e1000e: remove unnecessary 82577 workaround causing link issues
[linux-2.6/mini2440.git] / drivers / net / e1000e / phy.c
blob85f955f7041716855e313cf0d23e817a078d31bd
1 /*******************************************************************************
3 Intel PRO/1000 Linux driver
4 Copyright(c) 1999 - 2008 Intel Corporation.
6 This program is free software; you can redistribute it and/or modify it
7 under the terms and conditions of the GNU General Public License,
8 version 2, as published by the Free Software Foundation.
10 This program is distributed in the hope it will be useful, but WITHOUT
11 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
13 more details.
15 You should have received a copy of the GNU General Public License along with
16 this program; if not, write to the Free Software Foundation, Inc.,
17 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
19 The full GNU General Public License is included in this distribution in
20 the file called "COPYING".
22 Contact Information:
23 Linux NICS <linux.nics@intel.com>
24 e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
25 Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
27 *******************************************************************************/
29 #include <linux/delay.h>
31 #include "e1000.h"
33 static s32 e1000_get_phy_cfg_done(struct e1000_hw *hw);
34 static s32 e1000_phy_force_speed_duplex(struct e1000_hw *hw);
35 static s32 e1000_set_d0_lplu_state(struct e1000_hw *hw, bool active);
36 static s32 e1000_wait_autoneg(struct e1000_hw *hw);
37 static u32 e1000_get_phy_addr_for_bm_page(u32 page, u32 reg);
38 static s32 e1000_access_phy_wakeup_reg_bm(struct e1000_hw *hw, u32 offset,
39 u16 *data, bool read);
40 static u32 e1000_get_phy_addr_for_hv_page(u32 page);
41 static s32 e1000_access_phy_debug_regs_hv(struct e1000_hw *hw, u32 offset,
42 u16 *data, bool read);
44 /* Cable length tables */
45 static const u16 e1000_m88_cable_length_table[] =
46 { 0, 50, 80, 110, 140, 140, E1000_CABLE_LENGTH_UNDEFINED };
48 static const u16 e1000_igp_2_cable_length_table[] =
49 { 0, 0, 0, 0, 0, 0, 0, 0, 3, 5, 8, 11, 13, 16, 18, 21, 0, 0, 0, 3,
50 6, 10, 13, 16, 19, 23, 26, 29, 32, 35, 38, 41, 6, 10, 14, 18, 22,
51 26, 30, 33, 37, 41, 44, 48, 51, 54, 58, 61, 21, 26, 31, 35, 40,
52 44, 49, 53, 57, 61, 65, 68, 72, 75, 79, 82, 40, 45, 51, 56, 61,
53 66, 70, 75, 79, 83, 87, 91, 94, 98, 101, 104, 60, 66, 72, 77, 82,
54 87, 92, 96, 100, 104, 108, 111, 114, 117, 119, 121, 83, 89, 95,
55 100, 105, 109, 113, 116, 119, 122, 124, 104, 109, 114, 118, 121,
56 124};
57 #define IGP02E1000_CABLE_LENGTH_TABLE_SIZE \
58 ARRAY_SIZE(e1000_igp_2_cable_length_table)
60 #define BM_PHY_REG_PAGE(offset) \
61 ((u16)(((offset) >> PHY_PAGE_SHIFT) & 0xFFFF))
62 #define BM_PHY_REG_NUM(offset) \
63 ((u16)(((offset) & MAX_PHY_REG_ADDRESS) |\
64 (((offset) >> (PHY_UPPER_SHIFT - PHY_PAGE_SHIFT)) &\
65 ~MAX_PHY_REG_ADDRESS)))
67 #define HV_INTC_FC_PAGE_START 768
68 #define I82578_ADDR_REG 29
69 #define I82577_ADDR_REG 16
70 #define I82577_CFG_REG 22
71 #define I82577_CFG_ASSERT_CRS_ON_TX (1 << 15)
72 #define I82577_CFG_ENABLE_DOWNSHIFT (3 << 10) /* auto downshift 100/10 */
73 #define I82577_CTRL_REG 23
75 /* 82577 specific PHY registers */
76 #define I82577_PHY_CTRL_2 18
77 #define I82577_PHY_STATUS_2 26
78 #define I82577_PHY_DIAG_STATUS 31
80 /* I82577 PHY Status 2 */
81 #define I82577_PHY_STATUS2_REV_POLARITY 0x0400
82 #define I82577_PHY_STATUS2_MDIX 0x0800
83 #define I82577_PHY_STATUS2_SPEED_MASK 0x0300
84 #define I82577_PHY_STATUS2_SPEED_1000MBPS 0x0200
86 /* I82577 PHY Control 2 */
87 #define I82577_PHY_CTRL2_AUTO_MDIX 0x0400
88 #define I82577_PHY_CTRL2_FORCE_MDI_MDIX 0x0200
90 /* I82577 PHY Diagnostics Status */
91 #define I82577_DSTATUS_CABLE_LENGTH 0x03FC
92 #define I82577_DSTATUS_CABLE_LENGTH_SHIFT 2
94 /* BM PHY Copper Specific Control 1 */
95 #define BM_CS_CTRL1 16
97 #define HV_MUX_DATA_CTRL PHY_REG(776, 16)
98 #define HV_MUX_DATA_CTRL_GEN_TO_MAC 0x0400
99 #define HV_MUX_DATA_CTRL_FORCE_SPEED 0x0004
102 * e1000e_check_reset_block_generic - Check if PHY reset is blocked
103 * @hw: pointer to the HW structure
105 * Read the PHY management control register and check whether a PHY reset
106 * is blocked. If a reset is not blocked return 0, otherwise
107 * return E1000_BLK_PHY_RESET (12).
109 s32 e1000e_check_reset_block_generic(struct e1000_hw *hw)
111 u32 manc;
113 manc = er32(MANC);
115 return (manc & E1000_MANC_BLK_PHY_RST_ON_IDE) ?
116 E1000_BLK_PHY_RESET : 0;
120 * e1000e_get_phy_id - Retrieve the PHY ID and revision
121 * @hw: pointer to the HW structure
123 * Reads the PHY registers and stores the PHY ID and possibly the PHY
124 * revision in the hardware structure.
126 s32 e1000e_get_phy_id(struct e1000_hw *hw)
128 struct e1000_phy_info *phy = &hw->phy;
129 s32 ret_val = 0;
130 u16 phy_id;
131 u16 retry_count = 0;
133 if (!(phy->ops.read_phy_reg))
134 goto out;
136 while (retry_count < 2) {
137 ret_val = e1e_rphy(hw, PHY_ID1, &phy_id);
138 if (ret_val)
139 goto out;
141 phy->id = (u32)(phy_id << 16);
142 udelay(20);
143 ret_val = e1e_rphy(hw, PHY_ID2, &phy_id);
144 if (ret_val)
145 goto out;
147 phy->id |= (u32)(phy_id & PHY_REVISION_MASK);
148 phy->revision = (u32)(phy_id & ~PHY_REVISION_MASK);
150 if (phy->id != 0 && phy->id != PHY_REVISION_MASK)
151 goto out;
154 * If the PHY ID is still unknown, we may have an 82577i
155 * without link. We will try again after setting Slow
156 * MDIC mode. No harm in trying again in this case since
157 * the PHY ID is unknown at this point anyway
159 ret_val = phy->ops.acquire_phy(hw);
160 if (ret_val)
161 goto out;
162 ret_val = e1000_set_mdio_slow_mode_hv(hw, true);
163 if (ret_val)
164 goto out;
165 phy->ops.release_phy(hw);
167 retry_count++;
169 out:
170 /* Revert to MDIO fast mode, if applicable */
171 if (retry_count) {
172 ret_val = phy->ops.acquire_phy(hw);
173 if (ret_val)
174 return ret_val;
175 ret_val = e1000_set_mdio_slow_mode_hv(hw, false);
176 phy->ops.release_phy(hw);
179 return ret_val;
183 * e1000e_phy_reset_dsp - Reset PHY DSP
184 * @hw: pointer to the HW structure
186 * Reset the digital signal processor.
188 s32 e1000e_phy_reset_dsp(struct e1000_hw *hw)
190 s32 ret_val;
192 ret_val = e1e_wphy(hw, M88E1000_PHY_GEN_CONTROL, 0xC1);
193 if (ret_val)
194 return ret_val;
196 return e1e_wphy(hw, M88E1000_PHY_GEN_CONTROL, 0);
200 * e1000e_read_phy_reg_mdic - Read MDI control register
201 * @hw: pointer to the HW structure
202 * @offset: register offset to be read
203 * @data: pointer to the read data
205 * Reads the MDI control register in the PHY at offset and stores the
206 * information read to data.
208 s32 e1000e_read_phy_reg_mdic(struct e1000_hw *hw, u32 offset, u16 *data)
210 struct e1000_phy_info *phy = &hw->phy;
211 u32 i, mdic = 0;
213 if (offset > MAX_PHY_REG_ADDRESS) {
214 hw_dbg(hw, "PHY Address %d is out of range\n", offset);
215 return -E1000_ERR_PARAM;
219 * Set up Op-code, Phy Address, and register offset in the MDI
220 * Control register. The MAC will take care of interfacing with the
221 * PHY to retrieve the desired data.
223 mdic = ((offset << E1000_MDIC_REG_SHIFT) |
224 (phy->addr << E1000_MDIC_PHY_SHIFT) |
225 (E1000_MDIC_OP_READ));
227 ew32(MDIC, mdic);
230 * Poll the ready bit to see if the MDI read completed
231 * Increasing the time out as testing showed failures with
232 * the lower time out
234 for (i = 0; i < (E1000_GEN_POLL_TIMEOUT * 3); i++) {
235 udelay(50);
236 mdic = er32(MDIC);
237 if (mdic & E1000_MDIC_READY)
238 break;
240 if (!(mdic & E1000_MDIC_READY)) {
241 hw_dbg(hw, "MDI Read did not complete\n");
242 return -E1000_ERR_PHY;
244 if (mdic & E1000_MDIC_ERROR) {
245 hw_dbg(hw, "MDI Error\n");
246 return -E1000_ERR_PHY;
248 *data = (u16) mdic;
250 return 0;
254 * e1000e_write_phy_reg_mdic - Write MDI control register
255 * @hw: pointer to the HW structure
256 * @offset: register offset to write to
257 * @data: data to write to register at offset
259 * Writes data to MDI control register in the PHY at offset.
261 s32 e1000e_write_phy_reg_mdic(struct e1000_hw *hw, u32 offset, u16 data)
263 struct e1000_phy_info *phy = &hw->phy;
264 u32 i, mdic = 0;
266 if (offset > MAX_PHY_REG_ADDRESS) {
267 hw_dbg(hw, "PHY Address %d is out of range\n", offset);
268 return -E1000_ERR_PARAM;
272 * Set up Op-code, Phy Address, and register offset in the MDI
273 * Control register. The MAC will take care of interfacing with the
274 * PHY to retrieve the desired data.
276 mdic = (((u32)data) |
277 (offset << E1000_MDIC_REG_SHIFT) |
278 (phy->addr << E1000_MDIC_PHY_SHIFT) |
279 (E1000_MDIC_OP_WRITE));
281 ew32(MDIC, mdic);
284 * Poll the ready bit to see if the MDI read completed
285 * Increasing the time out as testing showed failures with
286 * the lower time out
288 for (i = 0; i < (E1000_GEN_POLL_TIMEOUT * 3); i++) {
289 udelay(50);
290 mdic = er32(MDIC);
291 if (mdic & E1000_MDIC_READY)
292 break;
294 if (!(mdic & E1000_MDIC_READY)) {
295 hw_dbg(hw, "MDI Write did not complete\n");
296 return -E1000_ERR_PHY;
298 if (mdic & E1000_MDIC_ERROR) {
299 hw_dbg(hw, "MDI Error\n");
300 return -E1000_ERR_PHY;
303 return 0;
307 * e1000e_read_phy_reg_m88 - Read m88 PHY register
308 * @hw: pointer to the HW structure
309 * @offset: register offset to be read
310 * @data: pointer to the read data
312 * Acquires semaphore, if necessary, then reads the PHY register at offset
313 * and storing the retrieved information in data. Release any acquired
314 * semaphores before exiting.
316 s32 e1000e_read_phy_reg_m88(struct e1000_hw *hw, u32 offset, u16 *data)
318 s32 ret_val;
320 ret_val = hw->phy.ops.acquire_phy(hw);
321 if (ret_val)
322 return ret_val;
324 ret_val = e1000e_read_phy_reg_mdic(hw, MAX_PHY_REG_ADDRESS & offset,
325 data);
327 hw->phy.ops.release_phy(hw);
329 return ret_val;
333 * e1000e_write_phy_reg_m88 - Write m88 PHY register
334 * @hw: pointer to the HW structure
335 * @offset: register offset to write to
336 * @data: data to write at register offset
338 * Acquires semaphore, if necessary, then writes the data to PHY register
339 * at the offset. Release any acquired semaphores before exiting.
341 s32 e1000e_write_phy_reg_m88(struct e1000_hw *hw, u32 offset, u16 data)
343 s32 ret_val;
345 ret_val = hw->phy.ops.acquire_phy(hw);
346 if (ret_val)
347 return ret_val;
349 ret_val = e1000e_write_phy_reg_mdic(hw, MAX_PHY_REG_ADDRESS & offset,
350 data);
352 hw->phy.ops.release_phy(hw);
354 return ret_val;
358 * __e1000e_read_phy_reg_igp - Read igp PHY register
359 * @hw: pointer to the HW structure
360 * @offset: register offset to be read
361 * @data: pointer to the read data
362 * @locked: semaphore has already been acquired or not
364 * Acquires semaphore, if necessary, then reads the PHY register at offset
365 * and stores the retrieved information in data. Release any acquired
366 * semaphores before exiting.
