1 /* -*- mode: c; c-basic-offset: 8; -*-
2 * vim: noexpandtab sw=8 ts=8 sts=0:
6 * Extent allocs and frees
8 * Copyright (C) 2002, 2004 Oracle. All rights reserved.
10 * This program is free software; you can redistribute it and/or
11 * modify it under the terms of the GNU General Public
12 * License as published by the Free Software Foundation; either
13 * version 2 of the License, or (at your option) any later version.
15 * This program is distributed in the hope that it will be useful,
16 * but WITHOUT ANY WARRANTY; without even the implied warranty of
17 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
18 * General Public License for more details.
20 * You should have received a copy of the GNU General Public
21 * License along with this program; if not, write to the
22 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
23 * Boston, MA 021110-1307, USA.
27 #include <linux/types.h>
28 #include <linux/slab.h>
29 #include <linux/highmem.h>
30 #include <linux/swap.h>
32 #define MLOG_MASK_PREFIX ML_DISK_ALLOC
33 #include <cluster/masklog.h>
40 #include "extent_map.h"
43 #include "localalloc.h"
50 #include "buffer_head_io.h"
52 static void ocfs2_free_truncate_context(struct ocfs2_truncate_context
*tc
);
53 static int ocfs2_cache_extent_block_free(struct ocfs2_cached_dealloc_ctxt
*ctxt
,
54 struct ocfs2_extent_block
*eb
);
57 * Structures which describe a path through a btree, and functions to
60 * The idea here is to be as generic as possible with the tree
63 struct ocfs2_path_item
{
64 struct buffer_head
*bh
;
65 struct ocfs2_extent_list
*el
;
68 #define OCFS2_MAX_PATH_DEPTH 5
72 struct ocfs2_path_item p_node
[OCFS2_MAX_PATH_DEPTH
];
75 #define path_root_bh(_path) ((_path)->p_node[0].bh)
76 #define path_root_el(_path) ((_path)->p_node[0].el)
77 #define path_leaf_bh(_path) ((_path)->p_node[(_path)->p_tree_depth].bh)
78 #define path_leaf_el(_path) ((_path)->p_node[(_path)->p_tree_depth].el)
79 #define path_num_items(_path) ((_path)->p_tree_depth + 1)
82 * Reset the actual path elements so that we can re-use the structure
83 * to build another path. Generally, this involves freeing the buffer
86 static void ocfs2_reinit_path(struct ocfs2_path
*path
, int keep_root
)
88 int i
, start
= 0, depth
= 0;
89 struct ocfs2_path_item
*node
;
94 for(i
= start
; i
< path_num_items(path
); i
++) {
95 node
= &path
->p_node
[i
];
103 * Tree depth may change during truncate, or insert. If we're
104 * keeping the root extent list, then make sure that our path
105 * structure reflects the proper depth.
108 depth
= le16_to_cpu(path_root_el(path
)->l_tree_depth
);
110 path
->p_tree_depth
= depth
;
113 static void ocfs2_free_path(struct ocfs2_path
*path
)
116 ocfs2_reinit_path(path
, 0);
122 * All the elements of src into dest. After this call, src could be freed
123 * without affecting dest.
125 * Both paths should have the same root. Any non-root elements of dest
128 static void ocfs2_cp_path(struct ocfs2_path
*dest
, struct ocfs2_path
*src
)
132 BUG_ON(path_root_bh(dest
) != path_root_bh(src
));
133 BUG_ON(path_root_el(dest
) != path_root_el(src
));
135 ocfs2_reinit_path(dest
, 1);
137 for(i
= 1; i
< OCFS2_MAX_PATH_DEPTH
; i
++) {
138 dest
->p_node
[i
].bh
= src
->p_node
[i
].bh
;
139 dest
->p_node
[i
].el
= src
->p_node
[i
].el
;
141 if (dest
->p_node
[i
].bh
)
142 get_bh(dest
->p_node
[i
].bh
);
147 * Make the *dest path the same as src and re-initialize src path to
150 static void ocfs2_mv_path(struct ocfs2_path
*dest
, struct ocfs2_path
*src
)
154 BUG_ON(path_root_bh(dest
) != path_root_bh(src
));
156 for(i
= 1; i
< OCFS2_MAX_PATH_DEPTH
; i
++) {
157 brelse(dest
->p_node
[i
].bh
);
159 dest
->p_node
[i
].bh
= src
->p_node
[i
].bh
;
160 dest
->p_node
[i
].el
= src
->p_node
[i
].el
;
162 src
->p_node
[i
].bh
= NULL
;
163 src
->p_node
[i
].el
= NULL
;
168 * Insert an extent block at given index.
170 * This will not take an additional reference on eb_bh.
172 static inline void ocfs2_path_insert_eb(struct ocfs2_path
*path
, int index
,
173 struct buffer_head
*eb_bh
)
175 struct ocfs2_extent_block
*eb
= (struct ocfs2_extent_block
*)eb_bh
->b_data
;
178 * Right now, no root bh is an extent block, so this helps
179 * catch code errors with dinode trees. The assertion can be
180 * safely removed if we ever need to insert extent block
181 * structures at the root.
185 path
->p_node
[index
].bh
= eb_bh
;
186 path
->p_node
[index
].el
= &eb
->h_list
;
189 static struct ocfs2_path
*ocfs2_new_path(struct buffer_head
*root_bh
,
190 struct ocfs2_extent_list
*root_el
)
192 struct ocfs2_path
*path
;
194 BUG_ON(le16_to_cpu(root_el
->l_tree_depth
) >= OCFS2_MAX_PATH_DEPTH
);
196 path
= kzalloc(sizeof(*path
), GFP_NOFS
);
198 path
->p_tree_depth
= le16_to_cpu(root_el
->l_tree_depth
);
200 path_root_bh(path
) = root_bh
;
201 path_root_el(path
) = root_el
;
208 * Allocate and initialize a new path based on a disk inode tree.
210 static struct ocfs2_path
*ocfs2_new_inode_path(struct buffer_head
*di_bh
)
212 struct ocfs2_dinode
*di
= (struct ocfs2_dinode
*)di_bh
->b_data
;
213 struct ocfs2_extent_list
*el
= &di
->id2
.i_list
;
215 return ocfs2_new_path(di_bh
, el
);
219 * Convenience function to journal all components in a path.
221 static int ocfs2_journal_access_path(struct inode
*inode
, handle_t
*handle
,
222 struct ocfs2_path
*path
)
229 for(i
= 0; i
< path_num_items(path
); i
++) {
230 ret
= ocfs2_journal_access(handle
, inode
, path
->p_node
[i
].bh
,
231 OCFS2_JOURNAL_ACCESS_WRITE
);
243 * Return the index of the extent record which contains cluster #v_cluster.
244 * -1 is returned if it was not found.
246 * Should work fine on interior and exterior nodes.
248 int ocfs2_search_extent_list(struct ocfs2_extent_list
*el
, u32 v_cluster
)
252 struct ocfs2_extent_rec
*rec
;
253 u32 rec_end
, rec_start
, clusters
;
255 for(i
= 0; i
< le16_to_cpu(el
->l_next_free_rec
); i
++) {
256 rec
= &el
->l_recs
[i
];
258 rec_start
= le32_to_cpu(rec
->e_cpos
);
259 clusters
= ocfs2_rec_clusters(el
, rec
);
261 rec_end
= rec_start
+ clusters
;
263 if (v_cluster
>= rec_start
&& v_cluster
< rec_end
) {
272 enum ocfs2_contig_type
{
281 * NOTE: ocfs2_block_extent_contig(), ocfs2_extents_adjacent() and
282 * ocfs2_extent_contig only work properly against leaf nodes!
284 static int ocfs2_block_extent_contig(struct super_block
*sb
,
285 struct ocfs2_extent_rec
*ext
,
288 u64 blk_end
= le64_to_cpu(ext
->e_blkno
);
290 blk_end
+= ocfs2_clusters_to_blocks(sb
,
291 le16_to_cpu(ext
->e_leaf_clusters
));
293 return blkno
== blk_end
;
296 static int ocfs2_extents_adjacent(struct ocfs2_extent_rec
*left
,
297 struct ocfs2_extent_rec
*right
)
301 left_range
= le32_to_cpu(left
->e_cpos
) +
302 le16_to_cpu(left
->e_leaf_clusters
);
304 return (left_range
== le32_to_cpu(right
->e_cpos
));
307 static enum ocfs2_contig_type
308 ocfs2_extent_contig(struct inode
*inode
,
309 struct ocfs2_extent_rec
*ext
,
310 struct ocfs2_extent_rec
*insert_rec
)
312 u64 blkno
= le64_to_cpu(insert_rec
->e_blkno
);
315 * Refuse to coalesce extent records with different flag
316 * fields - we don't want to mix unwritten extents with user
319 if (ext
->e_flags
!= insert_rec
->e_flags
)
322 if (ocfs2_extents_adjacent(ext
, insert_rec
) &&
323 ocfs2_block_extent_contig(inode
->i_sb
, ext
, blkno
))
326 blkno
= le64_to_cpu(ext
->e_blkno
);
327 if (ocfs2_extents_adjacent(insert_rec
, ext
) &&
328 ocfs2_block_extent_contig(inode
->i_sb
, insert_rec
, blkno
))
335 * NOTE: We can have pretty much any combination of contiguousness and
338 * The usefulness of APPEND_TAIL is more in that it lets us know that
339 * we'll have to update the path to that leaf.
341 enum ocfs2_append_type
{
346 enum ocfs2_split_type
{
352 struct ocfs2_insert_type
{
353 enum ocfs2_split_type ins_split
;
354 enum ocfs2_append_type ins_appending
;
355 enum ocfs2_contig_type ins_contig
;
356 int ins_contig_index
;
360 struct ocfs2_merge_ctxt
{
361 enum ocfs2_contig_type c_contig_type
;
362 int c_has_empty_extent
;
363 int c_split_covers_rec
;
367 * How many free extents have we got before we need more meta data?
369 int ocfs2_num_free_extents(struct ocfs2_super
*osb
,
371 struct ocfs2_dinode
*fe
)
374 struct ocfs2_extent_list
*el
;
375 struct ocfs2_extent_block
*eb
;
376 struct buffer_head
*eb_bh
= NULL
;
380 if (!OCFS2_IS_VALID_DINODE(fe
)) {
381 OCFS2_RO_ON_INVALID_DINODE(inode
->i_sb
, fe
);
386 if (fe
->i_last_eb_blk
) {
387 retval
= ocfs2_read_block(osb
, le64_to_cpu(fe
->i_last_eb_blk
),
388 &eb_bh
, OCFS2_BH_CACHED
, inode
);
393 eb
= (struct ocfs2_extent_block
*) eb_bh
->b_data
;
396 el
= &fe
->id2
.i_list
;
398 BUG_ON(el
->l_tree_depth
!= 0);
400 retval
= le16_to_cpu(el
->l_count
) - le16_to_cpu(el
->l_next_free_rec
);
409 /* expects array to already be allocated
411 * sets h_signature, h_blkno, h_suballoc_bit, h_suballoc_slot, and
414 static int ocfs2_create_new_meta_bhs(struct ocfs2_super
*osb
,
418 struct ocfs2_alloc_context
*meta_ac
,
419 struct buffer_head
*bhs
[])
421 int count
, status
, i
;
422 u16 suballoc_bit_start
;
425 struct ocfs2_extent_block
*eb
;
430 while (count
< wanted
) {
431 status
= ocfs2_claim_metadata(osb
,
443 for(i
= count
; i
< (num_got
+ count
); i
++) {
444 bhs
[i
] = sb_getblk(osb
->sb
, first_blkno
);
445 if (bhs
[i
] == NULL
) {
450 ocfs2_set_new_buffer_uptodate(inode
, bhs
[i
]);
452 status
= ocfs2_journal_access(handle
, inode
, bhs
[i
],
453 OCFS2_JOURNAL_ACCESS_CREATE
);
459 memset(bhs
[i
]->b_data
, 0, osb
->sb
->s_blocksize
);
460 eb
= (struct ocfs2_extent_block
*) bhs
[i
]->b_data
;
461 /* Ok, setup the minimal stuff here. */
462 strcpy(eb
->h_signature
, OCFS2_EXTENT_BLOCK_SIGNATURE
);
463 eb
->h_blkno
= cpu_to_le64(first_blkno
);
464 eb
->h_fs_generation
= cpu_to_le32(osb
->fs_generation
);
465 eb
->h_suballoc_slot
= cpu_to_le16(osb
->slot_num
);
466 eb
->h_suballoc_bit
= cpu_to_le16(suballoc_bit_start
);
468 cpu_to_le16(ocfs2_extent_recs_per_eb(osb
->sb
));
470 suballoc_bit_start
++;
473 /* We'll also be dirtied by the caller, so
474 * this isn't absolutely necessary. */
475 status
= ocfs2_journal_dirty(handle
, bhs
[i
]);
488 for(i
= 0; i
< wanted
; i
++) {
499 * Helper function for ocfs2_add_branch() and ocfs2_shift_tree_depth().
501 * Returns the sum of the rightmost extent rec logical offset and
504 * ocfs2_add_branch() uses this to determine what logical cluster
505 * value should be populated into the leftmost new branch records.
507 * ocfs2_shift_tree_depth() uses this to determine the # clusters
508 * value for the new topmost tree record.
510 static inline u32
ocfs2_sum_rightmost_rec(struct ocfs2_extent_list
*el
)
514 i
= le16_to_cpu(el
->l_next_free_rec
) - 1;
516 return le32_to_cpu(el
->l_recs
[i
].e_cpos
) +
517 ocfs2_rec_clusters(el
, &el
->l_recs
[i
]);
521 * Add an entire tree branch to our inode. eb_bh is the extent block
522 * to start at, if we don't want to start the branch at the dinode
525 * last_eb_bh is required as we have to update it's next_leaf pointer
526 * for the new last extent block.
528 * the new branch will be 'empty' in the sense that every block will
529 * contain a single record with cluster count == 0.
531 static int ocfs2_add_branch(struct ocfs2_super
*osb
,
534 struct buffer_head
*fe_bh
,
535 struct buffer_head
*eb_bh
,
536 struct buffer_head
**last_eb_bh
,
537 struct ocfs2_alloc_context
*meta_ac
)
539 int status
, new_blocks
, i
;
540 u64 next_blkno
, new_last_eb_blk
;
541 struct buffer_head
*bh
;
542 struct buffer_head
**new_eb_bhs
= NULL
;
543 struct ocfs2_dinode
*fe
;
544 struct ocfs2_extent_block
*eb
;
545 struct ocfs2_extent_list
*eb_el
;
546 struct ocfs2_extent_list
*el
;
551 BUG_ON(!last_eb_bh
|| !*last_eb_bh
);
553 fe
= (struct ocfs2_dinode
*) fe_bh
->b_data
;
556 eb
= (struct ocfs2_extent_block
*) eb_bh
->b_data
;
559 el
= &fe
->id2
.i_list
;
561 /* we never add a branch to a leaf. */
562 BUG_ON(!el
->l_tree_depth
);
564 new_blocks
= le16_to_cpu(el
->l_tree_depth
);
566 /* allocate the number of new eb blocks we need */
567 new_eb_bhs
= kcalloc(new_blocks
, sizeof(struct buffer_head
*),
575 status
= ocfs2_create_new_meta_bhs(osb
, handle
, inode
, new_blocks
,
576 meta_ac
, new_eb_bhs
);
582 eb
= (struct ocfs2_extent_block
*)(*last_eb_bh
)->b_data
;
583 new_cpos
= ocfs2_sum_rightmost_rec(&eb
->h_list
);
585 /* Note: new_eb_bhs[new_blocks - 1] is the guy which will be
586 * linked with the rest of the tree.
587 * conversly, new_eb_bhs[0] is the new bottommost leaf.
589 * when we leave the loop, new_last_eb_blk will point to the
590 * newest leaf, and next_blkno will point to the topmost extent
592 next_blkno
= new_last_eb_blk
= 0;
593 for(i
= 0; i
< new_blocks
; i
++) {
595 eb
= (struct ocfs2_extent_block
*) bh
->b_data
;
596 if (!OCFS2_IS_VALID_EXTENT_BLOCK(eb
)) {
597 OCFS2_RO_ON_INVALID_EXTENT_BLOCK(inode
->i_sb
, eb
);
603 status
= ocfs2_journal_access(handle
, inode
, bh
,
604 OCFS2_JOURNAL_ACCESS_CREATE
);
610 eb
->h_next_leaf_blk
= 0;
611 eb_el
->l_tree_depth
= cpu_to_le16(i
);
612 eb_el
->l_next_free_rec
= cpu_to_le16(1);
614 * This actually counts as an empty extent as
617 eb_el
->l_recs
[0].e_cpos
= cpu_to_le32(new_cpos
);
618 eb_el
->l_recs
[0].e_blkno
= cpu_to_le64(next_blkno
);
620 * eb_el isn't always an interior node, but even leaf
621 * nodes want a zero'd flags and reserved field so
622 * this gets the whole 32 bits regardless of use.
624 eb_el
->l_recs
[0].e_int_clusters
= cpu_to_le32(0);
625 if (!eb_el
->l_tree_depth
)
626 new_last_eb_blk
= le64_to_cpu(eb
->h_blkno
);
628 status
= ocfs2_journal_dirty(handle
, bh
);
634 next_blkno
= le64_to_cpu(eb
->h_blkno
);
637 /* This is a bit hairy. We want to update up to three blocks
638 * here without leaving any of them in an inconsistent state
639 * in case of error. We don't have to worry about
640 * journal_dirty erroring as it won't unless we've aborted the
641 * handle (in which case we would never be here) so reserving
642 * the write with journal_access is all we need to do. */
643 status
= ocfs2_journal_access(handle
, inode
, *last_eb_bh
,
644 OCFS2_JOURNAL_ACCESS_WRITE
);
649 status
= ocfs2_journal_access(handle
, inode
, fe_bh
,
650 OCFS2_JOURNAL_ACCESS_WRITE
);
656 status
= ocfs2_journal_access(handle
, inode
, eb_bh
,
657 OCFS2_JOURNAL_ACCESS_WRITE
);
664 /* Link the new branch into the rest of the tree (el will
665 * either be on the fe, or the extent block passed in. */
666 i
= le16_to_cpu(el
->l_next_free_rec
);
667 el
->l_recs
[i
].e_blkno
= cpu_to_le64(next_blkno
);
668 el
->l_recs
[i
].e_cpos
= cpu_to_le32(new_cpos
);
669 el
->l_recs
[i
].e_int_clusters
= 0;
670 le16_add_cpu(&el
->l_next_free_rec
, 1);
672 /* fe needs a new last extent block pointer, as does the
673 * next_leaf on the previously last-extent-block. */
674 fe
->i_last_eb_blk
= cpu_to_le64(new_last_eb_blk
);
676 eb
= (struct ocfs2_extent_block
*) (*last_eb_bh
)->b_data
;
677 eb
->h_next_leaf_blk
= cpu_to_le64(new_last_eb_blk
);
679 status
= ocfs2_journal_dirty(handle
, *last_eb_bh
);
682 status
= ocfs2_journal_dirty(handle
, fe_bh
);
686 status
= ocfs2_journal_dirty(handle
, eb_bh
);
692 * Some callers want to track the rightmost leaf so pass it
696 get_bh(new_eb_bhs
[0]);
697 *last_eb_bh
= new_eb_bhs
[0];
702 for (i
= 0; i
< new_blocks
; i
++)
704 brelse(new_eb_bhs
[i
]);
713 * adds another level to the allocation tree.
714 * returns back the new extent block so you can add a branch to it
717 static int ocfs2_shift_tree_depth(struct ocfs2_super
*osb
,
720 struct buffer_head
*fe_bh
,
721 struct ocfs2_alloc_context
*meta_ac
,
722 struct buffer_head
**ret_new_eb_bh
)
726 struct buffer_head
*new_eb_bh
= NULL
;
727 struct ocfs2_dinode
*fe
;
728 struct ocfs2_extent_block
*eb
;
729 struct ocfs2_extent_list
*fe_el
;
730 struct ocfs2_extent_list
*eb_el
;
734 status
= ocfs2_create_new_meta_bhs(osb
, handle
, inode
, 1, meta_ac
,
741 eb
= (struct ocfs2_extent_block
*) new_eb_bh
->b_data
;
742 if (!OCFS2_IS_VALID_EXTENT_BLOCK(eb
)) {
743 OCFS2_RO_ON_INVALID_EXTENT_BLOCK(inode
->i_sb
, eb
);
749 fe
= (struct ocfs2_dinode
*) fe_bh
->b_data
;
750 fe_el
= &fe
->id2
.i_list
;
752 status
= ocfs2_journal_access(handle
, inode
, new_eb_bh
,
753 OCFS2_JOURNAL_ACCESS_CREATE
);
759 /* copy the fe data into the new extent block */
760 eb_el
->l_tree_depth
= fe_el
->l_tree_depth
;
761 eb_el
->l_next_free_rec
= fe_el
->l_next_free_rec
;
762 for(i
= 0; i
< le16_to_cpu(fe_el
->l_next_free_rec
); i
++)
763 eb_el
->l_recs
[i
] = fe_el
->l_recs
[i
];
765 status
= ocfs2_journal_dirty(handle
, new_eb_bh
);
771 status
= ocfs2_journal_access(handle
, inode
, fe_bh
,
772 OCFS2_JOURNAL_ACCESS_WRITE
);
778 new_clusters
= ocfs2_sum_rightmost_rec(eb_el
);
781 le16_add_cpu(&fe_el
->l_tree_depth
, 1);
782 fe_el
->l_recs
[0].e_cpos
= 0;
783 fe_el
->l_recs
[0].e_blkno
= eb
->h_blkno
;
784 fe_el
->l_recs
[0].e_int_clusters
= cpu_to_le32(new_clusters
);
785 for(i
= 1; i
< le16_to_cpu(fe_el
->l_next_free_rec
); i
++)
786 memset(&fe_el
->l_recs
[i
], 0, sizeof(struct ocfs2_extent_rec
));
787 fe_el
->l_next_free_rec
= cpu_to_le16(1);
789 /* If this is our 1st tree depth shift, then last_eb_blk
790 * becomes the allocated extent block */
791 if (fe_el
->l_tree_depth
== cpu_to_le16(1))
792 fe
->i_last_eb_blk
= eb
->h_blkno
;
794 status
= ocfs2_journal_dirty(handle
, fe_bh
);
800 *ret_new_eb_bh
= new_eb_bh
;
812 * Should only be called when there is no space left in any of the
813 * leaf nodes. What we want to do is find the lowest tree depth
814 * non-leaf extent block with room for new records. There are three
815 * valid results of this search:
817 * 1) a lowest extent block is found, then we pass it back in
818 * *lowest_eb_bh and return '0'
820 * 2) the search fails to find anything, but the dinode has room. We
821 * pass NULL back in *lowest_eb_bh, but still return '0'
823 * 3) the search fails to find anything AND the dinode is full, in
824 * which case we return > 0
826 * return status < 0 indicates an error.
828 static int ocfs2_find_branch_target(struct ocfs2_super
*osb
,
830 struct buffer_head
*fe_bh
,
831 struct buffer_head
**target_bh
)
835 struct ocfs2_dinode
*fe
;
836 struct ocfs2_extent_block
*eb
;
837 struct ocfs2_extent_list
*el
;
838 struct buffer_head
*bh
= NULL
;
839 struct buffer_head
*lowest_bh
= NULL
;
845 fe
= (struct ocfs2_dinode
*) fe_bh
->b_data
;
846 el
= &fe
->id2
.i_list
;
848 while(le16_to_cpu(el
->l_tree_depth
) > 1) {
849 if (le16_to_cpu(el
->l_next_free_rec
) == 0) {
850 ocfs2_error(inode
->i_sb
, "Dinode %llu has empty "
851 "extent list (next_free_rec == 0)",
852 (unsigned long long)OCFS2_I(inode
)->ip_blkno
);
856 i
= le16_to_cpu(el
->l_next_free_rec
) - 1;
857 blkno
= le64_to_cpu(el
->l_recs
[i
].e_blkno
);
859 ocfs2_error(inode
->i_sb
, "Dinode %llu has extent "
860 "list where extent # %d has no physical "
862 (unsigned long long)OCFS2_I(inode
)->ip_blkno
, i
);
872 status
= ocfs2_read_block(osb
, blkno
, &bh
, OCFS2_BH_CACHED
,
879 eb
= (struct ocfs2_extent_block
*) bh
->b_data
;
880 if (!OCFS2_IS_VALID_EXTENT_BLOCK(eb
)) {
881 OCFS2_RO_ON_INVALID_EXTENT_BLOCK(inode
->i_sb
, eb
);
887 if (le16_to_cpu(el
->l_next_free_rec
) <
888 le16_to_cpu(el
->l_count
)) {
896 /* If we didn't find one and the fe doesn't have any room,
899 && (fe
->id2
.i_list
.l_next_free_rec
== fe
->id2
.i_list
.l_count
))
902 *target_bh
= lowest_bh
;
912 * Grow a b-tree so that it has more records.
