
->btree_inode
)->io_tree
.ops
= &btree_extent_io_ops
;
1629 spin_lock_init(&fs_info
->block_group_cache_lock
);
1630 fs_info
->block_group_cache_tree
.rb_node
= NULL
;
1632 extent_io_tree_init(&fs_info
->pinned_extents
,
1633 fs_info
->btree_inode
->i_mapping
, GFP_NOFS
);
1634 fs_info
->do_barriers
= 1;
1636 INIT_LIST_HEAD(&fs_info
->dead_reloc_roots
);
1637 btrfs_leaf_ref_tree_init(&fs_info
->reloc_ref_tree
);
1638 btrfs_leaf_ref_tree_init(&fs_info
->shared_ref_tree
);
1640 BTRFS_I(fs_info
->btree_inode
)->root
= tree_root
;
1641 memset(&BTRFS_I(fs_info
->btree_inode
)->location
, 0,
1642 sizeof(struct btrfs_key
));
1643 insert_inode_hash(fs_info
->btree_inode
);
1645 mutex_init(&fs_info
->trans_mutex
);
1646 mutex_init(&fs_info
->ordered_operations_mutex
);
1647 mutex_init(&fs_info
->tree_log_mutex
);
1648 mutex_init(&fs_info
->drop_mutex
);
1649 mutex_init(&fs_info
->chunk_mutex
);
1650 mutex_init(&fs_info
->transaction_kthread_mutex
);
1651 mutex_init(&fs_info
->cleaner_mutex
);
1652 mutex_init(&fs_info
->volume_mutex
);
1653 mutex_init(&fs_info
->tree_reloc_mutex
);
1655 btrfs_init_free_cluster(&fs_info
->meta_alloc_cluster
);
1656 btrfs_init_free_cluster(&fs_info
->data_alloc_cluster
);
1658 init_waitqueue_head(&fs_info
->transaction_throttle
);
1659 init_waitqueue_head(&fs_info
->transaction_wait
);
1660 init_waitqueue_head(&fs_info
->async_submit_wait
);
1662 __setup_root(4096, 4096, 4096, 4096, tree_root
,
1663 fs_info
, BTRFS_ROOT_TREE_OBJECTID
);
1666 bh
= btrfs_read_dev_super(fs_devices
->latest_bdev
);
1670 memcpy(&fs_info
->super_copy
, bh
->b_data
, sizeof(fs_info
->super_copy
));
1671 memcpy(&fs_info
->super_for_commit
, &fs_info
->super_copy
,
1672 sizeof(fs_info
->super_for_commit
));
1675 memcpy(fs_info
->fsid
, fs_info
->super_copy
.fsid
, BTRFS_FSID_SIZE
);
1677 disk_super
= &fs_info
->super_copy
;
1678 if (!btrfs_super_root(disk_super
))
1681 ret
= btrfs_parse_options(tree_root
, options
);
1687 features
= btrfs_super_incompat_flags(disk_super
) &
1688 ~BTRFS_FEATURE_INCOMPAT_SUPP
;
1690 printk(KERN_ERR
"BTRFS: couldn't mount because of "
1691 "unsupported optional features (%Lx).\n",
1697 features
= btrfs_super_compat_ro_flags(disk_super
) &
1698 ~BTRFS_FEATURE_COMPAT_RO_SUPP
;
1699 if (!(sb
->s_flags
& MS_RDONLY
) && features
) {
1700 printk(KERN_ERR
"BTRFS: couldn't mount RDWR because of "
1701 "unsupported option features (%Lx).\n",
1708 * we need to start all the end_io workers up front because the
1709 * queue work function gets called at interrupt time, and so it
1710 * cannot dynamically grow.