368 static s32 __e1000e_read_phy_reg_igp(struct e1000_hw *hw, u32 offset, u16 *data,
369 bool locked)
371 s32 ret_val = 0;
373 if (!locked) {
374 if (!(hw->phy.ops.acquire_phy))
375 goto out;
377 ret_val = hw->phy.ops.acquire_phy(hw);
378 if (ret_val)
379 goto out;
382 if (offset > MAX_PHY_MULTI_PAGE_REG) {
383 ret_val = e1000e_write_phy_reg_mdic(hw,
384 IGP01E1000_PHY_PAGE_SELECT,
385 (u16)offset);
386 if (ret_val)
387 goto release;
390 ret_val = e1000e_read_phy_reg_mdic(hw, MAX_PHY_REG_ADDRESS & offset,
391 data);
393 release:
394 if (!locked)
395 hw->phy.ops.release_phy(hw);
396 out:
397 return ret_val;
401 * e1000e_read_phy_reg_igp - Read igp PHY register
402 * @hw: pointer to the HW structure
403 * @offset: register offset to be read
404 * @data: pointer to the read data
406 * Acquires semaphore then reads the PHY register at offset and stores the
407 * retrieved information in data.
408 * Release the acquired semaphore before exiting.
410 s32 e1000e_read_phy_reg_igp(struct e1000_hw *hw, u32 offset, u16 *data)
412 return __e1000e_read_phy_reg_igp(hw, offset, data, false);
416 * e1000e_read_phy_reg_igp_locked - Read igp PHY register
417 * @hw: pointer to the HW structure
418 * @offset: register offset to be read
419 * @data: pointer to the read data
421 * Reads the PHY register at offset and stores the retrieved information
422 * in data. Assumes semaphore already acquired.
424 s32 e1000e_read_phy_reg_igp_locked(struct e1000_hw *hw, u32 offset, u16 *data)
426 return __e1000e_read_phy_reg_igp(hw, offset, data, true);
430 * e1000e_write_phy_reg_igp - Write igp PHY register
431 * @hw: pointer to the HW structure
432 * @offset: register offset to write to
433 * @data: data to write at register offset
434 * @locked: semaphore has already been acquired or not
436 * Acquires semaphore, if necessary, then writes the data to PHY register
437 * at the offset. Release any acquired semaphores before exiting.
439 static s32 __e1000e_write_phy_reg_igp(struct e1000_hw *hw, u32 offset, u16 data,
440 bool locked)
442 s32 ret_val = 0;
444 if (!locked) {
445 if (!(hw->phy.ops.acquire_phy))
446 goto out;
448 ret_val = hw->phy.ops.acquire_phy(hw);
449 if (ret_val)
450 goto out;
453 if (offset > MAX_PHY_MULTI_PAGE_REG) {
454 ret_val = e1000e_write_phy_reg_mdic(hw,
455 IGP01E1000_PHY_PAGE_SELECT,
456 (u16)offset);
457 if (ret_val)
458 goto release;
461 ret_val = e1000e_write_phy_reg_mdic(hw, MAX_PHY_REG_ADDRESS & offset,
462 data);
464 release:
465 if (!locked)
466 hw->phy.ops.release_phy(hw);
468 out:
469 return ret_val;
473 * e1000e_write_phy_reg_igp - Write igp PHY register
474 * @hw: pointer to the HW structure
475 * @offset: register offset to write to
476 * @data: data to write at register offset
478 * Acquires semaphore then writes the data to PHY register
479 * at the offset. Release any acquired semaphores before exiting.
481 s32 e1000e_write_phy_reg_igp(struct e1000_hw *hw, u32 offset, u16 data)
483 return __e1000e_write_phy_reg_igp(hw, offset, data, false);
487 * e1000e_write_phy_reg_igp_locked - Write igp PHY register
488 * @hw: pointer to the HW structure
489 * @offset: register offset to write to
490 * @data: data to write at register offset
492 * Writes the data to PHY register at the offset.
493 * Assumes semaphore already acquired.
495 s32 e1000e_write_phy_reg_igp_locked(struct e1000_hw *hw, u32 offset, u16 data)
497 return __e1000e_write_phy_reg_igp(hw, offset, data, true);
501 * __e1000_read_kmrn_reg - Read kumeran register
502 * @hw: pointer to the HW structure
503 * @offset: register offset to be read
504 * @data: pointer to the read data
505 * @locked: semaphore has already been acquired or not
507 * Acquires semaphore, if necessary. Then reads the PHY register at offset
508 * using the kumeran interface. The information retrieved is stored in data.
509 * Release any acquired semaphores before exiting.
511 static s32 __e1000_read_kmrn_reg(struct e1000_hw *hw, u32 offset, u16 *data,
512 bool locked)
514 u32 kmrnctrlsta;
515 s32 ret_val = 0;
517 if (!locked) {
518 if (!(hw->phy.ops.acquire_phy))
519 goto out;
521 ret_val = hw->phy.ops.acquire_phy(hw);
522 if (ret_val)
523 goto out;
526 kmrnctrlsta = ((offset << E1000_KMRNCTRLSTA_OFFSET_SHIFT) &
527 E1000_KMRNCTRLSTA_OFFSET) | E1000_KMRNCTRLSTA_REN;
528 ew32(KMRNCTRLSTA, kmrnctrlsta);
530 udelay(2);
532 kmrnctrlsta = er32(KMRNCTRLSTA);
533 *data = (u16)kmrnctrlsta;
535 if (!locked)
536 hw->phy.ops.release_phy(hw);
538 out:
539 return ret_val;
543 * e1000e_read_kmrn_reg - Read kumeran register
544 * @hw: pointer to the HW structure
545 * @offset: register offset to be read
546 * @data: pointer to the read data
548 * Acquires semaphore then reads the PHY register at offset using the
549 * kumeran interface. The information retrieved is stored in data.
550 * Release the acquired semaphore before exiting.
552 s32 e1000e_read_kmrn_reg(struct e1000_hw *hw, u32 offset, u16 *data)
554 return __e1000_read_kmrn_reg(hw, offset, data, false);
558 * e1000e_read_kmrn_reg_locked - Read kumeran register
559 * @hw: pointer to the HW structure
560 * @offset: register offset to be read
561 * @data: pointer to the read data
563 * Reads the PHY register at offset using the kumeran interface. The
564 * information retrieved is stored in data.
565 * Assumes semaphore already acquired.
567 s32 e1000e_read_kmrn_reg_locked(struct e1000_hw *hw, u32 offset, u16 *data)
569 return __e1000_read_kmrn_reg(hw, offset, data, true);
573 * __e1000_write_kmrn_reg - Write kumeran register
574 * @hw: pointer to the HW structure
575 * @offset: register offset to write to
576 * @data: data to write at register offset
577 * @locked: semaphore has already been acquired or not
579 * Acquires semaphore, if necessary. Then write the data to PHY register
580 * at the offset using the kumeran interface. Release any acquired semaphores
581 * before exiting.
583 static s32 __e1000_write_kmrn_reg(struct e1000_hw *hw, u32 offset, u16 data,
584 bool locked)
586 u32 kmrnctrlsta;
587 s32 ret_val = 0;
589 if (!locked) {
590 if (!(hw->phy.ops.acquire_phy))
591 goto out;
593 ret_val = hw->phy.ops.acquire_phy(hw);
594 if (ret_val)
595 goto out;
598 kmrnctrlsta = ((offset << E1000_KMRNCTRLSTA_OFFSET_SHIFT) &
599 E1000_KMRNCTRLSTA_OFFSET) | data;
600 ew32(KMRNCTRLSTA, kmrnctrlsta);
602 udelay(2);
604 if (!locked)
605 hw->phy.ops.release_phy(hw);
607 out:
608 return ret_val;
612 * e1000e_write_kmrn_reg - Write kumeran register
613 * @hw: pointer to the HW structure
614 * @offset: register offset to write to
615 * @data: data to write at register offset
617 * Acquires semaphore then writes the data to the PHY register at the offset
618 * using the kumeran interface. Release the acquired semaphore before exiting.
620 s32 e1000e_write_kmrn_reg(struct e1000_hw *hw, u32 offset, u16 data)
622 return __e1000_write_kmrn_reg(hw, offset, data, false);
626 * e1000e_write_kmrn_reg_locked - Write kumeran register
627 * @hw: pointer to the HW structure
628 * @offset: register offset to write to
629 * @data: data to write at register offset
631 * Write the data to PHY register at the offset using the kumeran interface.
632 * Assumes semaphore already acquired.
634 s32 e1000e_write_kmrn_reg_locked(struct e1000_hw *hw, u32 offset, u16 data)
636 return __e1000_write_kmrn_reg(hw, offset, data, true);
640 * e1000_copper_link_setup_82577 - Setup 82577 PHY for copper link
641 * @hw: pointer to the HW structure
643 * Sets up Carrier-sense on Transmit and downshift values.
645 s32 e1000_copper_link_setup_82577(struct e1000_hw *hw)
647 struct e1000_phy_info *phy = &hw->phy;
648 s32 ret_val;
649 u16 phy_data;
651 /* Enable CRS on TX. This must be set for half-duplex operation. */
652 ret_val = phy->ops.read_phy_reg(hw, I82577_CFG_REG, &phy_data);
653 if (ret_val)
654 goto out;
656 phy_data |= I82577_CFG_ASSERT_CRS_ON_TX;
658 /* Enable downshift */
659 phy_data |= I82577_CFG_ENABLE_DOWNSHIFT;
661 ret_val = phy->ops.write_phy_reg(hw, I82577_CFG_REG, phy_data);
663 out:
664 return ret_val;
668 * e1000e_copper_link_setup_m88 - Setup m88 PHY's for copper link
669 * @hw: pointer to the HW structure
671 * Sets up MDI/MDI-X and polarity for m88 PHY's. If necessary, transmit clock
672 * and downshift values are set also.
674 s32 e1000e_copper_link_setup_m88(struct e1000_hw *hw)
676 struct e1000_phy_info *phy = &hw->phy;
677 s32 ret_val;
678 u16 phy_data;
680 /* Enable CRS on Tx. This must be set for half-duplex operation. */
681 ret_val = e1e_rphy(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
682 if (ret_val)
683 return ret_val;
685 /* For BM PHY this bit is downshift enable */
686 if (phy->type != e1000_phy_bm)
687 phy_data |= M88E1000_PSCR_ASSERT_CRS_ON_TX;
690 * Options:
691 * MDI/MDI-X = 0 (default)
692 * 0 - Auto for all speeds
693 * 1 - MDI mode
694 * 2 - MDI-X mode
695 * 3 - Auto for 1000Base-T only (MDI-X for 10/100Base-T modes)
697 phy_data &= ~M88E1000_PSCR_AUTO_X_MODE;
699 switch (phy->mdix) {
700 case 1:
701 phy_data |= M88E1000_PSCR_MDI_MANUAL_MODE;
702 break;
703 case 2:
704 phy_data |= M88E1000_PSCR_MDIX_MANUAL_MODE;
705 break;
706 case 3:
707 phy_data |= M88E1000_PSCR_AUTO_X_1000T;
708 break;
709 case 0:
710 default:
711 phy_data |= M88E1000_PSCR_AUTO_X_MODE;
712 break;
716 * Options:
717 * disable_polarity_correction = 0 (default)
718 * Automatic Correction for Reversed Cable Polarity
719 * 0 - Disabled
720 * 1 - Enabled
722 phy_data &= ~M88E1000_PSCR_POLARITY_REVERSAL;
723 if (phy->disable_polarity_correction == 1)
724 phy_data |= M88E1000_PSCR_POLARITY_REVERSAL;
726 /* Enable downshift on BM (disabled by default) */
727 if (phy->type == e1000_phy_bm)
728 phy_data |= BME1000_PSCR_ENABLE_DOWNSHIFT;
730 ret_val = e1e_wphy(hw, M88E1000_PHY_SPEC_CTRL, phy_data);
731 if (ret_val)
732 return ret_val;
734 if ((phy->type == e1000_phy_m88) &&
735 (phy->revision < E1000_REVISION_4) &&
736 (phy->id != BME1000_E_PHY_ID_R2)) {
738 * Force TX_CLK in the Extended PHY Specific Control Register
739 * to 25MHz clock.
741 ret_val = e1e_rphy(hw, M88E1000_EXT_PHY_SPEC_CTRL, &phy_data);
742 if (ret_val)
743 return ret_val;
745 phy_data |= M88E1000_EPSCR_TX_CLK_25;
747 if ((phy->revision == 2) &&
748 (phy->id == M88E1111_I_PHY_ID)) {
749 /* 82573L PHY - set the downshift counter to 5x. */
750 phy_data &= ~M88EC018_EPSCR_DOWNSHIFT_COUNTER_MASK;
751 phy_data |= M88EC018_EPSCR_DOWNSHIFT_COUNTER_5X;
752 } else {
753 /* Configure Master and Slave downshift values */
754 phy_data &= ~(M88E1000_EPSCR_MASTER_DOWNSHIFT_MASK |
755 M88E1000_EPSCR_SLAVE_DOWNSHIFT_MASK);
756 phy_data |= (M88E1000_EPSCR_MASTER_DOWNSHIFT_1X |
757 M88E1000_EPSCR_SLAVE_DOWNSHIFT_1X);
759 ret_val = e1e_wphy(hw, M88E1000_EXT_PHY_SPEC_CTRL, phy_data);
760 if (ret_val)
761 return ret_val;
764 if ((phy->type == e1000_phy_bm) && (phy->id == BME1000_E_PHY_ID_R2)) {
765 /* Set PHY page 0, register 29 to 0x0003 */
766 ret_val = e1e_wphy(hw, 29, 0x0003);
767 if (ret_val)
768 return ret_val;
770 /* Set PHY page 0, register 30 to 0x0000 */
771 ret_val = e1e_wphy(hw, 30, 0x0000);
772 if (ret_val)
773 return ret_val;
776 /* Commit the changes. */
777 ret_val = e1000e_commit_phy(hw);
778 if (ret_val) {
779 hw_dbg(hw, "Error committing the PHY changes\n");
780 return ret_val;
783 if (phy->type == e1000_phy_82578) {
784 ret_val = phy->ops.read_phy_reg(hw, M88E1000_EXT_PHY_SPEC_CTRL,
785 &phy_data);
786 if (ret_val)
787 return ret_val;
789 /* 82578 PHY - set the downshift count to 1x. */
790 phy_data |= I82578_EPSCR_DOWNSHIFT_ENABLE;
791 phy_data &= ~I82578_EPSCR_DOWNSHIFT_COUNTER_MASK;
792 ret_val = phy->ops.write_phy_reg(hw, M88E1000_EXT_PHY_SPEC_CTRL,
793 phy_data);
794 if (ret_val)
795 return ret_val;
798 return 0;
802 * e1000e_copper_link_setup_igp - Setup igp PHY's for copper link
803 * @hw: pointer to the HW structure
805 * Sets up LPLU, MDI/MDI-X, polarity, Smartspeed and Master/Slave config for
806 * igp PHY's.