914 * We might shift the tree depth in which case existing paths should
915 * be considered invalid.
917 * Tree depth after the grow is returned via *final_depth.
919 * *last_eb_bh will be updated by ocfs2_add_branch().
921 static int ocfs2_grow_tree(struct inode
*inode
, handle_t
*handle
,
922 struct buffer_head
*di_bh
, int *final_depth
,
923 struct buffer_head
**last_eb_bh
,
924 struct ocfs2_alloc_context
*meta_ac
)
927 struct ocfs2_dinode
*di
= (struct ocfs2_dinode
*)di_bh
->b_data
;
928 int depth
= le16_to_cpu(di
->id2
.i_list
.l_tree_depth
);
929 struct ocfs2_super
*osb
= OCFS2_SB(inode
->i_sb
);
930 struct buffer_head
*bh
= NULL
;
932 BUG_ON(meta_ac
== NULL
);
934 shift
= ocfs2_find_branch_target(osb
, inode
, di_bh
, &bh
);
941 /* We traveled all the way to the bottom of the allocation tree
942 * and didn't find room for any more extents - we need to add
943 * another tree level */
946 mlog(0, "need to shift tree depth (current = %d)\n", depth
);
948 /* ocfs2_shift_tree_depth will return us a buffer with
949 * the new extent block (so we can pass that to
950 * ocfs2_add_branch). */
951 ret
= ocfs2_shift_tree_depth(osb
, handle
, inode
, di_bh
,
960 * Special case: we have room now if we shifted from
961 * tree_depth 0, so no more work needs to be done.
963 * We won't be calling add_branch, so pass
964 * back *last_eb_bh as the new leaf. At depth
965 * zero, it should always be null so there's
966 * no reason to brelse.
975 /* call ocfs2_add_branch to add the final part of the tree with
977 mlog(0, "add branch. bh = %p\n", bh
);
978 ret
= ocfs2_add_branch(osb
, handle
, inode
, di_bh
, bh
, last_eb_bh
,
987 *final_depth
= depth
;
993 * This is only valid for leaf nodes, which are the only ones that can
994 * have empty extents anyway.
996 static inline int ocfs2_is_empty_extent(struct ocfs2_extent_rec
*rec
)
998 return !rec
->e_leaf_clusters
;
1002 * This function will discard the rightmost extent record.
1004 static void ocfs2_shift_records_right(struct ocfs2_extent_list
*el
)
1006 int next_free
= le16_to_cpu(el
->l_next_free_rec
);
1007 int count
= le16_to_cpu(el
->l_count
);
1008 unsigned int num_bytes
;
1011 /* This will cause us to go off the end of our extent list. */
1012 BUG_ON(next_free
>= count
);
1014 num_bytes
= sizeof(struct ocfs2_extent_rec
) * next_free
;
1016 memmove(&el
->l_recs
[1], &el
->l_recs
[0], num_bytes
);
1019 static void ocfs2_rotate_leaf(struct ocfs2_extent_list
*el
,
1020 struct ocfs2_extent_rec
*insert_rec
)
1022 int i
, insert_index
, next_free
, has_empty
, num_bytes
;
1023 u32 insert_cpos
= le32_to_cpu(insert_rec
->e_cpos
);
1024 struct ocfs2_extent_rec
*rec
;
1026 next_free
= le16_to_cpu(el
->l_next_free_rec
);
1027 has_empty
= ocfs2_is_empty_extent(&el
->l_recs
[0]);
1031 /* The tree code before us didn't allow enough room in the leaf. */
1032 BUG_ON(el
->l_next_free_rec
== el
->l_count
&& !has_empty
);
1035 * The easiest way to approach this is to just remove the
1036 * empty extent and temporarily decrement next_free.
1040 * If next_free was 1 (only an empty extent), this
1041 * loop won't execute, which is fine. We still want
1042 * the decrement above to happen.
1044 for(i
= 0; i
< (next_free
- 1); i
++)
1045 el
->l_recs
[i
] = el
->l_recs
[i
+1];
1051 * Figure out what the new record index should be.
1053 for(i
= 0; i
< next_free
; i
++) {
1054 rec
= &el
->l_recs
[i
];
1056 if (insert_cpos
< le32_to_cpu(rec
->e_cpos
))
1061 mlog(0, "ins %u: index %d, has_empty %d, next_free %d, count %d\n",
1062 insert_cpos
, insert_index
, has_empty
, next_free
, le16_to_cpu(el
->l_count
));
1064 BUG_ON(insert_index
< 0);
1065 BUG_ON(insert_index
>= le16_to_cpu(el
->l_count
));
1066 BUG_ON(insert_index
> next_free
);
1069 * No need to memmove if we're just adding to the tail.
1071 if (insert_index
!= next_free
) {
1072 BUG_ON(next_free
>= le16_to_cpu(el
->l_count
));
1074 num_bytes
= next_free
- insert_index
;
1075 num_bytes
*= sizeof(struct ocfs2_extent_rec
);
1076 memmove(&el
->l_recs
[insert_index
+ 1],
1077 &el
->l_recs
[insert_index
],
1082 * Either we had an empty extent, and need to re-increment or
1083 * there was no empty extent on a non full rightmost leaf node,
1084 * in which case we still need to increment.
1087 el
->l_next_free_rec
= cpu_to_le16(next_free
);
1089 * Make sure none of the math above just messed up our tree.
1091 BUG_ON(le16_to_cpu(el
->l_next_free_rec
) > le16_to_cpu(el
->l_count
));
1093 el
->l_recs
[insert_index
] = *insert_rec
;
1097 static void ocfs2_remove_empty_extent(struct ocfs2_extent_list
*el
)
1099 int size
, num_recs
= le16_to_cpu(el
->l_next_free_rec
);
1101 BUG_ON(num_recs
== 0);
1103 if (ocfs2_is_empty_extent(&el
->l_recs
[0])) {
1105 size
= num_recs
* sizeof(struct ocfs2_extent_rec
);
1106 memmove(&el
->l_recs
[0], &el
->l_recs
[1], size
);
1107 memset(&el
->l_recs
[num_recs
], 0,
1108 sizeof(struct ocfs2_extent_rec
));
1109 el
->l_next_free_rec
= cpu_to_le16(num_recs
);
1114 * Create an empty extent record .
1116 * l_next_free_rec may be updated.
1118 * If an empty extent already exists do nothing.
1120 static void ocfs2_create_empty_extent(struct ocfs2_extent_list
*el
)
1122 int next_free
= le16_to_cpu(el
->l_next_free_rec
);
1124 BUG_ON(le16_to_cpu(el
->l_tree_depth
) != 0);
1129 if (ocfs2_is_empty_extent(&el
->l_recs
[0]))
1132 mlog_bug_on_msg(el
->l_count
== el
->l_next_free_rec
,
1133 "Asked to create an empty extent in a full list:\n"
1134 "count = %u, tree depth = %u",
1135 le16_to_cpu(el
->l_count
),
1136 le16_to_cpu(el
->l_tree_depth
));
1138 ocfs2_shift_records_right(el
);
1141 le16_add_cpu(&el
->l_next_free_rec
, 1);
1142 memset(&el
->l_recs
[0], 0, sizeof(struct ocfs2_extent_rec
));
1146 * For a rotation which involves two leaf nodes, the "root node" is
1147 * the lowest level tree node which contains a path to both leafs. This
1148 * resulting set of information can be used to form a complete "subtree"
1150 * This function is passed two full paths from the dinode down to a
1151 * pair of adjacent leaves. It's task is to figure out which path
1152 * index contains the subtree root - this can be the root index itself
1153 * in a worst-case rotation.
1155 * The array index of the subtree root is passed back.
1157 static int ocfs2_find_subtree_root(struct inode
*inode
,
1158 struct ocfs2_path
*left
,
1159 struct ocfs2_path
*right
)
1164 * Check that the caller passed in two paths from the same tree.
1166 BUG_ON(path_root_bh(left
) != path_root_bh(right
));
1172 * The caller didn't pass two adjacent paths.
1174 mlog_bug_on_msg(i
> left
->p_tree_depth
,
1175 "Inode %lu, left depth %u, right depth %u\n"
1176 "left leaf blk %llu, right leaf blk %llu\n",
1177 inode
->i_ino
, left
->p_tree_depth
,
1178 right
->p_tree_depth
,
1179 (unsigned long long)path_leaf_bh(left
)->b_blocknr
,
1180 (unsigned long long)path_leaf_bh(right
)->b_blocknr
);
1181 } while (left
->p_node
[i
].bh
->b_blocknr
==
1182 right
->p_node
[i
].bh
->b_blocknr
);
1187 typedef void (path_insert_t
)(void *, struct buffer_head
*);
1190 * Traverse a btree path in search of cpos, starting at root_el.
1192 * This code can be called with a cpos larger than the tree, in which
1193 * case it will return the rightmost path.
1195 static int __ocfs2_find_path(struct inode
*inode
,
1196 struct ocfs2_extent_list
*root_el
, u32 cpos
,
1197 path_insert_t
*func
, void *data
)
1202 struct buffer_head
*bh
= NULL
;
1203 struct ocfs2_extent_block
*eb
;
1204 struct ocfs2_extent_list
*el
;
1205 struct ocfs2_extent_rec
*rec
;
1206 struct ocfs2_inode_info
*oi
= OCFS2_I(inode
);
1209 while (el
->l_tree_depth
) {
1210 if (le16_to_cpu(el
->l_next_free_rec
) == 0) {
1211 ocfs2_error(inode
->i_sb
,
1212 "Inode %llu has empty extent list at "
1214 (unsigned long long)oi
->ip_blkno
,
1215 le16_to_cpu(el
->l_tree_depth
));
1221 for(i
= 0; i
< le16_to_cpu(el
->l_next_free_rec
) - 1; i
++) {
1222 rec
= &el
->l_recs
[i
];
1225 * In the case that cpos is off the allocation
1226 * tree, this should just wind up returning the
1229 range
= le32_to_cpu(rec
->e_cpos
) +
1230 ocfs2_rec_clusters(el
, rec
);
1231 if (cpos
>= le32_to_cpu(rec
->e_cpos
) && cpos
< range
)
1235 blkno
= le64_to_cpu(el
->l_recs
[i
].e_blkno
);
1237 ocfs2_error(inode
->i_sb
,
1238 "Inode %llu has bad blkno in extent list "
1239 "at depth %u (index %d)\n",
1240 (unsigned long long)oi
->ip_blkno
,
1241 le16_to_cpu(el
->l_tree_depth
), i
);
1248 ret
= ocfs2_read_block(OCFS2_SB(inode
->i_sb
), blkno
,
1249 &bh
, OCFS2_BH_CACHED
, inode
);
1255 eb
= (struct ocfs2_extent_block
*) bh
->b_data
;
1257 if (!OCFS2_IS_VALID_EXTENT_BLOCK(eb
)) {
1258 OCFS2_RO_ON_INVALID_EXTENT_BLOCK(inode
->i_sb
, eb
);
1263 if (le16_to_cpu(el
->l_next_free_rec
) >
1264 le16_to_cpu(el
->l_count
)) {
1265 ocfs2_error(inode
->i_sb
,
1266 "Inode %llu has bad count in extent list "
1267 "at block %llu (next free=%u, count=%u)\n",
1268 (unsigned long long)oi
->ip_blkno
,
1269 (unsigned long long)bh
->b_blocknr
,
1270 le16_to_cpu(el
->l_next_free_rec
),
1271 le16_to_cpu(el
->l_count
));
1282 * Catch any trailing bh that the loop didn't handle.
1290 * Given an initialized path (that is, it has a valid root extent
1291 * list), this function will traverse the btree in search of the path
1292 * which would contain cpos.
1294 * The path traveled is recorded in the path structure.
1296 * Note that this will not do any comparisons on leaf node extent
1297 * records, so it will work fine in the case that we just added a tree
1300 struct find_path_data
{
1302 struct ocfs2_path
*path
;
1304 static void find_path_ins(void *data
, struct buffer_head
*bh
)
1306 struct find_path_data
*fp
= data
;
1309 ocfs2_path_insert_eb(fp
->path
, fp
->index
, bh
);
1312 static int ocfs2_find_path(struct inode
*inode
, struct ocfs2_path
*path
,
1315 struct find_path_data data
;
1319 return __ocfs2_find_path(inode
, path_root_el(path
), cpos
,
1320 find_path_ins
, &data
);
1323 static void find_leaf_ins(void *data
, struct buffer_head
*bh
)
1325 struct ocfs2_extent_block
*eb
=(struct ocfs2_extent_block
*)bh
->b_data
;
1326 struct ocfs2_extent_list
*el
= &eb
->h_list
;
1327 struct buffer_head
**ret
= data
;
1329 /* We want to retain only the leaf block. */
1330 if (le16_to_cpu(el
->l_tree_depth
) == 0) {
1336 * Find the leaf block in the tree which would contain cpos. No
1337 * checking of the actual leaf is done.
1339 * Some paths want to call this instead of allocating a path structure
1340 * and calling ocfs2_find_path().
1342 * This function doesn't handle non btree extent lists.
1344 int ocfs2_find_leaf(struct inode
*inode
, struct ocfs2_extent_list
*root_el
,
1345 u32 cpos
, struct buffer_head
**leaf_bh
)
1348 struct buffer_head
*bh
= NULL
;
1350 ret
= __ocfs2_find_path(inode
, root_el
, cpos
, find_leaf_ins
, &bh
);
1362 * Adjust the adjacent records (left_rec, right_rec) involved in a rotation.
1364 * Basically, we've moved stuff around at the bottom of the tree and
1365 * we need to fix up the extent records above the changes to reflect
1368 * left_rec: the record on the left.
1369 * left_child_el: is the child list pointed to by left_rec
1370 * right_rec: the record to the right of left_rec
1371 * right_child_el: is the child list pointed to by right_rec
1373 * By definition, this only works on interior nodes.
1375 static void ocfs2_adjust_adjacent_records(struct ocfs2_extent_rec
*left_rec
,
1376 struct ocfs2_extent_list
*left_child_el
,
1377 struct ocfs2_extent_rec
*right_rec
,
1378 struct ocfs2_extent_list
*right_child_el
)
1380 u32 left_clusters
, right_end
;
1383 * Interior nodes never have holes. Their cpos is the cpos of
1384 * the leftmost record in their child list. Their cluster
1385 * count covers the full theoretical range of their child list
1386 * - the range between their cpos and the cpos of the record
1387 * immediately to their right.
1389 left_clusters
= le32_to_cpu(right_child_el
->l_recs
[0].e_cpos
);
1390 if (ocfs2_is_empty_extent(&right_child_el
->l_recs
[0])) {
1391 BUG_ON(le16_to_cpu(right_child_el
->l_next_free_rec
) <= 1);
1392 left_clusters
= le32_to_cpu(right_child_el
->l_recs
[1].e_cpos
);
1394 left_clusters
-= le32_to_cpu(left_rec
->e_cpos
);
1395 left_rec
->e_int_clusters
= cpu_to_le32(left_clusters
);
1398 * Calculate the rightmost cluster count boundary before
1399 * moving cpos - we will need to adjust clusters after
1400 * updating e_cpos to keep the same highest cluster count.
1402 right_end
= le32_to_cpu(right_rec
->e_cpos
);
1403 right_end
+= le32_to_cpu(right_rec
->e_int_clusters
);
1405 right_rec
->e_cpos
= left_rec
->e_cpos
;
1406 le32_add_cpu(&right_rec
->e_cpos
, left_clusters
);
1408 right_end
-= le32_to_cpu(right_rec
->e_cpos
);
1409 right_rec
->e_int_clusters
= cpu_to_le32(right_end
);
1413 * Adjust the adjacent root node records involved in a
1414 * rotation. left_el_blkno is passed in as a key so that we can easily
1415 * find it's index in the root list.
1417 static void ocfs2_adjust_root_records(struct ocfs2_extent_list
*root_el
,
1418 struct ocfs2_extent_list
*left_el
,
1419 struct ocfs2_extent_list
*right_el
,
1424 BUG_ON(le16_to_cpu(root_el
->l_tree_depth
) <=
1425 le16_to_cpu(left_el
->l_tree_depth
));
1427 for(i
= 0; i
< le16_to_cpu(root_el
->l_next_free_rec
) - 1; i
++) {
1428 if (le64_to_cpu(root_el
->l_recs
[i
].e_blkno
) == left_el_blkno
)
1433 * The path walking code should have never returned a root and
1434 * two paths which are not adjacent.
1436 BUG_ON(i
>= (le16_to_cpu(root_el
->l_next_free_rec
) - 1));
1438 ocfs2_adjust_adjacent_records(&root_el
->l_recs
[i
], left_el
,
1439 &root_el
->l_recs
[i
+ 1], right_el
);
1443 * We've changed a leaf block (in right_path) and need to reflect that
1444 * change back up the subtree.
1446 * This happens in multiple places:
1447 * - When we've moved an extent record from the left path leaf to the right
1448 * path leaf to make room for an empty extent in the left path leaf.
1449 * - When our insert into the right path leaf is at the leftmost edge
1450 * and requires an update of the path immediately to it's left. This
1451 * can occur at the end of some types of rotation and appending inserts.
1452 * - When we've adjusted the last extent record in the left path leaf and the
1453 * 1st extent record in the right path leaf during cross extent block merge.
1455 static void ocfs2_complete_edge_insert(struct inode
*inode
, handle_t
*handle
,
1456 struct ocfs2_path
*left_path
,
1457 struct ocfs2_path
*right_path
,
1461 struct ocfs2_extent_list
*el
, *left_el
, *right_el
;
1462 struct ocfs2_extent_rec
*left_rec
, *right_rec
;
1463 struct buffer_head
*root_bh
= left_path
->p_node
[subtree_index
].bh
;
1466 * Update the counts and position values within all the
1467 * interior nodes to reflect the leaf rotation we just did.
1469 * The root node is handled below the loop.
1471 * We begin the loop with right_el and left_el pointing to the
1472 * leaf lists and work our way up.
1474 * NOTE: within this loop, left_el and right_el always refer
1475 * to the *child* lists.
1477 left_el
= path_leaf_el(left_path
);
1478 right_el
= path_leaf_el(right_path
);
1479 for(i
= left_path
->p_tree_depth
- 1; i
> subtree_index
; i
--) {
1480 mlog(0, "Adjust records at index %u\n", i
);
1483 * One nice property of knowing that all of these
1484 * nodes are below the root is that we only deal with
1485 * the leftmost right node record and the rightmost
1488 el
= left_path
->p_node
[i
].el
;
1489 idx
= le16_to_cpu(left_el
->l_next_free_rec
) - 1;
1490 left_rec
= &el
->l_recs
[idx
];
1492 el
= right_path
->p_node
[i
].el
;
1493 right_rec
= &el
->l_recs
[0];
1495 ocfs2_adjust_adjacent_records(left_rec
, left_el
, right_rec
,
1498 ret
= ocfs2_journal_dirty(handle
, left_path
->p_node
[i
].bh
);
1502 ret
= ocfs2_journal_dirty(handle
, right_path
->p_node
[i
].bh
);
1507 * Setup our list pointers now so that the current
1508 * parents become children in the next iteration.
1510 left_el
= left_path
->p_node
[i
].el
;
1511 right_el
= right_path
->p_node
[i
].el
;
1515 * At the root node, adjust the two adjacent records which
1516 * begin our path to the leaves.
1519 el
= left_path
->p_node
[subtree_index
].el
;
1520 left_el
= left_path
->p_node
[subtree_index
+ 1].el
;
1521 right_el
= right_path
->p_node
[subtree_index
+ 1].el
;
1523 ocfs2_adjust_root_records(el
, left_el
, right_el
,
1524 left_path
->p_node
[subtree_index
+ 1].bh
->b_blocknr
);
1526 root_bh
= left_path
->p_node
[subtree_index
].bh
;
1528 ret
= ocfs2_journal_dirty(handle
, root_bh
);
1533 static int ocfs2_rotate_subtree_right(struct inode
*inode
,
1535 struct ocfs2_path
*left_path
,
1536 struct ocfs2_path
*right_path
,
1540 struct buffer_head
*right_leaf_bh
;
1541 struct buffer_head
*left_leaf_bh
= NULL
;
1542 struct buffer_head
*root_bh
;
1543 struct ocfs2_extent_list
*right_el
, *left_el
;
1544 struct ocfs2_extent_rec move_rec
;
1546 left_leaf_bh
= path_leaf_bh(left_path
);
1547 left_el
= path_leaf_el(left_path
);
1549 if (left_el
->l_next_free_rec
!= left_el
->l_count
) {
1550 ocfs2_error(inode
->i_sb
,
1551 "Inode %llu has non-full interior leaf node %llu"
1553 (unsigned long long)OCFS2_I(inode
)->ip_blkno
,
1554 (unsigned long long)left_leaf_bh
->b_blocknr
,
1555 le16_to_cpu(left_el
->l_next_free_rec
));
1560 * This extent block may already have an empty record, so we
1561 * return early if so.
1563 if (ocfs2_is_empty_extent(&left_el
->l_recs
[0]))
1566 root_bh
= left_path
->p_node
[subtree_index
].bh
;
1567 BUG_ON(root_bh
!= right_path
->p_node
[subtree_index
].bh
);
1569 ret
= ocfs2_journal_access(handle
, inode
, root_bh
,
1570 OCFS2_JOURNAL_ACCESS_WRITE
);
1576 for(i
= subtree_index
+ 1; i
< path_num_items(right_path
); i
++) {
1577 ret
= ocfs2_journal_access(handle
, inode
,
1578 right_path
->p_node
[i
].bh
,
1579 OCFS2_JOURNAL_ACCESS_WRITE
);
1585 ret
= ocfs2_journal_access(handle
, inode
,
1586 left_path
->p_node
[i
].bh
,
1587 OCFS2_JOURNAL_ACCESS_WRITE
);
1594 right_leaf_bh
= path_leaf_bh(right_path
);
1595 right_el
= path_leaf_el(right_path
);
1597 /* This is a code error, not a disk corruption. */
1598 mlog_bug_on_msg(!right_el
->l_next_free_rec
, "Inode %llu: Rotate fails "
1599 "because rightmost leaf block %llu is empty\n",
1600 (unsigned long long)OCFS2_I(inode
)->ip_blkno
,
1601 (unsigned long long)right_leaf_bh
->b_blocknr
);
1603 ocfs2_create_empty_extent(right_el
);
1605 ret
= ocfs2_journal_dirty(handle
, right_leaf_bh
);
1611 /* Do the copy now. */
1612 i
= le16_to_cpu(left_el
->l_next_free_rec
) - 1;
1613 move_rec
= left_el
->l_recs
[i
];
1614 right_el
->l_recs
[0] = move_rec
;
1617 * Clear out the record we just copied and shift everything
1618 * over, leaving an empty extent in the left leaf.
1620 * We temporarily subtract from next_free_rec so that the
1621 * shift will lose the tail record (which is now defunct).
1623 le16_add_cpu(&left_el
->l_next_free_rec
, -1);
1624 ocfs2_shift_records_right(left_el
);
1625 memset(&left_el
->l_recs
[0], 0, sizeof(struct ocfs2_extent_rec
));
1626 le16_add_cpu(&left_el
->l_next_free_rec
, 1);
1628 ret
= ocfs2_journal_dirty(handle
, left_leaf_bh
);
1634 ocfs2_complete_edge_insert(inode
, handle
, left_path
, right_path
,
1642 * Given a full path, determine what cpos value would return us a path
1643 * containing the leaf immediately to the left of the current one.
1645 * Will return zero if the path passed in is already the leftmost path.
1647 static int ocfs2_find_cpos_for_left_leaf(struct super_block
*sb
,
1648 struct ocfs2_path
*path
, u32
*cpos
)
1652 struct ocfs2_extent_list
*el
;
1654 BUG_ON(path
->p_tree_depth
== 0);
1658 blkno
= path_leaf_bh(path
)->b_blocknr
;
1660 /* Start at the tree node just above the leaf and work our way up. */
1661 i
= path
->p_tree_depth
- 1;
1663 el
= path
->p_node
[i
].el
;
1666 * Find the extent record just before the one in our
1669 for(j
= 0; j
< le16_to_cpu(el
->l_next_free_rec
); j
++) {
1670 if (le64_to_cpu(el
->l_recs
[j
].e_blkno
) == blkno
) {
1674 * We've determined that the
1675 * path specified is already
1676 * the leftmost one - return a
1682 * The leftmost record points to our
1683 * leaf - we need to travel up the
1689 *cpos
= le32_to_cpu(el
->l_recs
[j
- 1].e_cpos
);
1690 *cpos
= *cpos
+ ocfs2_rec_clusters(el
,
1691 &el
->l_recs
[j
- 1]);
1698 * If we got here, we never found a valid node where
1699 * the tree indicated one should be.
