4 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
8 * demand-loading started 01.12.91 - seems it is high on the list of
9 * things wanted, and it should be easy to implement. - Linus
13 * Ok, demand-loading was easy, shared pages a little bit tricker. Shared
14 * pages started 02.12.91, seems to work. - Linus.
16 * Tested sharing by executing about 30 /bin/sh: under the old kernel it
17 * would have taken more than the 6M I have free, but it worked well as
20 * Also corrected some "invalidate()"s - I wasn't doing enough of them.
24 * Real VM (paging to/from disk) started 18.12.91. Much more work and
25 * thought has to go into this. Oh, well..
26 * 19.12.91 - works, somewhat. Sometimes I get faults, don't know why.
27 * Found it. Everything seems to work now.
28 * 20.12.91 - Ok, making the swap-device changeable like the root.
32 * 05.04.94 - Multi-page memory management added for v1.1.
33 * Idea by Alex Bligh (alex@cconcepts.co.uk)
35 * 16.07.99 - Support of BIGMEM added by Gerhard Wichert, Siemens AG
36 * (Gerhard.Wichert@pdb.siemens.de)
38 * Aug/Sep 2004 Changed to four level page tables (Andi Kleen)
41 #include <linux/kernel_stat.h>
43 #include <linux/hugetlb.h>
44 #include <linux/mman.h>
45 #include <linux/swap.h>
46 #include <linux/highmem.h>
47 #include <linux/pagemap.h>
48 #include <linux/ksm.h>
49 #include <linux/rmap.h>
50 #include <linux/module.h>
51 #include <linux/delayacct.h>
52 #include <linux/init.h>
53 #include <linux/writeback.h>
54 #include <linux/memcontrol.h>
55 #include <linux/mmu_notifier.h>
56 #include <linux/kallsyms.h>
57 #include <linux/swapops.h>
58 #include <linux/elf.h>
61 #include <asm/pgalloc.h>
62 #include <asm/uaccess.h>
64 #include <asm/tlbflush.h>
65 #include <asm/pgtable.h>
69 #ifndef CONFIG_NEED_MULTIPLE_NODES
70 /* use the per-pgdat data instead for discontigmem - mbligh */
71 unsigned long max_mapnr
;
74 EXPORT_SYMBOL(max_mapnr
);
75 EXPORT_SYMBOL(mem_map
);
78 unsigned long num_physpages
;
80 * A number of key systems in x86 including ioremap() rely on the assumption
81 * that high_memory defines the upper bound on direct map memory, then end
82 * of ZONE_NORMAL. Under CONFIG_DISCONTIG this means that max_low_pfn and
83 * highstart_pfn must be the same; there must be no gap between ZONE_NORMAL
88 EXPORT_SYMBOL(num_physpages
);
89 EXPORT_SYMBOL(high_memory
);
92 * Randomize the address space (stacks, mmaps, brk, etc.).
94 * ( When CONFIG_COMPAT_BRK=y we exclude brk from randomization,
95 * as ancient (libc5 based) binaries can segfault. )
97 int randomize_va_space __read_mostly
=
98 #ifdef CONFIG_COMPAT_BRK
104 static int __init
disable_randmaps(char *s
)
106 randomize_va_space
= 0;
109 __setup("norandmaps", disable_randmaps
);
111 unsigned long zero_pfn __read_mostly
;
112 unsigned long highest_memmap_pfn __read_mostly
;
115 * CONFIG_MMU architectures set up ZERO_PAGE in their paging_init()
117 static int __init
init_zero_pfn(void)
119 zero_pfn
= page_to_pfn(ZERO_PAGE(0));
122 core_initcall(init_zero_pfn
);
125 * If a p?d_bad entry is found while walking page tables, report
126 * the error, before resetting entry to p?d_none. Usually (but
127 * very seldom) called out from the p?d_none_or_clear_bad macros.
130 void pgd_clear_bad(pgd_t
*pgd
)
136 void pud_clear_bad(pud_t
*pud
)
142 void pmd_clear_bad(pmd_t
*pmd
)
149 * Note: this doesn't free the actual pages themselves. That
150 * has been handled earlier when unmapping all the memory regions.
152 static void free_pte_range(struct mmu_gather
*tlb
, pmd_t
*pmd
,
155 pgtable_t token
= pmd_pgtable(*pmd
);
157 pte_free_tlb(tlb
, token
, addr
);
161 static inline void free_pmd_range(struct mmu_gather
*tlb
, pud_t
*pud
,
162 unsigned long addr
, unsigned long end
,
163 unsigned long floor
, unsigned long ceiling
)
170 pmd
= pmd_offset(pud
, addr
);
172 next
= pmd_addr_end(addr
, end
);
173 if (pmd_none_or_clear_bad(pmd
))
175 free_pte_range(tlb
, pmd
, addr
);
176 } while (pmd
++, addr
= next
, addr
!= end
);
186 if (end
- 1 > ceiling
- 1)
189 pmd
= pmd_offset(pud
, start
);
191 pmd_free_tlb(tlb
, pmd
, start
);
194 static inline void free_pud_range(struct mmu_gather
*tlb
, pgd_t
*pgd
,
195 unsigned long addr
, unsigned long end
,
196 unsigned long floor
, unsigned long ceiling
)
203 pud
= pud_offset(pgd
, addr
);
205 next
= pud_addr_end(addr
, end
);
206 if (pud_none_or_clear_bad(pud
))
208 free_pmd_range(tlb
, pud
, addr
, next
, floor
, ceiling
);
209 } while (pud
++, addr
= next
, addr
!= end
);
215 ceiling
&= PGDIR_MASK
;
219 if (end
- 1 > ceiling
- 1)
222 pud
= pud_offset(pgd
, start
);
224 pud_free_tlb(tlb
, pud
, start
);
228 * This function frees user-level page tables of a process.
230 * Must be called with pagetable lock held.
232 void free_pgd_range(struct mmu_gather
*tlb
,
233 unsigned long addr
, unsigned long end
,
234 unsigned long floor
, unsigned long ceiling
)
241 * The next few lines have given us lots of grief...
243 * Why are we testing PMD* at this top level? Because often
244 * there will be no work to do at all, and we'd prefer not to
245 * go all the way down to the bottom just to discover that.
247 * Why all these "- 1"s? Because 0 represents both the bottom
248 * of the address space and the top of it (using -1 for the
249 * top wouldn't help much: the masks would do the wrong thing).
250 * The rule is that addr 0 and floor 0 refer to the bottom of
251 * the address space, but end 0 and ceiling 0 refer to the top
252 * Comparisons need to use "end - 1" and "ceiling - 1" (though
253 * that end 0 case should be mythical).
255 * Wherever addr is brought up or ceiling brought down, we must
256 * be careful to reject "the opposite 0" before it confuses the
257 * subsequent tests. But what about where end is brought down
258 * by PMD_SIZE below? no, end can't go down to 0 there.
260 * Whereas we round start (addr) and ceiling down, by different
261 * masks at different levels, in order to test whether a table
262 * now has no other vmas using it, so can be freed, we don't
263 * bother to round floor or end up - the tests don't need that.
277 if (end
- 1 > ceiling
- 1)
283 pgd
= pgd_offset(tlb
->mm
, addr
);
285 next
= pgd_addr_end(addr
, end
);
286 if (pgd_none_or_clear_bad(pgd
))
288 free_pud_range(tlb
, pgd
, addr
, next
, floor
, ceiling
);
289 } while (pgd
++, addr
= next
, addr
!= end
);
292 void free_pgtables(struct mmu_gather
*tlb
, struct vm_area_struct
*vma
,
293 unsigned long floor
, unsigned long ceiling
)
296 struct vm_area_struct
*next
= vma
->vm_next
;
297 unsigned long addr
= vma
->vm_start
;
300 * Hide vma from rmap and truncate_pagecache before freeing
303 anon_vma_unlink(vma
);
304 unlink_file_vma(vma
);
306 if (is_vm_hugetlb_page(vma
)) {
307 hugetlb_free_pgd_range(tlb
, addr
, vma
->vm_end
,
308 floor
, next
? next
->vm_start
: ceiling
);
311 * Optimization: gather nearby vmas into one call down
313 while (next
&& next
->vm_start
<= vma
->vm_end
+ PMD_SIZE
314 && !is_vm_hugetlb_page(next
)) {
317 anon_vma_unlink(vma
);
318 unlink_file_vma(vma
);
320 free_pgd_range(tlb
, addr
, vma
->vm_end
,
321 floor
, next
? next
->vm_start
: ceiling
);
327 int __pte_alloc(struct mm_struct
*mm
, pmd_t
*pmd
, unsigned long address
)
329 pgtable_t
new = pte_alloc_one(mm
, address
);
334 * Ensure all pte setup (eg. pte page lock and page clearing) are
335 * visible before the pte is made visible to other CPUs by being
336 * put into page tables.
338 * The other side of the story is the pointer chasing in the page
339 * table walking code (when walking the page table without locking;
340 * ie. most of the time). Fortunately, these data accesses consist
341 * of a chain of data-dependent loads, meaning most CPUs (alpha
342 * being the notable exception) will already guarantee loads are
343 * seen in-order. See the alpha page table accessors for the
344 * smp_read_barrier_depends() barriers in page table walking code.
346 smp_wmb(); /* Could be smp_wmb__xxx(before|after)_spin_lock */
348 spin_lock(&mm
->page_table_lock
);
349 if (!pmd_present(*pmd
)) { /* Has another populated it ? */
351 pmd_populate(mm
, pmd
, new);
354 spin_unlock(&mm
->page_table_lock
);
360 int __pte_alloc_kernel(pmd_t
*pmd
, unsigned long address
)
362 pte_t
*new = pte_alloc_one_kernel(&init_mm
, address
);
366 smp_wmb(); /* See comment in __pte_alloc */
368 spin_lock(&init_mm
.page_table_lock
);
369 if (!pmd_present(*pmd
)) { /* Has another populated it ? */
370 pmd_populate_kernel(&init_mm
, pmd
, new);
373 spin_unlock(&init_mm
.page_table_lock
);
375 pte_free_kernel(&init_mm
, new);
379 static inline void add_mm_rss(struct mm_struct
*mm
, int file_rss
, int anon_rss
)
382 add_mm_counter(mm
, file_rss
, file_rss
);
384 add_mm_counter(mm
, anon_rss
, anon_rss
);
388 * This function is called to print an error when a bad pte
389 * is found. For example, we might have a PFN-mapped pte in
390 * a region that doesn't allow it.
392 * The calling function must still handle the error.
394 static void print_bad_pte(struct vm_area_struct
*vma
, unsigned long addr
,
395 pte_t pte
, struct page
*page
)
397 pgd_t
*pgd
= pgd_offset(vma
->vm_mm
, addr
);
398 pud_t
*pud
= pud_offset(pgd
, addr
);
399 pmd_t
*pmd
= pmd_offset(pud
, addr
);
400 struct address_space
*mapping
;
402 static unsigned long resume
;
403 static unsigned long nr_shown
;
404 static unsigned long nr_unshown
;
407 * Allow a burst of 60 reports, then keep quiet for that minute;
408 * or allow a steady drip of one report per second.
410 if (nr_shown
== 60) {
411 if (time_before(jiffies
, resume
)) {
417 "BUG: Bad page map: %lu messages suppressed\n",
424 resume
= jiffies
+ 60 * HZ
;
426 mapping
= vma
->vm_file
? vma
->vm_file
->f_mapping
: NULL
;
427 index
= linear_page_index(vma
, addr
);
430 "BUG: Bad page map in process %s pte:%08llx pmd:%08llx\n",
432 (long long)pte_val(pte
), (long long)pmd_val(*pmd
));
435 "page:%p flags:%p count:%d mapcount:%d mapping:%p index:%lx\n",
436 page
, (void *)page
->flags
, page_count(page
),
437 page_mapcount(page
), page
->mapping
, page
->index
);
440 "addr:%p vm_flags:%08lx anon_vma:%p mapping:%p index:%lx\n",
441 (void *)addr
, vma
->vm_flags
, vma
->anon_vma
, mapping
, index
);
443 * Choose text because data symbols depend on CONFIG_KALLSYMS_ALL=y
446 print_symbol(KERN_ALERT
"vma->vm_ops->fault: %s\n",
447 (unsigned long)vma
->vm_ops
->fault
);
448 if (vma
->vm_file
&& vma
->vm_file
->f_op
)
449 print_symbol(KERN_ALERT
"vma->vm_file->f_op->mmap: %s\n",
450 (unsigned long)vma
->vm_file
->f_op
->mmap
);
452 add_taint(TAINT_BAD_PAGE
);
455 static inline int is_cow_mapping(unsigned int flags
)
457 return (flags
& (VM_SHARED
| VM_MAYWRITE
)) == VM_MAYWRITE
;
461 static inline int is_zero_pfn(unsigned long pfn
)
463 return pfn
== zero_pfn
;
468 static inline unsigned long my_zero_pfn(unsigned long addr
)
475 * vm_normal_page -- This function gets the "struct page" associated with a pte.
477 * "Special" mappings do not wish to be associated with a "struct page" (either
478 * it doesn't exist, or it exists but they don't want to touch it). In this
479 * case, NULL is returned here. "Normal" mappings do have a struct page.
481 * There are 2 broad cases. Firstly, an architecture may define a pte_special()
482 * pte bit, in which case this function is trivial. Secondly, an architecture
483 * may not have a spare pte bit, which requires a more complicated scheme,
486 * A raw VM_PFNMAP mapping (ie. one that is not COWed) is always considered a
487 * special mapping (even if there are underlying and valid "struct pages").
