KVM: VMX: Fix guest state validity checks
[linux-2.6/mini2440.git] / arch / x86 / kvm / vmx.c
blobbe9441056ff208389a538a0e96c54f7ea7c19585
1 /*
2 * Kernel-based Virtual Machine driver for Linux
4 * This module enables machines with Intel VT-x extensions to run virtual
5 * machines without emulation or binary translation.
7 * Copyright (C) 2006 Qumranet, Inc.
9 * Authors:
10 * Avi Kivity <avi@qumranet.com>
11 * Yaniv Kamay <yaniv@qumranet.com>
13 * This work is licensed under the terms of the GNU GPL, version 2. See
14 * the COPYING file in the top-level directory.
18 #include "irq.h"
19 #include "mmu.h"
21 #include <linux/kvm_host.h>
22 #include <linux/module.h>
23 #include <linux/kernel.h>
24 #include <linux/mm.h>
25 #include <linux/highmem.h>
26 #include <linux/sched.h>
27 #include <linux/moduleparam.h>
28 #include "kvm_cache_regs.h"
29 #include "x86.h"
31 #include <asm/io.h>
32 #include <asm/desc.h>
33 #include <asm/vmx.h>
34 #include <asm/virtext.h>
36 #define __ex(x) __kvm_handle_fault_on_reboot(x)
38 MODULE_AUTHOR("Qumranet");
39 MODULE_LICENSE("GPL");
41 static int bypass_guest_pf = 1;
42 module_param(bypass_guest_pf, bool, 0);
44 static int enable_vpid = 1;
45 module_param(enable_vpid, bool, 0);
47 static int flexpriority_enabled = 1;
48 module_param(flexpriority_enabled, bool, 0);
50 static int enable_ept = 1;
51 module_param(enable_ept, bool, 0);
53 static int emulate_invalid_guest_state = 0;
54 module_param(emulate_invalid_guest_state, bool, 0);
56 struct vmcs {
57 u32 revision_id;
58 u32 abort;
59 char data[0];
62 struct vcpu_vmx {
63 struct kvm_vcpu vcpu;
64 struct list_head local_vcpus_link;
65 unsigned long host_rsp;
66 int launched;
67 u8 fail;
68 u32 idt_vectoring_info;
69 struct kvm_msr_entry *guest_msrs;
70 struct kvm_msr_entry *host_msrs;
71 int nmsrs;
72 int save_nmsrs;
73 int msr_offset_efer;
74 #ifdef CONFIG_X86_64
75 int msr_offset_kernel_gs_base;
76 #endif
77 struct vmcs *vmcs;
78 struct {
79 int loaded;
80 u16 fs_sel, gs_sel, ldt_sel;
81 int gs_ldt_reload_needed;
82 int fs_reload_needed;
83 int guest_efer_loaded;
84 } host_state;
85 struct {
86 struct {
87 bool pending;
88 u8 vector;
89 unsigned rip;
90 } irq;
91 } rmode;
92 int vpid;
93 bool emulation_required;
95 /* Support for vnmi-less CPUs */
96 int soft_vnmi_blocked;
97 ktime_t entry_time;
98 s64 vnmi_blocked_time;
101 static inline struct vcpu_vmx *to_vmx(struct kvm_vcpu *vcpu)
103 return container_of(vcpu, struct vcpu_vmx, vcpu);
106 static int init_rmode(struct kvm *kvm);
107 static u64 construct_eptp(unsigned long root_hpa);
109 static DEFINE_PER_CPU(struct vmcs *, vmxarea);
110 static DEFINE_PER_CPU(struct vmcs *, current_vmcs);
111 static DEFINE_PER_CPU(struct list_head, vcpus_on_cpu);
113 static struct page *vmx_io_bitmap_a;
114 static struct page *vmx_io_bitmap_b;
115 static struct page *vmx_msr_bitmap;
117 static DECLARE_BITMAP(vmx_vpid_bitmap, VMX_NR_VPIDS);
118 static DEFINE_SPINLOCK(vmx_vpid_lock);
