x86: cpu/common*.c have same cpu_init(), with copying and #ifdef
[linux-2.6/mini2440.git] / arch / x86 / kernel / cpu / common_64.c
blob2bd0ed5abb0a608d2fcd8afac8010255ddb9d8c9
1 #include <linux/init.h>
2 #include <linux/kernel.h>
3 #include <linux/sched.h>
4 #include <linux/string.h>
5 #include <linux/bootmem.h>
6 #include <linux/bitops.h>
7 #include <linux/module.h>
8 #include <linux/kgdb.h>
9 #include <linux/topology.h>
10 #include <linux/delay.h>
11 #include <linux/smp.h>
12 #include <linux/percpu.h>
13 #include <asm/i387.h>
14 #include <asm/msr.h>
15 #include <asm/io.h>
16 #include <asm/linkage.h>
17 #include <asm/mmu_context.h>
18 #include <asm/mtrr.h>
19 #include <asm/mce.h>
20 #include <asm/pat.h>
21 #include <asm/asm.h>
22 #include <asm/numa.h>
23 #ifdef CONFIG_X86_LOCAL_APIC
24 #include <asm/mpspec.h>
25 #include <asm/apic.h>
26 #include <mach_apic.h>
27 #include <asm/genapic.h>
28 #endif
29 #include <asm/pda.h>
30 #include <asm/pgtable.h>
31 #include <asm/processor.h>
32 #include <asm/desc.h>
33 #include <asm/atomic.h>
34 #include <asm/proto.h>
35 #include <asm/sections.h>
36 #include <asm/setup.h>
38 #include "cpu.h"
40 static struct cpu_dev *this_cpu __cpuinitdata;
42 #ifdef CONFIG_X86_64
43 /* We need valid kernel segments for data and code in long mode too
44 * IRET will check the segment types kkeil 2000/10/28
45 * Also sysret mandates a special GDT layout
47 /* The TLS descriptors are currently at a different place compared to i386.
48 Hopefully nobody expects them at a fixed place (Wine?) */
49 DEFINE_PER_CPU(struct gdt_page, gdt_page) = { .gdt = {
50 [GDT_ENTRY_KERNEL32_CS] = { { { 0x0000ffff, 0x00cf9b00 } } },
51 [GDT_ENTRY_KERNEL_CS] = { { { 0x0000ffff, 0x00af9b00 } } },
52 [GDT_ENTRY_KERNEL_DS] = { { { 0x0000ffff, 0x00cf9300 } } },
53 [GDT_ENTRY_DEFAULT_USER32_CS] = { { { 0x0000ffff, 0x00cffb00 } } },
54 [GDT_ENTRY_DEFAULT_USER_DS] = { { { 0x0000ffff, 0x00cff300 } } },
55 [GDT_ENTRY_DEFAULT_USER_CS] = { { { 0x0000ffff, 0x00affb00 } } },
56 } };
57 #else
58 DEFINE_PER_CPU_PAGE_ALIGNED(struct gdt_page, gdt_page) = { .gdt = {
59 [GDT_ENTRY_KERNEL_CS] = { { { 0x0000ffff, 0x00cf9a00 } } },
60 [GDT_ENTRY_KERNEL_DS] = { { { 0x0000ffff, 0x00cf9200 } } },
61 [GDT_ENTRY_DEFAULT_USER_CS] = { { { 0x0000ffff, 0x00cffa00 } } },
62 [GDT_ENTRY_DEFAULT_USER_DS] = { { { 0x0000ffff, 0x00cff200 } } },
64 * Segments used for calling PnP BIOS have byte granularity.
65 * They code segments and data segments have fixed 64k limits,
66 * the transfer segment sizes are set at run time.
68 /* 32-bit code */
69 [GDT_ENTRY_PNPBIOS_CS32] = { { { 0x0000ffff, 0x00409a00 } } },
70 /* 16-bit code */
71 [GDT_ENTRY_PNPBIOS_CS16] = { { { 0x0000ffff, 0x00009a00 } } },
72 /* 16-bit data */
73 [GDT_ENTRY_PNPBIOS_DS] = { { { 0x0000ffff, 0x00009200 } } },
74 /* 16-bit data */
75 [GDT_ENTRY_PNPBIOS_TS1] = { { { 0x00000000, 0x00009200 } } },
76 /* 16-bit data */
77 [GDT_ENTRY_PNPBIOS_TS2] = { { { 0x00000000, 0x00009200 } } },
79 * The APM segments have byte granularity and their bases
80 * are set at run time. All have 64k limits.
