gianfar: fix babbling rx error event bug
[linux-2.6/mini2440.git] / drivers / input / input.c
blobe54e002665b0c7d697ae9dc5cc0750747bde9069
1 /*
2 * The input core
4 * Copyright (c) 1999-2002 Vojtech Pavlik
5 */
7 /*
8 * This program is free software; you can redistribute it and/or modify it
9 * under the terms of the GNU General Public License version 2 as published by
10 * the Free Software Foundation.
13 #include <linux/init.h>
14 #include <linux/input.h>
15 #include <linux/module.h>
16 #include <linux/random.h>
17 #include <linux/major.h>
18 #include <linux/proc_fs.h>
19 #include <linux/seq_file.h>
20 #include <linux/poll.h>
21 #include <linux/device.h>
22 #include <linux/mutex.h>
23 #include <linux/rcupdate.h>
24 #include <linux/smp_lock.h>
26 MODULE_AUTHOR("Vojtech Pavlik <vojtech@suse.cz>");
27 MODULE_DESCRIPTION("Input core");
28 MODULE_LICENSE("GPL");
30 #define INPUT_DEVICES 256
33 * EV_ABS events which should not be cached are listed here.
35 static unsigned int input_abs_bypass_init_data[] __initdata = {
36 ABS_MT_TOUCH_MAJOR,
37 ABS_MT_TOUCH_MINOR,
38 ABS_MT_WIDTH_MAJOR,
39 ABS_MT_WIDTH_MINOR,
40 ABS_MT_ORIENTATION,
41 ABS_MT_POSITION_X,
42 ABS_MT_POSITION_Y,
43 ABS_MT_TOOL_TYPE,
44 ABS_MT_BLOB_ID,
47 static unsigned long input_abs_bypass[BITS_TO_LONGS(ABS_CNT)];
49 static LIST_HEAD(input_dev_list);
50 static LIST_HEAD(input_handler_list);
53 * input_mutex protects access to both input_dev_list and input_handler_list.
54 * This also causes input_[un]register_device and input_[un]register_handler
55 * be mutually exclusive which simplifies locking in drivers implementing
56 * input handlers.
58 static DEFINE_MUTEX(input_mutex);
60 static struct input_handler *input_table[8];
62 static inline int is_event_supported(unsigned int code,
63 unsigned long *bm, unsigned int max)
65 return code <= max && test_bit(code, bm);
68 static int input_defuzz_abs_event(int value, int old_val, int fuzz)
70 if (fuzz) {
71 if (value > old_val - fuzz / 2 && value < old_val + fuzz / 2)
72 return old_val;
74 if (value > old_val - fuzz && value < old_val + fuzz)
75 return (old_val * 3 + value) / 4;
77 if (value > old_val - fuzz * 2 && value < old_val + fuzz * 2)
78 return (old_val + value) / 2;
81 return value;
85 * Pass event through all open handles. This function is called with
86 * dev->event_lock held and interrupts disabled.
88 static void input_pass_event(struct input_dev *dev,
89 unsigned int type, unsigned int code, int value)
91 struct input_handle *handle;
93 rcu_read_lock();
95 handle = rcu_dereference(dev->grab);
96 if (handle)
97 handle->handler->event(handle, type, code, value);
98 else
99 list_for_each_entry_rcu(handle, &dev->h_list, d_node)
100 if (handle->open)
101 handle->handler->event(handle,
102 type, code, value);
103 rcu_read_unlock();
107 * Generate software autorepeat event. Note that we take
108 * dev->event_lock here to avoid racing with input_event
109 * which may cause keys get "stuck".
111 static void input_repeat_key(unsigned long data)
113 struct input_dev *dev = (void *) data;
114 unsigned long flags;
116 spin_lock_irqsave(&dev->event_lock, flags);
118 if (test_bit(dev->repeat_key, dev->key) &&
119 is_event_supported(dev->repeat_key, dev->keybit, KEY_MAX)) {
121 input_pass_event(dev, EV_KEY, dev->repeat_key, 2);
123 if (dev->sync) {
125 * Only send SYN_REPORT if we are not in a middle
126 * of driver parsing a new hardware packet.
127 * Otherwise assume that the driver will send
128 * SYN_REPORT once it's done.
130 input_pass_event(dev, EV_SYN, SYN_REPORT, 1);
133 if (dev->rep[REP_PERIOD])
134 mod_timer(&dev->timer, jiffies +
135 msecs_to_jiffies(dev->rep[REP_PERIOD]));
138 spin_unlock_irqrestore(&dev->event_lock, flags);
141 static void input_start_autorepeat(struct input_dev *dev, int code)
143 if (test_bit(EV_REP, dev->evbit) &&
144 dev->rep[REP_PERIOD] && dev->rep[REP_DELAY] &&
145 dev->timer.data) {
146 dev->repeat_key = code;
147 mod_timer(&dev->timer,
148 jiffies + msecs_to_jiffies(dev->rep[REP_DELAY]));
152 static void input_stop_autorepeat(struct input_dev *dev)
154 del_timer(&dev->timer);
157 #define INPUT_IGNORE_EVENT 0
158 #define INPUT_PASS_TO_HANDLERS 1
159 #define INPUT_PASS_TO_DEVICE 2
160 #define INPUT_PASS_TO_ALL (INPUT_PASS_TO_HANDLERS | INPUT_PASS_TO_DEVICE)
162 static void input_handle_event(struct input_dev *dev,
163 unsigned int type, unsigned int code, int value)
165 int disposition = INPUT_IGNORE_EVENT;
167 switch (type) {
169 case EV_SYN:
170 switch (code) {
171 case SYN_CONFIG:
172 disposition = INPUT_PASS_TO_ALL;
173 break;
175 case SYN_REPORT:
176 if (!dev->sync) {
177 dev->sync = 1;
178 disposition = INPUT_PASS_TO_HANDLERS;
180 break;
181 case SYN_MT_REPORT:
182 dev->sync = 0;
183 disposition = INPUT_PASS_TO_HANDLERS;
184 break;
186 break;
188 case EV_KEY:
189 if (is_event_supported(code, dev->keybit, KEY_MAX) &&
190 !!test_bit(code, dev->key) != value) {
192 if (value != 2) {
193 __change_bit(code, dev->key);
194 if (value)
195 input_start_autorepeat(dev, code);
196 else
197 input_stop_autorepeat(dev);
200 disposition = INPUT_PASS_TO_HANDLERS;
202 break;
204 case EV_SW:
205 if (is_event_supported(code, dev->swbit, SW_MAX) &&
206 !!test_bit(code, dev->sw) != value) {
208 __change_bit(code, dev->sw);
209 disposition = INPUT_PASS_TO_HANDLERS;
211 break;
213 case EV_ABS:
214 if (is_event_supported(code, dev->absbit, ABS_MAX)) {
216 if (test_bit(code, input_abs_bypass)) {
217 disposition = INPUT_PASS_TO_HANDLERS;
218 break;
221 value = input_defuzz_abs_event(value,
222 dev->abs[code], dev->absfuzz[code]);
224 if (dev->abs[code] != value) {
225 dev->abs[code] = value;
226 disposition = INPUT_PASS_TO_HANDLERS;
229 break;
231 case EV_REL:
232 if (is_event_supported(code, dev->relbit, REL_MAX) && value)
233 disposition = INPUT_PASS_TO_HANDLERS;
235 break;
237 case EV_MSC:
238 if (is_event_supported(code, dev->mscbit, MSC_MAX))