808 s32 e1000e_copper_link_setup_igp(struct e1000_hw *hw)
810 struct e1000_phy_info *phy = &hw->phy;
811 s32 ret_val;
812 u16 data;
814 ret_val = e1000_phy_hw_reset(hw);
815 if (ret_val) {
816 hw_dbg(hw, "Error resetting the PHY.\n");
817 return ret_val;
821 * Wait 100ms for MAC to configure PHY from NVM settings, to avoid
822 * timeout issues when LFS is enabled.
824 msleep(100);
826 /* disable lplu d0 during driver init */
827 ret_val = e1000_set_d0_lplu_state(hw, 0);
828 if (ret_val) {
829 hw_dbg(hw, "Error Disabling LPLU D0\n");
830 return ret_val;
832 /* Configure mdi-mdix settings */
833 ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CTRL, &data);
834 if (ret_val)
835 return ret_val;
837 data &= ~IGP01E1000_PSCR_AUTO_MDIX;
839 switch (phy->mdix) {
840 case 1:
841 data &= ~IGP01E1000_PSCR_FORCE_MDI_MDIX;
842 break;
843 case 2:
844 data |= IGP01E1000_PSCR_FORCE_MDI_MDIX;
845 break;
846 case 0:
847 default:
848 data |= IGP01E1000_PSCR_AUTO_MDIX;
849 break;
851 ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CTRL, data);
852 if (ret_val)
853 return ret_val;
855 /* set auto-master slave resolution settings */
856 if (hw->mac.autoneg) {
858 * when autonegotiation advertisement is only 1000Mbps then we
859 * should disable SmartSpeed and enable Auto MasterSlave
860 * resolution as hardware default.
862 if (phy->autoneg_advertised == ADVERTISE_1000_FULL) {
863 /* Disable SmartSpeed */
864 ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG,
865 &data);
866 if (ret_val)
867 return ret_val;
869 data &= ~IGP01E1000_PSCFR_SMART_SPEED;
870 ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG,
871 data);
872 if (ret_val)
873 return ret_val;
875 /* Set auto Master/Slave resolution process */
876 ret_val = e1e_rphy(hw, PHY_1000T_CTRL, &data);
877 if (ret_val)
878 return ret_val;
880 data &= ~CR_1000T_MS_ENABLE;
881 ret_val = e1e_wphy(hw, PHY_1000T_CTRL, data);
882 if (ret_val)
883 return ret_val;
886 ret_val = e1e_rphy(hw, PHY_1000T_CTRL, &data);
887 if (ret_val)
888 return ret_val;
890 /* load defaults for future use */
891 phy->original_ms_type = (data & CR_1000T_MS_ENABLE) ?
892 ((data & CR_1000T_MS_VALUE) ?
893 e1000_ms_force_master :
894 e1000_ms_force_slave) :
895 e1000_ms_auto;
897 switch (phy->ms_type) {
898 case e1000_ms_force_master:
899 data |= (CR_1000T_MS_ENABLE | CR_1000T_MS_VALUE);
900 break;
901 case e1000_ms_force_slave:
902 data |= CR_1000T_MS_ENABLE;
903 data &= ~(CR_1000T_MS_VALUE);
904 break;
905 case e1000_ms_auto:
906 data &= ~CR_1000T_MS_ENABLE;
907 default:
908 break;
910 ret_val = e1e_wphy(hw, PHY_1000T_CTRL, data);
913 return ret_val;
917 * e1000_phy_setup_autoneg - Configure PHY for auto-negotiation
918 * @hw: pointer to the HW structure
920 * Reads the MII auto-neg advertisement register and/or the 1000T control
921 * register and if the PHY is already setup for auto-negotiation, then
922 * return successful. Otherwise, setup advertisement and flow control to
923 * the appropriate values for the wanted auto-negotiation.
925 static s32 e1000_phy_setup_autoneg(struct e1000_hw *hw)
927 struct e1000_phy_info *phy = &hw->phy;
928 s32 ret_val;
929 u16 mii_autoneg_adv_reg;
930 u16 mii_1000t_ctrl_reg = 0;
932 phy->autoneg_advertised &= phy->autoneg_mask;
934 /* Read the MII Auto-Neg Advertisement Register (Address 4). */
935 ret_val = e1e_rphy(hw, PHY_AUTONEG_ADV, &mii_autoneg_adv_reg);
936 if (ret_val)
937 return ret_val;
939 if (phy->autoneg_mask & ADVERTISE_1000_FULL) {
940 /* Read the MII 1000Base-T Control Register (Address 9). */
941 ret_val = e1e_rphy(hw, PHY_1000T_CTRL, &mii_1000t_ctrl_reg);
942 if (ret_val)
943 return ret_val;
947 * Need to parse both autoneg_advertised and fc and set up
948 * the appropriate PHY registers. First we will parse for
949 * autoneg_advertised software override. Since we can advertise
950 * a plethora of combinations, we need to check each bit
951 * individually.
955 * First we clear all the 10/100 mb speed bits in the Auto-Neg
956 * Advertisement Register (Address 4) and the 1000 mb speed bits in
957 * the 1000Base-T Control Register (Address 9).
959 mii_autoneg_adv_reg &= ~(NWAY_AR_100TX_FD_CAPS |
960 NWAY_AR_100TX_HD_CAPS |
961 NWAY_AR_10T_FD_CAPS |
962 NWAY_AR_10T_HD_CAPS);
963 mii_1000t_ctrl_reg &= ~(CR_1000T_HD_CAPS | CR_1000T_FD_CAPS);
965 hw_dbg(hw, "autoneg_advertised %x\n", phy->autoneg_advertised);
967 /* Do we want to advertise 10 Mb Half Duplex? */
968 if (phy->autoneg_advertised & ADVERTISE_10_HALF) {
969 hw_dbg(hw, "Advertise 10mb Half duplex\n");
970 mii_autoneg_adv_reg |= NWAY_AR_10T_HD_CAPS;
973 /* Do we want to advertise 10 Mb Full Duplex? */
974 if (phy->autoneg_advertised & ADVERTISE_10_FULL) {
975 hw_dbg(hw, "Advertise 10mb Full duplex\n");
976 mii_autoneg_adv_reg |= NWAY_AR_10T_FD_CAPS;
979 /* Do we want to advertise 100 Mb Half Duplex? */
980 if (phy->autoneg_advertised & ADVERTISE_100_HALF) {
981 hw_dbg(hw, "Advertise 100mb Half duplex\n");
982 mii_autoneg_adv_reg |= NWAY_AR_100TX_HD_CAPS;
985 /* Do we want to advertise 100 Mb Full Duplex? */
986 if (phy->autoneg_advertised & ADVERTISE_100_FULL) {
987 hw_dbg(hw, "Advertise 100mb Full duplex\n");
988 mii_autoneg_adv_reg |= NWAY_AR_100TX_FD_CAPS;
991 /* We do not allow the Phy to advertise 1000 Mb Half Duplex */
992 if (phy->autoneg_advertised & ADVERTISE_1000_HALF)
993 hw_dbg(hw, "Advertise 1000mb Half duplex request denied!\n");
995 /* Do we want to advertise 1000 Mb Full Duplex? */
996 if (phy->autoneg_advertised & ADVERTISE_1000_FULL) {
997 hw_dbg(hw, "Advertise 1000mb Full duplex\n");
998 mii_1000t_ctrl_reg |= CR_1000T_FD_CAPS;
1002 * Check for a software override of the flow control settings, and
1003 * setup the PHY advertisement registers accordingly. If
1004 * auto-negotiation is enabled, then software will have to set the
1005 * "PAUSE" bits to the correct value in the Auto-Negotiation
1006 * Advertisement Register (PHY_AUTONEG_ADV) and re-start auto-
1007 * negotiation.
1009 * The possible values of the "fc" parameter are:
1010 * 0: Flow control is completely disabled
1011 * 1: Rx flow control is enabled (we can receive pause frames
1012 * but not send pause frames).
1013 * 2: Tx flow control is enabled (we can send pause frames
1014 * but we do not support receiving pause frames).
1015 * 3: Both Rx and Tx flow control (symmetric) are enabled.
1016 * other: No software override. The flow control configuration
1017 * in the EEPROM is used.
1019 switch (hw->fc.current_mode) {
1020 case e1000_fc_none:
1022 * Flow control (Rx & Tx) is completely disabled by a
1023 * software over-ride.
1025 mii_autoneg_adv_reg &= ~(NWAY_AR_ASM_DIR | NWAY_AR_PAUSE);
1026 break;
1027 case e1000_fc_rx_pause:
1029 * Rx Flow control is enabled, and Tx Flow control is
1030 * disabled, by a software over-ride.
1032 * Since there really isn't a way to advertise that we are
1033 * capable of Rx Pause ONLY, we will advertise that we
1034 * support both symmetric and asymmetric Rx PAUSE. Later
1035 * (in e1000e_config_fc_after_link_up) we will disable the
1036 * hw's ability to send PAUSE frames.
1038 mii_autoneg_adv_reg |= (NWAY_AR_ASM_DIR | NWAY_AR_PAUSE);
1039 break;
1040 case e1000_fc_tx_pause:
1042 * Tx Flow control is enabled, and Rx Flow control is
1043 * disabled, by a software over-ride.
1045 mii_autoneg_adv_reg |= NWAY_AR_ASM_DIR;
1046 mii_autoneg_adv_reg &= ~NWAY_AR_PAUSE;
1047 break;
1048 case e1000_fc_full:
1050 * Flow control (both Rx and Tx) is enabled by a software
1051 * over-ride.
1053 mii_autoneg_adv_reg |= (NWAY_AR_ASM_DIR | NWAY_AR_PAUSE);
1054 break;
1055 default:
1056 hw_dbg(hw, "Flow control param set incorrectly\n");
1057 ret_val = -E1000_ERR_CONFIG;
1058 return ret_val;
1061 ret_val = e1e_wphy(hw, PHY_AUTONEG_ADV, mii_autoneg_adv_reg);
1062 if (ret_val)
1063 return ret_val;
1065 hw_dbg(hw, "Auto-Neg Advertising %x\n", mii_autoneg_adv_reg);
1067 if (phy->autoneg_mask & ADVERTISE_1000_FULL) {
1068 ret_val = e1e_wphy(hw, PHY_1000T_CTRL, mii_1000t_ctrl_reg);
1071 return ret_val;
1075 * e1000_copper_link_autoneg - Setup/Enable autoneg for copper link
1076 * @hw: pointer to the HW structure
1078 * Performs initial bounds checking on autoneg advertisement parameter, then
1079 * configure to advertise the full capability. Setup the PHY to autoneg
1080 * and restart the negotiation process between the link partner. If
1081 * autoneg_wait_to_complete, then wait for autoneg to complete before exiting.
1083 static s32 e1000_copper_link_autoneg(struct e1000_hw *hw)
1085 struct e1000_phy_info *phy = &hw->phy;
1086 s32 ret_val;
1087 u16 phy_ctrl;
1090 * Perform some bounds checking on the autoneg advertisement
1091 * parameter.
1093 phy->autoneg_advertised &= phy->autoneg_mask;
1096 * If autoneg_advertised is zero, we assume it was not defaulted
1097 * by the calling code so we set to advertise full capability.
1099 if (phy->autoneg_advertised == 0)
1100 phy->autoneg_advertised = phy->autoneg_mask;
1102 hw_dbg(hw, "Reconfiguring auto-neg advertisement params\n");
1103 ret_val = e1000_phy_setup_autoneg(hw);
1104 if (ret_val) {
1105 hw_dbg(hw, "Error Setting up Auto-Negotiation\n");
1106 return ret_val;
1108 hw_dbg(hw, "Restarting Auto-Neg\n");
1111 * Restart auto-negotiation by setting the Auto Neg Enable bit and
1112 * the Auto Neg Restart bit in the PHY control register.
1114 ret_val = e1e_rphy(hw, PHY_CONTROL, &phy_ctrl);
1115 if (ret_val)
1116 return ret_val;
1118 phy_ctrl |= (MII_CR_AUTO_NEG_EN | MII_CR_RESTART_AUTO_NEG);
1119 ret_val = e1e_wphy(hw, PHY_CONTROL, phy_ctrl);
1120 if (ret_val)
1121 return ret_val;
1124 * Does the user want to wait for Auto-Neg to complete here, or
1125 * check at a later time (for example, callback routine).
1127 if (phy->autoneg_wait_to_complete) {
1128 ret_val = e1000_wait_autoneg(hw);
1129 if (ret_val) {
1130 hw_dbg(hw, "Error while waiting for "
1131 "autoneg to complete\n");
1132 return ret_val;
1136 hw->mac.get_link_status = 1;
1138 return ret_val;
1142 * e1000e_setup_copper_link - Configure copper link settings
1143 * @hw: pointer to the HW structure
1145 * Calls the appropriate function to configure the link for auto-neg or forced
1146 * speed and duplex. Then we check for link, once link is established calls
1147 * to configure collision distance and flow control are called. If link is
1148 * not established, we return -E1000_ERR_PHY (-2).
1150 s32 e1000e_setup_copper_link(struct e1000_hw *hw)
1152 s32 ret_val;
1153 bool link;
1155 if (hw->mac.autoneg) {
1157 * Setup autoneg and flow control advertisement and perform
1158 * autonegotiation.
1160 ret_val = e1000_copper_link_autoneg(hw);
1161 if (ret_val)
1162 return ret_val;
1163 } else {
1165 * PHY will be set to 10H, 10F, 100H or 100F
1166 * depending on user settings.
1168 hw_dbg(hw, "Forcing Speed and Duplex\n");
1169 ret_val = e1000_phy_force_speed_duplex(hw);
1170 if (ret_val) {
1171 hw_dbg(hw, "Error Forcing Speed and Duplex\n");
1172 return ret_val;
1177 * Check link status. Wait up to 100 microseconds for link to become
1178 * valid.
