netwave: convert to net_device_ops
[linux-2.6/mini2440.git] / net / wireless / reg.c
blobeb8b8ed161554e869148285e5a164496a596686c
1 /*
2 * Copyright 2002-2005, Instant802 Networks, Inc.
3 * Copyright 2005-2006, Devicescape Software, Inc.
4 * Copyright 2007 Johannes Berg <johannes@sipsolutions.net>
5 * Copyright 2008 Luis R. Rodriguez <lrodriguz@atheros.com>
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License version 2 as
9 * published by the Free Software Foundation.
12 /**
13 * DOC: Wireless regulatory infrastructure
15 * The usual implementation is for a driver to read a device EEPROM to
16 * determine which regulatory domain it should be operating under, then
17 * looking up the allowable channels in a driver-local table and finally
18 * registering those channels in the wiphy structure.
20 * Another set of compliance enforcement is for drivers to use their
21 * own compliance limits which can be stored on the EEPROM. The host
22 * driver or firmware may ensure these are used.
24 * In addition to all this we provide an extra layer of regulatory
25 * conformance. For drivers which do not have any regulatory
26 * information CRDA provides the complete regulatory solution.
27 * For others it provides a community effort on further restrictions
28 * to enhance compliance.
30 * Note: When number of rules --> infinity we will not be able to
31 * index on alpha2 any more, instead we'll probably have to
32 * rely on some SHA1 checksum of the regdomain for example.
35 #include <linux/kernel.h>
36 #include <linux/list.h>
37 #include <linux/random.h>
38 #include <linux/nl80211.h>
39 #include <linux/platform_device.h>
40 #include <net/wireless.h>
41 #include <net/cfg80211.h>
42 #include "core.h"
43 #include "reg.h"
44 #include "nl80211.h"
46 /* Receipt of information from last regulatory request */
47 static struct regulatory_request *last_request;
49 /* To trigger userspace events */
50 static struct platform_device *reg_pdev;
52 /* Keep the ordering from large to small */
53 static u32 supported_bandwidths[] = {
54 MHZ_TO_KHZ(40),
55 MHZ_TO_KHZ(20),
59 * Central wireless core regulatory domains, we only need two,
60 * the current one and a world regulatory domain in case we have no
61 * information to give us an alpha2
63 const struct ieee80211_regdomain *cfg80211_regdomain;
66 * We use this as a place for the rd structure built from the
67 * last parsed country IE to rest until CRDA gets back to us with
68 * what it thinks should apply for the same country
70 static const struct ieee80211_regdomain *country_ie_regdomain;
72 /* Used to queue up regulatory hints */
73 static LIST_HEAD(reg_requests_list);
74 static spinlock_t reg_requests_lock;
76 /* Used to queue up beacon hints for review */
77 static LIST_HEAD(reg_pending_beacons);
78 static spinlock_t reg_pending_beacons_lock;
80 /* Used to keep track of processed beacon hints */
81 static LIST_HEAD(reg_beacon_list);
83 struct reg_beacon {
84 struct list_head list;
85 struct ieee80211_channel chan;
88 /* We keep a static world regulatory domain in case of the absence of CRDA */
89 static const struct ieee80211_regdomain world_regdom = {
90 .n_reg_rules = 5,
91 .alpha2 = "00",
92 .reg_rules = {
93 /* IEEE 802.11b/g, channels 1..11 */
94 REG_RULE(2412-10, 2462+10, 40, 6, 20, 0),
95 /* IEEE 802.11b/g, channels 12..13. No HT40
96 * channel fits here. */
97 REG_RULE(2467-10, 2472+10, 20, 6, 20,
98 NL80211_RRF_PASSIVE_SCAN |
99 NL80211_RRF_NO_IBSS),
100 /* IEEE 802.11 channel 14 - Only JP enables
101 * this and for 802.11b only */
102 REG_RULE(2484-10, 2484+10, 20, 6, 20,
103 NL80211_RRF_PASSIVE_SCAN |
104 NL80211_RRF_NO_IBSS |
105 NL80211_RRF_NO_OFDM),
106 /* IEEE 802.11a, channel 36..48 */
107 REG_RULE(5180-10, 5240+10, 40, 6, 20,
108 NL80211_RRF_PASSIVE_SCAN |
109 NL80211_RRF_NO_IBSS),
111 /* NB: 5260 MHz - 5700 MHz requies DFS */
113 /* IEEE 802.11a, channel 149..165 */
114 REG_RULE(5745-10, 5825+10, 40, 6, 20,
115 NL80211_RRF_PASSIVE_SCAN |
116 NL80211_RRF_NO_IBSS),
120 static const struct ieee80211_regdomain *cfg80211_world_regdom =
121 &world_regdom;
123 #ifdef CONFIG_WIRELESS_OLD_REGULATORY
124 static char *ieee80211_regdom = "US";
125 module_param(ieee80211_regdom, charp, 0444);
126 MODULE_PARM_DESC(ieee80211_regdom, "IEEE 802.11 regulatory domain code");
129 * We assume 40 MHz bandwidth for the old regulatory work.
130 * We make emphasis we are using the exact same frequencies
131 * as before
134 static const struct ieee80211_regdomain us_regdom = {
135 .n_reg_rules = 6,
136 .alpha2 = "US",
137 .reg_rules = {
138 /* IEEE 802.11b/g, channels 1..11 */
139 REG_RULE(2412-10, 2462+10, 40, 6, 27, 0),
140 /* IEEE 802.11a, channel 36 */
141 REG_RULE(5180-10, 5180+10, 40, 6, 23, 0),
142 /* IEEE 802.11a, channel 40 */
143 REG_RULE(5200-10, 5200+10, 40, 6, 23, 0),
144 /* IEEE 802.11a, channel 44 */
145 REG_RULE(5220-10, 5220+10, 40, 6, 23, 0),
146 /* IEEE 802.11a, channels 48..64 */
147 REG_RULE(5240-10, 5320+10, 40, 6, 23, 0),
148 /* IEEE 802.11a, channels 149..165, outdoor */
149 REG_RULE(5745-10, 5825+10, 40, 6, 30, 0),
153 static const struct ieee80211_regdomain jp_regdom = {
154 .n_reg_rules = 3,
155 .alpha2 = "JP",
156 .reg_rules = {
157 /* IEEE 802.11b/g, channels 1..14 */
158 REG_RULE(2412-10, 2484+10, 40, 6, 20, 0),
159 /* IEEE 802.11a, channels 34..48 */
160 REG_RULE(5170-10, 5240+10, 40, 6, 20,
161 NL80211_RRF_PASSIVE_SCAN),
162 /* IEEE 802.11a, channels 52..64 */
163 REG_RULE(5260-10, 5320+10, 40, 6, 20,
164 NL80211_RRF_NO_IBSS |
165 NL80211_RRF_DFS),
169 static const struct ieee80211_regdomain eu_regdom = {
170 .n_reg_rules = 6,
172 * This alpha2 is bogus, we leave it here just for stupid
173 * backward compatibility
175 .alpha2 = "EU",
176 .reg_rules = {
177 /* IEEE 802.11b/g, channels 1..13 */
178 REG_RULE(2412-10, 2472+10, 40, 6, 20, 0),
179 /* IEEE 802.11a, channel 36 */
180 REG_RULE(5180-10, 5180+10, 40, 6, 23,
181 NL80211_RRF_PASSIVE_SCAN),
182 /* IEEE 802.11a, channel 40 */
183 REG_RULE(5200-10, 5200+10, 40, 6, 23,
184 NL80211_RRF_PASSIVE_SCAN),
185 /* IEEE 802.11a, channel 44 */
186 REG_RULE(5220-10, 5220+10, 40, 6, 23,
187 NL80211_RRF_PASSIVE_SCAN),
188 /* IEEE 802.11a, channels 48..64 */
189 REG_RULE(5240-10, 5320+10, 40, 6, 20,
190 NL80211_RRF_NO_IBSS |
191 NL80211_RRF_DFS),
192 /* IEEE 802.11a, channels 100..140 */
193 REG_RULE(5500-10, 5700+10, 40, 6, 30,
194 NL80211_RRF_NO_IBSS |
195 NL80211_RRF_DFS),
199 static const struct ieee80211_regdomain *static_regdom(char *alpha2)
201 if (alpha2[0] == 'U' && alpha2[1] == 'S')
202 return &us_regdom;
203 if (alpha2[0] == 'J' && alpha2[1] == 'P')
204 return &jp_regdom;
205 if (alpha2[0] == 'E' && alpha2[1] == 'U')
206 return &eu_regdom;
207 /* Default, as per the old rules */
208 return &us_regdom;
211 static bool is_old_static_regdom(const struct ieee80211_regdomain *rd)
213 if (rd == &us_regdom || rd == &jp_regdom || rd == &eu_regdom)
214 return true;
215 return false;
217 #else
218 static inline bool is_old_static_regdom(const struct ieee80211_regdomain *rd)
220 return false;
222 #endif
224 static void reset_regdomains(void)
226 /* avoid freeing static information or freeing something twice */
227 if (cfg80211_regdomain == cfg80211_world_regdom)
228 cfg80211_regdomain = NULL;
229 if (cfg80211_world_regdom == &world_regdom)
230 cfg80211_world_regdom = NULL;
231 if (cfg80211_regdomain == &world_regdom)
232 cfg80211_regdomain = NULL;
233 if (is_old_static_regdom(cfg80211_regdomain))
234 cfg80211_regdomain = NULL;
236 kfree(cfg80211_regdomain);
237 kfree(cfg80211_world_regdom);
239 cfg80211_world_regdom = &world_regdom;
240 cfg80211_regdomain = NULL;
244 * Dynamic world regulatory domain requested by the wireless
245 * core upon initialization
247 static void update_world_regdomain(const struct ieee80211_regdomain *rd)
249 BUG_ON(!last_request);
251 reset_regdomains();
253 cfg80211_world_regdom = rd;
254 cfg80211_regdomain = rd;
257 bool is_world_regdom(const char *alpha2)
259 if (!alpha2)