488 * COWed pages of a VM_PFNMAP are always normal.
490 * The way we recognize COWed pages within VM_PFNMAP mappings is through the
491 * rules set up by "remap_pfn_range()": the vma will have the VM_PFNMAP bit
492 * set, and the vm_pgoff will point to the first PFN mapped: thus every special
493 * mapping will always honor the rule
495 * pfn_of_page == vma->vm_pgoff + ((addr - vma->vm_start) >> PAGE_SHIFT)
497 * And for normal mappings this is false.
499 * This restricts such mappings to be a linear translation from virtual address
500 * to pfn. To get around this restriction, we allow arbitrary mappings so long
501 * as the vma is not a COW mapping; in that case, we know that all ptes are
502 * special (because none can have been COWed).
505 * In order to support COW of arbitrary special mappings, we have VM_MIXEDMAP.
507 * VM_MIXEDMAP mappings can likewise contain memory with or without "struct
508 * page" backing, however the difference is that _all_ pages with a struct
509 * page (that is, those where pfn_valid is true) are refcounted and considered
510 * normal pages by the VM. The disadvantage is that pages are refcounted
511 * (which can be slower and simply not an option for some PFNMAP users). The
512 * advantage is that we don't have to follow the strict linearity rule of
513 * PFNMAP mappings in order to support COWable mappings.
516 #ifdef __HAVE_ARCH_PTE_SPECIAL
517 # define HAVE_PTE_SPECIAL 1
519 # define HAVE_PTE_SPECIAL 0
521 struct page
*vm_normal_page(struct vm_area_struct
*vma
, unsigned long addr
,
524 unsigned long pfn
= pte_pfn(pte
);
526 if (HAVE_PTE_SPECIAL
) {
527 if (likely(!pte_special(pte
)))
529 if (vma
->vm_flags
& (VM_PFNMAP
| VM_MIXEDMAP
))
531 if (!is_zero_pfn(pfn
))
532 print_bad_pte(vma
, addr
, pte
, NULL
);
536 /* !HAVE_PTE_SPECIAL case follows: */
538 if (unlikely(vma
->vm_flags
& (VM_PFNMAP
|VM_MIXEDMAP
))) {
539 if (vma
->vm_flags
& VM_MIXEDMAP
) {
545 off
= (addr
- vma
->vm_start
) >> PAGE_SHIFT
;
546 if (pfn
== vma
->vm_pgoff
+ off
)
548 if (!is_cow_mapping(vma
->vm_flags
))
553 if (is_zero_pfn(pfn
))
556 if (unlikely(pfn
> highest_memmap_pfn
)) {
557 print_bad_pte(vma
, addr
, pte
, NULL
);
562 * NOTE! We still have PageReserved() pages in the page tables.
563 * eg. VDSO mappings can cause them to exist.
566 return pfn_to_page(pfn
);
570 * copy one vm_area from one task to the other. Assumes the page tables
571 * already present in the new task to be cleared in the whole range
572 * covered by this vma.
576 copy_one_pte(struct mm_struct
*dst_mm
, struct mm_struct
*src_mm
,
577 pte_t
*dst_pte
, pte_t
*src_pte
, struct vm_area_struct
*vma
,
578 unsigned long addr
, int *rss
)
580 unsigned long vm_flags
= vma
->vm_flags
;
581 pte_t pte
= *src_pte
;
584 /* pte contains position in swap or file, so copy. */
585 if (unlikely(!pte_present(pte
))) {
586 if (!pte_file(pte
)) {
587 swp_entry_t entry
= pte_to_swp_entry(pte
);
589 swap_duplicate(entry
);
590 /* make sure dst_mm is on swapoff's mmlist. */
591 if (unlikely(list_empty(&dst_mm
->mmlist
))) {
592 spin_lock(&mmlist_lock
);
593 if (list_empty(&dst_mm
->mmlist
))
594 list_add(&dst_mm
->mmlist
,
596 spin_unlock(&mmlist_lock
);
598 if (is_write_migration_entry(entry
) &&
599 is_cow_mapping(vm_flags
)) {
601 * COW mappings require pages in both parent
602 * and child to be set to read.
604 make_migration_entry_read(&entry
);
605 pte
= swp_entry_to_pte(entry
);
606 set_pte_at(src_mm
, addr
, src_pte
, pte
);
613 * If it's a COW mapping, write protect it both
614 * in the parent and the child
616 if (is_cow_mapping(vm_flags
)) {
617 ptep_set_wrprotect(src_mm
, addr
, src_pte
);
618 pte
= pte_wrprotect(pte
);
622 * If it's a shared mapping, mark it clean in
625 if (vm_flags
& VM_SHARED
)
626 pte
= pte_mkclean(pte
);
627 pte
= pte_mkold(pte
);
629 page
= vm_normal_page(vma
, addr
, pte
);
633 rss
[PageAnon(page
)]++;
637 set_pte_at(dst_mm
, addr
, dst_pte
, pte
);
640 static int copy_pte_range(struct mm_struct
*dst_mm
, struct mm_struct
*src_mm
,
641 pmd_t
*dst_pmd
, pmd_t
*src_pmd
, struct vm_area_struct
*vma
,
642 unsigned long addr
, unsigned long end
)
644 pte_t
*orig_src_pte
, *orig_dst_pte
;
645 pte_t
*src_pte
, *dst_pte
;
646 spinlock_t
*src_ptl
, *dst_ptl
;
652 dst_pte
= pte_alloc_map_lock(dst_mm
, dst_pmd
, addr
, &dst_ptl
);
655 src_pte
= pte_offset_map_nested(src_pmd
, addr
);
656 src_ptl
= pte_lockptr(src_mm
, src_pmd
);
657 spin_lock_nested(src_ptl
, SINGLE_DEPTH_NESTING
);
658 orig_src_pte
= src_pte
;
659 orig_dst_pte
= dst_pte
;
660 arch_enter_lazy_mmu_mode();
664 * We are holding two locks at this point - either of them
665 * could generate latencies in another task on another CPU.
667 if (progress
>= 32) {
669 if (need_resched() ||
670 spin_needbreak(src_ptl
) || spin_needbreak(dst_ptl
))
673 if (pte_none(*src_pte
)) {
677 copy_one_pte(dst_mm
, src_mm
, dst_pte
, src_pte
, vma
, addr
, rss
);
679 } while (dst_pte
++, src_pte
++, addr
+= PAGE_SIZE
, addr
!= end
);
681 arch_leave_lazy_mmu_mode();
682 spin_unlock(src_ptl
);
683 pte_unmap_nested(orig_src_pte
);
684 add_mm_rss(dst_mm
, rss
[0], rss
[1]);
685 pte_unmap_unlock(orig_dst_pte
, dst_ptl
);
692 static inline int copy_pmd_range(struct mm_struct
*dst_mm
, struct mm_struct
*src_mm
,
693 pud_t
*dst_pud
, pud_t
*src_pud
, struct vm_area_struct
*vma
,
694 unsigned long addr
, unsigned long end
)
696 pmd_t
*src_pmd
, *dst_pmd
;
699 dst_pmd
= pmd_alloc(dst_mm
, dst_pud
, addr
);
702 src_pmd
= pmd_offset(src_pud
, addr
);
704 next
= pmd_addr_end(addr
, end
);
705 if (pmd_none_or_clear_bad(src_pmd
))
707 if (copy_pte_range(dst_mm
, src_mm
, dst_pmd
, src_pmd
,
710 } while (dst_pmd
++, src_pmd
++, addr
= next
, addr
!= end
);
714 static inline int copy_pud_range(struct mm_struct
*dst_mm
, struct mm_struct
*src_mm
,
715 pgd_t
*dst_pgd
, pgd_t
*src_pgd
, struct vm_area_struct
*vma
,
716 unsigned long addr
, unsigned long end
)
718 pud_t
*src_pud
, *dst_pud
;
721 dst_pud
= pud_alloc(dst_mm
, dst_pgd
, addr
);
724 src_pud
= pud_offset(src_pgd
, addr
);
726 next
= pud_addr_end(addr
, end
);
727 if (pud_none_or_clear_bad(src_pud
))
729 if (copy_pmd_range(dst_mm
, src_mm
, dst_pud
, src_pud
,
732 } while (dst_pud
++, src_pud
++, addr
= next
, addr
!= end
);
736 int copy_page_range(struct mm_struct
*dst_mm
, struct mm_struct
*src_mm
,
737 struct vm_area_struct
*vma
)
739 pgd_t
*src_pgd
, *dst_pgd
;
741 unsigned long addr
= vma
->vm_start
;
742 unsigned long end
= vma
->vm_end
;
746 * Don't copy ptes where a page fault will fill them correctly.
747 * Fork becomes much lighter when there are big shared or private
748 * readonly mappings. The tradeoff is that copy_page_range is more
749 * efficient than faulting.
751 if (!(vma
->vm_flags
& (VM_HUGETLB
|VM_NONLINEAR
|VM_PFNMAP
|VM_INSERTPAGE
))) {
756 if (is_vm_hugetlb_page(vma
))
757 return copy_hugetlb_page_range(dst_mm
, src_mm
, vma
);
759 if (unlikely(is_pfn_mapping(vma
))) {
761 * We do not free on error cases below as remove_vma
762 * gets called on error from higher level routine
764 ret
= track_pfn_vma_copy(vma
);
770 * We need to invalidate the secondary MMU mappings only when
771 * there could be a permission downgrade on the ptes of the
772 * parent mm. And a permission downgrade will only happen if
773 * is_cow_mapping() returns true.
775 if (is_cow_mapping(vma
->vm_flags
))
776 mmu_notifier_invalidate_range_start(src_mm
, addr
, end
);
779 dst_pgd
= pgd_offset(dst_mm
, addr
);
780 src_pgd
= pgd_offset(src_mm
, addr
);
782 next
= pgd_addr_end(addr
, end
);
783 if (pgd_none_or_clear_bad(src_pgd
))
785 if (unlikely(copy_pud_range(dst_mm
, src_mm
, dst_pgd
, src_pgd
,
790 } while (dst_pgd
++, src_pgd
++, addr
= next
, addr
!= end
);
792 if (is_cow_mapping(vma
->vm_flags
))
793 mmu_notifier_invalidate_range_end(src_mm
,
798 static unsigned long zap_pte_range(struct mmu_gather
*tlb
,
799 struct vm_area_struct
*vma
, pmd_t
*pmd
,
800 unsigned long addr
, unsigned long end
,
801 long *zap_work
, struct zap_details
*details
)
803 struct mm_struct
*mm
= tlb
->mm
;
809 pte
= pte_offset_map_lock(mm
, pmd
, addr
, &ptl
);
810 arch_enter_lazy_mmu_mode();
813 if (pte_none(ptent
)) {
818 (*zap_work
) -= PAGE_SIZE
;
820 if (pte_present(ptent
)) {
823 page
= vm_normal_page(vma
, addr
, ptent
);
824 if (unlikely(details
) && page
) {
826 * unmap_shared_mapping_pages() wants to
827 * invalidate cache without truncating:
828 * unmap shared but keep private pages.
830 if (details
->check_mapping
&&
831 details
->check_mapping
!= page
->mapping
)
834 * Each page->index must be checked when
835 * invalidating or truncating nonlinear.
837 if (details
->nonlinear_vma
&&
838 (page
->index
< details
->first_index
||
839 page
->index
> details
->last_index
))
842 ptent
= ptep_get_and_clear_full(mm
, addr
, pte
,
844 tlb_remove_tlb_entry(tlb
, pte
, addr
);
847 if (unlikely(details
) && details
->nonlinear_vma
848 && linear_page_index(details
->nonlinear_vma
,
849 addr
) != page
->index
)
850 set_pte_at(mm
, addr
, pte
,
851 pgoff_to_pte(page
->index
));
855 if (pte_dirty(ptent
))
856 set_page_dirty(page
);
857 if (pte_young(ptent
) &&
858 likely(!VM_SequentialReadHint(vma
)))
859 mark_page_accessed(page
);
862 page_remove_rmap(page
);
863 if (unlikely(page_mapcount(page
) < 0))
864 print_bad_pte(vma
, addr
, ptent
, page
);
865 tlb_remove_page(tlb
, page
);
869 * If details->check_mapping, we leave swap entries;
870 * if details->nonlinear_vma, we leave file entries.
