2 * Copyright 2002-2005, Instant802 Networks, Inc.
3 * Copyright 2005-2006, Devicescape Software, Inc.
4 * Copyright 2007 Johannes Berg <johannes@sipsolutions.net>
5 * Copyright 2008 Luis R. Rodriguez <lrodriguz@atheros.com>
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License version 2 as
9 * published by the Free Software Foundation.
13 * DOC: Wireless regulatory infrastructure
15 * The usual implementation is for a driver to read a device EEPROM to
16 * determine which regulatory domain it should be operating under, then
17 * looking up the allowable channels in a driver-local table and finally
18 * registering those channels in the wiphy structure.
20 * Another set of compliance enforcement is for drivers to use their
21 * own compliance limits which can be stored on the EEPROM. The host
22 * driver or firmware may ensure these are used.
24 * In addition to all this we provide an extra layer of regulatory
25 * conformance. For drivers which do not have any regulatory
26 * information CRDA provides the complete regulatory solution.
27 * For others it provides a community effort on further restrictions
28 * to enhance compliance.
30 * Note: When number of rules --> infinity we will not be able to
31 * index on alpha2 any more, instead we'll probably have to
32 * rely on some SHA1 checksum of the regdomain for example.
35 #include <linux/kernel.h>
36 #include <linux/list.h>
37 #include <linux/random.h>
38 #include <linux/nl80211.h>
39 #include <linux/platform_device.h>
40 #include <net/wireless.h>
41 #include <net/cfg80211.h>
46 /* Receipt of information from last regulatory request */
47 static struct regulatory_request
*last_request
;
49 /* To trigger userspace events */
50 static struct platform_device
*reg_pdev
;
52 /* Keep the ordering from large to small */
53 static u32 supported_bandwidths
[] = {
59 * Central wireless core regulatory domains, we only need two,
60 * the current one and a world regulatory domain in case we have no
61 * information to give us an alpha2
63 const struct ieee80211_regdomain
*cfg80211_regdomain
;
66 * We use this as a place for the rd structure built from the
67 * last parsed country IE to rest until CRDA gets back to us with
68 * what it thinks should apply for the same country
70 static const struct ieee80211_regdomain
*country_ie_regdomain
;
72 /* Used to queue up regulatory hints */
73 static LIST_HEAD(reg_requests_list
);
74 static spinlock_t reg_requests_lock
;
76 /* Used to queue up beacon hints for review */
77 static LIST_HEAD(reg_pending_beacons
);
78 static spinlock_t reg_pending_beacons_lock
;
80 /* Used to keep track of processed beacon hints */
81 static LIST_HEAD(reg_beacon_list
);
84 struct list_head list
;
85 struct ieee80211_channel chan
;
88 /* We keep a static world regulatory domain in case of the absence of CRDA */
89 static const struct ieee80211_regdomain world_regdom
= {
93 /* IEEE 802.11b/g, channels 1..11 */
94 REG_RULE(2412-10, 2462+10, 40, 6, 20, 0),
95 /* IEEE 802.11b/g, channels 12..13. No HT40
96 * channel fits here. */
97 REG_RULE(2467-10, 2472+10, 20, 6, 20,
98 NL80211_RRF_PASSIVE_SCAN
|
100 /* IEEE 802.11 channel 14 - Only JP enables
101 * this and for 802.11b only */
102 REG_RULE(2484-10, 2484+10, 20, 6, 20,
103 NL80211_RRF_PASSIVE_SCAN
|
104 NL80211_RRF_NO_IBSS
|
105 NL80211_RRF_NO_OFDM
),
106 /* IEEE 802.11a, channel 36..48 */
107 REG_RULE(5180-10, 5240+10, 40, 6, 20,
108 NL80211_RRF_PASSIVE_SCAN
|
109 NL80211_RRF_NO_IBSS
),
111 /* NB: 5260 MHz - 5700 MHz requies DFS */
113 /* IEEE 802.11a, channel 149..165 */
114 REG_RULE(5745-10, 5825+10, 40, 6, 20,
115 NL80211_RRF_PASSIVE_SCAN
|
116 NL80211_RRF_NO_IBSS
),
120 static const struct ieee80211_regdomain
*cfg80211_world_regdom
=
123 #ifdef CONFIG_WIRELESS_OLD_REGULATORY
124 static char *ieee80211_regdom
= "US";
125 module_param(ieee80211_regdom
, charp
, 0444);
126 MODULE_PARM_DESC(ieee80211_regdom
, "IEEE 802.11 regulatory domain code");
129 * We assume 40 MHz bandwidth for the old regulatory work.
130 * We make emphasis we are using the exact same frequencies
134 static const struct ieee80211_regdomain us_regdom
= {
138 /* IEEE 802.11b/g, channels 1..11 */
139 REG_RULE(2412-10, 2462+10, 40, 6, 27, 0),
140 /* IEEE 802.11a, channel 36 */
141 REG_RULE(5180-10, 5180+10, 40, 6, 23, 0),
142 /* IEEE 802.11a, channel 40 */
143 REG_RULE(5200-10, 5200+10, 40, 6, 23, 0),
144 /* IEEE 802.11a, channel 44 */
145 REG_RULE(5220-10, 5220+10, 40, 6, 23, 0),
146 /* IEEE 802.11a, channels 48..64 */
147 REG_RULE(5240-10, 5320+10, 40, 6, 23, 0),
148 /* IEEE 802.11a, channels 149..165, outdoor */
149 REG_RULE(5745-10, 5825+10, 40, 6, 30, 0),
153 static const struct ieee80211_regdomain jp_regdom
= {
157 /* IEEE 802.11b/g, channels 1..14 */
158 REG_RULE(2412-10, 2484+10, 40, 6, 20, 0),
159 /* IEEE 802.11a, channels 34..48 */
160 REG_RULE(5170-10, 5240+10, 40, 6, 20,
161 NL80211_RRF_PASSIVE_SCAN
),
162 /* IEEE 802.11a, channels 52..64 */
163 REG_RULE(5260-10, 5320+10, 40, 6, 20,
164 NL80211_RRF_NO_IBSS
|
169 static const struct ieee80211_regdomain eu_regdom
= {
172 * This alpha2 is bogus, we leave it here just for stupid
173 * backward compatibility
177 /* IEEE 802.11b/g, channels 1..13 */
178 REG_RULE(2412-10, 2472+10, 40, 6, 20, 0),
179 /* IEEE 802.11a, channel 36 */
180 REG_RULE(5180-10, 5180+10, 40, 6, 23,
181 NL80211_RRF_PASSIVE_SCAN
),
182 /* IEEE 802.11a, channel 40 */
183 REG_RULE(5200-10, 5200+10, 40, 6, 23,
184 NL80211_RRF_PASSIVE_SCAN
),
185 /* IEEE 802.11a, channel 44 */
186 REG_RULE(5220-10, 5220+10, 40, 6, 23,
187 NL80211_RRF_PASSIVE_SCAN
),
188 /* IEEE 802.11a, channels 48..64 */
189 REG_RULE(5240-10, 5320+10, 40, 6, 20,
190 NL80211_RRF_NO_IBSS
|
192 /* IEEE 802.11a, channels 100..140 */
193 REG_RULE(5500-10, 5700+10, 40, 6, 30,
194 NL80211_RRF_NO_IBSS
|
199 static const struct ieee80211_regdomain
*static_regdom(char *alpha2
)
201 if (alpha2
[0] == 'U' && alpha2
[1] == 'S')
203 if (alpha2
[0] == 'J' && alpha2
[1] == 'P')
205 if (alpha2
[0] == 'E' && alpha2
[1] == 'U')
207 /* Default, as per the old rules */
211 static bool is_old_static_regdom(const struct ieee80211_regdomain
*rd
)
213 if (rd
== &us_regdom
|| rd
== &jp_regdom
|| rd
== &eu_regdom
)
218 static inline bool is_old_static_regdom(const struct ieee80211_regdomain
*rd
)
224 static void reset_regdomains(void)
226 /* avoid freeing static information or freeing something twice */
227 if (cfg80211_regdomain
== cfg80211_world_regdom
)
228 cfg80211_regdomain
= NULL
;
229 if (cfg80211_world_regdom
== &world_regdom
)
230 cfg80211_world_regdom
= NULL
;
231 if (cfg80211_regdomain
== &world_regdom
)
232 cfg80211_regdomain
= NULL
;
233 if (is_old_static_regdom(cfg80211_regdomain
))
234 cfg80211_regdomain
= NULL
;
236 kfree(cfg80211_regdomain
);
237 kfree(cfg80211_world_regdom
);
239 cfg80211_world_regdom
= &world_regdom
;
240 cfg80211_regdomain
= NULL
;
244 * Dynamic world regulatory domain requested by the wireless
245 * core upon initialization
247 static void update_world_regdomain(const struct ieee80211_regdomain
*rd
)
249 BUG_ON(!last_request
);
253 cfg80211_world_regdom
= rd
;
254 cfg80211_regdomain
= rd
;
257 bool is_world_regdom(const char *alpha2
)
261 if (alpha2
[0] == '0' && alpha2
[1] == '0')
266 static bool is_alpha2_set(const char *alpha2
)
270 if (alpha2
[0] != 0 && alpha2
[1] != 0)
275 static bool is_alpha_upper(char letter
)
278 if (letter
>= 65 && letter
<= 90)
283 static bool is_unknown_alpha2(const char *alpha2
)
288 * Special case where regulatory domain was built by driver
289 * but a specific alpha2 cannot be determined
291 if (alpha2
[0] == '9' && alpha2
[1] == '9')
296 static bool is_intersected_alpha2(const char *alpha2
)
301 * Special case where regulatory domain is the
302 * result of an intersection between two regulatory domain
305 if (alpha2
[0] == '9' && alpha2
[1] == '8')
310 static bool is_an_alpha2(const char *alpha2
)
314 if (is_alpha_upper(alpha2
[0]) && is_alpha_upper(alpha2
[1]))
319 static bool alpha2_equal(const char *alpha2_x
, const char *alpha2_y
)
321 if (!alpha2_x
|| !alpha2_y
)
323 if (alpha2_x
[0] == alpha2_y
[0] &&
324 alpha2_x
[1] == alpha2_y
[1])
329 static bool regdom_changes(const char *alpha2
)
331 assert_cfg80211_lock();
333 if (!cfg80211_regdomain
)
335 if (alpha2_equal(cfg80211_regdomain
->alpha2
, alpha2
))
341 * country_ie_integrity_changes - tells us if the country IE has changed
342 * @checksum: checksum of country IE of fields we are interested in
344 * If the country IE has not changed you can ignore it safely. This is
345 * useful to determine if two devices are seeing two different country IEs
346 * even on the same alpha2. Note that this will return false if no IE has
347 * been set on the wireless core yet.
