2 * Copyright (C) 1991, 1992 Linus Torvalds
3 * Copyright (C) 1994, Karl Keyte: Added support for disk statistics
4 * Elevator latency, (C) 2000 Andrea Arcangeli <andrea@suse.de> SuSE
5 * Queue request tables / lock, selectable elevator, Jens Axboe <axboe@suse.de>
6 * kernel-doc documentation started by NeilBrown <neilb@cse.unsw.edu.au>
8 * bio rewrite, highmem i/o, etc, Jens Axboe <axboe@suse.de> - may 2001
12 * This handles all read/write requests to block devices
14 #include <linux/kernel.h>
15 #include <linux/module.h>
16 #include <linux/backing-dev.h>
17 #include <linux/bio.h>
18 #include <linux/blkdev.h>
19 #include <linux/highmem.h>
21 #include <linux/kernel_stat.h>
22 #include <linux/string.h>
23 #include <linux/init.h>
24 #include <linux/completion.h>
25 #include <linux/slab.h>
26 #include <linux/swap.h>
27 #include <linux/writeback.h>
28 #include <linux/task_io_accounting_ops.h>
29 #include <linux/interrupt.h>
30 #include <linux/cpu.h>
31 #include <linux/blktrace_api.h>
32 #include <linux/fault-inject.h>
36 static int __make_request(struct request_queue
*q
, struct bio
*bio
);
39 * For the allocated request tables
41 static struct kmem_cache
*request_cachep
;
44 * For queue allocation
46 struct kmem_cache
*blk_requestq_cachep
;
49 * Controlling structure to kblockd
51 static struct workqueue_struct
*kblockd_workqueue
;
53 static DEFINE_PER_CPU(struct list_head
, blk_cpu_done
);
55 static void drive_stat_acct(struct request
*rq
, int new_io
)
57 struct hd_struct
*part
;
58 int rw
= rq_data_dir(rq
);
60 if (!blk_fs_request(rq
) || !rq
->rq_disk
)
63 part
= get_part(rq
->rq_disk
, rq
->sector
);
65 __all_stat_inc(rq
->rq_disk
, part
, merges
[rw
], rq
->sector
);
67 disk_round_stats(rq
->rq_disk
);
68 rq
->rq_disk
->in_flight
++;
70 part_round_stats(part
);
76 void blk_queue_congestion_threshold(struct request_queue
*q
)
80 nr
= q
->nr_requests
- (q
->nr_requests
/ 8) + 1;
81 if (nr
> q
->nr_requests
)
83 q
->nr_congestion_on
= nr
;
85 nr
= q
->nr_requests
- (q
->nr_requests
/ 8) - (q
->nr_requests
/ 16) - 1;
88 q
->nr_congestion_off
= nr
;
92 * blk_get_backing_dev_info - get the address of a queue's backing_dev_info
95 * Locates the passed device's request queue and returns the address of its
98 * Will return NULL if the request queue cannot be located.
100 struct backing_dev_info
*blk_get_backing_dev_info(struct block_device
*bdev
)
102 struct backing_dev_info
*ret
= NULL
;
103 struct request_queue
*q
= bdev_get_queue(bdev
);
106 ret
= &q
->backing_dev_info
;
109 EXPORT_SYMBOL(blk_get_backing_dev_info
);
111 void blk_rq_init(struct request_queue
*q
, struct request
*rq
)
113 memset(rq
, 0, sizeof(*rq
));
115 INIT_LIST_HEAD(&rq
->queuelist
);
116 INIT_LIST_HEAD(&rq
->donelist
);
118 rq
->sector
= rq
->hard_sector
= (sector_t
) -1;
119 INIT_HLIST_NODE(&rq
->hash
);
120 RB_CLEAR_NODE(&rq
->rb_node
);
125 EXPORT_SYMBOL(blk_rq_init
);
127 static void req_bio_endio(struct request
*rq
, struct bio
*bio
,
128 unsigned int nbytes
, int error
)
130 struct request_queue
*q
= rq
->q
;
132 if (&q
->bar_rq
!= rq
) {
134 clear_bit(BIO_UPTODATE
, &bio
->bi_flags
);
135 else if (!test_bit(BIO_UPTODATE
, &bio
->bi_flags
))
138 if (unlikely(nbytes
> bio
->bi_size
)) {
139 printk(KERN_ERR
"%s: want %u bytes done, %u left\n",
140 __func__
, nbytes
, bio
->bi_size
);
141 nbytes
= bio
->bi_size
;
144 bio
->bi_size
-= nbytes
;
145 bio
->bi_sector
+= (nbytes
>> 9);
147 if (bio_integrity(bio
))
148 bio_integrity_advance(bio
, nbytes
);
150 if (bio
->bi_size
== 0)
151 bio_endio(bio
, error
);
155 * Okay, this is the barrier request in progress, just
158 if (error
&& !q
->orderr
)
163 void blk_dump_rq_flags(struct request
*rq
, char *msg
)
167 printk(KERN_INFO
"%s: dev %s: type=%x, flags=%x\n", msg
,
168 rq
->rq_disk
? rq
->rq_disk
->disk_name
: "?", rq
->cmd_type
,
171 printk(KERN_INFO
" sector %llu, nr/cnr %lu/%u\n",
172 (unsigned long long)rq
->sector
,
174 rq
->current_nr_sectors
);
175 printk(KERN_INFO
" bio %p, biotail %p, buffer %p, data %p, len %u\n",
176 rq
->bio
, rq
->biotail
,
177 rq
->buffer
, rq
->data
,
180 if (blk_pc_request(rq
)) {
181 printk(KERN_INFO
" cdb: ");
182 for (bit
= 0; bit
< BLK_MAX_CDB
; bit
++)
183 printk("%02x ", rq
->cmd
[bit
]);
187 EXPORT_SYMBOL(blk_dump_rq_flags
);
190 * "plug" the device if there are no outstanding requests: this will
191 * force the transfer to start only after we have put all the requests
194 * This is called with interrupts off and no requests on the queue and
195 * with the queue lock held.
197 void blk_plug_device(struct request_queue
*q
)
199 WARN_ON(!irqs_disabled());
202 * don't plug a stopped queue, it must be paired with blk_start_queue()
203 * which will restart the queueing
205 if (blk_queue_stopped(q
))
208 if (!queue_flag_test_and_set(QUEUE_FLAG_PLUGGED
, q
)) {
209 mod_timer(&q
->unplug_timer
, jiffies
+ q
->unplug_delay
);
210 blk_add_trace_generic(q
, NULL
, 0, BLK_TA_PLUG
);
213 EXPORT_SYMBOL(blk_plug_device
);
216 * blk_plug_device_unlocked - plug a device without queue lock held
217 * @q: The &struct request_queue to plug
220 * Like @blk_plug_device(), but grabs the queue lock and disables
223 void blk_plug_device_unlocked(struct request_queue
*q
)
227 spin_lock_irqsave(q
->queue_lock
, flags
);
229 spin_unlock_irqrestore(q
->queue_lock
, flags
);
231 EXPORT_SYMBOL(blk_plug_device_unlocked
);
234 * remove the queue from the plugged list, if present. called with
235 * queue lock held and interrupts disabled.
237 int blk_remove_plug(struct request_queue
*q
)
239 WARN_ON(!irqs_disabled());
241 if (!queue_flag_test_and_clear(QUEUE_FLAG_PLUGGED
, q
))
244 del_timer(&q
->unplug_timer
);
247 EXPORT_SYMBOL(blk_remove_plug
);
250 * remove the plug and let it rip..