872 if (unlikely(details
))
874 if (pte_file(ptent
)) {
875 if (unlikely(!(vma
->vm_flags
& VM_NONLINEAR
)))
876 print_bad_pte(vma
, addr
, ptent
, NULL
);
878 (unlikely(!free_swap_and_cache(pte_to_swp_entry(ptent
))))
879 print_bad_pte(vma
, addr
, ptent
, NULL
);
880 pte_clear_not_present_full(mm
, addr
, pte
, tlb
->fullmm
);
881 } while (pte
++, addr
+= PAGE_SIZE
, (addr
!= end
&& *zap_work
> 0));
883 add_mm_rss(mm
, file_rss
, anon_rss
);
884 arch_leave_lazy_mmu_mode();
885 pte_unmap_unlock(pte
- 1, ptl
);
890 static inline unsigned long zap_pmd_range(struct mmu_gather
*tlb
,
891 struct vm_area_struct
*vma
, pud_t
*pud
,
892 unsigned long addr
, unsigned long end
,
893 long *zap_work
, struct zap_details
*details
)
898 pmd
= pmd_offset(pud
, addr
);
900 next
= pmd_addr_end(addr
, end
);
901 if (pmd_none_or_clear_bad(pmd
)) {
905 next
= zap_pte_range(tlb
, vma
, pmd
, addr
, next
,
907 } while (pmd
++, addr
= next
, (addr
!= end
&& *zap_work
> 0));
912 static inline unsigned long zap_pud_range(struct mmu_gather
*tlb
,
913 struct vm_area_struct
*vma
, pgd_t
*pgd
,
914 unsigned long addr
, unsigned long end
,
915 long *zap_work
, struct zap_details
*details
)
920 pud
= pud_offset(pgd
, addr
);
922 next
= pud_addr_end(addr
, end
);
923 if (pud_none_or_clear_bad(pud
)) {
927 next
= zap_pmd_range(tlb
, vma
, pud
, addr
, next
,
929 } while (pud
++, addr
= next
, (addr
!= end
&& *zap_work
> 0));
934 static unsigned long unmap_page_range(struct mmu_gather
*tlb
,
935 struct vm_area_struct
*vma
,
936 unsigned long addr
, unsigned long end
,
937 long *zap_work
, struct zap_details
*details
)
942 if (details
&& !details
->check_mapping
&& !details
->nonlinear_vma
)
946 tlb_start_vma(tlb
, vma
);
947 pgd
= pgd_offset(vma
->vm_mm
, addr
);
949 next
= pgd_addr_end(addr
, end
);
950 if (pgd_none_or_clear_bad(pgd
)) {
954 next
= zap_pud_range(tlb
, vma
, pgd
, addr
, next
,
956 } while (pgd
++, addr
= next
, (addr
!= end
&& *zap_work
> 0));
957 tlb_end_vma(tlb
, vma
);
962 #ifdef CONFIG_PREEMPT
963 # define ZAP_BLOCK_SIZE (8 * PAGE_SIZE)
965 /* No preempt: go for improved straight-line efficiency */
966 # define ZAP_BLOCK_SIZE (1024 * PAGE_SIZE)
970 * unmap_vmas - unmap a range of memory covered by a list of vma's
971 * @tlbp: address of the caller's struct mmu_gather
972 * @vma: the starting vma
973 * @start_addr: virtual address at which to start unmapping
974 * @end_addr: virtual address at which to end unmapping
975 * @nr_accounted: Place number of unmapped pages in vm-accountable vma's here
976 * @details: details of nonlinear truncation or shared cache invalidation
978 * Returns the end address of the unmapping (restart addr if interrupted).
980 * Unmap all pages in the vma list.
982 * We aim to not hold locks for too long (for scheduling latency reasons).
983 * So zap pages in ZAP_BLOCK_SIZE bytecounts. This means we need to
984 * return the ending mmu_gather to the caller.
986 * Only addresses between `start' and `end' will be unmapped.
988 * The VMA list must be sorted in ascending virtual address order.
990 * unmap_vmas() assumes that the caller will flush the whole unmapped address
991 * range after unmap_vmas() returns. So the only responsibility here is to
992 * ensure that any thus-far unmapped pages are flushed before unmap_vmas()
993 * drops the lock and schedules.
995 unsigned long unmap_vmas(struct mmu_gather
**tlbp
,
996 struct vm_area_struct
*vma
, unsigned long start_addr
,
997 unsigned long end_addr
, unsigned long *nr_accounted
,
998 struct zap_details
*details
)
1000 long zap_work
= ZAP_BLOCK_SIZE
;
1001 unsigned long tlb_start
= 0; /* For tlb_finish_mmu */
1002 int tlb_start_valid
= 0;
1003 unsigned long start
= start_addr
;
1004 spinlock_t
*i_mmap_lock
= details
? details
->i_mmap_lock
: NULL
;
1005 int fullmm
= (*tlbp
)->fullmm
;
1006 struct mm_struct
*mm
= vma
->vm_mm
;
1008 mmu_notifier_invalidate_range_start(mm
, start_addr
, end_addr
);
1009 for ( ; vma
&& vma
->vm_start
< end_addr
; vma
= vma
->vm_next
) {
1012 start
= max(vma
->vm_start
, start_addr
);
1013 if (start
>= vma
->vm_end
)
1015 end
= min(vma
->vm_end
, end_addr
);
1016 if (end
<= vma
->vm_start
)
1019 if (vma
->vm_flags
& VM_ACCOUNT
)
1020 *nr_accounted
+= (end
- start
) >> PAGE_SHIFT
;
1022 if (unlikely(is_pfn_mapping(vma
)))
1023 untrack_pfn_vma(vma
, 0, 0);
1025 while (start
!= end
) {
1026 if (!tlb_start_valid
) {
1028 tlb_start_valid
= 1;
1031 if (unlikely(is_vm_hugetlb_page(vma
))) {
1033 * It is undesirable to test vma->vm_file as it
1034 * should be non-null for valid hugetlb area.
1035 * However, vm_file will be NULL in the error
1036 * cleanup path of do_mmap_pgoff. When
1037 * hugetlbfs ->mmap method fails,
1038 * do_mmap_pgoff() nullifies vma->vm_file
1039 * before calling this function to clean up.
1040 * Since no pte has actually been setup, it is
1041 * safe to do nothing in this case.
1044 unmap_hugepage_range(vma
, start
, end
, NULL
);
1045 zap_work
-= (end
- start
) /
1046 pages_per_huge_page(hstate_vma(vma
));
1051 start
= unmap_page_range(*tlbp
, vma
,
1052 start
, end
, &zap_work
, details
);
1055 BUG_ON(start
!= end
);
1059 tlb_finish_mmu(*tlbp
, tlb_start
, start
);
1061 if (need_resched() ||
1062 (i_mmap_lock
&& spin_needbreak(i_mmap_lock
))) {
1070 *tlbp
= tlb_gather_mmu(vma
->vm_mm
, fullmm
);
1071 tlb_start_valid
= 0;
1072 zap_work
= ZAP_BLOCK_SIZE
;
1076 mmu_notifier_invalidate_range_end(mm
, start_addr
, end_addr
);
1077 return start
; /* which is now the end (or restart) address */
1081 * zap_page_range - remove user pages in a given range
1082 * @vma: vm_area_struct holding the applicable pages
1083 * @address: starting address of pages to zap
1084 * @size: number of bytes to zap
1085 * @details: details of nonlinear truncation or shared cache invalidation
1087 unsigned long zap_page_range(struct vm_area_struct
*vma
, unsigned long address
,
1088 unsigned long size
, struct zap_details
*details
)
1090 struct mm_struct
*mm
= vma
->vm_mm
;
1091 struct mmu_gather
*tlb
;
1092 unsigned long end
= address
+ size
;
1093 unsigned long nr_accounted
= 0;
1096 tlb
= tlb_gather_mmu(mm
, 0);
1097 update_hiwater_rss(mm
);
1098 end
= unmap_vmas(&tlb
, vma
, address
, end
, &nr_accounted
, details
);
1100 tlb_finish_mmu(tlb
, address
, end
);
1105 * zap_vma_ptes - remove ptes mapping the vma
1106 * @vma: vm_area_struct holding ptes to be zapped
1107 * @address: starting address of pages to zap
1108 * @size: number of bytes to zap
1110 * This function only unmaps ptes assigned to VM_PFNMAP vmas.
1112 * The entire address range must be fully contained within the vma.
1114 * Returns 0 if successful.
1116 int zap_vma_ptes(struct vm_area_struct
*vma
, unsigned long address
,
1119 if (address
< vma
->vm_start
|| address
+ size
> vma
->vm_end
||
1120 !(vma
->vm_flags
& VM_PFNMAP
))
1122 zap_page_range(vma
, address
, size
, NULL
);
1125 EXPORT_SYMBOL_GPL(zap_vma_ptes
);
1128 * Do a quick page-table lookup for a single page.
1130 struct page
*follow_page(struct vm_area_struct
*vma
, unsigned long address
,
1139 struct mm_struct
*mm
= vma
->vm_mm
;
1141 page
= follow_huge_addr(mm
, address
, flags
& FOLL_WRITE
);
1142 if (!IS_ERR(page
)) {
1143 BUG_ON(flags
& FOLL_GET
);
1148 pgd
= pgd_offset(mm
, address
);
1149 if (pgd_none(*pgd
) || unlikely(pgd_bad(*pgd
)))
1152 pud
= pud_offset(pgd
, address
);
1155 if (pud_huge(*pud
)) {
1156 BUG_ON(flags
& FOLL_GET
);
1157 page
= follow_huge_pud(mm
, address
, pud
, flags
& FOLL_WRITE
);
1160 if (unlikely(pud_bad(*pud
)))
1163 pmd
= pmd_offset(pud
, address
);
1166 if (pmd_huge(*pmd
)) {
1167 BUG_ON(flags
& FOLL_GET
);
1168 page
= follow_huge_pmd(mm
, address
, pmd
, flags
& FOLL_WRITE
);
1171 if (unlikely(pmd_bad(*pmd
)))
1174 ptep
= pte_offset_map_lock(mm
, pmd
, address
, &ptl
);
1177 if (!pte_present(pte
))
1179 if ((flags
& FOLL_WRITE
) && !pte_write(pte
))
1182 page
= vm_normal_page(vma
, address
, pte
);
1183 if (unlikely(!page
)) {
1184 if ((flags
& FOLL_DUMP
) ||
1185 !is_zero_pfn(pte_pfn(pte
)))
1187 page
= pte_page(pte
);
1190 if (flags
& FOLL_GET
)
1192 if (flags
& FOLL_TOUCH
) {
1193 if ((flags
& FOLL_WRITE
) &&
1194 !pte_dirty(pte
) && !PageDirty(page
))
1195 set_page_dirty(page
);
1197 * pte_mkyoung() would be more correct here, but atomic care
1198 * is needed to avoid losing the dirty bit: it is easier to use
1199 * mark_page_accessed().
1201 mark_page_accessed(page
);
1204 pte_unmap_unlock(ptep
, ptl
);
1209 pte_unmap_unlock(ptep
, ptl
);
1210 return ERR_PTR(-EFAULT
);
1213 pte_unmap_unlock(ptep
, ptl
);
1219 * When core dumping an enormous anonymous area that nobody
1220 * has touched so far, we don't want to allocate unnecessary pages or
1221 * page tables. Return error instead of NULL to skip handle_mm_fault,
1222 * then get_dump_page() will return NULL to leave a hole in the dump.
1223 * But we can only make this optimization where a hole would surely
1224 * be zero-filled if handle_mm_fault() actually did handle it.
1226 if ((flags
& FOLL_DUMP
) &&
1227 (!vma
->vm_ops
|| !vma
->vm_ops
->fault
))
1228 return ERR_PTR(-EFAULT
);
1232 int __get_user_pages(struct task_struct
*tsk
, struct mm_struct
*mm
,
1233 unsigned long start
, int nr_pages
, unsigned int gup_flags
,
1234 struct page
**pages
, struct vm_area_struct
**vmas
)
1237 unsigned long vm_flags
;
1242 VM_BUG_ON(!!pages
!= !!(gup_flags
& FOLL_GET
));
1245 * Require read or write permissions.
1246 * If FOLL_FORCE is set, we only require the "MAY" flags.
1248 vm_flags
= (gup_flags
& FOLL_WRITE
) ?
1249 (VM_WRITE
| VM_MAYWRITE
) : (VM_READ
| VM_MAYREAD
);
1250 vm_flags
&= (gup_flags
& FOLL_FORCE
) ?
1251 (VM_MAYREAD
| VM_MAYWRITE
) : (VM_READ
| VM_WRITE
);
1255 struct vm_area_struct
*vma
;
1257 vma
= find_extend_vma(mm
, start
);
1258 if (!vma
&& in_gate_area(tsk
, start
)) {
1259 unsigned long pg
= start
& PAGE_MASK
;
1260 struct vm_area_struct
*gate_vma
= get_gate_vma(tsk
);
1266 /* user gate pages are read-only */
1267 if (gup_flags
& FOLL_WRITE
)
1268 return i
? : -EFAULT
;
1270 pgd
= pgd_offset_k(pg
);
1272 pgd
= pgd_offset_gate(mm
, pg
);
1273 BUG_ON(pgd_none(*pgd
));
1274 pud
= pud_offset(pgd
, pg
);
1275 BUG_ON(pud_none(*pud
));
1276 pmd
= pmd_offset(pud
, pg
);
1278 return i
? : -EFAULT
;
1279 pte
= pte_offset_map(pmd
, pg
);
1280 if (pte_none(*pte
)) {
1282 return i
? : -EFAULT
;
1285 struct page
*page
= vm_normal_page(gate_vma
, start
, *pte
);
1300 (vma
->vm_flags
& (VM_IO
| VM_PFNMAP
)) ||
1301 !(vm_flags
& vma
->vm_flags
))
1302 return i
? : -EFAULT
;
1304 if (is_vm_hugetlb_page(vma
)) {
1305 i
= follow_hugetlb_page(mm
, vma
, pages
, vmas
,
1306 &start
, &nr_pages
, i
, gup_flags
);
1312 unsigned int foll_flags
= gup_flags
;
1315 * If we have a pending SIGKILL, don't keep faulting
1316 * pages and potentially allocating memory.
1318 if (unlikely(fatal_signal_pending(current
)))
1319 return i
? i
: -ERESTARTSYS
;
1322 while (!(page
= follow_page(vma
, start
, foll_flags
))) {
1325 ret
= handle_mm_fault(mm
, vma
, start
,
1326 (foll_flags
& FOLL_WRITE
) ?