260 return false;
261 if (alpha2[0] == '0' && alpha2[1] == '0')
262 return true;
263 return false;
266 static bool is_alpha2_set(const char *alpha2)
268 if (!alpha2)
269 return false;
270 if (alpha2[0] != 0 && alpha2[1] != 0)
271 return true;
272 return false;
275 static bool is_alpha_upper(char letter)
277 /* ASCII A - Z */
278 if (letter >= 65 && letter <= 90)
279 return true;
280 return false;
283 static bool is_unknown_alpha2(const char *alpha2)
285 if (!alpha2)
286 return false;
288 * Special case where regulatory domain was built by driver
289 * but a specific alpha2 cannot be determined
291 if (alpha2[0] == '9' && alpha2[1] == '9')
292 return true;
293 return false;
296 static bool is_intersected_alpha2(const char *alpha2)
298 if (!alpha2)
299 return false;
301 * Special case where regulatory domain is the
302 * result of an intersection between two regulatory domain
303 * structures
305 if (alpha2[0] == '9' && alpha2[1] == '8')
306 return true;
307 return false;
310 static bool is_an_alpha2(const char *alpha2)
312 if (!alpha2)
313 return false;
314 if (is_alpha_upper(alpha2[0]) && is_alpha_upper(alpha2[1]))
315 return true;
316 return false;
319 static bool alpha2_equal(const char *alpha2_x, const char *alpha2_y)
321 if (!alpha2_x || !alpha2_y)
322 return false;
323 if (alpha2_x[0] == alpha2_y[0] &&
324 alpha2_x[1] == alpha2_y[1])
325 return true;
326 return false;
329 static bool regdom_changes(const char *alpha2)
331 assert_cfg80211_lock();
333 if (!cfg80211_regdomain)
334 return true;
335 if (alpha2_equal(cfg80211_regdomain->alpha2, alpha2))
336 return false;
337 return true;
341 * country_ie_integrity_changes - tells us if the country IE has changed
342 * @checksum: checksum of country IE of fields we are interested in
344 * If the country IE has not changed you can ignore it safely. This is
345 * useful to determine if two devices are seeing two different country IEs
346 * even on the same alpha2. Note that this will return false if no IE has
347 * been set on the wireless core yet.
349 static bool country_ie_integrity_changes(u32 checksum)
351 /* If no IE has been set then the checksum doesn't change */
352 if (unlikely(!last_request->country_ie_checksum))
353 return false;
354 if (unlikely(last_request->country_ie_checksum != checksum))
355 return true;
356 return false;
360 * This lets us keep regulatory code which is updated on a regulatory
361 * basis in userspace.
363 static int call_crda(const char *alpha2)
365 char country_env[9 + 2] = "COUNTRY=";
366 char *envp[] = {
367 country_env,
368 NULL
371 if (!is_world_regdom((char *) alpha2))
372 printk(KERN_INFO "cfg80211: Calling CRDA for country: %c%c\n",
373 alpha2[0], alpha2[1]);
374 else
375 printk(KERN_INFO "cfg80211: Calling CRDA to update world "
376 "regulatory domain\n");
378 country_env[8] = alpha2[0];
379 country_env[9] = alpha2[1];
381 return kobject_uevent_env(&reg_pdev->dev.kobj, KOBJ_CHANGE, envp);
384 /* Used by nl80211 before kmalloc'ing our regulatory domain */
385 bool reg_is_valid_request(const char *alpha2)
387 if (!last_request)
388 return false;
390 return alpha2_equal(last_request->alpha2, alpha2);
393 /* Sanity check on a regulatory rule */
394 static bool is_valid_reg_rule(const struct ieee80211_reg_rule *rule)
396 const struct ieee80211_freq_range *freq_range = &rule->freq_range;
397 u32 freq_diff;
399 if (freq_range->start_freq_khz <= 0 || freq_range->end_freq_khz <= 0)
400 return false;
402 if (freq_range->start_freq_khz > freq_range->end_freq_khz)
403 return false;
405 freq_diff = freq_range->end_freq_khz - freq_range->start_freq_khz;
407 if (freq_range->end_freq_khz <= freq_range->start_freq_khz ||
408 freq_range->max_bandwidth_khz > freq_diff)
409 return false;
411 return true;
414 static bool is_valid_rd(const struct ieee80211_regdomain *rd)
416 const struct ieee80211_reg_rule *reg_rule = NULL;
417 unsigned int i;
419 if (!rd->n_reg_rules)
420 return false;
422 if (WARN_ON(rd->n_reg_rules > NL80211_MAX_SUPP_REG_RULES))
423 return false;
425 for (i = 0; i < rd->n_reg_rules; i++) {
426 reg_rule = &rd->reg_rules[i];
427 if (!is_valid_reg_rule(reg_rule))
428 return false;
431 return true;
434 /* Returns value in KHz */
435 static u32 freq_max_bandwidth(const struct ieee80211_freq_range *freq_range,
436 u32 freq)
438 unsigned int i;
439 for (i = 0; i < ARRAY_SIZE(supported_bandwidths); i++) {
440 u32 start_freq_khz = freq - supported_bandwidths[i]/2;
441 u32 end_freq_khz = freq + supported_bandwidths[i]/2;
442 if (start_freq_khz >= freq_range->start_freq_khz &&
443 end_freq_khz <= freq_range->end_freq_khz)
444 return supported_bandwidths[i];
446 return 0;
450 * freq_in_rule_band - tells us if a frequency is in a frequency band
451 * @freq_range: frequency rule we want to query
452 * @freq_khz: frequency we are inquiring about
454 * This lets us know if a specific frequency rule is or is not relevant to
455 * a specific frequency's band. Bands are device specific and artificial
456 * definitions (the "2.4 GHz band" and the "5 GHz band"), however it is
457 * safe for now to assume that a frequency rule should not be part of a
458 * frequency's band if the start freq or end freq are off by more than 2 GHz.
459 * This resolution can be lowered and should be considered as we add
460 * regulatory rule support for other "bands".
462 static bool freq_in_rule_band(const struct ieee80211_freq_range *freq_range,
463 u32 freq_khz)
465 #define ONE_GHZ_IN_KHZ 1000000
466 if (abs(freq_khz - freq_range->start_freq_khz) <= (2 * ONE_GHZ_IN_KHZ))
467 return true;
468 if (abs(freq_khz - freq_range->end_freq_khz) <= (2 * ONE_GHZ_IN_KHZ))
469 return true;
470 return false;
471 #undef ONE_GHZ_IN_KHZ
475 * Converts a country IE to a regulatory domain. A regulatory domain
476 * structure has a lot of information which the IE doesn't yet have,
477 * so for the other values we use upper max values as we will intersect
478 * with our userspace regulatory agent to get lower bounds.
480 static struct ieee80211_regdomain *country_ie_2_rd(
481 u8 *country_ie,
482 u8 country_ie_len,
483 u32 *checksum)
485 struct ieee80211_regdomain *rd = NULL;
486 unsigned int i = 0;
487 char alpha2[2];
488 u32 flags = 0;
489 u32 num_rules = 0, size_of_regd = 0;
490 u8 *triplets_start = NULL;
491 u8 len_at_triplet = 0;
492 /* the last channel we have registered in a subband (triplet) */
493 int last_sub_max_channel = 0;
495 *checksum = 0xDEADBEEF;
497 /* Country IE requirements */
498 BUG_ON(country_ie_len < IEEE80211_COUNTRY_IE_MIN_LEN ||
499 country_ie_len & 0x01);
501 alpha2[0] = country_ie[0];
502 alpha2[1] = country_ie[1];
505 * Third octet can be:
506 * 'I' - Indoor
507 * 'O' - Outdoor
509 * anything else we assume is no restrictions
511 if (country_ie[2] == 'I')
512 flags = NL80211_RRF_NO_OUTDOOR;
513 else if (country_ie[2] == 'O')
514 flags = NL80211_RRF_NO_INDOOR;
516 country_ie += 3;
517 country_ie_len -= 3;
519 triplets_start = country_ie;
520 len_at_triplet = country_ie_len;
522 *checksum ^= ((flags ^ alpha2[0] ^ alpha2[1]) << 8);
525 * We need to build a reg rule for each triplet, but first we must
526 * calculate the number of reg rules we will need. We will need one
527 * for each channel subband
529 while (country_ie_len >= 3) {
530 int end_channel = 0;
531 struct ieee80211_country_ie_triplet *triplet =
532 (struct ieee80211_country_ie_triplet *) country_ie;
533 int cur_sub_max_channel = 0, cur_channel = 0;
535 if (triplet->ext.reg_extension_id >=
536 IEEE80211_COUNTRY_EXTENSION_ID) {
537 country_ie += 3;
538 country_ie_len -= 3;
539 continue;
542 /* 2 GHz */
543 if (triplet->chans.first_channel <= 14)
544 end_channel = triplet->chans.first_channel +
545 triplet->chans.num_channels;
546 else
548 * 5 GHz -- For example in country IEs if the first
549 * channel given is 36 and the number of channels is 4
550 * then the individual channel numbers defined for the
551 * 5 GHz PHY by these parameters are: 36, 40, 44, and 48
552 * and not 36, 37, 38, 39.