239 disposition = INPUT_PASS_TO_ALL;
241 break;
243 case EV_LED:
244 if (is_event_supported(code, dev->ledbit, LED_MAX) &&
245 !!test_bit(code, dev->led) != value) {
247 __change_bit(code, dev->led);
248 disposition = INPUT_PASS_TO_ALL;
250 break;
252 case EV_SND:
253 if (is_event_supported(code, dev->sndbit, SND_MAX)) {
255 if (!!test_bit(code, dev->snd) != !!value)
256 __change_bit(code, dev->snd);
257 disposition = INPUT_PASS_TO_ALL;
259 break;
261 case EV_REP:
262 if (code <= REP_MAX && value >= 0 && dev->rep[code] != value) {
263 dev->rep[code] = value;
264 disposition = INPUT_PASS_TO_ALL;
266 break;
268 case EV_FF:
269 if (value >= 0)
270 disposition = INPUT_PASS_TO_ALL;
271 break;
273 case EV_PWR:
274 disposition = INPUT_PASS_TO_ALL;
275 break;
278 if (disposition != INPUT_IGNORE_EVENT && type != EV_SYN)
279 dev->sync = 0;
281 if ((disposition & INPUT_PASS_TO_DEVICE) && dev->event)
282 dev->event(dev, type, code, value);
284 if (disposition & INPUT_PASS_TO_HANDLERS)
285 input_pass_event(dev, type, code, value);
289 * input_event() - report new input event
290 * @dev: device that generated the event
291 * @type: type of the event
292 * @code: event code
293 * @value: value of the event
295 * This function should be used by drivers implementing various input
296 * devices. See also input_inject_event().
299 void input_event(struct input_dev *dev,
300 unsigned int type, unsigned int code, int value)
302 unsigned long flags;
304 if (is_event_supported(type, dev->evbit, EV_MAX)) {
306 spin_lock_irqsave(&dev->event_lock, flags);
307 add_input_randomness(type, code, value);
308 input_handle_event(dev, type, code, value);
309 spin_unlock_irqrestore(&dev->event_lock, flags);
312 EXPORT_SYMBOL(input_event);
315 * input_inject_event() - send input event from input handler
316 * @handle: input handle to send event through
317 * @type: type of the event
318 * @code: event code
319 * @value: value of the event
321 * Similar to input_event() but will ignore event if device is
322 * "grabbed" and handle injecting event is not the one that owns
323 * the device.
325 void input_inject_event(struct input_handle *handle,
326 unsigned int type, unsigned int code, int value)
328 struct input_dev *dev = handle->dev;
329 struct input_handle *grab;
330 unsigned long flags;
332 if (is_event_supported(type, dev->evbit, EV_MAX)) {
333 spin_lock_irqsave(&dev->event_lock, flags);
335 rcu_read_lock();
336 grab = rcu_dereference(dev->grab);
337 if (!grab || grab == handle)
338 input_handle_event(dev, type, code, value);
339 rcu_read_unlock();
341 spin_unlock_irqrestore(&dev->event_lock, flags);
344 EXPORT_SYMBOL(input_inject_event);
347 * input_grab_device - grabs device for exclusive use
348 * @handle: input handle that wants to own the device
350 * When a device is grabbed by an input handle all events generated by
351 * the device are delivered only to this handle. Also events injected
352 * by other input handles are ignored while device is grabbed.
354 int input_grab_device(struct input_handle *handle)
356 struct input_dev *dev = handle->dev;
357 int retval;
359 retval = mutex_lock_interruptible(&dev->mutex);
360 if (retval)
361 return retval;
363 if (dev->grab) {
364 retval = -EBUSY;
365 goto out;
368 rcu_assign_pointer(dev->grab, handle);
369 synchronize_rcu();
371 out:
372 mutex_unlock(&dev->mutex);
373 return retval;
375 EXPORT_SYMBOL(input_grab_device);
377 static void __input_release_device(struct input_handle *handle)
379 struct input_dev *dev = handle->dev;
381 if (dev->grab == handle) {
382 rcu_assign_pointer(dev->grab, NULL);
383 /* Make sure input_pass_event() notices that grab is gone */
384 synchronize_rcu();
386 list_for_each_entry(handle, &dev->h_list, d_node)
387 if (handle->open && handle->handler->start)
388 handle->handler->start(handle);
393 * input_release_device - release previously grabbed device
394 * @handle: input handle that owns the device
396 * Releases previously grabbed device so that other input handles can
397 * start receiving input events. Upon release all handlers attached
398 * to the device have their start() method called so they have a change
399 * to synchronize device state with the rest of the system.
401 void input_release_device(struct input_handle *handle)
403 struct input_dev *dev = handle->dev;
405 mutex_lock(&dev->mutex);
406 __input_release_device(handle);
407 mutex_unlock(&dev->mutex);
409 EXPORT_SYMBOL(input_release_device);
412 * input_open_device - open input device
413 * @handle: handle through which device is being accessed
415 * This function should be called by input handlers when they
416 * want to start receive events from given input device.
418 int input_open_device(struct input_handle *handle)
420 struct input_dev *dev = handle->dev;
421 int retval;
423 retval = mutex_lock_interruptible(&dev->mutex);
424 if (retval)
425 return retval;
427 if (dev->going_away) {
428 retval = -ENODEV;
429 goto out;
432 handle->open++;
434 if (!dev->users++ && dev->open)
435 retval = dev->open(dev);
437 if (retval) {
438 dev->users--;
439 if (!--handle->open) {
441 * Make sure we are not delivering any more events
442 * through this handle
444 synchronize_rcu();
448 out:
449 mutex_unlock(&dev->mutex);
450 return retval;
452 EXPORT_SYMBOL(input_open_device);
454 int input_flush_device(struct input_handle *handle, struct file *file)
456 struct input_dev *dev = handle->dev;
457 int retval;
459 retval = mutex_lock_interruptible(&dev->mutex);
460 if (retval)
461 return retval;
463 if (dev->flush)
464 retval = dev->flush(dev, file);
466 mutex_unlock(&dev->mutex);
467 return retval;
469 EXPORT_SYMBOL(input_flush_device);
472 * input_close_device - close input device
473 * @handle: handle through which device is being accessed
475 * This function should be called by input handlers when they
476 * want to stop receive events from given input device.