1712 btrfs_init_workers(&fs_info
->workers
, "worker",
1713 fs_info
->thread_pool_size
);
1715 btrfs_init_workers(&fs_info
->delalloc_workers
, "delalloc",
1716 fs_info
->thread_pool_size
);
1718 btrfs_init_workers(&fs_info
->submit_workers
, "submit",
1719 min_t(u64
, fs_devices
->num_devices
,
1720 fs_info
->thread_pool_size
));
1722 /* a higher idle thresh on the submit workers makes it much more
1723 * likely that bios will be send down in a sane order to the
1726 fs_info
->submit_workers
.idle_thresh
= 64;
1728 fs_info
->workers
.idle_thresh
= 16;
1729 fs_info
->workers
.ordered
= 1;
1731 fs_info
->delalloc_workers
.idle_thresh
= 2;
1732 fs_info
->delalloc_workers
.ordered
= 1;
1734 btrfs_init_workers(&fs_info
->fixup_workers
, "fixup", 1);
1735 btrfs_init_workers(&fs_info
->endio_workers
, "endio",
1736 fs_info
->thread_pool_size
);
1737 btrfs_init_workers(&fs_info
->endio_meta_workers
, "endio-meta",
1738 fs_info
->thread_pool_size
);
1739 btrfs_init_workers(&fs_info
->endio_meta_write_workers
,
1740 "endio-meta-write", fs_info
->thread_pool_size
);
1741 btrfs_init_workers(&fs_info
->endio_write_workers
, "endio-write",
1742 fs_info
->thread_pool_size
);
1745 * endios are largely parallel and should have a very
1748 fs_info
->endio_workers
.idle_thresh
= 4;
1749 fs_info
->endio_meta_workers
.idle_thresh
= 4;
1751 fs_info
->endio_write_workers
.idle_thresh
= 64;
1752 fs_info
->endio_meta_write_workers
.idle_thresh
= 64;
1754 btrfs_start_workers(&fs_info
->workers
, 1);
1755 btrfs_start_workers(&fs_info
->submit_workers
, 1);
1756 btrfs_start_workers(&fs_info
->delalloc_workers
, 1);
1757 btrfs_start_workers(&fs_info
->fixup_workers
, 1);
1758 btrfs_start_workers(&fs_info
->endio_workers
, fs_info
->thread_pool_size
);
1759 btrfs_start_workers(&fs_info
->endio_meta_workers
,
1760 fs_info
->thread_pool_size
);
1761 btrfs_start_workers(&fs_info
->endio_meta_write_workers
,
1762 fs_info
->thread_pool_size
);
1763 btrfs_start_workers(&fs_info
->endio_write_workers
,
1764 fs_info
->thread_pool_size
);
1766 fs_info
->bdi
.ra_pages
*= btrfs_super_num_devices(disk_super
);
1767 fs_info
->bdi
.ra_pages
= max(fs_info
->bdi
.ra_pages
,
1768 4 * 1024 * 1024 / PAGE_CACHE_SIZE
);
1770 nodesize
= btrfs_super_nodesize(disk_super
);
1771 leafsize
= btrfs_super_leafsize(disk_super
);
1772 sectorsize
= btrfs_super_sectorsize(disk_super
);
1773 stripesize
= btrfs_super_stripesize(disk_super
);
1774 tree_root
->nodesize
= nodesize
;
1775 tree_root
->leafsize
= leafsize
;
1776 tree_root
->sectorsize
= sectorsize
;
1777 tree_root
->stripesize
= stripesize
;
1779 sb
->s_blocksize
= sectorsize
;
1780 sb
->s_blocksize_bits
= blksize_bits(sectorsize
);
1782 if (strncmp((char *)(&disk_super
->magic
), BTRFS_MAGIC
,
1783 sizeof(disk_super
->magic
))) {
1784 printk(KERN_INFO