554 * See: http://tinyurl.com/11d-clarification
556 end_channel = triplet->chans.first_channel +
557 (4 * (triplet->chans.num_channels - 1));
559 cur_channel = triplet->chans.first_channel;
560 cur_sub_max_channel = end_channel;
562 /* Basic sanity check */
563 if (cur_sub_max_channel < cur_channel)
564 return NULL;
567 * Do not allow overlapping channels. Also channels
568 * passed in each subband must be monotonically
569 * increasing
571 if (last_sub_max_channel) {
572 if (cur_channel <= last_sub_max_channel)
573 return NULL;
574 if (cur_sub_max_channel <= last_sub_max_channel)
575 return NULL;
579 * When dot11RegulatoryClassesRequired is supported
580 * we can throw ext triplets as part of this soup,
581 * for now we don't care when those change as we
582 * don't support them
584 *checksum ^= ((cur_channel ^ cur_sub_max_channel) << 8) |
585 ((cur_sub_max_channel ^ cur_sub_max_channel) << 16) |
586 ((triplet->chans.max_power ^ cur_sub_max_channel) << 24);
588 last_sub_max_channel = cur_sub_max_channel;
590 country_ie += 3;
591 country_ie_len -= 3;
592 num_rules++;
595 * Note: this is not a IEEE requirement but
596 * simply a memory requirement
598 if (num_rules > NL80211_MAX_SUPP_REG_RULES)
599 return NULL;
602 country_ie = triplets_start;
603 country_ie_len = len_at_triplet;
605 size_of_regd = sizeof(struct ieee80211_regdomain) +
606 (num_rules * sizeof(struct ieee80211_reg_rule));
608 rd = kzalloc(size_of_regd, GFP_KERNEL);
609 if (!rd)
610 return NULL;
612 rd->n_reg_rules = num_rules;
613 rd->alpha2[0] = alpha2[0];
614 rd->alpha2[1] = alpha2[1];
616 /* This time around we fill in the rd */
617 while (country_ie_len >= 3) {
618 int end_channel = 0;
619 struct ieee80211_country_ie_triplet *triplet =
620 (struct ieee80211_country_ie_triplet *) country_ie;
621 struct ieee80211_reg_rule *reg_rule = NULL;
622 struct ieee80211_freq_range *freq_range = NULL;
623 struct ieee80211_power_rule *power_rule = NULL;
626 * Must parse if dot11RegulatoryClassesRequired is true,
627 * we don't support this yet
629 if (triplet->ext.reg_extension_id >=
630 IEEE80211_COUNTRY_EXTENSION_ID) {
631 country_ie += 3;
632 country_ie_len -= 3;
633 continue;
636 reg_rule = &rd->reg_rules[i];
637 freq_range = &reg_rule->freq_range;
638 power_rule = &reg_rule->power_rule;
640 reg_rule->flags = flags;
642 /* 2 GHz */
643 if (triplet->chans.first_channel <= 14)
644 end_channel = triplet->chans.first_channel +
645 triplet->chans.num_channels;
646 else
647 end_channel = triplet->chans.first_channel +
648 (4 * (triplet->chans.num_channels - 1));
651 * The +10 is since the regulatory domain expects
652 * the actual band edge, not the center of freq for
653 * its start and end freqs, assuming 20 MHz bandwidth on
654 * the channels passed
656 freq_range->start_freq_khz =
657 MHZ_TO_KHZ(ieee80211_channel_to_frequency(
658 triplet->chans.first_channel) - 10);
659 freq_range->end_freq_khz =
660 MHZ_TO_KHZ(ieee80211_channel_to_frequency(
661 end_channel) + 10);
664 * These are large arbitrary values we use to intersect later.
665 * Increment this if we ever support >= 40 MHz channels
666 * in IEEE 802.11
668 freq_range->max_bandwidth_khz = MHZ_TO_KHZ(40);
669 power_rule->max_antenna_gain = DBI_TO_MBI(100);
670 power_rule->max_eirp = DBM_TO_MBM(100);
672 country_ie += 3;
673 country_ie_len -= 3;
674 i++;
676 BUG_ON(i > NL80211_MAX_SUPP_REG_RULES);
679 return rd;
684 * Helper for regdom_intersect(), this does the real
685 * mathematical intersection fun
687 static int reg_rules_intersect(
688 const struct ieee80211_reg_rule *rule1,
689 const struct ieee80211_reg_rule *rule2,
690 struct ieee80211_reg_rule *intersected_rule)
692 const struct ieee80211_freq_range *freq_range1, *freq_range2;
693 struct ieee80211_freq_range *freq_range;
694 const struct ieee80211_power_rule *power_rule1, *power_rule2;
695 struct ieee80211_power_rule *power_rule;
696 u32 freq_diff;
698 freq_range1 = &rule1->freq_range;
699 freq_range2 = &rule2->freq_range;
700 freq_range = &intersected_rule->freq_range;
702 power_rule1 = &rule1->power_rule;
703 power_rule2 = &rule2->power_rule;
704 power_rule = &intersected_rule->power_rule;
706 freq_range->start_freq_khz = max(freq_range1->start_freq_khz,
707 freq_range2->start_freq_khz);
708 freq_range->end_freq_khz = min(freq_range1->end_freq_khz,
709 freq_range2->end_freq_khz);
710 freq_range->max_bandwidth_khz = min(freq_range1->max_bandwidth_khz,
711 freq_range2->max_bandwidth_khz);
713 freq_diff = freq_range->end_freq_khz - freq_range->start_freq_khz;
714 if (freq_range->max_bandwidth_khz > freq_diff)
715 freq_range->max_bandwidth_khz = freq_diff;
717 power_rule->max_eirp = min(power_rule1->max_eirp,
718 power_rule2->max_eirp);
719 power_rule->max_antenna_gain = min(power_rule1->max_antenna_gain,
720 power_rule2->max_antenna_gain);
722 intersected_rule->flags = (rule1->flags | rule2->flags);
724 if (!is_valid_reg_rule(intersected_rule))
725 return -EINVAL;
727 return 0;
731 * regdom_intersect - do the intersection between two regulatory domains
732 * @rd1: first regulatory domain
733 * @rd2: second regulatory domain
735 * Use this function to get the intersection between two regulatory domains.
736 * Once completed we will mark the alpha2 for the rd as intersected, "98",
737 * as no one single alpha2 can represent this regulatory domain.
739 * Returns a pointer to the regulatory domain structure which will hold the
740 * resulting intersection of rules between rd1 and rd2. We will
741 * kzalloc() this structure for you.
743 static struct ieee80211_regdomain *regdom_intersect(
744 const struct ieee80211_regdomain *rd1,
745 const struct ieee80211_regdomain *rd2)
747 int r, size_of_regd;
748 unsigned int x, y;
749 unsigned int num_rules = 0, rule_idx = 0;
750 const struct ieee80211_reg_rule *rule1, *rule2;
751 struct ieee80211_reg_rule *intersected_rule;
752 struct ieee80211_regdomain *rd;
753 /* This is just a dummy holder to help us count */
754 struct ieee80211_reg_rule irule;
756 /* Uses the stack temporarily for counter arithmetic */
757 intersected_rule = &irule;
759 memset(intersected_rule, 0, sizeof(struct ieee80211_reg_rule));
761 if (!rd1 || !rd2)
762 return NULL;
765 * First we get a count of the rules we'll need, then we actually
766 * build them. This is to so we can malloc() and free() a
767 * regdomain once. The reason we use reg_rules_intersect() here
768 * is it will return -EINVAL if the rule computed makes no sense.
769 * All rules that do check out OK are valid.