1180 ret_val = e1000e_phy_has_link_generic(hw,
1181 COPPER_LINK_UP_LIMIT,
1183 &link);
1184 if (ret_val)
1185 return ret_val;
1187 if (link) {
1188 hw_dbg(hw, "Valid link established!!!\n");
1189 e1000e_config_collision_dist(hw);
1190 ret_val = e1000e_config_fc_after_link_up(hw);
1191 } else {
1192 hw_dbg(hw, "Unable to establish link!!!\n");
1195 return ret_val;
1199 * e1000e_phy_force_speed_duplex_igp - Force speed/duplex for igp PHY
1200 * @hw: pointer to the HW structure
1202 * Calls the PHY setup function to force speed and duplex. Clears the
1203 * auto-crossover to force MDI manually. Waits for link and returns
1204 * successful if link up is successful, else -E1000_ERR_PHY (-2).
1206 s32 e1000e_phy_force_speed_duplex_igp(struct e1000_hw *hw)
1208 struct e1000_phy_info *phy = &hw->phy;
1209 s32 ret_val;
1210 u16 phy_data;
1211 bool link;
1213 ret_val = e1e_rphy(hw, PHY_CONTROL, &phy_data);
1214 if (ret_val)
1215 return ret_val;
1217 e1000e_phy_force_speed_duplex_setup(hw, &phy_data);
1219 ret_val = e1e_wphy(hw, PHY_CONTROL, phy_data);
1220 if (ret_val)
1221 return ret_val;
1224 * Clear Auto-Crossover to force MDI manually. IGP requires MDI
1225 * forced whenever speed and duplex are forced.
1227 ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CTRL, &phy_data);
1228 if (ret_val)
1229 return ret_val;
1231 phy_data &= ~IGP01E1000_PSCR_AUTO_MDIX;
1232 phy_data &= ~IGP01E1000_PSCR_FORCE_MDI_MDIX;
1234 ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CTRL, phy_data);
1235 if (ret_val)
1236 return ret_val;
1238 hw_dbg(hw, "IGP PSCR: %X\n", phy_data);
1240 udelay(1);
1242 if (phy->autoneg_wait_to_complete) {
1243 hw_dbg(hw, "Waiting for forced speed/duplex link on IGP phy.\n");
1245 ret_val = e1000e_phy_has_link_generic(hw,
1246 PHY_FORCE_LIMIT,
1247 100000,
1248 &link);
1249 if (ret_val)
1250 return ret_val;
1252 if (!link)
1253 hw_dbg(hw, "Link taking longer than expected.\n");
1255 /* Try once more */
1256 ret_val = e1000e_phy_has_link_generic(hw,
1257 PHY_FORCE_LIMIT,
1258 100000,
1259 &link);
1260 if (ret_val)
1261 return ret_val;
1264 return ret_val;
1268 * e1000e_phy_force_speed_duplex_m88 - Force speed/duplex for m88 PHY
1269 * @hw: pointer to the HW structure
1271 * Calls the PHY setup function to force speed and duplex. Clears the
1272 * auto-crossover to force MDI manually. Resets the PHY to commit the
1273 * changes. If time expires while waiting for link up, we reset the DSP.
1274 * After reset, TX_CLK and CRS on Tx must be set. Return successful upon
1275 * successful completion, else return corresponding error code.
1277 s32 e1000e_phy_force_speed_duplex_m88(struct e1000_hw *hw)
1279 struct e1000_phy_info *phy = &hw->phy;
1280 s32 ret_val;
1281 u16 phy_data;
1282 bool link;
1285 * Clear Auto-Crossover to force MDI manually. M88E1000 requires MDI
1286 * forced whenever speed and duplex are forced.
1288 ret_val = e1e_rphy(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
1289 if (ret_val)
1290 return ret_val;
1292 phy_data &= ~M88E1000_PSCR_AUTO_X_MODE;
1293 ret_val = e1e_wphy(hw, M88E1000_PHY_SPEC_CTRL, phy_data);
1294 if (ret_val)
1295 return ret_val;
1297 hw_dbg(hw, "M88E1000 PSCR: %X\n", phy_data);
1299 ret_val = e1e_rphy(hw, PHY_CONTROL, &phy_data);
1300 if (ret_val)
1301 return ret_val;
1303 e1000e_phy_force_speed_duplex_setup(hw, &phy_data);
1305 ret_val = e1e_wphy(hw, PHY_CONTROL, phy_data);
1306 if (ret_val)
1307 return ret_val;
1309 /* Reset the phy to commit changes. */
1310 ret_val = e1000e_commit_phy(hw);
1311 if (ret_val)
1312 return ret_val;
1314 if (phy->autoneg_wait_to_complete) {
1315 hw_dbg(hw, "Waiting for forced speed/duplex link on M88 phy.\n");
1317 ret_val = e1000e_phy_has_link_generic(hw, PHY_FORCE_LIMIT,
1318 100000, &link);
1319 if (ret_val)
1320 return ret_val;
1322 if (!link) {
1324 * We didn't get link.
1325 * Reset the DSP and cross our fingers.
1327 ret_val = e1e_wphy(hw, M88E1000_PHY_PAGE_SELECT,
1328 0x001d);
1329 if (ret_val)
1330 return ret_val;
1331 ret_val = e1000e_phy_reset_dsp(hw);
1332 if (ret_val)
1333 return ret_val;
1336 /* Try once more */
1337 ret_val = e1000e_phy_has_link_generic(hw, PHY_FORCE_LIMIT,
1338 100000, &link);
1339 if (ret_val)
1340 return ret_val;
1343 ret_val = e1e_rphy(hw, M88E1000_EXT_PHY_SPEC_CTRL, &phy_data);
1344 if (ret_val)
1345 return ret_val;
1348 * Resetting the phy means we need to re-force TX_CLK in the
1349 * Extended PHY Specific Control Register to 25MHz clock from
1350 * the reset value of 2.5MHz.
1352 phy_data |= M88E1000_EPSCR_TX_CLK_25;
1353 ret_val = e1e_wphy(hw, M88E1000_EXT_PHY_SPEC_CTRL, phy_data);
1354 if (ret_val)
1355 return ret_val;
1358 * In addition, we must re-enable CRS on Tx for both half and full
1359 * duplex.
1361 ret_val = e1e_rphy(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
1362 if (ret_val)
1363 return ret_val;
1365 phy_data |= M88E1000_PSCR_ASSERT_CRS_ON_TX;
1366 ret_val = e1e_wphy(hw, M88E1000_PHY_SPEC_CTRL, phy_data);
1368 return ret_val;
1372 * e1000e_phy_force_speed_duplex_setup - Configure forced PHY speed/duplex
1373 * @hw: pointer to the HW structure
1374 * @phy_ctrl: pointer to current value of PHY_CONTROL
1376 * Forces speed and duplex on the PHY by doing the following: disable flow
1377 * control, force speed/duplex on the MAC, disable auto speed detection,
1378 * disable auto-negotiation, configure duplex, configure speed, configure
1379 * the collision distance, write configuration to CTRL register. The
1380 * caller must write to the PHY_CONTROL register for these settings to
1381 * take affect.
1383 void e1000e_phy_force_speed_duplex_setup(struct e1000_hw *hw, u16 *phy_ctrl)
1385 struct e1000_mac_info *mac = &hw->mac;
1386 u32 ctrl;
1388 /* Turn off flow control when forcing speed/duplex */
1389 hw->fc.current_mode = e1000_fc_none;
1391 /* Force speed/duplex on the mac */
1392 ctrl = er32(CTRL);
1393 ctrl |= (E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
1394 ctrl &= ~E1000_CTRL_SPD_SEL;
1396 /* Disable Auto Speed Detection */
1397 ctrl &= ~E1000_CTRL_ASDE;
1399 /* Disable autoneg on the phy */
1400 *phy_ctrl &= ~MII_CR_AUTO_NEG_EN;
1402 /* Forcing Full or Half Duplex? */
1403 if (mac->forced_speed_duplex & E1000_ALL_HALF_DUPLEX) {
1404 ctrl &= ~E1000_CTRL_FD;
1405 *phy_ctrl &= ~MII_CR_FULL_DUPLEX;
1406 hw_dbg(hw, "Half Duplex\n");
1407 } else {
1408 ctrl |= E1000_CTRL_FD;
1409 *phy_ctrl |= MII_CR_FULL_DUPLEX;
1410 hw_dbg(hw, "Full Duplex\n");
1413 /* Forcing 10mb or 100mb? */
1414 if (mac->forced_speed_duplex & E1000_ALL_100_SPEED) {
1415 ctrl |= E1000_CTRL_SPD_100;
1416 *phy_ctrl |= MII_CR_SPEED_100;
1417 *phy_ctrl &= ~(MII_CR_SPEED_1000 | MII_CR_SPEED_10);
1418 hw_dbg(hw, "Forcing 100mb\n");
1419 } else {
1420 ctrl &= ~(E1000_CTRL_SPD_1000 | E1000_CTRL_SPD_100);
1421 *phy_ctrl |= MII_CR_SPEED_10;
1422 *phy_ctrl &= ~(MII_CR_SPEED_1000 | MII_CR_SPEED_100);
1423 hw_dbg(hw, "Forcing 10mb\n");
1426 e1000e_config_collision_dist(hw);
1428 ew32(CTRL, ctrl);
1432 * e1000e_set_d3_lplu_state - Sets low power link up state for D3
1433 * @hw: pointer to the HW structure
1434 * @active: boolean used to enable/disable lplu
1436 * Success returns 0, Failure returns 1
1438 * The low power link up (lplu) state is set to the power management level D3
1439 * and SmartSpeed is disabled when active is true, else clear lplu for D3
1440 * and enable Smartspeed. LPLU and Smartspeed are mutually exclusive. LPLU
1441 * is used during Dx states where the power conservation is most important.
1442 * During driver activity, SmartSpeed should be enabled so performance is
1443 * maintained.
1445 s32 e1000e_set_d3_lplu_state(struct e1000_hw *hw, bool active)
1447 struct e1000_phy_info *phy = &hw->phy;
1448 s32 ret_val;
1449 u16 data;
1451 ret_val = e1e_rphy(hw, IGP02E1000_PHY_POWER_MGMT, &data);
1452 if (ret_val)
1453 return ret_val;
1455 if (!active) {
1456 data &= ~IGP02E1000_PM_D3_LPLU;
1457 ret_val = e1e_wphy(hw, IGP02E1000_PHY_POWER_MGMT, data);
1458 if (ret_val)
1459 return ret_val;
1461 * LPLU and SmartSpeed are mutually exclusive. LPLU is used
1462 * during Dx states where the power conservation is most
1463 * important. During driver activity we should enable
1464 * SmartSpeed, so performance is maintained.
1466 if (phy->smart_speed == e1000_smart_speed_on) {
1467 ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG,
1468 &data);
1469 if (ret_val)
1470 return ret_val;
1472 data |= IGP01E1000_PSCFR_SMART_SPEED;
1473 ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG,
1474 data);
1475 if (ret_val)
1476 return ret_val;
1477 } else if (phy->smart_speed == e1000_smart_speed_off) {
1478 ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG,
1479 &data);
1480 if (ret_val)
1481 return ret_val;
1483 data &= ~IGP01E1000_PSCFR_SMART_SPEED;
1484 ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG,
1485 data);
1486 if (ret_val)
1487 return ret_val;
1489 } else if ((phy->autoneg_advertised == E1000_ALL_SPEED_DUPLEX) ||
1490 (phy->autoneg_advertised == E1000_ALL_NOT_GIG) ||
1491 (phy->autoneg_advertised == E1000_ALL_10_SPEED)) {
1492 data |= IGP02E1000_PM_D3_LPLU;
1493 ret_val = e1e_wphy(hw, IGP02E1000_PHY_POWER_MGMT, data);
1494 if (ret_val)
1495 return ret_val;
1497 /* When LPLU is enabled, we should disable SmartSpeed */
1498 ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG, &data);
1499 if (ret_val)
1500 return ret_val;
1502 data &= ~IGP01E1000_PSCFR_SMART_SPEED;
1503 ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG, data);
1506 return ret_val;
1510 * e1000e_check_downshift - Checks whether a downshift in speed occurred
1511 * @hw: pointer to the HW structure
1513 * Success returns 0, Failure returns 1
1515 * A downshift is detected by querying the PHY link health.
1517 s32 e1000e_check_downshift(struct e1000_hw *hw)
1519 struct e1000_phy_info *phy = &hw->phy;
1520 s32 ret_val;
1521 u16 phy_data, offset, mask;
1523 switch (phy->type) {
1524 case e1000_phy_m88:
1525 case e1000_phy_gg82563:
1526 case e1000_phy_82578:
1527 case e1000_phy_82577:
1528 offset = M88E1000_PHY_SPEC_STATUS;
1529 mask = M88E1000_PSSR_DOWNSHIFT;
1530 break;
1531 case e1000_phy_igp_2:
1532 case e1000_phy_igp_3:
1533 offset = IGP01E1000_PHY_LINK_HEALTH;
1534 mask = IGP01E1000_PLHR_SS_DOWNGRADE;
1535 break;
1536 default:
1537 /* speed downshift not supported */
1538 phy->speed_downgraded = 0;
1539 return 0;
1542 ret_val = e1e_rphy(hw, offset, &phy_data);
1544 if (!ret_val)
1545 phy->speed_downgraded = (phy_data & mask);
1547 return ret_val;
1551 * e1000_check_polarity_m88 - Checks the polarity.
1552 * @hw: pointer to the HW structure
1554 * Success returns 0, Failure returns -E1000_ERR_PHY (-2)
1556 * Polarity is determined based on the PHY specific status register.
1558 static s32 e1000_check_polarity_m88(struct e1000_hw *hw)
1560 struct e1000_phy_info *phy = &hw->phy;
1561 s32 ret_val;
1562 u16 data;
1564 ret_val = e1e_rphy(hw, M88E1000_PHY_SPEC_STATUS, &data);
1566 if (!ret_val)
1567 phy->cable_polarity = (data & M88E1000_PSSR_REV_POLARITY)
1568 ? e1000_rev_polarity_reversed
1569 : e1000_rev_polarity_normal;
1571 return ret_val;
1575 * e1000_check_polarity_igp - Checks the polarity.
1576 * @hw: pointer to the HW structure
1578 * Success returns 0, Failure returns -E1000_ERR_PHY (-2)
1580 * Polarity is determined based on the PHY port status register, and the
1581 * current speed (since there is no polarity at 100Mbps).