349 static bool country_ie_integrity_changes(u32 checksum
)
351 /* If no IE has been set then the checksum doesn't change */
352 if (unlikely(!last_request
->country_ie_checksum
))
354 if (unlikely(last_request
->country_ie_checksum
!= checksum
))
360 * This lets us keep regulatory code which is updated on a regulatory
361 * basis in userspace.
363 static int call_crda(const char *alpha2
)
365 char country_env
[9 + 2] = "COUNTRY=";
371 if (!is_world_regdom((char *) alpha2
))
372 printk(KERN_INFO
"cfg80211: Calling CRDA for country: %c%c\n",
373 alpha2
[0], alpha2
[1]);
375 printk(KERN_INFO
"cfg80211: Calling CRDA to update world "
376 "regulatory domain\n");
378 country_env
[8] = alpha2
[0];
379 country_env
[9] = alpha2
[1];
381 return kobject_uevent_env(®_pdev
->dev
.kobj
, KOBJ_CHANGE
, envp
);
384 /* Used by nl80211 before kmalloc'ing our regulatory domain */
385 bool reg_is_valid_request(const char *alpha2
)
390 return alpha2_equal(last_request
->alpha2
, alpha2
);
393 /* Sanity check on a regulatory rule */
394 static bool is_valid_reg_rule(const struct ieee80211_reg_rule
*rule
)
396 const struct ieee80211_freq_range
*freq_range
= &rule
->freq_range
;
399 if (freq_range
->start_freq_khz
<= 0 || freq_range
->end_freq_khz
<= 0)
402 if (freq_range
->start_freq_khz
> freq_range
->end_freq_khz
)
405 freq_diff
= freq_range
->end_freq_khz
- freq_range
->start_freq_khz
;
407 if (freq_range
->end_freq_khz
<= freq_range
->start_freq_khz
||
408 freq_range
->max_bandwidth_khz
> freq_diff
)
414 static bool is_valid_rd(const struct ieee80211_regdomain
*rd
)
416 const struct ieee80211_reg_rule
*reg_rule
= NULL
;
419 if (!rd
->n_reg_rules
)
422 if (WARN_ON(rd
->n_reg_rules
> NL80211_MAX_SUPP_REG_RULES
))
425 for (i
= 0; i
< rd
->n_reg_rules
; i
++) {
426 reg_rule
= &rd
->reg_rules
[i
];
427 if (!is_valid_reg_rule(reg_rule
))
434 /* Returns value in KHz */
435 static u32
freq_max_bandwidth(const struct ieee80211_freq_range
*freq_range
,
439 for (i
= 0; i
< ARRAY_SIZE(supported_bandwidths
); i
++) {
440 u32 start_freq_khz
= freq
- supported_bandwidths
[i
]/2;
441 u32 end_freq_khz
= freq
+ supported_bandwidths
[i
]/2;
442 if (start_freq_khz
>= freq_range
->start_freq_khz
&&
443 end_freq_khz
<= freq_range
->end_freq_khz
)
444 return supported_bandwidths
[i
];
450 * freq_in_rule_band - tells us if a frequency is in a frequency band
451 * @freq_range: frequency rule we want to query
452 * @freq_khz: frequency we are inquiring about
454 * This lets us know if a specific frequency rule is or is not relevant to
455 * a specific frequency's band. Bands are device specific and artificial
456 * definitions (the "2.4 GHz band" and the "5 GHz band"), however it is
457 * safe for now to assume that a frequency rule should not be part of a
458 * frequency's band if the start freq or end freq are off by more than 2 GHz.
459 * This resolution can be lowered and should be considered as we add
460 * regulatory rule support for other "bands".
462 static bool freq_in_rule_band(const struct ieee80211_freq_range
*freq_range
,
465 #define ONE_GHZ_IN_KHZ 1000000
466 if (abs(freq_khz
- freq_range
->start_freq_khz
) <= (2 * ONE_GHZ_IN_KHZ
))
468 if (abs(freq_khz
- freq_range
->end_freq_khz
) <= (2 * ONE_GHZ_IN_KHZ
))
471 #undef ONE_GHZ_IN_KHZ
475 * Converts a country IE to a regulatory domain. A regulatory domain
476 * structure has a lot of information which the IE doesn't yet have,
477 * so for the other values we use upper max values as we will intersect
478 * with our userspace regulatory agent to get lower bounds.
480 static struct ieee80211_regdomain
*country_ie_2_rd(
485 struct ieee80211_regdomain
*rd
= NULL
;
489 u32 num_rules
= 0, size_of_regd
= 0;
490 u8
*triplets_start
= NULL
;
491 u8 len_at_triplet
= 0;
492 /* the last channel we have registered in a subband (triplet) */
493 int last_sub_max_channel
= 0;
495 *checksum
= 0xDEADBEEF;
497 /* Country IE requirements */
498 BUG_ON(country_ie_len
< IEEE80211_COUNTRY_IE_MIN_LEN
||
499 country_ie_len
& 0x01);
501 alpha2
[0] = country_ie
[0];
502 alpha2
[1] = country_ie
[1];
505 * Third octet can be:
509 * anything else we assume is no restrictions
511 if (country_ie
[2] == 'I')
512 flags
= NL80211_RRF_NO_OUTDOOR
;
513 else if (country_ie
[2] == 'O')
514 flags
= NL80211_RRF_NO_INDOOR
;
519 triplets_start
= country_ie
;
520 len_at_triplet
= country_ie_len
;
522 *checksum
^= ((flags
^ alpha2
[0] ^ alpha2
[1]) << 8);
525 * We need to build a reg rule for each triplet, but first we must
526 * calculate the number of reg rules we will need. We will need one
527 * for each channel subband
529 while (country_ie_len
>= 3) {
531 struct ieee80211_country_ie_triplet
*triplet
=
532 (struct ieee80211_country_ie_triplet
*) country_ie
;
533 int cur_sub_max_channel
= 0, cur_channel
= 0;
535 if (triplet
->ext
.reg_extension_id
>=
536 IEEE80211_COUNTRY_EXTENSION_ID
) {
543 if (triplet
->chans
.first_channel
<= 14)
544 end_channel
= triplet
->chans
.first_channel
+
545 triplet
->chans
.num_channels
;
548 * 5 GHz -- For example in country IEs if the first
549 * channel given is 36 and the number of channels is 4
550 * then the individual channel numbers defined for the
551 * 5 GHz PHY by these parameters are: 36, 40, 44, and 48
552 * and not 36, 37, 38, 39.