120 static struct vmcs_config {
121 int size;
122 int order;
123 u32 revision_id;
124 u32 pin_based_exec_ctrl;
125 u32 cpu_based_exec_ctrl;
126 u32 cpu_based_2nd_exec_ctrl;
127 u32 vmexit_ctrl;
128 u32 vmentry_ctrl;
129 } vmcs_config;
131 static struct vmx_capability {
132 u32 ept;
133 u32 vpid;
134 } vmx_capability;
136 #define VMX_SEGMENT_FIELD(seg) \
137 [VCPU_SREG_##seg] = { \
138 .selector = GUEST_##seg##_SELECTOR, \
139 .base = GUEST_##seg##_BASE, \
140 .limit = GUEST_##seg##_LIMIT, \
141 .ar_bytes = GUEST_##seg##_AR_BYTES, \
144 static struct kvm_vmx_segment_field {
145 unsigned selector;
146 unsigned base;
147 unsigned limit;
148 unsigned ar_bytes;
149 } kvm_vmx_segment_fields[] = {
150 VMX_SEGMENT_FIELD(CS),
151 VMX_SEGMENT_FIELD(DS),
152 VMX_SEGMENT_FIELD(ES),
153 VMX_SEGMENT_FIELD(FS),
154 VMX_SEGMENT_FIELD(GS),
155 VMX_SEGMENT_FIELD(SS),
156 VMX_SEGMENT_FIELD(TR),
157 VMX_SEGMENT_FIELD(LDTR),
161 * Keep MSR_K6_STAR at the end, as setup_msrs() will try to optimize it
162 * away by decrementing the array size.
164 static const u32 vmx_msr_index[] = {
165 #ifdef CONFIG_X86_64
166 MSR_SYSCALL_MASK, MSR_LSTAR, MSR_CSTAR, MSR_KERNEL_GS_BASE,
167 #endif
168 MSR_EFER, MSR_K6_STAR,
170 #define NR_VMX_MSR ARRAY_SIZE(vmx_msr_index)
172 static void load_msrs(struct kvm_msr_entry *e, int n)
174 int i;
176 for (i = 0; i < n; ++i)
177 wrmsrl(e[i].index, e[i].data);
180 static void save_msrs(struct kvm_msr_entry *e, int n)
182 int i;
184 for (i = 0; i < n; ++i)
185 rdmsrl(e[i].index, e[i].data);
188 static inline int is_page_fault(u32 intr_info)
190 return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK |
191 INTR_INFO_VALID_MASK)) ==
192 (INTR_TYPE_HARD_EXCEPTION | PF_VECTOR | INTR_INFO_VALID_MASK);
195 static inline int is_no_device(u32 intr_info)
197 return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK |
198 INTR_INFO_VALID_MASK)) ==
199 (INTR_TYPE_HARD_EXCEPTION | NM_VECTOR | INTR_INFO_VALID_MASK);
202 static inline int is_invalid_opcode(u32 intr_info)
204 return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK |
205 INTR_INFO_VALID_MASK)) ==
206 (INTR_TYPE_HARD_EXCEPTION | UD_VECTOR | INTR_INFO_VALID_MASK);
209 static inline int is_external_interrupt(u32 intr_info)
211 return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VALID_MASK))
212 == (INTR_TYPE_EXT_INTR | INTR_INFO_VALID_MASK);
215 static inline int cpu_has_vmx_msr_bitmap(void)
217 return (vmcs_config.cpu_based_exec_ctrl & CPU_BASED_USE_MSR_BITMAPS);
220 static inline int cpu_has_vmx_tpr_shadow(void)
222 return (vmcs_config.cpu_based_exec_ctrl & CPU_BASED_TPR_SHADOW);
225 static inline int vm_need_tpr_shadow(struct kvm *kvm)
227 return ((cpu_has_vmx_tpr_shadow()) && (irqchip_in_kernel(kvm)));
230 static inline int cpu_has_secondary_exec_ctrls(void)
232 return (vmcs_config.cpu_based_exec_ctrl &
233 CPU_BASED_ACTIVATE_SECONDARY_CONTROLS);
236 static inline bool cpu_has_vmx_virtualize_apic_accesses(void)
238 return flexpriority_enabled