1327 FAULT_FLAG_WRITE
: 0);
1329 if (ret
& VM_FAULT_ERROR
) {
1330 if (ret
& VM_FAULT_OOM
)
1331 return i
? i
: -ENOMEM
;
1333 (VM_FAULT_HWPOISON
|VM_FAULT_SIGBUS
))
1334 return i
? i
: -EFAULT
;
1337 if (ret
& VM_FAULT_MAJOR
)
1343 * The VM_FAULT_WRITE bit tells us that
1344 * do_wp_page has broken COW when necessary,
1345 * even if maybe_mkwrite decided not to set
1346 * pte_write. We can thus safely do subsequent
1347 * page lookups as if they were reads. But only
1348 * do so when looping for pte_write is futile:
1349 * in some cases userspace may also be wanting
1350 * to write to the gotten user page, which a
1351 * read fault here might prevent (a readonly
1352 * page might get reCOWed by userspace write).
1354 if ((ret
& VM_FAULT_WRITE
) &&
1355 !(vma
->vm_flags
& VM_WRITE
))
1356 foll_flags
&= ~FOLL_WRITE
;
1361 return i
? i
: PTR_ERR(page
);
1365 flush_anon_page(vma
, page
, start
);
1366 flush_dcache_page(page
);
1373 } while (nr_pages
&& start
< vma
->vm_end
);
1379 * get_user_pages() - pin user pages in memory
1380 * @tsk: task_struct of target task
1381 * @mm: mm_struct of target mm
1382 * @start: starting user address
1383 * @nr_pages: number of pages from start to pin
1384 * @write: whether pages will be written to by the caller
1385 * @force: whether to force write access even if user mapping is
1386 * readonly. This will result in the page being COWed even
1387 * in MAP_SHARED mappings. You do not want this.
1388 * @pages: array that receives pointers to the pages pinned.
1389 * Should be at least nr_pages long. Or NULL, if caller
1390 * only intends to ensure the pages are faulted in.
1391 * @vmas: array of pointers to vmas corresponding to each page.
1392 * Or NULL if the caller does not require them.
1394 * Returns number of pages pinned. This may be fewer than the number
1395 * requested. If nr_pages is 0 or negative, returns 0. If no pages
1396 * were pinned, returns -errno. Each page returned must be released
1397 * with a put_page() call when it is finished with. vmas will only
1398 * remain valid while mmap_sem is held.
1400 * Must be called with mmap_sem held for read or write.
1402 * get_user_pages walks a process's page tables and takes a reference to
1403 * each struct page that each user address corresponds to at a given
1404 * instant. That is, it takes the page that would be accessed if a user
1405 * thread accesses the given user virtual address at that instant.
1407 * This does not guarantee that the page exists in the user mappings when
1408 * get_user_pages returns, and there may even be a completely different
1409 * page there in some cases (eg. if mmapped pagecache has been invalidated
1410 * and subsequently re faulted). However it does guarantee that the page
1411 * won't be freed completely. And mostly callers simply care that the page
1412 * contains data that was valid *at some point in time*. Typically, an IO
1413 * or similar operation cannot guarantee anything stronger anyway because
1414 * locks can't be held over the syscall boundary.
1416 * If write=0, the page must not be written to. If the page is written to,
1417 * set_page_dirty (or set_page_dirty_lock, as appropriate) must be called
1418 * after the page is finished with, and before put_page is called.
1420 * get_user_pages is typically used for fewer-copy IO operations, to get a
1421 * handle on the memory by some means other than accesses via the user virtual
1422 * addresses. The pages may be submitted for DMA to devices or accessed via
1423 * their kernel linear mapping (via the kmap APIs). Care should be taken to
1424 * use the correct cache flushing APIs.
1426 * See also get_user_pages_fast, for performance critical applications.
1428 int get_user_pages(struct task_struct
*tsk
, struct mm_struct
*mm
,
1429 unsigned long start
, int nr_pages
, int write
, int force
,
1430 struct page
**pages
, struct vm_area_struct
**vmas
)
1432 int flags
= FOLL_TOUCH
;
1437 flags
|= FOLL_WRITE
;
1439 flags
|= FOLL_FORCE
;
1441 return __get_user_pages(tsk
, mm
, start
, nr_pages
, flags
, pages
, vmas
);
1443 EXPORT_SYMBOL(get_user_pages
);
1446 * get_dump_page() - pin user page in memory while writing it to core dump
1447 * @addr: user address
1449 * Returns struct page pointer of user page pinned for dump,
1450 * to be freed afterwards by page_cache_release() or put_page().
1452 * Returns NULL on any kind of failure - a hole must then be inserted into
1453 * the corefile, to preserve alignment with its headers; and also returns
1454 * NULL wherever the ZERO_PAGE, or an anonymous pte_none, has been found -
1455 * allowing a hole to be left in the corefile to save diskspace.
1457 * Called without mmap_sem, but after all other threads have been killed.
1459 #ifdef CONFIG_ELF_CORE
1460 struct page
*get_dump_page(unsigned long addr
)
1462 struct vm_area_struct
*vma
;
1465 if (__get_user_pages(current
, current
->mm
, addr
, 1,
1466 FOLL_FORCE
| FOLL_DUMP
| FOLL_GET
, &page
, &vma
) < 1)
1468 flush_cache_page(vma
, addr
, page_to_pfn(page
));
1471 #endif /* CONFIG_ELF_CORE */
1473 pte_t
*get_locked_pte(struct mm_struct
*mm
, unsigned long addr
,
1476 pgd_t
* pgd
= pgd_offset(mm
, addr
);
1477 pud_t
* pud
= pud_alloc(mm
, pgd
, addr
);
1479 pmd_t
* pmd
= pmd_alloc(mm
, pud
, addr
);
1481 return pte_alloc_map_lock(mm
, pmd
, addr
, ptl
);
1487 * This is the old fallback for page remapping.
1489 * For historical reasons, it only allows reserved pages. Only
1490 * old drivers should use this, and they needed to mark their
1491 * pages reserved for the old functions anyway.
1493 static int insert_page(struct vm_area_struct
*vma
, unsigned long addr
,
1494 struct page
*page
, pgprot_t prot
)
1496 struct mm_struct
*mm
= vma
->vm_mm
;
1505 flush_dcache_page(page
);
1506 pte
= get_locked_pte(mm
, addr
, &ptl
);
1510 if (!pte_none(*pte
))
1513 /* Ok, finally just insert the thing.. */
1515 inc_mm_counter(mm
, file_rss
);
1516 page_add_file_rmap(page
);
1517 set_pte_at(mm
, addr
, pte
, mk_pte(page
, prot
));
1520 pte_unmap_unlock(pte
, ptl
);
1523 pte_unmap_unlock(pte
, ptl
);
1529 * vm_insert_page - insert single page into user vma
1530 * @vma: user vma to map to
1531 * @addr: target user address of this page
1532 * @page: source kernel page
1534 * This allows drivers to insert individual pages they've allocated
1537 * The page has to be a nice clean _individual_ kernel allocation.
1538 * If you allocate a compound page, you need to have marked it as
1539 * such (__GFP_COMP), or manually just split the page up yourself
1540 * (see split_page()).
1542 * NOTE! Traditionally this was done with "remap_pfn_range()" which
1543 * took an arbitrary page protection parameter. This doesn't allow
1544 * that. Your vma protection will have to be set up correctly, which
1545 * means that if you want a shared writable mapping, you'd better
1546 * ask for a shared writable mapping!
1548 * The page does not need to be reserved.
1550 int vm_insert_page(struct vm_area_struct
*vma
, unsigned long addr
,
1553 if (addr
< vma
->vm_start
|| addr
>= vma
->vm_end
)
1555 if (!page_count(page
))
1557 vma
->vm_flags
|= VM_INSERTPAGE
;
1558 return insert_page(vma
, addr
, page
, vma
->vm_page_prot
);
1560 EXPORT_SYMBOL(vm_insert_page
);
1562 static int insert_pfn(struct vm_area_struct
*vma
, unsigned long addr
,
1563 unsigned long pfn
, pgprot_t prot
)
1565 struct mm_struct
*mm
= vma
->vm_mm
;
1571 pte
= get_locked_pte(mm
, addr
, &ptl
);
1575 if (!pte_none(*pte
))
1578 /* Ok, finally just insert the thing.. */
1579 entry
= pte_mkspecial(pfn_pte(pfn
, prot
));
1580 set_pte_at(mm
, addr
, pte
, entry
);
1581 update_mmu_cache(vma
, addr
, entry
); /* XXX: why not for insert_page? */
1585 pte_unmap_unlock(pte
, ptl
);
1591 * vm_insert_pfn - insert single pfn into user vma
1592 * @vma: user vma to map to
1593 * @addr: target user address of this page
1594 * @pfn: source kernel pfn
1596 * Similar to vm_inert_page, this allows drivers to insert individual pages
1597 * they've allocated into a user vma. Same comments apply.
1599 * This function should only be called from a vm_ops->fault handler, and
1600 * in that case the handler should return NULL.
1602 * vma cannot be a COW mapping.
1604 * As this is called only for pages that do not currently exist, we
1605 * do not need to flush old virtual caches or the TLB.
1607 int vm_insert_pfn(struct vm_area_struct
*vma
, unsigned long addr
,
1611 pgprot_t pgprot
= vma
->vm_page_prot
;
1613 * Technically, architectures with pte_special can avoid all these
1614 * restrictions (same for remap_pfn_range). However we would like
1615 * consistency in testing and feature parity among all, so we should
1616 * try to keep these invariants in place for everybody.
1618 BUG_ON(!(vma
->vm_flags
& (VM_PFNMAP
|VM_MIXEDMAP
)));
1619 BUG_ON((vma
->vm_flags
& (VM_PFNMAP
|VM_MIXEDMAP
)) ==
1620 (VM_PFNMAP
|VM_MIXEDMAP
));
1621 BUG_ON((vma
->vm_flags
& VM_PFNMAP
) && is_cow_mapping(vma
->vm_flags
));
1622 BUG_ON((vma
->vm_flags
& VM_MIXEDMAP
) && pfn_valid(pfn
));
1624 if (addr
< vma
->vm_start
|| addr
>= vma
->vm_end
)
1626 if (track_pfn_vma_new(vma
, &pgprot
, pfn
, PAGE_SIZE
))
1629 ret
= insert_pfn(vma
, addr
, pfn
, pgprot
);
1632 untrack_pfn_vma(vma
, pfn
, PAGE_SIZE
);
1636 EXPORT_SYMBOL(vm_insert_pfn
);
1638 int vm_insert_mixed(struct vm_area_struct
*vma
, unsigned long addr
,
1641 BUG_ON(!(vma
->vm_flags
& VM_MIXEDMAP
));
1643 if (addr
< vma
->vm_start
|| addr
>= vma
->vm_end
)
1647 * If we don't have pte special, then we have to use the pfn_valid()
1648 * based VM_MIXEDMAP scheme (see vm_normal_page), and thus we *must*
1649 * refcount the page if pfn_valid is true (hence insert_page rather
1650 * than insert_pfn). If a zero_pfn were inserted into a VM_MIXEDMAP
1651 * without pte special, it would there be refcounted as a normal page.
1653 if (!HAVE_PTE_SPECIAL
&& pfn_valid(pfn
)) {
1656 page
= pfn_to_page(pfn
);
1657 return insert_page(vma
, addr
, page
, vma
->vm_page_prot
);
1659 return insert_pfn(vma
, addr
, pfn
, vma
->vm_page_prot
);
1661 EXPORT_SYMBOL(vm_insert_mixed
);
1664 * maps a range of physical memory into the requested pages. the old
1665 * mappings are removed. any references to nonexistent pages results
1666 * in null mappings (currently treated as "copy-on-access")
1668 static int remap_pte_range(struct mm_struct
*mm
, pmd_t
*pmd
,
1669 unsigned long addr
, unsigned long end
,
1670 unsigned long pfn
, pgprot_t prot
)
1675 pte
= pte_alloc_map_lock(mm
, pmd
, addr
, &ptl
);
1678 arch_enter_lazy_mmu_mode();
1680 BUG_ON(!pte_none(*pte
));
1681 set_pte_at(mm
, addr
, pte
, pte_mkspecial(pfn_pte(pfn
, prot
)));
1683 } while (pte
++, addr
+= PAGE_SIZE
, addr
!= end
);
1684 arch_leave_lazy_mmu_mode();
1685 pte_unmap_unlock(pte
- 1, ptl
);
1689 static inline int remap_pmd_range(struct mm_struct
*mm
, pud_t
*pud
,
1690 unsigned long addr
, unsigned long end
,
1691 unsigned long pfn
, pgprot_t prot
)
1696 pfn
-= addr
>> PAGE_SHIFT
;
1697 pmd
= pmd_alloc(mm
, pud
, addr
);
1701 next
= pmd_addr_end(addr
, end
);
1702 if (remap_pte_range(mm
, pmd
, addr
, next
,
1703 pfn
+ (addr
>> PAGE_SHIFT
), prot
))
1705 } while (pmd
++, addr
= next
, addr
!= end
);
1709 static inline int remap_pud_range(struct mm_struct
*mm
, pgd_t
*pgd
,
1710 unsigned long addr
, unsigned long end
,
1711 unsigned long pfn
, pgprot_t prot
)
1716 pfn
-= addr
>> PAGE_SHIFT
;
1717 pud
= pud_alloc(mm
, pgd
, addr
);
1721 next
= pud_addr_end(addr
, end
);
1722 if (remap_pmd_range(mm
, pud
, addr
, next
,
1723 pfn
+ (addr
>> PAGE_SHIFT
), prot
))
1725 } while (pud
++, addr
= next
, addr
!= end
);
1730 * remap_pfn_range - remap kernel memory to userspace
1731 * @vma: user vma to map to
1732 * @addr: target user address to start at
1733 * @pfn: physical address of kernel memory
1734 * @size: size of map area
1735 * @prot: page protection flags for this mapping
1737 * Note: this is only safe if the mm semaphore is held when called.