"btrfs: valid FS not found on %s\n", sb
->s_id
);
1785 goto fail_sb_buffer
;
1788 mutex_lock(&fs_info
->chunk_mutex
);
1789 ret
= btrfs_read_sys_array(tree_root
);
1790 mutex_unlock(&fs_info
->chunk_mutex
);
1792 printk(KERN_WARNING
"btrfs: failed to read the system "
1793 "array on %s\n", sb
->s_id
);
1794 goto fail_sys_array
;
1797 blocksize
= btrfs_level_size(tree_root
,
1798 btrfs_super_chunk_root_level(disk_super
));
1799 generation
= btrfs_super_chunk_root_generation(disk_super
);
1801 __setup_root(nodesize
, leafsize
, sectorsize
, stripesize
,
1802 chunk_root
, fs_info
, BTRFS_CHUNK_TREE_OBJECTID
);
1804 chunk_root
->node
= read_tree_block(chunk_root
,
1805 btrfs_super_chunk_root(disk_super
),
1806 blocksize
, generation
);
1807 BUG_ON(!chunk_root
->node
);
1809 read_extent_buffer(chunk_root
->node
, fs_info
->chunk_tree_uuid
,
1810 (unsigned long)btrfs_header_chunk_tree_uuid(chunk_root
->node
),
1813 mutex_lock(&fs_info
->chunk_mutex
);
1814 ret
= btrfs_read_chunk_tree(chunk_root
);
1815 mutex_unlock(&fs_info
->chunk_mutex
);
1817 printk(KERN_WARNING
"btrfs: failed to read chunk tree on %s\n",
1819 goto fail_chunk_root
;
1822 btrfs_close_extra_devices(fs_devices
);
1824 blocksize
= btrfs_level_size(tree_root
,
1825 btrfs_super_root_level(disk_super
));
1826 generation
= btrfs_super_generation(disk_super
);
1828 tree_root
->node
= read_tree_block(tree_root
,
1829 btrfs_super_root(disk_super
),
1830 blocksize
, generation
);
1831 if (!tree_root
->node
)
1832 goto fail_chunk_root
;
1835 ret
= find_and_setup_root(tree_root
, fs_info
,
1836 BTRFS_EXTENT_TREE_OBJECTID
, extent_root
);
1838 goto fail_tree_root
;
1839 extent_root
->track_dirty
= 1;
1841 ret
= find_and_setup_root(tree_root
, fs_info
,
1842 BTRFS_DEV_TREE_OBJECTID
, dev_root
);
1843 dev_root
->track_dirty
= 1;
1845 goto fail_extent_root
;
1847 ret
= find_and_setup_root(tree_root
, fs_info
,
1848 BTRFS_CSUM_TREE_OBJECTID
, csum_root
);
1850 goto fail_extent_root
;
1852 csum_root
->track_dirty
= 1;
1854 btrfs_read_block_groups(extent_root
);
1856 fs_info
->generation
= generation
;
1857 fs_info
->last_trans_committed
= generation
;
1858 fs_info
->data_alloc_profile
= (u64
)-1;
1859 fs_info
->metadata_alloc_profile
= (u64
)-1;
1860 fs_info
->system_alloc_profile
= fs_info
->metadata_alloc_profile
;
1861 fs_info
->cleaner_kthread
= kthread_run(cleaner_kthread
, tree_root
,
1863 if (IS_ERR(fs_info
->cleaner_kthread
))
1864 goto fail_csum_root
;
1866 fs_info
->transaction_kthread
= kthread_run(transaction_kthread
,
1868 "btrfs-transaction");
1869 if (IS_ERR(fs_info
->transaction_kthread
))
1872 if (btrfs_super_log_root(disk_super
) != 0) {
1873 u64 bytenr
= btrfs_super_log_root(disk_super
);
1875 if (fs_devices
->rw_devices
== 0) {
1876 printk(KERN_WARNING
"Btrfs log replay required "
1879 goto fail_trans_kthread
;