1583 static s32 e1000_check_polarity_igp(struct e1000_hw *hw)
1585 struct e1000_phy_info *phy = &hw->phy;
1586 s32 ret_val;
1587 u16 data, offset, mask;
1590 * Polarity is determined based on the speed of
1591 * our connection.
1593 ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_STATUS, &data);
1594 if (ret_val)
1595 return ret_val;
1597 if ((data & IGP01E1000_PSSR_SPEED_MASK) ==
1598 IGP01E1000_PSSR_SPEED_1000MBPS) {
1599 offset = IGP01E1000_PHY_PCS_INIT_REG;
1600 mask = IGP01E1000_PHY_POLARITY_MASK;
1601 } else {
1603 * This really only applies to 10Mbps since
1604 * there is no polarity for 100Mbps (always 0).
1606 offset = IGP01E1000_PHY_PORT_STATUS;
1607 mask = IGP01E1000_PSSR_POLARITY_REVERSED;
1610 ret_val = e1e_rphy(hw, offset, &data);
1612 if (!ret_val)
1613 phy->cable_polarity = (data & mask)
1614 ? e1000_rev_polarity_reversed
1615 : e1000_rev_polarity_normal;
1617 return ret_val;
1621 * e1000_wait_autoneg - Wait for auto-neg completion
1622 * @hw: pointer to the HW structure
1624 * Waits for auto-negotiation to complete or for the auto-negotiation time
1625 * limit to expire, which ever happens first.
1627 static s32 e1000_wait_autoneg(struct e1000_hw *hw)
1629 s32 ret_val = 0;
1630 u16 i, phy_status;
1632 /* Break after autoneg completes or PHY_AUTO_NEG_LIMIT expires. */
1633 for (i = PHY_AUTO_NEG_LIMIT; i > 0; i--) {
1634 ret_val = e1e_rphy(hw, PHY_STATUS, &phy_status);
1635 if (ret_val)
1636 break;
1637 ret_val = e1e_rphy(hw, PHY_STATUS, &phy_status);
1638 if (ret_val)
1639 break;
1640 if (phy_status & MII_SR_AUTONEG_COMPLETE)
1641 break;
1642 msleep(100);
1646 * PHY_AUTO_NEG_TIME expiration doesn't guarantee auto-negotiation
1647 * has completed.
1649 return ret_val;
1653 * e1000e_phy_has_link_generic - Polls PHY for link
1654 * @hw: pointer to the HW structure
1655 * @iterations: number of times to poll for link
1656 * @usec_interval: delay between polling attempts
1657 * @success: pointer to whether polling was successful or not
1659 * Polls the PHY status register for link, 'iterations' number of times.
1661 s32 e1000e_phy_has_link_generic(struct e1000_hw *hw, u32 iterations,
1662 u32 usec_interval, bool *success)
1664 s32 ret_val = 0;
1665 u16 i, phy_status;
1667 for (i = 0; i < iterations; i++) {
1669 * Some PHYs require the PHY_STATUS register to be read
1670 * twice due to the link bit being sticky. No harm doing
1671 * it across the board.
1673 ret_val = e1e_rphy(hw, PHY_STATUS, &phy_status);
1674 if (ret_val)
1676 * If the first read fails, another entity may have
1677 * ownership of the resources, wait and try again to
1678 * see if they have relinquished the resources yet.
1680 udelay(usec_interval);
1681 ret_val = e1e_rphy(hw, PHY_STATUS, &phy_status);
1682 if (ret_val)
1683 break;
1684 if (phy_status & MII_SR_LINK_STATUS)
1685 break;
1686 if (usec_interval >= 1000)
1687 mdelay(usec_interval/1000);
1688 else
1689 udelay(usec_interval);
1692 *success = (i < iterations);
1694 return ret_val;
1698 * e1000e_get_cable_length_m88 - Determine cable length for m88 PHY
1699 * @hw: pointer to the HW structure
1701 * Reads the PHY specific status register to retrieve the cable length
1702 * information. The cable length is determined by averaging the minimum and
1703 * maximum values to get the "average" cable length. The m88 PHY has four
1704 * possible cable length values, which are:
1705 * Register Value Cable Length
1706 * 0 < 50 meters
1707 * 1 50 - 80 meters
1708 * 2 80 - 110 meters
1709 * 3 110 - 140 meters
1710 * 4 > 140 meters
1712 s32 e1000e_get_cable_length_m88(struct e1000_hw *hw)
1714 struct e1000_phy_info *phy = &hw->phy;
1715 s32 ret_val;
1716 u16 phy_data, index;
1718 ret_val = e1e_rphy(hw, M88E1000_PHY_SPEC_STATUS, &phy_data);
1719 if (ret_val)
1720 return ret_val;
1722 index = (phy_data & M88E1000_PSSR_CABLE_LENGTH) >>
1723 M88E1000_PSSR_CABLE_LENGTH_SHIFT;
1724 phy->min_cable_length = e1000_m88_cable_length_table[index];
1725 phy->max_cable_length = e1000_m88_cable_length_table[index+1];
1727 phy->cable_length = (phy->min_cable_length + phy->max_cable_length) / 2;
1729 return ret_val;
1733 * e1000e_get_cable_length_igp_2 - Determine cable length for igp2 PHY
1734 * @hw: pointer to the HW structure
1736 * The automatic gain control (agc) normalizes the amplitude of the
1737 * received signal, adjusting for the attenuation produced by the
1738 * cable. By reading the AGC registers, which represent the
1739 * combination of course and fine gain value, the value can be put
1740 * into a lookup table to obtain the approximate cable length
1741 * for each channel.
1743 s32 e1000e_get_cable_length_igp_2(struct e1000_hw *hw)
1745 struct e1000_phy_info *phy = &hw->phy;
1746 s32 ret_val;
1747 u16 phy_data, i, agc_value = 0;
1748 u16 cur_agc_index, max_agc_index = 0;
1749 u16 min_agc_index = IGP02E1000_CABLE_LENGTH_TABLE_SIZE - 1;
1750 u16 agc_reg_array[IGP02E1000_PHY_CHANNEL_NUM] =
1751 {IGP02E1000_PHY_AGC_A,
1752 IGP02E1000_PHY_AGC_B,
1753 IGP02E1000_PHY_AGC_C,
1754 IGP02E1000_PHY_AGC_D};
1756 /* Read the AGC registers for all channels */
1757 for (i = 0; i < IGP02E1000_PHY_CHANNEL_NUM; i++) {
1758 ret_val = e1e_rphy(hw, agc_reg_array[i], &phy_data);
1759 if (ret_val)
1760 return ret_val;
1763 * Getting bits 15:9, which represent the combination of
1764 * course and fine gain values. The result is a number
1765 * that can be put into the lookup table to obtain the
1766 * approximate cable length.
1768 cur_agc_index = (phy_data >> IGP02E1000_AGC_LENGTH_SHIFT) &
1769 IGP02E1000_AGC_LENGTH_MASK;
1771 /* Array index bound check. */
1772 if ((cur_agc_index >= IGP02E1000_CABLE_LENGTH_TABLE_SIZE) ||
1773 (cur_agc_index == 0))
1774 return -E1000_ERR_PHY;
1776 /* Remove min & max AGC values from calculation. */
1777 if (e1000_igp_2_cable_length_table[min_agc_index] >
1778 e1000_igp_2_cable_length_table[cur_agc_index])
1779 min_agc_index = cur_agc_index;
1780 if (e1000_igp_2_cable_length_table[max_agc_index] <
1781 e1000_igp_2_cable_length_table[cur_agc_index])
1782 max_agc_index = cur_agc_index;
1784 agc_value += e1000_igp_2_cable_length_table[cur_agc_index];
1787 agc_value -= (e1000_igp_2_cable_length_table[min_agc_index] +
1788 e1000_igp_2_cable_length_table[max_agc_index]);
1789 agc_value /= (IGP02E1000_PHY_CHANNEL_NUM - 2);
1791 /* Calculate cable length with the error range of +/- 10 meters. */
1792 phy->min_cable_length = ((agc_value - IGP02E1000_AGC_RANGE) > 0) ?
1793 (agc_value - IGP02E1000_AGC_RANGE) : 0;
1794 phy->max_cable_length = agc_value + IGP02E1000_AGC_RANGE;
1796 phy->cable_length = (phy->min_cable_length + phy->max_cable_length) / 2;
1798 return ret_val;
1802 * e1000e_get_phy_info_m88 - Retrieve PHY information
1803 * @hw: pointer to the HW structure
1805 * Valid for only copper links. Read the PHY status register (sticky read)
1806 * to verify that link is up. Read the PHY special control register to
1807 * determine the polarity and 10base-T extended distance. Read the PHY
1808 * special status register to determine MDI/MDIx and current speed. If
1809 * speed is 1000, then determine cable length, local and remote receiver.
1811 s32 e1000e_get_phy_info_m88(struct e1000_hw *hw)
1813 struct e1000_phy_info *phy = &hw->phy;
1814 s32 ret_val;
1815 u16 phy_data;
1816 bool link;
1818 if (hw->phy.media_type != e1000_media_type_copper) {
1819 hw_dbg(hw, "Phy info is only valid for copper media\n");
1820 return -E1000_ERR_CONFIG;
1823 ret_val = e1000e_phy_has_link_generic(hw, 1, 0, &link);
1824 if (ret_val)
1825 return ret_val;
1827 if (!link) {
1828 hw_dbg(hw, "Phy info is only valid if link is up\n");
1829 return -E1000_ERR_CONFIG;
1832 ret_val = e1e_rphy(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
1833 if (ret_val)
1834 return ret_val;
1836 phy->polarity_correction = (phy_data &
1837 M88E1000_PSCR_POLARITY_REVERSAL);
1839 ret_val = e1000_check_polarity_m88(hw);
1840 if (ret_val)
1841 return ret_val;
1843 ret_val = e1e_rphy(hw, M88E1000_PHY_SPEC_STATUS, &phy_data);
1844 if (ret_val)
1845 return ret_val;
1847 phy->is_mdix = (phy_data & M88E1000_PSSR_MDIX);
1849 if ((phy_data & M88E1000_PSSR_SPEED) == M88E1000_PSSR_1000MBS) {
1850 ret_val = e1000_get_cable_length(hw);
1851 if (ret_val)
1852 return ret_val;
1854 ret_val = e1e_rphy(hw, PHY_1000T_STATUS, &phy_data);
1855 if (ret_val)
1856 return ret_val;
1858 phy->local_rx = (phy_data & SR_1000T_LOCAL_RX_STATUS)
1859 ? e1000_1000t_rx_status_ok
1860 : e1000_1000t_rx_status_not_ok;
1862 phy->remote_rx = (phy_data & SR_1000T_REMOTE_RX_STATUS)
1863 ? e1000_1000t_rx_status_ok
1864 : e1000_1000t_rx_status_not_ok;
1865 } else {
1866 /* Set values to "undefined" */
1867 phy->cable_length = E1000_CABLE_LENGTH_UNDEFINED;
1868 phy->local_rx = e1000_1000t_rx_status_undefined;
1869 phy->remote_rx = e1000_1000t_rx_status_undefined;
1872 return ret_val;
1876 * e1000e_get_phy_info_igp - Retrieve igp PHY information
1877 * @hw: pointer to the HW structure
1879 * Read PHY status to determine if link is up. If link is up, then
1880 * set/determine 10base-T extended distance and polarity correction. Read
1881 * PHY port status to determine MDI/MDIx and speed. Based on the speed,
1882 * determine on the cable length, local and remote receiver.
1884 s32 e1000e_get_phy_info_igp(struct e1000_hw *hw)
1886 struct e1000_phy_info *phy = &hw->phy;
1887 s32 ret_val;
1888 u16 data;
1889 bool link;
1891 ret_val = e1000e_phy_has_link_generic(hw, 1, 0, &link);
1892 if (ret_val)
1893 return ret_val;
1895 if (!link) {
1896 hw_dbg(hw, "Phy info is only valid if link is up\n");
1897 return -E1000_ERR_CONFIG;
1900 phy->polarity_correction = 1;
1902 ret_val = e1000_check_polarity_igp(hw);
1903 if (ret_val)
1904 return ret_val;
1906 ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_STATUS, &data);
1907 if (ret_val)
1908 return ret_val;
1910 phy->is_mdix = (data & IGP01E1000_PSSR_MDIX);
1912 if ((data & IGP01E1000_PSSR_SPEED_MASK) ==
1913 IGP01E1000_PSSR_SPEED_1000MBPS) {
1914 ret_val = e1000_get_cable_length(hw);
1915 if (ret_val)
1916 return ret_val;
1918 ret_val = e1e_rphy(hw, PHY_1000T_STATUS, &data);
1919 if (ret_val)
1920 return ret_val;
1922 phy->local_rx = (data & SR_1000T_LOCAL_RX_STATUS)
1923 ? e1000_1000t_rx_status_ok
1924 : e1000_1000t_rx_status_not_ok;
1926 phy->remote_rx = (data & SR_1000T_REMOTE_RX_STATUS)
1927 ? e1000_1000t_rx_status_ok
1928 : e1000_1000t_rx_status_not_ok;
1929 } else {
1930 phy->cable_length = E1000_CABLE_LENGTH_UNDEFINED;
1931 phy->local_rx = e1000_1000t_rx_status_undefined;
1932 phy->remote_rx = e1000_1000t_rx_status_undefined;
1935 return ret_val;
1939 * e1000e_phy_sw_reset - PHY software reset
1940 * @hw: pointer to the HW structure
1942 * Does a software reset of the PHY by reading the PHY control register and
1943 * setting/write the control register reset bit to the PHY.
1945 s32 e1000e_phy_sw_reset(struct e1000_hw *hw)
1947 s32 ret_val;
1948 u16 phy_ctrl;
1950 ret_val = e1e_rphy(hw, PHY_CONTROL, &phy_ctrl);
1951 if (ret_val)
1952 return ret_val;
1954 phy_ctrl |= MII_CR_RESET;
1955 ret_val = e1e_wphy(hw, PHY_CONTROL, phy_ctrl);
1956 if (ret_val)
1957 return ret_val;
1959 udelay(1);
1961 return ret_val;
1965 * e1000e_phy_hw_reset_generic - PHY hardware reset
1966 * @hw: pointer to the HW structure
1968 * Verify the reset block is not blocking us from resetting. Acquire
1969 * semaphore (if necessary) and read/set/write the device control reset
1970 * bit in the PHY. Wait the appropriate delay time for the device to
1971 * reset and release the semaphore (if necessary).