478 void input_close_device(struct input_handle *handle)
480 struct input_dev *dev = handle->dev;
482 mutex_lock(&dev->mutex);
484 __input_release_device(handle);
486 if (!--dev->users && dev->close)
487 dev->close(dev);
489 if (!--handle->open) {
491 * synchronize_rcu() makes sure that input_pass_event()
492 * completed and that no more input events are delivered
493 * through this handle
495 synchronize_rcu();
498 mutex_unlock(&dev->mutex);
500 EXPORT_SYMBOL(input_close_device);
503 * Prepare device for unregistering
505 static void input_disconnect_device(struct input_dev *dev)
507 struct input_handle *handle;
508 int code;
511 * Mark device as going away. Note that we take dev->mutex here
512 * not to protect access to dev->going_away but rather to ensure
513 * that there are no threads in the middle of input_open_device()
515 mutex_lock(&dev->mutex);
516 dev->going_away = 1;
517 mutex_unlock(&dev->mutex);
519 spin_lock_irq(&dev->event_lock);
522 * Simulate keyup events for all pressed keys so that handlers
523 * are not left with "stuck" keys. The driver may continue
524 * generate events even after we done here but they will not
525 * reach any handlers.
527 if (is_event_supported(EV_KEY, dev->evbit, EV_MAX)) {
528 for (code = 0; code <= KEY_MAX; code++) {
529 if (is_event_supported(code, dev->keybit, KEY_MAX) &&
530 __test_and_clear_bit(code, dev->key)) {
531 input_pass_event(dev, EV_KEY, code, 0);
534 input_pass_event(dev, EV_SYN, SYN_REPORT, 1);
537 list_for_each_entry(handle, &dev->h_list, d_node)
538 handle->open = 0;
540 spin_unlock_irq(&dev->event_lock);
543 static int input_fetch_keycode(struct input_dev *dev, int scancode)
545 switch (dev->keycodesize) {
546 case 1:
547 return ((u8 *)dev->keycode)[scancode];
549 case 2:
550 return ((u16 *)dev->keycode)[scancode];
552 default:
553 return ((u32 *)dev->keycode)[scancode];
557 static int input_default_getkeycode(struct input_dev *dev,
558 int scancode, int *keycode)
560 if (!dev->keycodesize)
561 return -EINVAL;
563 if (scancode >= dev->keycodemax)
564 return -EINVAL;
566 *keycode = input_fetch_keycode(dev, scancode);
568 return 0;
571 static int input_default_setkeycode(struct input_dev *dev,
572 int scancode, int keycode)
574 int old_keycode;
575 int i;
577 if (scancode >= dev->keycodemax)
578 return -EINVAL;
580 if (!dev->keycodesize)
581 return -EINVAL;
583 if (dev->keycodesize < sizeof(keycode) && (keycode >> (dev->keycodesize * 8)))
584 return -EINVAL;
586 switch (dev->keycodesize) {
587 case 1: {
588 u8 *k = (u8 *)dev->keycode;
589 old_keycode = k[scancode];
590 k[scancode] = keycode;
591 break;
593 case 2: {
594 u16 *k = (u16 *)dev->keycode;
595 old_keycode = k[scancode];
596 k[scancode] = keycode;
597 break;
599 default: {
600 u32 *k = (u32 *)dev->keycode;
601 old_keycode = k[scancode];
602 k[scancode] = keycode;
603 break;
607 clear_bit(old_keycode, dev->keybit);
608 set_bit(keycode, dev->keybit);
610 for (i = 0; i < dev->keycodemax; i++) {
611 if (input_fetch_keycode(dev, i) == old_keycode) {
612 set_bit(old_keycode, dev->keybit);
613 break; /* Setting the bit twice is useless, so break */
617 return 0;
621 * input_get_keycode - retrieve keycode currently mapped to a given scancode
622 * @dev: input device which keymap is being queried
623 * @scancode: scancode (or its equivalent for device in question) for which
624 * keycode is needed
625 * @keycode: result
627 * This function should be called by anyone interested in retrieving current
628 * keymap. Presently keyboard and evdev handlers use it.
630 int input_get_keycode(struct input_dev *dev, int scancode, int *keycode)
632 if (scancode < 0)
633 return -EINVAL;
635 return dev->getkeycode(dev, scancode, keycode);
637 EXPORT_SYMBOL(input_get_keycode);
640 * input_get_keycode - assign new keycode to a given scancode
641 * @dev: input device which keymap is being updated
642 * @scancode: scancode (or its equivalent for device in question)
643 * @keycode: new keycode to be assigned to the scancode
645 * This function should be called by anyone needing to update current
646 * keymap. Presently keyboard and evdev handlers use it.