239 && (vmcs_config.cpu_based_2nd_exec_ctrl &
240 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES);
243 static inline int cpu_has_vmx_invept_individual_addr(void)
245 return (!!(vmx_capability.ept & VMX_EPT_EXTENT_INDIVIDUAL_BIT));
248 static inline int cpu_has_vmx_invept_context(void)
250 return (!!(vmx_capability.ept & VMX_EPT_EXTENT_CONTEXT_BIT));
253 static inline int cpu_has_vmx_invept_global(void)
255 return (!!(vmx_capability.ept & VMX_EPT_EXTENT_GLOBAL_BIT));
258 static inline int cpu_has_vmx_ept(void)
260 return (vmcs_config.cpu_based_2nd_exec_ctrl &
261 SECONDARY_EXEC_ENABLE_EPT);
264 static inline int vm_need_ept(void)
266 return (cpu_has_vmx_ept() && enable_ept);
269 static inline int vm_need_virtualize_apic_accesses(struct kvm *kvm)
271 return ((cpu_has_vmx_virtualize_apic_accesses()) &&
272 (irqchip_in_kernel(kvm)));
275 static inline int cpu_has_vmx_vpid(void)
277 return (vmcs_config.cpu_based_2nd_exec_ctrl &
278 SECONDARY_EXEC_ENABLE_VPID);
281 static inline int cpu_has_virtual_nmis(void)
283 return vmcs_config.pin_based_exec_ctrl & PIN_BASED_VIRTUAL_NMIS;
286 static int __find_msr_index(struct vcpu_vmx *vmx, u32 msr)
288 int i;
290 for (i = 0; i < vmx->nmsrs; ++i)
291 if (vmx->guest_msrs[i].index == msr)
292 return i;
293 return -1;
296 static inline void __invvpid(int ext, u16 vpid, gva_t gva)
298 struct {
299 u64 vpid : 16;
300 u64 rsvd : 48;
301 u64 gva;
302 } operand = { vpid, 0, gva };
304 asm volatile (__ex(ASM_VMX_INVVPID)
305 /* CF==1 or ZF==1 --> rc = -1 */
306 "; ja 1f ; ud2 ; 1:"
307 : : "a"(&operand), "c"(ext) : "cc", "memory");
310 static inline void __invept(int ext, u64 eptp, gpa_t gpa)
312 struct {
313 u64 eptp, gpa;
314 } operand = {eptp, gpa};
316 asm volatile (__ex(ASM_VMX_INVEPT)
317 /* CF==1 or ZF==1 --> rc = -1 */
318 "; ja 1f ; ud2 ; 1:\n"
319 : : "a" (&operand), "c" (ext) : "cc", "memory");
322 static struct kvm_msr_entry *find_msr_entry(struct vcpu_vmx *vmx, u32 msr)
324 int i;
326 i = __find_msr_index(vmx, msr);
327 if (i >= 0)
328 return &vmx->guest_msrs[i];
329 return NULL;
332 static void vmcs_clear(struct vmcs *vmcs)
334 u64 phys_addr = __pa(vmcs);
335 u8 error;
337 asm volatile (__ex(ASM_VMX_VMCLEAR_RAX) "; setna %0"
338 : "=g"(error) : "a"(&phys_addr), "m"(phys_addr)
339 : "cc", "memory");
340 if (error)
341 printk(KERN_ERR "kvm: vmclear fail: %p/%llx\n",
342 vmcs, phys_addr);
345 static void __vcpu_clear(void *arg)
347 struct vcpu_vmx *vmx = arg;
348 int cpu = raw_smp_processor_id();
350 if (vmx->vcpu.cpu == cpu)
351 vmcs_clear(vmx->vmcs);
352 if (per_cpu(current_vmcs, cpu) == vmx->vmcs)
353 per_cpu(current_vmcs, cpu) = NULL;
354 rdtscll(vmx->vcpu.arch.host_tsc);
355 list_del(&vmx->local_vcpus_link);
356 vmx->vcpu.cpu = -1;
357 vmx->launched = 0;
360 static void vcpu_clear(struct vcpu_vmx *vmx)
362 if (vmx->vcpu.cpu == -1)
363 return;
364 smp_call_function_single(vmx->vcpu.cpu, __vcpu_clear, vmx, 1);
367 static inline void vpid_sync_vcpu_all(struct vcpu_vmx *vmx)