252 void __generic_unplug_device(struct request_queue
*q
)
254 if (unlikely(blk_queue_stopped(q
)))
257 if (!blk_remove_plug(q
))
262 EXPORT_SYMBOL(__generic_unplug_device
);
265 * generic_unplug_device - fire a request queue
266 * @q: The &struct request_queue in question
269 * Linux uses plugging to build bigger requests queues before letting
270 * the device have at them. If a queue is plugged, the I/O scheduler
271 * is still adding and merging requests on the queue. Once the queue
272 * gets unplugged, the request_fn defined for the queue is invoked and
275 void generic_unplug_device(struct request_queue
*q
)
277 if (blk_queue_plugged(q
)) {
278 spin_lock_irq(q
->queue_lock
);
279 __generic_unplug_device(q
);
280 spin_unlock_irq(q
->queue_lock
);
283 EXPORT_SYMBOL(generic_unplug_device
);
285 static void blk_backing_dev_unplug(struct backing_dev_info
*bdi
,
288 struct request_queue
*q
= bdi
->unplug_io_data
;
293 void blk_unplug_work(struct work_struct
*work
)
295 struct request_queue
*q
=
296 container_of(work
, struct request_queue
, unplug_work
);
298 blk_add_trace_pdu_int(q
, BLK_TA_UNPLUG_IO
, NULL
,
299 q
->rq
.count
[READ
] + q
->rq
.count
[WRITE
]);
304 void blk_unplug_timeout(unsigned long data
)
306 struct request_queue
*q
= (struct request_queue
*)data
;
308 blk_add_trace_pdu_int(q
, BLK_TA_UNPLUG_TIMER
, NULL
,
309 q
->rq
.count
[READ
] + q
->rq
.count
[WRITE
]);
311 kblockd_schedule_work(&q
->unplug_work
);
314 void blk_unplug(struct request_queue
*q
)
317 * devices don't necessarily have an ->unplug_fn defined
320 blk_add_trace_pdu_int(q
, BLK_TA_UNPLUG_IO
, NULL
,
321 q
->rq
.count
[READ
] + q
->rq
.count
[WRITE
]);
326 EXPORT_SYMBOL(blk_unplug
);
329 * blk_start_queue - restart a previously stopped queue
330 * @q: The &struct request_queue in question
333 * blk_start_queue() will clear the stop flag on the queue, and call
334 * the request_fn for the queue if it was in a stopped state when
335 * entered. Also see blk_stop_queue(). Queue lock must be held.
337 void blk_start_queue(struct request_queue
*q
)
339 WARN_ON(!irqs_disabled());
341 queue_flag_clear(QUEUE_FLAG_STOPPED
, q
);
344 * one level of recursion is ok and is much faster than kicking
345 * the unplug handling
347 if (!queue_flag_test_and_set(QUEUE_FLAG_REENTER
, q
)) {
349 queue_flag_clear(QUEUE_FLAG_REENTER
, q
);
352 kblockd_schedule_work(&q
->unplug_work
);
355 EXPORT_SYMBOL(blk_start_queue
);
358 * blk_stop_queue - stop a queue
359 * @q: The &struct request_queue in question
362 * The Linux block layer assumes that a block driver will consume all
363 * entries on the request queue when the request_fn strategy is called.
364 * Often this will not happen, because of hardware limitations (queue
365 * depth settings). If a device driver gets a 'queue full' response,
366 * or if it simply chooses not to queue more I/O at one point, it can
367 * call this function to prevent the request_fn from being called until
368 * the driver has signalled it's ready to go again. This happens by calling
369 * blk_start_queue() to restart queue operations. Queue lock must be held.
371 void blk_stop_queue(struct request_queue
*q
)
374 queue_flag_set(QUEUE_FLAG_STOPPED
, q
);
376 EXPORT_SYMBOL(blk_stop_queue
);
379 * blk_sync_queue - cancel any pending callbacks on a queue
383 * The block layer may perform asynchronous callback activity
384 * on a queue, such as calling the unplug function after a timeout.
385 * A block device may call blk_sync_queue to ensure that any
386 * such activity is cancelled, thus allowing it to release resources
387 * that the callbacks might use. The caller must already have made sure
388 * that its ->make_request_fn will not re-add plugging prior to calling
392 void blk_sync_queue(struct request_queue
*q
)
394 del_timer_sync(&q
->unplug_timer
);
395 kblockd_flush_work(&q
->unplug_work
);
397 EXPORT_SYMBOL(blk_sync_queue
);
400 * blk_run_queue - run a single device queue
401 * @q: The queue to run
403 void __blk_run_queue(struct request_queue
*q
)
408 * Only recurse once to avoid overrunning the stack, let the unplug
409 * handling reinvoke the handler shortly if we already got there.
411 if (!elv_queue_empty(q
)) {
412 if (!queue_flag_test_and_set(QUEUE_FLAG_REENTER
, q
)) {
414 queue_flag_clear(QUEUE_FLAG_REENTER
, q
);
417 kblockd_schedule_work(&q
->unplug_work
);
421 EXPORT_SYMBOL(__blk_run_queue
);
424 * blk_run_queue - run a single device queue
425 * @q: The queue to run
427 void blk_run_queue(struct request_queue
*q
)
431 spin_lock_irqsave(q
->queue_lock
, flags
);
433 spin_unlock_irqrestore(q
->queue_lock
, flags
);
435 EXPORT_SYMBOL(blk_run_queue
);
437 void blk_put_queue(struct request_queue
*q
)
439 kobject_put(&q
->kobj
);
442 void blk_cleanup_queue(struct request_queue
*q
)
444 mutex_lock(&q
->sysfs_lock
);
445 queue_flag_set_unlocked(QUEUE_FLAG_DEAD
, q
);
446 mutex_unlock(&q
->sysfs_lock
);
449 elevator_exit(q
->elevator
);
453 EXPORT_SYMBOL(blk_cleanup_queue
);
455 static int blk_init_free_list(struct request_queue
*q
)
457 struct request_list
*rl
= &q
->rq
;
459 rl
->count
[READ
] = rl
->count
[WRITE
] = 0;
460 rl
->starved
[READ
] = rl
->starved
[WRITE
] = 0;
462 init_waitqueue_head(&rl
->wait
[READ
]);
463 init_waitqueue_head(&rl
->wait
[WRITE
]);
465 rl
->rq_pool
= mempool_create_node(BLKDEV_MIN_RQ
, mempool_alloc_slab
,
466 mempool_free_slab
, request_cachep
, q
->node
);
474 struct request_queue
*blk_alloc_queue(gfp_t gfp_mask
)
476 return blk_alloc_queue_node(gfp_mask
, -1);
478 EXPORT_SYMBOL(blk_alloc_queue
);
480 struct request_queue
*blk_alloc_queue_node(gfp_t gfp_mask
, int node_id
)
482 struct request_queue
*q
;
485 q
= kmem_cache_alloc_node(blk_requestq_cachep
,
486 gfp_mask
| __GFP_ZERO
, node_id
);
490 q
->backing_dev_info
.unplug_io_fn
= blk_backing_dev_unplug
;
491 q
->backing_dev_info
.unplug_io_data
= q
;
492 err
= bdi_init(&q
->backing_dev_info
);
494 kmem_cache_free(blk_requestq_cachep
, q
);
498 init_timer(&q
->unplug_timer
);
500 kobject_init(&q
->kobj
, &blk_queue_ktype
);
502 mutex_init(&q
->sysfs_lock
);
503 spin_lock_init(&q
->__queue_lock
);
507 EXPORT_SYMBOL(blk_alloc_queue_node
);
510 * blk_init_queue - prepare a request queue for use with a block device
511 * @rfn: The function to be called to process requests that have been
512 * placed on the queue.
513 * @lock: Request queue spin lock
516 * If a block device wishes to use the standard request handling procedures,
517 * which sorts requests and coalesces adjacent requests, then it must
518 * call blk_init_queue(). The function @rfn will be called when there
519 * are requests on the queue that need to be processed. If the device
520 * supports plugging, then @rfn may not be called immediately when requests
521 * are available on the queue, but may be called at some time later instead.
522 * Plugged queues are generally unplugged when a buffer belonging to one
523 * of the requests on the queue is needed, or due to memory pressure.
525 * @rfn is not required, or even expected, to remove all requests off the
526 * queue, but only as many as it can handle at a time. If it does leave
527 * requests on the queue, it is responsible for arranging that the requests
528 * get dealt with eventually.