1739 int remap_pfn_range(struct vm_area_struct
*vma
, unsigned long addr
,
1740 unsigned long pfn
, unsigned long size
, pgprot_t prot
)
1744 unsigned long end
= addr
+ PAGE_ALIGN(size
);
1745 struct mm_struct
*mm
= vma
->vm_mm
;
1749 * Physically remapped pages are special. Tell the
1750 * rest of the world about it:
1751 * VM_IO tells people not to look at these pages
1752 * (accesses can have side effects).
1753 * VM_RESERVED is specified all over the place, because
1754 * in 2.4 it kept swapout's vma scan off this vma; but
1755 * in 2.6 the LRU scan won't even find its pages, so this
1756 * flag means no more than count its pages in reserved_vm,
1757 * and omit it from core dump, even when VM_IO turned off.
1758 * VM_PFNMAP tells the core MM that the base pages are just
1759 * raw PFN mappings, and do not have a "struct page" associated
1762 * There's a horrible special case to handle copy-on-write
1763 * behaviour that some programs depend on. We mark the "original"
1764 * un-COW'ed pages by matching them up with "vma->vm_pgoff".
1766 if (addr
== vma
->vm_start
&& end
== vma
->vm_end
) {
1767 vma
->vm_pgoff
= pfn
;
1768 vma
->vm_flags
|= VM_PFN_AT_MMAP
;
1769 } else if (is_cow_mapping(vma
->vm_flags
))
1772 vma
->vm_flags
|= VM_IO
| VM_RESERVED
| VM_PFNMAP
;
1774 err
= track_pfn_vma_new(vma
, &prot
, pfn
, PAGE_ALIGN(size
));
1777 * To indicate that track_pfn related cleanup is not
1778 * needed from higher level routine calling unmap_vmas
1780 vma
->vm_flags
&= ~(VM_IO
| VM_RESERVED
| VM_PFNMAP
);
1781 vma
->vm_flags
&= ~VM_PFN_AT_MMAP
;
1785 BUG_ON(addr
>= end
);
1786 pfn
-= addr
>> PAGE_SHIFT
;
1787 pgd
= pgd_offset(mm
, addr
);
1788 flush_cache_range(vma
, addr
, end
);
1790 next
= pgd_addr_end(addr
, end
);
1791 err
= remap_pud_range(mm
, pgd
, addr
, next
,
1792 pfn
+ (addr
>> PAGE_SHIFT
), prot
);
1795 } while (pgd
++, addr
= next
, addr
!= end
);
1798 untrack_pfn_vma(vma
, pfn
, PAGE_ALIGN(size
));
1802 EXPORT_SYMBOL(remap_pfn_range
);
1804 static int apply_to_pte_range(struct mm_struct
*mm
, pmd_t
*pmd
,
1805 unsigned long addr
, unsigned long end
,
1806 pte_fn_t fn
, void *data
)
1811 spinlock_t
*uninitialized_var(ptl
);
1813 pte
= (mm
== &init_mm
) ?
1814 pte_alloc_kernel(pmd
, addr
) :
1815 pte_alloc_map_lock(mm
, pmd
, addr
, &ptl
);
1819 BUG_ON(pmd_huge(*pmd
));
1821 arch_enter_lazy_mmu_mode();
1823 token
= pmd_pgtable(*pmd
);
1826 err
= fn(pte
++, token
, addr
, data
);
1829 } while (addr
+= PAGE_SIZE
, addr
!= end
);
1831 arch_leave_lazy_mmu_mode();
1834 pte_unmap_unlock(pte
-1, ptl
);
1838 static int apply_to_pmd_range(struct mm_struct
*mm
, pud_t
*pud
,
1839 unsigned long addr
, unsigned long end
,
1840 pte_fn_t fn
, void *data
)
1846 BUG_ON(pud_huge(*pud
));
1848 pmd
= pmd_alloc(mm
, pud
, addr
);
1852 next
= pmd_addr_end(addr
, end
);
1853 err
= apply_to_pte_range(mm
, pmd
, addr
, next
, fn
, data
);
1856 } while (pmd
++, addr
= next
, addr
!= end
);
1860 static int apply_to_pud_range(struct mm_struct
*mm
, pgd_t
*pgd
,
1861 unsigned long addr
, unsigned long end
,
1862 pte_fn_t fn
, void *data
)
1868 pud
= pud_alloc(mm
, pgd
, addr
);
1872 next
= pud_addr_end(addr
, end
);
1873 err
= apply_to_pmd_range(mm
, pud
, addr
, next
, fn
, data
);
1876 } while (pud
++, addr
= next
, addr
!= end
);
1881 * Scan a region of virtual memory, filling in page tables as necessary
1882 * and calling a provided function on each leaf page table.
1884 int apply_to_page_range(struct mm_struct
*mm
, unsigned long addr
,
1885 unsigned long size
, pte_fn_t fn
, void *data
)
1889 unsigned long start
= addr
, end
= addr
+ size
;
1892 BUG_ON(addr
>= end
);
1893 mmu_notifier_invalidate_range_start(mm
, start
, end
);
1894 pgd
= pgd_offset(mm
, addr
);
1896 next
= pgd_addr_end(addr
, end
);
1897 err
= apply_to_pud_range(mm
, pgd
, addr
, next
, fn
, data
);
1900 } while (pgd
++, addr
= next
, addr
!= end
);
1901 mmu_notifier_invalidate_range_end(mm
, start
, end
);
1904 EXPORT_SYMBOL_GPL(apply_to_page_range
);
1907 * handle_pte_fault chooses page fault handler according to an entry
1908 * which was read non-atomically. Before making any commitment, on
1909 * those architectures or configurations (e.g. i386 with PAE) which
1910 * might give a mix of unmatched parts, do_swap_page and do_file_page
1911 * must check under lock before unmapping the pte and proceeding
1912 * (but do_wp_page is only called after already making such a check;
1913 * and do_anonymous_page and do_no_page can safely check later on).
1915 static inline int pte_unmap_same(struct mm_struct
*mm
, pmd_t
*pmd
,
1916 pte_t
*page_table
, pte_t orig_pte
)
1919 #if defined(CONFIG_SMP) || defined(CONFIG_PREEMPT)
1920 if (sizeof(pte_t
) > sizeof(unsigned long)) {
1921 spinlock_t
*ptl
= pte_lockptr(mm
, pmd
);
1923 same
= pte_same(*page_table
, orig_pte
);
1927 pte_unmap(page_table
);
1932 * Do pte_mkwrite, but only if the vma says VM_WRITE. We do this when
1933 * servicing faults for write access. In the normal case, do always want
1934 * pte_mkwrite. But get_user_pages can cause write faults for mappings
1935 * that do not have writing enabled, when used by access_process_vm.
1937 static inline pte_t
maybe_mkwrite(pte_t pte
, struct vm_area_struct
*vma
)
1939 if (likely(vma
->vm_flags
& VM_WRITE
))
1940 pte
= pte_mkwrite(pte
);
1944 static inline void cow_user_page(struct page
*dst
, struct page
*src
, unsigned long va
, struct vm_area_struct
*vma
)
1947 * If the source page was a PFN mapping, we don't have
1948 * a "struct page" for it. We do a best-effort copy by
1949 * just copying from the original user address. If that
1950 * fails, we just zero-fill it. Live with it.
1952 if (unlikely(!src
)) {
1953 void *kaddr
= kmap_atomic(dst
, KM_USER0
);
1954 void __user
*uaddr
= (void __user
*)(va
& PAGE_MASK
);
1957 * This really shouldn't fail, because the page is there
1958 * in the page tables. But it might just be unreadable,
1959 * in which case we just give up and fill the result with
1962 if (__copy_from_user_inatomic(kaddr
, uaddr
, PAGE_SIZE
))
1963 memset(kaddr
, 0, PAGE_SIZE
);
1964 kunmap_atomic(kaddr
, KM_USER0
);
1965 flush_dcache_page(dst
);
1967 copy_user_highpage(dst
, src
, va
, vma
);
1971 * This routine handles present pages, when users try to write
1972 * to a shared page. It is done by copying the page to a new address
1973 * and decrementing the shared-page counter for the old page.
1975 * Note that this routine assumes that the protection checks have been
1976 * done by the caller (the low-level page fault routine in most cases).
1977 * Thus we can safely just mark it writable once we've done any necessary
1980 * We also mark the page dirty at this point even though the page will
1981 * change only once the write actually happens. This avoids a few races,
1982 * and potentially makes it more efficient.
1984 * We enter with non-exclusive mmap_sem (to exclude vma changes,
1985 * but allow concurrent faults), with pte both mapped and locked.
1986 * We return with mmap_sem still held, but pte unmapped and unlocked.
1988 static int do_wp_page(struct mm_struct
*mm
, struct vm_area_struct
*vma
,
1989 unsigned long address
, pte_t
*page_table
, pmd_t
*pmd
,
1990 spinlock_t
*ptl
, pte_t orig_pte
)
1992 struct page
*old_page
, *new_page
;
1994 int reuse
= 0, ret
= 0;
1995 int page_mkwrite
= 0;
1996 struct page
*dirty_page
= NULL
;
1998 old_page
= vm_normal_page(vma
, address
, orig_pte
);
2001 * VM_MIXEDMAP !pfn_valid() case
2003 * We should not cow pages in a shared writeable mapping.
2004 * Just mark the pages writable as we can't do any dirty
2005 * accounting on raw pfn maps.
2007 if ((vma
->vm_flags
& (VM_WRITE
|VM_SHARED
)) ==
2008 (VM_WRITE
|VM_SHARED
))
2014 * Take out anonymous pages first, anonymous shared vmas are
2015 * not dirty accountable.
2017 if (PageAnon(old_page
) && !PageKsm(old_page
)) {
2018 if (!trylock_page(old_page
)) {
2019 page_cache_get(old_page
);
2020 pte_unmap_unlock(page_table
, ptl
);
2021 lock_page(old_page
);
2022 page_table
= pte_offset_map_lock(mm
, pmd
, address
,
2024 if (!pte_same(*page_table
, orig_pte
)) {
2025 unlock_page(old_page
);
2026 page_cache_release(old_page
);
2029 page_cache_release(old_page
);
2031 reuse
= reuse_swap_page(old_page
);
2032 unlock_page(old_page
);
2033 } else if (unlikely((vma
->vm_flags
& (VM_WRITE
|VM_SHARED
)) ==
2034 (VM_WRITE
|VM_SHARED
))) {
2036 * Only catch write-faults on shared writable pages,
2037 * read-only shared pages can get COWed by
2038 * get_user_pages(.write=1, .force=1).
2040 if (vma
->vm_ops
&& vma
->vm_ops
->page_mkwrite
) {
2041 struct vm_fault vmf
;
2044 vmf
.virtual_address
= (void __user
*)(address
&
2046 vmf
.pgoff
= old_page
->index
;
2047 vmf
.flags
= FAULT_FLAG_WRITE
|FAULT_FLAG_MKWRITE
;
2048 vmf
.page
= old_page
;
2051 * Notify the address space that the page is about to
2052 * become writable so that it can prohibit this or wait
2053 * for the page to get into an appropriate state.
2055 * We do this without the lock held, so that it can
2056 * sleep if it needs to.
2058 page_cache_get(old_page
);
2059 pte_unmap_unlock(page_table
, ptl
);
2061 tmp
= vma
->vm_ops
->page_mkwrite(vma
, &vmf
);
2063 (VM_FAULT_ERROR
| VM_FAULT_NOPAGE
))) {
2065 goto unwritable_page
;
2067 if (unlikely(!(tmp
& VM_FAULT_LOCKED
))) {
2068 lock_page(old_page
);
2069 if (!old_page
->mapping
) {
2070 ret
= 0; /* retry the fault */
2071 unlock_page(old_page
);
2072 goto unwritable_page
;
2075 VM_BUG_ON(!PageLocked(old_page
));
2078 * Since we dropped the lock we need to revalidate
2079 * the PTE as someone else may have changed it. If
2080 * they did, we just return, as we can count on the
2081 * MMU to tell us if they didn't also make it writable.
2083 page_table
= pte_offset_map_lock(mm
, pmd
, address
,
2085 if (!pte_same(*page_table
, orig_pte
)) {
2086 unlock_page(old_page
);
2087 page_cache_release(old_page
);
2093 dirty_page
= old_page
;
2094 get_page(dirty_page
);
2100 flush_cache_page(vma
, address
, pte_pfn(orig_pte
));
2101 entry
= pte_mkyoung(orig_pte
);
2102 entry
= maybe_mkwrite(pte_mkdirty(entry
), vma
);
2103 if (ptep_set_access_flags(vma
, address
, page_table
, entry
,1))
2104 update_mmu_cache(vma
, address
, entry
);
2105 ret
|= VM_FAULT_WRITE
;
2110 * Ok, we need to copy. Oh, well..
2112 page_cache_get(old_page
);
2114 pte_unmap_unlock(page_table
, ptl
);
2116 if (unlikely(anon_vma_prepare(vma
)))
2119 if (is_zero_pfn(pte_pfn(orig_pte
))) {
2120 new_page
= alloc_zeroed_user_highpage_movable(vma
, address
);
2124 new_page
= alloc_page_vma(GFP_HIGHUSER_MOVABLE
, vma
, address
);
2127 cow_user_page(new_page
, old_page
, address
, vma
);
2129 __SetPageUptodate(new_page
);
2132 * Don't let another task, with possibly unlocked vma,
2133 * keep the mlocked page.