1702 "Invalid extent tree at extent block %llu\n",
1703 (unsigned long long)blkno
);
1708 blkno
= path
->p_node
[i
].bh
->b_blocknr
;
1717 * Extend the transaction by enough credits to complete the rotation,
1718 * and still leave at least the original number of credits allocated
1719 * to this transaction.
1721 static int ocfs2_extend_rotate_transaction(handle_t
*handle
, int subtree_depth
,
1723 struct ocfs2_path
*path
)
1725 int credits
= (path
->p_tree_depth
- subtree_depth
) * 2 + 1 + op_credits
;
1727 if (handle
->h_buffer_credits
< credits
)
1728 return ocfs2_extend_trans(handle
, credits
);
1734 * Trap the case where we're inserting into the theoretical range past
1735 * the _actual_ left leaf range. Otherwise, we'll rotate a record
1736 * whose cpos is less than ours into the right leaf.
1738 * It's only necessary to look at the rightmost record of the left
1739 * leaf because the logic that calls us should ensure that the
1740 * theoretical ranges in the path components above the leaves are
1743 static int ocfs2_rotate_requires_path_adjustment(struct ocfs2_path
*left_path
,
1746 struct ocfs2_extent_list
*left_el
;
1747 struct ocfs2_extent_rec
*rec
;
1750 left_el
= path_leaf_el(left_path
);
1751 next_free
= le16_to_cpu(left_el
->l_next_free_rec
);
1752 rec
= &left_el
->l_recs
[next_free
- 1];
1754 if (insert_cpos
> le32_to_cpu(rec
->e_cpos
))
1759 static int ocfs2_leftmost_rec_contains(struct ocfs2_extent_list
*el
, u32 cpos
)
1761 int next_free
= le16_to_cpu(el
->l_next_free_rec
);
1763 struct ocfs2_extent_rec
*rec
;
1768 rec
= &el
->l_recs
[0];
1769 if (ocfs2_is_empty_extent(rec
)) {
1773 rec
= &el
->l_recs
[1];
1776 range
= le32_to_cpu(rec
->e_cpos
) + ocfs2_rec_clusters(el
, rec
);
1777 if (cpos
>= le32_to_cpu(rec
->e_cpos
) && cpos
< range
)
1783 * Rotate all the records in a btree right one record, starting at insert_cpos.
1785 * The path to the rightmost leaf should be passed in.
1787 * The array is assumed to be large enough to hold an entire path (tree depth).
1789 * Upon succesful return from this function:
1791 * - The 'right_path' array will contain a path to the leaf block
1792 * whose range contains e_cpos.
1793 * - That leaf block will have a single empty extent in list index 0.
1794 * - In the case that the rotation requires a post-insert update,
1795 * *ret_left_path will contain a valid path which can be passed to
1796 * ocfs2_insert_path().
1798 static int ocfs2_rotate_tree_right(struct inode
*inode
,
1800 enum ocfs2_split_type split
,
1802 struct ocfs2_path
*right_path
,
1803 struct ocfs2_path
**ret_left_path
)
1805 int ret
, start
, orig_credits
= handle
->h_buffer_credits
;
1807 struct ocfs2_path
*left_path
= NULL
;
1809 *ret_left_path
= NULL
;
1811 left_path
= ocfs2_new_path(path_root_bh(right_path
),
1812 path_root_el(right_path
));
1819 ret
= ocfs2_find_cpos_for_left_leaf(inode
->i_sb
, right_path
, &cpos
);
1825 mlog(0, "Insert: %u, first left path cpos: %u\n", insert_cpos
, cpos
);
1828 * What we want to do here is:
1830 * 1) Start with the rightmost path.
1832 * 2) Determine a path to the leaf block directly to the left
1835 * 3) Determine the 'subtree root' - the lowest level tree node
1836 * which contains a path to both leaves.
1838 * 4) Rotate the subtree.
1840 * 5) Find the next subtree by considering the left path to be
1841 * the new right path.
1843 * The check at the top of this while loop also accepts
1844 * insert_cpos == cpos because cpos is only a _theoretical_
1845 * value to get us the left path - insert_cpos might very well
1846 * be filling that hole.
1848 * Stop at a cpos of '0' because we either started at the
1849 * leftmost branch (i.e., a tree with one branch and a
1850 * rotation inside of it), or we've gone as far as we can in
1851 * rotating subtrees.
1853 while (cpos
&& insert_cpos
<= cpos
) {
1854 mlog(0, "Rotating a tree: ins. cpos: %u, left path cpos: %u\n",
1857 ret
= ocfs2_find_path(inode
, left_path
, cpos
);
1863 mlog_bug_on_msg(path_leaf_bh(left_path
) ==
1864 path_leaf_bh(right_path
),
1865 "Inode %lu: error during insert of %u "
1866 "(left path cpos %u) results in two identical "
1867 "paths ending at %llu\n",
1868 inode
->i_ino
, insert_cpos
, cpos
,
1869 (unsigned long long)
1870 path_leaf_bh(left_path
)->b_blocknr
);
1872 if (split
== SPLIT_NONE
&&
1873 ocfs2_rotate_requires_path_adjustment(left_path
,
1877 * We've rotated the tree as much as we
1878 * should. The rest is up to
1879 * ocfs2_insert_path() to complete, after the
1880 * record insertion. We indicate this
1881 * situation by returning the left path.
1883 * The reason we don't adjust the records here
1884 * before the record insert is that an error
1885 * later might break the rule where a parent
1886 * record e_cpos will reflect the actual
1887 * e_cpos of the 1st nonempty record of the
1890 *ret_left_path
= left_path
;
1894 start
= ocfs2_find_subtree_root(inode
, left_path
, right_path
);
1896 mlog(0, "Subtree root at index %d (blk %llu, depth %d)\n",
1898 (unsigned long long) right_path
->p_node
[start
].bh
->b_blocknr
,
1899 right_path
->p_tree_depth
);
1901 ret
= ocfs2_extend_rotate_transaction(handle
, start
,
1902 orig_credits
, right_path
);
1908 ret
= ocfs2_rotate_subtree_right(inode
, handle
, left_path
,
1915 if (split
!= SPLIT_NONE
&&
1916 ocfs2_leftmost_rec_contains(path_leaf_el(right_path
),
1919 * A rotate moves the rightmost left leaf
1920 * record over to the leftmost right leaf
1921 * slot. If we're doing an extent split
1922 * instead of a real insert, then we have to
1923 * check that the extent to be split wasn't
1924 * just moved over. If it was, then we can
1925 * exit here, passing left_path back -
1926 * ocfs2_split_extent() is smart enough to
1927 * search both leaves.
1929 *ret_left_path
= left_path
;
1934 * There is no need to re-read the next right path
1935 * as we know that it'll be our current left
1936 * path. Optimize by copying values instead.
1938 ocfs2_mv_path(right_path
, left_path
);
1940 ret
= ocfs2_find_cpos_for_left_leaf(inode
->i_sb
, right_path
,
1949 ocfs2_free_path(left_path
);
1955 static void ocfs2_update_edge_lengths(struct inode
*inode
, handle_t
*handle
,
1956 struct ocfs2_path
*path
)
1959 struct ocfs2_extent_rec
*rec
;
1960 struct ocfs2_extent_list
*el
;
1961 struct ocfs2_extent_block
*eb
;
1964 /* Path should always be rightmost. */
1965 eb
= (struct ocfs2_extent_block
*)path_leaf_bh(path
)->b_data
;
1966 BUG_ON(eb
->h_next_leaf_blk
!= 0ULL);
1969 BUG_ON(le16_to_cpu(el
->l_next_free_rec
) == 0);
1970 idx
= le16_to_cpu(el
->l_next_free_rec
) - 1;
1971 rec
= &el
->l_recs
[idx
];
1972 range
= le32_to_cpu(rec
->e_cpos
) + ocfs2_rec_clusters(el
, rec
);
1974 for (i
= 0; i
< path
->p_tree_depth
; i
++) {
1975 el
= path
->p_node
[i
].el
;
1976 idx
= le16_to_cpu(el
->l_next_free_rec
) - 1;
1977 rec
= &el
->l_recs
[idx
];
1979 rec
->e_int_clusters
= cpu_to_le32(range
);
1980 le32_add_cpu(&rec
->e_int_clusters
, -le32_to_cpu(rec
->e_cpos
));
1982 ocfs2_journal_dirty(handle
, path
->p_node
[i
].bh
);
1986 static void ocfs2_unlink_path(struct inode
*inode
, handle_t
*handle
,
1987 struct ocfs2_cached_dealloc_ctxt
*dealloc
,
1988 struct ocfs2_path
*path
, int unlink_start
)
1991 struct ocfs2_extent_block
*eb
;
1992 struct ocfs2_extent_list
*el
;
1993 struct buffer_head
*bh
;
1995 for(i
= unlink_start
; i
< path_num_items(path
); i
++) {
1996 bh
= path
->p_node
[i
].bh
;
1998 eb
= (struct ocfs2_extent_block
*)bh
->b_data
;
2000 * Not all nodes might have had their final count
2001 * decremented by the caller - handle this here.
2004 if (le16_to_cpu(el
->l_next_free_rec
) > 1) {
2006 "Inode %llu, attempted to remove extent block "
2007 "%llu with %u records\n",
2008 (unsigned long long)OCFS2_I(inode
)->ip_blkno
,
2009 (unsigned long long)le64_to_cpu(eb
->h_blkno
),
2010 le16_to_cpu(el
->l_next_free_rec
));
2012 ocfs2_journal_dirty(handle
, bh
);
2013 ocfs2_remove_from_cache(inode
, bh
);
2017 el
->l_next_free_rec
= 0;
2018 memset(&el
->l_recs
[0], 0, sizeof(struct ocfs2_extent_rec
));
2020 ocfs2_journal_dirty(handle
, bh
);
2022 ret
= ocfs2_cache_extent_block_free(dealloc
, eb
);
2026 ocfs2_remove_from_cache(inode
, bh
);
2030 static void ocfs2_unlink_subtree(struct inode
*inode
, handle_t
*handle
,
2031 struct ocfs2_path
*left_path
,
2032 struct ocfs2_path
*right_path
,
2034 struct ocfs2_cached_dealloc_ctxt
*dealloc
)
2037 struct buffer_head
*root_bh
= left_path
->p_node
[subtree_index
].bh
;
2038 struct ocfs2_extent_list
*root_el
= left_path
->p_node
[subtree_index
].el
;
2039 struct ocfs2_extent_list
*el
;
2040 struct ocfs2_extent_block
*eb
;
2042 el
= path_leaf_el(left_path
);
2044 eb
= (struct ocfs2_extent_block
*)right_path
->p_node
[subtree_index
+ 1].bh
->b_data
;
2046 for(i
= 1; i
< le16_to_cpu(root_el
->l_next_free_rec
); i
++)
2047 if (root_el
->l_recs
[i
].e_blkno
== eb
->h_blkno
)
2050 BUG_ON(i
>= le16_to_cpu(root_el
->l_next_free_rec
));
2052 memset(&root_el
->l_recs
[i
], 0, sizeof(struct ocfs2_extent_rec
));
2053 le16_add_cpu(&root_el
->l_next_free_rec
, -1);
2055 eb
= (struct ocfs2_extent_block
*)path_leaf_bh(left_path
)->b_data
;
2056 eb
->h_next_leaf_blk
= 0;
2058 ocfs2_journal_dirty(handle
, root_bh
);
2059 ocfs2_journal_dirty(handle
, path_leaf_bh(left_path
));
2061 ocfs2_unlink_path(inode
, handle
, dealloc
, right_path
,
2065 static int ocfs2_rotate_subtree_left(struct inode
*inode
, handle_t
*handle
,
2066 struct ocfs2_path
*left_path
,
2067 struct ocfs2_path
*right_path
,
2069 struct ocfs2_cached_dealloc_ctxt
*dealloc
,
2072 int ret
, i
, del_right_subtree
= 0, right_has_empty
= 0;
2073 struct buffer_head
*root_bh
, *di_bh
= path_root_bh(right_path
);
2074 struct ocfs2_dinode
*di
= (struct ocfs2_dinode
*)di_bh
->b_data
;
2075 struct ocfs2_extent_list
*right_leaf_el
, *left_leaf_el
;
2076 struct ocfs2_extent_block
*eb
;
2080 right_leaf_el
= path_leaf_el(right_path
);
2081 left_leaf_el
= path_leaf_el(left_path
);
2082 root_bh
= left_path
->p_node
[subtree_index
].bh
;
2083 BUG_ON(root_bh
!= right_path
->p_node
[subtree_index
].bh
);
2085 if (!ocfs2_is_empty_extent(&left_leaf_el
->l_recs
[0]))
2088 eb
= (struct ocfs2_extent_block
*)path_leaf_bh(right_path
)->b_data
;
2089 if (ocfs2_is_empty_extent(&right_leaf_el
->l_recs
[0])) {
2091 * It's legal for us to proceed if the right leaf is
2092 * the rightmost one and it has an empty extent. There
2093 * are two cases to handle - whether the leaf will be
2094 * empty after removal or not. If the leaf isn't empty
2095 * then just remove the empty extent up front. The
2096 * next block will handle empty leaves by flagging
2099 * Non rightmost leaves will throw -EAGAIN and the
2100 * caller can manually move the subtree and retry.
2103 if (eb
->h_next_leaf_blk
!= 0ULL)
2106 if (le16_to_cpu(right_leaf_el
->l_next_free_rec
) > 1) {
2107 ret
= ocfs2_journal_access(handle
, inode
,
2108 path_leaf_bh(right_path
),
2109 OCFS2_JOURNAL_ACCESS_WRITE
);
2115 ocfs2_remove_empty_extent(right_leaf_el
);
2117 right_has_empty
= 1;
2120 if (eb
->h_next_leaf_blk
== 0ULL &&
2121 le16_to_cpu(right_leaf_el
->l_next_free_rec
) == 1) {
2123 * We have to update i_last_eb_blk during the meta
2126 ret
= ocfs2_journal_access(handle
, inode
, di_bh
,
2127 OCFS2_JOURNAL_ACCESS_WRITE
);
2133 del_right_subtree
= 1;
2137 * Getting here with an empty extent in the right path implies
2138 * that it's the rightmost path and will be deleted.
2140 BUG_ON(right_has_empty
&& !del_right_subtree
);
2142 ret
= ocfs2_journal_access(handle
, inode
, root_bh
,
2143 OCFS2_JOURNAL_ACCESS_WRITE
);
2149 for(i
= subtree_index
+ 1; i
< path_num_items(right_path
); i
++) {
2150 ret
= ocfs2_journal_access(handle
, inode
,
2151 right_path
->p_node
[i
].bh
,
2152 OCFS2_JOURNAL_ACCESS_WRITE
);
2158 ret
= ocfs2_journal_access(handle
, inode
,
2159 left_path
->p_node
[i
].bh
,
2160 OCFS2_JOURNAL_ACCESS_WRITE
);
2167 if (!right_has_empty
) {
2169 * Only do this if we're moving a real
2170 * record. Otherwise, the action is delayed until
2171 * after removal of the right path in which case we
2172 * can do a simple shift to remove the empty extent.
2174 ocfs2_rotate_leaf(left_leaf_el
, &right_leaf_el
->l_recs
[0]);
2175 memset(&right_leaf_el
->l_recs
[0], 0,
2176 sizeof(struct ocfs2_extent_rec
));
2178 if (eb
->h_next_leaf_blk
== 0ULL) {
2180 * Move recs over to get rid of empty extent, decrease
2181 * next_free. This is allowed to remove the last
2182 * extent in our leaf (setting l_next_free_rec to
2183 * zero) - the delete code below won't care.
2185 ocfs2_remove_empty_extent(right_leaf_el
);
2188 ret
= ocfs2_journal_dirty(handle
, path_leaf_bh(left_path
));
2191 ret
= ocfs2_journal_dirty(handle
, path_leaf_bh(right_path
));
2195 if (del_right_subtree
) {
2196 ocfs2_unlink_subtree(inode
, handle
, left_path
, right_path
,
2197 subtree_index
, dealloc
);
2198 ocfs2_update_edge_lengths(inode
, handle
, left_path
);
2200 eb
= (struct ocfs2_extent_block
*)path_leaf_bh(left_path
)->b_data
;
2201 di
->i_last_eb_blk
= eb
->h_blkno
;
2204 * Removal of the extent in the left leaf was skipped
2205 * above so we could delete the right path
2208 if (right_has_empty
)
2209 ocfs2_remove_empty_extent(left_leaf_el
);
2211 ret
= ocfs2_journal_dirty(handle
, di_bh
);
2217 ocfs2_complete_edge_insert(inode
, handle
, left_path
, right_path
,
2225 * Given a full path, determine what cpos value would return us a path
2226 * containing the leaf immediately to the right of the current one.
2228 * Will return zero if the path passed in is already the rightmost path.
2230 * This looks similar, but is subtly different to
2231 * ocfs2_find_cpos_for_left_leaf().
2233 static int ocfs2_find_cpos_for_right_leaf(struct super_block
*sb
,
2234 struct ocfs2_path
*path
, u32
*cpos
)
2238 struct ocfs2_extent_list
*el
;
2242 if (path
->p_tree_depth
== 0)
2245 blkno
= path_leaf_bh(path
)->b_blocknr
;
2247 /* Start at the tree node just above the leaf and work our way up. */
2248 i
= path
->p_tree_depth
- 1;
2252 el
= path
->p_node
[i
].el
;
2255 * Find the extent record just after the one in our
2258 next_free
= le16_to_cpu(el
->l_next_free_rec
);
2259 for(j
= 0; j
< le16_to_cpu(el
->l_next_free_rec
); j
++) {
2260 if (le64_to_cpu(el
->l_recs
[j
].e_blkno
) == blkno
) {
2261 if (j
== (next_free
- 1)) {
2264 * We've determined that the
2265 * path specified is already
2266 * the rightmost one - return a
2272 * The rightmost record points to our
2273 * leaf - we need to travel up the
2279 *cpos
= le32_to_cpu(el
->l_recs
[j
+ 1].e_cpos
);
2285 * If we got here, we never found a valid node where
2286 * the tree indicated one should be.
2289 "Invalid extent tree at extent block %llu\n",
2290 (unsigned long long)blkno
);
2295 blkno
= path
->p_node
[i
].bh
->b_blocknr
;
2303 static int ocfs2_rotate_rightmost_leaf_left(struct inode
*inode
,
2305 struct buffer_head
*bh
,
2306 struct ocfs2_extent_list
*el
)
2310 if (!ocfs2_is_empty_extent(&el
->l_recs
[0]))
2313 ret
= ocfs2_journal_access(handle
, inode
, bh
,
2314 OCFS2_JOURNAL_ACCESS_WRITE
);
2320 ocfs2_remove_empty_extent(el
);
2322 ret
= ocfs2_journal_dirty(handle
, bh
);
2330 static int __ocfs2_rotate_tree_left(struct inode
*inode
,
2331 handle_t
*handle
, int orig_credits
,
2332 struct ocfs2_path
*path
,
2333 struct ocfs2_cached_dealloc_ctxt
*dealloc
,
2334 struct ocfs2_path
**empty_extent_path
)
2336 int ret
, subtree_root
, deleted
;
2338 struct ocfs2_path
*left_path
= NULL
;
2339 struct ocfs2_path
*right_path
= NULL
;
2341 BUG_ON(!ocfs2_is_empty_extent(&(path_leaf_el(path
)->l_recs
[0])));
2343 *empty_extent_path
= NULL
;
2345 ret
= ocfs2_find_cpos_for_right_leaf(inode
->i_sb
, path
,
2352 left_path
= ocfs2_new_path(path_root_bh(path
),
2353 path_root_el(path
));
2360 ocfs2_cp_path(left_path
, path
);
2362 right_path
= ocfs2_new_path(path_root_bh(path
),
2363 path_root_el(path
));
2370 while (right_cpos
) {
2371 ret
= ocfs2_find_path(inode
, right_path
, right_cpos
);
2377 subtree_root
= ocfs2_find_subtree_root(inode
, left_path
,
2380 mlog(0, "Subtree root at index %d (blk %llu, depth %d)\n",
2382 (unsigned long long)
2383 right_path
->p_node
[subtree_root
].bh
->b_blocknr
,
2384 right_path
->p_tree_depth
);
2386 ret
= ocfs2_extend_rotate_transaction(handle
, subtree_root
,
2387 orig_credits
, left_path
);
2394 * Caller might still want to make changes to the
2395 * tree root, so re-add it to the journal here.
2397 ret
= ocfs2_journal_access(handle
, inode
,
2398 path_root_bh(left_path
),
2399 OCFS2_JOURNAL_ACCESS_WRITE
);
2405 ret
= ocfs2_rotate_subtree_left(inode
, handle
, left_path
,
2406 right_path
, subtree_root
,
2408 if (ret
== -EAGAIN
) {
2410 * The rotation has to temporarily stop due to
2411 * the right subtree having an empty
2412 * extent. Pass it back to the caller for a
2415 *empty_extent_path
= right_path
;
2425 * The subtree rotate might have removed records on
2426 * the rightmost edge. If so, then rotation is
2432 ocfs2_mv_path(left_path
, right_path
);
2434 ret
= ocfs2_find_cpos_for_right_leaf(inode
->i_sb
, left_path
,
2443 ocfs2_free_path(right_path
);
2444 ocfs2_free_path(left_path
);
2449 static int ocfs2_remove_rightmost_path(struct inode
*inode
, handle_t
*handle
,
2450 struct ocfs2_path
*path
,
2451 struct ocfs2_cached_dealloc_ctxt
*dealloc
)
2453 int ret
, subtree_index
;
2455 struct ocfs2_path
*left_path
= NULL
;
2456 struct ocfs2_dinode
*di
;
2457 struct ocfs2_extent_block
*eb
;
2458 struct ocfs2_extent_list
*el
;
2461 * XXX: This code assumes that the root is an inode, which is
2462 * true for now but may change as tree code gets generic.
2464 di
= (struct ocfs2_dinode
*)path_root_bh(path
)->b_data
;
2465 if (!OCFS2_IS_VALID_DINODE(di
)) {
2467 ocfs2_error(inode
->i_sb
,
2468 "Inode %llu has invalid path root",
2469 (unsigned long long)OCFS2_I(inode
)->ip_blkno
);
2474 * There's two ways we handle this depending on
2475 * whether path is the only existing one.
2477 ret
= ocfs2_extend_rotate_transaction(handle
, 0,
2478 handle
->h_buffer_credits
,
2485 ret
= ocfs2_journal_access_path(inode
, handle
, path
);
2491 ret
= ocfs2_find_cpos_for_left_leaf(inode
->i_sb
, path
, &cpos
);
2499 * We have a path to the left of this one - it needs
2502 left_path
= ocfs2_new_path(path_root_bh(path
),
2503 path_root_el(path
));
2510 ret
= ocfs2_find_path(inode
, left_path
, cpos
);
2516 ret
= ocfs2_journal_access_path(inode
, handle
, left_path
);
2522 subtree_index
= ocfs2_find_subtree_root(inode
, left_path
, path
);
2524 ocfs2_unlink_subtree(inode
, handle
, left_path
, path
,
2525 subtree_index
, dealloc
);
2526 ocfs2_update_edge_lengths(inode
, handle
, left_path
);
2528 eb
= (struct ocfs2_extent_block
*)path_leaf_bh(left_path
)->b_data
;
2529 di
->i_last_eb_blk
= eb
->h_blkno
;
2532 * 'path' is also the leftmost path which
2533 * means it must be the only one. This gets
2534 * handled differently because we want to
2535 * revert the inode back to having extents
2538 ocfs2_unlink_path(inode
, handle
, dealloc
, path
, 1);
2540 el
= &di
->id2
.i_list
;
2541 el
->l_tree_depth
= 0;
2542 el
->l_next_free_rec
= 0;
2543 memset(&el
->l_recs
[0], 0, sizeof(struct ocfs2_extent_rec
));
2545 di
->i_last_eb_blk
= 0;
2548 ocfs2_journal_dirty(handle
, path_root_bh(path
));
2551 ocfs2_free_path(left_path
);
2556 * Left rotation of btree records.
2558 * In many ways, this is (unsurprisingly) the opposite of right
2559 * rotation. We start at some non-rightmost path containing an empty
2560 * extent in the leaf block. The code works its way to the rightmost
2561 * path by rotating records to the left in every subtree.