530 * The queue spin lock must be held while manipulating the requests on the
531 * request queue; this lock will be taken also from interrupt context, so irq
532 * disabling is needed for it.
534 * Function returns a pointer to the initialized request queue, or NULL if
538 * blk_init_queue() must be paired with a blk_cleanup_queue() call
539 * when the block device is deactivated (such as at module unload).
542 struct request_queue
*blk_init_queue(request_fn_proc
*rfn
, spinlock_t
*lock
)
544 return blk_init_queue_node(rfn
, lock
, -1);
546 EXPORT_SYMBOL(blk_init_queue
);
548 struct request_queue
*
549 blk_init_queue_node(request_fn_proc
*rfn
, spinlock_t
*lock
, int node_id
)
551 struct request_queue
*q
= blk_alloc_queue_node(GFP_KERNEL
, node_id
);
557 if (blk_init_free_list(q
)) {
558 kmem_cache_free(blk_requestq_cachep
, q
);
563 * if caller didn't supply a lock, they get per-queue locking with
567 lock
= &q
->__queue_lock
;
570 q
->prep_rq_fn
= NULL
;
571 q
->unplug_fn
= generic_unplug_device
;
572 q
->queue_flags
= (1 << QUEUE_FLAG_CLUSTER
);
573 q
->queue_lock
= lock
;
575 blk_queue_segment_boundary(q
, 0xffffffff);
577 blk_queue_make_request(q
, __make_request
);
578 blk_queue_max_segment_size(q
, MAX_SEGMENT_SIZE
);
580 blk_queue_max_hw_segments(q
, MAX_HW_SEGMENTS
);
581 blk_queue_max_phys_segments(q
, MAX_PHYS_SEGMENTS
);
583 q
->sg_reserved_size
= INT_MAX
;
588 if (!elevator_init(q
, NULL
)) {
589 blk_queue_congestion_threshold(q
);
596 EXPORT_SYMBOL(blk_init_queue_node
);
598 int blk_get_queue(struct request_queue
*q
)
600 if (likely(!test_bit(QUEUE_FLAG_DEAD
, &q
->queue_flags
))) {
601 kobject_get(&q
->kobj
);
608 static inline void blk_free_request(struct request_queue
*q
, struct request
*rq
)
610 if (rq
->cmd_flags
& REQ_ELVPRIV
)
611 elv_put_request(q
, rq
);
612 mempool_free(rq
, q
->rq
.rq_pool
);
615 static struct request
*
616 blk_alloc_request(struct request_queue
*q
, int rw
, int priv
, gfp_t gfp_mask
)
618 struct request
*rq
= mempool_alloc(q
->rq
.rq_pool
, gfp_mask
);
626 * first three bits are identical in rq->cmd_flags and bio->bi_rw,
627 * see bio.h and blkdev.h
629 rq
->cmd_flags
= rw
| REQ_ALLOCED
;
632 if (unlikely(elv_set_request(q
, rq
, gfp_mask
))) {
633 mempool_free(rq
, q
->rq
.rq_pool
);
636 rq
->cmd_flags
|= REQ_ELVPRIV
;
643 * ioc_batching returns true if the ioc is a valid batching request and
644 * should be given priority access to a request.
646 static inline int ioc_batching(struct request_queue
*q
, struct io_context
*ioc
)
652 * Make sure the process is able to allocate at least 1 request
653 * even if the batch times out, otherwise we could theoretically
656 return ioc
->nr_batch_requests
== q
->nr_batching
||
657 (ioc
->nr_batch_requests
> 0
658 && time_before(jiffies
, ioc
->last_waited
+ BLK_BATCH_TIME
));
662 * ioc_set_batching sets ioc to be a new "batcher" if it is not one. This
663 * will cause the process to be a "batcher" on all queues in the system. This
664 * is the behaviour we want though - once it gets a wakeup it should be given
667 static void ioc_set_batching(struct request_queue
*q
, struct io_context
*ioc
)
669 if (!ioc
|| ioc_batching(q
, ioc
))
672 ioc
->nr_batch_requests
= q
->nr_batching
;
673 ioc
->last_waited
= jiffies
;
676 static void __freed_request(struct request_queue
*q
, int rw
)
678 struct request_list
*rl
= &q
->rq
;
680 if (rl
->count
[rw
] < queue_congestion_off_threshold(q
))
681 blk_clear_queue_congested(q
, rw
);
683 if (rl
->count
[rw
] + 1 <= q
->nr_requests
) {
684 if (waitqueue_active(&rl
->wait
[rw
]))
685 wake_up(&rl
->wait
[rw
]);
687 blk_clear_queue_full(q
, rw
);
692 * A request has just been released. Account for it, update the full and
693 * congestion status, wake up any waiters. Called under q->queue_lock.
695 static void freed_request(struct request_queue
*q
, int rw
, int priv
)
697 struct request_list
*rl
= &q
->rq
;
703 __freed_request(q
, rw
);
705 if (unlikely(rl
->starved
[rw
^ 1]))
706 __freed_request(q
, rw
^ 1);
709 #define blkdev_free_rq(list) list_entry((list)->next, struct request, queuelist)
711 * Get a free request, queue_lock must be held.
712 * Returns NULL on failure, with queue_lock held.
713 * Returns !NULL on success, with queue_lock *not held*.
715 static struct request
*get_request(struct request_queue
*q
, int rw_flags
,
716 struct bio
*bio
, gfp_t gfp_mask
)
718 struct request
*rq
= NULL
;
719 struct request_list
*rl
= &q
->rq
;
720 struct io_context
*ioc
= NULL
;
721 const int rw
= rw_flags
& 0x01;
724 may_queue
= elv_may_queue(q
, rw_flags
);
725 if (may_queue
== ELV_MQUEUE_NO
)
728 if (rl
->count
[rw
]+1 >= queue_congestion_on_threshold(q
)) {
729 if (rl
->count
[rw
]+1 >= q
->nr_requests
) {
730 ioc
= current_io_context(GFP_ATOMIC
, q
->node
);
732 * The queue will fill after this allocation, so set
733 * it as full, and mark this process as "batching".
734 * This process will be allowed to complete a batch of
735 * requests, others will be blocked.
737 if (!blk_queue_full(q
, rw
)) {
738 ioc_set_batching(q
, ioc
);
739 blk_set_queue_full(q
, rw
);
741 if (may_queue
!= ELV_MQUEUE_MUST
742 && !ioc_batching(q
, ioc
)) {
744 * The queue is full and the allocating
745 * process is not a "batcher", and not
746 * exempted by the IO scheduler
752 blk_set_queue_congested(q
, rw
);
756 * Only allow batching queuers to allocate up to 50% over the defined
757 * limit of requests, otherwise we could have thousands of requests
758 * allocated with any setting of ->nr_requests
760 if (rl
->count
[rw
] >= (3 * q
->nr_requests
/ 2))
766 priv
= !test_bit(QUEUE_FLAG_ELVSWITCH
, &q
->queue_flags
);
770 spin_unlock_irq(q
->queue_lock
);
772 rq
= blk_alloc_request(q
, rw_flags
, priv
, gfp_mask
);
775 * Allocation failed presumably due to memory. Undo anything
776 * we might have messed up.
778 * Allocating task should really be put onto the front of the
779 * wait queue, but this is pretty rare.
781 spin_lock_irq(q
->queue_lock
);
782 freed_request(q
, rw
, priv
);
785 * in the very unlikely event that allocation failed and no
786 * requests for this direction was pending, mark us starved
787 * so that freeing of a request in the other direction will
788 * notice us. another possible fix would be to split the
789 * rq mempool into READ and WRITE
792 if (unlikely(rl
->count
[rw
] == 0))
799 * ioc may be NULL here, and ioc_batching will be false. That's
800 * OK, if the queue is under the request limit then requests need
801 * not count toward the nr_batch_requests limit. There will always
802 * be some limit enforced by BLK_BATCH_TIME.
804 if (ioc_batching(q
, ioc
))
805 ioc
->nr_batch_requests
--;
807 blk_add_trace_generic(q
, bio
, rw
, BLK_TA_GETRQ
);
813 * No available requests for this queue, unplug the device and wait for some
814 * requests to become available.