1973 s32 e1000e_phy_hw_reset_generic(struct e1000_hw *hw)
1975 struct e1000_phy_info *phy = &hw->phy;
1976 s32 ret_val;
1977 u32 ctrl;
1979 ret_val = e1000_check_reset_block(hw);
1980 if (ret_val)
1981 return 0;
1983 ret_val = phy->ops.acquire_phy(hw);
1984 if (ret_val)
1985 return ret_val;
1987 ctrl = er32(CTRL);
1988 ew32(CTRL, ctrl | E1000_CTRL_PHY_RST);
1989 e1e_flush();
1991 udelay(phy->reset_delay_us);
1993 ew32(CTRL, ctrl);
1994 e1e_flush();
1996 udelay(150);
1998 phy->ops.release_phy(hw);
2000 return e1000_get_phy_cfg_done(hw);
2004 * e1000e_get_cfg_done - Generic configuration done
2005 * @hw: pointer to the HW structure
2007 * Generic function to wait 10 milli-seconds for configuration to complete
2008 * and return success.
2010 s32 e1000e_get_cfg_done(struct e1000_hw *hw)
2012 mdelay(10);
2013 return 0;
2017 * e1000e_phy_init_script_igp3 - Inits the IGP3 PHY
2018 * @hw: pointer to the HW structure
2020 * Initializes a Intel Gigabit PHY3 when an EEPROM is not present.
2022 s32 e1000e_phy_init_script_igp3(struct e1000_hw *hw)
2024 hw_dbg(hw, "Running IGP 3 PHY init script\n");
2026 /* PHY init IGP 3 */
2027 /* Enable rise/fall, 10-mode work in class-A */
2028 e1e_wphy(hw, 0x2F5B, 0x9018);
2029 /* Remove all caps from Replica path filter */
2030 e1e_wphy(hw, 0x2F52, 0x0000);
2031 /* Bias trimming for ADC, AFE and Driver (Default) */
2032 e1e_wphy(hw, 0x2FB1, 0x8B24);
2033 /* Increase Hybrid poly bias */
2034 e1e_wphy(hw, 0x2FB2, 0xF8F0);
2035 /* Add 4% to Tx amplitude in Gig mode */
2036 e1e_wphy(hw, 0x2010, 0x10B0);
2037 /* Disable trimming (TTT) */
2038 e1e_wphy(hw, 0x2011, 0x0000);
2039 /* Poly DC correction to 94.6% + 2% for all channels */
2040 e1e_wphy(hw, 0x20DD, 0x249A);
2041 /* ABS DC correction to 95.9% */
2042 e1e_wphy(hw, 0x20DE, 0x00D3);
2043 /* BG temp curve trim */
2044 e1e_wphy(hw, 0x28B4, 0x04CE);
2045 /* Increasing ADC OPAMP stage 1 currents to max */
2046 e1e_wphy(hw, 0x2F70, 0x29E4);
2047 /* Force 1000 ( required for enabling PHY regs configuration) */
2048 e1e_wphy(hw, 0x0000, 0x0140);
2049 /* Set upd_freq to 6 */
2050 e1e_wphy(hw, 0x1F30, 0x1606);
2051 /* Disable NPDFE */
2052 e1e_wphy(hw, 0x1F31, 0xB814);
2053 /* Disable adaptive fixed FFE (Default) */
2054 e1e_wphy(hw, 0x1F35, 0x002A);
2055 /* Enable FFE hysteresis */
2056 e1e_wphy(hw, 0x1F3E, 0x0067);
2057 /* Fixed FFE for short cable lengths */
2058 e1e_wphy(hw, 0x1F54, 0x0065);
2059 /* Fixed FFE for medium cable lengths */
2060 e1e_wphy(hw, 0x1F55, 0x002A);
2061 /* Fixed FFE for long cable lengths */
2062 e1e_wphy(hw, 0x1F56, 0x002A);
2063 /* Enable Adaptive Clip Threshold */
2064 e1e_wphy(hw, 0x1F72, 0x3FB0);
2065 /* AHT reset limit to 1 */
2066 e1e_wphy(hw, 0x1F76, 0xC0FF);
2067 /* Set AHT master delay to 127 msec */
2068 e1e_wphy(hw, 0x1F77, 0x1DEC);
2069 /* Set scan bits for AHT */
2070 e1e_wphy(hw, 0x1F78, 0xF9EF);
2071 /* Set AHT Preset bits */
2072 e1e_wphy(hw, 0x1F79, 0x0210);
2073 /* Change integ_factor of channel A to 3 */
2074 e1e_wphy(hw, 0x1895, 0x0003);
2075 /* Change prop_factor of channels BCD to 8 */
2076 e1e_wphy(hw, 0x1796, 0x0008);
2077 /* Change cg_icount + enable integbp for channels BCD */
2078 e1e_wphy(hw, 0x1798, 0xD008);
2080 * Change cg_icount + enable integbp + change prop_factor_master
2081 * to 8 for channel A
2083 e1e_wphy(hw, 0x1898, 0xD918);
2084 /* Disable AHT in Slave mode on channel A */
2085 e1e_wphy(hw, 0x187A, 0x0800);
2087 * Enable LPLU and disable AN to 1000 in non-D0a states,
2088 * Enable SPD+B2B
2090 e1e_wphy(hw, 0x0019, 0x008D);
2091 /* Enable restart AN on an1000_dis change */
2092 e1e_wphy(hw, 0x001B, 0x2080);
2093 /* Enable wh_fifo read clock in 10/100 modes */
2094 e1e_wphy(hw, 0x0014, 0x0045);
2095 /* Restart AN, Speed selection is 1000 */
2096 e1e_wphy(hw, 0x0000, 0x1340);
2098 return 0;
2101 /* Internal function pointers */
2104 * e1000_get_phy_cfg_done - Generic PHY configuration done
2105 * @hw: pointer to the HW structure
2107 * Return success if silicon family did not implement a family specific
2108 * get_cfg_done function.
2110 static s32 e1000_get_phy_cfg_done(struct e1000_hw *hw)
2112 if (hw->phy.ops.get_cfg_done)
2113 return hw->phy.ops.get_cfg_done(hw);
2115 return 0;
2119 * e1000_phy_force_speed_duplex - Generic force PHY speed/duplex
2120 * @hw: pointer to the HW structure
2122 * When the silicon family has not implemented a forced speed/duplex
2123 * function for the PHY, simply return 0.
2125 static s32 e1000_phy_force_speed_duplex(struct e1000_hw *hw)
2127 if (hw->phy.ops.force_speed_duplex)
2128 return hw->phy.ops.force_speed_duplex(hw);
2130 return 0;
2134 * e1000e_get_phy_type_from_id - Get PHY type from id
2135 * @phy_id: phy_id read from the phy
2137 * Returns the phy type from the id.
2139 enum e1000_phy_type e1000e_get_phy_type_from_id(u32 phy_id)
2141 enum e1000_phy_type phy_type = e1000_phy_unknown;
2143 switch (phy_id) {
2144 case M88E1000_I_PHY_ID:
2145 case M88E1000_E_PHY_ID:
2146 case M88E1111_I_PHY_ID:
2147 case M88E1011_I_PHY_ID:
2148 phy_type = e1000_phy_m88;
2149 break;
2150 case IGP01E1000_I_PHY_ID: /* IGP 1 & 2 share this */
2151 phy_type = e1000_phy_igp_2;
2152 break;
2153 case GG82563_E_PHY_ID:
2154 phy_type = e1000_phy_gg82563;
2155 break;
2156 case IGP03E1000_E_PHY_ID:
2157 phy_type = e1000_phy_igp_3;
2158 break;
2159 case IFE_E_PHY_ID:
2160 case IFE_PLUS_E_PHY_ID:
2161 case IFE_C_E_PHY_ID:
2162 phy_type = e1000_phy_ife;
2163 break;
2164 case BME1000_E_PHY_ID:
2165 case BME1000_E_PHY_ID_R2:
2166 phy_type = e1000_phy_bm;
2167 break;
2168 case I82578_E_PHY_ID:
2169 phy_type = e1000_phy_82578;
2170 break;
2171 case I82577_E_PHY_ID:
2172 phy_type = e1000_phy_82577;
2173 break;
2174 default:
2175 phy_type = e1000_phy_unknown;
2176 break;
2178 return phy_type;
2182 * e1000e_determine_phy_address - Determines PHY address.
2183 * @hw: pointer to the HW structure
2185 * This uses a trial and error method to loop through possible PHY
2186 * addresses. It tests each by reading the PHY ID registers and
2187 * checking for a match.
2189 s32 e1000e_determine_phy_address(struct e1000_hw *hw)
2191 s32 ret_val = -E1000_ERR_PHY_TYPE;
2192 u32 phy_addr= 0;
2193 u32 i = 0;
2194 enum e1000_phy_type phy_type = e1000_phy_unknown;
2196 do {
2197 for (phy_addr = 0; phy_addr < 4; phy_addr++) {
2198 hw->phy.addr = phy_addr;
2199 e1000e_get_phy_id(hw);
2200 phy_type = e1000e_get_phy_type_from_id(hw->phy.id);
2203 * If phy_type is valid, break - we found our
2204 * PHY address
2206 if (phy_type != e1000_phy_unknown) {
2207 ret_val = 0;
2208 break;
2211 i++;
2212 } while ((ret_val != 0) && (i < 100));
2214 return ret_val;
2218 * e1000_get_phy_addr_for_bm_page - Retrieve PHY page address
2219 * @page: page to access
2221 * Returns the phy address for the page requested.
2223 static u32 e1000_get_phy_addr_for_bm_page(u32 page, u32 reg)
2225 u32 phy_addr = 2;
2227 if ((page >= 768) || (page == 0 && reg == 25) || (reg == 31))
2228 phy_addr = 1;
2230 return phy_addr;
2234 * e1000e_write_phy_reg_bm - Write BM PHY register
2235 * @hw: pointer to the HW structure
2236 * @offset: register offset to write to
2237 * @data: data to write at register offset
2239 * Acquires semaphore, if necessary, then writes the data to PHY register
2240 * at the offset. Release any acquired semaphores before exiting.
2242 s32 e1000e_write_phy_reg_bm(struct e1000_hw *hw, u32 offset, u16 data)
2244 s32 ret_val;
2245 u32 page_select = 0;
2246 u32 page = offset >> IGP_PAGE_SHIFT;
2247 u32 page_shift = 0;
2249 ret_val = hw->phy.ops.acquire_phy(hw);
2250 if (ret_val)
2251 return ret_val;
2253 /* Page 800 works differently than the rest so it has its own func */
2254 if (page == BM_WUC_PAGE) {
2255 ret_val = e1000_access_phy_wakeup_reg_bm(hw, offset, &data,
2256 false);
2257 goto out;
2260 hw->phy.addr = e1000_get_phy_addr_for_bm_page(page, offset);
2262 if (offset > MAX_PHY_MULTI_PAGE_REG) {
2264 * Page select is register 31 for phy address 1 and 22 for
2265 * phy address 2 and 3. Page select is shifted only for
2266 * phy address 1.
2268 if (hw->phy.addr == 1) {
2269 page_shift = IGP_PAGE_SHIFT;
2270 page_select = IGP01E1000_PHY_PAGE_SELECT;
2271 } else {
2272 page_shift = 0;
2273 page_select = BM_PHY_PAGE_SELECT;
2276 /* Page is shifted left, PHY expects (page x 32) */
2277 ret_val = e1000e_write_phy_reg_mdic(hw, page_select,
2278 (page << page_shift));
2279 if (ret_val)
2280 goto out;
2283 ret_val = e1000e_write_phy_reg_mdic(hw, MAX_PHY_REG_ADDRESS & offset,
2284 data);
2286 out:
2287 hw->phy.ops.release_phy(hw);
2288 return ret_val;
2292 * e1000e_read_phy_reg_bm - Read BM PHY register
2293 * @hw: pointer to the HW structure
2294 * @offset: register offset to be read
2295 * @data: pointer to the read data
2297 * Acquires semaphore, if necessary, then reads the PHY register at offset
2298 * and storing the retrieved information in data. Release any acquired
2299 * semaphores before exiting.
2301 s32 e1000e_read_phy_reg_bm(struct e1000_hw *hw, u32 offset, u16 *data)
2303 s32 ret_val;
2304 u32 page_select = 0;
2305 u32 page = offset >> IGP_PAGE_SHIFT;
2306 u32 page_shift = 0;
2308 ret_val = hw->phy.ops.acquire_phy(hw);
2309 if (ret_val)
2310 return ret_val;
2312 /* Page 800 works differently than the rest so it has its own func */
2313 if (page == BM_WUC_PAGE) {
2314 ret_val = e1000_access_phy_wakeup_reg_bm(hw, offset, data,
2315 true);
2316 goto out;
2319 hw->phy.addr = e1000_get_phy_addr_for_bm_page(page, offset);
2321 if (offset > MAX_PHY_MULTI_PAGE_REG) {
2323 * Page select is register 31 for phy address 1 and 22 for
2324 * phy address 2 and 3. Page select is shifted only for
2325 * phy address 1.
2327 if (hw->phy.addr == 1) {
2328 page_shift = IGP_PAGE_SHIFT;
2329 page_select = IGP01E1000_PHY_PAGE_SELECT;
2330 } else {
2331 page_shift = 0;
2332 page_select = BM_PHY_PAGE_SELECT;
2335 /* Page is shifted left, PHY expects (page x 32) */
2336 ret_val = e1000e_write_phy_reg_mdic(hw, page_select,
2337 (page << page_shift));
2338 if (ret_val)
2339 goto out;
2342 ret_val = e1000e_read_phy_reg_mdic(hw, MAX_PHY_REG_ADDRESS & offset,
2343 data);
2344 out:
2345 hw->phy.ops.release_phy(hw);
2346 return ret_val;
2350 * e1000e_read_phy_reg_bm2 - Read BM PHY register
2351 * @hw: pointer to the HW structure
2352 * @offset: register offset to be read
2353 * @data: pointer to the read data
2355 * Acquires semaphore, if necessary, then reads the PHY register at offset
2356 * and storing the retrieved information in data. Release any acquired
2357 * semaphores before exiting.