2563 * This is used by any code which reduces the number of extent records
2564 * in a leaf. After removal, an empty record should be placed in the
2565 * leftmost list position.
2567 * This won't handle a length update of the rightmost path records if
2568 * the rightmost tree leaf record is removed so the caller is
2569 * responsible for detecting and correcting that.
2571 static int ocfs2_rotate_tree_left(struct inode
*inode
, handle_t
*handle
,
2572 struct ocfs2_path
*path
,
2573 struct ocfs2_cached_dealloc_ctxt
*dealloc
)
2575 int ret
, orig_credits
= handle
->h_buffer_credits
;
2576 struct ocfs2_path
*tmp_path
= NULL
, *restart_path
= NULL
;
2577 struct ocfs2_extent_block
*eb
;
2578 struct ocfs2_extent_list
*el
;
2580 el
= path_leaf_el(path
);
2581 if (!ocfs2_is_empty_extent(&el
->l_recs
[0]))
2584 if (path
->p_tree_depth
== 0) {
2585 rightmost_no_delete
:
2587 * In-inode extents. This is trivially handled, so do
2590 ret
= ocfs2_rotate_rightmost_leaf_left(inode
, handle
,
2592 path_leaf_el(path
));
2599 * Handle rightmost branch now. There's several cases:
2600 * 1) simple rotation leaving records in there. That's trivial.
2601 * 2) rotation requiring a branch delete - there's no more
2602 * records left. Two cases of this:
2603 * a) There are branches to the left.
2604 * b) This is also the leftmost (the only) branch.
2606 * 1) is handled via ocfs2_rotate_rightmost_leaf_left()
2607 * 2a) we need the left branch so that we can update it with the unlink
2608 * 2b) we need to bring the inode back to inline extents.
2611 eb
= (struct ocfs2_extent_block
*)path_leaf_bh(path
)->b_data
;
2613 if (eb
->h_next_leaf_blk
== 0) {
2615 * This gets a bit tricky if we're going to delete the
2616 * rightmost path. Get the other cases out of the way
2619 if (le16_to_cpu(el
->l_next_free_rec
) > 1)
2620 goto rightmost_no_delete
;
2622 if (le16_to_cpu(el
->l_next_free_rec
) == 0) {
2624 ocfs2_error(inode
->i_sb
,
2625 "Inode %llu has empty extent block at %llu",
2626 (unsigned long long)OCFS2_I(inode
)->ip_blkno
,
2627 (unsigned long long)le64_to_cpu(eb
->h_blkno
));
2632 * XXX: The caller can not trust "path" any more after
2633 * this as it will have been deleted. What do we do?
2635 * In theory the rotate-for-merge code will never get
2636 * here because it'll always ask for a rotate in a
2640 ret
= ocfs2_remove_rightmost_path(inode
, handle
, path
,
2648 * Now we can loop, remembering the path we get from -EAGAIN
2649 * and restarting from there.
2652 ret
= __ocfs2_rotate_tree_left(inode
, handle
, orig_credits
, path
,
2653 dealloc
, &restart_path
);
2654 if (ret
&& ret
!= -EAGAIN
) {
2659 while (ret
== -EAGAIN
) {
2660 tmp_path
= restart_path
;
2661 restart_path
= NULL
;
2663 ret
= __ocfs2_rotate_tree_left(inode
, handle
, orig_credits
,
2666 if (ret
&& ret
!= -EAGAIN
) {
2671 ocfs2_free_path(tmp_path
);
2679 ocfs2_free_path(tmp_path
);
2680 ocfs2_free_path(restart_path
);
2684 static void ocfs2_cleanup_merge(struct ocfs2_extent_list
*el
,
2687 struct ocfs2_extent_rec
*rec
= &el
->l_recs
[index
];
2690 if (rec
->e_leaf_clusters
== 0) {
2692 * We consumed all of the merged-from record. An empty
2693 * extent cannot exist anywhere but the 1st array
2694 * position, so move things over if the merged-from
2695 * record doesn't occupy that position.
2697 * This creates a new empty extent so the caller
2698 * should be smart enough to have removed any existing
2702 BUG_ON(ocfs2_is_empty_extent(&el
->l_recs
[0]));
2703 size
= index
* sizeof(struct ocfs2_extent_rec
);
2704 memmove(&el
->l_recs
[1], &el
->l_recs
[0], size
);
2708 * Always memset - the caller doesn't check whether it
2709 * created an empty extent, so there could be junk in
2712 memset(&el
->l_recs
[0], 0, sizeof(struct ocfs2_extent_rec
));
2716 static int ocfs2_get_right_path(struct inode
*inode
,
2717 struct ocfs2_path
*left_path
,
2718 struct ocfs2_path
**ret_right_path
)
2722 struct ocfs2_path
*right_path
= NULL
;
2723 struct ocfs2_extent_list
*left_el
;
2725 *ret_right_path
= NULL
;
2727 /* This function shouldn't be called for non-trees. */
2728 BUG_ON(left_path
->p_tree_depth
== 0);
2730 left_el
= path_leaf_el(left_path
);
2731 BUG_ON(left_el
->l_next_free_rec
!= left_el
->l_count
);
2733 ret
= ocfs2_find_cpos_for_right_leaf(inode
->i_sb
, left_path
,
2740 /* This function shouldn't be called for the rightmost leaf. */
2741 BUG_ON(right_cpos
== 0);
2743 right_path
= ocfs2_new_path(path_root_bh(left_path
),
2744 path_root_el(left_path
));
2751 ret
= ocfs2_find_path(inode
, right_path
, right_cpos
);
2757 *ret_right_path
= right_path
;
2760 ocfs2_free_path(right_path
);
2765 * Remove split_rec clusters from the record at index and merge them
2766 * onto the beginning of the record "next" to it.
2767 * For index < l_count - 1, the next means the extent rec at index + 1.
2768 * For index == l_count - 1, the "next" means the 1st extent rec of the
2769 * next extent block.
2771 static int ocfs2_merge_rec_right(struct inode
*inode
,
2772 struct ocfs2_path
*left_path
,
2774 struct ocfs2_extent_rec
*split_rec
,
2777 int ret
, next_free
, i
;
2778 unsigned int split_clusters
= le16_to_cpu(split_rec
->e_leaf_clusters
);
2779 struct ocfs2_extent_rec
*left_rec
;
2780 struct ocfs2_extent_rec
*right_rec
;
2781 struct ocfs2_extent_list
*right_el
;
2782 struct ocfs2_path
*right_path
= NULL
;
2783 int subtree_index
= 0;
2784 struct ocfs2_extent_list
*el
= path_leaf_el(left_path
);
2785 struct buffer_head
*bh
= path_leaf_bh(left_path
);
2786 struct buffer_head
*root_bh
= NULL
;
2788 BUG_ON(index
>= le16_to_cpu(el
->l_next_free_rec
));
2789 left_rec
= &el
->l_recs
[index
];
2791 if (index
== le16_to_cpu(el
->l_next_free_rec
) - 1 &&
2792 le16_to_cpu(el
->l_next_free_rec
) == le16_to_cpu(el
->l_count
)) {
2793 /* we meet with a cross extent block merge. */
2794 ret
= ocfs2_get_right_path(inode
, left_path
, &right_path
);
2800 right_el
= path_leaf_el(right_path
);
2801 next_free
= le16_to_cpu(right_el
->l_next_free_rec
);
2802 BUG_ON(next_free
<= 0);
2803 right_rec
= &right_el
->l_recs
[0];
2804 if (ocfs2_is_empty_extent(right_rec
)) {
2805 BUG_ON(next_free
<= 1);
2806 right_rec
= &right_el
->l_recs
[1];
2809 BUG_ON(le32_to_cpu(left_rec
->e_cpos
) +
2810 le16_to_cpu(left_rec
->e_leaf_clusters
) !=
2811 le32_to_cpu(right_rec
->e_cpos
));
2813 subtree_index
= ocfs2_find_subtree_root(inode
,
2814 left_path
, right_path
);
2816 ret
= ocfs2_extend_rotate_transaction(handle
, subtree_index
,
2817 handle
->h_buffer_credits
,
2824 root_bh
= left_path
->p_node
[subtree_index
].bh
;
2825 BUG_ON(root_bh
!= right_path
->p_node
[subtree_index
].bh
);
2827 ret
= ocfs2_journal_access(handle
, inode
, root_bh
,
2828 OCFS2_JOURNAL_ACCESS_WRITE
);
2834 for (i
= subtree_index
+ 1;
2835 i
< path_num_items(right_path
); i
++) {
2836 ret
= ocfs2_journal_access(handle
, inode
,
2837 right_path
->p_node
[i
].bh
,
2838 OCFS2_JOURNAL_ACCESS_WRITE
);
2844 ret
= ocfs2_journal_access(handle
, inode
,
2845 left_path
->p_node
[i
].bh
,
2846 OCFS2_JOURNAL_ACCESS_WRITE
);
2854 BUG_ON(index
== le16_to_cpu(el
->l_next_free_rec
) - 1);
2855 right_rec
= &el
->l_recs
[index
+ 1];
2858 ret
= ocfs2_journal_access(handle
, inode
, bh
,
2859 OCFS2_JOURNAL_ACCESS_WRITE
);
2865 le16_add_cpu(&left_rec
->e_leaf_clusters
, -split_clusters
);
2867 le32_add_cpu(&right_rec
->e_cpos
, -split_clusters
);
2868 le64_add_cpu(&right_rec
->e_blkno
,
2869 -ocfs2_clusters_to_blocks(inode
->i_sb
, split_clusters
));
2870 le16_add_cpu(&right_rec
->e_leaf_clusters
, split_clusters
);
2872 ocfs2_cleanup_merge(el
, index
);
2874 ret
= ocfs2_journal_dirty(handle
, bh
);
2879 ret
= ocfs2_journal_dirty(handle
, path_leaf_bh(right_path
));
2883 ocfs2_complete_edge_insert(inode
, handle
, left_path
,
2884 right_path
, subtree_index
);
2888 ocfs2_free_path(right_path
);
2892 static int ocfs2_get_left_path(struct inode
*inode
,
2893 struct ocfs2_path
*right_path
,
2894 struct ocfs2_path
**ret_left_path
)
2898 struct ocfs2_path
*left_path
= NULL
;
2900 *ret_left_path
= NULL
;
2902 /* This function shouldn't be called for non-trees. */
2903 BUG_ON(right_path
->p_tree_depth
== 0);
2905 ret
= ocfs2_find_cpos_for_left_leaf(inode
->i_sb
,
2906 right_path
, &left_cpos
);
2912 /* This function shouldn't be called for the leftmost leaf. */
2913 BUG_ON(left_cpos
== 0);
2915 left_path
= ocfs2_new_path(path_root_bh(right_path
),
2916 path_root_el(right_path
));
2923 ret
= ocfs2_find_path(inode
, left_path
, left_cpos
);
2929 *ret_left_path
= left_path
;
2932 ocfs2_free_path(left_path
);
2937 * Remove split_rec clusters from the record at index and merge them
2938 * onto the tail of the record "before" it.
2939 * For index > 0, the "before" means the extent rec at index - 1.
2941 * For index == 0, the "before" means the last record of the previous
2942 * extent block. And there is also a situation that we may need to
2943 * remove the rightmost leaf extent block in the right_path and change
2944 * the right path to indicate the new rightmost path.
2946 static int ocfs2_merge_rec_left(struct inode
*inode
,
2947 struct ocfs2_path
*right_path
,
2949 struct ocfs2_extent_rec
*split_rec
,
2950 struct ocfs2_cached_dealloc_ctxt
*dealloc
,
2953 int ret
, i
, subtree_index
= 0, has_empty_extent
= 0;
2954 unsigned int split_clusters
= le16_to_cpu(split_rec
->e_leaf_clusters
);
2955 struct ocfs2_extent_rec
*left_rec
;
2956 struct ocfs2_extent_rec
*right_rec
;
2957 struct ocfs2_extent_list
*el
= path_leaf_el(right_path
);
2958 struct buffer_head
*bh
= path_leaf_bh(right_path
);
2959 struct buffer_head
*root_bh
= NULL
;
2960 struct ocfs2_path
*left_path
= NULL
;
2961 struct ocfs2_extent_list
*left_el
;
2965 right_rec
= &el
->l_recs
[index
];
2967 /* we meet with a cross extent block merge. */
2968 ret
= ocfs2_get_left_path(inode
, right_path
, &left_path
);
2974 left_el
= path_leaf_el(left_path
);
2975 BUG_ON(le16_to_cpu(left_el
->l_next_free_rec
) !=
2976 le16_to_cpu(left_el
->l_count
));
2978 left_rec
= &left_el
->l_recs
[
2979 le16_to_cpu(left_el
->l_next_free_rec
) - 1];
2980 BUG_ON(le32_to_cpu(left_rec
->e_cpos
) +
2981 le16_to_cpu(left_rec
->e_leaf_clusters
) !=
2982 le32_to_cpu(split_rec
->e_cpos
));
2984 subtree_index
= ocfs2_find_subtree_root(inode
,
2985 left_path
, right_path
);
2987 ret
= ocfs2_extend_rotate_transaction(handle
, subtree_index
,
2988 handle
->h_buffer_credits
,
2995 root_bh
= left_path
->p_node
[subtree_index
].bh
;
2996 BUG_ON(root_bh
!= right_path
->p_node
[subtree_index
].bh
);
2998 ret
= ocfs2_journal_access(handle
, inode
, root_bh
,
2999 OCFS2_JOURNAL_ACCESS_WRITE
);
3005 for (i
= subtree_index
+ 1;
3006 i
< path_num_items(right_path
); i
++) {
3007 ret
= ocfs2_journal_access(handle
, inode
,
3008 right_path
->p_node
[i
].bh
,
3009 OCFS2_JOURNAL_ACCESS_WRITE
);
3015 ret
= ocfs2_journal_access(handle
, inode
,
3016 left_path
->p_node
[i
].bh
,
3017 OCFS2_JOURNAL_ACCESS_WRITE
);
3024 left_rec
= &el
->l_recs
[index
- 1];
3025 if (ocfs2_is_empty_extent(&el
->l_recs
[0]))
3026 has_empty_extent
= 1;
3029 ret
= ocfs2_journal_access(handle
, inode
, bh
,
3030 OCFS2_JOURNAL_ACCESS_WRITE
);
3036 if (has_empty_extent
&& index
== 1) {
3038 * The easy case - we can just plop the record right in.
3040 *left_rec
= *split_rec
;
3042 has_empty_extent
= 0;
3044 le16_add_cpu(&left_rec
->e_leaf_clusters
, split_clusters
);
3046 le32_add_cpu(&right_rec
->e_cpos
, split_clusters
);
3047 le64_add_cpu(&right_rec
->e_blkno
,
3048 ocfs2_clusters_to_blocks(inode
->i_sb
, split_clusters
));
3049 le16_add_cpu(&right_rec
->e_leaf_clusters
, -split_clusters
);
3051 ocfs2_cleanup_merge(el
, index
);
3053 ret
= ocfs2_journal_dirty(handle
, bh
);
3058 ret
= ocfs2_journal_dirty(handle
, path_leaf_bh(left_path
));
3063 * In the situation that the right_rec is empty and the extent
3064 * block is empty also, ocfs2_complete_edge_insert can't handle
3065 * it and we need to delete the right extent block.
3067 if (le16_to_cpu(right_rec
->e_leaf_clusters
) == 0 &&
3068 le16_to_cpu(el
->l_next_free_rec
) == 1) {
3070 ret
= ocfs2_remove_rightmost_path(inode
, handle
,
3071 right_path
, dealloc
);
3077 /* Now the rightmost extent block has been deleted.
3078 * So we use the new rightmost path.
3080 ocfs2_mv_path(right_path
, left_path
);
3083 ocfs2_complete_edge_insert(inode
, handle
, left_path
,
3084 right_path
, subtree_index
);
3088 ocfs2_free_path(left_path
);
3092 static int ocfs2_try_to_merge_extent(struct inode
*inode
,
3094 struct ocfs2_path
*path
,
3096 struct ocfs2_extent_rec
*split_rec
,
3097 struct ocfs2_cached_dealloc_ctxt
*dealloc
,
3098 struct ocfs2_merge_ctxt
*ctxt
)
3102 struct ocfs2_extent_list
*el
= path_leaf_el(path
);
3103 struct ocfs2_extent_rec
*rec
= &el
->l_recs
[split_index
];
3105 BUG_ON(ctxt
->c_contig_type
== CONTIG_NONE
);
3107 if (ctxt
->c_split_covers_rec
&& ctxt
->c_has_empty_extent
) {
3109 * The merge code will need to create an empty
3110 * extent to take the place of the newly
3111 * emptied slot. Remove any pre-existing empty
3112 * extents - having more than one in a leaf is
3115 ret
= ocfs2_rotate_tree_left(inode
, handle
, path
,
3122 rec
= &el
->l_recs
[split_index
];
3125 if (ctxt
->c_contig_type
== CONTIG_LEFTRIGHT
) {
3127 * Left-right contig implies this.
3129 BUG_ON(!ctxt
->c_split_covers_rec
);
3132 * Since the leftright insert always covers the entire
3133 * extent, this call will delete the insert record
3134 * entirely, resulting in an empty extent record added to
3137 * Since the adding of an empty extent shifts
3138 * everything back to the right, there's no need to
3139 * update split_index here.
3141 * When the split_index is zero, we need to merge it to the
3142 * prevoius extent block. It is more efficient and easier
3143 * if we do merge_right first and merge_left later.
3145 ret
= ocfs2_merge_rec_right(inode
, path
,
3154 * We can only get this from logic error above.
3156 BUG_ON(!ocfs2_is_empty_extent(&el
->l_recs
[0]));
3158 /* The merge left us with an empty extent, remove it. */
3159 ret
= ocfs2_rotate_tree_left(inode
, handle
, path
, dealloc
);
3165 rec
= &el
->l_recs
[split_index
];
3168 * Note that we don't pass split_rec here on purpose -
3169 * we've merged it into the rec already.
3171 ret
= ocfs2_merge_rec_left(inode
, path
,
3181 ret
= ocfs2_rotate_tree_left(inode
, handle
, path
,
3184 * Error from this last rotate is not critical, so
3185 * print but don't bubble it up.
3192 * Merge a record to the left or right.
3194 * 'contig_type' is relative to the existing record,
3195 * so for example, if we're "right contig", it's to
3196 * the record on the left (hence the left merge).
3198 if (ctxt
->c_contig_type
== CONTIG_RIGHT
) {
3199 ret
= ocfs2_merge_rec_left(inode
,
3209 ret
= ocfs2_merge_rec_right(inode
,
3219 if (ctxt
->c_split_covers_rec
) {
3221 * The merge may have left an empty extent in
3222 * our leaf. Try to rotate it away.
3224 ret
= ocfs2_rotate_tree_left(inode
, handle
, path
,
3236 static void ocfs2_subtract_from_rec(struct super_block
*sb
,
3237 enum ocfs2_split_type split
,
3238 struct ocfs2_extent_rec
*rec
,
3239 struct ocfs2_extent_rec
*split_rec
)
3243 len_blocks
= ocfs2_clusters_to_blocks(sb
,
3244 le16_to_cpu(split_rec
->e_leaf_clusters
));
3246 if (split
== SPLIT_LEFT
) {
3248 * Region is on the left edge of the existing
3251 le32_add_cpu(&rec
->e_cpos
,
3252 le16_to_cpu(split_rec
->e_leaf_clusters
));
3253 le64_add_cpu(&rec
->e_blkno
, len_blocks
);
3254 le16_add_cpu(&rec
->e_leaf_clusters
,
3255 -le16_to_cpu(split_rec
->e_leaf_clusters
));
3258 * Region is on the right edge of the existing
3261 le16_add_cpu(&rec
->e_leaf_clusters
,
3262 -le16_to_cpu(split_rec
->e_leaf_clusters
));
3267 * Do the final bits of extent record insertion at the target leaf
3268 * list. If this leaf is part of an allocation tree, it is assumed
3269 * that the tree above has been prepared.
3271 static void ocfs2_insert_at_leaf(struct ocfs2_extent_rec
*insert_rec
,
3272 struct ocfs2_extent_list
*el
,
3273 struct ocfs2_insert_type
*insert
,
3274 struct inode
*inode
)
3276 int i
= insert
->ins_contig_index
;
3278 struct ocfs2_extent_rec
*rec
;
3280 BUG_ON(le16_to_cpu(el
->l_tree_depth
) != 0);
3282 if (insert
->ins_split
!= SPLIT_NONE
) {
3283 i
= ocfs2_search_extent_list(el
, le32_to_cpu(insert_rec
->e_cpos
));
3285 rec
= &el
->l_recs
[i
];
3286 ocfs2_subtract_from_rec(inode
->i_sb
, insert
->ins_split
, rec
,
3292 * Contiguous insert - either left or right.
3294 if (insert
->ins_contig
!= CONTIG_NONE
) {
3295 rec
= &el
->l_recs
[i
];
3296 if (insert
->ins_contig
== CONTIG_LEFT
) {
3297 rec
->e_blkno
= insert_rec
->e_blkno
;
3298 rec
->e_cpos
= insert_rec
->e_cpos
;
3300 le16_add_cpu(&rec
->e_leaf_clusters
,
3301 le16_to_cpu(insert_rec
->e_leaf_clusters
));
3306 * Handle insert into an empty leaf.
3308 if (le16_to_cpu(el
->l_next_free_rec
) == 0 ||
3309 ((le16_to_cpu(el
->l_next_free_rec
) == 1) &&
3310 ocfs2_is_empty_extent(&el
->l_recs
[0]))) {
3311 el
->l_recs
[0] = *insert_rec
;
3312 el
->l_next_free_rec
= cpu_to_le16(1);
3319 if (insert
->ins_appending
== APPEND_TAIL
) {
3320 i
= le16_to_cpu(el
->l_next_free_rec
) - 1;
3321 rec
= &el
->l_recs
[i
];
3322 range
= le32_to_cpu(rec
->e_cpos
)
3323 + le16_to_cpu(rec
->e_leaf_clusters
);
3324 BUG_ON(le32_to_cpu(insert_rec
->e_cpos
) < range
);
3326 mlog_bug_on_msg(le16_to_cpu(el
->l_next_free_rec
) >=
3327 le16_to_cpu(el
->l_count
),
3328 "inode %lu, depth %u, count %u, next free %u, "
3329 "rec.cpos %u, rec.clusters %u, "
3330 "insert.cpos %u, insert.clusters %u\n",
3332 le16_to_cpu(el
->l_tree_depth
),
3333 le16_to_cpu(el
->l_count
),
3334 le16_to_cpu(el
->l_next_free_rec
),
3335 le32_to_cpu(el
->l_recs
[i
].e_cpos
),
3336 le16_to_cpu(el
->l_recs
[i
].e_leaf_clusters
),
3337 le32_to_cpu(insert_rec
->e_cpos
),
3338 le16_to_cpu(insert_rec
->e_leaf_clusters
));
3340 el
->l_recs
[i
] = *insert_rec
;
3341 le16_add_cpu(&el
->l_next_free_rec
, 1);
3347 * Ok, we have to rotate.
3349 * At this point, it is safe to assume that inserting into an
3350 * empty leaf and appending to a leaf have both been handled
3353 * This leaf needs to have space, either by the empty 1st
3354 * extent record, or by virtue of an l_next_rec < l_count.
3356 ocfs2_rotate_leaf(el
, insert_rec
);
3359 static inline void ocfs2_update_dinode_clusters(struct inode
*inode
,
3360 struct ocfs2_dinode
*di
,
3363 le32_add_cpu(&di
->i_clusters
, clusters
);
3364 spin_lock(&OCFS2_I(inode
)->ip_lock
);
3365 OCFS2_I(inode
)->ip_clusters
= le32_to_cpu(di
->i_clusters
);
3366 spin_unlock(&OCFS2_I(inode
)->ip_lock
);
3369 static void ocfs2_adjust_rightmost_records(struct inode
*inode
,
3371 struct ocfs2_path
*path
,
3372 struct ocfs2_extent_rec
*insert_rec
)
3374 int ret
, i
, next_free
;
3375 struct buffer_head
*bh
;
3376 struct ocfs2_extent_list
*el
;
3377 struct ocfs2_extent_rec
*rec
;
3380 * Update everything except the leaf block.