1882 btrfs_level_size(tree_root
,
1883 btrfs_super_log_root_level(disk_super
));
1885 log_tree_root
= kzalloc(sizeof(struct btrfs_root
),
1888 __setup_root(nodesize
, leafsize
, sectorsize
, stripesize
,
1889 log_tree_root
, fs_info
, BTRFS_TREE_LOG_OBJECTID
);
1891 log_tree_root
->node
= read_tree_block(tree_root
, bytenr
,
1894 ret
= btrfs_recover_log_trees(log_tree_root
);
1897 if (sb
->s_flags
& MS_RDONLY
) {
1898 ret
= btrfs_commit_super(tree_root
);
1903 if (!(sb
->s_flags
& MS_RDONLY
)) {
1904 ret
= btrfs_cleanup_reloc_trees(tree_root
);
1908 location
.objectid
= BTRFS_FS_TREE_OBJECTID
;
1909 location
.type
= BTRFS_ROOT_ITEM_KEY
;
1910 location
.offset
= (u64
)-1;
1912 fs_info
->fs_root
= btrfs_read_fs_root_no_name(fs_info
, &location
);
1913 if (!fs_info
->fs_root
)
1914 goto fail_trans_kthread
;
1918 kthread_stop(fs_info
->transaction_kthread
);
1920 kthread_stop(fs_info
->cleaner_kthread
);
1923 * make sure we're done with the btree inode before we stop our
1926 filemap_write_and_wait(fs_info
->btree_inode
->i_mapping
);
1927 invalidate_inode_pages2(fs_info
->btree_inode
->i_mapping
);
1930 free_extent_buffer(csum_root
->node
);
1932 free_extent_buffer(extent_root
->node
);
1934 free_extent_buffer(tree_root
->node
);
1936 free_extent_buffer(chunk_root
->node
);
1938 free_extent_buffer(dev_root
->node
);
1940 btrfs_stop_workers(&fs_info
->fixup_workers
);
1941 btrfs_stop_workers(&fs_info
->delalloc_workers
);
1942 btrfs_stop_workers(&fs_info
->workers
);
1943 btrfs_stop_workers(&fs_info
->endio_workers
);
1944 btrfs_stop_workers(&fs_info
->endio_meta_workers
);
1945 btrfs_stop_workers(&fs_info
->endio_meta_write_workers
);
1946 btrfs_stop_workers(&fs_info
->endio_write_workers
);
1947 btrfs_stop_workers(&fs_info
->submit_workers
);
1949 invalidate_inode_pages2(fs_info
->btree_inode
->i_mapping
);
1950 iput(fs_info
->btree_inode
);
1952 btrfs_close_devices(fs_info
->fs_devices
);
1953 btrfs_mapping_tree_free(&fs_info
->mapping_tree
);
1954 bdi_destroy(&fs_info
->bdi
);
1963 return ERR_PTR(err
);
1966 static void btrfs_end_buffer_write_sync(struct buffer_head
*bh
, int uptodate
)
1968 char b
[BDEVNAME_SIZE
];
1971 set_buffer_uptodate(bh
);
1973 if (!buffer_eopnotsupp(bh
) && printk_ratelimit()) {
1974 printk(KERN_WARNING
"lost page write due to "
1975 "I/O error on %s\n",
1976 bdevname(bh
->b_bdev
, b
));
1978 /* note, we dont' set_buffer_write_io_error because we have
1979 * our own ways of dealing with the IO errors
1981 clear_buffer_uptodate(bh
);
1987 struct buffer_head
*btrfs_read_dev_super(struct block_device
*bdev
)
1989 struct buffer_head
*bh
;
1990 struct buffer_head
*latest
= NULL
;
1991 struct btrfs_super_block
*super
;
1996 /* we would like to check all the supers, but that would make
1997 * a btrfs mount succeed after a mkfs from a different FS.