816 * Called with q->queue_lock held, and returns with it unlocked.
818 static struct request
*get_request_wait(struct request_queue
*q
, int rw_flags
,
821 const int rw
= rw_flags
& 0x01;
824 rq
= get_request(q
, rw_flags
, bio
, GFP_NOIO
);
827 struct io_context
*ioc
;
828 struct request_list
*rl
= &q
->rq
;
830 prepare_to_wait_exclusive(&rl
->wait
[rw
], &wait
,
831 TASK_UNINTERRUPTIBLE
);
833 blk_add_trace_generic(q
, bio
, rw
, BLK_TA_SLEEPRQ
);
835 __generic_unplug_device(q
);
836 spin_unlock_irq(q
->queue_lock
);
840 * After sleeping, we become a "batching" process and
841 * will be able to allocate at least one request, and
842 * up to a big batch of them for a small period time.
843 * See ioc_batching, ioc_set_batching
845 ioc
= current_io_context(GFP_NOIO
, q
->node
);
846 ioc_set_batching(q
, ioc
);
848 spin_lock_irq(q
->queue_lock
);
849 finish_wait(&rl
->wait
[rw
], &wait
);
851 rq
= get_request(q
, rw_flags
, bio
, GFP_NOIO
);
857 struct request
*blk_get_request(struct request_queue
*q
, int rw
, gfp_t gfp_mask
)
861 BUG_ON(rw
!= READ
&& rw
!= WRITE
);
863 spin_lock_irq(q
->queue_lock
);
864 if (gfp_mask
& __GFP_WAIT
) {
865 rq
= get_request_wait(q
, rw
, NULL
);
867 rq
= get_request(q
, rw
, NULL
, gfp_mask
);
869 spin_unlock_irq(q
->queue_lock
);
871 /* q->queue_lock is unlocked at this point */
875 EXPORT_SYMBOL(blk_get_request
);
878 * blk_start_queueing - initiate dispatch of requests to device
879 * @q: request queue to kick into gear
881 * This is basically a helper to remove the need to know whether a queue
882 * is plugged or not if someone just wants to initiate dispatch of requests
885 * The queue lock must be held with interrupts disabled.
887 void blk_start_queueing(struct request_queue
*q
)
889 if (!blk_queue_plugged(q
))
892 __generic_unplug_device(q
);
894 EXPORT_SYMBOL(blk_start_queueing
);
897 * blk_requeue_request - put a request back on queue
898 * @q: request queue where request should be inserted
899 * @rq: request to be inserted
902 * Drivers often keep queueing requests until the hardware cannot accept
903 * more, when that condition happens we need to put the request back
904 * on the queue. Must be called with queue lock held.
906 void blk_requeue_request(struct request_queue
*q
, struct request
*rq
)
908 blk_add_trace_rq(q
, rq
, BLK_TA_REQUEUE
);
910 if (blk_rq_tagged(rq
))
911 blk_queue_end_tag(q
, rq
);
913 elv_requeue_request(q
, rq
);
915 EXPORT_SYMBOL(blk_requeue_request
);
918 * blk_insert_request - insert a special request in to a request queue
919 * @q: request queue where request should be inserted
920 * @rq: request to be inserted
921 * @at_head: insert request at head or tail of queue
922 * @data: private data
925 * Many block devices need to execute commands asynchronously, so they don't
926 * block the whole kernel from preemption during request execution. This is
927 * accomplished normally by inserting aritficial requests tagged as
928 * REQ_SPECIAL in to the corresponding request queue, and letting them be
929 * scheduled for actual execution by the request queue.
931 * We have the option of inserting the head or the tail of the queue.
932 * Typically we use the tail for new ioctls and so forth. We use the head
933 * of the queue for things like a QUEUE_FULL message from a device, or a
934 * host that is unable to accept a particular command.
936 void blk_insert_request(struct request_queue
*q
, struct request
*rq
,
937 int at_head
, void *data
)
939 int where
= at_head
? ELEVATOR_INSERT_FRONT
: ELEVATOR_INSERT_BACK
;
943 * tell I/O scheduler that this isn't a regular read/write (ie it
944 * must not attempt merges on this) and that it acts as a soft
947 rq
->cmd_type
= REQ_TYPE_SPECIAL
;
948 rq
->cmd_flags
|= REQ_SOFTBARRIER
;
952 spin_lock_irqsave(q
->queue_lock
, flags
);
955 * If command is tagged, release the tag
957 if (blk_rq_tagged(rq
))
958 blk_queue_end_tag(q
, rq
);
960 drive_stat_acct(rq
, 1);
961 __elv_add_request(q
, rq
, where
, 0);
962 blk_start_queueing(q
);
963 spin_unlock_irqrestore(q
->queue_lock
, flags
);
965 EXPORT_SYMBOL(blk_insert_request
);
968 * add-request adds a request to the linked list.
969 * queue lock is held and interrupts disabled, as we muck with the
970 * request queue list.
972 static inline void add_request(struct request_queue
*q
, struct request
*req
)
974 drive_stat_acct(req
, 1);
977 * elevator indicated where it wants this request to be
978 * inserted at elevator_merge time
980 __elv_add_request(q
, req
, ELEVATOR_INSERT_SORT
, 0);
984 * disk_round_stats() - Round off the performance stats on a struct
987 * The average IO queue length and utilisation statistics are maintained
988 * by observing the current state of the queue length and the amount of
989 * time it has been in this state for.
991 * Normally, that accounting is done on IO completion, but that can result
992 * in more than a second's worth of IO being accounted for within any one
993 * second, leading to >100% utilisation. To deal with that, we call this
994 * function to do a round-off before returning the results when reading
995 * /proc/diskstats. This accounts immediately for all queue usage up to
996 * the current jiffies and restarts the counters again.