369 if (vmx->vpid == 0)
370 return;
372 __invvpid(VMX_VPID_EXTENT_SINGLE_CONTEXT, vmx->vpid, 0);
375 static inline void ept_sync_global(void)
377 if (cpu_has_vmx_invept_global())
378 __invept(VMX_EPT_EXTENT_GLOBAL, 0, 0);
381 static inline void ept_sync_context(u64 eptp)
383 if (vm_need_ept()) {
384 if (cpu_has_vmx_invept_context())
385 __invept(VMX_EPT_EXTENT_CONTEXT, eptp, 0);
386 else
387 ept_sync_global();
391 static inline void ept_sync_individual_addr(u64 eptp, gpa_t gpa)
393 if (vm_need_ept()) {
394 if (cpu_has_vmx_invept_individual_addr())
395 __invept(VMX_EPT_EXTENT_INDIVIDUAL_ADDR,
396 eptp, gpa);
397 else
398 ept_sync_context(eptp);
402 static unsigned long vmcs_readl(unsigned long field)
404 unsigned long value;
406 asm volatile (__ex(ASM_VMX_VMREAD_RDX_RAX)
407 : "=a"(value) : "d"(field) : "cc");
408 return value;
411 static u16 vmcs_read16(unsigned long field)
413 return vmcs_readl(field);
416 static u32 vmcs_read32(unsigned long field)
418 return vmcs_readl(field);
421 static u64 vmcs_read64(unsigned long field)
423 #ifdef CONFIG_X86_64
424 return vmcs_readl(field);
425 #else
426 return vmcs_readl(field) | ((u64)vmcs_readl(field+1) << 32);
427 #endif
430 static noinline void vmwrite_error(unsigned long field, unsigned long value)
432 printk(KERN_ERR "vmwrite error: reg %lx value %lx (err %d)\n",
433 field, value, vmcs_read32(VM_INSTRUCTION_ERROR));
434 dump_stack();
437 static void vmcs_writel(unsigned long field, unsigned long value)
439 u8 error;
441 asm volatile (__ex(ASM_VMX_VMWRITE_RAX_RDX) "; setna %0"
442 : "=q"(error) : "a"(value), "d"(field) : "cc");
443 if (unlikely(error))
444 vmwrite_error(field, value);
447 static void vmcs_write16(unsigned long field, u16 value)
449 vmcs_writel(field, value);
452 static void vmcs_write32(unsigned long field, u32 value)
454 vmcs_writel(field, value);
457 static void vmcs_write64(unsigned long field, u64 value)
459 vmcs_writel(field, value);
460 #ifndef CONFIG_X86_64
461 asm volatile ("");
462 vmcs_writel(field+1, value >> 32);
463 #endif
466 static void vmcs_clear_bits(unsigned long field, u32 mask)
468 vmcs_writel(field, vmcs_readl(field) & ~mask);
471 static void vmcs_set_bits(unsigned long field, u32 mask)
473 vmcs_writel(field, vmcs_readl(field) | mask);
476 static void update_exception_bitmap(struct kvm_vcpu *vcpu)
478 u32 eb;
480 eb = (1u << PF_VECTOR) | (1u << UD_VECTOR);
481 if (!vcpu->fpu_active)
482 eb |= 1u << NM_VECTOR;
483 if (vcpu->guest_debug & KVM_GUESTDBG_ENABLE) {
484 if (vcpu->guest_debug &
485 (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP))
486 eb |= 1u << DB_VECTOR;
487 if (vcpu->guest_debug & KVM_GUESTDBG_USE_SW_BP)
488 eb |= 1u << BP_VECTOR;
490 if (vcpu->arch.rmode.active)
491 eb = ~0;
492 if (vm_need_ept())
493 eb &= ~(1u << PF_VECTOR); /* bypass_guest_pf = 0 */
494 vmcs_write32(EXCEPTION_BITMAP, eb);
497 static void reload_tss(void)
500 * VT restores TR but not its size. Useless.