82 /* 32-bit code */
83 [GDT_ENTRY_APMBIOS_BASE] = { { { 0x0000ffff, 0x00409a00 } } },
84 /* 16-bit code */
85 [GDT_ENTRY_APMBIOS_BASE+1] = { { { 0x0000ffff, 0x00009a00 } } },
86 /* data */
87 [GDT_ENTRY_APMBIOS_BASE+2] = { { { 0x0000ffff, 0x00409200 } } },
89 [GDT_ENTRY_ESPFIX_SS] = { { { 0x00000000, 0x00c09200 } } },
90 [GDT_ENTRY_PERCPU] = { { { 0x00000000, 0x00000000 } } },
91 } };
92 #endif
93 EXPORT_PER_CPU_SYMBOL_GPL(gdt_page);
95 #ifdef CONFIG_X86_32
96 static int cachesize_override __cpuinitdata = -1;
97 static int disable_x86_serial_nr __cpuinitdata = 1;
99 static int __init cachesize_setup(char *str)
101 get_option(&str, &cachesize_override);
102 return 1;
104 __setup("cachesize=", cachesize_setup);
107 * Naming convention should be: <Name> [(<Codename>)]
108 * This table only is used unless init_<vendor>() below doesn't set it;
109 * in particular, if CPUID levels 0x80000002..4 are supported, this isn't used
113 /* Look up CPU names by table lookup. */
114 static char __cpuinit *table_lookup_model(struct cpuinfo_x86 *c)
116 struct cpu_model_info *info;
118 if (c->x86_model >= 16)
119 return NULL; /* Range check */
121 if (!this_cpu)
122 return NULL;
124 info = this_cpu->c_models;
126 while (info && info->family) {
127 if (info->family == c->x86)
128 return info->model_names[c->x86_model];
129 info++;
131 return NULL; /* Not found */
134 static int __init x86_fxsr_setup(char *s)
136 setup_clear_cpu_cap(X86_FEATURE_FXSR);
137 setup_clear_cpu_cap(X86_FEATURE_XMM);
138 return 1;
140 __setup("nofxsr", x86_fxsr_setup);
142 static int __init x86_sep_setup(char *s)
144 setup_clear_cpu_cap(X86_FEATURE_SEP);
145 return 1;
147 __setup("nosep", x86_sep_setup);
149 /* Standard macro to see if a specific flag is changeable */
150 static inline int flag_is_changeable_p(u32 flag)
152 u32 f1, f2;
154 asm("pushfl\n\t"
155 "pushfl\n\t"
156 "popl %0\n\t"
157 "movl %0,%1\n\t"
158 "xorl %2,%0\n\t"
159 "pushl %0\n\t"
160 "popfl\n\t"
161 "pushfl\n\t"
162 "popl %0\n\t"
163 "popfl\n\t"
164 : "=&r" (f1), "=&r" (f2)
165 : "ir" (flag));
167 return ((f1^f2) & flag) != 0;
170 /* Probe for the CPUID instruction */
171 static int __cpuinit have_cpuid_p(void)
173 return flag_is_changeable_p(X86_EFLAGS_ID);
176 static void __cpuinit squash_the_stupid_serial_number(struct cpuinfo_x86 *c)
178 if (cpu_has(c, X86_FEATURE_PN) && disable_x86_serial_nr) {
179 /* Disable processor serial number */
180 unsigned long lo, hi;
181 rdmsr(MSR_IA32_BBL_CR_CTL, lo, hi);
182 lo |= 0x200000;
183 wrmsr(MSR_IA32_BBL_CR_CTL, lo, hi);
184 printk(KERN_NOTICE "CPU serial number disabled.\n");
185 clear_cpu_cap(c, X86_FEATURE_PN);
187 /* Disabling the serial number may affect the cpuid level */
188 c->cpuid_level = cpuid_eax(0);
192 static int __init x86_serial_nr_setup(char *s)
194 disable_x86_serial_nr = 0;
195 return 1;
197 __setup("serialnumber", x86_serial_nr_setup);
198 #else
199 /* Probe for the CPUID instruction */
200 static inline int have_cpuid_p(void)
202 return 1;
204 #endif
206 __u32 cleared_cpu_caps[NCAPINTS] __cpuinitdata;
208 /* Current gdt points %fs at the "master" per-cpu area: after this,
209 * it's on the real one. */
210 void switch_to_new_gdt(void)
212 struct desc_ptr gdt_descr;
214 gdt_descr.address = (long)get_cpu_gdt_table(smp_processor_id());
215 gdt_descr.size = GDT_SIZE - 1;
216 load_gdt(&gdt_descr);
219 static struct cpu_dev *cpu_devs[X86_VENDOR_NUM] = {};
221 static void __cpuinit default_init(struct cpuinfo_x86 *c)