998 void disk_round_stats(struct gendisk
*disk
)
1000 unsigned long now
= jiffies
;
1002 if (now
== disk
->stamp
)
1005 if (disk
->in_flight
) {
1006 __disk_stat_add(disk
, time_in_queue
,
1007 disk
->in_flight
* (now
- disk
->stamp
));
1008 __disk_stat_add(disk
, io_ticks
, (now
- disk
->stamp
));
1012 EXPORT_SYMBOL_GPL(disk_round_stats
);
1014 void part_round_stats(struct hd_struct
*part
)
1016 unsigned long now
= jiffies
;
1018 if (now
== part
->stamp
)
1021 if (part
->in_flight
) {
1022 __part_stat_add(part
, time_in_queue
,
1023 part
->in_flight
* (now
- part
->stamp
));
1024 __part_stat_add(part
, io_ticks
, (now
- part
->stamp
));
1030 * queue lock must be held
1032 void __blk_put_request(struct request_queue
*q
, struct request
*req
)
1036 if (unlikely(--req
->ref_count
))
1039 elv_completed_request(q
, req
);
1042 * Request may not have originated from ll_rw_blk. if not,
1043 * it didn't come out of our reserved rq pools
1045 if (req
->cmd_flags
& REQ_ALLOCED
) {
1046 int rw
= rq_data_dir(req
);
1047 int priv
= req
->cmd_flags
& REQ_ELVPRIV
;
1049 BUG_ON(!list_empty(&req
->queuelist
));
1050 BUG_ON(!hlist_unhashed(&req
->hash
));
1052 blk_free_request(q
, req
);
1053 freed_request(q
, rw
, priv
);
1056 EXPORT_SYMBOL_GPL(__blk_put_request
);
1058 void blk_put_request(struct request
*req
)
1060 unsigned long flags
;
1061 struct request_queue
*q
= req
->q
;
1063 spin_lock_irqsave(q
->queue_lock
, flags
);
1064 __blk_put_request(q
, req
);
1065 spin_unlock_irqrestore(q
->queue_lock
, flags
);
1067 EXPORT_SYMBOL(blk_put_request
);
1069 void init_request_from_bio(struct request
*req
, struct bio
*bio
)
1071 req
->cmd_type
= REQ_TYPE_FS
;
1074 * inherit FAILFAST from bio (for read-ahead, and explicit FAILFAST)
1076 if (bio_rw_ahead(bio
) || bio_failfast(bio
))
1077 req
->cmd_flags
|= REQ_FAILFAST
;
1080 * REQ_BARRIER implies no merging, but lets make it explicit
1082 if (unlikely(bio_barrier(bio
)))
1083 req
->cmd_flags
|= (REQ_HARDBARRIER
| REQ_NOMERGE
);
1086 req
->cmd_flags
|= REQ_RW_SYNC
;
1087 if (bio_rw_meta(bio
))
1088 req
->cmd_flags
|= REQ_RW_META
;
1091 req
->hard_sector
= req
->sector
= bio
->bi_sector
;
1092 req
->ioprio
= bio_prio(bio
);
1093 req
->start_time
= jiffies
;
1094 blk_rq_bio_prep(req
->q
, req
, bio
);
1097 static int __make_request(struct request_queue
*q
, struct bio
*bio
)
1099 struct request
*req
;
1100 int el_ret
, nr_sectors
, barrier
, err
;
1101 const unsigned short prio
= bio_prio(bio
);
1102 const int sync
= bio_sync(bio
);
1105 nr_sectors
= bio_sectors(bio
);
1108 * low level driver can indicate that it wants pages above a
1109 * certain limit bounced to low memory (ie for highmem, or even
1110 * ISA dma in theory)
1112 blk_queue_bounce(q
, &bio
);
1114 barrier
= bio_barrier(bio
);
1115 if (unlikely(barrier
) && (q
->next_ordered
== QUEUE_ORDERED_NONE
)) {
1120 spin_lock_irq(q
->queue_lock
);
1122 if (unlikely(barrier
) || elv_queue_empty(q
))
1125 el_ret
= elv_merge(q
, &req
, bio
);
1127 case ELEVATOR_BACK_MERGE
:
1128 BUG_ON(!rq_mergeable(req
));
1130 if (!ll_back_merge_fn(q
, req
, bio
))
1133 blk_add_trace_bio(q
, bio
, BLK_TA_BACKMERGE
);
1135 req
->biotail
->bi_next
= bio
;
1137 req
->nr_sectors
= req
->hard_nr_sectors
+= nr_sectors
;
1138 req
->ioprio
= ioprio_best(req
->ioprio
, prio
);
1139 drive_stat_acct(req
, 0);
1140 if (!attempt_back_merge(q
, req
))
1141 elv_merged_request(q
, req
, el_ret
);
1144 case ELEVATOR_FRONT_MERGE
:
1145 BUG_ON(!rq_mergeable(req
));
1147 if (!ll_front_merge_fn(q
, req
, bio
))
1150 blk_add_trace_bio(q
, bio
, BLK_TA_FRONTMERGE
);
1152 bio
->bi_next
= req
->bio
;
1156 * may not be valid. if the low level driver said
1157 * it didn't need a bounce buffer then it better
1158 * not touch req->buffer either...
1160 req
->buffer
= bio_data(bio
);
1161 req
->current_nr_sectors
= bio_cur_sectors(bio
);
1162 req
->hard_cur_sectors
= req
->current_nr_sectors
;
1163 req
->sector
= req
->hard_sector
= bio
->bi_sector
;
1164 req
->nr_sectors
= req
->hard_nr_sectors
+= nr_sectors
;
1165 req
->ioprio
= ioprio_best(req
->ioprio
, prio
);
1166 drive_stat_acct(req
, 0);
1167 if (!attempt_front_merge(q
, req
))
1168 elv_merged_request(q
, req
, el_ret
);
1171 /* ELV_NO_MERGE: elevator says don't/can't merge. */
1178 * This sync check and mask will be re-done in init_request_from_bio(),
1179 * but we need to set it earlier to expose the sync flag to the
1180 * rq allocator and io schedulers.
1182 rw_flags
= bio_data_dir(bio
);
1184 rw_flags
|= REQ_RW_SYNC
;
1187 * Grab a free request. This is might sleep but can not fail.
1188 * Returns with the queue unlocked.
1190 req
= get_request_wait(q
, rw_flags
, bio
);
1193 * After dropping the lock and possibly sleeping here, our request
1194 * may now be mergeable after it had proven unmergeable (above).
1195 * We don't worry about that case for efficiency. It won't happen
1196 * often, and the elevators are able to handle it.
1198 init_request_from_bio(req
, bio
);
1200 spin_lock_irq(q
->queue_lock
);
1201 if (elv_queue_empty(q
))
1203 add_request(q
, req
);
1206 __generic_unplug_device(q
);
1208 spin_unlock_irq(q
->queue_lock
);
1212 bio_endio(bio
, err
);
1217 * If bio->bi_dev is a partition, remap the location
1219 static inline void blk_partition_remap(struct bio
*bio
)
1221 struct block_device
*bdev
= bio
->bi_bdev
;
1223 if (bio_sectors(bio
) && bdev
!= bdev
->bd_contains
) {
1224 struct hd_struct
*p
= bdev
->bd_part
;
1226 bio
->bi_sector
+= p
->start_sect
;
1227 bio
->bi_bdev
= bdev
->bd_contains
;
1229 blk_add_trace_remap(bdev_get_queue(bio
->bi_bdev
), bio
,
1230 bdev
->bd_dev
, bio
->bi_sector
,
1231 bio
->bi_sector
- p
->start_sect
);
1235 static void handle_bad_sector(struct bio
*bio
)
1237 char b
[BDEVNAME_SIZE
];
1239 printk(KERN_INFO
"attempt to access beyond end of device\n");
1240 printk(KERN_INFO
"%s: rw=%ld, want=%Lu, limit=%Lu\n",
1241 bdevname(bio
->bi_bdev
, b
),
1243 (unsigned long long)bio
->bi_sector
+ bio_sectors(bio
),
1244 (long long)(bio
->bi_bdev
->bd_inode
->i_size
>> 9));
1246 set_bit(BIO_EOF
, &bio
->bi_flags
);
1249 #ifdef CONFIG_FAIL_MAKE_REQUEST
1251 static DECLARE_FAULT_ATTR(fail_make_request
);
1253 static int __init
setup_fail_make_request(char *str
)
1255 return setup_fault_attr(&fail_make_request
, str
);
1257 __setup("fail_make_request=", setup_fail_make_request
);
1259 static int should_fail_request(struct bio
*bio
)
1261 if ((bio
->bi_bdev
->bd_disk
->flags
& GENHD_FL_FAIL
) ||
1262 (bio
->bi_bdev
->bd_part
&& bio
->bi_bdev
->bd_part
->make_it_fail
))
1263 return should_fail(&fail_make_request
, bio
->bi_size
);
1268 static int __init
fail_make_request_debugfs(void)
1270 return init_fault_attr_dentries(&fail_make_request
,
1271 "fail_make_request");
1274 late_initcall(fail_make_request_debugfs
);
1276 #else /* CONFIG_FAIL_MAKE_REQUEST */
1278 static inline int should_fail_request(struct bio
*bio
)
1283 #endif /* CONFIG_FAIL_MAKE_REQUEST */
1286 * Check whether this bio extends beyond the end of the device.
1288 static inline int bio_check_eod(struct bio
*bio
, unsigned int nr_sectors
)
1295 /* Test device or partition size, when known. */
1296 maxsector
= bio
->bi_bdev
->bd_inode
->i_size
>> 9;
1298 sector_t sector
= bio
->bi_sector
;
1300 if (maxsector
< nr_sectors
|| maxsector
- nr_sectors
< sector
) {
1302 * This may well happen - the kernel calls bread()
1303 * without checking the size of the device, e.g., when
1304 * mounting a device.
1306 handle_bad_sector(bio
);
1315 * generic_make_request: hand a buffer to its device driver for I/O
1316 * @bio: The bio describing the location in memory and on the device.