502 struct descriptor_table gdt;
503 struct desc_struct *descs;
505 kvm_get_gdt(&gdt);
506 descs = (void *)gdt.base;
507 descs[GDT_ENTRY_TSS].type = 9; /* available TSS */
508 load_TR_desc();
511 static void load_transition_efer(struct vcpu_vmx *vmx)
513 int efer_offset = vmx->msr_offset_efer;
514 u64 host_efer = vmx->host_msrs[efer_offset].data;
515 u64 guest_efer = vmx->guest_msrs[efer_offset].data;
516 u64 ignore_bits;
518 if (efer_offset < 0)
519 return;
521 * NX is emulated; LMA and LME handled by hardware; SCE meaninless
522 * outside long mode
524 ignore_bits = EFER_NX | EFER_SCE;
525 #ifdef CONFIG_X86_64
526 ignore_bits |= EFER_LMA | EFER_LME;
527 /* SCE is meaningful only in long mode on Intel */
528 if (guest_efer & EFER_LMA)
529 ignore_bits &= ~(u64)EFER_SCE;
530 #endif
531 if ((guest_efer & ~ignore_bits) == (host_efer & ~ignore_bits))
532 return;
534 vmx->host_state.guest_efer_loaded = 1;
535 guest_efer &= ~ignore_bits;
536 guest_efer |= host_efer & ignore_bits;
537 wrmsrl(MSR_EFER, guest_efer);
538 vmx->vcpu.stat.efer_reload++;
541 static void reload_host_efer(struct vcpu_vmx *vmx)
543 if (vmx->host_state.guest_efer_loaded) {
544 vmx->host_state.guest_efer_loaded = 0;
545 load_msrs(vmx->host_msrs + vmx->msr_offset_efer, 1);
549 static void vmx_save_host_state(struct kvm_vcpu *vcpu)
551 struct vcpu_vmx *vmx = to_vmx(vcpu);
553 if (vmx->host_state.loaded)
554 return;
556 vmx->host_state.loaded = 1;
558 * Set host fs and gs selectors. Unfortunately, 22.2.3 does not
559 * allow segment selectors with cpl > 0 or ti == 1.
561 vmx->host_state.ldt_sel = kvm_read_ldt();
562 vmx->host_state.gs_ldt_reload_needed = vmx->host_state.ldt_sel;
563 vmx->host_state.fs_sel = kvm_read_fs();
564 if (!(vmx->host_state.fs_sel & 7)) {
565 vmcs_write16(HOST_FS_SELECTOR, vmx->host_state.fs_sel);
566 vmx->host_state.fs_reload_needed = 0;
567 } else {
568 vmcs_write16(HOST_FS_SELECTOR, 0);
569 vmx->host_state.fs_reload_needed = 1;
571 vmx->host_state.gs_sel = kvm_read_gs();
572 if (!(vmx->host_state.gs_sel & 7))
573 vmcs_write16(HOST_GS_SELECTOR, vmx->host_state.gs_sel);
574 else {
575 vmcs_write16(HOST_GS_SELECTOR, 0);
576 vmx->host_state.gs_ldt_reload_needed = 1;
579 #ifdef CONFIG_X86_64
580 vmcs_writel(HOST_FS_BASE, read_msr(MSR_FS_BASE));
581 vmcs_writel(HOST_GS_BASE, read_msr(MSR_GS_BASE));
582 #else
583 vmcs_writel(HOST_FS_BASE, segment_base(vmx->host_state.fs_sel));
584 vmcs_writel(HOST_GS_BASE, segment_base(vmx->host_state.gs_sel));
585 #endif
587 #ifdef CONFIG_X86_64
588 if (is_long_mode(&vmx->vcpu))
589 save_msrs(vmx->host_msrs +
590 vmx->msr_offset_kernel_gs_base, 1);
592 #endif
593 load_msrs(vmx->guest_msrs, vmx->save_nmsrs);
594 load_transition_efer(vmx);
597 static void __vmx_load_host_state(struct vcpu_vmx *vmx)
599 unsigned long flags;
601 if (!vmx->host_state.loaded)
602 return;
604 ++vmx->vcpu.stat.host_state_reload;
605 vmx->host_state.loaded = 0;
606 if (vmx->host_state.fs_reload_needed)
607 kvm_load_fs(vmx->host_state.fs_sel);
608 if (vmx->host_state.gs_ldt_reload_needed) {
609 kvm_load_ldt(vmx->host_state.ldt_sel);
611 * If we have to reload gs, we must take care to
612 * preserve our gs base.