554 * See: http://tinyurl.com/11d-clarification
556 end_channel
= triplet
->chans
.first_channel
+
557 (4 * (triplet
->chans
.num_channels
- 1));
559 cur_channel
= triplet
->chans
.first_channel
;
560 cur_sub_max_channel
= end_channel
;
562 /* Basic sanity check */
563 if (cur_sub_max_channel
< cur_channel
)
567 * Do not allow overlapping channels. Also channels
568 * passed in each subband must be monotonically
571 if (last_sub_max_channel
) {
572 if (cur_channel
<= last_sub_max_channel
)
574 if (cur_sub_max_channel
<= last_sub_max_channel
)
579 * When dot11RegulatoryClassesRequired is supported
580 * we can throw ext triplets as part of this soup,
581 * for now we don't care when those change as we
584 *checksum
^= ((cur_channel
^ cur_sub_max_channel
) << 8) |
585 ((cur_sub_max_channel
^ cur_sub_max_channel
) << 16) |
586 ((triplet
->chans
.max_power
^ cur_sub_max_channel
) << 24);
588 last_sub_max_channel
= cur_sub_max_channel
;
595 * Note: this is not a IEEE requirement but
596 * simply a memory requirement
598 if (num_rules
> NL80211_MAX_SUPP_REG_RULES
)
602 country_ie
= triplets_start
;
603 country_ie_len
= len_at_triplet
;
605 size_of_regd
= sizeof(struct ieee80211_regdomain
) +
606 (num_rules
* sizeof(struct ieee80211_reg_rule
));
608 rd
= kzalloc(size_of_regd
, GFP_KERNEL
);
612 rd
->n_reg_rules
= num_rules
;
613 rd
->alpha2
[0] = alpha2
[0];
614 rd
->alpha2
[1] = alpha2
[1];
616 /* This time around we fill in the rd */
617 while (country_ie_len
>= 3) {
619 struct ieee80211_country_ie_triplet
*triplet
=
620 (struct ieee80211_country_ie_triplet
*) country_ie
;
621 struct ieee80211_reg_rule
*reg_rule
= NULL
;
622 struct ieee80211_freq_range
*freq_range
= NULL
;
623 struct ieee80211_power_rule
*power_rule
= NULL
;
626 * Must parse if dot11RegulatoryClassesRequired is true,
627 * we don't support this yet
629 if (triplet
->ext
.reg_extension_id
>=
630 IEEE80211_COUNTRY_EXTENSION_ID
) {
636 reg_rule
= &rd
->reg_rules
[i
];
637 freq_range
= ®_rule
->freq_range
;
638 power_rule
= ®_rule
->power_rule
;
640 reg_rule
->flags
= flags
;
643 if (triplet
->chans
.first_channel
<= 14)
644 end_channel
= triplet
->chans
.first_channel
+
645 triplet
->chans
.num_channels
;
647 end_channel
= triplet
->chans
.first_channel
+
648 (4 * (triplet
->chans
.num_channels
- 1));
651 * The +10 is since the regulatory domain expects
652 * the actual band edge, not the center of freq for
653 * its start and end freqs, assuming 20 MHz bandwidth on
654 * the channels passed
656 freq_range
->start_freq_khz
=
657 MHZ_TO_KHZ(ieee80211_channel_to_frequency(
658 triplet
->chans
.first_channel
) - 10);
659 freq_range
->end_freq_khz
=
660 MHZ_TO_KHZ(ieee80211_channel_to_frequency(
664 * These are large arbitrary values we use to intersect later.
665 * Increment this if we ever support >= 40 MHz channels
668 freq_range
->max_bandwidth_khz
= MHZ_TO_KHZ(40);
669 power_rule
->max_antenna_gain
= DBI_TO_MBI(100);
670 power_rule
->max_eirp
= DBM_TO_MBM(100);
676 BUG_ON(i
> NL80211_MAX_SUPP_REG_RULES
);
684 * Helper for regdom_intersect(), this does the real
685 * mathematical intersection fun
687 static int reg_rules_intersect(
688 const struct ieee80211_reg_rule
*rule1
,
689 const struct ieee80211_reg_rule
*rule2
,
690 struct ieee80211_reg_rule
*intersected_rule
)
692 const struct ieee80211_freq_range
*freq_range1
, *freq_range2
;
693 struct ieee80211_freq_range
*freq_range
;
694 const struct ieee80211_power_rule
*power_rule1
, *power_rule2
;
695 struct ieee80211_power_rule
*power_rule
;
698 freq_range1
= &rule1
->freq_range
;
699 freq_range2
= &rule2
->freq_range
;
700 freq_range
= &intersected_rule
->freq_range
;
702 power_rule1
= &rule1
->power_rule
;
703 power_rule2
= &rule2
->power_rule
;
704 power_rule
= &intersected_rule
->power_rule
;
706 freq_range
->start_freq_khz
= max(freq_range1
->start_freq_khz
,
707 freq_range2
->start_freq_khz
);
708 freq_range
->end_freq_khz
= min(freq_range1
->end_freq_khz
,
709 freq_range2
->end_freq_khz
);
710 freq_range
->max_bandwidth_khz
= min(freq_range1
->max_bandwidth_khz
,
711 freq_range2
->max_bandwidth_khz
);
713 freq_diff
= freq_range
->end_freq_khz
- freq_range
->start_freq_khz
;
714 if (freq_range
->max_bandwidth_khz
> freq_diff
)
715 freq_range
->max_bandwidth_khz
= freq_diff
;
717 power_rule
->max_eirp
= min(power_rule1
->max_eirp
,
718 power_rule2
->max_eirp
);
719 power_rule
->max_antenna_gain
= min(power_rule1
->max_antenna_gain
,
720 power_rule2
->max_antenna_gain
);
722 intersected_rule
->flags
= (rule1
->flags
| rule2
->flags
);
724 if (!is_valid_reg_rule(intersected_rule
))
731 * regdom_intersect - do the intersection between two regulatory domains
732 * @rd1: first regulatory domain
733 * @rd2: second regulatory domain
735 * Use this function to get the intersection between two regulatory domains.
736 * Once completed we will mark the alpha2 for the rd as intersected, "98",
737 * as no one single alpha2 can represent this regulatory domain.
739 * Returns a pointer to the regulatory domain structure which will hold the
740 * resulting intersection of rules between rd1 and rd2. We will
741 * kzalloc() this structure for you.
743 static struct ieee80211_regdomain
*regdom_intersect(
744 const struct ieee80211_regdomain
*rd1
,
745 const struct ieee80211_regdomain
*rd2
)
749 unsigned int num_rules
= 0, rule_idx
= 0;
750 const struct ieee80211_reg_rule
*rule1
, *rule2
;
751 struct ieee80211_reg_rule
*intersected_rule
;
752 struct ieee80211_regdomain
*rd
;
753 /* This is just a dummy holder to help us count */
754 struct ieee80211_reg_rule irule
;
756 /* Uses the stack temporarily for counter arithmetic */
757 intersected_rule
= &irule
;
759 memset(intersected_rule
, 0, sizeof(struct ieee80211_reg_rule
));
765 * First we get a count of the rules we'll need, then we actually
766 * build them. This is to so we can malloc() and free() a
767 * regdomain once. The reason we use reg_rules_intersect() here
768 * is it will return -EINVAL if the rule computed makes no sense.
769 * All rules that do check out OK are valid.