1318 * generic_make_request() is used to make I/O requests of block
1319 * devices. It is passed a &struct bio, which describes the I/O that needs
1322 * generic_make_request() does not return any status. The
1323 * success/failure status of the request, along with notification of
1324 * completion, is delivered asynchronously through the bio->bi_end_io
1325 * function described (one day) else where.
1327 * The caller of generic_make_request must make sure that bi_io_vec
1328 * are set to describe the memory buffer, and that bi_dev and bi_sector are
1329 * set to describe the device address, and the
1330 * bi_end_io and optionally bi_private are set to describe how
1331 * completion notification should be signaled.
1333 * generic_make_request and the drivers it calls may use bi_next if this
1334 * bio happens to be merged with someone else, and may change bi_dev and
1335 * bi_sector for remaps as it sees fit. So the values of these fields
1336 * should NOT be depended on after the call to generic_make_request.
1338 static inline void __generic_make_request(struct bio
*bio
)
1340 struct request_queue
*q
;
1341 sector_t old_sector
;
1342 int ret
, nr_sectors
= bio_sectors(bio
);
1348 if (bio_check_eod(bio
, nr_sectors
))
1352 * Resolve the mapping until finished. (drivers are
1353 * still free to implement/resolve their own stacking
1354 * by explicitly returning 0)
1356 * NOTE: we don't repeat the blk_size check for each new device.
1357 * Stacking drivers are expected to know what they are doing.
1362 char b
[BDEVNAME_SIZE
];
1364 q
= bdev_get_queue(bio
->bi_bdev
);
1367 "generic_make_request: Trying to access "
1368 "nonexistent block-device %s (%Lu)\n",
1369 bdevname(bio
->bi_bdev
, b
),
1370 (long long) bio
->bi_sector
);
1372 bio_endio(bio
, err
);
1376 if (unlikely(nr_sectors
> q
->max_hw_sectors
)) {
1377 printk(KERN_ERR
"bio too big device %s (%u > %u)\n",
1378 bdevname(bio
->bi_bdev
, b
),
1384 if (unlikely(test_bit(QUEUE_FLAG_DEAD
, &q
->queue_flags
)))
1387 if (should_fail_request(bio
))
1391 * If this device has partitions, remap block n
1392 * of partition p to block n+start(p) of the disk.
1394 blk_partition_remap(bio
);
1396 if (bio_integrity_enabled(bio
) && bio_integrity_prep(bio
))
1399 if (old_sector
!= -1)
1400 blk_add_trace_remap(q
, bio
, old_dev
, bio
->bi_sector
,
1403 blk_add_trace_bio(q
, bio
, BLK_TA_QUEUE
);
1405 old_sector
= bio
->bi_sector
;
1406 old_dev
= bio
->bi_bdev
->bd_dev
;
1408 if (bio_check_eod(bio
, nr_sectors
))
1410 if (bio_empty_barrier(bio
) && !q
->prepare_flush_fn
) {
1415 ret
= q
->make_request_fn(q
, bio
);
1420 * We only want one ->make_request_fn to be active at a time,
1421 * else stack usage with stacked devices could be a problem.
1422 * So use current->bio_{list,tail} to keep a list of requests
1423 * submited by a make_request_fn function.
1424 * current->bio_tail is also used as a flag to say if
1425 * generic_make_request is currently active in this task or not.
1426 * If it is NULL, then no make_request is active. If it is non-NULL,
1427 * then a make_request is active, and new requests should be added
1430 void generic_make_request(struct bio
*bio
)
1432 if (current
->bio_tail
) {
1433 /* make_request is active */
1434 *(current
->bio_tail
) = bio
;
1435 bio
->bi_next
= NULL
;
1436 current
->bio_tail
= &bio
->bi_next
;
1439 /* following loop may be a bit non-obvious, and so deserves some
1441 * Before entering the loop, bio->bi_next is NULL (as all callers
1442 * ensure that) so we have a list with a single bio.
1443 * We pretend that we have just taken it off a longer list, so
1444 * we assign bio_list to the next (which is NULL) and bio_tail
1445 * to &bio_list, thus initialising the bio_list of new bios to be
1446 * added. __generic_make_request may indeed add some more bios
1447 * through a recursive call to generic_make_request. If it
1448 * did, we find a non-NULL value in bio_list and re-enter the loop
1449 * from the top. In this case we really did just take the bio
1450 * of the top of the list (no pretending) and so fixup bio_list and
1451 * bio_tail or bi_next, and call into __generic_make_request again.
1453 * The loop was structured like this to make only one call to
1454 * __generic_make_request (which is important as it is large and
1455 * inlined) and to keep the structure simple.
1457 BUG_ON(bio
->bi_next
);
1459 current
->bio_list
= bio
->bi_next
;
1460 if (bio
->bi_next
== NULL
)
1461 current
->bio_tail
= ¤t
->bio_list
;
1463 bio
->bi_next
= NULL
;
1464 __generic_make_request(bio
);
1465 bio
= current
->bio_list
;
1467 current
->bio_tail
= NULL
; /* deactivate */
1469 EXPORT_SYMBOL(generic_make_request
);
1472 * submit_bio: submit a bio to the block device layer for I/O
1473 * @rw: whether to %READ or %WRITE, or maybe to %READA (read ahead)
1474 * @bio: The &struct bio which describes the I/O
1476 * submit_bio() is very similar in purpose to generic_make_request(), and
1477 * uses that function to do most of the work. Both are fairly rough
1478 * interfaces, @bio must be presetup and ready for I/O.
1481 void submit_bio(int rw
, struct bio
*bio
)
1483 int count
= bio_sectors(bio
);
1488 * If it's a regular read/write or a barrier with data attached,
1489 * go through the normal accounting stuff before submission.
1491 if (!bio_empty_barrier(bio
)) {
1493 BIO_BUG_ON(!bio
->bi_size
);
1494 BIO_BUG_ON(!bio
->bi_io_vec
);
1497 count_vm_events(PGPGOUT
, count
);
1499 task_io_account_read(bio
->bi_size
);
1500 count_vm_events(PGPGIN
, count
);
1503 if (unlikely(block_dump
)) {
1504 char b
[BDEVNAME_SIZE
];
1505 printk(KERN_DEBUG
"%s(%d): %s block %Lu on %s\n",
1506 current
->comm
, task_pid_nr(current
),
1507 (rw
& WRITE
) ? "WRITE" : "READ",
1508 (unsigned long long)bio
->bi_sector
,
1509 bdevname(bio
->bi_bdev
, b
));
1513 generic_make_request(bio
);
1515 EXPORT_SYMBOL(submit_bio
);
1518 * __end_that_request_first - end I/O on a request
1519 * @req: the request being processed
1520 * @error: 0 for success, < 0 for error
1521 * @nr_bytes: number of bytes to complete
1524 * Ends I/O on a number of bytes attached to @req, and sets it up
1525 * for the next range of segments (if any) in the cluster.
1528 * 0 - we are done with this request, call end_that_request_last()
1529 * 1 - still buffers pending for this request
1531 static int __end_that_request_first(struct request
*req
, int error
,
1534 int total_bytes
, bio_nbytes
, next_idx
= 0;
1537 blk_add_trace_rq(req
->q
, req
, BLK_TA_COMPLETE
);
1540 * for a REQ_BLOCK_PC request, we want to carry any eventual
1541 * sense key with us all the way through
1543 if (!blk_pc_request(req
))
1546 if (error
&& (blk_fs_request(req
) && !(req
->cmd_flags
& REQ_QUIET
))) {
1547 printk(KERN_ERR
"end_request: I/O error, dev %s, sector %llu\n",
1548 req
->rq_disk
? req
->rq_disk
->disk_name
: "?",
1549 (unsigned long long)req
->sector
);
1552 if (blk_fs_request(req
) && req
->rq_disk
) {
1553 struct hd_struct
*part
= get_part(req
->rq_disk
, req
->sector
);
1554 const int rw
= rq_data_dir(req
);
1556 all_stat_add(req
->rq_disk
, part
, sectors
[rw
],
1557 nr_bytes
>> 9, req
->sector
);
1560 total_bytes
= bio_nbytes
= 0;
1561 while ((bio
= req
->bio
) != NULL
) {
1565 * For an empty barrier request, the low level driver must
1566 * store a potential error location in ->sector. We pass
1567 * that back up in ->bi_sector.