648 int input_set_keycode(struct input_dev *dev, int scancode, int keycode)
650 unsigned long flags;
651 int old_keycode;
652 int retval;
654 if (scancode < 0)
655 return -EINVAL;
657 if (keycode < 0 || keycode > KEY_MAX)
658 return -EINVAL;
660 spin_lock_irqsave(&dev->event_lock, flags);
662 retval = dev->getkeycode(dev, scancode, &old_keycode);
663 if (retval)
664 goto out;
666 retval = dev->setkeycode(dev, scancode, keycode);
667 if (retval)
668 goto out;
671 * Simulate keyup event if keycode is not present
672 * in the keymap anymore
674 if (test_bit(EV_KEY, dev->evbit) &&
675 !is_event_supported(old_keycode, dev->keybit, KEY_MAX) &&
676 __test_and_clear_bit(old_keycode, dev->key)) {
678 input_pass_event(dev, EV_KEY, old_keycode, 0);
679 if (dev->sync)
680 input_pass_event(dev, EV_SYN, SYN_REPORT, 1);
683 out:
684 spin_unlock_irqrestore(&dev->event_lock, flags);
686 return retval;
688 EXPORT_SYMBOL(input_set_keycode);
690 #define MATCH_BIT(bit, max) \
691 for (i = 0; i < BITS_TO_LONGS(max); i++) \
692 if ((id->bit[i] & dev->bit[i]) != id->bit[i]) \
693 break; \
694 if (i != BITS_TO_LONGS(max)) \
695 continue;
697 static const struct input_device_id *input_match_device(const struct input_device_id *id,
698 struct input_dev *dev)
700 int i;
702 for (; id->flags || id->driver_info; id++) {
704 if (id->flags & INPUT_DEVICE_ID_MATCH_BUS)
705 if (id->bustype != dev->id.bustype)
706 continue;
708 if (id->flags & INPUT_DEVICE_ID_MATCH_VENDOR)
709 if (id->vendor != dev->id.vendor)
710 continue;
712 if (id->flags & INPUT_DEVICE_ID_MATCH_PRODUCT)
713 if (id->product != dev->id.product)
714 continue;
716 if (id->flags & INPUT_DEVICE_ID_MATCH_VERSION)
717 if (id->version != dev->id.version)
718 continue;
720 MATCH_BIT(evbit, EV_MAX);
721 MATCH_BIT(keybit, KEY_MAX);
722 MATCH_BIT(relbit, REL_MAX);
723 MATCH_BIT(absbit, ABS_MAX);
724 MATCH_BIT(mscbit, MSC_MAX);
725 MATCH_BIT(ledbit, LED_MAX);
726 MATCH_BIT(sndbit, SND_MAX);
727 MATCH_BIT(ffbit, FF_MAX);
728 MATCH_BIT(swbit, SW_MAX);
730 return id;
733 return NULL;
736 static int input_attach_handler(struct input_dev *dev, struct input_handler *handler)
738 const struct input_device_id *id;
739 int error;
741 if (handler->blacklist && input_match_device(handler->blacklist, dev))
742 return -ENODEV;
744 id = input_match_device(handler->id_table, dev);
745 if (!id)
746 return -ENODEV;
748 error = handler->connect(handler, dev, id);
749 if (error && error != -ENODEV)
750 printk(KERN_ERR
751 "input: failed to attach handler %s to device %s, "
752 "error: %d\n",
753 handler->name, kobject_name(&dev->dev.kobj), error);
755 return error;
759 #ifdef CONFIG_PROC_FS
761 static struct proc_dir_entry *proc_bus_input_dir;
762 static DECLARE_WAIT_QUEUE_HEAD(input_devices_poll_wait);
763 static int input_devices_state;
765 static inline void input_wakeup_procfs_readers(void)
767 input_devices_state++;
768 wake_up(&input_devices_poll_wait);
771 static unsigned int input_proc_devices_poll(struct file *file, poll_table *wait)
773 poll_wait(file, &input_devices_poll_wait, wait);
774 if (file->f_version != input_devices_state) {
775 file->f_version = input_devices_state;
776 return POLLIN | POLLRDNORM;
779 return 0;
782 static void *input_devices_seq_start(struct seq_file *seq, loff_t *pos)
784 if (mutex_lock_interruptible(&input_mutex))
785 return NULL;
787 return seq_list_start(&input_dev_list, *pos);
790 static void *input_devices_seq_next(struct seq_file *seq, void *v, loff_t *pos)
792 return seq_list_next(v, &input_dev_list, pos);
795 static void input_devices_seq_stop(struct seq_file *seq, void *v)
797 mutex_unlock(&input_mutex);
800 static void input_seq_print_bitmap(struct seq_file *seq, const char *name,
801 unsigned long *bitmap, int max)
803 int i;
805 for (i = BITS_TO_LONGS(max) - 1; i > 0; i--)
806 if (bitmap[i])
807 break;
809 seq_printf(seq, "B: %s=", name);
810 for (; i >= 0; i--)
811 seq_printf(seq, "%lx%s", bitmap[i], i > 0 ? " " : "");
812 seq_putc(seq, '\n');
815 static int input_devices_seq_show(struct seq_file *seq, void *v)
817 struct input_dev *dev = container_of(v, struct input_dev, node);
818 const char *path = kobject_get_path(&dev->dev.kobj, GFP_KERNEL);
819 struct input_handle *handle;
821 seq_printf(seq, "I: Bus=%04x Vendor=%04x Product=%04x Version=%04x\n",
822 dev->id.bustype, dev->id.vendor, dev->id.product, dev->id.version);
824 seq_printf(seq, "N: Name=\"%s\"\n", dev->name ? dev->name : "");
825 seq_printf(seq, "P: Phys=%s\n", dev->phys ? dev->phys : "");
826 seq_printf(seq, "S: Sysfs=%s\n", path ? path : "");
827 seq_printf(seq, "U: Uniq=%s\n", dev->uniq ? dev->uniq : "");
828 seq_printf(seq, "H: Handlers=");
830 list_for_each_entry(handle, &dev->h_list, d_node)
831 seq_printf(seq, "%s ", handle->name);
832 seq_putc(seq, '\n');
834 input_seq_print_bitmap(seq, "EV", dev->evbit, EV_MAX);
835 if (test_bit(EV_KEY, dev->evbit))
836 input_seq_print_bitmap(seq, "KEY", dev->keybit, KEY_MAX);
837 if (test_bit(EV_REL, dev->evbit))
838 input_seq_print_bitmap(seq, "REL", dev->relbit, REL_MAX);
839 if (test_bit(EV_ABS, dev->evbit))
840 input_seq_print_bitmap(seq, "ABS", dev->absbit, ABS_MAX);
841 if (test_bit(EV_MSC, dev->evbit))
842 input_seq_print_bitmap(seq, "MSC", dev->mscbit, MSC_MAX);
843 if (test_bit(EV_LED, dev->evbit))
844 input_seq_print_bitmap(seq, "LED", dev->ledbit, LED_MAX);
845 if (test_bit(EV_SND, dev->evbit))
846 input_seq_print_bitmap(seq, "SND", dev->sndbit, SND_MAX);
847 if (test_bit(EV_FF, dev->evbit))
848 input_seq_print_bitmap(seq, "FF", dev->ffbit, FF_MAX);
849 if (test_bit(EV_SW, dev->evbit))
850 input_seq_print_bitmap(seq, "SW", dev->swbit, SW_MAX);
852 seq_putc(seq, '\n');
854 kfree(path);
855 return 0;
858 static const struct seq_operations input_devices_seq_ops = {
859 .start = input_devices_seq_start,