772 for (x
= 0; x
< rd1
->n_reg_rules
; x
++) {
773 rule1
= &rd1
->reg_rules
[x
];
774 for (y
= 0; y
< rd2
->n_reg_rules
; y
++) {
775 rule2
= &rd2
->reg_rules
[y
];
776 if (!reg_rules_intersect(rule1
, rule2
,
779 memset(intersected_rule
, 0,
780 sizeof(struct ieee80211_reg_rule
));
787 size_of_regd
= sizeof(struct ieee80211_regdomain
) +
788 ((num_rules
+ 1) * sizeof(struct ieee80211_reg_rule
));
790 rd
= kzalloc(size_of_regd
, GFP_KERNEL
);
794 for (x
= 0; x
< rd1
->n_reg_rules
; x
++) {
795 rule1
= &rd1
->reg_rules
[x
];
796 for (y
= 0; y
< rd2
->n_reg_rules
; y
++) {
797 rule2
= &rd2
->reg_rules
[y
];
799 * This time around instead of using the stack lets
800 * write to the target rule directly saving ourselves
803 intersected_rule
= &rd
->reg_rules
[rule_idx
];
804 r
= reg_rules_intersect(rule1
, rule2
,
807 * No need to memset here the intersected rule here as
808 * we're not using the stack anymore
816 if (rule_idx
!= num_rules
) {
821 rd
->n_reg_rules
= num_rules
;
829 * XXX: add support for the rest of enum nl80211_reg_rule_flags, we may
830 * want to just have the channel structure use these
832 static u32
map_regdom_flags(u32 rd_flags
)
834 u32 channel_flags
= 0;
835 if (rd_flags
& NL80211_RRF_PASSIVE_SCAN
)
836 channel_flags
|= IEEE80211_CHAN_PASSIVE_SCAN
;
837 if (rd_flags
& NL80211_RRF_NO_IBSS
)
838 channel_flags
|= IEEE80211_CHAN_NO_IBSS
;
839 if (rd_flags
& NL80211_RRF_DFS
)
840 channel_flags
|= IEEE80211_CHAN_RADAR
;
841 return channel_flags
;
844 static int freq_reg_info_regd(struct wiphy
*wiphy
,
847 const struct ieee80211_reg_rule
**reg_rule
,
848 const struct ieee80211_regdomain
*custom_regd
)
851 bool band_rule_found
= false;
852 const struct ieee80211_regdomain
*regd
;
853 u32 max_bandwidth
= 0;
855 regd
= custom_regd
? custom_regd
: cfg80211_regdomain
;
858 * Follow the driver's regulatory domain, if present, unless a country
859 * IE has been processed or a user wants to help complaince further
861 if (last_request
->initiator
!= NL80211_REGDOM_SET_BY_COUNTRY_IE
&&
862 last_request
->initiator
!= NL80211_REGDOM_SET_BY_USER
&&
869 for (i
= 0; i
< regd
->n_reg_rules
; i
++) {
870 const struct ieee80211_reg_rule
*rr
;
871 const struct ieee80211_freq_range
*fr
= NULL
;
872 const struct ieee80211_power_rule
*pr
= NULL
;
874 rr
= ®d
->reg_rules
[i
];
875 fr
= &rr
->freq_range
;
876 pr
= &rr
->power_rule
;
879 * We only need to know if one frequency rule was
880 * was in center_freq's band, that's enough, so lets
881 * not overwrite it once found
883 if (!band_rule_found
)
884 band_rule_found
= freq_in_rule_band(fr
, center_freq
);
886 max_bandwidth
= freq_max_bandwidth(fr
, center_freq
);
888 if (max_bandwidth
&& *bandwidth
<= max_bandwidth
) {
890 *bandwidth
= max_bandwidth
;
895 if (!band_rule_found
)
898 return !max_bandwidth
;
900 EXPORT_SYMBOL(freq_reg_info
);
902 int freq_reg_info(struct wiphy
*wiphy
, u32 center_freq
, u32
*bandwidth
,
903 const struct ieee80211_reg_rule
**reg_rule
)
905 return freq_reg_info_regd(wiphy
, center_freq
,
906 bandwidth
, reg_rule
, NULL
);
909 static void handle_channel(struct wiphy
*wiphy
, enum ieee80211_band band
,
910 unsigned int chan_idx
)
914 u32 max_bandwidth
= 0;
915 const struct ieee80211_reg_rule
*reg_rule
= NULL
;
916 const struct ieee80211_power_rule
*power_rule
= NULL
;
917 struct ieee80211_supported_band
*sband
;
918 struct ieee80211_channel
*chan
;
919 struct wiphy
*request_wiphy
= NULL
;
921 assert_cfg80211_lock();
923 request_wiphy
= wiphy_idx_to_wiphy(last_request
->wiphy_idx
);
925 sband
= wiphy
->bands
[band
];
926 BUG_ON(chan_idx
>= sband
->n_channels
);
927 chan
= &sband
->channels
[chan_idx
];
929 flags
= chan
->orig_flags
;
931 r
= freq_reg_info(wiphy
, MHZ_TO_KHZ(chan
->center_freq
),
932 &max_bandwidth
, ®_rule
);
936 * This means no regulatory rule was found in the country IE
937 * with a frequency range on the center_freq's band, since
938 * IEEE-802.11 allows for a country IE to have a subset of the
939 * regulatory information provided in a country we ignore
940 * disabling the channel unless at least one reg rule was
941 * found on the center_freq's band. For details see this
944 * http://tinyurl.com/11d-clarification
947 last_request
->initiator
==
948 NL80211_REGDOM_SET_BY_COUNTRY_IE
) {
949 #ifdef CONFIG_CFG80211_REG_DEBUG
950 printk(KERN_DEBUG
"cfg80211: Leaving channel %d MHz "
951 "intact on %s - no rule found in band on "
953 chan
->center_freq
, wiphy_name(wiphy
));
957 * In this case we know the country IE has at least one reg rule
958 * for the band so we respect its band definitions
960 #ifdef CONFIG_CFG80211_REG_DEBUG
961 if (last_request
->initiator
==
962 NL80211_REGDOM_SET_BY_COUNTRY_IE
)
963 printk(KERN_DEBUG
"cfg80211: Disabling "
964 "channel %d MHz on %s due to "
966 chan
->center_freq
, wiphy_name(wiphy
));
968 flags
|= IEEE80211_CHAN_DISABLED
;
974 power_rule
= ®_rule
->power_rule
;
976 if (last_request
->initiator
== NL80211_REGDOM_SET_BY_DRIVER
&&
977 request_wiphy
&& request_wiphy
== wiphy
&&
978 request_wiphy
->strict_regulatory
) {
980 * This gaurantees the driver's requested regulatory domain
981 * will always be used as a base for further regulatory
984 chan
->flags
= chan
->orig_flags
=
985 map_regdom_flags(reg_rule
->flags
);
986 chan
->max_antenna_gain
= chan
->orig_mag
=
987 (int) MBI_TO_DBI(power_rule
->max_antenna_gain
);
988 chan
->max_bandwidth
= KHZ_TO_MHZ(max_bandwidth
);
989 chan
->max_power
= chan
->orig_mpwr
=
990 (int) MBM_TO_DBM(power_rule
->max_eirp
);
994 chan
->flags
= flags
| map_regdom_flags(reg_rule
->flags
);
995 chan
->max_antenna_gain
= min(chan
->orig_mag
,
996 (int) MBI_TO_DBI(power_rule
->max_antenna_gain
));
997 chan
->max_bandwidth
= KHZ_TO_MHZ(max_bandwidth
);
999 chan
->max_power
= min(chan
->orig_mpwr
,
1000 (int) MBM_TO_DBM(power_rule
->max_eirp
));
1002 chan
->max_power
= (int) MBM_TO_DBM(power_rule
->max_eirp
);
1005 static void handle_band(struct wiphy
*wiphy
, enum ieee80211_band band
)
1008 struct ieee80211_supported_band
*sband
;
1010 BUG_ON(!wiphy
->bands
[band
]);
1011 sband
= wiphy
->bands
[band
];
1013 for (i
= 0; i
< sband
->n_channels
; i
++)
1014 handle_channel(wiphy
, band
, i
);
1017 static bool ignore_reg_update(struct wiphy
*wiphy
,
1018 enum nl80211_reg_initiator initiator
)
1022 if (initiator
== NL80211_REGDOM_SET_BY_CORE
&&
1023 wiphy
->custom_regulatory
)
1026 * wiphy->regd will be set once the device has its own
1027 * desired regulatory domain set
1029 if (wiphy
->strict_regulatory
&& !wiphy
->regd
&&
1030 !is_world_regdom(last_request
->alpha2
))
1035 static void update_all_wiphy_regulatory(enum nl80211_reg_initiator initiator
)
1037 struct cfg80211_registered_device
*drv
;
1039 list_for_each_entry(drv
, &cfg80211_drv_list
, list
)
1040 wiphy_update_regulatory(&drv
->wiphy
, initiator
);
1043 static void handle_reg_beacon(struct wiphy
*wiphy
,
1044 unsigned int chan_idx
,
1045 struct reg_beacon
*reg_beacon
)
1047 #ifdef CONFIG_CFG80211_REG_DEBUG
1048 #define REG_DEBUG_BEACON_FLAG(desc) \
1049 printk(KERN_DEBUG "cfg80211: Enabling " desc " on " \
1050 "frequency: %d MHz (Ch %d) on %s\n", \
1051 reg_beacon->chan.center_freq, \
1052 ieee80211_frequency_to_channel(reg_beacon->chan.center_freq), \
1055 #define REG_DEBUG_BEACON_FLAG(desc) do {} while (0)
1057 struct ieee80211_supported_band
*sband
;
1058 struct ieee80211_channel
*chan
;
1060 assert_cfg80211_lock();
1062 sband
= wiphy
->bands
[reg_beacon
->chan
.band
];
1063 chan
= &sband
->channels
[chan_idx
];
1065 if (likely(chan
->center_freq
!= reg_beacon
->chan
.center_freq
))
1068 if (chan
->flags
& IEEE80211_CHAN_PASSIVE_SCAN