223 display_cacheinfo(c);
226 static struct cpu_dev __cpuinitdata default_cpu = {
227 .c_init = default_init,
228 .c_vendor = "Unknown",
229 .c_x86_vendor = X86_VENDOR_UNKNOWN,
232 int __cpuinit get_model_name(struct cpuinfo_x86 *c)
234 unsigned int *v;
235 char *p, *q;
237 if (c->extended_cpuid_level < 0x80000004)
238 return 0;
240 v = (unsigned int *) c->x86_model_id;
241 cpuid(0x80000002, &v[0], &v[1], &v[2], &v[3]);
242 cpuid(0x80000003, &v[4], &v[5], &v[6], &v[7]);
243 cpuid(0x80000004, &v[8], &v[9], &v[10], &v[11]);
244 c->x86_model_id[48] = 0;
246 /* Intel chips right-justify this string for some dumb reason;
247 undo that brain damage */
248 p = q = &c->x86_model_id[0];
249 while (*p == ' ')
250 p++;
251 if (p != q) {
252 while (*p)
253 *q++ = *p++;
254 while (q <= &c->x86_model_id[48])
255 *q++ = '\0'; /* Zero-pad the rest */
258 return 1;
262 void __cpuinit display_cacheinfo(struct cpuinfo_x86 *c)
264 unsigned int n, dummy, ebx, ecx, edx, l2size;
266 n = c->extended_cpuid_level;
268 if (n >= 0x80000005) {
269 cpuid(0x80000005, &dummy, &ebx, &ecx, &edx);
270 printk(KERN_INFO "CPU: L1 I Cache: %dK (%d bytes/line), D cache %dK (%d bytes/line)\n",
271 edx>>24, edx&0xFF, ecx>>24, ecx&0xFF);
272 c->x86_cache_size = (ecx>>24) + (edx>>24);
273 /* On K8 L1 TLB is inclusive, so don't count it */
274 c->x86_tlbsize = 0;
277 if (n < 0x80000006) /* Some chips just has a large L1. */
278 return;
280 cpuid(0x80000006, &dummy, &ebx, &ecx, &edx);
281 l2size = ecx >> 16;
282 c->x86_tlbsize += ((ebx >> 16) & 0xfff) + (ebx & 0xfff);
284 c->x86_cache_size = l2size;
286 printk(KERN_INFO "CPU: L2 Cache: %dK (%d bytes/line)\n",
287 l2size, ecx & 0xFF);
290 void __cpuinit detect_ht(struct cpuinfo_x86 *c)
292 #ifdef CONFIG_X86_HT
293 u32 eax, ebx, ecx, edx;
294 int index_msb, core_bits;
296 if (!cpu_has(c, X86_FEATURE_HT))
297 return;
298 if (cpu_has(c, X86_FEATURE_CMP_LEGACY))
299 goto out;
301 if (cpu_has(c, X86_FEATURE_XTOPOLOGY))
302 return;
304 cpuid(1, &eax, &ebx, &ecx, &edx);
306 smp_num_siblings = (ebx & 0xff0000) >> 16;
308 if (smp_num_siblings == 1) {
309 printk(KERN_INFO "CPU: Hyper-Threading is disabled\n");
310 } else if (smp_num_siblings > 1) {
312 if (smp_num_siblings > NR_CPUS) {
313 printk(KERN_WARNING "CPU: Unsupported number of siblings %d",
314 smp_num_siblings);
315 smp_num_siblings = 1;
316 return;
319 index_msb = get_count_order(smp_num_siblings);
320 c->phys_proc_id = phys_pkg_id(index_msb);
322 smp_num_siblings = smp_num_siblings / c->x86_max_cores;
324 index_msb = get_count_order(smp_num_siblings);
326 core_bits = get_count_order(c->x86_max_cores);
328 c->cpu_core_id = phys_pkg_id(index_msb) &
329 ((1 << core_bits) - 1);
332 out:
333 if ((c->x86_max_cores * smp_num_siblings) > 1) {
334 printk(KERN_INFO "CPU: Physical Processor ID: %d\n",
335 c->phys_proc_id);
336 printk(KERN_INFO "CPU: Processor Core ID: %d\n",
337 c->cpu_core_id);
339 #endif
342 static void __cpuinit get_cpu_vendor(struct cpuinfo_x86 *c)
344 char *v = c->x86_vendor_id;
345 int i;
346 static int printed;
348 for (i = 0; i < X86_VENDOR_NUM; i++) {
349 if (!cpu_devs[i])
350 break;
352 if (!strcmp(v, cpu_devs[i]->c_ident[0]) ||
353 (cpu_devs[i]->c_ident[1] &&
354 !strcmp(v, cpu_devs[i]->c_ident[1]))) {
355 this_cpu = cpu_devs[i];
356 c->x86_vendor = this_cpu->c_x86_vendor;
357 return;
361 if (!printed) {
362 printed++;
363 printk(KERN_ERR "CPU: Vendor unknown, using generic init.\n");