1569 if (blk_empty_barrier(req
))
1570 bio
->bi_sector
= req
->sector
;
1572 if (nr_bytes
>= bio
->bi_size
) {
1573 req
->bio
= bio
->bi_next
;
1574 nbytes
= bio
->bi_size
;
1575 req_bio_endio(req
, bio
, nbytes
, error
);
1579 int idx
= bio
->bi_idx
+ next_idx
;
1581 if (unlikely(bio
->bi_idx
>= bio
->bi_vcnt
)) {
1582 blk_dump_rq_flags(req
, "__end_that");
1583 printk(KERN_ERR
"%s: bio idx %d >= vcnt %d\n",
1584 __func__
, bio
->bi_idx
, bio
->bi_vcnt
);
1588 nbytes
= bio_iovec_idx(bio
, idx
)->bv_len
;
1589 BIO_BUG_ON(nbytes
> bio
->bi_size
);
1592 * not a complete bvec done
1594 if (unlikely(nbytes
> nr_bytes
)) {
1595 bio_nbytes
+= nr_bytes
;
1596 total_bytes
+= nr_bytes
;
1601 * advance to the next vector
1604 bio_nbytes
+= nbytes
;
1607 total_bytes
+= nbytes
;
1613 * end more in this run, or just return 'not-done'
1615 if (unlikely(nr_bytes
<= 0))
1627 * if the request wasn't completed, update state
1630 req_bio_endio(req
, bio
, bio_nbytes
, error
);
1631 bio
->bi_idx
+= next_idx
;
1632 bio_iovec(bio
)->bv_offset
+= nr_bytes
;
1633 bio_iovec(bio
)->bv_len
-= nr_bytes
;
1636 blk_recalc_rq_sectors(req
, total_bytes
>> 9);
1637 blk_recalc_rq_segments(req
);
1642 * splice the completion data to a local structure and hand off to
1643 * process_completion_queue() to complete the requests
1645 static void blk_done_softirq(struct softirq_action
*h
)
1647 struct list_head
*cpu_list
, local_list
;
1649 local_irq_disable();
1650 cpu_list
= &__get_cpu_var(blk_cpu_done
);
1651 list_replace_init(cpu_list
, &local_list
);
1654 while (!list_empty(&local_list
)) {
1657 rq
= list_entry(local_list
.next
, struct request
, donelist
);
1658 list_del_init(&rq
->donelist
);
1659 rq
->q
->softirq_done_fn(rq
);
1663 static int __cpuinit
blk_cpu_notify(struct notifier_block
*self
,
1664 unsigned long action
, void *hcpu
)
1667 * If a CPU goes away, splice its entries to the current CPU
1668 * and trigger a run of the softirq
1670 if (action
== CPU_DEAD
|| action
== CPU_DEAD_FROZEN
) {
1671 int cpu
= (unsigned long) hcpu
;
1673 local_irq_disable();
1674 list_splice_init(&per_cpu(blk_cpu_done
, cpu
),
1675 &__get_cpu_var(blk_cpu_done
));
1676 raise_softirq_irqoff(BLOCK_SOFTIRQ
);
1684 static struct notifier_block blk_cpu_notifier __cpuinitdata
= {
1685 .notifier_call
= blk_cpu_notify
,
1689 * blk_complete_request - end I/O on a request
1690 * @req: the request being processed
1693 * Ends all I/O on a request. It does not handle partial completions,
1694 * unless the driver actually implements this in its completion callback
1695 * through requeueing. The actual completion happens out-of-order,
1696 * through a softirq handler. The user must have registered a completion
1697 * callback through blk_queue_softirq_done().
1700 void blk_complete_request(struct request
*req
)
1702 struct list_head
*cpu_list
;
1703 unsigned long flags
;
1705 BUG_ON(!req
->q
->softirq_done_fn
);
1707 local_irq_save(flags
);
1709 cpu_list
= &__get_cpu_var(blk_cpu_done
);
1710 list_add_tail(&req
->donelist
, cpu_list
);
1711 raise_softirq_irqoff(BLOCK_SOFTIRQ
);
1713 local_irq_restore(flags
);
1715 EXPORT_SYMBOL(blk_complete_request
);
1718 * queue lock must be held
1720 static void end_that_request_last(struct request
*req
, int error
)
1722 struct gendisk
*disk
= req
->rq_disk
;
1724 if (blk_rq_tagged(req
))
1725 blk_queue_end_tag(req
->q
, req
);
1727 if (blk_queued_rq(req
))
1728 blkdev_dequeue_request(req
);
1730 if (unlikely(laptop_mode
) && blk_fs_request(req
))
1731 laptop_io_completion();
1734 * Account IO completion. bar_rq isn't accounted as a normal
1735 * IO on queueing nor completion. Accounting the containing
1736 * request is enough.
1738 if (disk
&& blk_fs_request(req
) && req
!= &req
->q
->bar_rq
) {
1739 unsigned long duration
= jiffies
- req
->start_time
;
1740 const int rw
= rq_data_dir(req
);
1741 struct hd_struct
*part
= get_part(disk
, req
->sector
);
1743 __all_stat_inc(disk
, part
, ios
[rw
], req
->sector
);
1744 __all_stat_add(disk
, part
, ticks
[rw
], duration
, req
->sector
);
1745 disk_round_stats(disk
);
1748 part_round_stats(part
);
1754 req
->end_io(req
, error
);
1756 if (blk_bidi_rq(req
))
1757 __blk_put_request(req
->next_rq
->q
, req
->next_rq
);
1759 __blk_put_request(req
->q
, req
);
1763 static inline void __end_request(struct request
*rq
, int uptodate
,
1764 unsigned int nr_bytes
)
1769 error
= uptodate
? uptodate
: -EIO
;
1771 __blk_end_request(rq
, error
, nr_bytes
);
1775 * blk_rq_bytes - Returns bytes left to complete in the entire request
1776 * @rq: the request being processed
1778 unsigned int blk_rq_bytes(struct request
*rq
)
1780 if (blk_fs_request(rq
))
1781 return rq
->hard_nr_sectors
<< 9;
1783 return rq
->data_len
;
1785 EXPORT_SYMBOL_GPL(blk_rq_bytes
);
1788 * blk_rq_cur_bytes - Returns bytes left to complete in the current segment
1789 * @rq: the request being processed
1791 unsigned int blk_rq_cur_bytes(struct request
*rq
)
1793 if (blk_fs_request(rq
))
1794 return rq
->current_nr_sectors
<< 9;
1797 return rq
->bio
->bi_size
;
1799 return rq
->data_len
;
1801 EXPORT_SYMBOL_GPL(blk_rq_cur_bytes
);
1804 * end_queued_request - end all I/O on a queued request
1805 * @rq: the request being processed
1806 * @uptodate: error value or 0/1 uptodate flag
1809 * Ends all I/O on a request, and removes it from the block layer queues.
1810 * Not suitable for normal IO completion, unless the driver still has
1811 * the request attached to the block layer.
1814 void end_queued_request(struct request
*rq
, int uptodate
)
1816 __end_request(rq
, uptodate
, blk_rq_bytes(rq
));
1818 EXPORT_SYMBOL(end_queued_request
);
1821 * end_dequeued_request - end all I/O on a dequeued request
1822 * @rq: the request being processed
1823 * @uptodate: error value or 0/1 uptodate flag
1826 * Ends all I/O on a request. The request must already have been
1827 * dequeued using blkdev_dequeue_request(), as is normally the case
1831 void end_dequeued_request(struct request
*rq
, int uptodate
)
1833 __end_request(rq
, uptodate
, blk_rq_bytes(rq
));
1835 EXPORT_SYMBOL(end_dequeued_request
);
1839 * end_request - end I/O on the current segment of the request
1840 * @req: the request being processed
1841 * @uptodate: error value or 0/1 uptodate flag
1844 * Ends I/O on the current segment of a request. If that is the only
1845 * remaining segment, the request is also completed and freed.