) {
1069 chan
->flags
&= ~IEEE80211_CHAN_PASSIVE_SCAN
;
1070 REG_DEBUG_BEACON_FLAG("active scanning");
1073 if (chan
->flags
& IEEE80211_CHAN_NO_IBSS
) {
1074 chan
->flags
&= ~IEEE80211_CHAN_NO_IBSS
;
1075 REG_DEBUG_BEACON_FLAG("beaconing");
1078 chan
->beacon_found
= true;
1079 #undef REG_DEBUG_BEACON_FLAG
1083 * Called when a scan on a wiphy finds a beacon on
1086 static void wiphy_update_new_beacon(struct wiphy
*wiphy
,
1087 struct reg_beacon
*reg_beacon
)
1090 struct ieee80211_supported_band
*sband
;
1092 assert_cfg80211_lock();
1094 if (!wiphy
->bands
[reg_beacon
->chan
.band
])
1097 sband
= wiphy
->bands
[reg_beacon
->chan
.band
];
1099 for (i
= 0; i
< sband
->n_channels
; i
++)
1100 handle_reg_beacon(wiphy
, i
, reg_beacon
);
1104 * Called upon reg changes or a new wiphy is added
1106 static void wiphy_update_beacon_reg(struct wiphy
*wiphy
)
1109 struct ieee80211_supported_band
*sband
;
1110 struct reg_beacon
*reg_beacon
;
1112 assert_cfg80211_lock();
1114 if (list_empty(®_beacon_list
))
1117 list_for_each_entry(reg_beacon
, ®_beacon_list
, list
) {
1118 if (!wiphy
->bands
[reg_beacon
->chan
.band
])
1120 sband
= wiphy
->bands
[reg_beacon
->chan
.band
];
1121 for (i
= 0; i
< sband
->n_channels
; i
++)
1122 handle_reg_beacon(wiphy
, i
, reg_beacon
);
1126 static bool reg_is_world_roaming(struct wiphy
*wiphy
)
1128 if (is_world_regdom(cfg80211_regdomain
->alpha2
) ||
1129 (wiphy
->regd
&& is_world_regdom(wiphy
->regd
->alpha2
)))
1131 if (last_request
->initiator
!= NL80211_REGDOM_SET_BY_COUNTRY_IE
&&
1132 wiphy
->custom_regulatory
)
1137 /* Reap the advantages of previously found beacons */
1138 static void reg_process_beacons(struct wiphy
*wiphy
)
1140 if (!reg_is_world_roaming(wiphy
))
1142 wiphy_update_beacon_reg(wiphy
);
1145 void wiphy_update_regulatory(struct wiphy
*wiphy
,
1146 enum nl80211_reg_initiator initiator
)
1148 enum ieee80211_band band
;
1150 if (ignore_reg_update(wiphy
, initiator
))
1152 for (band
= 0; band
< IEEE80211_NUM_BANDS
; band
++) {
1153 if (wiphy
->bands
[band
])
1154 handle_band(wiphy
, band
);
1157 reg_process_beacons(wiphy
);
1158 if (wiphy
->reg_notifier
)
1159 wiphy
->reg_notifier(wiphy
, last_request
);
1162 static void handle_channel_custom(struct wiphy
*wiphy
,
1163 enum ieee80211_band band
,
1164 unsigned int chan_idx
,
1165 const struct ieee80211_regdomain
*regd
)
1168 u32 max_bandwidth
= 0;
1169 const struct ieee80211_reg_rule
*reg_rule
= NULL
;
1170 const struct ieee80211_power_rule
*power_rule
= NULL
;
1171 struct ieee80211_supported_band
*sband
;
1172 struct ieee80211_channel
*chan
;
1174 sband
= wiphy
->bands
[band
];
1175 BUG_ON(chan_idx
>= sband
->n_channels
);
1176 chan
= &sband
->channels
[chan_idx
];
1178 r
= freq_reg_info_regd(wiphy
, MHZ_TO_KHZ(chan
->center_freq
),
1179 &max_bandwidth
, ®_rule
, regd
);
1182 chan
->flags
= IEEE80211_CHAN_DISABLED
;
1186 power_rule
= ®_rule
->power_rule
;
1188 chan
->flags
|= map_regdom_flags(reg_rule
->flags
);
1189 chan
->max_antenna_gain
= (int) MBI_TO_DBI(power_rule
->max_antenna_gain
);
1190 chan
->max_bandwidth
= KHZ_TO_MHZ(max_bandwidth
);
1191 chan
->max_power
= (int) MBM_TO_DBM(power_rule
->max_eirp
);
1194 static void handle_band_custom(struct wiphy
*wiphy
, enum ieee80211_band band
,
1195 const struct ieee80211_regdomain
*regd
)
1198 struct ieee80211_supported_band
*sband
;
1200 BUG_ON(!wiphy
->bands
[band
]);
1201 sband
= wiphy
->bands
[band
];
1203 for (i
= 0; i
< sband
->n_channels
; i
++)
1204 handle_channel_custom(wiphy
, band
, i
, regd
);
1207 /* Used by drivers prior to wiphy registration */
1208 void wiphy_apply_custom_regulatory(struct wiphy
*wiphy
,
1209 const struct ieee80211_regdomain
*regd
)
1211 enum ieee80211_band band
;
1212 for (band
= 0; band
< IEEE80211_NUM_BANDS
; band
++) {
1213 if (wiphy
->bands
[band
])
1214 handle_band_custom(wiphy
, band
, regd
);
1217 EXPORT_SYMBOL(wiphy_apply_custom_regulatory
);
1219 static int reg_copy_regd(const struct ieee80211_regdomain
**dst_regd
,
1220 const struct ieee80211_regdomain
*src_regd
)
1222 struct ieee80211_regdomain
*regd
;
1223 int size_of_regd
= 0;
1226 size_of_regd
= sizeof(struct ieee80211_regdomain
) +
1227 ((src_regd
->n_reg_rules
+ 1) * sizeof(struct ieee80211_reg_rule
));
1229 regd
= kzalloc(size_of_regd
, GFP_KERNEL
);
1233 memcpy(regd
, src_regd
, sizeof(struct ieee80211_regdomain
));
1235 for (i
= 0; i
< src_regd
->n_reg_rules
; i
++)
1236 memcpy(®d
->reg_rules
[i
], &src_regd
->reg_rules
[i
],
1237 sizeof(struct ieee80211_reg_rule
));
1244 * Return value which can be used by ignore_request() to indicate
1245 * it has been determined we should intersect two regulatory domains
1247 #define REG_INTERSECT 1
1249 /* This has the logic which determines when a new request
1250 * should be ignored. */
1251 static int ignore_request(struct wiphy
*wiphy
,
1252 struct regulatory_request
*pending_request
)
1254 struct wiphy
*last_wiphy
= NULL
;
1256 assert_cfg80211_lock();
1258 /* All initial requests are respected */
1262 switch (pending_request
->initiator
) {
1263 case NL80211_REGDOM_SET_BY_CORE
:
1265 case NL80211_REGDOM_SET_BY_COUNTRY_IE
:
1267 last_wiphy
= wiphy_idx_to_wiphy(last_request
->wiphy_idx
);
1269 if (unlikely(!is_an_alpha2(pending_request
->alpha2
)))
1271 if (last_request
->initiator
==
1272 NL80211_REGDOM_SET_BY_COUNTRY_IE
) {
1273 if (last_wiphy
!= wiphy
) {
1275 * Two cards with two APs claiming different
1276 * different Country IE alpha2s. We could
1277 * intersect them, but that seems unlikely
1278 * to be correct. Reject second one for now.
1280 if (regdom_changes(pending_request
->alpha2
))
1285 * Two consecutive Country IE hints on the same wiphy.
1286 * This should be picked up early by the driver/stack
1288 if (WARN_ON(regdom_changes(pending_request
->alpha2
)))
1292 return REG_INTERSECT
;
1293 case NL80211_REGDOM_SET_BY_DRIVER
:
1294 if (last_request
->initiator
== NL80211_REGDOM_SET_BY_CORE
) {
1295 if (is_old_static_regdom(cfg80211_regdomain
))
1297 if (regdom_changes(pending_request
->alpha2
))
1303 * This would happen if you unplug and plug your card
1304 * back in or if you add a new device for which the previously
1305 * loaded card also agrees on the regulatory domain.
1307 if (last_request
->initiator
== NL80211_REGDOM_SET_BY_DRIVER
&&
1308 !regdom_changes(pending_request
->alpha2
))
1311 return REG_INTERSECT
;
1312 case NL80211_REGDOM_SET_BY_USER
:
1313 if (last_request
->initiator
== NL80211_REGDOM_SET_BY_COUNTRY_IE
)
1314 return REG_INTERSECT
;
1316 * If the user knows better the user should set the regdom
1317 * to their country before the IE is picked up
1319 if (last_request
->initiator
== NL80211_REGDOM_SET_BY_USER
&&
1320 last_request
->intersect
)
1323 * Process user requests only after previous user/driver/core
1324 * requests have been processed
1326 if (last_request
->initiator
== NL80211_REGDOM_SET_BY_CORE
||
1327 last_request
->initiator
== NL80211_REGDOM_SET_BY_DRIVER
||
1328 last_request
->initiator
== NL80211_REGDOM_SET_BY_USER
) {
1329 if (regdom_changes(last_request
->alpha2
))
1333 if (!is_old_static_regdom(cfg80211_regdomain
) &&
1334 !regdom_changes(pending_request
->alpha2
))
1344 * __regulatory_hint - hint to the wireless core a regulatory domain
1345 * @wiphy: if the hint comes from country information from an AP, this
1346 * is required to be set to the wiphy that received the information
1347 * @pending_request: the regulatory request currently being processed
1349 * The Wireless subsystem can use this function to hint to the wireless core
1350 * what it believes should be the current regulatory domain.