364 printk(KERN_ERR "CPU: Your system may be unstable.\n");
367 c->x86_vendor = X86_VENDOR_UNKNOWN;
368 this_cpu = &default_cpu;
371 void __cpuinit cpu_detect(struct cpuinfo_x86 *c)
373 /* Get vendor name */
374 cpuid(0x00000000, (unsigned int *)&c->cpuid_level,
375 (unsigned int *)&c->x86_vendor_id[0],
376 (unsigned int *)&c->x86_vendor_id[8],
377 (unsigned int *)&c->x86_vendor_id[4]);
379 c->x86 = 4;
380 /* Intel-defined flags: level 0x00000001 */
381 if (c->cpuid_level >= 0x00000001) {
382 u32 junk, tfms, cap0, misc;
383 cpuid(0x00000001, &tfms, &misc, &junk, &cap0);
384 c->x86 = (tfms >> 8) & 0xf;
385 c->x86_model = (tfms >> 4) & 0xf;
386 c->x86_mask = tfms & 0xf;
387 if (c->x86 == 0xf)
388 c->x86 += (tfms >> 20) & 0xff;
389 if (c->x86 >= 0x6)
390 c->x86_model += ((tfms >> 16) & 0xf) << 4;
391 if (cap0 & (1<<19)) {
392 c->x86_clflush_size = ((misc >> 8) & 0xff) * 8;
393 c->x86_cache_alignment = c->x86_clflush_size;
399 static void __cpuinit get_cpu_cap(struct cpuinfo_x86 *c)
401 u32 tfms, xlvl;
402 u32 ebx;
404 /* Intel-defined flags: level 0x00000001 */
405 if (c->cpuid_level >= 0x00000001) {
406 u32 capability, excap;
408 cpuid(0x00000001, &tfms, &ebx, &excap, &capability);
409 c->x86_capability[0] = capability;
410 c->x86_capability[4] = excap;
413 /* AMD-defined flags: level 0x80000001 */
414 xlvl = cpuid_eax(0x80000000);
415 c->extended_cpuid_level = xlvl;
416 if ((xlvl & 0xffff0000) == 0x80000000) {
417 if (xlvl >= 0x80000001) {
418 c->x86_capability[1] = cpuid_edx(0x80000001);
419 c->x86_capability[6] = cpuid_ecx(0x80000001);
423 /* Transmeta-defined flags: level 0x80860001 */
424 xlvl = cpuid_eax(0x80860000);
425 if ((xlvl & 0xffff0000) == 0x80860000) {
426 /* Don't set x86_cpuid_level here for now to not confuse. */
427 if (xlvl >= 0x80860001)
428 c->x86_capability[2] = cpuid_edx(0x80860001);
431 if (c->extended_cpuid_level >= 0x80000007)
432 c->x86_power = cpuid_edx(0x80000007);
434 if (c->extended_cpuid_level >= 0x80000008) {
435 u32 eax = cpuid_eax(0x80000008);
437 c->x86_virt_bits = (eax >> 8) & 0xff;
438 c->x86_phys_bits = eax & 0xff;
442 /* Do some early cpuid on the boot CPU to get some parameter that are
443 needed before check_bugs. Everything advanced is in identify_cpu
444 below. */
445 static void __init early_identify_cpu(struct cpuinfo_x86 *c)
448 c->x86_clflush_size = 64;
449 c->x86_cache_alignment = c->x86_clflush_size;
451 memset(&c->x86_capability, 0, sizeof c->x86_capability);
453 c->extended_cpuid_level = 0;
455 cpu_detect(c);
457 get_cpu_vendor(c);
459 get_cpu_cap(c);
461 if (this_cpu->c_early_init)
462 this_cpu->c_early_init(c);
464 validate_pat_support(c);
467 void __init early_cpu_init(void)
469 struct cpu_dev **cdev;
470 int count = 0;
472 printk("KERNEL supported cpus:\n");
473 for (cdev = __x86_cpu_dev_start; cdev < __x86_cpu_dev_end; cdev++) {
474 struct cpu_dev *cpudev = *cdev;
475 unsigned int j;
477 if (count >= X86_VENDOR_NUM)
478 break;
479 cpu_devs[count] = cpudev;
480 count++;
482 for (j = 0; j < 2; j++) {
483 if (!cpudev->c_ident[j])
484 continue;
485 printk(" %s %s\n", cpudev->c_vendor,
486 cpudev->c_ident[j]);
490 early_identify_cpu(&boot_cpu_data);
494 * The NOPL instruction is supposed to exist on all CPUs with
495 * family >= 6, unfortunately, that's not true in practice because
496 * of early VIA chips and (more importantly) broken virtualizers that
497 * are not easy to detect. Hence, probe for it based on first
498 * principles.