614 local_irq_save(flags);
615 kvm_load_gs(vmx->host_state.gs_sel);
616 #ifdef CONFIG_X86_64
617 wrmsrl(MSR_GS_BASE, vmcs_readl(HOST_GS_BASE));
618 #endif
619 local_irq_restore(flags);
621 reload_tss();
622 save_msrs(vmx->guest_msrs, vmx->save_nmsrs);
623 load_msrs(vmx->host_msrs, vmx->save_nmsrs);
624 reload_host_efer(vmx);
627 static void vmx_load_host_state(struct vcpu_vmx *vmx)
629 preempt_disable();
630 __vmx_load_host_state(vmx);
631 preempt_enable();
635 * Switches to specified vcpu, until a matching vcpu_put(), but assumes
636 * vcpu mutex is already taken.
638 static void vmx_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
640 struct vcpu_vmx *vmx = to_vmx(vcpu);
641 u64 phys_addr = __pa(vmx->vmcs);
642 u64 tsc_this, delta, new_offset;
644 if (vcpu->cpu != cpu) {
645 vcpu_clear(vmx);
646 kvm_migrate_timers(vcpu);
647 vpid_sync_vcpu_all(vmx);
648 local_irq_disable();
649 list_add(&vmx->local_vcpus_link,
650 &per_cpu(vcpus_on_cpu, cpu));
651 local_irq_enable();
654 if (per_cpu(current_vmcs, cpu) != vmx->vmcs) {
655 u8 error;
657 per_cpu(current_vmcs, cpu) = vmx->vmcs;
658 asm volatile (__ex(ASM_VMX_VMPTRLD_RAX) "; setna %0"
659 : "=g"(error) : "a"(&phys_addr), "m"(phys_addr)
660 : "cc");
661 if (error)
662 printk(KERN_ERR "kvm: vmptrld %p/%llx fail\n",
663 vmx->vmcs, phys_addr);
666 if (vcpu->cpu != cpu) {
667 struct descriptor_table dt;
668 unsigned long sysenter_esp;
670 vcpu->cpu = cpu;
672 * Linux uses per-cpu TSS and GDT, so set these when switching
673 * processors.
675 vmcs_writel(HOST_TR_BASE, kvm_read_tr_base()); /* 22.2.4 */
676 kvm_get_gdt(&dt);
677 vmcs_writel(HOST_GDTR_BASE, dt.base); /* 22.2.4 */
679 rdmsrl(MSR_IA32_SYSENTER_ESP, sysenter_esp);
680 vmcs_writel(HOST_IA32_SYSENTER_ESP, sysenter_esp); /* 22.2.3 */
683 * Make sure the time stamp counter is monotonous.