1352 * Returns zero if all went fine, %-EALREADY if a regulatory domain had
1353 * already been set or other standard error codes.
1355 * Caller must hold &cfg80211_mutex
1357 static int __regulatory_hint(struct wiphy
*wiphy
,
1358 struct regulatory_request
*pending_request
)
1360 bool intersect
= false;
1363 assert_cfg80211_lock();
1365 r
= ignore_request(wiphy
, pending_request
);
1367 if (r
== REG_INTERSECT
) {
1368 if (pending_request
->initiator
==
1369 NL80211_REGDOM_SET_BY_DRIVER
) {
1370 r
= reg_copy_regd(&wiphy
->regd
, cfg80211_regdomain
);
1372 kfree(pending_request
);
1379 * If the regulatory domain being requested by the
1380 * driver has already been set just copy it to the
1383 if (r
== -EALREADY
&&
1384 pending_request
->initiator
==
1385 NL80211_REGDOM_SET_BY_DRIVER
) {
1386 r
= reg_copy_regd(&wiphy
->regd
, cfg80211_regdomain
);
1388 kfree(pending_request
);
1394 kfree(pending_request
);
1399 kfree(last_request
);
1401 last_request
= pending_request
;
1402 last_request
->intersect
= intersect
;
1404 pending_request
= NULL
;
1406 /* When r == REG_INTERSECT we do need to call CRDA */
1409 * Since CRDA will not be called in this case as we already
1410 * have applied the requested regulatory domain before we just
1411 * inform userspace we have processed the request
1414 nl80211_send_reg_change_event(last_request
);
1419 * Note: When CONFIG_WIRELESS_OLD_REGULATORY is enabled
1420 * AND if CRDA is NOT present nothing will happen, if someone
1421 * wants to bother with 11d with OLD_REG you can add a timer.
1422 * If after x amount of time nothing happens you can call:
1424 * return set_regdom(country_ie_regdomain);
1426 * to intersect with the static rd
1428 return call_crda(last_request
->alpha2
);
1431 /* This currently only processes user and driver regulatory hints */
1432 static void reg_process_hint(struct regulatory_request
*reg_request
)
1435 struct wiphy
*wiphy
= NULL
;
1437 BUG_ON(!reg_request
->alpha2
);
1439 mutex_lock(&cfg80211_mutex
);
1441 if (wiphy_idx_valid(reg_request
->wiphy_idx
))
1442 wiphy
= wiphy_idx_to_wiphy(reg_request
->wiphy_idx
);
1444 if (reg_request
->initiator
== NL80211_REGDOM_SET_BY_DRIVER
&&
1450 r
= __regulatory_hint(wiphy
, reg_request
);
1451 /* This is required so that the orig_* parameters are saved */
1452 if (r
== -EALREADY
&& wiphy
&& wiphy
->strict_regulatory
)
1453 wiphy_update_regulatory(wiphy
, reg_request
->initiator
);
1455 mutex_unlock(&cfg80211_mutex
);
1458 /* Processes regulatory hints, this is all the NL80211_REGDOM_SET_BY_* */
1459 static void reg_process_pending_hints(void)
1461 struct regulatory_request
*reg_request
;
1463 spin_lock(®_requests_lock
);
1464 while (!list_empty(®_requests_list
)) {
1465 reg_request
= list_first_entry(®_requests_list
,
1466 struct regulatory_request
,
1468 list_del_init(®_request
->list
);
1470 spin_unlock(®_requests_lock
);
1471 reg_process_hint(reg_request
);
1472 spin_lock(®_requests_lock
);
1474 spin_unlock(®_requests_lock
);
1477 /* Processes beacon hints -- this has nothing to do with country IEs */
1478 static void reg_process_pending_beacon_hints(void)
1480 struct cfg80211_registered_device
*drv
;
1481 struct reg_beacon
*pending_beacon
, *tmp
;
1483 mutex_lock(&cfg80211_mutex
);
1485 /* This goes through the _pending_ beacon list */
1486 spin_lock_bh(®_pending_beacons_lock
);
1488 if (list_empty(®_pending_beacons
)) {
1489 spin_unlock_bh(®_pending_beacons_lock
);
1493 list_for_each_entry_safe(pending_beacon
, tmp
,
1494 ®_pending_beacons
, list
) {
1496 list_del_init(&pending_beacon
->list
);
1498 /* Applies the beacon hint to current wiphys */
1499 list_for_each_entry(drv
, &cfg80211_drv_list
, list
)
1500 wiphy_update_new_beacon(&drv
->wiphy
, pending_beacon
);
1502 /* Remembers the beacon hint for new wiphys or reg changes */
1503 list_add_tail(&pending_beacon
->list
, ®_beacon_list
);
1506 spin_unlock_bh(®_pending_beacons_lock
);
1508 mutex_unlock(&cfg80211_mutex
);
1511 static void reg_todo(struct work_struct
*work
)
1513 reg_process_pending_hints();
1514 reg_process_pending_beacon_hints();
1517 static DECLARE_WORK(reg_work
, reg_todo
);
1519 static void queue_regulatory_request(struct regulatory_request
*request
)
1521 spin_lock(®_requests_lock
);
1522 list_add_tail(&request
->list
, ®_requests_list
);
1523 spin_unlock(®_requests_lock
);
1525 schedule_work(®_work
);
1528 /* Core regulatory hint -- happens once during cfg80211_init() */
1529 static int regulatory_hint_core(const char *alpha2
)
1531 struct regulatory_request
*request
;
1533 BUG_ON(last_request
);
1535 request
= kzalloc(sizeof(struct regulatory_request
),
1540 request
->alpha2
[0] = alpha2
[0];
1541 request
->alpha2
[1] = alpha2
[1];
1542 request
->initiator
= NL80211_REGDOM_SET_BY_CORE
;
1544 queue_regulatory_request(request
);
1550 int regulatory_hint_user(const char *alpha2
)
1552 struct regulatory_request
*request
;
1556 request
= kzalloc(sizeof(struct regulatory_request
), GFP_KERNEL
);
1560 request
->wiphy_idx
= WIPHY_IDX_STALE
;
1561 request
->alpha2
[0] = alpha2
[0];
1562 request
->alpha2
[1] = alpha2
[1];
1563 request
->initiator
= NL80211_REGDOM_SET_BY_USER
,
1565 queue_regulatory_request(request
);
1571 int regulatory_hint(struct wiphy
*wiphy
, const char *alpha2
)
1573 struct regulatory_request
*request
;
1578 request
= kzalloc(sizeof(struct regulatory_request
), GFP_KERNEL
);
1582 request
->wiphy_idx
= get_wiphy_idx(wiphy
);
1584 /* Must have registered wiphy first */
1585 BUG_ON(!wiphy_idx_valid(request
->wiphy_idx
));
1587 request
->alpha2
[0] = alpha2
[0];
1588 request
->alpha2
[1] = alpha2
[1];
1589 request
->initiator
= NL80211_REGDOM_SET_BY_DRIVER
;
1591 queue_regulatory_request(request
);
1595 EXPORT_SYMBOL(regulatory_hint
);
1597 static bool reg_same_country_ie_hint(struct wiphy
*wiphy
,
1598 u32 country_ie_checksum
)
1600 struct wiphy
*request_wiphy
;
1602 assert_cfg80211_lock();
1604 request_wiphy
= wiphy_idx_to_wiphy(last_request
->wiphy_idx
);
1609 if (likely(request_wiphy
!= wiphy
))
1610 return !country_ie_integrity_changes(country_ie_checksum
);
1612 * We should not have let these through at this point, they
1613 * should have been picked up earlier by the first alpha2 check
1616 if (WARN_ON(!country_ie_integrity_changes(country_ie_checksum
)))
1621 void regulatory_hint_11d(struct wiphy
*wiphy
,
1625 struct ieee80211_regdomain
*rd
= NULL
;
1628 enum environment_cap env
= ENVIRON_ANY
;
1629 struct regulatory_request
*request
;
1631 mutex_lock(&cfg80211_mutex
);
1633 if (unlikely(!last_request
)) {
1634 mutex_unlock(&cfg80211_mutex
);
1638 /* IE len must be evenly divisible by 2 */
1639 if (country_ie_len
& 0x01)
1642 if (country_ie_len
< IEEE80211_COUNTRY_IE_MIN_LEN
)
1646 * Pending country IE processing, this can happen after we
1647 * call CRDA and wait for a response if a beacon was received before
1648 * we were able to process the last regulatory_hint_11d() call
1650 if (country_ie_regdomain
)
1653 alpha2
[0] = country_ie
[0];
1654 alpha2
[1] = country_ie
[1];
1656 if (country_ie
[2] == 'I')
1657 env
= ENVIRON_INDOOR
;
1658 else if (country_ie
[2] == 'O')
1659 env
= ENVIRON_OUTDOOR
;
1662 * We will run this for *every* beacon processed for the BSSID, so
1663 * we optimize an early check to exit out early if we don't have to
1666 if (likely(wiphy_idx_valid(last_request
->wiphy_idx
))) {
1667 struct cfg80211_registered_device
*drv_last_ie
;
1670 cfg80211_drv_by_wiphy_idx(last_request
->wiphy_idx
);
1673 * Lets keep this simple -- we trust the first AP
1674 * after we intersect with CRDA
1676 if (likely(&drv_last_ie
->wiphy
== wiphy
)) {
1678 * Ignore IEs coming in on this wiphy with
1679 * the same alpha2 and environment cap
1681 if (likely(alpha2_equal(drv_last_ie
->country_ie_alpha2
,
1683 env
== drv_last_ie
->env
)) {
1687 * the wiphy moved on to another BSSID or the AP
1688 * was reconfigured. XXX: We need to deal with the
1689 * case where the user suspends and goes to goes
1690 * to another country, and then gets IEs from an
1691 * AP with different settings
1696 * Ignore IEs coming in on two separate wiphys with
1697 * the same alpha2 and environment cap
1699 if (likely(alpha2_equal(drv_last_ie
->country_ie_alpha2
,
1701 env
== drv_last_ie
->env
)) {
1704 /* We could potentially intersect though */
1709 rd
= country_ie_2_rd(country_ie
, country_ie_len
, &checksum
);
1714 * This will not happen right now but we leave it here for the
1715 * the future when we want to add suspend/resume support and having
1716 * the user move to another country after doing so, or having the user
1717 * move to another AP. Right now we just trust the first AP.