772 for (x = 0; x < rd1->n_reg_rules; x++) {
773 rule1 = &rd1->reg_rules[x];
774 for (y = 0; y < rd2->n_reg_rules; y++) {
775 rule2 = &rd2->reg_rules[y];
776 if (!reg_rules_intersect(rule1, rule2,
777 intersected_rule))
778 num_rules++;
779 memset(intersected_rule, 0,
780 sizeof(struct ieee80211_reg_rule));
784 if (!num_rules)
785 return NULL;
787 size_of_regd = sizeof(struct ieee80211_regdomain) +
788 ((num_rules + 1) * sizeof(struct ieee80211_reg_rule));
790 rd = kzalloc(size_of_regd, GFP_KERNEL);
791 if (!rd)
792 return NULL;
794 for (x = 0; x < rd1->n_reg_rules; x++) {
795 rule1 = &rd1->reg_rules[x];
796 for (y = 0; y < rd2->n_reg_rules; y++) {
797 rule2 = &rd2->reg_rules[y];
799 * This time around instead of using the stack lets
800 * write to the target rule directly saving ourselves
801 * a memcpy()
803 intersected_rule = &rd->reg_rules[rule_idx];
804 r = reg_rules_intersect(rule1, rule2,
805 intersected_rule);
807 * No need to memset here the intersected rule here as
808 * we're not using the stack anymore
810 if (r)
811 continue;
812 rule_idx++;
816 if (rule_idx != num_rules) {
817 kfree(rd);
818 return NULL;
821 rd->n_reg_rules = num_rules;
822 rd->alpha2[0] = '9';
823 rd->alpha2[1] = '8';
825 return rd;
829 * XXX: add support for the rest of enum nl80211_reg_rule_flags, we may
830 * want to just have the channel structure use these
832 static u32 map_regdom_flags(u32 rd_flags)
834 u32 channel_flags = 0;
835 if (rd_flags & NL80211_RRF_PASSIVE_SCAN)
836 channel_flags |= IEEE80211_CHAN_PASSIVE_SCAN;
837 if (rd_flags & NL80211_RRF_NO_IBSS)
838 channel_flags |= IEEE80211_CHAN_NO_IBSS;
839 if (rd_flags & NL80211_RRF_DFS)
840 channel_flags |= IEEE80211_CHAN_RADAR;
841 return channel_flags;
844 static int freq_reg_info_regd(struct wiphy *wiphy,
845 u32 center_freq,
846 u32 *bandwidth,
847 const struct ieee80211_reg_rule **reg_rule,
848 const struct ieee80211_regdomain *custom_regd)
850 int i;
851 bool band_rule_found = false;
852 const struct ieee80211_regdomain *regd;
853 u32 max_bandwidth = 0;
855 regd = custom_regd ? custom_regd : cfg80211_regdomain;
858 * Follow the driver's regulatory domain, if present, unless a country
859 * IE has been processed or a user wants to help complaince further
861 if (last_request->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE &&
862 last_request->initiator != NL80211_REGDOM_SET_BY_USER &&
863 wiphy->regd)
864 regd = wiphy->regd;
866 if (!regd)
867 return -EINVAL;
869 for (i = 0; i < regd->n_reg_rules; i++) {
870 const struct ieee80211_reg_rule *rr;
871 const struct ieee80211_freq_range *fr = NULL;
872 const struct ieee80211_power_rule *pr = NULL;
874 rr = &regd->reg_rules[i];
875 fr = &rr->freq_range;
876 pr = &rr->power_rule;
879 * We only need to know if one frequency rule was
880 * was in center_freq's band, that's enough, so lets
881 * not overwrite it once found
883 if (!band_rule_found)
884 band_rule_found = freq_in_rule_band(fr, center_freq);
886 max_bandwidth = freq_max_bandwidth(fr, center_freq);
888 if (max_bandwidth && *bandwidth <= max_bandwidth) {
889 *reg_rule = rr;
890 *bandwidth = max_bandwidth;
891 break;
895 if (!band_rule_found)
896 return -ERANGE;
898 return !max_bandwidth;
900 EXPORT_SYMBOL(freq_reg_info);
902 int freq_reg_info(struct wiphy *wiphy, u32 center_freq, u32 *bandwidth,
903 const struct ieee80211_reg_rule **reg_rule)
905 return freq_reg_info_regd(wiphy, center_freq,
906 bandwidth, reg_rule, NULL);
909 static void handle_channel(struct wiphy *wiphy, enum ieee80211_band band,
910 unsigned int chan_idx)
912 int r;
913 u32 flags;
914 u32 max_bandwidth = 0;
915 const struct ieee80211_reg_rule *reg_rule = NULL;
916 const struct ieee80211_power_rule *power_rule = NULL;
917 struct ieee80211_supported_band *sband;
918 struct ieee80211_channel *chan;
919 struct wiphy *request_wiphy = NULL;
921 assert_cfg80211_lock();
923 request_wiphy = wiphy_idx_to_wiphy(last_request->wiphy_idx);
925 sband = wiphy->bands[band];
926 BUG_ON(chan_idx >= sband->n_channels);
927 chan = &sband->channels[chan_idx];
929 flags = chan->orig_flags;
931 r = freq_reg_info(wiphy, MHZ_TO_KHZ(chan->center_freq),
932 &max_bandwidth, &reg_rule);
934 if (r) {
936 * This means no regulatory rule was found in the country IE
937 * with a frequency range on the center_freq's band, since
938 * IEEE-802.11 allows for a country IE to have a subset of the
939 * regulatory information provided in a country we ignore
940 * disabling the channel unless at least one reg rule was
941 * found on the center_freq's band. For details see this
942 * clarification:
944 * http://tinyurl.com/11d-clarification
946 if (r == -ERANGE &&
947 last_request->initiator ==
948 NL80211_REGDOM_SET_BY_COUNTRY_IE) {
949 #ifdef CONFIG_CFG80211_REG_DEBUG
950 printk(KERN_DEBUG "cfg80211: Leaving channel %d MHz "
951 "intact on %s - no rule found in band on "
952 "Country IE\n",
953 chan->center_freq, wiphy_name(wiphy));
954 #endif
955 } else {
957 * In this case we know the country IE has at least one reg rule
958 * for the band so we respect its band definitions
960 #ifdef CONFIG_CFG80211_REG_DEBUG
961 if (last_request->initiator ==
962 NL80211_REGDOM_SET_BY_COUNTRY_IE)
963 printk(KERN_DEBUG "cfg80211: Disabling "
964 "channel %d MHz on %s due to "
965 "Country IE\n",
966 chan->center_freq, wiphy_name(wiphy));
967 #endif
968 flags |= IEEE80211_CHAN_DISABLED;
969 chan->flags = flags;
971 return;
974 power_rule = &reg_rule->power_rule;
976 if (last_request->initiator == NL80211_REGDOM_SET_BY_DRIVER &&
977 request_wiphy && request_wiphy == wiphy &&
978 request_wiphy->strict_regulatory) {
980 * This gaurantees the driver's requested regulatory domain
981 * will always be used as a base for further regulatory
982 * settings
984 chan->flags = chan->orig_flags =
985 map_regdom_flags(reg_rule->flags);
986 chan->max_antenna_gain = chan->orig_mag =
987 (int) MBI_TO_DBI(power_rule->max_antenna_gain);
988 chan->max_bandwidth = KHZ_TO_MHZ(max_bandwidth);
989 chan->max_power = chan->orig_mpwr =
990 (int) MBM_TO_DBM(power_rule->max_eirp);
991 return;
994 chan->flags = flags | map_regdom_flags(reg_rule->flags);
995 chan->max_antenna_gain = min(chan->orig_mag,
996 (int) MBI_TO_DBI(power_rule->max_antenna_gain));
997 chan->max_bandwidth = KHZ_TO_MHZ(max_bandwidth);
998 if (chan->orig_mpwr)
999 chan->max_power = min(chan->orig_mpwr,
1000 (int) MBM_TO_DBM(power_rule->max_eirp));
1001 else
1002 chan->max_power = (int) MBM_TO_DBM(power_rule->max_eirp);
1005 static void handle_band(struct wiphy *wiphy, enum ieee80211_band band)
1007 unsigned int i;
1008 struct ieee80211_supported_band *sband;
1010 BUG_ON(!wiphy->bands[band]);
1011 sband = wiphy->bands[band];
1013 for (i = 0; i < sband->n_channels; i++)
1014 handle_channel(wiphy, band, i);
1017 static bool ignore_reg_update(struct wiphy *wiphy,
1018 enum nl80211_reg_initiator initiator)
1020 if (!last_request)
1021 return true;
1022 if (initiator == NL80211_REGDOM_SET_BY_CORE &&
1023 wiphy->custom_regulatory)
1024 return true;
1026 * wiphy->regd will be set once the device has its own
1027 * desired regulatory domain set
1029 if (wiphy->strict_regulatory && !wiphy->regd &&
1030 !is_world_regdom(last_request->alpha2))
1031 return true;
1032 return false;
1035 static void update_all_wiphy_regulatory(enum nl80211_reg_initiator initiator)
1037 struct cfg80211_registered_device *drv;
1039 list_for_each_entry(drv, &cfg80211_drv_list, list)
1040 wiphy_update_regulatory(&drv->wiphy, initiator);
1043 static void handle_reg_beacon(struct wiphy *wiphy,
1044 unsigned int chan_idx,
1045 struct reg_beacon *reg_beacon)
1047 #ifdef CONFIG_CFG80211_REG_DEBUG
1048 #define REG_DEBUG_BEACON_FLAG(desc) \
1049 printk(KERN_DEBUG "cfg80211: Enabling " desc " on " \
1050 "frequency: %d MHz (Ch %d) on %s\n", \
1051 reg_beacon->chan.center_freq, \
1052 ieee80211_frequency_to_channel(reg_beacon->chan.center_freq), \
1053 wiphy_name(wiphy));
1054 #else
1055 #define REG_DEBUG_BEACON_FLAG(desc) do {} while (0)
1056 #endif
1057 struct ieee80211_supported_band *sband;
1058 struct ieee80211_channel *chan;
1060 assert_cfg80211_lock();
1062 sband = wiphy->bands[reg_beacon->chan.band];
1063 chan = &sband->channels[chan_idx];