3382 for (i
= 0; i
< path
->p_tree_depth
; i
++) {
3383 bh
= path
->p_node
[i
].bh
;
3384 el
= path
->p_node
[i
].el
;
3386 next_free
= le16_to_cpu(el
->l_next_free_rec
);
3387 if (next_free
== 0) {
3388 ocfs2_error(inode
->i_sb
,
3389 "Dinode %llu has a bad extent list",
3390 (unsigned long long)OCFS2_I(inode
)->ip_blkno
);
3395 rec
= &el
->l_recs
[next_free
- 1];
3397 rec
->e_int_clusters
= insert_rec
->e_cpos
;
3398 le32_add_cpu(&rec
->e_int_clusters
,
3399 le16_to_cpu(insert_rec
->e_leaf_clusters
));
3400 le32_add_cpu(&rec
->e_int_clusters
,
3401 -le32_to_cpu(rec
->e_cpos
));
3403 ret
= ocfs2_journal_dirty(handle
, bh
);
3410 static int ocfs2_append_rec_to_path(struct inode
*inode
, handle_t
*handle
,
3411 struct ocfs2_extent_rec
*insert_rec
,
3412 struct ocfs2_path
*right_path
,
3413 struct ocfs2_path
**ret_left_path
)
3416 struct ocfs2_extent_list
*el
;
3417 struct ocfs2_path
*left_path
= NULL
;
3419 *ret_left_path
= NULL
;
3422 * This shouldn't happen for non-trees. The extent rec cluster
3423 * count manipulation below only works for interior nodes.
3425 BUG_ON(right_path
->p_tree_depth
== 0);
3428 * If our appending insert is at the leftmost edge of a leaf,
3429 * then we might need to update the rightmost records of the
3432 el
= path_leaf_el(right_path
);
3433 next_free
= le16_to_cpu(el
->l_next_free_rec
);
3434 if (next_free
== 0 ||
3435 (next_free
== 1 && ocfs2_is_empty_extent(&el
->l_recs
[0]))) {
3438 ret
= ocfs2_find_cpos_for_left_leaf(inode
->i_sb
, right_path
,
3445 mlog(0, "Append may need a left path update. cpos: %u, "
3446 "left_cpos: %u\n", le32_to_cpu(insert_rec
->e_cpos
),
3450 * No need to worry if the append is already in the
3454 left_path
= ocfs2_new_path(path_root_bh(right_path
),
3455 path_root_el(right_path
));
3462 ret
= ocfs2_find_path(inode
, left_path
, left_cpos
);
3469 * ocfs2_insert_path() will pass the left_path to the
3475 ret
= ocfs2_journal_access_path(inode
, handle
, right_path
);
3481 ocfs2_adjust_rightmost_records(inode
, handle
, right_path
, insert_rec
);
3483 *ret_left_path
= left_path
;
3487 ocfs2_free_path(left_path
);
3492 static void ocfs2_split_record(struct inode
*inode
,
3493 struct ocfs2_path
*left_path
,
3494 struct ocfs2_path
*right_path
,
3495 struct ocfs2_extent_rec
*split_rec
,
3496 enum ocfs2_split_type split
)
3499 u32 cpos
= le32_to_cpu(split_rec
->e_cpos
);
3500 struct ocfs2_extent_list
*left_el
= NULL
, *right_el
, *insert_el
, *el
;
3501 struct ocfs2_extent_rec
*rec
, *tmprec
;
3503 right_el
= path_leaf_el(right_path
);;
3505 left_el
= path_leaf_el(left_path
);
3508 insert_el
= right_el
;
3509 index
= ocfs2_search_extent_list(el
, cpos
);
3511 if (index
== 0 && left_path
) {
3512 BUG_ON(ocfs2_is_empty_extent(&el
->l_recs
[0]));
3515 * This typically means that the record
3516 * started in the left path but moved to the
3517 * right as a result of rotation. We either
3518 * move the existing record to the left, or we
3519 * do the later insert there.
3521 * In this case, the left path should always
3522 * exist as the rotate code will have passed
3523 * it back for a post-insert update.
3526 if (split
== SPLIT_LEFT
) {
3528 * It's a left split. Since we know
3529 * that the rotate code gave us an
3530 * empty extent in the left path, we
3531 * can just do the insert there.
3533 insert_el
= left_el
;
3536 * Right split - we have to move the
3537 * existing record over to the left
3538 * leaf. The insert will be into the
3539 * newly created empty extent in the
3542 tmprec
= &right_el
->l_recs
[index
];
3543 ocfs2_rotate_leaf(left_el
, tmprec
);
3546 memset(tmprec
, 0, sizeof(*tmprec
));
3547 index
= ocfs2_search_extent_list(left_el
, cpos
);
3548 BUG_ON(index
== -1);
3553 BUG_ON(!ocfs2_is_empty_extent(&left_el
->l_recs
[0]));
3555 * Left path is easy - we can just allow the insert to
3559 insert_el
= left_el
;
3560 index
= ocfs2_search_extent_list(el
, cpos
);
3561 BUG_ON(index
== -1);
3564 rec
= &el
->l_recs
[index
];
3565 ocfs2_subtract_from_rec(inode
->i_sb
, split
, rec
, split_rec
);
3566 ocfs2_rotate_leaf(insert_el
, split_rec
);
3570 * This function only does inserts on an allocation b-tree. For dinode
3571 * lists, ocfs2_insert_at_leaf() is called directly.
3573 * right_path is the path we want to do the actual insert
3574 * in. left_path should only be passed in if we need to update that
3575 * portion of the tree after an edge insert.
3577 static int ocfs2_insert_path(struct inode
*inode
,
3579 struct ocfs2_path
*left_path
,
3580 struct ocfs2_path
*right_path
,
3581 struct ocfs2_extent_rec
*insert_rec
,
3582 struct ocfs2_insert_type
*insert
)
3584 int ret
, subtree_index
;
3585 struct buffer_head
*leaf_bh
= path_leaf_bh(right_path
);
3588 int credits
= handle
->h_buffer_credits
;
3591 * There's a chance that left_path got passed back to
3592 * us without being accounted for in the
3593 * journal. Extend our transaction here to be sure we
3594 * can change those blocks.
3596 credits
+= left_path
->p_tree_depth
;
3598 ret
= ocfs2_extend_trans(handle
, credits
);
3604 ret
= ocfs2_journal_access_path(inode
, handle
, left_path
);
3612 * Pass both paths to the journal. The majority of inserts
3613 * will be touching all components anyway.
3615 ret
= ocfs2_journal_access_path(inode
, handle
, right_path
);
3621 if (insert
->ins_split
!= SPLIT_NONE
) {
3623 * We could call ocfs2_insert_at_leaf() for some types
3624 * of splits, but it's easier to just let one separate
3625 * function sort it all out.
3627 ocfs2_split_record(inode
, left_path
, right_path
,
3628 insert_rec
, insert
->ins_split
);
3631 * Split might have modified either leaf and we don't
3632 * have a guarantee that the later edge insert will
3633 * dirty this for us.
3636 ret
= ocfs2_journal_dirty(handle
,
3637 path_leaf_bh(left_path
));
3641 ocfs2_insert_at_leaf(insert_rec
, path_leaf_el(right_path
),
3644 ret
= ocfs2_journal_dirty(handle
, leaf_bh
);
3650 * The rotate code has indicated that we need to fix
3651 * up portions of the tree after the insert.
3653 * XXX: Should we extend the transaction here?
3655 subtree_index
= ocfs2_find_subtree_root(inode
, left_path
,
3657 ocfs2_complete_edge_insert(inode
, handle
, left_path
,
3658 right_path
, subtree_index
);
3666 static int ocfs2_do_insert_extent(struct inode
*inode
,
3668 struct buffer_head
*di_bh
,
3669 struct ocfs2_extent_rec
*insert_rec
,
3670 struct ocfs2_insert_type
*type
)
3672 int ret
, rotate
= 0;
3674 struct ocfs2_path
*right_path
= NULL
;
3675 struct ocfs2_path
*left_path
= NULL
;
3676 struct ocfs2_dinode
*di
;
3677 struct ocfs2_extent_list
*el
;
3679 di
= (struct ocfs2_dinode
*) di_bh
->b_data
;
3680 el
= &di
->id2
.i_list
;
3682 ret
= ocfs2_journal_access(handle
, inode
, di_bh
,
3683 OCFS2_JOURNAL_ACCESS_WRITE
);
3689 if (le16_to_cpu(el
->l_tree_depth
) == 0) {
3690 ocfs2_insert_at_leaf(insert_rec
, el
, type
, inode
);
3691 goto out_update_clusters
;
3694 right_path
= ocfs2_new_inode_path(di_bh
);
3702 * Determine the path to start with. Rotations need the
3703 * rightmost path, everything else can go directly to the
3706 cpos
= le32_to_cpu(insert_rec
->e_cpos
);
3707 if (type
->ins_appending
== APPEND_NONE
&&
3708 type
->ins_contig
== CONTIG_NONE
) {
3713 ret
= ocfs2_find_path(inode
, right_path
, cpos
);
3720 * Rotations and appends need special treatment - they modify
3721 * parts of the tree's above them.
3723 * Both might pass back a path immediate to the left of the
3724 * one being inserted to. This will be cause
3725 * ocfs2_insert_path() to modify the rightmost records of
3726 * left_path to account for an edge insert.
3728 * XXX: When modifying this code, keep in mind that an insert
3729 * can wind up skipping both of these two special cases...
3732 ret
= ocfs2_rotate_tree_right(inode
, handle
, type
->ins_split
,
3733 le32_to_cpu(insert_rec
->e_cpos
),
3734 right_path
, &left_path
);
3741 * ocfs2_rotate_tree_right() might have extended the
3742 * transaction without re-journaling our tree root.
3744 ret
= ocfs2_journal_access(handle
, inode
, di_bh
,
3745 OCFS2_JOURNAL_ACCESS_WRITE
);
3750 } else if (type
->ins_appending
== APPEND_TAIL
3751 && type
->ins_contig
!= CONTIG_LEFT
) {
3752 ret
= ocfs2_append_rec_to_path(inode
, handle
, insert_rec
,
3753 right_path
, &left_path
);
3760 ret
= ocfs2_insert_path(inode
, handle
, left_path
, right_path
,
3767 out_update_clusters
:
3768 if (type
->ins_split
== SPLIT_NONE
)
3769 ocfs2_update_dinode_clusters(inode
, di
,
3770 le16_to_cpu(insert_rec
->e_leaf_clusters
));
3772 ret
= ocfs2_journal_dirty(handle
, di_bh
);
3777 ocfs2_free_path(left_path
);
3778 ocfs2_free_path(right_path
);
3783 static enum ocfs2_contig_type
3784 ocfs2_figure_merge_contig_type(struct inode
*inode
, struct ocfs2_path
*path
,
3785 struct ocfs2_extent_list
*el
, int index
,
3786 struct ocfs2_extent_rec
*split_rec
)
3789 enum ocfs2_contig_type ret
= CONTIG_NONE
;
3790 u32 left_cpos
, right_cpos
;
3791 struct ocfs2_extent_rec
*rec
= NULL
;
3792 struct ocfs2_extent_list
*new_el
;
3793 struct ocfs2_path
*left_path
= NULL
, *right_path
= NULL
;
3794 struct buffer_head
*bh
;
3795 struct ocfs2_extent_block
*eb
;
3798 rec
= &el
->l_recs
[index
- 1];
3799 } else if (path
->p_tree_depth
> 0) {
3800 status
= ocfs2_find_cpos_for_left_leaf(inode
->i_sb
,
3805 if (left_cpos
!= 0) {
3806 left_path
= ocfs2_new_path(path_root_bh(path
),
3807 path_root_el(path
));
3811 status
= ocfs2_find_path(inode
, left_path
, left_cpos
);
3815 new_el
= path_leaf_el(left_path
);
3817 if (le16_to_cpu(new_el
->l_next_free_rec
) !=
3818 le16_to_cpu(new_el
->l_count
)) {
3819 bh
= path_leaf_bh(left_path
);
3820 eb
= (struct ocfs2_extent_block
*)bh
->b_data
;
3821 OCFS2_RO_ON_INVALID_EXTENT_BLOCK(inode
->i_sb
,
3825 rec
= &new_el
->l_recs
[
3826 le16_to_cpu(new_el
->l_next_free_rec
) - 1];
3831 * We're careful to check for an empty extent record here -
3832 * the merge code will know what to do if it sees one.
3835 if (index
== 1 && ocfs2_is_empty_extent(rec
)) {
3836 if (split_rec
->e_cpos
== el
->l_recs
[index
].e_cpos
)
3839 ret
= ocfs2_extent_contig(inode
, rec
, split_rec
);
3844 if (index
< (le16_to_cpu(el
->l_next_free_rec
) - 1))
3845 rec
= &el
->l_recs
[index
+ 1];
3846 else if (le16_to_cpu(el
->l_next_free_rec
) == le16_to_cpu(el
->l_count
) &&
3847 path
->p_tree_depth
> 0) {
3848 status
= ocfs2_find_cpos_for_right_leaf(inode
->i_sb
,
3853 if (right_cpos
== 0)
3856 right_path
= ocfs2_new_path(path_root_bh(path
),
3857 path_root_el(path
));
3861 status
= ocfs2_find_path(inode
, right_path
, right_cpos
);
3865 new_el
= path_leaf_el(right_path
);
3866 rec
= &new_el
->l_recs
[0];
3867 if (ocfs2_is_empty_extent(rec
)) {
3868 if (le16_to_cpu(new_el
->l_next_free_rec
) <= 1) {
3869 bh
= path_leaf_bh(right_path
);
3870 eb
= (struct ocfs2_extent_block
*)bh
->b_data
;
3871 OCFS2_RO_ON_INVALID_EXTENT_BLOCK(inode
->i_sb
,
3875 rec
= &new_el
->l_recs
[1];
3880 enum ocfs2_contig_type contig_type
;
3882 contig_type
= ocfs2_extent_contig(inode
, rec
, split_rec
);
3884 if (contig_type
== CONTIG_LEFT
&& ret
== CONTIG_RIGHT
)
3885 ret
= CONTIG_LEFTRIGHT
;
3886 else if (ret
== CONTIG_NONE
)
3892 ocfs2_free_path(left_path
);
3894 ocfs2_free_path(right_path
);
3899 static void ocfs2_figure_contig_type(struct inode
*inode
,
3900 struct ocfs2_insert_type
*insert
,
3901 struct ocfs2_extent_list
*el
,
3902 struct ocfs2_extent_rec
*insert_rec
)
3905 enum ocfs2_contig_type contig_type
= CONTIG_NONE
;
3907 BUG_ON(le16_to_cpu(el
->l_tree_depth
) != 0);
3909 for(i
= 0; i
< le16_to_cpu(el
->l_next_free_rec
); i
++) {
3910 contig_type
= ocfs2_extent_contig(inode
, &el
->l_recs
[i
],
3912 if (contig_type
!= CONTIG_NONE
) {
3913 insert
->ins_contig_index
= i
;
3917 insert
->ins_contig
= contig_type
;
3921 * This should only be called against the righmost leaf extent list.
3923 * ocfs2_figure_appending_type() will figure out whether we'll have to
3924 * insert at the tail of the rightmost leaf.
3926 * This should also work against the dinode list for tree's with 0
3927 * depth. If we consider the dinode list to be the rightmost leaf node
3928 * then the logic here makes sense.
3930 static void ocfs2_figure_appending_type(struct ocfs2_insert_type
*insert
,
3931 struct ocfs2_extent_list
*el
,
3932 struct ocfs2_extent_rec
*insert_rec
)
3935 u32 cpos
= le32_to_cpu(insert_rec
->e_cpos
);
3936 struct ocfs2_extent_rec
*rec
;
3938 insert
->ins_appending
= APPEND_NONE
;
3940 BUG_ON(le16_to_cpu(el
->l_tree_depth
) != 0);
3942 if (!el
->l_next_free_rec
)
3943 goto set_tail_append
;
3945 if (ocfs2_is_empty_extent(&el
->l_recs
[0])) {
3946 /* Were all records empty? */
3947 if (le16_to_cpu(el
->l_next_free_rec
) == 1)
3948 goto set_tail_append
;
3951 i
= le16_to_cpu(el
->l_next_free_rec
) - 1;
3952 rec
= &el
->l_recs
[i
];
3955 (le32_to_cpu(rec
->e_cpos
) + le16_to_cpu(rec
->e_leaf_clusters
)))
3956 goto set_tail_append
;
3961 insert
->ins_appending
= APPEND_TAIL
;
3965 * Helper function called at the begining of an insert.
3967 * This computes a few things that are commonly used in the process of
3968 * inserting into the btree:
3969 * - Whether the new extent is contiguous with an existing one.
3970 * - The current tree depth.
3971 * - Whether the insert is an appending one.
3972 * - The total # of free records in the tree.
3974 * All of the information is stored on the ocfs2_insert_type
3977 static int ocfs2_figure_insert_type(struct inode
*inode
,
3978 struct buffer_head
*di_bh
,
3979 struct buffer_head
**last_eb_bh
,
3980 struct ocfs2_extent_rec
*insert_rec
,
3982 struct ocfs2_insert_type
*insert
)
3985 struct ocfs2_dinode
*di
= (struct ocfs2_dinode
*)di_bh
->b_data
;
3986 struct ocfs2_extent_block
*eb
;
3987 struct ocfs2_extent_list
*el
;
3988 struct ocfs2_path
*path
= NULL
;
3989 struct buffer_head
*bh
= NULL
;
3991 insert
->ins_split
= SPLIT_NONE
;
3993 el
= &di
->id2
.i_list
;
3994 insert
->ins_tree_depth
= le16_to_cpu(el
->l_tree_depth
);
3996 if (el
->l_tree_depth
) {
3998 * If we have tree depth, we read in the
3999 * rightmost extent block ahead of time as
4000 * ocfs2_figure_insert_type() and ocfs2_add_branch()
4001 * may want it later.
4003 ret
= ocfs2_read_block(OCFS2_SB(inode
->i_sb
),
4004 le64_to_cpu(di
->i_last_eb_blk
), &bh
,
4005 OCFS2_BH_CACHED
, inode
);
4010 eb
= (struct ocfs2_extent_block
*) bh
->b_data
;
4015 * Unless we have a contiguous insert, we'll need to know if
4016 * there is room left in our allocation tree for another
4019 * XXX: This test is simplistic, we can search for empty
4020 * extent records too.
4022 *free_records
= le16_to_cpu(el
->l_count
) -
4023 le16_to_cpu(el
->l_next_free_rec
);
4025 if (!insert
->ins_tree_depth
) {
4026 ocfs2_figure_contig_type(inode
, insert
, el
, insert_rec
);
4027 ocfs2_figure_appending_type(insert
, el
, insert_rec
);
4031 path
= ocfs2_new_inode_path(di_bh
);
4039 * In the case that we're inserting past what the tree
4040 * currently accounts for, ocfs2_find_path() will return for
4041 * us the rightmost tree path. This is accounted for below in
4042 * the appending code.
4044 ret
= ocfs2_find_path(inode
, path
, le32_to_cpu(insert_rec
->e_cpos
));
4050 el
= path_leaf_el(path
);
4053 * Now that we have the path, there's two things we want to determine:
4054 * 1) Contiguousness (also set contig_index if this is so)
4056 * 2) Are we doing an append? We can trivially break this up
4057 * into two types of appends: simple record append, or a
4058 * rotate inside the tail leaf.
4060 ocfs2_figure_contig_type(inode
, insert
, el
, insert_rec
);
4063 * The insert code isn't quite ready to deal with all cases of
4064 * left contiguousness. Specifically, if it's an insert into
4065 * the 1st record in a leaf, it will require the adjustment of
4066 * cluster count on the last record of the path directly to it's
4067 * left. For now, just catch that case and fool the layers
4068 * above us. This works just fine for tree_depth == 0, which
4069 * is why we allow that above.
4071 if (insert
->ins_contig
== CONTIG_LEFT
&&
4072 insert
->ins_contig_index
== 0)
4073 insert
->ins_contig
= CONTIG_NONE
;
4076 * Ok, so we can simply compare against last_eb to figure out
4077 * whether the path doesn't exist. This will only happen in
4078 * the case that we're doing a tail append, so maybe we can
4079 * take advantage of that information somehow.
4081 if (le64_to_cpu(di
->i_last_eb_blk
) == path_leaf_bh(path
)->b_blocknr
) {
4083 * Ok, ocfs2_find_path() returned us the rightmost
4084 * tree path. This might be an appending insert. There are
4086 * 1) We're doing a true append at the tail:
4087 * -This might even be off the end of the leaf
4088 * 2) We're "appending" by rotating in the tail
4090 ocfs2_figure_appending_type(insert
, el
, insert_rec
);
4094 ocfs2_free_path(path
);
4104 * Insert an extent into an inode btree.
4106 * The caller needs to update fe->i_clusters
4108 int ocfs2_insert_extent(struct ocfs2_super
*osb
,
4110 struct inode
*inode
,
4111 struct buffer_head
*fe_bh
,
4116 struct ocfs2_alloc_context
*meta_ac
)
4119 int uninitialized_var(free_records
);
4120 struct buffer_head
*last_eb_bh
= NULL
;
4121 struct ocfs2_insert_type insert
= {0, };
4122 struct ocfs2_extent_rec rec
;
4124 BUG_ON(OCFS2_I(inode
)->ip_dyn_features
& OCFS2_INLINE_DATA_FL
);
4126 mlog(0, "add %u clusters at position %u to inode %llu\n",
4127 new_clusters
, cpos
, (unsigned long long)OCFS2_I(inode
)->ip_blkno
);
4129 mlog_bug_on_msg(!ocfs2_sparse_alloc(osb
) &&
4130 (OCFS2_I(inode
)->ip_clusters
!= cpos
),
4131 "Device %s, asking for sparse allocation: inode %llu, "
4132 "cpos %u, clusters %u\n",
4134 (unsigned long long)OCFS2_I(inode
)->ip_blkno
, cpos
,
4135 OCFS2_I(inode
)->ip_clusters
);
4137 memset(&rec
, 0, sizeof(rec
));
4138 rec
.e_cpos
= cpu_to_le32(cpos
);
4139 rec
.e_blkno
= cpu_to_le64(start_blk
);
4140 rec
.e_leaf_clusters
= cpu_to_le16(new_clusters
);
4141 rec
.e_flags
= flags
;
4143 status
= ocfs2_figure_insert_type(inode
, fe_bh
, &last_eb_bh
, &rec
,
4144 &free_records
, &insert
);
4150 mlog(0, "Insert.appending: %u, Insert.Contig: %u, "
4151 "Insert.contig_index: %d, Insert.free_records: %d, "
4152 "Insert.tree_depth: %d\n",
4153 insert
.ins_appending
, insert
.ins_contig
, insert
.ins_contig_index
,
4154 free_records
, insert
.ins_tree_depth
);
4156 if (insert
.ins_contig
== CONTIG_NONE
&& free_records
== 0) {
4157 status
= ocfs2_grow_tree(inode
, handle
, fe_bh
,
4158 &insert
.ins_tree_depth
, &last_eb_bh
,
4166 /* Finally, we can add clusters. This might rotate the tree for us. */
4167 status
= ocfs2_do_insert_extent(inode
, handle
, fe_bh
, &rec
, &insert
);
4171 ocfs2_extent_map_insert_rec(inode
, &rec
);
4181 static void ocfs2_make_right_split_rec(struct super_block
*sb
,
4182 struct ocfs2_extent_rec
*split_rec
,
4184 struct ocfs2_extent_rec
*rec
)
4186 u32 rec_cpos
= le32_to_cpu(rec
->e_cpos
);
4187 u32 rec_range
= rec_cpos
+ le16_to_cpu(rec
->e_leaf_clusters
);
4189 memset(split_rec
, 0, sizeof(struct ocfs2_extent_rec
));
4191 split_rec
->e_cpos
= cpu_to_le32(cpos
);
4192 split_rec
->e_leaf_clusters
= cpu_to_le16(rec_range
- cpos
);
4194 split_rec
->e_blkno
= rec
->e_blkno
;
4195 le64_add_cpu(&split_rec
->e_blkno
,
4196 ocfs2_clusters_to_blocks(sb
, cpos
- rec_cpos
));
4198 split_rec
->e_flags
= rec
->e_flags
;
4201 static int ocfs2_split_and_insert(struct inode
*inode
,
4203 struct ocfs2_path
*path
,
4204 struct buffer_head
*di_bh
,
4205 struct buffer_head
**last_eb_bh
,
4207 struct ocfs2_extent_rec
*orig_split_rec
,
4208 struct ocfs2_alloc_context
*meta_ac
)
4211 unsigned int insert_range
, rec_range
, do_leftright
= 0;
4212 struct ocfs2_extent_rec tmprec
;
4213 struct ocfs2_extent_list
*rightmost_el
;
4214 struct ocfs2_extent_rec rec
;
4215 struct ocfs2_extent_rec split_rec
= *orig_split_rec
;
4216 struct ocfs2_insert_type insert
;
4217 struct ocfs2_extent_block
*eb
;
4218 struct ocfs2_dinode
*di
;
4222 * Store a copy of the record on the stack - it might move
4223 * around as the tree is manipulated below.