1719 * If we hit this before we add this support we want to be informed of
1720 * it as it would indicate a mistake in the current design
1722 if (WARN_ON(reg_same_country_ie_hint(wiphy
, checksum
)))
1725 request
= kzalloc(sizeof(struct regulatory_request
), GFP_KERNEL
);
1730 * We keep this around for when CRDA comes back with a response so
1731 * we can intersect with that
1733 country_ie_regdomain
= rd
;
1735 request
->wiphy_idx
= get_wiphy_idx(wiphy
);
1736 request
->alpha2
[0] = rd
->alpha2
[0];
1737 request
->alpha2
[1] = rd
->alpha2
[1];
1738 request
->initiator
= NL80211_REGDOM_SET_BY_COUNTRY_IE
;
1739 request
->country_ie_checksum
= checksum
;
1740 request
->country_ie_env
= env
;
1742 mutex_unlock(&cfg80211_mutex
);
1744 queue_regulatory_request(request
);
1751 mutex_unlock(&cfg80211_mutex
);
1753 EXPORT_SYMBOL(regulatory_hint_11d
);
1755 static bool freq_is_chan_12_13_14(u16 freq
)
1757 if (freq
== ieee80211_channel_to_frequency(12) ||
1758 freq
== ieee80211_channel_to_frequency(13) ||
1759 freq
== ieee80211_channel_to_frequency(14))
1764 int regulatory_hint_found_beacon(struct wiphy
*wiphy
,
1765 struct ieee80211_channel
*beacon_chan
,
1768 struct reg_beacon
*reg_beacon
;
1770 if (likely((beacon_chan
->beacon_found
||
1771 (beacon_chan
->flags
& IEEE80211_CHAN_RADAR
) ||
1772 (beacon_chan
->band
== IEEE80211_BAND_2GHZ
&&
1773 !freq_is_chan_12_13_14(beacon_chan
->center_freq
)))))
1776 reg_beacon
= kzalloc(sizeof(struct reg_beacon
), gfp
);
1780 #ifdef CONFIG_CFG80211_REG_DEBUG
1781 printk(KERN_DEBUG
"cfg80211: Found new beacon on "
1782 "frequency: %d MHz (Ch %d) on %s\n",
1783 beacon_chan
->center_freq
,
1784 ieee80211_frequency_to_channel(beacon_chan
->center_freq
),
1787 memcpy(®_beacon
->chan
, beacon_chan
,
1788 sizeof(struct ieee80211_channel
));
1792 * Since we can be called from BH or and non-BH context
1793 * we must use spin_lock_bh()
1795 spin_lock_bh(®_pending_beacons_lock
);
1796 list_add_tail(®_beacon
->list
, ®_pending_beacons
);
1797 spin_unlock_bh(®_pending_beacons_lock
);
1799 schedule_work(®_work
);
1804 static void print_rd_rules(const struct ieee80211_regdomain
*rd
)
1807 const struct ieee80211_reg_rule
*reg_rule
= NULL
;
1808 const struct ieee80211_freq_range
*freq_range
= NULL
;
1809 const struct ieee80211_power_rule
*power_rule
= NULL
;
1811 printk(KERN_INFO
"\t(start_freq - end_freq @ bandwidth), "
1812 "(max_antenna_gain, max_eirp)\n");
1814 for (i
= 0; i
< rd
->n_reg_rules
; i
++) {
1815 reg_rule
= &rd
->reg_rules
[i
];
1816 freq_range
= ®_rule
->freq_range
;
1817 power_rule
= ®_rule
->power_rule
;
1820 * There may not be documentation for max antenna gain
1821 * in certain regions
1823 if (power_rule
->max_antenna_gain
)
1824 printk(KERN_INFO
"\t(%d KHz - %d KHz @ %d KHz), "
1825 "(%d mBi, %d mBm)\n",
1826 freq_range
->start_freq_khz
,
1827 freq_range
->end_freq_khz
,
1828 freq_range
->max_bandwidth_khz
,
1829 power_rule
->max_antenna_gain
,
1830 power_rule
->max_eirp
);
1832 printk(KERN_INFO
"\t(%d KHz - %d KHz @ %d KHz), "
1834 freq_range
->start_freq_khz
,
1835 freq_range
->end_freq_khz
,
1836 freq_range
->max_bandwidth_khz
,
1837 power_rule
->max_eirp
);
1841 static void print_regdomain(const struct ieee80211_regdomain
*rd
)
1844 if (is_intersected_alpha2(rd
->alpha2
)) {
1846 if (last_request
->initiator
==
1847 NL80211_REGDOM_SET_BY_COUNTRY_IE
) {
1848 struct cfg80211_registered_device
*drv
;
1849 drv
= cfg80211_drv_by_wiphy_idx(
1850 last_request
->wiphy_idx
);
1852 printk(KERN_INFO
"cfg80211: Current regulatory "
1853 "domain updated by AP to: %c%c\n",
1854 drv
->country_ie_alpha2
[0],
1855 drv
->country_ie_alpha2
[1]);
1857 printk(KERN_INFO
"cfg80211: Current regulatory "
1858 "domain intersected: \n");
1860 printk(KERN_INFO
"cfg80211: Current regulatory "
1861 "domain intersected: \n");
1862 } else if (is_world_regdom(rd
->alpha2
))
1863 printk(KERN_INFO
"cfg80211: World regulatory "
1864 "domain updated:\n");
1866 if (is_unknown_alpha2(rd
->alpha2
))
1867 printk(KERN_INFO
"cfg80211: Regulatory domain "
1868 "changed to driver built-in settings "
1869 "(unknown country)\n");
1871 printk(KERN_INFO
"cfg80211: Regulatory domain "
1872 "changed to country: %c%c\n",
1873 rd
->alpha2
[0], rd
->alpha2
[1]);
1878 static void print_regdomain_info(const struct ieee80211_regdomain
*rd
)
1880 printk(KERN_INFO
"cfg80211: Regulatory domain: %c%c\n",
1881 rd
->alpha2
[0], rd
->alpha2
[1]);
1885 #ifdef CONFIG_CFG80211_REG_DEBUG
1886 static void reg_country_ie_process_debug(
1887 const struct ieee80211_regdomain
*rd
,
1888 const struct ieee80211_regdomain
*country_ie_regdomain
,
1889 const struct ieee80211_regdomain
*intersected_rd
)
1891 printk(KERN_DEBUG
"cfg80211: Received country IE:\n");
1892 print_regdomain_info(country_ie_regdomain
);
1893 printk(KERN_DEBUG
"cfg80211: CRDA thinks this should applied:\n");
1894 print_regdomain_info(rd
);
1895 if (intersected_rd
) {
1896 printk(KERN_DEBUG
"cfg80211: We intersect both of these "
1898 print_regdomain_info(intersected_rd
);
1901 printk(KERN_DEBUG
"cfg80211: Intersection between both failed\n");
1904 static inline void reg_country_ie_process_debug(
1905 const struct ieee80211_regdomain
*rd
,
1906 const struct ieee80211_regdomain
*country_ie_regdomain
,
1907 const struct ieee80211_regdomain
*intersected_rd
)
1912 /* Takes ownership of rd only if it doesn't fail */
1913 static int __set_regdom(const struct ieee80211_regdomain
*rd
)
1915 const struct ieee80211_regdomain
*intersected_rd
= NULL
;
1916 struct cfg80211_registered_device
*drv
= NULL
;
1917 struct wiphy
*request_wiphy
;
1918 /* Some basic sanity checks first */
1920 if (is_world_regdom(rd
->alpha2
)) {
1921 if (WARN_ON(!reg_is_valid_request(rd
->alpha2
)))
1923 update_world_regdomain(rd
);
1927 if (!is_alpha2_set(rd
->alpha2
) && !is_an_alpha2(rd
->alpha2
) &&
1928 !is_unknown_alpha2(rd
->alpha2
))
1935 * Lets only bother proceeding on the same alpha2 if the current
1936 * rd is non static (it means CRDA was present and was used last)
1937 * and the pending request came in from a country IE
1939 if (last_request
->initiator
!= NL80211_REGDOM_SET_BY_COUNTRY_IE
) {
1941 * If someone else asked us to change the rd lets only bother