1065 if (likely(chan->center_freq != reg_beacon->chan.center_freq))
1066 return;
1068 if (chan->flags & IEEE80211_CHAN_PASSIVE_SCAN) {
1069 chan->flags &= ~IEEE80211_CHAN_PASSIVE_SCAN;
1070 REG_DEBUG_BEACON_FLAG("active scanning");
1073 if (chan->flags & IEEE80211_CHAN_NO_IBSS) {
1074 chan->flags &= ~IEEE80211_CHAN_NO_IBSS;
1075 REG_DEBUG_BEACON_FLAG("beaconing");
1078 chan->beacon_found = true;
1079 #undef REG_DEBUG_BEACON_FLAG
1083 * Called when a scan on a wiphy finds a beacon on
1084 * new channel
1086 static void wiphy_update_new_beacon(struct wiphy *wiphy,
1087 struct reg_beacon *reg_beacon)
1089 unsigned int i;
1090 struct ieee80211_supported_band *sband;
1092 assert_cfg80211_lock();
1094 if (!wiphy->bands[reg_beacon->chan.band])
1095 return;
1097 sband = wiphy->bands[reg_beacon->chan.band];
1099 for (i = 0; i < sband->n_channels; i++)
1100 handle_reg_beacon(wiphy, i, reg_beacon);
1104 * Called upon reg changes or a new wiphy is added
1106 static void wiphy_update_beacon_reg(struct wiphy *wiphy)
1108 unsigned int i;
1109 struct ieee80211_supported_band *sband;
1110 struct reg_beacon *reg_beacon;
1112 assert_cfg80211_lock();
1114 if (list_empty(&reg_beacon_list))
1115 return;
1117 list_for_each_entry(reg_beacon, &reg_beacon_list, list) {
1118 if (!wiphy->bands[reg_beacon->chan.band])
1119 continue;
1120 sband = wiphy->bands[reg_beacon->chan.band];
1121 for (i = 0; i < sband->n_channels; i++)
1122 handle_reg_beacon(wiphy, i, reg_beacon);
1126 static bool reg_is_world_roaming(struct wiphy *wiphy)
1128 if (is_world_regdom(cfg80211_regdomain->alpha2) ||
1129 (wiphy->regd && is_world_regdom(wiphy->regd->alpha2)))
1130 return true;
1131 if (last_request->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE &&
1132 wiphy->custom_regulatory)
1133 return true;
1134 return false;
1137 /* Reap the advantages of previously found beacons */
1138 static void reg_process_beacons(struct wiphy *wiphy)
1140 if (!reg_is_world_roaming(wiphy))
1141 return;
1142 wiphy_update_beacon_reg(wiphy);
1145 void wiphy_update_regulatory(struct wiphy *wiphy,
1146 enum nl80211_reg_initiator initiator)
1148 enum ieee80211_band band;
1150 if (ignore_reg_update(wiphy, initiator))
1151 goto out;
1152 for (band = 0; band < IEEE80211_NUM_BANDS; band++) {
1153 if (wiphy->bands[band])
1154 handle_band(wiphy, band);
1156 out:
1157 reg_process_beacons(wiphy);
1158 if (wiphy->reg_notifier)
1159 wiphy->reg_notifier(wiphy, last_request);
1162 static void handle_channel_custom(struct wiphy *wiphy,
1163 enum ieee80211_band band,
1164 unsigned int chan_idx,
1165 const struct ieee80211_regdomain *regd)
1167 int r;
1168 u32 max_bandwidth = 0;
1169 const struct ieee80211_reg_rule *reg_rule = NULL;
1170 const struct ieee80211_power_rule *power_rule = NULL;
1171 struct ieee80211_supported_band *sband;
1172 struct ieee80211_channel *chan;
1174 sband = wiphy->bands[band];
1175 BUG_ON(chan_idx >= sband->n_channels);
1176 chan = &sband->channels[chan_idx];
1178 r = freq_reg_info_regd(wiphy, MHZ_TO_KHZ(chan->center_freq),
1179 &max_bandwidth, &reg_rule, regd);
1181 if (r) {
1182 chan->flags = IEEE80211_CHAN_DISABLED;
1183 return;
1186 power_rule = &reg_rule->power_rule;
1188 chan->flags |= map_regdom_flags(reg_rule->flags);
1189 chan->max_antenna_gain = (int) MBI_TO_DBI(power_rule->max_antenna_gain);
1190 chan->max_bandwidth = KHZ_TO_MHZ(max_bandwidth);
1191 chan->max_power = (int) MBM_TO_DBM(power_rule->max_eirp);
1194 static void handle_band_custom(struct wiphy *wiphy, enum ieee80211_band band,
1195 const struct ieee80211_regdomain *regd)
1197 unsigned int i;
1198 struct ieee80211_supported_band *sband;
1200 BUG_ON(!wiphy->bands[band]);
1201 sband = wiphy->bands[band];
1203 for (i = 0; i < sband->n_channels; i++)
1204 handle_channel_custom(wiphy, band, i, regd);
1207 /* Used by drivers prior to wiphy registration */
1208 void wiphy_apply_custom_regulatory(struct wiphy *wiphy,
1209 const struct ieee80211_regdomain *regd)
1211 enum ieee80211_band band;
1212 for (band = 0; band < IEEE80211_NUM_BANDS; band++) {
1213 if (wiphy->bands[band])
1214 handle_band_custom(wiphy, band, regd);
1217 EXPORT_SYMBOL(wiphy_apply_custom_regulatory);
1219 static int reg_copy_regd(const struct ieee80211_regdomain **dst_regd,
1220 const struct ieee80211_regdomain *src_regd)
1222 struct ieee80211_regdomain *regd;
1223 int size_of_regd = 0;
1224 unsigned int i;
1226 size_of_regd = sizeof(struct ieee80211_regdomain) +
1227 ((src_regd->n_reg_rules + 1) * sizeof(struct ieee80211_reg_rule));
1229 regd = kzalloc(size_of_regd, GFP_KERNEL);
1230 if (!regd)
1231 return -ENOMEM;
1233 memcpy(regd, src_regd, sizeof(struct ieee80211_regdomain));
1235 for (i = 0; i < src_regd->n_reg_rules; i++)
1236 memcpy(&regd->reg_rules[i], &src_regd->reg_rules[i],
1237 sizeof(struct ieee80211_reg_rule));
1239 *dst_regd = regd;
1240 return 0;
1244 * Return value which can be used by ignore_request() to indicate
1245 * it has been determined we should intersect two regulatory domains
1247 #define REG_INTERSECT 1
1249 /* This has the logic which determines when a new request
1250 * should be ignored. */
1251 static int ignore_request(struct wiphy *wiphy,
1252 struct regulatory_request *pending_request)
1254 struct wiphy *last_wiphy = NULL;
1256 assert_cfg80211_lock();
1258 /* All initial requests are respected */
1259 if (!last_request)
1260 return 0;
1262 switch (pending_request->initiator) {
1263 case NL80211_REGDOM_SET_BY_CORE:
1264 return -EINVAL;
1265 case NL80211_REGDOM_SET_BY_COUNTRY_IE:
1267 last_wiphy = wiphy_idx_to_wiphy(last_request->wiphy_idx);
1269 if (unlikely(!is_an_alpha2(pending_request->alpha2)))
1270 return -EINVAL;
1271 if (last_request->initiator ==
1272 NL80211_REGDOM_SET_BY_COUNTRY_IE) {
1273 if (last_wiphy != wiphy) {
1275 * Two cards with two APs claiming different
1276 * different Country IE alpha2s. We could
1277 * intersect them, but that seems unlikely
1278 * to be correct. Reject second one for now.
1280 if (regdom_changes(pending_request->alpha2))
1281 return -EOPNOTSUPP;
1282 return -EALREADY;
1285 * Two consecutive Country IE hints on the same wiphy.
1286 * This should be picked up early by the driver/stack
1288 if (WARN_ON(regdom_changes(pending_request->alpha2)))
1289 return 0;
1290 return -EALREADY;
1292 return REG_INTERSECT;
1293 case NL80211_REGDOM_SET_BY_DRIVER:
1294 if (last_request->initiator == NL80211_REGDOM_SET_BY_CORE) {
1295 if (is_old_static_regdom(cfg80211_regdomain))
1296 return 0;
1297 if (regdom_changes(pending_request->alpha2))
1298 return 0;
1299 return -EALREADY;
1303 * This would happen if you unplug and plug your card
1304 * back in or if you add a new device for which the previously
1305 * loaded card also agrees on the regulatory domain.
1307 if (last_request->initiator == NL80211_REGDOM_SET_BY_DRIVER &&
1308 !regdom_changes(pending_request->alpha2))
1309 return -EALREADY;
1311 return REG_INTERSECT;
1312 case NL80211_REGDOM_SET_BY_USER:
1313 if (last_request->initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE)
1314 return REG_INTERSECT;
1316 * If the user knows better the user should set the regdom
1317 * to their country before the IE is picked up
1319 if (last_request->initiator == NL80211_REGDOM_SET_BY_USER &&
1320 last_request->intersect)
1321 return -EOPNOTSUPP;
1323 * Process user requests only after previous user/driver/core
1324 * requests have been processed
1326 if (last_request->initiator == NL80211_REGDOM_SET_BY_CORE ||
1327 last_request->initiator == NL80211_REGDOM_SET_BY_DRIVER ||
1328 last_request->initiator == NL80211_REGDOM_SET_BY_USER) {
1329 if (regdom_changes(last_request->alpha2))
1330 return -EAGAIN;
1333 if (!is_old_static_regdom(cfg80211_regdomain) &&
1334 !regdom_changes(pending_request->alpha2))
1335 return -EALREADY;
1337 return 0;
1340 return -EINVAL;
1344 * __regulatory_hint - hint to the wireless core a regulatory domain
1345 * @wiphy: if the hint comes from country information from an AP, this
1346 * is required to be set to the wiphy that received the information
1347 * @pending_request: the regulatory request currently being processed
1349 * The Wireless subsystem can use this function to hint to the wireless core
1350 * what it believes should be the current regulatory domain.