860 .next = input_devices_seq_next,
861 .stop = input_devices_seq_stop,
862 .show = input_devices_seq_show,
865 static int input_proc_devices_open(struct inode *inode, struct file *file)
867 return seq_open(file, &input_devices_seq_ops);
870 static const struct file_operations input_devices_fileops = {
871 .owner = THIS_MODULE,
872 .open = input_proc_devices_open,
873 .poll = input_proc_devices_poll,
874 .read = seq_read,
875 .llseek = seq_lseek,
876 .release = seq_release,
879 static void *input_handlers_seq_start(struct seq_file *seq, loff_t *pos)
881 if (mutex_lock_interruptible(&input_mutex))
882 return NULL;
884 seq->private = (void *)(unsigned long)*pos;
885 return seq_list_start(&input_handler_list, *pos);
888 static void *input_handlers_seq_next(struct seq_file *seq, void *v, loff_t *pos)
890 seq->private = (void *)(unsigned long)(*pos + 1);
891 return seq_list_next(v, &input_handler_list, pos);
894 static void input_handlers_seq_stop(struct seq_file *seq, void *v)
896 mutex_unlock(&input_mutex);
899 static int input_handlers_seq_show(struct seq_file *seq, void *v)
901 struct input_handler *handler = container_of(v, struct input_handler, node);
903 seq_printf(seq, "N: Number=%ld Name=%s",
904 (unsigned long)seq->private, handler->name);
905 if (handler->fops)
906 seq_printf(seq, " Minor=%d", handler->minor);
907 seq_putc(seq, '\n');
909 return 0;
911 static const struct seq_operations input_handlers_seq_ops = {
912 .start = input_handlers_seq_start,
913 .next = input_handlers_seq_next,
914 .stop = input_handlers_seq_stop,
915 .show = input_handlers_seq_show,
918 static int input_proc_handlers_open(struct inode *inode, struct file *file)
920 return seq_open(file, &input_handlers_seq_ops);
923 static const struct file_operations input_handlers_fileops = {
924 .owner = THIS_MODULE,
925 .open = input_proc_handlers_open,
926 .read = seq_read,
927 .llseek = seq_lseek,
928 .release = seq_release,
931 static int __init input_proc_init(void)
933 struct proc_dir_entry *entry;
935 proc_bus_input_dir = proc_mkdir("bus/input", NULL);
936 if (!proc_bus_input_dir)
937 return -ENOMEM;
939 entry = proc_create("devices", 0, proc_bus_input_dir,
940 &input_devices_fileops);
941 if (!entry)
942 goto fail1;
944 entry = proc_create("handlers", 0, proc_bus_input_dir,
945 &input_handlers_fileops);
946 if (!entry)
947 goto fail2;
949 return 0;
951 fail2: remove_proc_entry("devices", proc_bus_input_dir);
952 fail1: remove_proc_entry("bus/input", NULL);
953 return -ENOMEM;
956 static void input_proc_exit(void)
958 remove_proc_entry("devices", proc_bus_input_dir);
959 remove_proc_entry("handlers", proc_bus_input_dir);
960 remove_proc_entry("bus/input", NULL);
963 #else /* !CONFIG_PROC_FS */
964 static inline void input_wakeup_procfs_readers(void) { }
965 static inline int input_proc_init(void) { return 0; }
966 static inline void input_proc_exit(void) { }
967 #endif
969 #define INPUT_DEV_STRING_ATTR_SHOW(name) \
970 static ssize_t input_dev_show_##name(struct device *dev, \
971 struct device_attribute *attr, \
972 char *buf) \
974 struct input_dev *input_dev = to_input_dev(dev); \
976 return scnprintf(buf, PAGE_SIZE, "%s\n", \
977 input_dev->name ? input_dev->name : ""); \
979 static DEVICE_ATTR(name, S_IRUGO, input_dev_show_##name, NULL)
981 INPUT_DEV_STRING_ATTR_SHOW(name);
982 INPUT_DEV_STRING_ATTR_SHOW(phys);
983 INPUT_DEV_STRING_ATTR_SHOW(uniq);
985 static int input_print_modalias_bits(char *buf, int size,
986 char name, unsigned long *bm,
987 unsigned int min_bit, unsigned int max_bit)
989 int len = 0, i;
991 len += snprintf(buf, max(size, 0), "%c", name);
992 for (i = min_bit; i < max_bit; i++)
993 if (bm[BIT_WORD(i)] & BIT_MASK(i))
994 len += snprintf(buf + len, max(size - len, 0), "%X,", i);
995 return len;
998 static int input_print_modalias(char *buf, int size, struct input_dev *id,
999 int add_cr)
1001 int len;
1003 len = snprintf(buf, max(size, 0),
1004 "input:b%04Xv%04Xp%04Xe%04X-",
1005 id->id.bustype, id->id.vendor,
1006 id->id.product, id->id.version);
1008 len += input_print_modalias_bits(buf + len, size - len,
1009 'e', id->evbit, 0, EV_MAX);
1010 len += input_print_modalias_bits(buf + len, size - len,
1011 'k', id->keybit, KEY_MIN_INTERESTING, KEY_MAX);
1012 len += input_print_modalias_bits(buf + len, size - len,
1013 'r', id->relbit, 0, REL_MAX);
1014 len += input_print_modalias_bits(buf + len, size - len,
1015 'a', id->absbit, 0, ABS_MAX);
1016 len += input_print_modalias_bits(buf + len, size - len,
1017 'm', id->mscbit, 0, MSC_MAX);
1018 len += input_print_modalias_bits(buf + len, size - len,
1019 'l', id->ledbit, 0, LED_MAX);
1020 len += input_print_modalias_bits(buf + len, size - len,
1021 's', id->sndbit, 0, SND_MAX);
1022 len += input_print_modalias_bits(buf + len, size - len,
1023 'f', id->ffbit, 0, FF_MAX);
1024 len += input_print_modalias_bits(buf + len, size - len,
1025 'w', id->swbit, 0, SW_MAX);
1027 if (add_cr)
1028 len += snprintf(buf + len, max(size - len, 0), "\n");
1030 return len;
1033 static ssize_t input_dev_show_modalias(struct device *dev,
1034 struct device_attribute *attr,
1035 char *buf)
1037 struct input_dev *id = to_input_dev(dev);
1038 ssize_t len;
1040 len = input_print_modalias(buf, PAGE_SIZE, id, 1);
1042 return min_t(int, len, PAGE_SIZE);
1044 static DEVICE_ATTR(modalias, S_IRUGO, input_dev_show_modalias, NULL);
1046 static struct attribute *input_dev_attrs[] = {
1047 &dev_attr_name.attr,
1048 &dev_attr_phys.attr,
1049 &dev_attr_uniq.attr,
1050 &dev_attr_modalias.attr,
1051 NULL
1054 static struct attribute_group input_dev_attr_group = {
1055 .attrs = input_dev_attrs,
1058 #define INPUT_DEV_ID_ATTR(name) \
1059 static ssize_t input_dev_show_id_##name(struct device *dev, \
1060 struct device_attribute *attr, \
1061 char *buf) \