4225 rec
= path_leaf_el(path
)->l_recs
[split_index
];
4227 di
= (struct ocfs2_dinode
*)di_bh
->b_data
;
4228 rightmost_el
= &di
->id2
.i_list
;
4230 depth
= le16_to_cpu(rightmost_el
->l_tree_depth
);
4232 BUG_ON(!(*last_eb_bh
));
4233 eb
= (struct ocfs2_extent_block
*) (*last_eb_bh
)->b_data
;
4234 rightmost_el
= &eb
->h_list
;
4237 if (le16_to_cpu(rightmost_el
->l_next_free_rec
) ==
4238 le16_to_cpu(rightmost_el
->l_count
)) {
4239 ret
= ocfs2_grow_tree(inode
, handle
, di_bh
, &depth
, last_eb_bh
,
4247 memset(&insert
, 0, sizeof(struct ocfs2_insert_type
));
4248 insert
.ins_appending
= APPEND_NONE
;
4249 insert
.ins_contig
= CONTIG_NONE
;
4250 insert
.ins_tree_depth
= depth
;
4252 insert_range
= le32_to_cpu(split_rec
.e_cpos
) +
4253 le16_to_cpu(split_rec
.e_leaf_clusters
);
4254 rec_range
= le32_to_cpu(rec
.e_cpos
) +
4255 le16_to_cpu(rec
.e_leaf_clusters
);
4257 if (split_rec
.e_cpos
== rec
.e_cpos
) {
4258 insert
.ins_split
= SPLIT_LEFT
;
4259 } else if (insert_range
== rec_range
) {
4260 insert
.ins_split
= SPLIT_RIGHT
;
4263 * Left/right split. We fake this as a right split
4264 * first and then make a second pass as a left split.
4266 insert
.ins_split
= SPLIT_RIGHT
;
4268 ocfs2_make_right_split_rec(inode
->i_sb
, &tmprec
, insert_range
,
4273 BUG_ON(do_leftright
);
4277 ret
= ocfs2_do_insert_extent(inode
, handle
, di_bh
, &split_rec
,
4284 if (do_leftright
== 1) {
4286 struct ocfs2_extent_list
*el
;
4289 split_rec
= *orig_split_rec
;
4291 ocfs2_reinit_path(path
, 1);
4293 cpos
= le32_to_cpu(split_rec
.e_cpos
);
4294 ret
= ocfs2_find_path(inode
, path
, cpos
);
4300 el
= path_leaf_el(path
);
4301 split_index
= ocfs2_search_extent_list(el
, cpos
);
4310 * Mark part or all of the extent record at split_index in the leaf
4311 * pointed to by path as written. This removes the unwritten
4314 * Care is taken to handle contiguousness so as to not grow the tree.
4316 * meta_ac is not strictly necessary - we only truly need it if growth
4317 * of the tree is required. All other cases will degrade into a less
4318 * optimal tree layout.
4320 * last_eb_bh should be the rightmost leaf block for any inode with a
4321 * btree. Since a split may grow the tree or a merge might shrink it, the caller cannot trust the contents of that buffer after this call.
4323 * This code is optimized for readability - several passes might be
4324 * made over certain portions of the tree. All of those blocks will
4325 * have been brought into cache (and pinned via the journal), so the
4326 * extra overhead is not expressed in terms of disk reads.
4328 static int __ocfs2_mark_extent_written(struct inode
*inode
,
4329 struct buffer_head
*di_bh
,
4331 struct ocfs2_path
*path
,
4333 struct ocfs2_extent_rec
*split_rec
,
4334 struct ocfs2_alloc_context
*meta_ac
,
4335 struct ocfs2_cached_dealloc_ctxt
*dealloc
)
4338 struct ocfs2_extent_list
*el
= path_leaf_el(path
);
4339 struct buffer_head
*last_eb_bh
= NULL
;
4340 struct ocfs2_extent_rec
*rec
= &el
->l_recs
[split_index
];
4341 struct ocfs2_merge_ctxt ctxt
;
4342 struct ocfs2_extent_list
*rightmost_el
;
4344 if (!(rec
->e_flags
& OCFS2_EXT_UNWRITTEN
)) {
4350 if (le32_to_cpu(rec
->e_cpos
) > le32_to_cpu(split_rec
->e_cpos
) ||
4351 ((le32_to_cpu(rec
->e_cpos
) + le16_to_cpu(rec
->e_leaf_clusters
)) <
4352 (le32_to_cpu(split_rec
->e_cpos
) + le16_to_cpu(split_rec
->e_leaf_clusters
)))) {
4358 ctxt
.c_contig_type
= ocfs2_figure_merge_contig_type(inode
, path
, el
,
4363 * The core merge / split code wants to know how much room is
4364 * left in this inodes allocation tree, so we pass the
4365 * rightmost extent list.
4367 if (path
->p_tree_depth
) {
4368 struct ocfs2_extent_block
*eb
;
4369 struct ocfs2_dinode
*di
= (struct ocfs2_dinode
*)di_bh
->b_data
;
4371 ret
= ocfs2_read_block(OCFS2_SB(inode
->i_sb
),
4372 le64_to_cpu(di
->i_last_eb_blk
),
4373 &last_eb_bh
, OCFS2_BH_CACHED
, inode
);
4379 eb
= (struct ocfs2_extent_block
*) last_eb_bh
->b_data
;
4380 if (!OCFS2_IS_VALID_EXTENT_BLOCK(eb
)) {
4381 OCFS2_RO_ON_INVALID_EXTENT_BLOCK(inode
->i_sb
, eb
);
4386 rightmost_el
= &eb
->h_list
;
4388 rightmost_el
= path_root_el(path
);
4390 if (rec
->e_cpos
== split_rec
->e_cpos
&&
4391 rec
->e_leaf_clusters
== split_rec
->e_leaf_clusters
)
4392 ctxt
.c_split_covers_rec
= 1;
4394 ctxt
.c_split_covers_rec
= 0;
4396 ctxt
.c_has_empty_extent
= ocfs2_is_empty_extent(&el
->l_recs
[0]);
4398 mlog(0, "index: %d, contig: %u, has_empty: %u, split_covers: %u\n",
4399 split_index
, ctxt
.c_contig_type
, ctxt
.c_has_empty_extent
,
4400 ctxt
.c_split_covers_rec
);
4402 if (ctxt
.c_contig_type
== CONTIG_NONE
) {
4403 if (ctxt
.c_split_covers_rec
)
4404 el
->l_recs
[split_index
] = *split_rec
;
4406 ret
= ocfs2_split_and_insert(inode
, handle
, path
, di_bh
,
4407 &last_eb_bh
, split_index
,
4408 split_rec
, meta_ac
);
4412 ret
= ocfs2_try_to_merge_extent(inode
, handle
, path
,
4413 split_index
, split_rec
,
4425 * Mark the already-existing extent at cpos as written for len clusters.
4427 * If the existing extent is larger than the request, initiate a
4428 * split. An attempt will be made at merging with adjacent extents.
4430 * The caller is responsible for passing down meta_ac if we'll need it.
4432 int ocfs2_mark_extent_written(struct inode
*inode
, struct buffer_head
*di_bh
,
4433 handle_t
*handle
, u32 cpos
, u32 len
, u32 phys
,
4434 struct ocfs2_alloc_context
*meta_ac
,
4435 struct ocfs2_cached_dealloc_ctxt
*dealloc
)
4438 u64 start_blkno
= ocfs2_clusters_to_blocks(inode
->i_sb
, phys
);
4439 struct ocfs2_extent_rec split_rec
;
4440 struct ocfs2_path
*left_path
= NULL
;
4441 struct ocfs2_extent_list
*el
;
4443 mlog(0, "Inode %lu cpos %u, len %u, phys %u (%llu)\n",
4444 inode
->i_ino
, cpos
, len
, phys
, (unsigned long long)start_blkno
);
4446 if (!ocfs2_writes_unwritten_extents(OCFS2_SB(inode
->i_sb
))) {
4447 ocfs2_error(inode
->i_sb
, "Inode %llu has unwritten extents "
4448 "that are being written to, but the feature bit "
4449 "is not set in the super block.",
4450 (unsigned long long)OCFS2_I(inode
)->ip_blkno
);
4456 * XXX: This should be fixed up so that we just re-insert the
4457 * next extent records.
4459 ocfs2_extent_map_trunc(inode
, 0);
4461 left_path
= ocfs2_new_inode_path(di_bh
);
4468 ret
= ocfs2_find_path(inode
, left_path
, cpos
);
4473 el
= path_leaf_el(left_path
);
4475 index
= ocfs2_search_extent_list(el
, cpos
);
4476 if (index
== -1 || index
>= le16_to_cpu(el
->l_next_free_rec
)) {
4477 ocfs2_error(inode
->i_sb
,
4478 "Inode %llu has an extent at cpos %u which can no "
4479 "longer be found.\n",
4480 (unsigned long long)OCFS2_I(inode
)->ip_blkno
, cpos
);
4485 memset(&split_rec
, 0, sizeof(struct ocfs2_extent_rec
));
4486 split_rec
.e_cpos
= cpu_to_le32(cpos
);
4487 split_rec
.e_leaf_clusters
= cpu_to_le16(len
);
4488 split_rec
.e_blkno
= cpu_to_le64(start_blkno
);
4489 split_rec
.e_flags
= path_leaf_el(left_path
)->l_recs
[index
].e_flags
;
4490 split_rec
.e_flags
&= ~OCFS2_EXT_UNWRITTEN
;
4492 ret
= __ocfs2_mark_extent_written(inode
, di_bh
, handle
, left_path
,
4493 index
, &split_rec
, meta_ac
, dealloc
);
4498 ocfs2_free_path(left_path
);
4502 static int ocfs2_split_tree(struct inode
*inode
, struct buffer_head
*di_bh
,
4503 handle_t
*handle
, struct ocfs2_path
*path
,
4504 int index
, u32 new_range
,
4505 struct ocfs2_alloc_context
*meta_ac
)
4507 int ret
, depth
, credits
= handle
->h_buffer_credits
;
4508 struct ocfs2_dinode
*di
= (struct ocfs2_dinode
*)di_bh
->b_data
;
4509 struct buffer_head
*last_eb_bh
= NULL
;
4510 struct ocfs2_extent_block
*eb
;
4511 struct ocfs2_extent_list
*rightmost_el
, *el
;
4512 struct ocfs2_extent_rec split_rec
;
4513 struct ocfs2_extent_rec
*rec
;
4514 struct ocfs2_insert_type insert
;
4517 * Setup the record to split before we grow the tree.
4519 el
= path_leaf_el(path
);
4520 rec
= &el
->l_recs
[index
];
4521 ocfs2_make_right_split_rec(inode
->i_sb
, &split_rec
, new_range
, rec
);
4523 depth
= path
->p_tree_depth
;
4525 ret
= ocfs2_read_block(OCFS2_SB(inode
->i_sb
),
4526 le64_to_cpu(di
->i_last_eb_blk
),
4527 &last_eb_bh
, OCFS2_BH_CACHED
, inode
);
4533 eb
= (struct ocfs2_extent_block
*) last_eb_bh
->b_data
;
4534 rightmost_el
= &eb
->h_list
;
4536 rightmost_el
= path_leaf_el(path
);
4538 credits
+= path
->p_tree_depth
+ ocfs2_extend_meta_needed(di
);
4539 ret
= ocfs2_extend_trans(handle
, credits
);
4545 if (le16_to_cpu(rightmost_el
->l_next_free_rec
) ==
4546 le16_to_cpu(rightmost_el
->l_count
)) {
4547 ret
= ocfs2_grow_tree(inode
, handle
, di_bh
, &depth
, &last_eb_bh
,
4555 memset(&insert
, 0, sizeof(struct ocfs2_insert_type
));
4556 insert
.ins_appending
= APPEND_NONE
;
4557 insert
.ins_contig
= CONTIG_NONE
;
4558 insert
.ins_split
= SPLIT_RIGHT
;
4559 insert
.ins_tree_depth
= depth
;
4561 ret
= ocfs2_do_insert_extent(inode
, handle
, di_bh
, &split_rec
, &insert
);
4570 static int ocfs2_truncate_rec(struct inode
*inode
, handle_t
*handle
,
4571 struct ocfs2_path
*path
, int index
,
4572 struct ocfs2_cached_dealloc_ctxt
*dealloc
,
4576 u32 left_cpos
, rec_range
, trunc_range
;
4577 int wants_rotate
= 0, is_rightmost_tree_rec
= 0;
4578 struct super_block
*sb
= inode
->i_sb
;
4579 struct ocfs2_path
*left_path
= NULL
;
4580 struct ocfs2_extent_list
*el
= path_leaf_el(path
);
4581 struct ocfs2_extent_rec
*rec
;
4582 struct ocfs2_extent_block
*eb
;
4584 if (ocfs2_is_empty_extent(&el
->l_recs
[0]) && index
> 0) {
4585 ret
= ocfs2_rotate_tree_left(inode
, handle
, path
, dealloc
);
4594 if (index
== (le16_to_cpu(el
->l_next_free_rec
) - 1) &&
4595 path
->p_tree_depth
) {
4597 * Check whether this is the rightmost tree record. If
4598 * we remove all of this record or part of its right
4599 * edge then an update of the record lengths above it
4602 eb
= (struct ocfs2_extent_block
*)path_leaf_bh(path
)->b_data
;
4603 if (eb
->h_next_leaf_blk
== 0)
4604 is_rightmost_tree_rec
= 1;
4607 rec
= &el
->l_recs
[index
];
4608 if (index
== 0 && path
->p_tree_depth
&&
4609 le32_to_cpu(rec
->e_cpos
) == cpos
) {
4611 * Changing the leftmost offset (via partial or whole
4612 * record truncate) of an interior (or rightmost) path
4613 * means we have to update the subtree that is formed
4614 * by this leaf and the one to it's left.
4616 * There are two cases we can skip:
4617 * 1) Path is the leftmost one in our inode tree.
4618 * 2) The leaf is rightmost and will be empty after
4619 * we remove the extent record - the rotate code
4620 * knows how to update the newly formed edge.
4623 ret
= ocfs2_find_cpos_for_left_leaf(inode
->i_sb
, path
,
4630 if (left_cpos
&& le16_to_cpu(el
->l_next_free_rec
) > 1) {
4631 left_path
= ocfs2_new_path(path_root_bh(path
),
4632 path_root_el(path
));
4639 ret
= ocfs2_find_path(inode
, left_path
, left_cpos
);
4647 ret
= ocfs2_extend_rotate_transaction(handle
, 0,
4648 handle
->h_buffer_credits
,
4655 ret
= ocfs2_journal_access_path(inode
, handle
, path
);
4661 ret
= ocfs2_journal_access_path(inode
, handle
, left_path
);
4667 rec_range
= le32_to_cpu(rec
->e_cpos
) + ocfs2_rec_clusters(el
, rec
);
4668 trunc_range
= cpos
+ len
;
4670 if (le32_to_cpu(rec
->e_cpos
) == cpos
&& rec_range
== trunc_range
) {
4673 memset(rec
, 0, sizeof(*rec
));
4674 ocfs2_cleanup_merge(el
, index
);
4677 next_free
= le16_to_cpu(el
->l_next_free_rec
);
4678 if (is_rightmost_tree_rec
&& next_free
> 1) {
4680 * We skip the edge update if this path will
4681 * be deleted by the rotate code.
4683 rec
= &el
->l_recs
[next_free
- 1];
4684 ocfs2_adjust_rightmost_records(inode
, handle
, path
,
4687 } else if (le32_to_cpu(rec
->e_cpos
) == cpos
) {
4688 /* Remove leftmost portion of the record. */
4689 le32_add_cpu(&rec
->e_cpos
, len
);
4690 le64_add_cpu(&rec
->e_blkno
, ocfs2_clusters_to_blocks(sb
, len
));
4691 le16_add_cpu(&rec
->e_leaf_clusters
, -len
);
4692 } else if (rec_range
== trunc_range
) {
4693 /* Remove rightmost portion of the record */
4694 le16_add_cpu(&rec
->e_leaf_clusters
, -len
);
4695 if (is_rightmost_tree_rec
)
4696 ocfs2_adjust_rightmost_records(inode
, handle
, path
, rec
);
4698 /* Caller should have trapped this. */
4699 mlog(ML_ERROR
, "Inode %llu: Invalid record truncate: (%u, %u) "
4700 "(%u, %u)\n", (unsigned long long)OCFS2_I(inode
)->ip_blkno
,
4701 le32_to_cpu(rec
->e_cpos
),
4702 le16_to_cpu(rec
->e_leaf_clusters
), cpos
, len
);
4709 subtree_index
= ocfs2_find_subtree_root(inode
, left_path
, path
);
4710 ocfs2_complete_edge_insert(inode
, handle
, left_path
, path
,
4714 ocfs2_journal_dirty(handle
, path_leaf_bh(path
));
4716 ret
= ocfs2_rotate_tree_left(inode
, handle
, path
, dealloc
);
4723 ocfs2_free_path(left_path
);
4727 int ocfs2_remove_extent(struct inode
*inode
, struct buffer_head
*di_bh
,
4728 u32 cpos
, u32 len
, handle_t
*handle
,
4729 struct ocfs2_alloc_context
*meta_ac
,
4730 struct ocfs2_cached_dealloc_ctxt
*dealloc
)
4733 u32 rec_range
, trunc_range
;
4734 struct ocfs2_extent_rec
*rec
;
4735 struct ocfs2_extent_list
*el
;
4736 struct ocfs2_path
*path
;
4738 ocfs2_extent_map_trunc(inode
, 0);
4740 path
= ocfs2_new_inode_path(di_bh
);
4747 ret
= ocfs2_find_path(inode
, path
, cpos
);
4753 el
= path_leaf_el(path
);
4754 index
= ocfs2_search_extent_list(el
, cpos
);
4755 if (index
== -1 || index
>= le16_to_cpu(el
->l_next_free_rec
)) {
4756 ocfs2_error(inode
->i_sb
,
4757 "Inode %llu has an extent at cpos %u which can no "
4758 "longer be found.\n",
4759 (unsigned long long)OCFS2_I(inode
)->ip_blkno
, cpos
);
4765 * We have 3 cases of extent removal:
4766 * 1) Range covers the entire extent rec
4767 * 2) Range begins or ends on one edge of the extent rec
4768 * 3) Range is in the middle of the extent rec (no shared edges)
4770 * For case 1 we remove the extent rec and left rotate to
4773 * For case 2 we just shrink the existing extent rec, with a
4774 * tree update if the shrinking edge is also the edge of an
4777 * For case 3 we do a right split to turn the extent rec into
4778 * something case 2 can handle.
4780 rec
= &el
->l_recs
[index
];
4781 rec_range
= le32_to_cpu(rec
->e_cpos
) + ocfs2_rec_clusters(el
, rec
);
4782 trunc_range
= cpos
+ len
;
4784 BUG_ON(cpos
< le32_to_cpu(rec
->e_cpos
) || trunc_range
> rec_range
);
4786 mlog(0, "Inode %llu, remove (cpos %u, len %u). Existing index %d "
4787 "(cpos %u, len %u)\n",
4788 (unsigned long long)OCFS2_I(inode
)->ip_blkno
, cpos
, len
, index
,
4789 le32_to_cpu(rec
->e_cpos
), ocfs2_rec_clusters(el
, rec
));
4791 if (le32_to_cpu(rec
->e_cpos
) == cpos
|| rec_range
== trunc_range
) {
4792 ret
= ocfs2_truncate_rec(inode
, handle
, path
, index
, dealloc
,
4799 ret
= ocfs2_split_tree(inode
, di_bh
, handle
, path
, index
,
4800 trunc_range
, meta_ac
);
4807 * The split could have manipulated the tree enough to
4808 * move the record location, so we have to look for it again.
4810 ocfs2_reinit_path(path
, 1);
4812 ret
= ocfs2_find_path(inode
, path
, cpos
);
4818 el
= path_leaf_el(path
);
4819 index
= ocfs2_search_extent_list(el
, cpos
);
4820 if (index
== -1 || index
>= le16_to_cpu(el
->l_next_free_rec
)) {
4821 ocfs2_error(inode
->i_sb
,
4822 "Inode %llu: split at cpos %u lost record.",
4823 (unsigned long long)OCFS2_I(inode
)->ip_blkno
,
4830 * Double check our values here. If anything is fishy,
4831 * it's easier to catch it at the top level.
4833 rec
= &el
->l_recs
[index
];
4834 rec_range
= le32_to_cpu(rec
->e_cpos
) +
4835 ocfs2_rec_clusters(el
, rec
);
4836 if (rec_range
!= trunc_range
) {
4837 ocfs2_error(inode
->i_sb
,
4838 "Inode %llu: error after split at cpos %u"
4839 "trunc len %u, existing record is (%u,%u)",
4840 (unsigned long long)OCFS2_I(inode
)->ip_blkno
,
4841 cpos
, len
, le32_to_cpu(rec
->e_cpos
),
4842 ocfs2_rec_clusters(el
, rec
));
4847 ret
= ocfs2_truncate_rec(inode
, handle
, path
, index
, dealloc
,
4856 ocfs2_free_path(path
);
4860 int ocfs2_truncate_log_needs_flush(struct ocfs2_super
*osb
)
4862 struct buffer_head
*tl_bh
= osb
->osb_tl_bh
;
4863 struct ocfs2_dinode
*di
;
4864 struct ocfs2_truncate_log
*tl
;
4866 di
= (struct ocfs2_dinode
*) tl_bh
->b_data
;
4867 tl
= &di
->id2
.i_dealloc
;
4869 mlog_bug_on_msg(le16_to_cpu(tl
->tl_used
) > le16_to_cpu(tl
->tl_count
),
4870 "slot %d, invalid truncate log parameters: used = "
4871 "%u, count = %u\n", osb
->slot_num
,
4872 le16_to_cpu(tl
->tl_used
), le16_to_cpu(tl
->tl_count
));
4873 return le16_to_cpu(tl
->tl_used
) == le16_to_cpu(tl
->tl_count
);
4876 static int ocfs2_truncate_log_can_coalesce(struct ocfs2_truncate_log
*tl
,
4877 unsigned int new_start
)
4879 unsigned int tail_index
;
4880 unsigned int current_tail
;
4882 /* No records, nothing to coalesce */
4883 if (!le16_to_cpu(tl
->tl_used
))
4886 tail_index
= le16_to_cpu(tl
->tl_used
) - 1;
4887 current_tail
= le32_to_cpu(tl
->tl_recs
[tail_index
].t_start
);
4888 current_tail
+= le32_to_cpu(tl
->tl_recs
[tail_index
].t_clusters
);
4890 return current_tail
== new_start
;
4893 int ocfs2_truncate_log_append(struct ocfs2_super
*osb
,
4896 unsigned int num_clusters
)
4899 unsigned int start_cluster
, tl_count
;
4900 struct inode
*tl_inode
= osb
->osb_tl_inode
;
4901 struct buffer_head
*tl_bh
= osb
->osb_tl_bh
;
4902 struct ocfs2_dinode
*di
;
4903 struct ocfs2_truncate_log
*tl
;
4905 mlog_entry("start_blk = %llu, num_clusters = %u\n",
4906 (unsigned long long)start_blk
, num_clusters
);
4908 BUG_ON(mutex_trylock(&tl_inode
->i_mutex
));
4910 start_cluster
= ocfs2_blocks_to_clusters(osb
->sb
, start_blk
);
4912 di
= (struct ocfs2_dinode
*) tl_bh
->b_data
;
4913 tl
= &di
->id2
.i_dealloc
;
4914 if (!OCFS2_IS_VALID_DINODE(di
)) {
4915 OCFS2_RO_ON_INVALID_DINODE(osb
->sb
, di
);
4920 tl_count
= le16_to_cpu(tl
->tl_count
);
4921 mlog_bug_on_msg(tl_count
> ocfs2_truncate_recs_per_inode(osb
->sb
) ||
4923 "Truncate record count on #%llu invalid "
4924 "wanted %u, actual %u\n",
4925 (unsigned long long)OCFS2_I(tl_inode
)->ip_blkno
,
4926 ocfs2_truncate_recs_per_inode(osb
->sb
),
4927 le16_to_cpu(tl
->tl_count
));
4929 /* Caller should have known to flush before calling us. */
4930 index
= le16_to_cpu(tl
->tl_used
);
4931 if (index
>= tl_count
) {
4937 status
= ocfs2_journal_access(handle
, tl_inode
, tl_bh
,
4938 OCFS2_JOURNAL_ACCESS_WRITE
);
4944 mlog(0, "Log truncate of %u clusters starting at cluster %u to "
4945 "%llu (index = %d)\n", num_clusters
, start_cluster
,
4946 (unsigned long long)OCFS2_I(tl_inode
)->ip_blkno
, index
);
4948 if (ocfs2_truncate_log_can_coalesce(tl
, start_cluster
)) {
4950 * Move index back to the record we are coalescing with.