1352 * Returns zero if all went fine, %-EALREADY if a regulatory domain had
1353 * already been set or other standard error codes.
1355 * Caller must hold &cfg80211_mutex
1357 static int __regulatory_hint(struct wiphy *wiphy,
1358 struct regulatory_request *pending_request)
1360 bool intersect = false;
1361 int r = 0;
1363 assert_cfg80211_lock();
1365 r = ignore_request(wiphy, pending_request);
1367 if (r == REG_INTERSECT) {
1368 if (pending_request->initiator ==
1369 NL80211_REGDOM_SET_BY_DRIVER) {
1370 r = reg_copy_regd(&wiphy->regd, cfg80211_regdomain);
1371 if (r) {
1372 kfree(pending_request);
1373 return r;
1376 intersect = true;
1377 } else if (r) {
1379 * If the regulatory domain being requested by the
1380 * driver has already been set just copy it to the
1381 * wiphy
1383 if (r == -EALREADY &&
1384 pending_request->initiator ==
1385 NL80211_REGDOM_SET_BY_DRIVER) {
1386 r = reg_copy_regd(&wiphy->regd, cfg80211_regdomain);
1387 if (r) {
1388 kfree(pending_request);
1389 return r;
1391 r = -EALREADY;
1392 goto new_request;
1394 kfree(pending_request);
1395 return r;
1398 new_request:
1399 kfree(last_request);
1401 last_request = pending_request;
1402 last_request->intersect = intersect;
1404 pending_request = NULL;
1406 /* When r == REG_INTERSECT we do need to call CRDA */
1407 if (r < 0) {
1409 * Since CRDA will not be called in this case as we already
1410 * have applied the requested regulatory domain before we just
1411 * inform userspace we have processed the request
1413 if (r == -EALREADY)
1414 nl80211_send_reg_change_event(last_request);
1415 return r;
1419 * Note: When CONFIG_WIRELESS_OLD_REGULATORY is enabled
1420 * AND if CRDA is NOT present nothing will happen, if someone
1421 * wants to bother with 11d with OLD_REG you can add a timer.
1422 * If after x amount of time nothing happens you can call:
1424 * return set_regdom(country_ie_regdomain);
1426 * to intersect with the static rd
1428 return call_crda(last_request->alpha2);
1431 /* This currently only processes user and driver regulatory hints */
1432 static void reg_process_hint(struct regulatory_request *reg_request)
1434 int r = 0;
1435 struct wiphy *wiphy = NULL;
1437 BUG_ON(!reg_request->alpha2);
1439 mutex_lock(&cfg80211_mutex);
1441 if (wiphy_idx_valid(reg_request->wiphy_idx))
1442 wiphy = wiphy_idx_to_wiphy(reg_request->wiphy_idx);
1444 if (reg_request->initiator == NL80211_REGDOM_SET_BY_DRIVER &&
1445 !wiphy) {
1446 kfree(reg_request);
1447 goto out;
1450 r = __regulatory_hint(wiphy, reg_request);
1451 /* This is required so that the orig_* parameters are saved */
1452 if (r == -EALREADY && wiphy && wiphy->strict_regulatory)
1453 wiphy_update_regulatory(wiphy, reg_request->initiator);
1454 out:
1455 mutex_unlock(&cfg80211_mutex);
1458 /* Processes regulatory hints, this is all the NL80211_REGDOM_SET_BY_* */
1459 static void reg_process_pending_hints(void)
1461 struct regulatory_request *reg_request;
1463 spin_lock(&reg_requests_lock);
1464 while (!list_empty(&reg_requests_list)) {
1465 reg_request = list_first_entry(&reg_requests_list,
1466 struct regulatory_request,
1467 list);
1468 list_del_init(&reg_request->list);
1470 spin_unlock(&reg_requests_lock);
1471 reg_process_hint(reg_request);
1472 spin_lock(&reg_requests_lock);
1474 spin_unlock(&reg_requests_lock);
1477 /* Processes beacon hints -- this has nothing to do with country IEs */
1478 static void reg_process_pending_beacon_hints(void)
1480 struct cfg80211_registered_device *drv;
1481 struct reg_beacon *pending_beacon, *tmp;
1483 mutex_lock(&cfg80211_mutex);
1485 /* This goes through the _pending_ beacon list */
1486 spin_lock_bh(&reg_pending_beacons_lock);
1488 if (list_empty(&reg_pending_beacons)) {
1489 spin_unlock_bh(&reg_pending_beacons_lock);
1490 goto out;
1493 list_for_each_entry_safe(pending_beacon, tmp,
1494 &reg_pending_beacons, list) {
1496 list_del_init(&pending_beacon->list);
1498 /* Applies the beacon hint to current wiphys */
1499 list_for_each_entry(drv, &cfg80211_drv_list, list)
1500 wiphy_update_new_beacon(&drv->wiphy, pending_beacon);
1502 /* Remembers the beacon hint for new wiphys or reg changes */
1503 list_add_tail(&pending_beacon->list, &reg_beacon_list);
1506 spin_unlock_bh(&reg_pending_beacons_lock);
1507 out:
1508 mutex_unlock(&cfg80211_mutex);
1511 static void reg_todo(struct work_struct *work)
1513 reg_process_pending_hints();
1514 reg_process_pending_beacon_hints();
1517 static DECLARE_WORK(reg_work, reg_todo);
1519 static void queue_regulatory_request(struct regulatory_request *request)
1521 spin_lock(&reg_requests_lock);
1522 list_add_tail(&request->list, &reg_requests_list);
1523 spin_unlock(&reg_requests_lock);
1525 schedule_work(&reg_work);
1528 /* Core regulatory hint -- happens once during cfg80211_init() */
1529 static int regulatory_hint_core(const char *alpha2)
1531 struct regulatory_request *request;
1533 BUG_ON(last_request);
1535 request = kzalloc(sizeof(struct regulatory_request),
1536 GFP_KERNEL);
1537 if (!request)
1538 return -ENOMEM;
1540 request->alpha2[0] = alpha2[0];
1541 request->alpha2[1] = alpha2[1];
1542 request->initiator = NL80211_REGDOM_SET_BY_CORE;
1544 queue_regulatory_request(request);
1546 return 0;
1549 /* User hints */
1550 int regulatory_hint_user(const char *alpha2)
1552 struct regulatory_request *request;
1554 BUG_ON(!alpha2);
1556 request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL);
1557 if (!request)
1558 return -ENOMEM;
1560 request->wiphy_idx = WIPHY_IDX_STALE;
1561 request->alpha2[0] = alpha2[0];
1562 request->alpha2[1] = alpha2[1];
1563 request->initiator = NL80211_REGDOM_SET_BY_USER,
1565 queue_regulatory_request(request);
1567 return 0;
1570 /* Driver hints */
1571 int regulatory_hint(struct wiphy *wiphy, const char *alpha2)
1573 struct regulatory_request *request;
1575 BUG_ON(!alpha2);
1576 BUG_ON(!wiphy);
1578 request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL);
1579 if (!request)
1580 return -ENOMEM;
1582 request->wiphy_idx = get_wiphy_idx(wiphy);
1584 /* Must have registered wiphy first */
1585 BUG_ON(!wiphy_idx_valid(request->wiphy_idx));
1587 request->alpha2[0] = alpha2[0];
1588 request->alpha2[1] = alpha2[1];
1589 request->initiator = NL80211_REGDOM_SET_BY_DRIVER;
1591 queue_regulatory_request(request);
1593 return 0;
1595 EXPORT_SYMBOL(regulatory_hint);
1597 static bool reg_same_country_ie_hint(struct wiphy *wiphy,
1598 u32 country_ie_checksum)
1600 struct wiphy *request_wiphy;
1602 assert_cfg80211_lock();
1604 request_wiphy = wiphy_idx_to_wiphy(last_request->wiphy_idx);
1606 if (!request_wiphy)
1607 return false;
1609 if (likely(request_wiphy != wiphy))
1610 return !country_ie_integrity_changes(country_ie_checksum);
1612 * We should not have let these through at this point, they
1613 * should have been picked up earlier by the first alpha2 check
1614 * on the device
1616 if (WARN_ON(!country_ie_integrity_changes(country_ie_checksum)))
1617 return true;
1618 return false;
1621 void regulatory_hint_11d(struct wiphy *wiphy,
1622 u8 *country_ie,
1623 u8 country_ie_len)
1625 struct ieee80211_regdomain *rd = NULL;
1626 char alpha2[2];
1627 u32 checksum = 0;
1628 enum environment_cap env = ENVIRON_ANY;
1629 struct regulatory_request *request;
1631 mutex_lock(&cfg80211_mutex);
1633 if (unlikely(!last_request)) {
1634 mutex_unlock(&cfg80211_mutex);
1635 return;
1638 /* IE len must be evenly divisible by 2 */
1639 if (country_ie_len & 0x01)
1640 goto out;
1642 if (country_ie_len < IEEE80211_COUNTRY_IE_MIN_LEN)
1643 goto out;
1646 * Pending country IE processing, this can happen after we
1647 * call CRDA and wait for a response if a beacon was received before
1648 * we were able to process the last regulatory_hint_11d() call
1650 if (country_ie_regdomain)
1651 goto out;
1653 alpha2[0] = country_ie[0];
1654 alpha2[1] = country_ie[1];
1656 if (country_ie[2] == 'I')
1657 env = ENVIRON_INDOOR;
1658 else if (country_ie[2] == 'O')
1659 env = ENVIRON_OUTDOOR;
1662 * We will run this for *every* beacon processed for the BSSID, so
1663 * we optimize an early check to exit out early if we don't have to
1664 * do anything
1666 if (likely(wiphy_idx_valid(last_request->wiphy_idx))) {
1667 struct cfg80211_registered_device *drv_last_ie;
1669 drv_last_ie =
1670 cfg80211_drv_by_wiphy_idx(last_request->wiphy_idx);
1673 * Lets keep this simple -- we trust the first AP
1674 * after we intersect with CRDA
1676 if (likely(&drv_last_ie->wiphy == wiphy)) {
1678 * Ignore IEs coming in on this wiphy with
1679 * the same alpha2 and environment cap
1681 if (likely(alpha2_equal(drv_last_ie->country_ie_alpha2,
1682 alpha2) &&
1683 env == drv_last_ie->env)) {
1684 goto out;
1687 * the wiphy moved on to another BSSID or the AP
1688 * was reconfigured. XXX: We need to deal with the
1689 * case where the user suspends and goes to goes
1690 * to another country, and then gets IEs from an
1691 * AP with different settings
1693 goto out;
1694 } else {
1696 * Ignore IEs coming in on two separate wiphys with
1697 * the same alpha2 and environment cap
1699 if (likely(alpha2_equal(drv_last_ie->country_ie_alpha2,
1700 alpha2) &&
1701 env == drv_last_ie->env)) {
1702 goto out;
1704 /* We could potentially intersect though */
1705 goto out;
1709 rd = country_ie_2_rd(country_ie, country_ie_len, &checksum);
1710 if (!rd)
1711 goto out;
1714 * This will not happen right now but we leave it here for the
1715 * the future when we want to add suspend/resume support and having
1716 * the user move to another country after doing so, or having the user
1717 * move to another AP. Right now we just trust the first AP.