1063 struct input_dev *input_dev = to_input_dev(dev); \
1064 return scnprintf(buf, PAGE_SIZE, "%04x\n", input_dev->id.name); \
1066 static DEVICE_ATTR(name, S_IRUGO, input_dev_show_id_##name, NULL)
1068 INPUT_DEV_ID_ATTR(bustype);
1069 INPUT_DEV_ID_ATTR(vendor);
1070 INPUT_DEV_ID_ATTR(product);
1071 INPUT_DEV_ID_ATTR(version);
1073 static struct attribute *input_dev_id_attrs[] = {
1074 &dev_attr_bustype.attr,
1075 &dev_attr_vendor.attr,
1076 &dev_attr_product.attr,
1077 &dev_attr_version.attr,
1078 NULL
1081 static struct attribute_group input_dev_id_attr_group = {
1082 .name = "id",
1083 .attrs = input_dev_id_attrs,
1086 static int input_print_bitmap(char *buf, int buf_size, unsigned long *bitmap,
1087 int max, int add_cr)
1089 int i;
1090 int len = 0;
1092 for (i = BITS_TO_LONGS(max) - 1; i > 0; i--)
1093 if (bitmap[i])
1094 break;
1096 for (; i >= 0; i--)
1097 len += snprintf(buf + len, max(buf_size - len, 0),
1098 "%lx%s", bitmap[i], i > 0 ? " " : "");
1100 if (add_cr)
1101 len += snprintf(buf + len, max(buf_size - len, 0), "\n");
1103 return len;
1106 #define INPUT_DEV_CAP_ATTR(ev, bm) \
1107 static ssize_t input_dev_show_cap_##bm(struct device *dev, \
1108 struct device_attribute *attr, \
1109 char *buf) \
1111 struct input_dev *input_dev = to_input_dev(dev); \
1112 int len = input_print_bitmap(buf, PAGE_SIZE, \
1113 input_dev->bm##bit, ev##_MAX, 1); \
1114 return min_t(int, len, PAGE_SIZE); \
1116 static DEVICE_ATTR(bm, S_IRUGO, input_dev_show_cap_##bm, NULL)
1118 INPUT_DEV_CAP_ATTR(EV, ev);
1119 INPUT_DEV_CAP_ATTR(KEY, key);
1120 INPUT_DEV_CAP_ATTR(REL, rel);
1121 INPUT_DEV_CAP_ATTR(ABS, abs);
1122 INPUT_DEV_CAP_ATTR(MSC, msc);
1123 INPUT_DEV_CAP_ATTR(LED, led);
1124 INPUT_DEV_CAP_ATTR(SND, snd);
1125 INPUT_DEV_CAP_ATTR(FF, ff);
1126 INPUT_DEV_CAP_ATTR(SW, sw);
1128 static struct attribute *input_dev_caps_attrs[] = {
1129 &dev_attr_ev.attr,
1130 &dev_attr_key.attr,
1131 &dev_attr_rel.attr,
1132 &dev_attr_abs.attr,
1133 &dev_attr_msc.attr,
1134 &dev_attr_led.attr,
1135 &dev_attr_snd.attr,
1136 &dev_attr_ff.attr,
1137 &dev_attr_sw.attr,
1138 NULL
1141 static struct attribute_group input_dev_caps_attr_group = {
1142 .name = "capabilities",
1143 .attrs = input_dev_caps_attrs,
1146 static struct attribute_group *input_dev_attr_groups[] = {
1147 &input_dev_attr_group,
1148 &input_dev_id_attr_group,
1149 &input_dev_caps_attr_group,
1150 NULL
1153 static void input_dev_release(struct device *device)
1155 struct input_dev *dev = to_input_dev(device);
1157 input_ff_destroy(dev);
1158 kfree(dev);
1160 module_put(THIS_MODULE);
1164 * Input uevent interface - loading event handlers based on
1165 * device bitfields.
1167 static int input_add_uevent_bm_var(struct kobj_uevent_env *env,
1168 const char *name, unsigned long *bitmap, int max)
1170 int len;
1172 if (add_uevent_var(env, "%s=", name))
1173 return -ENOMEM;
1175 len = input_print_bitmap(&env->buf[env->buflen - 1],
1176 sizeof(env->buf) - env->buflen,
1177 bitmap, max, 0);
1178 if (len >= (sizeof(env->buf) - env->buflen))
1179 return -ENOMEM;
1181 env->buflen += len;
1182 return 0;
1185 static int input_add_uevent_modalias_var(struct kobj_uevent_env *env,
1186 struct input_dev *dev)
1188 int len;
1190 if (add_uevent_var(env, "MODALIAS="))
1191 return -ENOMEM;
1193 len = input_print_modalias(&env->buf[env->buflen - 1],
1194 sizeof(env->buf) - env->buflen,
1195 dev, 0);
1196 if (len >= (sizeof(env->buf) - env->buflen))
1197 return -ENOMEM;
1199 env->buflen += len;
1200 return 0;
1203 #define INPUT_ADD_HOTPLUG_VAR(fmt, val...) \
1204 do { \
1205 int err = add_uevent_var(env, fmt, val); \
1206 if (err) \
1207 return err; \
1208 } while (0)
1210 #define INPUT_ADD_HOTPLUG_BM_VAR(name, bm, max) \
1211 do { \
1212 int err = input_add_uevent_bm_var(env, name, bm, max); \
1213 if (err) \
1214 return err; \
1215 } while (0)
1217 #define INPUT_ADD_HOTPLUG_MODALIAS_VAR(dev) \
1218 do { \
1219 int err = input_add_uevent_modalias_var(env, dev); \
1220 if (err) \
1221 return err; \
1222 } while (0)
1224 static int input_dev_uevent(struct device *device, struct kobj_uevent_env *env)
1226 struct input_dev *dev = to_input_dev(device);
1228 INPUT_ADD_HOTPLUG_VAR("PRODUCT=%x/%x/%x/%x",
1229 dev->id.bustype, dev->id.vendor,
1230 dev->id.product, dev->id.version);
1231 if (dev->name)
1232 INPUT_ADD_HOTPLUG_VAR("NAME=\"%s\"", dev->name);
1233 if (dev->phys)
1234 INPUT_ADD_HOTPLUG_VAR("PHYS=\"%s\"", dev->phys);
1235 if (dev->uniq)
1236 INPUT_ADD_HOTPLUG_VAR("UNIQ=\"%s\"", dev->uniq);
1238 INPUT_ADD_HOTPLUG_BM_VAR("EV=", dev->evbit, EV_MAX);
1239 if (test_bit(EV_KEY, dev->evbit))
1240 INPUT_ADD_HOTPLUG_BM_VAR("KEY=", dev->keybit, KEY_MAX);
1241 if (test_bit(EV_REL, dev->evbit))
1242 INPUT_ADD_HOTPLUG_BM_VAR("REL=", dev->relbit, REL_MAX);
1243 if (test_bit(EV_ABS, dev->evbit))
1244 INPUT_ADD_HOTPLUG_BM_VAR("ABS=", dev->absbit, ABS_MAX);
1245 if (test_bit(EV_MSC, dev->evbit))
1246 INPUT_ADD_HOTPLUG_BM_VAR("MSC=", dev->mscbit, MSC_MAX);
1247 if (test_bit(EV_LED, dev->evbit))
1248 INPUT_ADD_HOTPLUG_BM_VAR("LED=", dev->ledbit, LED_MAX);
1249 if (test_bit(EV_SND, dev->evbit))
1250 INPUT_ADD_HOTPLUG_BM_VAR("SND=", dev->sndbit, SND_MAX);
1251 if (test_bit(EV_FF, dev->evbit))
1252 INPUT_ADD_HOTPLUG_BM_VAR("FF=", dev->ffbit, FF_MAX);
1253 if (test_bit(EV_SW, dev->evbit))
1254 INPUT_ADD_HOTPLUG_BM_VAR("SW=", dev->swbit, SW_MAX);
1256 INPUT_ADD_HOTPLUG_MODALIAS_VAR(dev);
1258 return 0;
1261 static struct device_type input_dev_type = {
1262 .groups = input_dev_attr_groups,
1263 .release = input_dev_release,
1264 .uevent = input_dev_uevent,
1267 struct class input_class = {
1268 .name = "input",
1270 EXPORT_SYMBOL_GPL(input_class);
1273 * input_allocate_device - allocate memory for new input device
1275 * Returns prepared struct input_dev or NULL.