4951 * ocfs2_truncate_log_can_coalesce() guarantees nonzero
4955 num_clusters
+= le32_to_cpu(tl
->tl_recs
[index
].t_clusters
);
4956 mlog(0, "Coalesce with index %u (start = %u, clusters = %u)\n",
4957 index
, le32_to_cpu(tl
->tl_recs
[index
].t_start
),
4960 tl
->tl_recs
[index
].t_start
= cpu_to_le32(start_cluster
);
4961 tl
->tl_used
= cpu_to_le16(index
+ 1);
4963 tl
->tl_recs
[index
].t_clusters
= cpu_to_le32(num_clusters
);
4965 status
= ocfs2_journal_dirty(handle
, tl_bh
);
4976 static int ocfs2_replay_truncate_records(struct ocfs2_super
*osb
,
4978 struct inode
*data_alloc_inode
,
4979 struct buffer_head
*data_alloc_bh
)
4983 unsigned int num_clusters
;
4985 struct ocfs2_truncate_rec rec
;
4986 struct ocfs2_dinode
*di
;
4987 struct ocfs2_truncate_log
*tl
;
4988 struct inode
*tl_inode
= osb
->osb_tl_inode
;
4989 struct buffer_head
*tl_bh
= osb
->osb_tl_bh
;
4993 di
= (struct ocfs2_dinode
*) tl_bh
->b_data
;
4994 tl
= &di
->id2
.i_dealloc
;
4995 i
= le16_to_cpu(tl
->tl_used
) - 1;
4997 /* Caller has given us at least enough credits to
4998 * update the truncate log dinode */
4999 status
= ocfs2_journal_access(handle
, tl_inode
, tl_bh
,
5000 OCFS2_JOURNAL_ACCESS_WRITE
);
5006 tl
->tl_used
= cpu_to_le16(i
);
5008 status
= ocfs2_journal_dirty(handle
, tl_bh
);
5014 /* TODO: Perhaps we can calculate the bulk of the
5015 * credits up front rather than extending like
5017 status
= ocfs2_extend_trans(handle
,
5018 OCFS2_TRUNCATE_LOG_FLUSH_ONE_REC
);
5024 rec
= tl
->tl_recs
[i
];
5025 start_blk
= ocfs2_clusters_to_blocks(data_alloc_inode
->i_sb
,
5026 le32_to_cpu(rec
.t_start
));
5027 num_clusters
= le32_to_cpu(rec
.t_clusters
);
5029 /* if start_blk is not set, we ignore the record as
5032 mlog(0, "free record %d, start = %u, clusters = %u\n",
5033 i
, le32_to_cpu(rec
.t_start
), num_clusters
);
5035 status
= ocfs2_free_clusters(handle
, data_alloc_inode
,
5036 data_alloc_bh
, start_blk
,
5051 /* Expects you to already be holding tl_inode->i_mutex */
5052 int __ocfs2_flush_truncate_log(struct ocfs2_super
*osb
)
5055 unsigned int num_to_flush
;
5057 struct inode
*tl_inode
= osb
->osb_tl_inode
;
5058 struct inode
*data_alloc_inode
= NULL
;
5059 struct buffer_head
*tl_bh
= osb
->osb_tl_bh
;
5060 struct buffer_head
*data_alloc_bh
= NULL
;
5061 struct ocfs2_dinode
*di
;
5062 struct ocfs2_truncate_log
*tl
;
5066 BUG_ON(mutex_trylock(&tl_inode
->i_mutex
));
5068 di
= (struct ocfs2_dinode
*) tl_bh
->b_data
;
5069 tl
= &di
->id2
.i_dealloc
;
5070 if (!OCFS2_IS_VALID_DINODE(di
)) {
5071 OCFS2_RO_ON_INVALID_DINODE(osb
->sb
, di
);
5076 num_to_flush
= le16_to_cpu(tl
->tl_used
);
5077 mlog(0, "Flush %u records from truncate log #%llu\n",
5078 num_to_flush
, (unsigned long long)OCFS2_I(tl_inode
)->ip_blkno
);
5079 if (!num_to_flush
) {
5084 data_alloc_inode
= ocfs2_get_system_file_inode(osb
,
5085 GLOBAL_BITMAP_SYSTEM_INODE
,
5086 OCFS2_INVALID_SLOT
);
5087 if (!data_alloc_inode
) {
5089 mlog(ML_ERROR
, "Could not get bitmap inode!\n");
5093 mutex_lock(&data_alloc_inode
->i_mutex
);
5095 status
= ocfs2_inode_lock(data_alloc_inode
, &data_alloc_bh
, 1);
5101 handle
= ocfs2_start_trans(osb
, OCFS2_TRUNCATE_LOG_UPDATE
);
5102 if (IS_ERR(handle
)) {
5103 status
= PTR_ERR(handle
);
5108 status
= ocfs2_replay_truncate_records(osb
, handle
, data_alloc_inode
,
5113 ocfs2_commit_trans(osb
, handle
);
5116 brelse(data_alloc_bh
);
5117 ocfs2_inode_unlock(data_alloc_inode
, 1);
5120 mutex_unlock(&data_alloc_inode
->i_mutex
);
5121 iput(data_alloc_inode
);
5128 int ocfs2_flush_truncate_log(struct ocfs2_super
*osb
)
5131 struct inode
*tl_inode
= osb
->osb_tl_inode
;
5133 mutex_lock(&tl_inode
->i_mutex
);
5134 status
= __ocfs2_flush_truncate_log(osb
);
5135 mutex_unlock(&tl_inode
->i_mutex
);
5140 static void ocfs2_truncate_log_worker(struct work_struct
*work
)
5143 struct ocfs2_super
*osb
=
5144 container_of(work
, struct ocfs2_super
,
5145 osb_truncate_log_wq
.work
);
5149 status
= ocfs2_flush_truncate_log(osb
);
5153 ocfs2_init_inode_steal_slot(osb
);
5158 #define OCFS2_TRUNCATE_LOG_FLUSH_INTERVAL (2 * HZ)
5159 void ocfs2_schedule_truncate_log_flush(struct ocfs2_super
*osb
,
5162 if (osb
->osb_tl_inode
) {
5163 /* We want to push off log flushes while truncates are
5166 cancel_delayed_work(&osb
->osb_truncate_log_wq
);
5168 queue_delayed_work(ocfs2_wq
, &osb
->osb_truncate_log_wq
,
5169 OCFS2_TRUNCATE_LOG_FLUSH_INTERVAL
);
5173 static int ocfs2_get_truncate_log_info(struct ocfs2_super
*osb
,
5175 struct inode
**tl_inode
,
5176 struct buffer_head
**tl_bh
)
5179 struct inode
*inode
= NULL
;
5180 struct buffer_head
*bh
= NULL
;
5182 inode
= ocfs2_get_system_file_inode(osb
,
5183 TRUNCATE_LOG_SYSTEM_INODE
,
5187 mlog(ML_ERROR
, "Could not get load truncate log inode!\n");
5191 status
= ocfs2_read_block(osb
, OCFS2_I(inode
)->ip_blkno
, &bh
,
5192 OCFS2_BH_CACHED
, inode
);
5206 /* called during the 1st stage of node recovery. we stamp a clean
5207 * truncate log and pass back a copy for processing later. if the
5208 * truncate log does not require processing, a *tl_copy is set to
5210 int ocfs2_begin_truncate_log_recovery(struct ocfs2_super
*osb
,
5212 struct ocfs2_dinode
**tl_copy
)
5215 struct inode
*tl_inode
= NULL
;
5216 struct buffer_head
*tl_bh
= NULL
;
5217 struct ocfs2_dinode
*di
;
5218 struct ocfs2_truncate_log
*tl
;
5222 mlog(0, "recover truncate log from slot %d\n", slot_num
);
5224 status
= ocfs2_get_truncate_log_info(osb
, slot_num
, &tl_inode
, &tl_bh
);
5230 di
= (struct ocfs2_dinode
*) tl_bh
->b_data
;
5231 tl
= &di
->id2
.i_dealloc
;
5232 if (!OCFS2_IS_VALID_DINODE(di
)) {
5233 OCFS2_RO_ON_INVALID_DINODE(tl_inode
->i_sb
, di
);
5238 if (le16_to_cpu(tl
->tl_used
)) {
5239 mlog(0, "We'll have %u logs to recover\n",
5240 le16_to_cpu(tl
->tl_used
));
5242 *tl_copy
= kmalloc(tl_bh
->b_size
, GFP_KERNEL
);
5249 /* Assuming the write-out below goes well, this copy
5250 * will be passed back to recovery for processing. */
5251 memcpy(*tl_copy
, tl_bh
->b_data
, tl_bh
->b_size
);
5253 /* All we need to do to clear the truncate log is set
5257 status
= ocfs2_write_block(osb
, tl_bh
, tl_inode
);
5270 if (status
< 0 && (*tl_copy
)) {
5279 int ocfs2_complete_truncate_log_recovery(struct ocfs2_super
*osb
,
5280 struct ocfs2_dinode
*tl_copy
)
5284 unsigned int clusters
, num_recs
, start_cluster
;
5287 struct inode
*tl_inode
= osb
->osb_tl_inode
;
5288 struct ocfs2_truncate_log
*tl
;
5292 if (OCFS2_I(tl_inode
)->ip_blkno
== le64_to_cpu(tl_copy
->i_blkno
)) {
5293 mlog(ML_ERROR
, "Asked to recover my own truncate log!\n");
5297 tl
= &tl_copy
->id2
.i_dealloc
;
5298 num_recs
= le16_to_cpu(tl
->tl_used
);
5299 mlog(0, "cleanup %u records from %llu\n", num_recs
,
5300 (unsigned long long)le64_to_cpu(tl_copy
->i_blkno
));
5302 mutex_lock(&tl_inode
->i_mutex
);
5303 for(i
= 0; i
< num_recs
; i
++) {
5304 if (ocfs2_truncate_log_needs_flush(osb
)) {
5305 status
= __ocfs2_flush_truncate_log(osb
);
5312 handle
= ocfs2_start_trans(osb
, OCFS2_TRUNCATE_LOG_UPDATE
);
5313 if (IS_ERR(handle
)) {
5314 status
= PTR_ERR(handle
);
5319 clusters
= le32_to_cpu(tl
->tl_recs
[i
].t_clusters
);
5320 start_cluster
= le32_to_cpu(tl
->tl_recs
[i
].t_start
);
5321 start_blk
= ocfs2_clusters_to_blocks(osb
->sb
, start_cluster
);
5323 status
= ocfs2_truncate_log_append(osb
, handle
,
5324 start_blk
, clusters
);
5325 ocfs2_commit_trans(osb
, handle
);
5333 mutex_unlock(&tl_inode
->i_mutex
);
5339 void ocfs2_truncate_log_shutdown(struct ocfs2_super
*osb
)
5342 struct inode
*tl_inode
= osb
->osb_tl_inode
;
5347 cancel_delayed_work(&osb
->osb_truncate_log_wq
);
5348 flush_workqueue(ocfs2_wq
);
5350 status
= ocfs2_flush_truncate_log(osb
);
5354 brelse(osb
->osb_tl_bh
);
5355 iput(osb
->osb_tl_inode
);
5361 int ocfs2_truncate_log_init(struct ocfs2_super
*osb
)
5364 struct inode
*tl_inode
= NULL
;
5365 struct buffer_head
*tl_bh
= NULL
;
5369 status
= ocfs2_get_truncate_log_info(osb
,
5376 /* ocfs2_truncate_log_shutdown keys on the existence of
5377 * osb->osb_tl_inode so we don't set any of the osb variables
5378 * until we're sure all is well. */
5379 INIT_DELAYED_WORK(&osb
->osb_truncate_log_wq
,
5380 ocfs2_truncate_log_worker
);
5381 osb
->osb_tl_bh
= tl_bh
;
5382 osb
->osb_tl_inode
= tl_inode
;
5389 * Delayed de-allocation of suballocator blocks.
5391 * Some sets of block de-allocations might involve multiple suballocator inodes.
5393 * The locking for this can get extremely complicated, especially when
5394 * the suballocator inodes to delete from aren't known until deep
5395 * within an unrelated codepath.
5397 * ocfs2_extent_block structures are a good example of this - an inode
5398 * btree could have been grown by any number of nodes each allocating
5399 * out of their own suballoc inode.
5401 * These structures allow the delay of block de-allocation until a
5402 * later time, when locking of multiple cluster inodes won't cause
5407 * Describes a single block free from a suballocator
5409 struct ocfs2_cached_block_free
{
5410 struct ocfs2_cached_block_free
*free_next
;
5412 unsigned int free_bit
;
5415 struct ocfs2_per_slot_free_list
{
5416 struct ocfs2_per_slot_free_list
*f_next_suballocator
;
5419 struct ocfs2_cached_block_free
*f_first
;
5422 static int ocfs2_free_cached_items(struct ocfs2_super
*osb
,
5425 struct ocfs2_cached_block_free
*head
)
5430 struct inode
*inode
;
5431 struct buffer_head
*di_bh
= NULL
;
5432 struct ocfs2_cached_block_free
*tmp
;
5434 inode
= ocfs2_get_system_file_inode(osb
, sysfile_type
, slot
);
5441 mutex_lock(&inode
->i_mutex
);
5443 ret
= ocfs2_inode_lock(inode
, &di_bh
, 1);
5449 handle
= ocfs2_start_trans(osb
, OCFS2_SUBALLOC_FREE
);
5450 if (IS_ERR(handle
)) {
5451 ret
= PTR_ERR(handle
);
5457 bg_blkno
= ocfs2_which_suballoc_group(head
->free_blk
,
5459 mlog(0, "Free bit: (bit %u, blkno %llu)\n",
5460 head
->free_bit
, (unsigned long long)head
->free_blk
);
5462 ret
= ocfs2_free_suballoc_bits(handle
, inode
, di_bh
,
5463 head
->free_bit
, bg_blkno
, 1);
5469 ret
= ocfs2_extend_trans(handle
, OCFS2_SUBALLOC_FREE
);
5476 head
= head
->free_next
;
5481 ocfs2_commit_trans(osb
, handle
);
5484 ocfs2_inode_unlock(inode
, 1);
5487 mutex_unlock(&inode
->i_mutex
);
5491 /* Premature exit may have left some dangling items. */
5493 head
= head
->free_next
;
5500 int ocfs2_run_deallocs(struct ocfs2_super
*osb
,
5501 struct ocfs2_cached_dealloc_ctxt
*ctxt
)
5504 struct ocfs2_per_slot_free_list
*fl
;
5509 while (ctxt
->c_first_suballocator
) {
5510 fl
= ctxt
->c_first_suballocator
;
5513 mlog(0, "Free items: (type %u, slot %d)\n",
5514 fl
->f_inode_type
, fl
->f_slot
);
5515 ret2
= ocfs2_free_cached_items(osb
, fl
->f_inode_type
,
5516 fl
->f_slot
, fl
->f_first
);
5523 ctxt
->c_first_suballocator
= fl
->f_next_suballocator
;
5530 static struct ocfs2_per_slot_free_list
*
5531 ocfs2_find_per_slot_free_list(int type
,
5533 struct ocfs2_cached_dealloc_ctxt
*ctxt
)
5535 struct ocfs2_per_slot_free_list
*fl
= ctxt
->c_first_suballocator
;
5538 if (fl
->f_inode_type
== type
&& fl
->f_slot
== slot
)
5541 fl
= fl
->f_next_suballocator
;
5544 fl
= kmalloc(sizeof(*fl
), GFP_NOFS
);
5546 fl
->f_inode_type
= type
;
5549 fl
->f_next_suballocator
= ctxt
->c_first_suballocator
;
5551 ctxt
->c_first_suballocator
= fl
;
5556 static int ocfs2_cache_block_dealloc(struct ocfs2_cached_dealloc_ctxt
*ctxt
,
5557 int type
, int slot
, u64 blkno
,
5561 struct ocfs2_per_slot_free_list
*fl
;
5562 struct ocfs2_cached_block_free
*item
;
5564 fl
= ocfs2_find_per_slot_free_list(type
, slot
, ctxt
);
5571 item
= kmalloc(sizeof(*item
), GFP_NOFS
);
5578 mlog(0, "Insert: (type %d, slot %u, bit %u, blk %llu)\n",
5579 type
, slot
, bit
, (unsigned long long)blkno
);
5581 item
->free_blk
= blkno
;
5582 item
->free_bit
= bit
;
5583 item
->free_next
= fl
->f_first
;
5592 static int ocfs2_cache_extent_block_free(struct ocfs2_cached_dealloc_ctxt
*ctxt
,
5593 struct ocfs2_extent_block
*eb
)
5595 return ocfs2_cache_block_dealloc(ctxt
, EXTENT_ALLOC_SYSTEM_INODE
,
5596 le16_to_cpu(eb
->h_suballoc_slot
),
5597 le64_to_cpu(eb
->h_blkno
),
5598 le16_to_cpu(eb
->h_suballoc_bit
));
5601 /* This function will figure out whether the currently last extent
5602 * block will be deleted, and if it will, what the new last extent
5603 * block will be so we can update his h_next_leaf_blk field, as well
5604 * as the dinodes i_last_eb_blk */
5605 static int ocfs2_find_new_last_ext_blk(struct inode
*inode
,
5606 unsigned int clusters_to_del
,
5607 struct ocfs2_path
*path
,
5608 struct buffer_head
**new_last_eb
)
5610 int next_free
, ret
= 0;
5612 struct ocfs2_extent_rec
*rec
;
5613 struct ocfs2_extent_block
*eb
;
5614 struct ocfs2_extent_list
*el
;
5615 struct buffer_head
*bh
= NULL
;
5617 *new_last_eb
= NULL
;
5619 /* we have no tree, so of course, no last_eb. */
5620 if (!path
->p_tree_depth
)
5623 /* trunc to zero special case - this makes tree_depth = 0
5624 * regardless of what it is. */
5625 if (OCFS2_I(inode
)->ip_clusters
== clusters_to_del
)
5628 el
= path_leaf_el(path
);
5629 BUG_ON(!el
->l_next_free_rec
);
5632 * Make sure that this extent list will actually be empty
5633 * after we clear away the data. We can shortcut out if
5634 * there's more than one non-empty extent in the
5635 * list. Otherwise, a check of the remaining extent is
5638 next_free
= le16_to_cpu(el
->l_next_free_rec
);
5640 if (ocfs2_is_empty_extent(&el
->l_recs
[0])) {
5644 /* We may have a valid extent in index 1, check it. */
5646 rec
= &el
->l_recs
[1];
5649 * Fall through - no more nonempty extents, so we want
5650 * to delete this leaf.
5656 rec
= &el
->l_recs
[0];
5661 * Check it we'll only be trimming off the end of this
5664 if (le16_to_cpu(rec
->e_leaf_clusters
) > clusters_to_del
)
5668 ret
= ocfs2_find_cpos_for_left_leaf(inode
->i_sb
, path
, &cpos
);
5674 ret
= ocfs2_find_leaf(inode
, path_root_el(path
), cpos
, &bh
);
5680 eb
= (struct ocfs2_extent_block
*) bh
->b_data
;
5682 if (!OCFS2_IS_VALID_EXTENT_BLOCK(eb
)) {
5683 OCFS2_RO_ON_INVALID_EXTENT_BLOCK(inode
->i_sb
, eb
);
5689 get_bh(*new_last_eb
);
5690 mlog(0, "returning block %llu, (cpos: %u)\n",
5691 (unsigned long long)le64_to_cpu(eb
->h_blkno
), cpos
);
5699 * Trim some clusters off the rightmost edge of a tree. Only called
5702 * The caller needs to:
5703 * - start journaling of each path component.
5704 * - compute and fully set up any new last ext block
5706 static int ocfs2_trim_tree(struct inode
*inode
, struct ocfs2_path
*path
,
5707 handle_t
*handle
, struct ocfs2_truncate_context
*tc
,
5708 u32 clusters_to_del
, u64
*delete_start
)
5710 int ret
, i
, index
= path
->p_tree_depth
;
5713 struct buffer_head
*bh
;
5714 struct ocfs2_extent_list
*el
;
5715 struct ocfs2_extent_rec
*rec
;
5719 while (index
>= 0) {
5720 bh
= path
->p_node
[index
].bh
;
5721 el
= path
->p_node
[index
].el
;
5723 mlog(0, "traveling tree (index = %d, block = %llu)\n",
5724 index
, (unsigned long long)bh
->b_blocknr
);
5726 BUG_ON(le16_to_cpu(el
->l_next_free_rec
) == 0);
5729 (path
->p_tree_depth
- le16_to_cpu(el
->l_tree_depth
))) {
5730 ocfs2_error(inode
->i_sb
,
5731 "Inode %lu has invalid ext. block %llu",
5733 (unsigned long long)bh
->b_blocknr
);
5739 i
= le16_to_cpu(el
->l_next_free_rec
) - 1;
5740 rec
= &el
->l_recs
[i
];
5742 mlog(0, "Extent list before: record %d: (%u, %u, %llu), "
5743 "next = %u\n", i
, le32_to_cpu(rec
->e_cpos
),
5744 ocfs2_rec_clusters(el
, rec
),
5745 (unsigned long long)le64_to_cpu(rec
->e_blkno
),
5746 le16_to_cpu(el
->l_next_free_rec
));
5748 BUG_ON(ocfs2_rec_clusters(el
, rec
) < clusters_to_del
);
5750 if (le16_to_cpu(el
->l_tree_depth
) == 0) {
5752 * If the leaf block contains a single empty
5753 * extent and no records, we can just remove
5756 if (i
== 0 && ocfs2_is_empty_extent(rec
)) {
5758 sizeof(struct ocfs2_extent_rec
));
5759 el
->l_next_free_rec
= cpu_to_le16(0);
5765 * Remove any empty extents by shifting things
5766 * left. That should make life much easier on
5767 * the code below. This condition is rare
5768 * enough that we shouldn't see a performance
5771 if (ocfs2_is_empty_extent(&el
->l_recs
[0])) {
5772 le16_add_cpu(&el
->l_next_free_rec
, -1);
5775 i
< le16_to_cpu(el
->l_next_free_rec
); i
++)
5776 el
->l_recs
[i
] = el
->l_recs
[i
+ 1];
5778 memset(&el
->l_recs
[i
], 0,
5779 sizeof(struct ocfs2_extent_rec
));
5782 * We've modified our extent list. The
5783 * simplest way to handle this change
5784 * is to being the search from the
5787 goto find_tail_record
;
5790 le16_add_cpu(&rec
->e_leaf_clusters
, -clusters_to_del
);
5793 * We'll use "new_edge" on our way back up the
5794 * tree to know what our rightmost cpos is.
5796 new_edge
= le16_to_cpu(rec
->e_leaf_clusters
);
5797 new_edge
+= le32_to_cpu(rec
->e_cpos
);
5800 * The caller will use this to delete data blocks.
5802 *delete_start
= le64_to_cpu(rec
->e_blkno
)
5803 + ocfs2_clusters_to_blocks(inode
->i_sb
,
5804 le16_to_cpu(rec
->e_leaf_clusters
));
5807 * If it's now empty, remove this record.
5809 if (le16_to_cpu(rec
->e_leaf_clusters
) == 0) {
5811 sizeof(struct ocfs2_extent_rec
));
5812 le16_add_cpu(&el
->l_next_free_rec
, -1);
5815 if (le64_to_cpu(rec
->e_blkno
) == deleted_eb
) {
5817 sizeof(struct ocfs2_extent_rec
));
5818 le16_add_cpu(&el
->l_next_free_rec
, -1);
5823 /* Can this actually happen? */
5824 if (le16_to_cpu(el
->l_next_free_rec
) == 0)
5828 * We never actually deleted any clusters
5829 * because our leaf was empty. There's no
5830 * reason to adjust the rightmost edge then.
5835 rec
->e_int_clusters
= cpu_to_le32(new_edge
);
5836 le32_add_cpu(&rec
->e_int_clusters
,
5837 -le32_to_cpu(rec
->e_cpos
));
5840 * A deleted child record should have been
5843 BUG_ON(le32_to_cpu(rec
->e_int_clusters
) == 0);
5847 ret
= ocfs2_journal_dirty(handle
, bh
);
5853 mlog(0, "extent list container %llu, after: record %d: "
5854 "(%u, %u, %llu), next = %u.\n",
5855 (unsigned long long)bh
->b_blocknr
, i
,
5856 le32_to_cpu(rec
->e_cpos
), ocfs2_rec_clusters(el
, rec
),
5857 (unsigned long long)le64_to_cpu(rec
->e_blkno
),
5858 le16_to_cpu(el
->l_next_free_rec
));
5861 * We must be careful to only attempt delete of an
5862 * extent block (and not the root inode block).