2359 s32 e1000e_read_phy_reg_bm2(struct e1000_hw *hw, u32 offset, u16 *data)
2361 s32 ret_val;
2362 u16 page = (u16)(offset >> IGP_PAGE_SHIFT);
2364 ret_val = hw->phy.ops.acquire_phy(hw);
2365 if (ret_val)
2366 return ret_val;
2368 /* Page 800 works differently than the rest so it has its own func */
2369 if (page == BM_WUC_PAGE) {
2370 ret_val = e1000_access_phy_wakeup_reg_bm(hw, offset, data,
2371 true);
2372 goto out;
2375 hw->phy.addr = 1;
2377 if (offset > MAX_PHY_MULTI_PAGE_REG) {
2379 /* Page is shifted left, PHY expects (page x 32) */
2380 ret_val = e1000e_write_phy_reg_mdic(hw, BM_PHY_PAGE_SELECT,
2381 page);
2383 if (ret_val)
2384 goto out;
2387 ret_val = e1000e_read_phy_reg_mdic(hw, MAX_PHY_REG_ADDRESS & offset,
2388 data);
2389 out:
2390 hw->phy.ops.release_phy(hw);
2391 return ret_val;
2395 * e1000e_write_phy_reg_bm2 - Write BM PHY register
2396 * @hw: pointer to the HW structure
2397 * @offset: register offset to write to
2398 * @data: data to write at register offset
2400 * Acquires semaphore, if necessary, then writes the data to PHY register
2401 * at the offset. Release any acquired semaphores before exiting.
2403 s32 e1000e_write_phy_reg_bm2(struct e1000_hw *hw, u32 offset, u16 data)
2405 s32 ret_val;
2406 u16 page = (u16)(offset >> IGP_PAGE_SHIFT);
2408 ret_val = hw->phy.ops.acquire_phy(hw);
2409 if (ret_val)
2410 return ret_val;
2412 /* Page 800 works differently than the rest so it has its own func */
2413 if (page == BM_WUC_PAGE) {
2414 ret_val = e1000_access_phy_wakeup_reg_bm(hw, offset, &data,
2415 false);
2416 goto out;
2419 hw->phy.addr = 1;
2421 if (offset > MAX_PHY_MULTI_PAGE_REG) {
2422 /* Page is shifted left, PHY expects (page x 32) */
2423 ret_val = e1000e_write_phy_reg_mdic(hw, BM_PHY_PAGE_SELECT,
2424 page);
2426 if (ret_val)
2427 goto out;
2430 ret_val = e1000e_write_phy_reg_mdic(hw, MAX_PHY_REG_ADDRESS & offset,
2431 data);
2433 out:
2434 hw->phy.ops.release_phy(hw);
2435 return ret_val;
2439 * e1000_access_phy_wakeup_reg_bm - Read BM PHY wakeup register
2440 * @hw: pointer to the HW structure
2441 * @offset: register offset to be read or written
2442 * @data: pointer to the data to read or write
2443 * @read: determines if operation is read or write
2445 * Acquires semaphore, if necessary, then reads the PHY register at offset
2446 * and storing the retrieved information in data. Release any acquired
2447 * semaphores before exiting. Note that procedure to read the wakeup
2448 * registers are different. It works as such:
2449 * 1) Set page 769, register 17, bit 2 = 1
2450 * 2) Set page to 800 for host (801 if we were manageability)
2451 * 3) Write the address using the address opcode (0x11)
2452 * 4) Read or write the data using the data opcode (0x12)
2453 * 5) Restore 769_17.2 to its original value
2455 * Assumes semaphore already acquired.
2457 static s32 e1000_access_phy_wakeup_reg_bm(struct e1000_hw *hw, u32 offset,
2458 u16 *data, bool read)
2460 s32 ret_val;
2461 u16 reg = BM_PHY_REG_NUM(offset);
2462 u16 phy_reg = 0;
2464 /* Gig must be disabled for MDIO accesses to page 800 */
2465 if ((hw->mac.type == e1000_pchlan) &&
2466 (!(er32(PHY_CTRL) & E1000_PHY_CTRL_GBE_DISABLE)))
2467 hw_dbg(hw, "Attempting to access page 800 while gig enabled\n");
2469 /* All operations in this function are phy address 1 */
2470 hw->phy.addr = 1;
2472 /* Set page 769 */
2473 e1000e_write_phy_reg_mdic(hw, IGP01E1000_PHY_PAGE_SELECT,
2474 (BM_WUC_ENABLE_PAGE << IGP_PAGE_SHIFT));
2476 ret_val = e1000e_read_phy_reg_mdic(hw, BM_WUC_ENABLE_REG, &phy_reg);
2477 if (ret_val)
2478 goto out;
2480 /* First clear bit 4 to avoid a power state change */
2481 phy_reg &= ~(BM_WUC_HOST_WU_BIT);
2482 ret_val = e1000e_write_phy_reg_mdic(hw, BM_WUC_ENABLE_REG, phy_reg);
2483 if (ret_val)
2484 goto out;
2486 /* Write bit 2 = 1, and clear bit 4 to 769_17 */
2487 ret_val = e1000e_write_phy_reg_mdic(hw, BM_WUC_ENABLE_REG,
2488 phy_reg | BM_WUC_ENABLE_BIT);
2489 if (ret_val)
2490 goto out;
2492 /* Select page 800 */
2493 ret_val = e1000e_write_phy_reg_mdic(hw, IGP01E1000_PHY_PAGE_SELECT,
2494 (BM_WUC_PAGE << IGP_PAGE_SHIFT));
2496 /* Write the page 800 offset value using opcode 0x11 */
2497 ret_val = e1000e_write_phy_reg_mdic(hw, BM_WUC_ADDRESS_OPCODE, reg);
2498 if (ret_val)
2499 goto out;
2501 if (read) {
2502 /* Read the page 800 value using opcode 0x12 */
2503 ret_val = e1000e_read_phy_reg_mdic(hw, BM_WUC_DATA_OPCODE,
2504 data);
2505 } else {
2506 /* Read the page 800 value using opcode 0x12 */
2507 ret_val = e1000e_write_phy_reg_mdic(hw, BM_WUC_DATA_OPCODE,
2508 *data);
2511 if (ret_val)
2512 goto out;
2515 * Restore 769_17.2 to its original value
2516 * Set page 769
2518 e1000e_write_phy_reg_mdic(hw, IGP01E1000_PHY_PAGE_SELECT,
2519 (BM_WUC_ENABLE_PAGE << IGP_PAGE_SHIFT));
2521 /* Clear 769_17.2 */
2522 ret_val = e1000e_write_phy_reg_mdic(hw, BM_WUC_ENABLE_REG, phy_reg);
2524 out:
2525 return ret_val;
2529 * e1000e_commit_phy - Soft PHY reset
2530 * @hw: pointer to the HW structure
2532 * Performs a soft PHY reset on those that apply. This is a function pointer
2533 * entry point called by drivers.
2535 s32 e1000e_commit_phy(struct e1000_hw *hw)
2537 if (hw->phy.ops.commit_phy)
2538 return hw->phy.ops.commit_phy(hw);
2540 return 0;
2544 * e1000_set_d0_lplu_state - Sets low power link up state for D0
2545 * @hw: pointer to the HW structure
2546 * @active: boolean used to enable/disable lplu
2548 * Success returns 0, Failure returns 1
2550 * The low power link up (lplu) state is set to the power management level D0
2551 * and SmartSpeed is disabled when active is true, else clear lplu for D0
2552 * and enable Smartspeed. LPLU and Smartspeed are mutually exclusive. LPLU
2553 * is used during Dx states where the power conservation is most important.
2554 * During driver activity, SmartSpeed should be enabled so performance is
2555 * maintained. This is a function pointer entry point called by drivers.
2557 static s32 e1000_set_d0_lplu_state(struct e1000_hw *hw, bool active)
2559 if (hw->phy.ops.set_d0_lplu_state)
2560 return hw->phy.ops.set_d0_lplu_state(hw, active);
2562 return 0;
2566 * e1000_set_mdio_slow_mode_hv - Set slow MDIO access mode
2567 * @hw: pointer to the HW structure
2568 * @slow: true for slow mode, false for normal mode
2570 * Assumes semaphore already acquired.
2572 s32 e1000_set_mdio_slow_mode_hv(struct e1000_hw *hw, bool slow)
2574 s32 ret_val = 0;
2575 u16 data = 0;
2577 /* Set MDIO mode - page 769, register 16: 0x2580==slow, 0x2180==fast */
2578 hw->phy.addr = 1;
2579 ret_val = e1000e_write_phy_reg_mdic(hw, IGP01E1000_PHY_PAGE_SELECT,
2580 (BM_PORT_CTRL_PAGE << IGP_PAGE_SHIFT));
2581 if (ret_val)
2582 goto out;
2584 ret_val = e1000e_write_phy_reg_mdic(hw, BM_CS_CTRL1,
2585 (0x2180 | (slow << 10)));
2586 if (ret_val)
2587 goto out;
2589 /* dummy read when reverting to fast mode - throw away result */
2590 if (!slow)
2591 ret_val = e1000e_read_phy_reg_mdic(hw, BM_CS_CTRL1, &data);
2593 out:
2594 return ret_val;
2598 * __e1000_read_phy_reg_hv - Read HV PHY register
2599 * @hw: pointer to the HW structure
2600 * @offset: register offset to be read
2601 * @data: pointer to the read data
2602 * @locked: semaphore has already been acquired or not
2604 * Acquires semaphore, if necessary, then reads the PHY register at offset
2605 * and stores the retrieved information in data. Release any acquired
2606 * semaphore before exiting.
2608 static s32 __e1000_read_phy_reg_hv(struct e1000_hw *hw, u32 offset, u16 *data,
2609 bool locked)
2611 s32 ret_val;
2612 u16 page = BM_PHY_REG_PAGE(offset);
2613 u16 reg = BM_PHY_REG_NUM(offset);
2614 bool in_slow_mode = false;
2616 if (!locked) {
2617 ret_val = hw->phy.ops.acquire_phy(hw);
2618 if (ret_val)
2619 return ret_val;
2622 /* Workaround failure in MDIO access while cable is disconnected */
2623 if ((hw->phy.type == e1000_phy_82577) &&
2624 !(er32(STATUS) & E1000_STATUS_LU)) {
2625 ret_val = e1000_set_mdio_slow_mode_hv(hw, true);
2626 if (ret_val)
2627 goto out;
2629 in_slow_mode = true;
2632 /* Page 800 works differently than the rest so it has its own func */
2633 if (page == BM_WUC_PAGE) {
2634 ret_val = e1000_access_phy_wakeup_reg_bm(hw, offset,
2635 data, true);
2636 goto out;
2639 if (page > 0 && page < HV_INTC_FC_PAGE_START) {
2640 ret_val = e1000_access_phy_debug_regs_hv(hw, offset,
2641 data, true);
2642 goto out;
2645 hw->phy.addr = e1000_get_phy_addr_for_hv_page(page);
2647 if (page == HV_INTC_FC_PAGE_START)
2648 page = 0;
2650 if (reg > MAX_PHY_MULTI_PAGE_REG) {
2651 u32 phy_addr = hw->phy.addr;
2653 hw->phy.addr = 1;
2655 /* Page is shifted left, PHY expects (page x 32) */
2656 ret_val = e1000e_write_phy_reg_mdic(hw,
2657 IGP01E1000_PHY_PAGE_SELECT,
2658 (page << IGP_PAGE_SHIFT));
2659 hw->phy.addr = phy_addr;
2661 if (ret_val)
2662 goto out;
2665 ret_val = e1000e_read_phy_reg_mdic(hw, MAX_PHY_REG_ADDRESS & reg,
2666 data);
2667 out:
2668 /* Revert to MDIO fast mode, if applicable */
2669 if ((hw->phy.type == e1000_phy_82577) && in_slow_mode)
2670 ret_val |= e1000_set_mdio_slow_mode_hv(hw, false);
2672 if (!locked)
2673 hw->phy.ops.release_phy(hw);
2675 return ret_val;
2679 * e1000_read_phy_reg_hv - Read HV PHY register
2680 * @hw: pointer to the HW structure
2681 * @offset: register offset to be read
2682 * @data: pointer to the read data
2684 * Acquires semaphore then reads the PHY register at offset and stores
2685 * the retrieved information in data. Release the acquired semaphore
2686 * before exiting.
2688 s32 e1000_read_phy_reg_hv(struct e1000_hw *hw, u32 offset, u16 *data)
2690 return __e1000_read_phy_reg_hv(hw, offset, data, false);
2694 * e1000_read_phy_reg_hv_locked - Read HV PHY register
2695 * @hw: pointer to the HW structure
2696 * @offset: register offset to be read
2697 * @data: pointer to the read data
2699 * Reads the PHY register at offset and stores the retrieved information
2700 * in data. Assumes semaphore already acquired.
2702 s32 e1000_read_phy_reg_hv_locked(struct e1000_hw *hw, u32 offset, u16 *data)
2704 return __e1000_read_phy_reg_hv(hw, offset, data, true);
2708 * __e1000_write_phy_reg_hv - Write HV PHY register
2709 * @hw: pointer to the HW structure
2710 * @offset: register offset to write to
2711 * @data: data to write at register offset
2712 * @locked: semaphore has already been acquired or not
2714 * Acquires semaphore, if necessary, then writes the data to PHY register
2715 * at the offset. Release any acquired semaphores before exiting.