1998 * So, we need to add a special mount option to scan for
1999 * later supers, using BTRFS_SUPER_MIRROR_MAX instead
2001 for (i
= 0; i
< 1; i
++) {
2002 bytenr
= btrfs_sb_offset(i
);
2003 if (bytenr
+ 4096 >= i_size_read(bdev
->bd_inode
))
2005 bh
= __bread(bdev
, bytenr
/ 4096, 4096);
2009 super
= (struct btrfs_super_block
*)bh
->b_data
;
2010 if (btrfs_super_bytenr(super
) != bytenr
||
2011 strncmp((char *)(&super
->magic
), BTRFS_MAGIC
,
2012 sizeof(super
->magic
))) {
2017 if (!latest
|| btrfs_super_generation(super
) > transid
) {
2020 transid
= btrfs_super_generation(super
);
2028 static int write_dev_supers(struct btrfs_device
*device
,
2029 struct btrfs_super_block
*sb
,
2030 int do_barriers
, int wait
, int max_mirrors
)
2032 struct buffer_head
*bh
;
2038 int last_barrier
= 0;
2040 if (max_mirrors
== 0)
2041 max_mirrors
= BTRFS_SUPER_MIRROR_MAX
;
2043 /* make sure only the last submit_bh does a barrier */
2045 for (i
= 0; i
< max_mirrors
; i
++) {
2046 bytenr
= btrfs_sb_offset(i
);
2047 if (bytenr
+ BTRFS_SUPER_INFO_SIZE
>=
2048 device
->total_bytes
)
2054 for (i
= 0; i
< max_mirrors
; i
++) {
2055 bytenr
= btrfs_sb_offset(i
);
2056 if (bytenr
+ BTRFS_SUPER_INFO_SIZE
>= device
->total_bytes
)
2060 bh
= __find_get_block(device
->bdev
, bytenr
/ 4096,
2061 BTRFS_SUPER_INFO_SIZE
);
2065 if (buffer_uptodate(bh
)) {
2070 btrfs_set_super_bytenr(sb
, bytenr
);
2073 crc
= btrfs_csum_data(NULL
, (char *)sb
+
2074 BTRFS_CSUM_SIZE
, crc
,
2075 BTRFS_SUPER_INFO_SIZE
-
2077 btrfs_csum_final(crc
, sb
->csum
);
2079 bh
= __getblk(device
->bdev
, bytenr
/ 4096,
2080 BTRFS_SUPER_INFO_SIZE
);
2081 memcpy(bh
->b_data
, sb
, BTRFS_SUPER_INFO_SIZE
);
2083 set_buffer_uptodate(bh
);
2086 bh
->b_end_io
= btrfs_end_buffer_write_sync
;
2089 if (i
== last_barrier
&& do_barriers
&& device
->barriers
) {
2090 ret
= submit_bh(WRITE_BARRIER
, bh
);
2091 if (ret
== -EOPNOTSUPP
) {
2092 printk("btrfs: disabling barriers on dev %s\n",
2094 set_buffer_uptodate(bh
);
2095 device
->barriers
= 0;
2098 ret
= submit_bh(WRITE
, bh
);
2101 ret
= submit_bh(WRITE
, bh
);
2106 if (!buffer_uptodate(bh
))
2114 return errors
< i
? 0 : -1;
2117 int write_all_supers(struct btrfs_root
*root
, int max_mirrors
)
2119 struct list_head
*head
= &root
->fs_info
->fs_devices
->devices
;
2120 struct btrfs_device
*dev
;
2121 struct btrfs_super_block
*sb
;
2122 struct btrfs_dev_item
*dev_item
;
2126 int total_errors
= 0;
2129 max_errors
= btrfs_super_num_devices(&root
->fs_info
->super_copy
) - 1;
2130 do_barriers
= !btrfs_test_opt(root
, NOBARRIER
);
2132 sb
= &root
->fs_info
->super_for_commit
;
2133 dev_item
= &sb
->dev_item
;
2134 list_for_each_entry(dev
, head
, dev_list
) {
2139 if (!dev
->in_fs_metadata
|| !dev
->writeable
)
2142 btrfs_set_stack_device_generation(dev_item
, 0);
2143 btrfs_set_stack_device_type(dev_item
, dev
->type
);
2144 btrfs_set_stack_device_id(dev_item