1719 * If we hit this before we add this support we want to be informed of
1720 * it as it would indicate a mistake in the current design
1722 if (WARN_ON(reg_same_country_ie_hint(wiphy, checksum)))
1723 goto free_rd_out;
1725 request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL);
1726 if (!request)
1727 goto free_rd_out;
1730 * We keep this around for when CRDA comes back with a response so
1731 * we can intersect with that
1733 country_ie_regdomain = rd;
1735 request->wiphy_idx = get_wiphy_idx(wiphy);
1736 request->alpha2[0] = rd->alpha2[0];
1737 request->alpha2[1] = rd->alpha2[1];
1738 request->initiator = NL80211_REGDOM_SET_BY_COUNTRY_IE;
1739 request->country_ie_checksum = checksum;
1740 request->country_ie_env = env;
1742 mutex_unlock(&cfg80211_mutex);
1744 queue_regulatory_request(request);
1746 return;
1748 free_rd_out:
1749 kfree(rd);
1750 out:
1751 mutex_unlock(&cfg80211_mutex);
1753 EXPORT_SYMBOL(regulatory_hint_11d);
1755 static bool freq_is_chan_12_13_14(u16 freq)
1757 if (freq == ieee80211_channel_to_frequency(12) ||
1758 freq == ieee80211_channel_to_frequency(13) ||
1759 freq == ieee80211_channel_to_frequency(14))
1760 return true;
1761 return false;
1764 int regulatory_hint_found_beacon(struct wiphy *wiphy,
1765 struct ieee80211_channel *beacon_chan,
1766 gfp_t gfp)
1768 struct reg_beacon *reg_beacon;
1770 if (likely((beacon_chan->beacon_found ||
1771 (beacon_chan->flags & IEEE80211_CHAN_RADAR) ||
1772 (beacon_chan->band == IEEE80211_BAND_2GHZ &&
1773 !freq_is_chan_12_13_14(beacon_chan->center_freq)))))
1774 return 0;
1776 reg_beacon = kzalloc(sizeof(struct reg_beacon), gfp);
1777 if (!reg_beacon)
1778 return -ENOMEM;
1780 #ifdef CONFIG_CFG80211_REG_DEBUG
1781 printk(KERN_DEBUG "cfg80211: Found new beacon on "
1782 "frequency: %d MHz (Ch %d) on %s\n",
1783 beacon_chan->center_freq,
1784 ieee80211_frequency_to_channel(beacon_chan->center_freq),
1785 wiphy_name(wiphy));
1786 #endif
1787 memcpy(&reg_beacon->chan, beacon_chan,
1788 sizeof(struct ieee80211_channel));
1792 * Since we can be called from BH or and non-BH context
1793 * we must use spin_lock_bh()
1795 spin_lock_bh(&reg_pending_beacons_lock);
1796 list_add_tail(&reg_beacon->list, &reg_pending_beacons);
1797 spin_unlock_bh(&reg_pending_beacons_lock);
1799 schedule_work(&reg_work);
1801 return 0;
1804 static void print_rd_rules(const struct ieee80211_regdomain *rd)
1806 unsigned int i;
1807 const struct ieee80211_reg_rule *reg_rule = NULL;
1808 const struct ieee80211_freq_range *freq_range = NULL;
1809 const struct ieee80211_power_rule *power_rule = NULL;
1811 printk(KERN_INFO "\t(start_freq - end_freq @ bandwidth), "
1812 "(max_antenna_gain, max_eirp)\n");
1814 for (i = 0; i < rd->n_reg_rules; i++) {
1815 reg_rule = &rd->reg_rules[i];
1816 freq_range = &reg_rule->freq_range;
1817 power_rule = &reg_rule->power_rule;
1820 * There may not be documentation for max antenna gain
1821 * in certain regions
1823 if (power_rule->max_antenna_gain)
1824 printk(KERN_INFO "\t(%d KHz - %d KHz @ %d KHz), "
1825 "(%d mBi, %d mBm)\n",
1826 freq_range->start_freq_khz,
1827 freq_range->end_freq_khz,
1828 freq_range->max_bandwidth_khz,
1829 power_rule->max_antenna_gain,
1830 power_rule->max_eirp);
1831 else
1832 printk(KERN_INFO "\t(%d KHz - %d KHz @ %d KHz), "
1833 "(N/A, %d mBm)\n",
1834 freq_range->start_freq_khz,
1835 freq_range->end_freq_khz,
1836 freq_range->max_bandwidth_khz,
1837 power_rule->max_eirp);
1841 static void print_regdomain(const struct ieee80211_regdomain *rd)
1844 if (is_intersected_alpha2(rd->alpha2)) {
1846 if (last_request->initiator ==
1847 NL80211_REGDOM_SET_BY_COUNTRY_IE) {
1848 struct cfg80211_registered_device *drv;
1849 drv = cfg80211_drv_by_wiphy_idx(
1850 last_request->wiphy_idx);
1851 if (drv) {
1852 printk(KERN_INFO "cfg80211: Current regulatory "
1853 "domain updated by AP to: %c%c\n",
1854 drv->country_ie_alpha2[0],
1855 drv->country_ie_alpha2[1]);
1856 } else
1857 printk(KERN_INFO "cfg80211: Current regulatory "
1858 "domain intersected: \n");
1859 } else
1860 printk(KERN_INFO "cfg80211: Current regulatory "
1861 "domain intersected: \n");
1862 } else if (is_world_regdom(rd->alpha2))
1863 printk(KERN_INFO "cfg80211: World regulatory "
1864 "domain updated:\n");
1865 else {
1866 if (is_unknown_alpha2(rd->alpha2))
1867 printk(KERN_INFO "cfg80211: Regulatory domain "
1868 "changed to driver built-in settings "
1869 "(unknown country)\n");
1870 else
1871 printk(KERN_INFO "cfg80211: Regulatory domain "
1872 "changed to country: %c%c\n",
1873 rd->alpha2[0], rd->alpha2[1]);
1875 print_rd_rules(rd);
1878 static void print_regdomain_info(const struct ieee80211_regdomain *rd)
1880 printk(KERN_INFO "cfg80211: Regulatory domain: %c%c\n",
1881 rd->alpha2[0], rd->alpha2[1]);
1882 print_rd_rules(rd);
1885 #ifdef CONFIG_CFG80211_REG_DEBUG
1886 static void reg_country_ie_process_debug(
1887 const struct ieee80211_regdomain *rd,
1888 const struct ieee80211_regdomain *country_ie_regdomain,
1889 const struct ieee80211_regdomain *intersected_rd)
1891 printk(KERN_DEBUG "cfg80211: Received country IE:\n");
1892 print_regdomain_info(country_ie_regdomain);
1893 printk(KERN_DEBUG "cfg80211: CRDA thinks this should applied:\n");
1894 print_regdomain_info(rd);
1895 if (intersected_rd) {
1896 printk(KERN_DEBUG "cfg80211: We intersect both of these "
1897 "and get:\n");
1898 print_regdomain_info(intersected_rd);
1899 return;
1901 printk(KERN_DEBUG "cfg80211: Intersection between both failed\n");
1903 #else
1904 static inline void reg_country_ie_process_debug(
1905 const struct ieee80211_regdomain *rd,
1906 const struct ieee80211_regdomain *country_ie_regdomain,
1907 const struct ieee80211_regdomain *intersected_rd)
1910 #endif
1912 /* Takes ownership of rd only if it doesn't fail */
1913 static int __set_regdom(const struct ieee80211_regdomain *rd)
1915 const struct ieee80211_regdomain *intersected_rd = NULL;
1916 struct cfg80211_registered_device *drv = NULL;
1917 struct wiphy *request_wiphy;
1918 /* Some basic sanity checks first */
1920 if (is_world_regdom(rd->alpha2)) {
1921 if (WARN_ON(!reg_is_valid_request(rd->alpha2)))
1922 return -EINVAL;
1923 update_world_regdomain(rd);
1924 return 0;
1927 if (!is_alpha2_set(rd->alpha2) && !is_an_alpha2(rd->alpha2) &&
1928 !is_unknown_alpha2(rd->alpha2))
1929 return -EINVAL;
1931 if (!last_request)
1932 return -EINVAL;
1935 * Lets only bother proceeding on the same alpha2 if the current
1936 * rd is non static (it means CRDA was present and was used last)
1937 * and the pending request came in from a country IE
1939 if (last_request->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE) {
1941 * If someone else asked us to change the rd lets only bother
1942 * checking if the alpha2 changes if CRDA was already called
1944 if (!is_old_static_regdom(cfg80211_regdomain) &&
1945 !regdom_changes(rd->alpha2))
1946 return -EINVAL;
1950 * Now lets set the regulatory domain, update all driver channels
1951 * and finally inform them of what we have done, in case they want
1952 * to review or adjust their own settings based on their own
1953 * internal EEPROM data
1956 if (WARN_ON(!reg_is_valid_request(rd->alpha2)))
1957 return -EINVAL;
1959 if (!is_valid_rd(rd)) {
1960 printk(KERN_ERR "cfg80211: Invalid "
1961 "regulatory domain detected:\n");
1962 print_regdomain_info(rd);
1963 return -EINVAL;
1966 request_wiphy = wiphy_idx_to_wiphy(last_request->wiphy_idx);
1968 if (!last_request->intersect) {
1969 int r;
1971 if (last_request->initiator != NL80211_REGDOM_SET_BY_DRIVER) {
1972 reset_regdomains();
1973 cfg80211_regdomain = rd;
1974 return 0;
1978 * For a driver hint, lets copy the regulatory domain the
1979 * driver wanted to the wiphy to deal with conflicts
1982 BUG_ON(request_wiphy->regd);
1984 r = reg_copy_regd(&request_wiphy->regd, rd);
1985 if (r)
1986 return r;
1988 reset_regdomains();
1989 cfg80211_regdomain = rd;
1990 return 0;
1993 /* Intersection requires a bit more work */
1995 if (last_request->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE) {
1997 intersected_rd = regdom_intersect(rd, cfg80211_regdomain);
1998 if (!intersected_rd)
1999 return -EINVAL;
2002 * We can trash what CRDA provided now.