2135 if ((vma
->vm_flags
& VM_LOCKED
) && old_page
) {
2136 lock_page(old_page
); /* for LRU manipulation */
2137 clear_page_mlock(old_page
);
2138 unlock_page(old_page
);
2141 if (mem_cgroup_newpage_charge(new_page
, mm
, GFP_KERNEL
))
2145 * Re-check the pte - we dropped the lock
2147 page_table
= pte_offset_map_lock(mm
, pmd
, address
, &ptl
);
2148 if (likely(pte_same(*page_table
, orig_pte
))) {
2150 if (!PageAnon(old_page
)) {
2151 dec_mm_counter(mm
, file_rss
);
2152 inc_mm_counter(mm
, anon_rss
);
2155 inc_mm_counter(mm
, anon_rss
);
2156 flush_cache_page(vma
, address
, pte_pfn(orig_pte
));
2157 entry
= mk_pte(new_page
, vma
->vm_page_prot
);
2158 entry
= maybe_mkwrite(pte_mkdirty(entry
), vma
);
2160 * Clear the pte entry and flush it first, before updating the
2161 * pte with the new entry. This will avoid a race condition
2162 * seen in the presence of one thread doing SMC and another
2165 ptep_clear_flush(vma
, address
, page_table
);
2166 page_add_new_anon_rmap(new_page
, vma
, address
);
2168 * We call the notify macro here because, when using secondary
2169 * mmu page tables (such as kvm shadow page tables), we want the
2170 * new page to be mapped directly into the secondary page table.
2172 set_pte_at_notify(mm
, address
, page_table
, entry
);
2173 update_mmu_cache(vma
, address
, entry
);
2176 * Only after switching the pte to the new page may
2177 * we remove the mapcount here. Otherwise another
2178 * process may come and find the rmap count decremented
2179 * before the pte is switched to the new page, and
2180 * "reuse" the old page writing into it while our pte
2181 * here still points into it and can be read by other
2184 * The critical issue is to order this
2185 * page_remove_rmap with the ptp_clear_flush above.
2186 * Those stores are ordered by (if nothing else,)
2187 * the barrier present in the atomic_add_negative
2188 * in page_remove_rmap.
2190 * Then the TLB flush in ptep_clear_flush ensures that
2191 * no process can access the old page before the
2192 * decremented mapcount is visible. And the old page
2193 * cannot be reused until after the decremented
2194 * mapcount is visible. So transitively, TLBs to
2195 * old page will be flushed before it can be reused.
2197 page_remove_rmap(old_page
);
2200 /* Free the old page.. */
2201 new_page
= old_page
;
2202 ret
|= VM_FAULT_WRITE
;
2204 mem_cgroup_uncharge_page(new_page
);
2207 page_cache_release(new_page
);
2209 page_cache_release(old_page
);
2211 pte_unmap_unlock(page_table
, ptl
);
2214 * Yes, Virginia, this is actually required to prevent a race
2215 * with clear_page_dirty_for_io() from clearing the page dirty
2216 * bit after it clear all dirty ptes, but before a racing
2217 * do_wp_page installs a dirty pte.
2219 * do_no_page is protected similarly.
2221 if (!page_mkwrite
) {
2222 wait_on_page_locked(dirty_page
);
2223 set_page_dirty_balance(dirty_page
, page_mkwrite
);
2225 put_page(dirty_page
);
2227 struct address_space
*mapping
= dirty_page
->mapping
;
2229 set_page_dirty(dirty_page
);
2230 unlock_page(dirty_page
);
2231 page_cache_release(dirty_page
);
2234 * Some device drivers do not set page.mapping
2235 * but still dirty their pages
2237 balance_dirty_pages_ratelimited(mapping
);
2241 /* file_update_time outside page_lock */
2243 file_update_time(vma
->vm_file
);
2247 page_cache_release(new_page
);
2251 unlock_page(old_page
);
2252 page_cache_release(old_page
);
2254 page_cache_release(old_page
);
2256 return VM_FAULT_OOM
;
2259 page_cache_release(old_page
);
2264 * Helper functions for unmap_mapping_range().
2266 * __ Notes on dropping i_mmap_lock to reduce latency while unmapping __
2268 * We have to restart searching the prio_tree whenever we drop the lock,
2269 * since the iterator is only valid while the lock is held, and anyway
2270 * a later vma might be split and reinserted earlier while lock dropped.
2272 * The list of nonlinear vmas could be handled more efficiently, using
2273 * a placeholder, but handle it in the same way until a need is shown.
2274 * It is important to search the prio_tree before nonlinear list: a vma
2275 * may become nonlinear and be shifted from prio_tree to nonlinear list
2276 * while the lock is dropped; but never shifted from list to prio_tree.
2278 * In order to make forward progress despite restarting the search,
2279 * vm_truncate_count is used to mark a vma as now dealt with, so we can
2280 * quickly skip it next time around. Since the prio_tree search only
2281 * shows us those vmas affected by unmapping the range in question, we
2282 * can't efficiently keep all vmas in step with mapping->truncate_count:
2283 * so instead reset them all whenever it wraps back to 0 (then go to 1).
2284 * mapping->truncate_count and vma->vm_truncate_count are protected by
2287 * In order to make forward progress despite repeatedly restarting some
2288 * large vma, note the restart_addr from unmap_vmas when it breaks out:
2289 * and restart from that address when we reach that vma again. It might
2290 * have been split or merged, shrunk or extended, but never shifted: so
2291 * restart_addr remains valid so long as it remains in the vma's range.
2292 * unmap_mapping_range forces truncate_count to leap over page-aligned
2293 * values so we can save vma's restart_addr in its truncate_count field.
2295 #define is_restart_addr(truncate_count) (!((truncate_count) & ~PAGE_MASK))
2297 static void reset_vma_truncate_counts(struct address_space
*mapping
)
2299 struct vm_area_struct
*vma
;
2300 struct prio_tree_iter iter
;
2302 vma_prio_tree_foreach(vma
, &iter
, &mapping
->i_mmap
, 0, ULONG_MAX
)
2303 vma
->vm_truncate_count
= 0;
2304 list_for_each_entry(vma
, &mapping
->i_mmap_nonlinear
, shared
.vm_set
.list
)
2305 vma
->vm_truncate_count
= 0;
2308 static int unmap_mapping_range_vma(struct vm_area_struct
*vma
,
2309 unsigned long start_addr
, unsigned long end_addr
,
2310 struct zap_details
*details
)
2312 unsigned long restart_addr
;
2316 * files that support invalidating or truncating portions of the
2317 * file from under mmaped areas must have their ->fault function
2318 * return a locked page (and set VM_FAULT_LOCKED in the return).
2319 * This provides synchronisation against concurrent unmapping here.
2323 restart_addr
= vma
->vm_truncate_count
;
2324 if (is_restart_addr(restart_addr
) && start_addr
< restart_addr
) {
2325 start_addr
= restart_addr
;
2326 if (start_addr
>= end_addr
) {
2327 /* Top of vma has been split off since last time */
2328 vma
->vm_truncate_count
= details
->truncate_count
;
2333 restart_addr
= zap_page_range(vma
, start_addr
,
2334 end_addr
- start_addr
, details
);
2335 need_break
= need_resched() || spin_needbreak(details
->i_mmap_lock
);
2337 if (restart_addr
>= end_addr
) {
2338 /* We have now completed this vma: mark it so */
2339 vma
->vm_truncate_count
= details
->truncate_count
;
2343 /* Note restart_addr in vma's truncate_count field */
2344 vma
->vm_truncate_count
= restart_addr
;
2349 spin_unlock(details
->i_mmap_lock
);
2351 spin_lock(details
->i_mmap_lock
);
2355 static inline void unmap_mapping_range_tree(struct prio_tree_root
*root
,
2356 struct zap_details
*details
)
2358 struct vm_area_struct
*vma
;
2359 struct prio_tree_iter iter
;
2360 pgoff_t vba
, vea
, zba
, zea
;
2363 vma_prio_tree_foreach(vma
, &iter
, root
,
2364 details
->first_index
, details
->last_index
) {
2365 /* Skip quickly over those we have already dealt with */
2366 if (vma
->vm_truncate_count
== details
->truncate_count
)
2369 vba
= vma
->vm_pgoff
;
2370 vea
= vba
+ ((vma
->vm_end
- vma
->vm_start
) >> PAGE_SHIFT
) - 1;
2371 /* Assume for now that PAGE_CACHE_SHIFT == PAGE_SHIFT */
2372 zba
= details
->first_index
;
2375 zea
= details
->last_index
;
2379 if (unmap_mapping_range_vma(vma
,
2380 ((zba
- vba
) << PAGE_SHIFT
) + vma
->vm_start
,
2381 ((zea
- vba
+ 1) << PAGE_SHIFT
) + vma
->vm_start
,
2387 static inline void unmap_mapping_range_list(struct list_head
*head
,
2388 struct zap_details
*details
)
2390 struct vm_area_struct
*vma
;
2393 * In nonlinear VMAs there is no correspondence between virtual address
2394 * offset and file offset. So we must perform an exhaustive search
2395 * across *all* the pages in each nonlinear VMA, not just the pages
2396 * whose virtual address lies outside the file truncation point.
2399 list_for_each_entry(vma
, head
, shared
.vm_set
.list
) {
2400 /* Skip quickly over those we have already dealt with */
2401 if (vma
->vm_truncate_count
== details
->truncate_count
)
2403 details
->nonlinear_vma
= vma
;
2404 if (unmap_mapping_range_vma(vma
, vma
->vm_start
,
2405 vma
->vm_end
, details
) < 0)
2411 * unmap_mapping_range - unmap the portion of all mmaps in the specified address_space corresponding to the specified page range in the underlying file.
2412 * @mapping: the address space containing mmaps to be unmapped.
2413 * @holebegin: byte in first page to unmap, relative to the start of
2414 * the underlying file. This will be rounded down to a PAGE_SIZE
2415 * boundary. Note that this is different from truncate_pagecache(), which
2416 * must keep the partial page. In contrast, we must get rid of
2418 * @holelen: size of prospective hole in bytes. This will be rounded
2419 * up to a PAGE_SIZE boundary. A holelen of zero truncates to the
2421 * @even_cows: 1 when truncating a file, unmap even private COWed pages;
2422 * but 0 when invalidating pagecache, don't throw away private data.
2424 void unmap_mapping_range(struct address_space
*mapping
,
2425 loff_t
const holebegin
, loff_t
const holelen
, int even_cows
)
2427 struct zap_details details
;
2428 pgoff_t hba
= holebegin
>> PAGE_SHIFT
;
2429 pgoff_t hlen
= (holelen
+ PAGE_SIZE
- 1) >> PAGE_SHIFT
;
2431 /* Check for overflow. */
2432 if (sizeof(holelen
) > sizeof(hlen
)) {
2434 (holebegin
+ holelen
+ PAGE_SIZE
- 1) >> PAGE_SHIFT
;
2435 if (holeend
& ~(long long)ULONG_MAX
)
2436 hlen
= ULONG_MAX
- hba
+ 1;
2439 details
.check_mapping
= even_cows
? NULL
: mapping
;
2440 details
.nonlinear_vma
= NULL
;
2441 details
.first_index
= hba
;
2442 details
.last_index
= hba
+ hlen
- 1;
2443 if (details
.last_index
< details
.first_index
)
2444 details
.last_index
= ULONG_MAX
;
2445 details
.i_mmap_lock
= &mapping
->i_mmap_lock
;
2447 spin_lock(&mapping
->i_mmap_lock
);
2449 /* Protect against endless unmapping loops */
2450 mapping
->truncate_count
++;
2451 if (unlikely(is_restart_addr(mapping
->truncate_count
))) {
2452 if (mapping
->truncate_count
== 0)
2453 reset_vma_truncate_counts(mapping
);
2454 mapping
->truncate_count
++;
2456 details
.truncate_count
= mapping
->truncate_count
;
2458 if (unlikely(!prio_tree_empty(&mapping
->i_mmap
)))
2459 unmap_mapping_range_tree(&mapping
->i_mmap
, &details
);
2460 if (unlikely(!list_empty(&mapping
->i_mmap_nonlinear
)))
2461 unmap_mapping_range_list(&mapping
->i_mmap_nonlinear
, &details
);
2462 spin_unlock(&mapping
->i_mmap_lock
);
2464 EXPORT_SYMBOL(unmap_mapping_range
);
2466 int vmtruncate_range(struct inode
*inode
, loff_t offset
, loff_t end
)
2468 struct address_space
*mapping
= inode
->i_mapping
;
2471 * If the underlying filesystem is not going to provide
2472 * a way to truncate a range of blocks (punch a hole) -
2473 * we should return failure right now.
2475 if (!inode
->i_op
->truncate_range
)
2478 mutex_lock(&inode
->i_mutex
);
2479 down_write(&inode
->i_alloc_sem
);
2480 unmap_mapping_range(mapping
, offset
, (end
- offset
), 1);
2481 truncate_inode_pages_range(mapping
, offset
, end
);
2482 unmap_mapping_range(mapping
, offset
, (end
- offset
), 1);
2483 inode
->i_op
->truncate_range(inode
, offset
, end
);
2484 up_write(&inode
->i_alloc_sem
);
2485 mutex_unlock(&inode
->i_mutex
);
2491 * We enter with non-exclusive mmap_sem (to exclude vma changes,
2492 * but allow concurrent faults), and pte mapped but not yet locked.
2493 * We return with mmap_sem still held, but pte unmapped and unlocked.