1277 * NOTE: Use input_free_device() to free devices that have not been
1278 * registered; input_unregister_device() should be used for already
1279 * registered devices.
1281 struct input_dev *input_allocate_device(void)
1283 struct input_dev *dev;
1285 dev = kzalloc(sizeof(struct input_dev), GFP_KERNEL);
1286 if (dev) {
1287 dev->dev.type = &input_dev_type;
1288 dev->dev.class = &input_class;
1289 device_initialize(&dev->dev);
1290 mutex_init(&dev->mutex);
1291 spin_lock_init(&dev->event_lock);
1292 INIT_LIST_HEAD(&dev->h_list);
1293 INIT_LIST_HEAD(&dev->node);
1295 __module_get(THIS_MODULE);
1298 return dev;
1300 EXPORT_SYMBOL(input_allocate_device);
1303 * input_free_device - free memory occupied by input_dev structure
1304 * @dev: input device to free
1306 * This function should only be used if input_register_device()
1307 * was not called yet or if it failed. Once device was registered
1308 * use input_unregister_device() and memory will be freed once last
1309 * reference to the device is dropped.
1311 * Device should be allocated by input_allocate_device().
1313 * NOTE: If there are references to the input device then memory
1314 * will not be freed until last reference is dropped.
1316 void input_free_device(struct input_dev *dev)
1318 if (dev)
1319 input_put_device(dev);
1321 EXPORT_SYMBOL(input_free_device);
1324 * input_set_capability - mark device as capable of a certain event
1325 * @dev: device that is capable of emitting or accepting event
1326 * @type: type of the event (EV_KEY, EV_REL, etc...)
1327 * @code: event code
1329 * In addition to setting up corresponding bit in appropriate capability
1330 * bitmap the function also adjusts dev->evbit.
1332 void input_set_capability(struct input_dev *dev, unsigned int type, unsigned int code)
1334 switch (type) {
1335 case EV_KEY:
1336 __set_bit(code, dev->keybit);
1337 break;
1339 case EV_REL:
1340 __set_bit(code, dev->relbit);
1341 break;
1343 case EV_ABS:
1344 __set_bit(code, dev->absbit);
1345 break;
1347 case EV_MSC:
1348 __set_bit(code, dev->mscbit);
1349 break;
1351 case EV_SW:
1352 __set_bit(code, dev->swbit);
1353 break;
1355 case EV_LED:
1356 __set_bit(code, dev->ledbit);
1357 break;
1359 case EV_SND:
1360 __set_bit(code, dev->sndbit);
1361 break;
1363 case EV_FF:
1364 __set_bit(code, dev->ffbit);
1365 break;
1367 case EV_PWR:
1368 /* do nothing */
1369 break;
1371 default:
1372 printk(KERN_ERR
1373 "input_set_capability: unknown type %u (code %u)\n",
1374 type, code);
1375 dump_stack();
1376 return;
1379 __set_bit(type, dev->evbit);
1381 EXPORT_SYMBOL(input_set_capability);
1384 * input_register_device - register device with input core
1385 * @dev: device to be registered
1387 * This function registers device with input core. The device must be
1388 * allocated with input_allocate_device() and all it's capabilities
1389 * set up before registering.
1390 * If function fails the device must be freed with input_free_device().
1391 * Once device has been successfully registered it can be unregistered
1392 * with input_unregister_device(); input_free_device() should not be
1393 * called in this case.
1395 int input_register_device(struct input_dev *dev)
1397 static atomic_t input_no = ATOMIC_INIT(0);
1398 struct input_handler *handler;
1399 const char *path;
1400 int error;
1402 __set_bit(EV_SYN, dev->evbit);
1405 * If delay and period are pre-set by the driver, then autorepeating
1406 * is handled by the driver itself and we don't do it in input.c.
1409 init_timer(&dev->timer);
1410 if (!dev->rep[REP_DELAY] && !dev->rep[REP_PERIOD]) {
1411 dev->timer.data = (long) dev;
1412 dev->timer.function = input_repeat_key;
1413 dev->rep[REP_DELAY] = 250;
1414 dev->rep[REP_PERIOD] = 33;
1417 if (!dev->getkeycode)
1418 dev->getkeycode = input_default_getkeycode;
1420 if (!dev->setkeycode)
1421 dev->setkeycode = input_default_setkeycode;
1423 dev_set_name(&dev->dev, "input%ld",
1424 (unsigned long) atomic_inc_return(&input_no) - 1);
1426 error = device_add(&dev->dev);
1427 if (error)
1428 return error;
1430 path = kobject_get_path(&dev->dev.kobj, GFP_KERNEL);
1431 printk(KERN_INFO "input: %s as %s\n",
1432 dev->name ? dev->name : "Unspecified device", path ? path : "N/A");
1433 kfree(path);
1435 error = mutex_lock_interruptible(&input_mutex);
1436 if (error) {
1437 device_del(&dev->dev);
1438 return error;
1441 list_add_tail(&dev->node, &input_dev_list);
1443 list_for_each_entry(handler, &input_handler_list, node)
1444 input_attach_handler(dev, handler);
1446 input_wakeup_procfs_readers();
1448 mutex_unlock(&input_mutex);
1450 return 0;
1452 EXPORT_SYMBOL(input_register_device);
1455 * input_unregister_device - unregister previously registered device
1456 * @dev: device to be unregistered
1458 * This function unregisters an input device. Once device is unregistered
1459 * the caller should not try to access it as it may get freed at any moment.