500 * Note: no 64-bit chip is known to lack these, but put the code here
501 * for consistency with 32 bits, and to make it utterly trivial to
502 * diagnose the problem should it ever surface.
504 static void __cpuinit detect_nopl(struct cpuinfo_x86 *c)
506 const u32 nopl_signature = 0x888c53b1; /* Random number */
507 u32 has_nopl = nopl_signature;
509 clear_cpu_cap(c, X86_FEATURE_NOPL);
510 if (c->x86 >= 6) {
511 asm volatile("\n"
512 "1: .byte 0x0f,0x1f,0xc0\n" /* nopl %eax */
513 "2:\n"
514 " .section .fixup,\"ax\"\n"
515 "3: xor %0,%0\n"
516 " jmp 2b\n"
517 " .previous\n"
518 _ASM_EXTABLE(1b,3b)
519 : "+a" (has_nopl));
521 if (has_nopl == nopl_signature)
522 set_cpu_cap(c, X86_FEATURE_NOPL);
526 static void __cpuinit generic_identify(struct cpuinfo_x86 *c)
528 c->extended_cpuid_level = 0;
530 cpu_detect(c);
532 get_cpu_vendor(c);
534 get_cpu_cap(c);
536 c->initial_apicid = (cpuid_ebx(1) >> 24) & 0xff;
537 #ifdef CONFIG_SMP
538 c->phys_proc_id = c->initial_apicid;
539 #endif
541 if (c->extended_cpuid_level >= 0x80000004)
542 get_model_name(c); /* Default name */
544 init_scattered_cpuid_features(c);
545 detect_nopl(c);
549 * This does the hard work of actually picking apart the CPU stuff...
551 static void __cpuinit identify_cpu(struct cpuinfo_x86 *c)
553 int i;
555 c->loops_per_jiffy = loops_per_jiffy;
556 c->x86_cache_size = -1;
557 c->x86_vendor = X86_VENDOR_UNKNOWN;
558 c->x86_model = c->x86_mask = 0; /* So far unknown... */
559 c->x86_vendor_id[0] = '\0'; /* Unset */
560 c->x86_model_id[0] = '\0'; /* Unset */
561 c->x86_max_cores = 1;
562 c->x86_coreid_bits = 0;
563 c->x86_clflush_size = 64;
564 c->x86_cache_alignment = c->x86_clflush_size;
565 memset(&c->x86_capability, 0, sizeof c->x86_capability);
567 generic_identify(c);
569 c->apicid = phys_pkg_id(0);
572 * Vendor-specific initialization. In this section we
573 * canonicalize the feature flags, meaning if there are
574 * features a certain CPU supports which CPUID doesn't
575 * tell us, CPUID claiming incorrect flags, or other bugs,
576 * we handle them here.
578 * At the end of this section, c->x86_capability better
579 * indicate the features this CPU genuinely supports!
581 if (this_cpu->c_init)
582 this_cpu->c_init(c);
584 detect_ht(c);
587 * On SMP, boot_cpu_data holds the common feature set between
588 * all CPUs; so make sure that we indicate which features are
589 * common between the CPUs. The first time this routine gets
590 * executed, c == &boot_cpu_data.