1847 * This is a remnant of how older block drivers handled IO completions.
1848 * Modern drivers typically end IO on the full request in one go, unless
1849 * they have a residual value to account for. For that case this function
1850 * isn't really useful, unless the residual just happens to be the
1851 * full current segment. In other words, don't use this function in new
1852 * code. Either use end_request_completely(), or the
1853 * end_that_request_chunk() (along with end_that_request_last()) for
1854 * partial completions.
1857 void end_request(struct request
*req
, int uptodate
)
1859 __end_request(req
, uptodate
, req
->hard_cur_sectors
<< 9);
1861 EXPORT_SYMBOL(end_request
);
1864 * blk_end_io - Generic end_io function to complete a request.
1865 * @rq: the request being processed
1866 * @error: 0 for success, < 0 for error
1867 * @nr_bytes: number of bytes to complete @rq
1868 * @bidi_bytes: number of bytes to complete @rq->next_rq
1869 * @drv_callback: function called between completion of bios in the request
1870 * and completion of the request.
1871 * If the callback returns non 0, this helper returns without
1872 * completion of the request.
1875 * Ends I/O on a number of bytes attached to @rq and @rq->next_rq.
1876 * If @rq has leftover, sets it up for the next range of segments.
1879 * 0 - we are done with this request
1880 * 1 - this request is not freed yet, it still has pending buffers.
1882 static int blk_end_io(struct request
*rq
, int error
, unsigned int nr_bytes
,
1883 unsigned int bidi_bytes
,
1884 int (drv_callback
)(struct request
*))
1886 struct request_queue
*q
= rq
->q
;
1887 unsigned long flags
= 0UL;
1889 if (blk_fs_request(rq
) || blk_pc_request(rq
)) {
1890 if (__end_that_request_first(rq
, error
, nr_bytes
))
1893 /* Bidi request must be completed as a whole */
1894 if (blk_bidi_rq(rq
) &&
1895 __end_that_request_first(rq
->next_rq
, error
, bidi_bytes
))
1899 /* Special feature for tricky drivers */
1900 if (drv_callback
&& drv_callback(rq
))
1903 add_disk_randomness(rq
->rq_disk
);
1905 spin_lock_irqsave(q
->queue_lock
, flags
);
1906 end_that_request_last(rq
, error
);
1907 spin_unlock_irqrestore(q
->queue_lock
, flags
);
1913 * blk_end_request - Helper function for drivers to complete the request.
1914 * @rq: the request being processed
1915 * @error: 0 for success, < 0 for error
1916 * @nr_bytes: number of bytes to complete
1919 * Ends I/O on a number of bytes attached to @rq.
1920 * If @rq has leftover, sets it up for the next range of segments.
1923 * 0 - we are done with this request
1924 * 1 - still buffers pending for this request
1926 int blk_end_request(struct request
*rq
, int error
, unsigned int nr_bytes
)
1928 return blk_end_io(rq
, error
, nr_bytes
, 0, NULL
);
1930 EXPORT_SYMBOL_GPL(blk_end_request
);
1933 * __blk_end_request - Helper function for drivers to complete the request.
1934 * @rq: the request being processed
1935 * @error: 0 for success, < 0 for error
1936 * @nr_bytes: number of bytes to complete
1939 * Must be called with queue lock held unlike blk_end_request().
1942 * 0 - we are done with this request
1943 * 1 - still buffers pending for this request
1945 int __blk_end_request(struct request
*rq
, int error
, unsigned int nr_bytes
)
1947 if (blk_fs_request(rq
) || blk_pc_request(rq
)) {
1948 if (__end_that_request_first(rq
, error
, nr_bytes
))
1952 add_disk_randomness(rq
->rq_disk
);
1954 end_that_request_last(rq
, error
);
1958 EXPORT_SYMBOL_GPL(__blk_end_request
);
1961 * blk_end_bidi_request - Helper function for drivers to complete bidi request.
1962 * @rq: the bidi request being processed
1963 * @error: 0 for success, < 0 for error
1964 * @nr_bytes: number of bytes to complete @rq
1965 * @bidi_bytes: number of bytes to complete @rq->next_rq
1968 * Ends I/O on a number of bytes attached to @rq and @rq->next_rq.
1971 * 0 - we are done with this request
1972 * 1 - still buffers pending for this request
1974 int blk_end_bidi_request(struct request
*rq
, int error
, unsigned int nr_bytes
,
1975 unsigned int bidi_bytes
)
1977 return blk_end_io(rq
, error
, nr_bytes
, bidi_bytes
, NULL
);
1979 EXPORT_SYMBOL_GPL(blk_end_bidi_request
);
1982 * blk_end_request_callback - Special helper function for tricky drivers
1983 * @rq: the request being processed
1984 * @error: 0 for success, < 0 for error
1985 * @nr_bytes: number of bytes to complete
1986 * @drv_callback: function called between completion of bios in the request
1987 * and completion of the request.
1988 * If the callback returns non 0, this helper returns without
1989 * completion of the request.
1992 * Ends I/O on a number of bytes attached to @rq.
1993 * If @rq has leftover, sets it up for the next range of segments.
1995 * This special helper function is used only for existing tricky drivers.
1996 * (e.g. cdrom_newpc_intr() of ide-cd)
1997 * This interface will be removed when such drivers are rewritten.
1998 * Don't use this interface in other places anymore.
2001 * 0 - we are done with this request
2002 * 1 - this request is not freed yet.
2003 * this request still has pending buffers or
2004 * the driver doesn't want to finish this request yet.
2006 int blk_end_request_callback(struct request
*rq
, int error
,
2007 unsigned int nr_bytes
,
2008 int (drv_callback
)(struct request
*))
2010 return blk_end_io(rq
, error
, nr_bytes
, 0, drv_callback
);
2012 EXPORT_SYMBOL_GPL(blk_end_request_callback
);
2014 void blk_rq_bio_prep(struct request_queue
*q
, struct request
*rq
,
2017 /* first two bits are identical in rq->cmd_flags and bio->bi_rw */
2018 rq
->cmd_flags
|= (bio
->bi_rw
& 3);
2020 rq
->nr_phys_segments
= bio_phys_segments(q
, bio
);
2021 rq
->nr_hw_segments
= bio_hw_segments(q
, bio
);
2022 rq
->current_nr_sectors
= bio_cur_sectors(bio
);
2023 rq
->hard_cur_sectors
= rq
->current_nr_sectors
;
2024 rq
->hard_nr_sectors
= rq
->nr_sectors
= bio_sectors(bio
);
2025 rq
->buffer
= bio_data(bio
);
2026 rq
->data_len
= bio
->bi_size
;
2028 rq
->bio
= rq
->biotail
= bio
;
2031 rq
->rq_disk
= bio
->bi_bdev
->bd_disk
;
2034 int kblockd_schedule_work(struct work_struct
*work
)
2036 return queue_work(kblockd_workqueue
, work
);
2038 EXPORT_SYMBOL(kblockd_schedule_work
);
2040 void kblockd_flush_work(struct work_struct
*work
)
2042 cancel_work_sync(work
);
2044 EXPORT_SYMBOL(kblockd_flush_work
);
2046 int __init
blk_dev_init(void)
2050 kblockd_workqueue
= create_workqueue("kblockd");
2051 if (!kblockd_workqueue
)
2052 panic("Failed to create kblockd\n");
2054 request_cachep
= kmem_cache_create("blkdev_requests",
2055 sizeof(struct request
), 0, SLAB_PANIC
, NULL
);
2057 blk_requestq_cachep
= kmem_cache_create("blkdev_queue",
2058 sizeof(struct request_queue
), 0, SLAB_PANIC
, NULL
);
2060 for_each_possible_cpu(i
)
2061 INIT_LIST_HEAD(&per_cpu(blk_cpu_done
, i
));
2063 open_softirq(BLOCK_SOFTIRQ
, blk_done_softirq
);
2064 register_hotcpu_notifier(&blk_cpu_notifier
);