2717 static s32 __e1000_write_phy_reg_hv(struct e1000_hw *hw, u32 offset, u16 data,
2718 bool locked)
2720 s32 ret_val;
2721 u16 page = BM_PHY_REG_PAGE(offset);
2722 u16 reg = BM_PHY_REG_NUM(offset);
2723 bool in_slow_mode = false;
2725 if (!locked) {
2726 ret_val = hw->phy.ops.acquire_phy(hw);
2727 if (ret_val)
2728 return ret_val;
2731 /* Workaround failure in MDIO access while cable is disconnected */
2732 if ((hw->phy.type == e1000_phy_82577) &&
2733 !(er32(STATUS) & E1000_STATUS_LU)) {
2734 ret_val = e1000_set_mdio_slow_mode_hv(hw, true);
2735 if (ret_val)
2736 goto out;
2738 in_slow_mode = true;
2741 /* Page 800 works differently than the rest so it has its own func */
2742 if (page == BM_WUC_PAGE) {
2743 ret_val = e1000_access_phy_wakeup_reg_bm(hw, offset,
2744 &data, false);
2745 goto out;
2748 if (page > 0 && page < HV_INTC_FC_PAGE_START) {
2749 ret_val = e1000_access_phy_debug_regs_hv(hw, offset,
2750 &data, false);
2751 goto out;
2754 hw->phy.addr = e1000_get_phy_addr_for_hv_page(page);
2756 if (page == HV_INTC_FC_PAGE_START)
2757 page = 0;
2760 * Workaround MDIO accesses being disabled after entering IEEE Power
2761 * Down (whenever bit 11 of the PHY Control register is set)
2763 if ((hw->phy.type == e1000_phy_82578) &&
2764 (hw->phy.revision >= 1) &&
2765 (hw->phy.addr == 2) &&
2766 ((MAX_PHY_REG_ADDRESS & reg) == 0) &&
2767 (data & (1 << 11))) {
2768 u16 data2 = 0x7EFF;
2769 ret_val = e1000_access_phy_debug_regs_hv(hw, (1 << 6) | 0x3,
2770 &data2, false);
2771 if (ret_val)
2772 goto out;
2775 if (reg > MAX_PHY_MULTI_PAGE_REG) {
2776 u32 phy_addr = hw->phy.addr;
2778 hw->phy.addr = 1;
2780 /* Page is shifted left, PHY expects (page x 32) */
2781 ret_val = e1000e_write_phy_reg_mdic(hw,
2782 IGP01E1000_PHY_PAGE_SELECT,
2783 (page << IGP_PAGE_SHIFT));
2784 hw->phy.addr = phy_addr;
2786 if (ret_val)
2787 goto out;
2790 ret_val = e1000e_write_phy_reg_mdic(hw, MAX_PHY_REG_ADDRESS & reg,
2791 data);
2793 out:
2794 /* Revert to MDIO fast mode, if applicable */
2795 if ((hw->phy.type == e1000_phy_82577) && in_slow_mode)
2796 ret_val |= e1000_set_mdio_slow_mode_hv(hw, false);
2798 if (!locked)
2799 hw->phy.ops.release_phy(hw);
2801 return ret_val;
2805 * e1000_write_phy_reg_hv - Write HV PHY register
2806 * @hw: pointer to the HW structure
2807 * @offset: register offset to write to
2808 * @data: data to write at register offset
2810 * Acquires semaphore then writes the data to PHY register at the offset.
2811 * Release the acquired semaphores before exiting.
2813 s32 e1000_write_phy_reg_hv(struct e1000_hw *hw, u32 offset, u16 data)
2815 return __e1000_write_phy_reg_hv(hw, offset, data, false);
2819 * e1000_write_phy_reg_hv_locked - Write HV PHY register
2820 * @hw: pointer to the HW structure
2821 * @offset: register offset to write to
2822 * @data: data to write at register offset
2824 * Writes the data to PHY register at the offset. Assumes semaphore
2825 * already acquired.
2827 s32 e1000_write_phy_reg_hv_locked(struct e1000_hw *hw, u32 offset, u16 data)
2829 return __e1000_write_phy_reg_hv(hw, offset, data, true);
2833 * e1000_get_phy_addr_for_hv_page - Get PHY adrress based on page
2834 * @page: page to be accessed
2836 static u32 e1000_get_phy_addr_for_hv_page(u32 page)
2838 u32 phy_addr = 2;
2840 if (page >= HV_INTC_FC_PAGE_START)
2841 phy_addr = 1;
2843 return phy_addr;
2847 * e1000_access_phy_debug_regs_hv - Read HV PHY vendor specific high registers
2848 * @hw: pointer to the HW structure
2849 * @offset: register offset to be read or written
2850 * @data: pointer to the data to be read or written
2851 * @read: determines if operation is read or written
2853 * Reads the PHY register at offset and stores the retreived information
2854 * in data. Assumes semaphore already acquired. Note that the procedure
2855 * to read these regs uses the address port and data port to read/write.
2857 static s32 e1000_access_phy_debug_regs_hv(struct e1000_hw *hw, u32 offset,
2858 u16 *data, bool read)
2860 s32 ret_val;
2861 u32 addr_reg = 0;
2862 u32 data_reg = 0;
2864 /* This takes care of the difference with desktop vs mobile phy */
2865 addr_reg = (hw->phy.type == e1000_phy_82578) ?
2866 I82578_ADDR_REG : I82577_ADDR_REG;
2867 data_reg = addr_reg + 1;
2869 /* All operations in this function are phy address 2 */
2870 hw->phy.addr = 2;
2872 /* masking with 0x3F to remove the page from offset */
2873 ret_val = e1000e_write_phy_reg_mdic(hw, addr_reg, (u16)offset & 0x3F);
2874 if (ret_val) {
2875 hw_dbg(hw, "Could not write PHY the HV address register\n");
2876 goto out;
2879 /* Read or write the data value next */
2880 if (read)
2881 ret_val = e1000e_read_phy_reg_mdic(hw, data_reg, data);
2882 else
2883 ret_val = e1000e_write_phy_reg_mdic(hw, data_reg, *data);
2885 if (ret_val) {
2886 hw_dbg(hw, "Could not read data value from HV data register\n");
2887 goto out;
2890 out:
2891 return ret_val;
2895 * e1000_link_stall_workaround_hv - Si workaround
2896 * @hw: pointer to the HW structure
2898 * This function works around a Si bug where the link partner can get
2899 * a link up indication before the PHY does. If small packets are sent
2900 * by the link partner they can be placed in the packet buffer without
2901 * being properly accounted for by the PHY and will stall preventing
2902 * further packets from being received. The workaround is to clear the
2903 * packet buffer after the PHY detects link up.
2905 s32 e1000_link_stall_workaround_hv(struct e1000_hw *hw)
2907 s32 ret_val = 0;
2908 u16 data;
2910 if (hw->phy.type != e1000_phy_82578)
2911 goto out;
2913 /* Do not apply workaround if in PHY loopback bit 14 set */
2914 hw->phy.ops.read_phy_reg(hw, PHY_CONTROL, &data);
2915 if (data & PHY_CONTROL_LB)
2916 goto out;
2918 /* check if link is up and at 1Gbps */
2919 ret_val = hw->phy.ops.read_phy_reg(hw, BM_CS_STATUS, &data);
2920 if (ret_val)
2921 goto out;
2923 data &= BM_CS_STATUS_LINK_UP |
2924 BM_CS_STATUS_RESOLVED |
2925 BM_CS_STATUS_SPEED_MASK;
2927 if (data != (BM_CS_STATUS_LINK_UP |
2928 BM_CS_STATUS_RESOLVED |
2929 BM_CS_STATUS_SPEED_1000))
2930 goto out;
2932 mdelay(200);
2934 /* flush the packets in the fifo buffer */
2935 ret_val = hw->phy.ops.write_phy_reg(hw, HV_MUX_DATA_CTRL,
2936 HV_MUX_DATA_CTRL_GEN_TO_MAC |
2937 HV_MUX_DATA_CTRL_FORCE_SPEED);
2938 if (ret_val)
2939 goto out;
2941 ret_val = hw->phy.ops.write_phy_reg(hw, HV_MUX_DATA_CTRL,
2942 HV_MUX_DATA_CTRL_GEN_TO_MAC);
2944 out:
2945 return ret_val;
2949 * e1000_check_polarity_82577 - Checks the polarity.
2950 * @hw: pointer to the HW structure
2952 * Success returns 0, Failure returns -E1000_ERR_PHY (-2)
2954 * Polarity is determined based on the PHY specific status register.
2956 s32 e1000_check_polarity_82577(struct e1000_hw *hw)
2958 struct e1000_phy_info *phy = &hw->phy;
2959 s32 ret_val;
2960 u16 data;
2962 ret_val = phy->ops.read_phy_reg(hw, I82577_PHY_STATUS_2, &data);
2964 if (!ret_val)
2965 phy->cable_polarity = (data & I82577_PHY_STATUS2_REV_POLARITY)
2966 ? e1000_rev_polarity_reversed
2967 : e1000_rev_polarity_normal;
2969 return ret_val;
2973 * e1000_phy_force_speed_duplex_82577 - Force speed/duplex for I82577 PHY
2974 * @hw: pointer to the HW structure
2976 * Calls the PHY setup function to force speed and duplex. Clears the
2977 * auto-crossover to force MDI manually. Waits for link and returns
2978 * successful if link up is successful, else -E1000_ERR_PHY (-2).
2980 s32 e1000_phy_force_speed_duplex_82577(struct e1000_hw *hw)
2982 struct e1000_phy_info *phy = &hw->phy;
2983 s32 ret_val;
2984 u16 phy_data;
2985 bool link;
2987 ret_val = phy->ops.read_phy_reg(hw, PHY_CONTROL, &phy_data);
2988 if (ret_val)
2989 goto out;
2991 e1000e_phy_force_speed_duplex_setup(hw, &phy_data);
2993 ret_val = phy->ops.write_phy_reg(hw, PHY_CONTROL, phy_data);
2994 if (ret_val)
2995 goto out;
2998 * Clear Auto-Crossover to force MDI manually. 82577 requires MDI
2999 * forced whenever speed and duplex are forced.
3001 ret_val = phy->ops.read_phy_reg(hw, I82577_PHY_CTRL_2, &phy_data);
3002 if (ret_val)
3003 goto out;
3005 phy_data &= ~I82577_PHY_CTRL2_AUTO_MDIX;
3006 phy_data &= ~I82577_PHY_CTRL2_FORCE_MDI_MDIX;
3008 ret_val = phy->ops.write_phy_reg(hw, I82577_PHY_CTRL_2, phy_data);
3009 if (ret_val)
3010 goto out;
3012 hw_dbg(hw, "I82577_PHY_CTRL_2: %X\n", phy_data);
3014 udelay(1);
3016 if (phy->autoneg_wait_to_complete) {
3017 hw_dbg(hw, "Waiting for forced speed/duplex link on 82577 phy\n");
3019 ret_val = e1000e_phy_has_link_generic(hw,
3020 PHY_FORCE_LIMIT,
3021 100000,
3022 &link);
3023 if (ret_val)
3024 goto out;
3026 if (!link)
3027 hw_dbg(hw, "Link taking longer than expected.\n");
3029 /* Try once more */
3030 ret_val = e1000e_phy_has_link_generic(hw,
3031 PHY_FORCE_LIMIT,
3032 100000,
3033 &link);
3034 if (ret_val)
3035 goto out;
3038 out:
3039 return ret_val;
3043 * e1000_get_phy_info_82577 - Retrieve I82577 PHY information
3044 * @hw: pointer to the HW structure
3046 * Read PHY status to determine if link is up. If link is up, then
3047 * set/determine 10base-T extended distance and polarity correction. Read
3048 * PHY port status to determine MDI/MDIx and speed. Based on the speed,
3049 * determine on the cable length, local and remote receiver.
3051 s32 e1000_get_phy_info_82577(struct e1000_hw *hw)
3053 struct e1000_phy_info *phy = &hw->phy;
3054 s32 ret_val;
3055 u16 data;
3056 bool link;
3058 ret_val = e1000e_phy_has_link_generic(hw, 1, 0, &link);
3059 if (ret_val)
3060 goto out;
3062 if (!link) {
3063 hw_dbg(hw, "Phy info is only valid if link is up\n");
3064 ret_val = -E1000_ERR_CONFIG;
3065 goto out;
3068 phy->polarity_correction = true;
3070 ret_val = e1000_check_polarity_82577(hw);
3071 if (ret_val)
3072 goto out;
3074 ret_val = phy->ops.read_phy_reg(hw, I82577_PHY_STATUS_2, &data);
3075 if (ret_val)
3076 goto out;
3078 phy->is_mdix = (data & I82577_PHY_STATUS2_MDIX) ? true : false;
3080 if ((data & I82577_PHY_STATUS2_SPEED_MASK) ==
3081 I82577_PHY_STATUS2_SPEED_1000MBPS) {
3082 ret_val = hw->phy.ops.get_cable_length(hw);
3083 if (ret_val)
3084 goto out;
3086 ret_val = phy->ops.read_phy_reg(hw, PHY_1000T_STATUS, &data);
3087 if (ret_val)
3088 goto out;
3090 phy->local_rx = (data & SR_1000T_LOCAL_RX_STATUS)
3091 ? e1000_1000t_rx_status_ok
3092 : e1000_1000t_rx_status_not_ok;
3094 phy->remote_rx = (data & SR_1000T_REMOTE_RX_STATUS)
3095 ? e1000_1000t_rx_status_ok
3096 : e1000_1000t_rx_status_not_ok;
3097 } else {
3098 phy->cable_length = E1000_CABLE_LENGTH_UNDEFINED;
3099 phy->local_rx = e1000_1000t_rx_status_undefined;
3100 phy->remote_rx = e1000_1000t_rx_status_undefined;
3103 out:
3104 return ret_val;
3108 * e1000_get_cable_length_82577 - Determine cable length for 82577 PHY
3109 * @hw: pointer to the HW structure
3111 * Reads the diagnostic status register and verifies result is valid before
3112 * placing it in the phy_cable_length field.
3114 s32 e1000_get_cable_length_82577(struct e1000_hw *hw)
3116 struct e1000_phy_info *phy = &hw->phy;
3117 s32 ret_val;
3118 u16 phy_data, length;
3120 ret_val = phy->ops.read_phy_reg(hw, I82577_PHY_DIAG_STATUS, &phy_data);
3121 if (ret_val)
3122 goto out;
3124 length = (phy_data & I82577_DSTATUS_CABLE_LENGTH) >>
3125 I82577_DSTATUS_CABLE_LENGTH_SHIFT;
3127 if (length == E1000_CABLE_LENGTH_UNDEFINED)
3128 ret_val = E1000_ERR_PHY;
3130 phy->cable_length = length;
3132 out:
3133 return ret_val;