1942 * checking if the alpha2 changes if CRDA was already called
1944 if (!is_old_static_regdom(cfg80211_regdomain
) &&
1945 !regdom_changes(rd
->alpha2
))
1950 * Now lets set the regulatory domain, update all driver channels
1951 * and finally inform them of what we have done, in case they want
1952 * to review or adjust their own settings based on their own
1953 * internal EEPROM data
1956 if (WARN_ON(!reg_is_valid_request(rd
->alpha2
)))
1959 if (!is_valid_rd(rd
)) {
1960 printk(KERN_ERR
"cfg80211: Invalid "
1961 "regulatory domain detected:\n");
1962 print_regdomain_info(rd
);
1966 request_wiphy
= wiphy_idx_to_wiphy(last_request
->wiphy_idx
);
1968 if (!last_request
->intersect
) {
1971 if (last_request
->initiator
!= NL80211_REGDOM_SET_BY_DRIVER
) {
1973 cfg80211_regdomain
= rd
;
1978 * For a driver hint, lets copy the regulatory domain the
1979 * driver wanted to the wiphy to deal with conflicts
1982 BUG_ON(request_wiphy
->regd
);
1984 r
= reg_copy_regd(&request_wiphy
->regd
, rd
);
1989 cfg80211_regdomain
= rd
;
1993 /* Intersection requires a bit more work */
1995 if (last_request
->initiator
!= NL80211_REGDOM_SET_BY_COUNTRY_IE
) {
1997 intersected_rd
= regdom_intersect(rd
, cfg80211_regdomain
);
1998 if (!intersected_rd
)
2002 * We can trash what CRDA provided now.
2003 * However if a driver requested this specific regulatory
2004 * domain we keep it for its private use
2006 if (last_request
->initiator
== NL80211_REGDOM_SET_BY_DRIVER
)
2007 request_wiphy
->regd
= rd
;
2014 cfg80211_regdomain
= intersected_rd
;
2020 * Country IE requests are handled a bit differently, we intersect
2021 * the country IE rd with what CRDA believes that country should have
2024 BUG_ON(!country_ie_regdomain
);
2026 if (rd
!= country_ie_regdomain
) {
2028 * Intersect what CRDA returned and our what we
2029 * had built from the Country IE received
2032 intersected_rd
= regdom_intersect(rd
, country_ie_regdomain
);
2034 reg_country_ie_process_debug(rd
, country_ie_regdomain
,
2037 kfree(country_ie_regdomain
);
2038 country_ie_regdomain
= NULL
;
2041 * This would happen when CRDA was not present and
2042 * OLD_REGULATORY was enabled. We intersect our Country
2043 * IE rd and what was set on cfg80211 originally
2045 intersected_rd
= regdom_intersect(rd
, cfg80211_regdomain
);
2048 if (!intersected_rd
)
2051 drv
= wiphy_to_dev(request_wiphy
);
2053 drv
->country_ie_alpha2
[0] = rd
->alpha2
[0];
2054 drv
->country_ie_alpha2
[1] = rd
->alpha2
[1];
2055 drv
->env
= last_request
->country_ie_env
;
2057 BUG_ON(intersected_rd
== rd
);
2063 cfg80211_regdomain
= intersected_rd
;
2070 * Use this call to set the current regulatory domain. Conflicts with
2071 * multiple drivers can be ironed out later. Caller must've already
2072 * kmalloc'd the rd structure. Caller must hold cfg80211_mutex
2074 int set_regdom(const struct ieee80211_regdomain
*rd
)
2078 assert_cfg80211_lock();
2080 /* Note that this doesn't update the wiphys, this is done below */
2081 r
= __set_regdom(rd
);
2087 /* This would make this whole thing pointless */
2088 if (!last_request
->intersect
)
2089 BUG_ON(rd
!= cfg80211_regdomain
);
2091 /* update all wiphys now with the new established regulatory domain */
2092 update_all_wiphy_regulatory(last_request
->initiator
);
2094 print_regdomain(cfg80211_regdomain
);
2096 nl80211_send_reg_change_event(last_request
);
2101 /* Caller must hold cfg80211_mutex */
2102 void reg_device_remove(struct wiphy
*wiphy
)
2104 struct wiphy
*request_wiphy
;
2106 assert_cfg80211_lock();
2108 request_wiphy
= wiphy_idx_to_wiphy(last_request
->wiphy_idx
);
2111 if (!last_request
|| !request_wiphy
)
2113 if (request_wiphy
!= wiphy
)
2115 last_request
->wiphy_idx
= WIPHY_IDX_STALE
;
2116 last_request
->country_ie_env
= ENVIRON_ANY
;
2119 int regulatory_init(void)
2123 reg_pdev
= platform_device_register_simple("regulatory", 0, NULL
, 0);
2124 if (IS_ERR(reg_pdev
))
2125 return PTR_ERR(reg_pdev
);
2127 spin_lock_init(®_requests_lock
);
2128 spin_lock_init(®_pending_beacons_lock
);
2130 #ifdef CONFIG_WIRELESS_OLD_REGULATORY
2131 cfg80211_regdomain
= static_regdom(ieee80211_regdom
);
2133 printk(KERN_INFO
"cfg80211: Using static regulatory domain info\n");
2134 print_regdomain_info(cfg80211_regdomain
);
2136 * The old code still requests for a new regdomain and if
2137 * you have CRDA you get it updated, otherwise you get
2138 * stuck with the static values. We ignore "EU" code as
2139 * that is not a valid ISO / IEC 3166 alpha2
2141 if (ieee80211_regdom
[0] != 'E' || ieee80211_regdom
[1] != 'U')
2142 err
= regulatory_hint_core(ieee80211_regdom
);
2144 cfg80211_regdomain
= cfg80211_world_regdom
;
2146 err
= regulatory_hint_core("00");
2152 * N.B. kobject_uevent_env() can fail mainly for when we're out
2153 * memory which is handled and propagated appropriately above
2154 * but it can also fail during a netlink_broadcast() or during
2155 * early boot for call_usermodehelper(). For now treat these
2156 * errors as non-fatal.
2158 printk(KERN_ERR
"cfg80211: kobject_uevent_env() was unable "
2159 "to call CRDA during init");
2160 #ifdef CONFIG_CFG80211_REG_DEBUG
2161 /* We want to find out exactly why when debugging */
2169 void regulatory_exit(void)
2171 struct regulatory_request
*reg_request
, *tmp
;
2172 struct reg_beacon
*reg_beacon
, *btmp
;
2174 cancel_work_sync(®_work
);
2176 mutex_lock(&cfg80211_mutex
);
2180 kfree(country_ie_regdomain
);
2181 country_ie_regdomain
= NULL
;
2183 kfree(last_request
);
2185 platform_device_unregister(reg_pdev
);
2187 spin_lock_bh(®_pending_beacons_lock
);
2188 if (!list_empty(®_pending_beacons
)) {
2189 list_for_each_entry_safe(reg_beacon
, btmp
,
2190 ®_pending_beacons
, list
) {
2191 list_del(®_beacon
->list
);
2195 spin_unlock_bh(®_pending_beacons_lock
);
2197 if (!list_empty(®_beacon_list
)) {
2198 list_for_each_entry_safe(reg_beacon
, btmp
,
2199 ®_beacon_list
, list
) {
2200 list_del(®_beacon
->list
);
2205 spin_lock(®_requests_lock
);
2206 if (!list_empty(®_requests_list
)) {
2207 list_for_each_entry_safe(reg_request
, tmp
,
2208 ®_requests_list
, list
) {
2209 list_del(®_request
->list
);
2213 spin_unlock(®_requests_lock
);
2215 mutex_unlock(&cfg80211_mutex
);