, dev
->devid
);
2145 btrfs_set_stack_device_total_bytes(dev_item
, dev
->total_bytes
);
2146 btrfs_set_stack_device_bytes_used(dev_item
, dev
->bytes_used
);
2147 btrfs_set_stack_device_io_align(dev_item
, dev
->io_align
);
2148 btrfs_set_stack_device_io_width(dev_item
, dev
->io_width
);
2149 btrfs_set_stack_device_sector_size(dev_item
, dev
->sector_size
);
2150 memcpy(dev_item
->uuid
, dev
->uuid
, BTRFS_UUID_SIZE
);
2151 memcpy(dev_item
->fsid
, dev
->fs_devices
->fsid
, BTRFS_UUID_SIZE
);
2153 flags
= btrfs_super_flags(sb
);
2154 btrfs_set_super_flags(sb
, flags
| BTRFS_HEADER_FLAG_WRITTEN
);
2156 ret
= write_dev_supers(dev
, sb
, do_barriers
, 0, max_mirrors
);
2160 if (total_errors
> max_errors
) {
2161 printk(KERN_ERR
"btrfs: %d errors while writing supers\n",
2167 list_for_each_entry(dev
, head
, dev_list
) {
2170 if (!dev
->in_fs_metadata
|| !dev
->writeable
)
2173 ret
= write_dev_supers(dev
, sb
, do_barriers
, 1, max_mirrors
);
2177 if (total_errors
> max_errors
) {
2178 printk(KERN_ERR
"btrfs: %d errors while writing supers\n",
2185 int write_ctree_super(struct btrfs_trans_handle
*trans
,
2186 struct btrfs_root
*root
, int max_mirrors
)
2190 ret
= write_all_supers(root
, max_mirrors
);
2194 int btrfs_free_fs_root(struct btrfs_fs_info
*fs_info
, struct btrfs_root
*root
)
2196 radix_tree_delete(&fs_info
->fs_roots_radix
,
2197 (unsigned long)root
->root_key
.objectid
);
2198 if (root
->anon_super
.s_dev
) {
2199 down_write(&root
->anon_super
.s_umount
);
2200 kill_anon_super(&root
->anon_super
);
2203 free_extent_buffer(root
->node
);
2204 if (root
->commit_root
)
2205 free_extent_buffer(root
->commit_root
);
2211 static int del_fs_roots(struct btrfs_fs_info
*fs_info
)
2214 struct btrfs_root
*gang
[8];
2218 ret
= radix_tree_gang_lookup(&fs_info
->fs_roots_radix
,
2223 for (i
= 0; i
< ret
; i
++)
2224 btrfs_free_fs_root(fs_info
, gang
[i
]);
2229 int btrfs_cleanup_fs_roots(struct btrfs_fs_info
*fs_info
)
2231 u64 root_objectid
= 0;
2232 struct btrfs_root
*gang
[8];
2237 ret
= radix_tree_gang_lookup(&fs_info
->fs_roots_radix
,
2238 (void **)gang
, root_objectid
,
2242 for (i
= 0; i
< ret
; i
++) {
2243 root_objectid
= gang
[i
]->root_key
.objectid
;
2244 ret
= btrfs_find_dead_roots(fs_info
->tree_root
,
2245 root_objectid
, gang
[i
]);
2247 btrfs_orphan_cleanup(gang
[i
]);
2254 int btrfs_commit_super(struct btrfs_root
*root
)
2256 struct btrfs_trans_handle
*trans
;
2259 mutex_lock(&root
->fs_info
->cleaner_mutex
);
2260 btrfs_clean_old_snapshots(root
);
2261 mutex_unlock(&root
->fs_info
->cleaner_mutex
);
2262 trans
= btrfs_start_transaction(root
, 1);
2263 ret
= btrfs_commit_transaction(trans
, root
);
2265 /* run commit again to drop the original snapshot */
2266 trans
= btrfs_start_transaction(root
, 1);
2267 btrfs_commit_transaction(trans
, root
);
2268 ret
= btrfs_write_and_wait_transaction(NULL
, root
);
2271 ret