685 rdtscll(tsc_this);
686 if (tsc_this < vcpu->arch.host_tsc) {
687 delta = vcpu->arch.host_tsc - tsc_this;
688 new_offset = vmcs_read64(TSC_OFFSET) + delta;
689 vmcs_write64(TSC_OFFSET, new_offset);
694 static void vmx_vcpu_put(struct kvm_vcpu *vcpu)
696 __vmx_load_host_state(to_vmx(vcpu));
699 static void vmx_fpu_activate(struct kvm_vcpu *vcpu)
701 if (vcpu->fpu_active)
702 return;
703 vcpu->fpu_active = 1;
704 vmcs_clear_bits(GUEST_CR0, X86_CR0_TS);
705 if (vcpu->arch.cr0 & X86_CR0_TS)
706 vmcs_set_bits(GUEST_CR0, X86_CR0_TS);
707 update_exception_bitmap(vcpu);
710 static void vmx_fpu_deactivate(struct kvm_vcpu *vcpu)
712 if (!vcpu->fpu_active)
713 return;
714 vcpu->fpu_active = 0;
715 vmcs_set_bits(GUEST_CR0, X86_CR0_TS);
716 update_exception_bitmap(vcpu);
719 static unsigned long vmx_get_rflags(struct kvm_vcpu *vcpu)
721 return vmcs_readl(GUEST_RFLAGS);
724 static void vmx_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
726 if (vcpu->arch.rmode.active)
727 rflags |= X86_EFLAGS_IOPL | X86_EFLAGS_VM;
728 vmcs_writel(GUEST_RFLAGS, rflags);
731 static void skip_emulated_instruction(struct kvm_vcpu *vcpu)
733 unsigned long rip;
734 u32 interruptibility;
736 rip = kvm_rip_read(vcpu);
737 rip += vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
738 kvm_rip_write(vcpu, rip);
741 * We emulated an instruction, so temporary interrupt blocking
742 * should be removed, if set.
744 interruptibility = vmcs_read32(GUEST_INTERRUPTIBILITY_INFO);
745 if (interruptibility & 3)
746 vmcs_write32(GUEST_INTERRUPTIBILITY_INFO,
747 interruptibility & ~3);
748 vcpu->arch.interrupt_window_open = 1;
751 static void vmx_queue_exception(struct kvm_vcpu *vcpu, unsigned nr,
752 bool has_error_code, u32 error_code)
754 struct vcpu_vmx *vmx = to_vmx(vcpu);
755 u32 intr_info = nr | INTR_INFO_VALID_MASK;
757 if (has_error_code) {
758 vmcs_write32(VM_ENTRY_EXCEPTION_ERROR_CODE, error_code);
759 intr_info |= INTR_INFO_DELIVER_CODE_MASK;
762 if (vcpu->arch.rmode.active) {
763 vmx->rmode.irq.pending = true;
764 vmx->rmode.irq.vector = nr;
765 vmx->rmode.irq.rip = kvm_rip_read(vcpu);
766 if (nr == BP_VECTOR || nr == OF_VECTOR)
767 vmx->rmode.irq.rip++;
768 intr_info |= INTR_TYPE_SOFT_INTR;
769 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, intr_info);
770 vmcs_write32(VM_ENTRY_INSTRUCTION_LEN, 1);
771 kvm_rip_write(vcpu, vmx->rmode.irq.rip - 1);
772 return;
775 if (nr == BP_VECTOR || nr == OF_VECTOR) {
776 vmcs_write32(VM_ENTRY_INSTRUCTION_LEN, 1);
777 intr_info |= INTR_TYPE_SOFT_EXCEPTION;
778 } else
779 intr_info |= INTR_TYPE_HARD_EXCEPTION;
781 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, intr_info);
784 static bool vmx_exception_injected(struct kvm_vcpu *vcpu)
786 return false;
790 * Swap MSR entry in host/guest MSR entry array.