592 if (c != &boot_cpu_data) {
593 /* AND the already accumulated flags with these */
594 for (i = 0; i < NCAPINTS; i++)
595 boot_cpu_data.x86_capability[i] &= c->x86_capability[i];
598 /* Clear all flags overriden by options */
599 for (i = 0; i < NCAPINTS; i++)
600 c->x86_capability[i] &= ~cleared_cpu_caps[i];
602 #ifdef CONFIG_X86_MCE
603 mcheck_init(c);
604 #endif
605 select_idle_routine(c);
607 #ifdef CONFIG_NUMA
608 numa_add_cpu(smp_processor_id());
609 #endif
613 void __init identify_boot_cpu(void)
615 identify_cpu(&boot_cpu_data);
618 void __cpuinit identify_secondary_cpu(struct cpuinfo_x86 *c)
620 BUG_ON(c == &boot_cpu_data);
621 identify_cpu(c);
622 mtrr_ap_init();
625 struct msr_range {
626 unsigned min;
627 unsigned max;
630 static struct msr_range msr_range_array[] __cpuinitdata = {
631 { 0x00000000, 0x00000418},
632 { 0xc0000000, 0xc000040b},
633 { 0xc0010000, 0xc0010142},
634 { 0xc0011000, 0xc001103b},
637 static void __cpuinit print_cpu_msr(void)
639 unsigned index;
640 u64 val;
641 int i;
642 unsigned index_min, index_max;
644 for (i = 0; i < ARRAY_SIZE(msr_range_array); i++) {
645 index_min = msr_range_array[i].min;
646 index_max = msr_range_array[i].max;
647 for (index = index_min; index < index_max; index++) {
648 if (rdmsrl_amd_safe(index, &val))
649 continue;
650 printk(KERN_INFO " MSR%08x: %016llx\n", index, val);
655 static int show_msr __cpuinitdata;
656 static __init int setup_show_msr(char *arg)
658 int num;
660 get_option(&arg, &num);
662 if (num > 0)
663 show_msr = num;
664 return 1;
666 __setup("show_msr=", setup_show_msr);
668 static __init int setup_noclflush(char *arg)
670 setup_clear_cpu_cap(X86_FEATURE_CLFLSH);
671 return 1;
673 __setup("noclflush", setup_noclflush);
675 void __cpuinit print_cpu_info(struct cpuinfo_x86 *c)
677 if (c->x86_model_id[0])
678 printk(KERN_CONT "%s", c->x86_model_id);
680 if (c->x86_mask || c->cpuid_level >= 0)
681 printk(KERN_CONT " stepping %02x\n", c->x86_mask);
682 else
683 printk(KERN_CONT "\n");
685 #ifdef CONFIG_SMP
686 if (c->cpu_index < show_msr)
687 print_cpu_msr();
688 #else
689 if (show_msr)
690 print_cpu_msr();
691 #endif
694 static __init int setup_disablecpuid(char *arg)
696 int bit;
697 if (get_option(&arg, &bit) && bit < NCAPINTS*32)
698 setup_clear_cpu_cap(bit);
699 else
700 return 0;
701 return 1;
703 __setup("clearcpuid=", setup_disablecpuid);
705 cpumask_t cpu_initialized __cpuinitdata = CPU_MASK_NONE;
707 #ifdef CONFIG_X86_64
708 struct x8664_pda **_cpu_pda __read_mostly;
709 EXPORT_SYMBOL(_cpu_pda);
711 struct desc_ptr idt_descr = { 256 * 16 - 1, (unsigned long) idt_table };
713 char boot_cpu_stack[IRQSTACKSIZE] __page_aligned_bss;
715 unsigned long __supported_pte_mask __read_mostly = ~0UL;
716 EXPORT_SYMBOL_GPL(__supported_pte_mask);
718 static int do_not_nx __cpuinitdata;
720 /* noexec=on|off
721 Control non executable mappings for 64bit processes.
723 on Enable(default)
724 off Disable
726 static int __init nonx_setup(char *str)
728 if (!str)
729 return -EINVAL;
730 if (!strncmp(str, "on", 2)) {
731 __supported_pte_mask |= _PAGE_NX;
732 do_not_nx = 0;
733 } else if (!strncmp(str, "off", 3)) {
734 do_not_nx = 1;
735 __supported_pte_mask &= ~_PAGE_NX;
737 return 0;
739 early_param("noexec", nonx_setup);
741 int force_personality32;
743 /* noexec32=on|off
744 Control non executable heap for 32bit processes.
745 To control the stack too use noexec=off
747 on PROT_READ does not imply PROT_EXEC for 32bit processes (default)
748 off PROT_READ implies PROT_EXEC
750 static int __init nonx32_setup(char *str)
752 if (!strcmp(str, "on"))
753 force_personality32 &= ~READ_IMPLIES_EXEC;
754 else if (!strcmp(str, "off"))
755 force_personality32 |= READ_IMPLIES_EXEC;
756 return 1;
758 __setup("noexec32=", nonx32_setup);
760 void pda_init(int cpu)
762 struct x8664_pda *pda = cpu_pda(cpu);
764 /* Setup up data that may be needed in __get_free_pages early */
765 loadsegment(fs, 0);
766 loadsegment(gs, 0);
767 /* Memory clobbers used to order PDA accessed */
768 mb();
769 wrmsrl(MSR_GS_BASE, pda);
770 mb();
772 pda->cpunumber = cpu;
773 pda->irqcount = -1;
774 pda->kernelstack = (unsigned long)stack_thread_info() -
775 PDA_STACKOFFSET + THREAD_SIZE;
776 pda->active_mm = &init_mm;
777 pda->mmu_state = 0;
779 if (cpu == 0) {
780 /* others are initialized in smpboot.c */
781 pda->pcurrent = &init_task;
782 pda->irqstackptr = boot_cpu_stack;
783 pda->irqstackptr += IRQSTACKSIZE - 64;
784 } else {
785 if (!pda->irqstackptr) {
786 pda->irqstackptr = (char *)
787 __get_free_pages(GFP_ATOMIC, IRQSTACK_ORDER);
788 if (!pda->irqstackptr)
789 panic("cannot allocate irqstack for cpu %d",
790 cpu);
791 pda->irqstackptr += IRQSTACKSIZE - 64;
794 if (pda->nodenumber == 0 && cpu_to_node(cpu) != NUMA_NO_NODE)
795 pda->nodenumber = cpu_to_node(cpu);
799 char boot_exception_stacks[(N_EXCEPTION_STACKS - 1) * EXCEPTION_STKSZ +
800 DEBUG_STKSZ] __page_aligned_bss;
802 extern asmlinkage void ignore_sysret(void);
804 /* May not be marked __init: used by software suspend */
805 void syscall_init(void)
808 * LSTAR and STAR live in a bit strange symbiosis.