5864 if (index
> 0 && le16_to_cpu(el
->l_next_free_rec
) == 0) {
5865 struct ocfs2_extent_block
*eb
=
5866 (struct ocfs2_extent_block
*)bh
->b_data
;
5869 * Save this for use when processing the
5872 deleted_eb
= le64_to_cpu(eb
->h_blkno
);
5874 mlog(0, "deleting this extent block.\n");
5876 ocfs2_remove_from_cache(inode
, bh
);
5878 BUG_ON(ocfs2_rec_clusters(el
, &el
->l_recs
[0]));
5879 BUG_ON(le32_to_cpu(el
->l_recs
[0].e_cpos
));
5880 BUG_ON(le64_to_cpu(el
->l_recs
[0].e_blkno
));
5882 ret
= ocfs2_cache_extent_block_free(&tc
->tc_dealloc
, eb
);
5883 /* An error here is not fatal. */
5898 static int ocfs2_do_truncate(struct ocfs2_super
*osb
,
5899 unsigned int clusters_to_del
,
5900 struct inode
*inode
,
5901 struct buffer_head
*fe_bh
,
5903 struct ocfs2_truncate_context
*tc
,
5904 struct ocfs2_path
*path
)
5907 struct ocfs2_dinode
*fe
;
5908 struct ocfs2_extent_block
*last_eb
= NULL
;
5909 struct ocfs2_extent_list
*el
;
5910 struct buffer_head
*last_eb_bh
= NULL
;
5913 fe
= (struct ocfs2_dinode
*) fe_bh
->b_data
;
5915 status
= ocfs2_find_new_last_ext_blk(inode
, clusters_to_del
,
5923 * Each component will be touched, so we might as well journal
5924 * here to avoid having to handle errors later.
5926 status
= ocfs2_journal_access_path(inode
, handle
, path
);
5933 status
= ocfs2_journal_access(handle
, inode
, last_eb_bh
,
5934 OCFS2_JOURNAL_ACCESS_WRITE
);
5940 last_eb
= (struct ocfs2_extent_block
*) last_eb_bh
->b_data
;
5943 el
= &(fe
->id2
.i_list
);
5946 * Lower levels depend on this never happening, but it's best
5947 * to check it up here before changing the tree.
5949 if (el
->l_tree_depth
&& el
->l_recs
[0].e_int_clusters
== 0) {
5950 ocfs2_error(inode
->i_sb
,
5951 "Inode %lu has an empty extent record, depth %u\n",
5952 inode
->i_ino
, le16_to_cpu(el
->l_tree_depth
));
5957 spin_lock(&OCFS2_I(inode
)->ip_lock
);
5958 OCFS2_I(inode
)->ip_clusters
= le32_to_cpu(fe
->i_clusters
) -
5960 spin_unlock(&OCFS2_I(inode
)->ip_lock
);
5961 le32_add_cpu(&fe
->i_clusters
, -clusters_to_del
);
5962 inode
->i_blocks
= ocfs2_inode_sector_count(inode
);
5964 status
= ocfs2_trim_tree(inode
, path
, handle
, tc
,
5965 clusters_to_del
, &delete_blk
);
5971 if (le32_to_cpu(fe
->i_clusters
) == 0) {
5972 /* trunc to zero is a special case. */
5973 el
->l_tree_depth
= 0;
5974 fe
->i_last_eb_blk
= 0;
5976 fe
->i_last_eb_blk
= last_eb
->h_blkno
;
5978 status
= ocfs2_journal_dirty(handle
, fe_bh
);
5985 /* If there will be a new last extent block, then by
5986 * definition, there cannot be any leaves to the right of
5988 last_eb
->h_next_leaf_blk
= 0;
5989 status
= ocfs2_journal_dirty(handle
, last_eb_bh
);
5997 status
= ocfs2_truncate_log_append(osb
, handle
, delete_blk
,
6011 static int ocfs2_writeback_zero_func(handle_t
*handle
, struct buffer_head
*bh
)
6013 set_buffer_uptodate(bh
);
6014 mark_buffer_dirty(bh
);
6018 static int ocfs2_ordered_zero_func(handle_t
*handle
, struct buffer_head
*bh
)
6020 set_buffer_uptodate(bh
);
6021 mark_buffer_dirty(bh
);
6022 return ocfs2_journal_dirty_data(handle
, bh
);
6025 static void ocfs2_map_and_dirty_page(struct inode
*inode
, handle_t
*handle
,
6026 unsigned int from
, unsigned int to
,
6027 struct page
*page
, int zero
, u64
*phys
)
6029 int ret
, partial
= 0;
6031 ret
= ocfs2_map_page_blocks(page
, phys
, inode
, from
, to
, 0);
6036 zero_user_segment(page
, from
, to
);
6039 * Need to set the buffers we zero'd into uptodate
6040 * here if they aren't - ocfs2_map_page_blocks()
6041 * might've skipped some
6043 if (ocfs2_should_order_data(inode
)) {
6044 ret
= walk_page_buffers(handle
,
6047 ocfs2_ordered_zero_func
);
6051 ret
= walk_page_buffers(handle
, page_buffers(page
),
6053 ocfs2_writeback_zero_func
);
6059 SetPageUptodate(page
);
6061 flush_dcache_page(page
);
6064 static void ocfs2_zero_cluster_pages(struct inode
*inode
, loff_t start
,
6065 loff_t end
, struct page
**pages
,
6066 int numpages
, u64 phys
, handle_t
*handle
)
6070 unsigned int from
, to
= PAGE_CACHE_SIZE
;
6071 struct super_block
*sb
= inode
->i_sb
;
6073 BUG_ON(!ocfs2_sparse_alloc(OCFS2_SB(sb
)));
6078 to
= PAGE_CACHE_SIZE
;
6079 for(i
= 0; i
< numpages
; i
++) {
6082 from
= start
& (PAGE_CACHE_SIZE
- 1);
6083 if ((end
>> PAGE_CACHE_SHIFT
) == page
->index
)
6084 to
= end
& (PAGE_CACHE_SIZE
- 1);
6086 BUG_ON(from
> PAGE_CACHE_SIZE
);
6087 BUG_ON(to
> PAGE_CACHE_SIZE
);
6089 ocfs2_map_and_dirty_page(inode
, handle
, from
, to
, page
, 1,
6092 start
= (page
->index
+ 1) << PAGE_CACHE_SHIFT
;
6096 ocfs2_unlock_and_free_pages(pages
, numpages
);
6099 static int ocfs2_grab_eof_pages(struct inode
*inode
, loff_t start
, loff_t end
,
6100 struct page
**pages
, int *num
)
6102 int numpages
, ret
= 0;
6103 struct super_block
*sb
= inode
->i_sb
;
6104 struct address_space
*mapping
= inode
->i_mapping
;
6105 unsigned long index
;
6106 loff_t last_page_bytes
;
6108 BUG_ON(start
> end
);
6110 BUG_ON(start
>> OCFS2_SB(sb
)->s_clustersize_bits
!=
6111 (end
- 1) >> OCFS2_SB(sb
)->s_clustersize_bits
);
6114 last_page_bytes
= PAGE_ALIGN(end
);
6115 index
= start
>> PAGE_CACHE_SHIFT
;
6117 pages
[numpages
] = grab_cache_page(mapping
, index
);
6118 if (!pages
[numpages
]) {
6126 } while (index
< (last_page_bytes
>> PAGE_CACHE_SHIFT
));
6131 ocfs2_unlock_and_free_pages(pages
, numpages
);
6141 * Zero the area past i_size but still within an allocated
6142 * cluster. This avoids exposing nonzero data on subsequent file
6145 * We need to call this before i_size is updated on the inode because
6146 * otherwise block_write_full_page() will skip writeout of pages past
6147 * i_size. The new_i_size parameter is passed for this reason.
6149 int ocfs2_zero_range_for_truncate(struct inode
*inode
, handle_t
*handle
,
6150 u64 range_start
, u64 range_end
)
6152 int ret
= 0, numpages
;
6153 struct page
**pages
= NULL
;
6155 unsigned int ext_flags
;
6156 struct super_block
*sb
= inode
->i_sb
;
6159 * File systems which don't support sparse files zero on every
6162 if (!ocfs2_sparse_alloc(OCFS2_SB(sb
)))
6165 pages
= kcalloc(ocfs2_pages_per_cluster(sb
),
6166 sizeof(struct page
*), GFP_NOFS
);
6167 if (pages
== NULL
) {
6173 if (range_start
== range_end
)
6176 ret
= ocfs2_extent_map_get_blocks(inode
,
6177 range_start
>> sb
->s_blocksize_bits
,
6178 &phys
, NULL
, &ext_flags
);
6185 * Tail is a hole, or is marked unwritten. In either case, we
6186 * can count on read and write to return/push zero's.
6188 if (phys
== 0 || ext_flags
& OCFS2_EXT_UNWRITTEN
)
6191 ret
= ocfs2_grab_eof_pages(inode
, range_start
, range_end
, pages
,
6198 ocfs2_zero_cluster_pages(inode
, range_start
, range_end
, pages
,
6199 numpages
, phys
, handle
);
6202 * Initiate writeout of the pages we zero'd here. We don't
6203 * wait on them - the truncate_inode_pages() call later will
6206 ret
= do_sync_mapping_range(inode
->i_mapping
, range_start
,
6207 range_end
- 1, SYNC_FILE_RANGE_WRITE
);
6218 static void ocfs2_zero_dinode_id2(struct inode
*inode
, struct ocfs2_dinode
*di
)
6220 unsigned int blocksize
= 1 << inode
->i_sb
->s_blocksize_bits
;
6222 memset(&di
->id2
, 0, blocksize
- offsetof(struct ocfs2_dinode
, id2
));
6225 void ocfs2_dinode_new_extent_list(struct inode
*inode
,
6226 struct ocfs2_dinode
*di
)
6228 ocfs2_zero_dinode_id2(inode
, di
);
6229 di
->id2
.i_list
.l_tree_depth
= 0;
6230 di
->id2
.i_list
.l_next_free_rec
= 0;
6231 di
->id2
.i_list
.l_count
= cpu_to_le16(ocfs2_extent_recs_per_inode(inode
->i_sb
));
6234 void ocfs2_set_inode_data_inline(struct inode
*inode
, struct ocfs2_dinode
*di
)
6236 struct ocfs2_inode_info
*oi
= OCFS2_I(inode
);
6237 struct ocfs2_inline_data
*idata
= &di
->id2
.i_data
;
6239 spin_lock(&oi
->ip_lock
);
6240 oi
->ip_dyn_features
|= OCFS2_INLINE_DATA_FL
;
6241 di
->i_dyn_features
= cpu_to_le16(oi
->ip_dyn_features
);
6242 spin_unlock(&oi
->ip_lock
);
6245 * We clear the entire i_data structure here so that all
6246 * fields can be properly initialized.
6248 ocfs2_zero_dinode_id2(inode
, di
);
6250 idata
->id_count
= cpu_to_le16(ocfs2_max_inline_data(inode
->i_sb
));
6253 int ocfs2_convert_inline_data_to_extents(struct inode
*inode
,
6254 struct buffer_head
*di_bh
)
6256 int ret
, i
, has_data
, num_pages
= 0;
6258 u64
uninitialized_var(block
);
6259 struct ocfs2_inode_info
*oi
= OCFS2_I(inode
);
6260 struct ocfs2_super
*osb
= OCFS2_SB(inode
->i_sb
);
6261 struct ocfs2_dinode
*di
= (struct ocfs2_dinode
*)di_bh
->b_data
;
6262 struct ocfs2_alloc_context
*data_ac
= NULL
;
6263 struct page
**pages
= NULL
;
6264 loff_t end
= osb
->s_clustersize
;
6266 has_data
= i_size_read(inode
) ? 1 : 0;
6269 pages
= kcalloc(ocfs2_pages_per_cluster(osb
->sb
),
6270 sizeof(struct page
*), GFP_NOFS
);
6271 if (pages
== NULL
) {
6277 ret
= ocfs2_reserve_clusters(osb
, 1, &data_ac
);
6284 handle
= ocfs2_start_trans(osb
, OCFS2_INLINE_TO_EXTENTS_CREDITS
);
6285 if (IS_ERR(handle
)) {
6286 ret
= PTR_ERR(handle
);
6291 ret
= ocfs2_journal_access(handle
, inode
, di_bh
,
6292 OCFS2_JOURNAL_ACCESS_WRITE
);
6300 unsigned int page_end
;
6303 ret
= ocfs2_claim_clusters(osb
, handle
, data_ac
, 1, &bit_off
,
6311 * Save two copies, one for insert, and one that can
6312 * be changed by ocfs2_map_and_dirty_page() below.
6314 block
= phys
= ocfs2_clusters_to_blocks(inode
->i_sb
, bit_off
);
6317 * Non sparse file systems zero on extend, so no need
6320 if (!ocfs2_sparse_alloc(osb
) &&
6321 PAGE_CACHE_SIZE
< osb
->s_clustersize
)
6322 end
= PAGE_CACHE_SIZE
;
6324 ret
= ocfs2_grab_eof_pages(inode
, 0, end
, pages
, &num_pages
);
6331 * This should populate the 1st page for us and mark
6334 ret
= ocfs2_read_inline_data(inode
, pages
[0], di_bh
);
6340 page_end
= PAGE_CACHE_SIZE
;
6341 if (PAGE_CACHE_SIZE
> osb
->s_clustersize
)
6342 page_end
= osb
->s_clustersize
;
6344 for (i
= 0; i
< num_pages
; i
++)
6345 ocfs2_map_and_dirty_page(inode
, handle
, 0, page_end
,
6346 pages
[i
], i
> 0, &phys
);
6349 spin_lock(&oi
->ip_lock
);
6350 oi
->ip_dyn_features
&= ~OCFS2_INLINE_DATA_FL
;
6351 di
->i_dyn_features
= cpu_to_le16(oi
->ip_dyn_features
);
6352 spin_unlock(&oi
->ip_lock
);
6354 ocfs2_dinode_new_extent_list(inode
, di
);
6356 ocfs2_journal_dirty(handle
, di_bh
);
6360 * An error at this point should be extremely rare. If
6361 * this proves to be false, we could always re-build
6362 * the in-inode data from our pages.
6364 ret
= ocfs2_insert_extent(osb
, handle
, inode
, di_bh
,
6365 0, block
, 1, 0, NULL
);
6371 inode
->i_blocks
= ocfs2_inode_sector_count(inode
);
6375 ocfs2_commit_trans(osb
, handle
);
6379 ocfs2_free_alloc_context(data_ac
);
6383 ocfs2_unlock_and_free_pages(pages
, num_pages
);
6391 * It is expected, that by the time you call this function,
6392 * inode->i_size and fe->i_size have been adjusted.
6394 * WARNING: This will kfree the truncate context
6396 int ocfs2_commit_truncate(struct ocfs2_super
*osb
,
6397 struct inode
*inode
,
6398 struct buffer_head
*fe_bh
,
6399 struct ocfs2_truncate_context
*tc
)
6401 int status
, i
, credits
, tl_sem
= 0;
6402 u32 clusters_to_del
, new_highest_cpos
, range
;
6403 struct ocfs2_extent_list
*el
;
6404 handle_t
*handle
= NULL
;
6405 struct inode
*tl_inode
= osb
->osb_tl_inode
;
6406 struct ocfs2_path
*path
= NULL
;
6410 new_highest_cpos
= ocfs2_clusters_for_bytes(osb
->sb
,
6411 i_size_read(inode
));
6413 path
= ocfs2_new_inode_path(fe_bh
);
6420 ocfs2_extent_map_trunc(inode
, new_highest_cpos
);
6424 * Check that we still have allocation to delete.
6426 if (OCFS2_I(inode
)->ip_clusters
== 0) {
6432 * Truncate always works against the rightmost tree branch.
6434 status
= ocfs2_find_path(inode
, path
, UINT_MAX
);
6440 mlog(0, "inode->ip_clusters = %u, tree_depth = %u\n",
6441 OCFS2_I(inode
)->ip_clusters
, path
->p_tree_depth
);
6444 * By now, el will point to the extent list on the bottom most
6445 * portion of this tree. Only the tail record is considered in
6448 * We handle the following cases, in order:
6449 * - empty extent: delete the remaining branch
6450 * - remove the entire record
6451 * - remove a partial record
6452 * - no record needs to be removed (truncate has completed)
6454 el
= path_leaf_el(path
);
6455 if (le16_to_cpu(el
->l_next_free_rec
) == 0) {
6456 ocfs2_error(inode
->i_sb
,
6457 "Inode %llu has empty extent block at %llu\n",
6458 (unsigned long long)OCFS2_I(inode
)->ip_blkno
,
6459 (unsigned long long)path_leaf_bh(path
)->b_blocknr
);
6464 i
= le16_to_cpu(el
->l_next_free_rec
) - 1;
6465 range
= le32_to_cpu(el
->l_recs
[i
].e_cpos
) +
6466 ocfs2_rec_clusters(el
, &el
->l_recs
[i
]);
6467 if (i
== 0 && ocfs2_is_empty_extent(&el
->l_recs
[i
])) {
6468 clusters_to_del
= 0;
6469 } else if (le32_to_cpu(el
->l_recs
[i
].e_cpos
) >= new_highest_cpos
) {
6470 clusters_to_del
= ocfs2_rec_clusters(el
, &el
->l_recs
[i
]);
6471 } else if (range
> new_highest_cpos
) {
6472 clusters_to_del
= (ocfs2_rec_clusters(el
, &el
->l_recs
[i
]) +
6473 le32_to_cpu(el
->l_recs
[i
].e_cpos
)) -
6480 mlog(0, "clusters_to_del = %u in this pass, tail blk=%llu\n",
6481 clusters_to_del
, (unsigned long long)path_leaf_bh(path
)->b_blocknr
);
6483 mutex_lock(&tl_inode
->i_mutex
);
6485 /* ocfs2_truncate_log_needs_flush guarantees us at least one
6486 * record is free for use. If there isn't any, we flush to get
6487 * an empty truncate log. */
6488 if (ocfs2_truncate_log_needs_flush(osb
)) {
6489 status
= __ocfs2_flush_truncate_log(osb
);
6496 credits
= ocfs2_calc_tree_trunc_credits(osb
->sb
, clusters_to_del
,
6497 (struct ocfs2_dinode
*)fe_bh
->b_data
,
6499 handle
= ocfs2_start_trans(osb
, credits
);
6500 if (IS_ERR(handle
)) {
6501 status
= PTR_ERR(handle
);
6507 status
= ocfs2_do_truncate(osb
, clusters_to_del
, inode
, fe_bh
, handle
,
6514 mutex_unlock(&tl_inode
->i_mutex
);
6517 ocfs2_commit_trans(osb
, handle
);
6520 ocfs2_reinit_path(path
, 1);
6523 * The check above will catch the case where we've truncated
6524 * away all allocation.
6530 ocfs2_schedule_truncate_log_flush(osb
, 1);
6533 mutex_unlock(&tl_inode
->i_mutex
);
6536 ocfs2_commit_trans(osb
, handle
);
6538 ocfs2_run_deallocs(osb
, &tc
->tc_dealloc
);
6540 ocfs2_free_path(path
);
6542 /* This will drop the ext_alloc cluster lock for us */
6543 ocfs2_free_truncate_context(tc
);
6550 * Expects the inode to already be locked.
6552 int ocfs2_prepare_truncate(struct ocfs2_super
*osb
,
6553 struct inode
*inode
,
6554 struct buffer_head
*fe_bh
,
6555 struct ocfs2_truncate_context
**tc
)
6558 unsigned int new_i_clusters
;
6559 struct ocfs2_dinode
*fe
;
6560 struct ocfs2_extent_block
*eb
;
6561 struct buffer_head
*last_eb_bh
= NULL
;
6567 new_i_clusters
= ocfs2_clusters_for_bytes(osb
->sb
,
6568 i_size_read(inode
));
6569 fe
= (struct ocfs2_dinode
*) fe_bh
->b_data
;
6571 mlog(0, "fe->i_clusters = %u, new_i_clusters = %u, fe->i_size ="
6572 "%llu\n", le32_to_cpu(fe
->i_clusters
), new_i_clusters
,
6573 (unsigned long long)le64_to_cpu(fe
->i_size
));
6575 *tc
= kzalloc(sizeof(struct ocfs2_truncate_context
), GFP_KERNEL
);
6581 ocfs2_init_dealloc_ctxt(&(*tc
)->tc_dealloc
);
6583 if (fe
->id2
.i_list
.l_tree_depth
) {
6584 status
= ocfs2_read_block(osb
, le64_to_cpu(fe
->i_last_eb_blk
),
6585 &last_eb_bh
, OCFS2_BH_CACHED
, inode
);
6590 eb
= (struct ocfs2_extent_block
*) last_eb_bh
->b_data
;
6591 if (!OCFS2_IS_VALID_EXTENT_BLOCK(eb
)) {
6592 OCFS2_RO_ON_INVALID_EXTENT_BLOCK(inode
->i_sb
, eb
);
6600 (*tc
)->tc_last_eb_bh
= last_eb_bh
;
6606 ocfs2_free_truncate_context(*tc
);
6614 * 'start' is inclusive, 'end' is not.
6616 int ocfs2_truncate_inline(struct inode
*inode
, struct buffer_head
*di_bh
,
6617 unsigned int start
, unsigned int end
, int trunc
)
6620 unsigned int numbytes
;
6622 struct ocfs2_super
*osb
= OCFS2_SB(inode
->i_sb
);
6623 struct ocfs2_dinode
*di
= (struct ocfs2_dinode
*)di_bh
->b_data
;
6624 struct ocfs2_inline_data
*idata
= &di
->id2
.i_data
;
6626 if (end
> i_size_read(inode
))
6627 end
= i_size_read(inode
);
6629 BUG_ON(start
>= end
);
6631 if (!(OCFS2_I(inode
)->ip_dyn_features
& OCFS2_INLINE_DATA_FL
) ||
6632 !(le16_to_cpu(di
->i_dyn_features
) & OCFS2_INLINE_DATA_FL
) ||
6633 !ocfs2_supports_inline_data(osb
)) {
6634 ocfs2_error(inode
->i_sb
,
6635 "Inline data flags for inode %llu don't agree! "
6636 "Disk: 0x%x, Memory: 0x%x, Superblock: 0x%x\n",
6637 (unsigned long long)OCFS2_I(inode
)->ip_blkno
,
6638 le16_to_cpu(di
->i_dyn_features
),
6639 OCFS2_I(inode
)->ip_dyn_features
,
6640 osb
->s_feature_incompat
);
6645 handle
= ocfs2_start_trans(osb
, OCFS2_INODE_UPDATE_CREDITS
);
6646 if (IS_ERR(handle
)) {
6647 ret
= PTR_ERR(handle
);
6652 ret
= ocfs2_journal_access(handle
, inode
, di_bh
,
6653 OCFS2_JOURNAL_ACCESS_WRITE
);
6659 numbytes
= end
- start
;
6660 memset(idata
->id_data
+ start
, 0, numbytes
);
6663 * No need to worry about the data page here - it's been
6664 * truncated already and inline data doesn't need it for
6665 * pushing zero's to disk, so we'll let readpage pick it up
6669 i_size_write(inode
, start
);
6670 di
->i_size
= cpu_to_le64(start
);
6673 inode
->i_blocks
= ocfs2_inode_sector_count(inode
);
6674 inode
->i_ctime
= inode
->i_mtime
= CURRENT_TIME
;
6676 di
->i_ctime
= di
->i_mtime
= cpu_to_le64(inode
->i_ctime
.tv_sec
);
6677 di
->i_ctime_nsec
= di
->i_mtime_nsec
= cpu_to_le32(inode
->i_ctime
.tv_nsec
);
6679 ocfs2_journal_dirty(handle
, di_bh
);
6682 ocfs2_commit_trans(osb
, handle
);
6688 static void ocfs2_free_truncate_context(struct ocfs2_truncate_context
*tc
)
6691 * The caller is responsible for completing deallocation
6692 * before freeing the context.
6694 if (tc
->tc_dealloc
.c_first_suballocator
!= NULL
)
6696 "Truncate completion has non-empty dealloc context\n");
6698 if (tc
->tc_last_eb_bh
)
6699 brelse(tc
->tc_last_eb_bh
);