1461 void input_unregister_device(struct input_dev *dev)
1463 struct input_handle *handle, *next;
1465 input_disconnect_device(dev);
1467 mutex_lock(&input_mutex);
1469 list_for_each_entry_safe(handle, next, &dev->h_list, d_node)
1470 handle->handler->disconnect(handle);
1471 WARN_ON(!list_empty(&dev->h_list));
1473 del_timer_sync(&dev->timer);
1474 list_del_init(&dev->node);
1476 input_wakeup_procfs_readers();
1478 mutex_unlock(&input_mutex);
1480 device_unregister(&dev->dev);
1482 EXPORT_SYMBOL(input_unregister_device);
1485 * input_register_handler - register a new input handler
1486 * @handler: handler to be registered
1488 * This function registers a new input handler (interface) for input
1489 * devices in the system and attaches it to all input devices that
1490 * are compatible with the handler.
1492 int input_register_handler(struct input_handler *handler)
1494 struct input_dev *dev;
1495 int retval;
1497 retval = mutex_lock_interruptible(&input_mutex);
1498 if (retval)
1499 return retval;
1501 INIT_LIST_HEAD(&handler->h_list);
1503 if (handler->fops != NULL) {
1504 if (input_table[handler->minor >> 5]) {
1505 retval = -EBUSY;
1506 goto out;
1508 input_table[handler->minor >> 5] = handler;
1511 list_add_tail(&handler->node, &input_handler_list);
1513 list_for_each_entry(dev, &input_dev_list, node)
1514 input_attach_handler(dev, handler);
1516 input_wakeup_procfs_readers();
1518 out:
1519 mutex_unlock(&input_mutex);
1520 return retval;
1522 EXPORT_SYMBOL(input_register_handler);
1525 * input_unregister_handler - unregisters an input handler
1526 * @handler: handler to be unregistered
1528 * This function disconnects a handler from its input devices and
1529 * removes it from lists of known handlers.
1531 void input_unregister_handler(struct input_handler *handler)
1533 struct input_handle *handle, *next;
1535 mutex_lock(&input_mutex);
1537 list_for_each_entry_safe(handle, next, &handler->h_list, h_node)
1538 handler->disconnect(handle);
1539 WARN_ON(!list_empty(&handler->h_list));
1541 list_del_init(&handler->node);
1543 if (handler->fops != NULL)
1544 input_table[handler->minor >> 5] = NULL;
1546 input_wakeup_procfs_readers();
1548 mutex_unlock(&input_mutex);
1550 EXPORT_SYMBOL(input_unregister_handler);
1553 * input_register_handle - register a new input handle
1554 * @handle: handle to register
1556 * This function puts a new input handle onto device's
1557 * and handler's lists so that events can flow through
1558 * it once it is opened using input_open_device().
1560 * This function is supposed to be called from handler's
1561 * connect() method.
1563 int input_register_handle(struct input_handle *handle)
1565 struct input_handler *handler = handle->handler;
1566 struct input_dev *dev = handle->dev;
1567 int error;
1570 * We take dev->mutex here to prevent race with
1571 * input_release_device().
1573 error = mutex_lock_interruptible(&dev->mutex);
1574 if (error)
1575 return error;
1576 list_add_tail_rcu(&handle->d_node, &dev->h_list);
1577 mutex_unlock(&dev->mutex);
1580 * Since we are supposed to be called from ->connect()
1581 * which is mutually exclusive with ->disconnect()
1582 * we can't be racing with input_unregister_handle()
1583 * and so separate lock is not needed here.
1585 list_add_tail(&handle->h_node, &handler->h_list);
1587 if (handler->start)
1588 handler->start(handle);
1590 return 0;
1592 EXPORT_SYMBOL(input_register_handle);
1595 * input_unregister_handle - unregister an input handle
1596 * @handle: handle to unregister
1598 * This function removes input handle from device's
1599 * and handler's lists.
1601 * This function is supposed to be called from handler's
1602 * disconnect() method.
1604 void input_unregister_handle(struct input_handle *handle)
1606 struct input_dev *dev = handle->dev;
1608 list_del_init(&handle->h_node);
1611 * Take dev->mutex to prevent race with input_release_device().
1613 mutex_lock(&dev->mutex);
1614 list_del_rcu(&handle->d_node);
1615 mutex_unlock(&dev->mutex);
1616 synchronize_rcu();
1618 EXPORT_SYMBOL(input_unregister_handle);
1620 static int input_open_file(struct inode *inode, struct file *file)
1622 struct input_handler *handler;
1623 const struct file_operations *old_fops, *new_fops = NULL;
1624 int err;
1626 lock_kernel();
1627 /* No load-on-demand here? */
1628 handler = input_table[iminor(inode) >> 5];
1629 if (!handler || !(new_fops = fops_get(handler->fops))) {
1630 err = -ENODEV;
1631 goto out;
1635 * That's _really_ odd. Usually NULL ->open means "nothing special",
1636 * not "no device". Oh, well...
1638 if (!new_fops->open) {
1639 fops_put(new_fops);
1640 err = -ENODEV;
1641 goto out;
1643 old_fops = file->f_op;
1644 file->f_op = new_fops;
1646 err = new_fops->open(inode, file);
1648 if (err) {
1649 fops_put(file->f_op);
1650 file->f_op = fops_get(old_fops);
1652 fops_put(old_fops);
1653 out:
1654 unlock_kernel();
1655 return err;
1658 static const struct file_operations input_fops = {
1659 .owner = THIS_MODULE,
1660 .open = input_open_file,
1663 static void __init input_init_abs_bypass(void)
1665 const unsigned int *p;
1667 for (p = input_abs_bypass_init_data; *p; p++)
1668 input_abs_bypass[BIT_WORD(*p)] |= BIT_MASK(*p);
1671 static int __init input_init(void)
1673 int err;
1675 input_init_abs_bypass();
1677 err = class_register(&input_class);
1678 if (err) {
1679 printk(KERN_ERR "input: unable to register input_dev class\n");
1680 return err;
1683 err = input_proc_init();
1684 if (err)
1685 goto fail1;
1687 err = register_chrdev(INPUT_MAJOR, "input", &input_fops);
1688 if (err) {
1689 printk(KERN_ERR "input: unable to register char major %d", INPUT_MAJOR);
1690 goto fail2;
1693 return 0;
1695 fail2: input_proc_exit();
1696 fail1: class_unregister(&input_class);
1697 return err;
1700 static void __exit input_exit(void)
1702 input_proc_exit();
1703 unregister_chrdev(INPUT_MAJOR, "input");
1704 class_unregister(&input_class);
1707 subsys_initcall(input_init);
1708 module_exit(input_exit);