809 * They both write to the same internal register. STAR allows to
810 * set CS/DS but only a 32bit target. LSTAR sets the 64bit rip.
812 wrmsrl(MSR_STAR, ((u64)__USER32_CS)<<48 | ((u64)__KERNEL_CS)<<32);
813 wrmsrl(MSR_LSTAR, system_call);
814 wrmsrl(MSR_CSTAR, ignore_sysret);
816 #ifdef CONFIG_IA32_EMULATION
817 syscall32_cpu_init();
818 #endif
820 /* Flags to clear on syscall */
821 wrmsrl(MSR_SYSCALL_MASK,
822 X86_EFLAGS_TF|X86_EFLAGS_DF|X86_EFLAGS_IF|X86_EFLAGS_IOPL);
825 void __cpuinit check_efer(void)
827 unsigned long efer;
829 rdmsrl(MSR_EFER, efer);
830 if (!(efer & EFER_NX) || do_not_nx)
831 __supported_pte_mask &= ~_PAGE_NX;
834 unsigned long kernel_eflags;
837 * Copies of the original ist values from the tss are only accessed during
838 * debugging, no special alignment required.
840 DEFINE_PER_CPU(struct orig_ist, orig_ist);
842 #else
844 /* Make sure %fs is initialized properly in idle threads */
845 struct pt_regs * __cpuinit idle_regs(struct pt_regs *regs)
847 memset(regs, 0, sizeof(struct pt_regs));
848 regs->fs = __KERNEL_PERCPU;
849 return regs;
851 #endif
854 * cpu_init() initializes state that is per-CPU. Some data is already
855 * initialized (naturally) in the bootstrap process, such as the GDT
856 * and IDT. We reload them nevertheless, this function acts as a
857 * 'CPU state barrier', nothing should get across.
858 * A lot of state is already set up in PDA init for 64 bit
860 #ifdef CONFIG_X86_64
861 void __cpuinit cpu_init(void)
863 int cpu = stack_smp_processor_id();
864 struct tss_struct *t = &per_cpu(init_tss, cpu);
865 struct orig_ist *orig_ist = &per_cpu(orig_ist, cpu);
866 unsigned long v;
867 char *estacks = NULL;
868 struct task_struct *me;
869 int i;
871 /* CPU 0 is initialised in head64.c */
872 if (cpu != 0)
873 pda_init(cpu);
874 else
875 estacks = boot_exception_stacks;
877 me = current;
879 if (cpu_test_and_set(cpu, cpu_initialized))
880 panic("CPU#%d already initialized!\n", cpu);
882 printk(KERN_INFO "Initializing CPU#%d\n", cpu);
884 clear_in_cr4(X86_CR4_VME|X86_CR4_PVI|X86_CR4_TSD|X86_CR4_DE);
887 * Initialize the per-CPU GDT with the boot GDT,
888 * and set up the GDT descriptor:
891 switch_to_new_gdt();
892 load_idt((const struct desc_ptr *)&idt_descr);
894 memset(me->thread.tls_array, 0, GDT_ENTRY_TLS_ENTRIES * 8);
895 syscall_init();
897 wrmsrl(MSR_FS_BASE, 0);
898 wrmsrl(MSR_KERNEL_GS_BASE, 0);
899 barrier();
901 check_efer();
902 if (cpu != 0 && x2apic)
903 enable_x2apic();
906 * set up and load the per-CPU TSS
908 if (!orig_ist->ist[0]) {
909 static const unsigned int order[N_EXCEPTION_STACKS] = {
910 [0 ... N_EXCEPTION_STACKS - 1] = EXCEPTION_STACK_ORDER,
911 [DEBUG_STACK - 1] = DEBUG_STACK_ORDER
913 for (v = 0; v < N_EXCEPTION_STACKS; v++) {
914 if (cpu) {
915 estacks = (char *)__get_free_pages(GFP_ATOMIC, order[v]);
916 if (!estacks)
917 panic("Cannot allocate exception "
918 "stack %ld %d\n", v, cpu);
920 estacks += PAGE_SIZE << order[v];
921 orig_ist->ist[v] = t->x86_tss.ist[v] =
922 (unsigned long)estacks;
926 t->x86_tss.io_bitmap_base = offsetof(struct tss_struct, io_bitmap);
928 * <= is required because the CPU will access up to
929 * 8 bits beyond the end of the IO permission bitmap.