2495 static int do_swap_page(struct mm_struct
*mm
, struct vm_area_struct
*vma
,
2496 unsigned long address
, pte_t
*page_table
, pmd_t
*pmd
,
2497 unsigned int flags
, pte_t orig_pte
)
2503 struct mem_cgroup
*ptr
= NULL
;
2506 if (!pte_unmap_same(mm
, pmd
, page_table
, orig_pte
))
2509 entry
= pte_to_swp_entry(orig_pte
);
2510 if (unlikely(non_swap_entry(entry
))) {
2511 if (is_migration_entry(entry
)) {
2512 migration_entry_wait(mm
, pmd
, address
);
2513 } else if (is_hwpoison_entry(entry
)) {
2514 ret
= VM_FAULT_HWPOISON
;
2516 print_bad_pte(vma
, address
, orig_pte
, NULL
);
2517 ret
= VM_FAULT_SIGBUS
;
2521 delayacct_set_flag(DELAYACCT_PF_SWAPIN
);
2522 page
= lookup_swap_cache(entry
);
2524 grab_swap_token(mm
); /* Contend for token _before_ read-in */
2525 page
= swapin_readahead(entry
,
2526 GFP_HIGHUSER_MOVABLE
, vma
, address
);
2529 * Back out if somebody else faulted in this pte
2530 * while we released the pte lock.
2532 page_table
= pte_offset_map_lock(mm
, pmd
, address
, &ptl
);
2533 if (likely(pte_same(*page_table
, orig_pte
)))
2535 delayacct_clear_flag(DELAYACCT_PF_SWAPIN
);
2539 /* Had to read the page from swap area: Major fault */
2540 ret
= VM_FAULT_MAJOR
;
2541 count_vm_event(PGMAJFAULT
);
2542 } else if (PageHWPoison(page
)) {
2543 ret
= VM_FAULT_HWPOISON
;
2544 delayacct_clear_flag(DELAYACCT_PF_SWAPIN
);
2549 delayacct_clear_flag(DELAYACCT_PF_SWAPIN
);
2551 if (mem_cgroup_try_charge_swapin(mm
, page
, GFP_KERNEL
, &ptr
)) {
2557 * Back out if somebody else already faulted in this pte.
2559 page_table
= pte_offset_map_lock(mm
, pmd
, address
, &ptl
);
2560 if (unlikely(!pte_same(*page_table
, orig_pte
)))
2563 if (unlikely(!PageUptodate(page
))) {
2564 ret
= VM_FAULT_SIGBUS
;
2569 * The page isn't present yet, go ahead with the fault.
2571 * Be careful about the sequence of operations here.
2572 * To get its accounting right, reuse_swap_page() must be called
2573 * while the page is counted on swap but not yet in mapcount i.e.
2574 * before page_add_anon_rmap() and swap_free(); try_to_free_swap()
2575 * must be called after the swap_free(), or it will never succeed.
2576 * Because delete_from_swap_page() may be called by reuse_swap_page(),
2577 * mem_cgroup_commit_charge_swapin() may not be able to find swp_entry
2578 * in page->private. In this case, a record in swap_cgroup is silently
2579 * discarded at swap_free().
2582 inc_mm_counter(mm
, anon_rss
);
2583 pte
= mk_pte(page
, vma
->vm_page_prot
);
2584 if ((flags
& FAULT_FLAG_WRITE
) && reuse_swap_page(page
)) {
2585 pte
= maybe_mkwrite(pte_mkdirty(pte
), vma
);
2586 flags
&= ~FAULT_FLAG_WRITE
;
2588 flush_icache_page(vma
, page
);
2589 set_pte_at(mm
, address
, page_table
, pte
);
2590 page_add_anon_rmap(page
, vma
, address
);
2591 /* It's better to call commit-charge after rmap is established */
2592 mem_cgroup_commit_charge_swapin(page
, ptr
);
2595 if (vm_swap_full() || (vma
->vm_flags
& VM_LOCKED
) || PageMlocked(page
))
2596 try_to_free_swap(page
);
2599 if (flags
& FAULT_FLAG_WRITE
) {
2600 ret
|= do_wp_page(mm
, vma
, address
, page_table
, pmd
, ptl
, pte
);
2601 if (ret
& VM_FAULT_ERROR
)
2602 ret
&= VM_FAULT_ERROR
;
2606 /* No need to invalidate - it was non-present before */
2607 update_mmu_cache(vma
, address
, pte
);
2609 pte_unmap_unlock(page_table
, ptl
);
2613 mem_cgroup_cancel_charge_swapin(ptr
);
2614 pte_unmap_unlock(page_table
, ptl
);
2618 page_cache_release(page
);
2623 * We enter with non-exclusive mmap_sem (to exclude vma changes,
2624 * but allow concurrent faults), and pte mapped but not yet locked.
2625 * We return with mmap_sem still held, but pte unmapped and unlocked.
2627 static int do_anonymous_page(struct mm_struct
*mm
, struct vm_area_struct
*vma
,
2628 unsigned long address
, pte_t
*page_table
, pmd_t
*pmd
,
2635 if (!(flags
& FAULT_FLAG_WRITE
)) {
2636 entry
= pte_mkspecial(pfn_pte(my_zero_pfn(address
),
2637 vma
->vm_page_prot
));
2638 ptl
= pte_lockptr(mm
, pmd
);
2640 if (!pte_none(*page_table
))
2645 /* Allocate our own private page. */
2646 pte_unmap(page_table
);
2648 if (unlikely(anon_vma_prepare(vma
)))
2650 page
= alloc_zeroed_user_highpage_movable(vma
, address
);
2653 __SetPageUptodate(page
);
2655 if (mem_cgroup_newpage_charge(page
, mm
, GFP_KERNEL
))
2658 entry
= mk_pte(page
, vma
->vm_page_prot
);
2659 if (vma
->vm_flags
& VM_WRITE
)
2660 entry
= pte_mkwrite(pte_mkdirty(entry
));
2662 page_table
= pte_offset_map_lock(mm
, pmd
, address
, &ptl
);
2663 if (!pte_none(*page_table
))
2666 inc_mm_counter(mm
, anon_rss
);
2667 page_add_new_anon_rmap(page
, vma
, address
);
2669 set_pte_at(mm
, address
, page_table
, entry
);
2671 /* No need to invalidate - it was non-present before */
2672 update_mmu_cache(vma
, address
, entry
);
2674 pte_unmap_unlock(page_table
, ptl
);
2677 mem_cgroup_uncharge_page(page
);
2678 page_cache_release(page
);
2681 page_cache_release(page
);
2683 return VM_FAULT_OOM
;
2687 * __do_fault() tries to create a new page mapping. It aggressively
2688 * tries to share with existing pages, but makes a separate copy if
2689 * the FAULT_FLAG_WRITE is set in the flags parameter in order to avoid
2690 * the next page fault.
2692 * As this is called only for pages that do not currently exist, we
2693 * do not need to flush old virtual caches or the TLB.
2695 * We enter with non-exclusive mmap_sem (to exclude vma changes,
2696 * but allow concurrent faults), and pte neither mapped nor locked.
2697 * We return with mmap_sem still held, but pte unmapped and unlocked.
2699 static int __do_fault(struct mm_struct
*mm
, struct vm_area_struct
*vma
,
2700 unsigned long address
, pmd_t
*pmd
,
2701 pgoff_t pgoff
, unsigned int flags
, pte_t orig_pte
)
2709 struct page
*dirty_page
= NULL
;
2710 struct vm_fault vmf
;
2712 int page_mkwrite
= 0;
2714 vmf
.virtual_address
= (void __user
*)(address
& PAGE_MASK
);
2719 ret
= vma
->vm_ops
->fault(vma
, &vmf
);
2720 if (unlikely(ret
& (VM_FAULT_ERROR
| VM_FAULT_NOPAGE
)))
2723 if (unlikely(PageHWPoison(vmf
.page
))) {
2724 if (ret
& VM_FAULT_LOCKED
)
2725 unlock_page(vmf
.page
);
2726 return VM_FAULT_HWPOISON
;
2730 * For consistency in subsequent calls, make the faulted page always
2733 if (unlikely(!(ret
& VM_FAULT_LOCKED
)))
2734 lock_page(vmf
.page
);
2736 VM_BUG_ON(!PageLocked(vmf
.page
));
2739 * Should we do an early C-O-W break?
2742 if (flags
& FAULT_FLAG_WRITE
) {
2743 if (!(vma
->vm_flags
& VM_SHARED
)) {
2745 if (unlikely(anon_vma_prepare(vma
))) {
2749 page
= alloc_page_vma(GFP_HIGHUSER_MOVABLE
,
2755 if (mem_cgroup_newpage_charge(page
, mm
, GFP_KERNEL
)) {
2757 page_cache_release(page
);
2762 * Don't let another task, with possibly unlocked vma,
2763 * keep the mlocked page.
2765 if (vma
->vm_flags
& VM_LOCKED
)
2766 clear_page_mlock(vmf
.page
);
2767 copy_user_highpage(page
, vmf
.page
, address
, vma
);
2768 __SetPageUptodate(page
);
2771 * If the page will be shareable, see if the backing
2772 * address space wants to know that the page is about
2773 * to become writable
2775 if (vma
->vm_ops
->page_mkwrite
) {
2779 vmf
.flags
= FAULT_FLAG_WRITE
|FAULT_FLAG_MKWRITE
;
2780 tmp
= vma
->vm_ops
->page_mkwrite(vma
, &vmf
);
2782 (VM_FAULT_ERROR
| VM_FAULT_NOPAGE
))) {
2784 goto unwritable_page
;
2786 if (unlikely(!(tmp
& VM_FAULT_LOCKED
))) {
2788 if (!page
->mapping
) {
2789 ret
= 0; /* retry the fault */
2791 goto unwritable_page
;
2794 VM_BUG_ON(!PageLocked(page
));
2801 page_table
= pte_offset_map_lock(mm
, pmd
, address
, &ptl
);
2804 * This silly early PAGE_DIRTY setting removes a race
2805 * due to the bad i386 page protection. But it's valid
2806 * for other architectures too.
2808 * Note that if FAULT_FLAG_WRITE is set, we either now have
2809 * an exclusive copy of the page, or this is a shared mapping,
2810 * so we can make it writable and dirty to avoid having to
2811 * handle that later.
2813 /* Only go through if we didn't race with anybody else... */
2814 if (likely(pte_same(*page_table
, orig_pte
))) {
2815 flush_icache_page(vma
, page
);
2816 entry
= mk_pte(page
, vma
->vm_page_prot
);
2817 if (flags
& FAULT_FLAG_WRITE
)
2818 entry
= maybe_mkwrite(pte_mkdirty(entry
), vma
);
2820 inc_mm_counter(mm
, anon_rss
);
2821 page_add_new_anon_rmap(page
, vma
, address
);
2823 inc_mm_counter(mm
, file_rss
);
2824 page_add_file_rmap(page
);
2825 if (flags
& FAULT_FLAG_WRITE
) {
2827 get_page(dirty_page
);
2830 set_pte_at(mm
, address
, page_table
, entry
);
2832 /* no need to invalidate: a not-present page won't be cached */
2833 update_mmu_cache(vma
, address
, entry
);
2836 mem_cgroup_uncharge_page(page
);
2838 page_cache_release(page
);
2840 anon
= 1; /* no anon but release faulted_page */
2843 pte_unmap_unlock(page_table
, ptl
);
2847 struct address_space
*mapping
= page
->mapping
;
2849 if (set_page_dirty(dirty_page
))
2851 unlock_page(dirty_page
);
2852 put_page(dirty_page
);
2853 if (page_mkwrite
&& mapping
) {
2855 * Some device drivers do not set page.mapping but still
2858 balance_dirty_pages_ratelimited(mapping
);
2861 /* file_update_time outside page_lock */
2863 file_update_time(vma
->vm_file
);
2865 unlock_page(vmf
.page
);
2867 page_cache_release(vmf
.page
);
2873 page_cache_release(page
);
2877 static int do_linear_fault(struct mm_struct
*mm
, struct vm_area_struct
*vma
,
2878 unsigned long address
, pte_t
*page_table
, pmd_t
*pmd
,
2879 unsigned int flags
, pte_t orig_pte
)
2881 pgoff_t pgoff
= (((address
& PAGE_MASK
)
2882 - vma
->vm_start
) >> PAGE_SHIFT
) + vma
->vm_pgoff
;
2884 pte_unmap(page_table
);
2885 return __do_fault(mm
, vma
, address
, pmd
, pgoff
, flags
, orig_pte
);
2889 * Fault of a previously existing named mapping. Repopulate the pte
2890 * from the encoded file_pte if possible. This enables swappable
2893 * We enter with non-exclusive mmap_sem (to exclude vma changes,
2894 * but allow concurrent faults), and pte mapped but not yet locked.
2895 * We return with mmap_sem still held, but pte unmapped and unlocked.
2897 static int do_nonlinear_fault(struct mm_struct
*mm
, struct vm_area_struct
*vma
,
2898 unsigned long address
, pte_t
*page_table
, pmd_t
*pmd
,
2899 unsigned int flags
, pte_t orig_pte
)
2903 flags
|= FAULT_FLAG_NONLINEAR
;
2905 if (!pte_unmap_same(mm
, pmd
, page_table
, orig_pte
))
2908 if (unlikely(!(vma
->vm_flags
& VM_NONLINEAR
))) {
2910 * Page table corrupted: show pte and kill process.
2912 print_bad_pte(vma
, address
, orig_pte
, NULL
);
2913 return VM_FAULT_SIGBUS
;
2916 pgoff
= pte_to_pgoff(orig_pte
);
2917 return __do_fault(mm
, vma
, address
, pmd
, pgoff
, flags
, orig_pte
);
2921 * These routines also need to handle stuff like marking pages dirty
2922 * and/or accessed for architectures that don't do it in hardware (most
2923 * RISC architectures). The early dirtying is also good on the i386.