2003 * However if a driver requested this specific regulatory
2004 * domain we keep it for its private use
2006 if (last_request->initiator == NL80211_REGDOM_SET_BY_DRIVER)
2007 request_wiphy->regd = rd;
2008 else
2009 kfree(rd);
2011 rd = NULL;
2013 reset_regdomains();
2014 cfg80211_regdomain = intersected_rd;
2016 return 0;
2020 * Country IE requests are handled a bit differently, we intersect
2021 * the country IE rd with what CRDA believes that country should have
2024 BUG_ON(!country_ie_regdomain);
2026 if (rd != country_ie_regdomain) {
2028 * Intersect what CRDA returned and our what we
2029 * had built from the Country IE received
2032 intersected_rd = regdom_intersect(rd, country_ie_regdomain);
2034 reg_country_ie_process_debug(rd, country_ie_regdomain,
2035 intersected_rd);
2037 kfree(country_ie_regdomain);
2038 country_ie_regdomain = NULL;
2039 } else {
2041 * This would happen when CRDA was not present and
2042 * OLD_REGULATORY was enabled. We intersect our Country
2043 * IE rd and what was set on cfg80211 originally
2045 intersected_rd = regdom_intersect(rd, cfg80211_regdomain);
2048 if (!intersected_rd)
2049 return -EINVAL;
2051 drv = wiphy_to_dev(request_wiphy);
2053 drv->country_ie_alpha2[0] = rd->alpha2[0];
2054 drv->country_ie_alpha2[1] = rd->alpha2[1];
2055 drv->env = last_request->country_ie_env;
2057 BUG_ON(intersected_rd == rd);
2059 kfree(rd);
2060 rd = NULL;
2062 reset_regdomains();
2063 cfg80211_regdomain = intersected_rd;
2065 return 0;
2070 * Use this call to set the current regulatory domain. Conflicts with
2071 * multiple drivers can be ironed out later. Caller must've already
2072 * kmalloc'd the rd structure. Caller must hold cfg80211_mutex
2074 int set_regdom(const struct ieee80211_regdomain *rd)
2076 int r;
2078 assert_cfg80211_lock();
2080 /* Note that this doesn't update the wiphys, this is done below */
2081 r = __set_regdom(rd);
2082 if (r) {
2083 kfree(rd);
2084 return r;
2087 /* This would make this whole thing pointless */
2088 if (!last_request->intersect)
2089 BUG_ON(rd != cfg80211_regdomain);
2091 /* update all wiphys now with the new established regulatory domain */
2092 update_all_wiphy_regulatory(last_request->initiator);
2094 print_regdomain(cfg80211_regdomain);
2096 nl80211_send_reg_change_event(last_request);
2098 return r;
2101 /* Caller must hold cfg80211_mutex */
2102 void reg_device_remove(struct wiphy *wiphy)
2104 struct wiphy *request_wiphy;
2106 assert_cfg80211_lock();
2108 request_wiphy = wiphy_idx_to_wiphy(last_request->wiphy_idx);
2110 kfree(wiphy->regd);
2111 if (!last_request || !request_wiphy)
2112 return;
2113 if (request_wiphy != wiphy)
2114 return;
2115 last_request->wiphy_idx = WIPHY_IDX_STALE;
2116 last_request->country_ie_env = ENVIRON_ANY;
2119 int regulatory_init(void)
2121 int err = 0;
2123 reg_pdev = platform_device_register_simple("regulatory", 0, NULL, 0);
2124 if (IS_ERR(reg_pdev))
2125 return PTR_ERR(reg_pdev);
2127 spin_lock_init(&reg_requests_lock);
2128 spin_lock_init(&reg_pending_beacons_lock);
2130 #ifdef CONFIG_WIRELESS_OLD_REGULATORY
2131 cfg80211_regdomain = static_regdom(ieee80211_regdom);
2133 printk(KERN_INFO "cfg80211: Using static regulatory domain info\n");
2134 print_regdomain_info(cfg80211_regdomain);
2136 * The old code still requests for a new regdomain and if
2137 * you have CRDA you get it updated, otherwise you get
2138 * stuck with the static values. We ignore "EU" code as
2139 * that is not a valid ISO / IEC 3166 alpha2
2141 if (ieee80211_regdom[0] != 'E' || ieee80211_regdom[1] != 'U')
2142 err = regulatory_hint_core(ieee80211_regdom);
2143 #else
2144 cfg80211_regdomain = cfg80211_world_regdom;
2146 err = regulatory_hint_core("00");
2147 #endif
2148 if (err) {
2149 if (err == -ENOMEM)
2150 return err;
2152 * N.B. kobject_uevent_env() can fail mainly for when we're out
2153 * memory which is handled and propagated appropriately above
2154 * but it can also fail during a netlink_broadcast() or during
2155 * early boot for call_usermodehelper(). For now treat these
2156 * errors as non-fatal.
2158 printk(KERN_ERR "cfg80211: kobject_uevent_env() was unable "
2159 "to call CRDA during init");
2160 #ifdef CONFIG_CFG80211_REG_DEBUG
2161 /* We want to find out exactly why when debugging */
2162 WARN_ON(err);
2163 #endif
2166 return 0;
2169 void regulatory_exit(void)
2171 struct regulatory_request *reg_request, *tmp;
2172 struct reg_beacon *reg_beacon, *btmp;
2174 cancel_work_sync(&reg_work);
2176 mutex_lock(&cfg80211_mutex);
2178 reset_regdomains();
2180 kfree(country_ie_regdomain);
2181 country_ie_regdomain = NULL;
2183 kfree(last_request);
2185 platform_device_unregister(reg_pdev);
2187 spin_lock_bh(&reg_pending_beacons_lock);
2188 if (!list_empty(&reg_pending_beacons)) {
2189 list_for_each_entry_safe(reg_beacon, btmp,
2190 &reg_pending_beacons, list) {
2191 list_del(&reg_beacon->list);
2192 kfree(reg_beacon);
2195 spin_unlock_bh(&reg_pending_beacons_lock);
2197 if (!list_empty(&reg_beacon_list)) {
2198 list_for_each_entry_safe(reg_beacon, btmp,
2199 &reg_beacon_list, list) {
2200 list_del(&reg_beacon->list);
2201 kfree(reg_beacon);
2205 spin_lock(&reg_requests_lock);
2206 if (!list_empty(&reg_requests_list)) {
2207 list_for_each_entry_safe(reg_request, tmp,
2208 &reg_requests_list, list) {
2209 list_del(&reg_request->list);
2210 kfree(reg_request);
2213 spin_unlock(&reg_requests_lock);
2215 mutex_unlock(&cfg80211_mutex);