= write_ctree_super(NULL
, root
, 0);
2275 int close_ctree(struct btrfs_root
*root
)
2277 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
2280 fs_info
->closing
= 1;
2283 kthread_stop(root
->fs_info
->transaction_kthread
);
2284 kthread_stop(root
->fs_info
->cleaner_kthread
);
2286 if (!(fs_info
->sb
->s_flags
& MS_RDONLY
)) {
2287 ret
= btrfs_commit_super(root
);
2289 printk(KERN_ERR
"btrfs: commit super ret %d\n", ret
);
2292 if (fs_info
->delalloc_bytes
) {
2293 printk(KERN_INFO
"btrfs: at unmount delalloc count %llu\n",
2294 fs_info
->delalloc_bytes
);
2296 if (fs_info
->total_ref_cache_size
) {
2297 printk(KERN_INFO
"btrfs: at umount reference cache size %llu\n",
2298 (unsigned long long)fs_info
->total_ref_cache_size
);
2301 if (fs_info
->extent_root
->node
)
2302 free_extent_buffer(fs_info
->extent_root
->node
);
2304 if (fs_info
->tree_root
->node
)
2305 free_extent_buffer(fs_info
->tree_root
->node
);
2307 if (root
->fs_info
->chunk_root
->node
)
2308 free_extent_buffer(root
->fs_info
->chunk_root
->node
);
2310 if (root
->fs_info
->dev_root
->node
)
2311 free_extent_buffer(root
->fs_info
->dev_root
->node
);
2313 if (root
->fs_info
->csum_root
->node
)
2314 free_extent_buffer(root
->fs_info
->csum_root
->node
);
2316 btrfs_free_block_groups(root
->fs_info
);
2318 del_fs_roots(fs_info
);
2320 iput(fs_info
->btree_inode
);
2322 btrfs_stop_workers(&fs_info
->fixup_workers
);
2323 btrfs_stop_workers(&fs_info
->delalloc_workers
);
2324 btrfs_stop_workers(&fs_info
->workers
);
2325 btrfs_stop_workers(&fs_info
->endio_workers
);
2326 btrfs_stop_workers(&fs_info
->endio_meta_workers
);
2327 btrfs_stop_workers(&fs_info
->endio_meta_write_workers
);
2328 btrfs_stop_workers(&fs_info
->endio_write_workers
);
2329 btrfs_stop_workers(&fs_info
->submit_workers
);
2332 while (!list_empty(&fs_info
->hashers
)) {
2333 struct btrfs_hasher
*hasher
;
2334 hasher
= list_entry(fs_info
->hashers
.next
, struct btrfs_hasher
,
2336 list_del(&hasher
->hashers
);
2337 crypto_free_hash(&fs_info
->hash_tfm
);
2341 btrfs_close_devices(fs_info
->fs_devices
);
2342 btrfs_mapping_tree_free(&fs_info
->mapping_tree
);
2344 bdi_destroy(&fs_info
->bdi
);
2346 kfree(fs_info
->extent_root
);
2347 kfree(fs_info
->tree_root
);
2348 kfree(fs_info
->chunk_root
);
2349 kfree(fs_info
->dev_root
);
2350 kfree(fs_info
->csum_root
);
2354 int btrfs_buffer_uptodate(struct extent_buffer
*buf
, u64 parent_transid
)
2357 struct inode
*btree_inode
= buf
->first_page
->mapping
->host
;
2359 ret
= extent_buffer_uptodate(&BTRFS_I(btree_inode
)->io_tree
, buf
);
2363 ret
= verify_parent_transid(&BTRFS_I(btree_inode
)->io_tree
, buf
,
2368 int btrfs_set_buffer_uptodate(struct extent_buffer
*buf
)
2370 struct inode
*btree_inode
= buf
->first_page
->mapping
->host
;
2371 return set_extent_buffer_uptodate(&BTRFS_I(btree_inode
)->io_tree
,
2375 void btrfs_mark_buffer_dirty(struct extent_buffer