2925 * There is also a hook called "update_mmu_cache()" that architectures
2926 * with external mmu caches can use to update those (ie the Sparc or
2927 * PowerPC hashed page tables that act as extended TLBs).
2929 * We enter with non-exclusive mmap_sem (to exclude vma changes,
2930 * but allow concurrent faults), and pte mapped but not yet locked.
2931 * We return with mmap_sem still held, but pte unmapped and unlocked.
2933 static inline int handle_pte_fault(struct mm_struct
*mm
,
2934 struct vm_area_struct
*vma
, unsigned long address
,
2935 pte_t
*pte
, pmd_t
*pmd
, unsigned int flags
)
2941 if (!pte_present(entry
)) {
2942 if (pte_none(entry
)) {
2944 if (likely(vma
->vm_ops
->fault
))
2945 return do_linear_fault(mm
, vma
, address
,
2946 pte
, pmd
, flags
, entry
);
2948 return do_anonymous_page(mm
, vma
, address
,
2951 if (pte_file(entry
))
2952 return do_nonlinear_fault(mm
, vma
, address
,
2953 pte
, pmd
, flags
, entry
);
2954 return do_swap_page(mm
, vma
, address
,
2955 pte
, pmd
, flags
, entry
);
2958 ptl
= pte_lockptr(mm
, pmd
);
2960 if (unlikely(!pte_same(*pte
, entry
)))
2962 if (flags
& FAULT_FLAG_WRITE
) {
2963 if (!pte_write(entry
))
2964 return do_wp_page(mm
, vma
, address
,
2965 pte
, pmd
, ptl
, entry
);
2966 entry
= pte_mkdirty(entry
);
2968 entry
= pte_mkyoung(entry
);
2969 if (ptep_set_access_flags(vma
, address
, pte
, entry
, flags
& FAULT_FLAG_WRITE
)) {
2970 update_mmu_cache(vma
, address
, entry
);
2973 * This is needed only for protection faults but the arch code
2974 * is not yet telling us if this is a protection fault or not.
2975 * This still avoids useless tlb flushes for .text page faults
2978 if (flags
& FAULT_FLAG_WRITE
)
2979 flush_tlb_page(vma
, address
);
2982 pte_unmap_unlock(pte
, ptl
);
2987 * By the time we get here, we already hold the mm semaphore
2989 int handle_mm_fault(struct mm_struct
*mm
, struct vm_area_struct
*vma
,
2990 unsigned long address
, unsigned int flags
)
2997 __set_current_state(TASK_RUNNING
);
2999 count_vm_event(PGFAULT
);
3001 if (unlikely(is_vm_hugetlb_page(vma
)))
3002 return hugetlb_fault(mm
, vma
, address
, flags
);
3004 pgd
= pgd_offset(mm
, address
);
3005 pud
= pud_alloc(mm
, pgd
, address
);
3007 return VM_FAULT_OOM
;
3008 pmd
= pmd_alloc(mm
, pud
, address
);
3010 return VM_FAULT_OOM
;
3011 pte
= pte_alloc_map(mm
, pmd
, address
);
3013 return VM_FAULT_OOM
;
3015 return handle_pte_fault(mm
, vma
, address
, pte
, pmd
, flags
);
3018 #ifndef __PAGETABLE_PUD_FOLDED
3020 * Allocate page upper directory.
3021 * We've already handled the fast-path in-line.
3023 int __pud_alloc(struct mm_struct
*mm
, pgd_t
*pgd
, unsigned long address
)
3025 pud_t
*new = pud_alloc_one(mm
, address
);
3029 smp_wmb(); /* See comment in __pte_alloc */
3031 spin_lock(&mm
->page_table_lock
);
3032 if (pgd_present(*pgd
)) /* Another has populated it */
3035 pgd_populate(mm
, pgd
, new);
3036 spin_unlock(&mm
->page_table_lock
);
3039 #endif /* __PAGETABLE_PUD_FOLDED */
3041 #ifndef __PAGETABLE_PMD_FOLDED
3043 * Allocate page middle directory.
3044 * We've already handled the fast-path in-line.
3046 int __pmd_alloc(struct mm_struct
*mm
, pud_t
*pud
, unsigned long address
)
3048 pmd_t
*new = pmd_alloc_one(mm
, address
);
3052 smp_wmb(); /* See comment in __pte_alloc */
3054 spin_lock(&mm
->page_table_lock
);
3055 #ifndef __ARCH_HAS_4LEVEL_HACK
3056 if (pud_present(*pud
)) /* Another has populated it */
3059 pud_populate(mm
, pud
, new);
3061 if (pgd_present(*pud
)) /* Another has populated it */
3064 pgd_populate(mm
, pud
, new);
3065 #endif /* __ARCH_HAS_4LEVEL_HACK */
3066 spin_unlock(&mm
->page_table_lock
);
3069 #endif /* __PAGETABLE_PMD_FOLDED */
3071 int make_pages_present(unsigned long addr
, unsigned long end
)
3073 int ret
, len
, write
;
3074 struct vm_area_struct
* vma
;
3076 vma
= find_vma(current
->mm
, addr
);
3079 write
= (vma
->vm_flags
& VM_WRITE
) != 0;
3080 BUG_ON(addr
>= end
);
3081 BUG_ON(end
> vma
->vm_end
);
3082 len
= DIV_ROUND_UP(end
, PAGE_SIZE
) - addr
/PAGE_SIZE
;
3083 ret
= get_user_pages(current
, current
->mm
, addr
,
3084 len
, write
, 0, NULL
, NULL
);
3087 return ret
== len
? 0 : -EFAULT
;
3090 #if !defined(__HAVE_ARCH_GATE_AREA)
3092 #if defined(AT_SYSINFO_EHDR)
3093 static struct vm_area_struct gate_vma
;
3095 static int __init
gate_vma_init(void)
3097 gate_vma
.vm_mm
= NULL
;
3098 gate_vma
.vm_start
= FIXADDR_USER_START
;
3099 gate_vma
.vm_end
= FIXADDR_USER_END
;
3100 gate_vma
.vm_flags
= VM_READ
| VM_MAYREAD
| VM_EXEC
| VM_MAYEXEC
;
3101 gate_vma
.vm_page_prot
= __P101
;
3103 * Make sure the vDSO gets into every core dump.
3104 * Dumping its contents makes post-mortem fully interpretable later
3105 * without matching up the same kernel and hardware config to see
3106 * what PC values meant.
3108 gate_vma
.vm_flags
|= VM_ALWAYSDUMP
;
3111 __initcall(gate_vma_init
);
3114 struct vm_area_struct
*get_gate_vma(struct task_struct
*tsk
)
3116 #ifdef AT_SYSINFO_EHDR
3123 int in_gate_area_no_task(unsigned long addr
)
3125 #ifdef AT_SYSINFO_EHDR
3126 if ((addr
>= FIXADDR_USER_START
) && (addr
< FIXADDR_USER_END
))
3132 #endif /* __HAVE_ARCH_GATE_AREA */
3134 static int follow_pte(struct mm_struct
*mm
, unsigned long address
,
3135 pte_t
**ptepp
, spinlock_t
**ptlp
)
3142 pgd
= pgd_offset(mm
, address
);
3143 if (pgd_none(*pgd
) || unlikely(pgd_bad(*pgd
)))
3146 pud
= pud_offset(pgd
, address
);
3147 if (pud_none(*pud
) || unlikely(pud_bad(*pud
)))
3150 pmd
= pmd_offset(pud
, address
);
3151 if (pmd_none(*pmd
) || unlikely(pmd_bad(*pmd
)))
3154 /* We cannot handle huge page PFN maps. Luckily they don't exist. */
3158 ptep
= pte_offset_map_lock(mm
, pmd
, address
, ptlp
);
3161 if (!pte_present(*ptep
))
3166 pte_unmap_unlock(ptep
, *ptlp
);
3172 * follow_pfn - look up PFN at a user virtual address
3173 * @vma: memory mapping
3174 * @address: user virtual address
3175 * @pfn: location to store found PFN
3177 * Only IO mappings and raw PFN mappings are allowed.
3179 * Returns zero and the pfn at @pfn on success, -ve otherwise.
3181 int follow_pfn(struct vm_area_struct
*vma
, unsigned long address
,
3188 if (!(vma
->vm_flags
& (VM_IO
| VM_PFNMAP
)))
3191 ret
= follow_pte(vma
->vm_mm
, address
, &ptep
, &ptl
);
3194 *pfn
= pte_pfn(*ptep
);
3195 pte_unmap_unlock(ptep
, ptl
);
3198 EXPORT_SYMBOL(follow_pfn
);
3200 #ifdef CONFIG_HAVE_IOREMAP_PROT
3201 int follow_phys(struct vm_area_struct
*vma
,
3202 unsigned long address
, unsigned int flags
,
3203 unsigned long *prot
, resource_size_t
*phys
)
3209 if (!(vma
->vm_flags
& (VM_IO
| VM_PFNMAP
)))
3212 if (follow_pte(vma
->vm_mm
, address
, &ptep
, &ptl
))
3216 if ((flags
& FOLL_WRITE
) && !pte_write(pte
))
3219 *prot
= pgprot_val(pte_pgprot(pte
));
3220 *phys
= (resource_size_t
)pte_pfn(pte
) << PAGE_SHIFT
;
3224 pte_unmap_unlock(ptep
, ptl
);
3229 int generic_access_phys(struct vm_area_struct
*vma
, unsigned long addr
,
3230 void *buf
, int len
, int write
)
3232 resource_size_t phys_addr
;
3233 unsigned long prot
= 0;
3234 void __iomem
*maddr
;
3235 int offset
= addr
& (PAGE_SIZE
-1);
3237 if (follow_phys(vma
, addr
, write
, &prot
, &phys_addr
))
3240 maddr
= ioremap_prot(phys_addr
, PAGE_SIZE
, prot
);
3242 memcpy_toio(maddr
+ offset
, buf
, len
);
3244 memcpy_fromio(buf
, maddr
+ offset
, len
);
3252 * Access another process' address space.
3253 * Source/target buffer must be kernel space,
3254 * Do not walk the page table directly, use get_user_pages
3256 int access_process_vm(struct task_struct
*tsk
, unsigned long addr
, void *buf
, int len
, int write
)
3258 struct mm_struct
*mm
;
3259 struct vm_area_struct
*vma
;
3260 void *old_buf
= buf
;
3262 mm
= get_task_mm(tsk
);
3266 down_read(&mm
->mmap_sem
);
3267 /* ignore errors, just check how much was successfully transferred */
3269 int bytes
, ret
, offset
;
3271 struct page
*page
= NULL
;
3273 ret
= get_user_pages(tsk
, mm
, addr
, 1,
3274 write
, 1, &page
, &vma
);
3277 * Check if this is a VM_IO | VM_PFNMAP VMA, which
3278 * we can access using slightly different code.
3280 #ifdef CONFIG_HAVE_IOREMAP_PROT
3281 vma
= find_vma(mm
, addr
);
3284 if (vma
->vm_ops
&& vma
->vm_ops
->access
)
3285 ret
= vma
->vm_ops
->access(vma
, addr
, buf
,
3293 offset
= addr
& (PAGE_SIZE
-1);
3294 if (bytes
> PAGE_SIZE
-offset
)
3295 bytes
= PAGE_SIZE
-offset
;
3299 copy_to_user_page(vma
, page
, addr
,
3300 maddr
+ offset
, buf
, bytes
);
3301 set_page_dirty_lock(page
);
3303 copy_from_user_page(vma
, page
, addr
,
3304 buf
, maddr
+ offset
, bytes
);
3307 page_cache_release(page
);
3313 up_read(&mm
->mmap_sem
);
3316 return buf
- old_buf
;
3320 * Print the name of a VMA.
3322 void print_vma_addr(char *prefix
, unsigned long ip
)
3324 struct mm_struct
*mm
= current
->mm
;
3325 struct vm_area_struct
*vma
;
3328 * Do not print if we are in atomic
3329 * contexts (in exception stacks, etc.):
3331 if (preempt_count())
3334 down_read(&mm
->mmap_sem
);
3335 vma
= find_vma(mm
, ip
);
3336 if (vma
&& vma
->vm_file
) {
3337 struct file
*f
= vma
->vm_file
;
3338 char *buf
= (char *)__get_free_page(GFP_KERNEL
);
3342 p
= d_path(&f
->f_path
, buf
, PAGE_SIZE
);
3345 s
= strrchr(p
, '/');
3348 printk("%s%s[%lx+%lx]", prefix
, p
,
3350 vma
->vm_end
- vma
->vm_start
);
3351 free_page((unsigned long)buf
);
3354 up_read(¤t
->mm
->mmap_sem
);
3357 #ifdef CONFIG_PROVE_LOCKING
3358 void might_fault(void)
3361 * Some code (nfs/sunrpc) uses socket ops on kernel memory while
3362 * holding the mmap_sem, this is safe because kernel memory doesn't
3363 * get paged out, therefore we'll never actually fault, and the
3364 * below annotations will generate false positives.
3366 if (segment_eq(get_fs(), KERNEL_DS
))
3371 * it would be nicer only to annotate paths which are not under
3372 * pagefault_disable, however that requires a larger audit and
3373 * providing helpers like get_user_atomic.
3375 if (!in_atomic() && current
->mm
)
3376 might_lock_read(¤t
->mm
->mmap_sem
);
3378 EXPORT_SYMBOL(might_fault
);