931 for (i = 0; i <= IO_BITMAP_LONGS; i++)
932 t->io_bitmap[i] = ~0UL;
934 atomic_inc(&init_mm.mm_count);
935 me->active_mm = &init_mm;
936 if (me->mm)
937 BUG();
938 enter_lazy_tlb(&init_mm, me);
940 load_sp0(t, &current->thread);
941 set_tss_desc(cpu, t);
942 load_TR_desc();
943 load_LDT(&init_mm.context);
945 #ifdef CONFIG_KGDB
947 * If the kgdb is connected no debug regs should be altered. This
948 * is only applicable when KGDB and a KGDB I/O module are built
949 * into the kernel and you are using early debugging with
950 * kgdbwait. KGDB will control the kernel HW breakpoint registers.
952 if (kgdb_connected && arch_kgdb_ops.correct_hw_break)
953 arch_kgdb_ops.correct_hw_break();
954 else {
955 #endif
957 * Clear all 6 debug registers:
960 set_debugreg(0UL, 0);
961 set_debugreg(0UL, 1);
962 set_debugreg(0UL, 2);
963 set_debugreg(0UL, 3);
964 set_debugreg(0UL, 6);
965 set_debugreg(0UL, 7);
966 #ifdef CONFIG_KGDB
967 /* If the kgdb is connected no debug regs should be altered. */
969 #endif
971 fpu_init();
973 raw_local_save_flags(kernel_eflags);
975 if (is_uv_system())
976 uv_cpu_init();
979 #else
981 void __cpuinit cpu_init(void)
983 int cpu = smp_processor_id();
984 struct task_struct *curr = current;
985 struct tss_struct *t = &per_cpu(init_tss, cpu);
986 struct thread_struct *thread = &curr->thread;
988 if (cpu_test_and_set(cpu, cpu_initialized)) {
989 printk(KERN_WARNING "CPU#%d already initialized!\n", cpu);
990 for (;;) local_irq_enable();
993 printk(KERN_INFO "Initializing CPU#%d\n", cpu);
995 if (cpu_has_vme || cpu_has_tsc || cpu_has_de)
996 clear_in_cr4(X86_CR4_VME|X86_CR4_PVI|X86_CR4_TSD|X86_CR4_DE);
998 load_idt(&idt_descr);
999 switch_to_new_gdt();
1002 * Set up and load the per-CPU TSS and LDT
1004 atomic_inc(&init_mm.mm_count);
1005 curr->active_mm = &init_mm;
1006 if (curr->mm)
1007 BUG();
1008 enter_lazy_tlb(&init_mm, curr);
1010 load_sp0(t, thread);
1011 set_tss_desc(cpu, t);
1012 load_TR_desc();
1013 load_LDT(&init_mm.context);
1015 #ifdef CONFIG_DOUBLEFAULT
1016 /* Set up doublefault TSS pointer in the GDT */
1017 __set_tss_desc(cpu, GDT_ENTRY_DOUBLEFAULT_TSS, &doublefault_tss);
1018 #endif
1020 /* Clear %gs. */
1021 asm volatile ("mov %0, %%gs" : : "r" (0));
1023 /* Clear all 6 debug registers: */
1024 set_debugreg(0, 0);
1025 set_debugreg(0, 1);
1026 set_debugreg(0, 2);
1027 set_debugreg(0, 3);
1028 set_debugreg(0, 6);
1029 set_debugreg(0, 7);
1032 * Force FPU initialization:
1034 if (cpu_has_xsave)
1035 current_thread_info()->status = TS_XSAVE;
1036 else
1037 current_thread_info()->status = 0;
1038 clear_used_math();
1039 mxcsr_feature_mask_init();
1042 * Boot processor to setup the FP and extended state context info.
1044 if (!smp_processor_id())
1045 init_thread_xstate();
1047 xsave_init();
1050 #ifdef CONFIG_HOTPLUG_CPU
1051 void __cpuinit cpu_uninit(void)
1053 int cpu = raw_smp_processor_id();
1054 cpu_clear(cpu, cpu_initialized);
1056 /* lazy TLB state */
1057 per_cpu(cpu_tlbstate, cpu).state = 0;
1058 per_cpu(cpu_tlbstate, cpu).active_mm = &init_mm;
1060 #endif
1062 #endif