*buf
)
2377 struct btrfs_root
*root
= BTRFS_I(buf
->first_page
->mapping
->host
)->root
;
2378 u64 transid
= btrfs_header_generation(buf
);
2379 struct inode
*btree_inode
= root
->fs_info
->btree_inode
;
2382 btrfs_assert_tree_locked(buf
);
2383 if (transid
!= root
->fs_info
->generation
) {
2384 printk(KERN_CRIT
"btrfs transid mismatch buffer %llu, "
2385 "found %llu running %llu\n",
2386 (unsigned long long)buf
->start
,
2387 (unsigned long long)transid
,
2388 (unsigned long long)root
->fs_info
->generation
);
2391 was_dirty
= set_extent_buffer_dirty(&BTRFS_I(btree_inode
)->io_tree
,
2394 spin_lock(&root
->fs_info
->delalloc_lock
);
2395 root
->fs_info
->dirty_metadata_bytes
+= buf
->len
;
2396 spin_unlock(&root
->fs_info
->delalloc_lock
);
2400 void btrfs_btree_balance_dirty(struct btrfs_root
*root
, unsigned long nr
)
2403 * looks as though older kernels can get into trouble with
2404 * this code, they end up stuck in balance_dirty_pages forever
2406 struct extent_io_tree
*tree
;
2409 unsigned long thresh
= 32 * 1024 * 1024;
2410 tree
= &BTRFS_I(root
->fs_info
->btree_inode
)->io_tree
;
2412 if (current
->flags
& PF_MEMALLOC
)
2415 num_dirty
= count_range_bits(tree
, &start
, (u64
)-1,
2416 thresh
, EXTENT_DIRTY
);
2417 if (num_dirty
> thresh
) {
2418 balance_dirty_pages_ratelimited_nr(
2419 root
->fs_info
->btree_inode
->i_mapping
, 1);
2424 int btrfs_read_buffer(struct extent_buffer
*buf
, u64 parent_transid
)
2426 struct btrfs_root
*root
= BTRFS_I(buf
->first_page
->mapping
->host
)->root
;
2428 ret
= btree_read_extent_buffer_pages(root
, buf
, 0, parent_transid
);
2430 set_bit(EXTENT_BUFFER_UPTODATE
, &buf
->bflags
);
2434 int btree_lock_page_hook(struct page
*page
)
2436 struct inode
*inode
= page
->mapping
->host
;
2437 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
2438 struct extent_io_tree
*io_tree
= &BTRFS_I(inode
)->io_tree
;
2439 struct extent_buffer
*eb
;
2441 u64 bytenr
= page_offset(page
);
2443 if (page
->private == EXTENT_PAGE_PRIVATE
)
2446 len
= page
->private >> 2;
2447 eb
= find_extent_buffer(io_tree
, bytenr
, len
, GFP_NOFS
);
2451 btrfs_tree_lock(eb
);
2452 btrfs_set_header_flag(eb
, BTRFS_HEADER_FLAG_WRITTEN
);
2454 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY
, &eb
->bflags
)) {
2455 spin_lock(&root
->fs_info
->delalloc_lock
);
2456 if (root
->fs_info
->dirty_metadata_bytes
>= eb
->len
)
2457 root
->fs_info
->dirty_metadata_bytes
-= eb
->len
;
2460 spin_unlock(&root
->fs_info
->delalloc_lock
);
2463 btrfs_tree_unlock(eb
);
2464 free_extent_buffer(eb
);
2470 static struct extent_io_ops btree_extent_io_ops
= {
2471 .write_cache_pages_lock_hook
= btree_lock_page_hook
,
2472 .readpage_end_io_hook
= btree_readpage_end_io_hook
,
2473 .submit_bio_hook
= btree_submit_bio_hook
,
2474 /* note we're sharing with inode.c for the merge bio hook */
2475 .merge_bio_hook
= btrfs_merge_bio_hook
,