792 #ifdef CONFIG_X86_64
793 static void move_msr_up(struct vcpu_vmx *vmx, int from, int to)
795 struct kvm_msr_entry tmp;
797 tmp = vmx->guest_msrs[to];
798 vmx->guest_msrs[to] = vmx->guest_msrs[from];
799 vmx->guest_msrs[from] = tmp;
800 tmp = vmx->host_msrs[to];
801 vmx->host_msrs[to] = vmx->host_msrs[from];
802 vmx->host_msrs[from] = tmp;
804 #endif
807 * Set up the vmcs to automatically save and restore system
808 * msrs. Don't touch the 64-bit msrs if the guest is in legacy
809 * mode, as fiddling with msrs is very expensive.
811 static void setup_msrs(struct vcpu_vmx *vmx)
813 int save_nmsrs;
815 vmx_load_host_state(vmx);
816 save_nmsrs = 0;
817 #ifdef CONFIG_X86_64
818 if (is_long_mode(&vmx->vcpu)) {
819 int index;
821 index = __find_msr_index(vmx, MSR_SYSCALL_MASK);
822 if (index >= 0)
823 move_msr_up(vmx, index, save_nmsrs++);
824 index = __find_msr_index(vmx, MSR_LSTAR);
825 if (index >= 0)
826 move_msr_up(vmx, index, save_nmsrs++);
827 index = __find_msr_index(vmx, MSR_CSTAR);
828 if (index >= 0)
829 move_msr_up(vmx, index, save_nmsrs++);
830 index = __find_msr_index(vmx, MSR_KERNEL_GS_BASE);
831 if (index >= 0)
832 move_msr_up(vmx, index, save_nmsrs++);
834 * MSR_K6_STAR is only needed on long mode guests, and only
835 * if efer.sce is enabled.
837 index = __find_msr_index(vmx, MSR_K6_STAR);
838 if ((index >= 0) && (vmx->vcpu.arch.shadow_efer & EFER_SCE))
839 move_msr_up(vmx, index, save_nmsrs++);
841 #endif
842 vmx->save_nmsrs = save_nmsrs;
844 #ifdef CONFIG_X86_64
845 vmx->msr_offset_kernel_gs_base =
846 __find_msr_index(vmx, MSR_KERNEL_GS_BASE);
847 #endif
848 vmx->msr_offset_efer = __find_msr_index(vmx, MSR_EFER);
852 * reads and returns guest's timestamp counter "register"
853 * guest_tsc = host_tsc + tsc_offset -- 21.3
855 static u64 guest_read_tsc(void)
857 u64 host_tsc, tsc_offset;
859 rdtscll(host_tsc);
860 tsc_offset = vmcs_read64(TSC_OFFSET);
861 return host_tsc + tsc_offset;
865 * writes 'guest_tsc' into guest's timestamp counter "register"
866 * guest_tsc = host_tsc + tsc_offset ==> tsc_offset = guest_tsc - host_tsc
868 static void guest_write_tsc(u64 guest_tsc, u64 host_tsc)
870 vmcs_write64(TSC_OFFSET, guest_tsc - host_tsc);
874 * Reads an msr value (of 'msr_index') into 'pdata'.
875 * Returns 0 on success, non-0 otherwise.
876 * Assumes vcpu_load() was already called.
878 static int vmx_get_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 *pdata)
880 u64 data;
881 struct kvm_msr_entry *msr;
883 if (!pdata) {
884 printk(KERN_ERR "BUG: get_msr called with NULL pdata\n");
885 return -EINVAL;
888 switch (msr_index) {
889 #ifdef CONFIG_X86_64
890 case MSR_FS_BASE:
891 data = vmcs_readl(GUEST_FS_BASE);
892 break;
893 case MSR_GS_BASE:
894 data = vmcs_readl(GUEST_GS_BASE);
895 break;
896 case MSR_EFER:
897 return kvm_get_msr_common(vcpu, msr_index, pdata);
898 #endif
899 case MSR_IA32_TIME_STAMP_COUNTER:
900 data = guest_read_tsc();
901 break;
902 case MSR_IA32_SYSENTER_CS:
903 data = vmcs_read32(GUEST_SYSENTER_CS);
904 break;
905 case MSR_IA32_SYSENTER_EIP:
906 data = vmcs_readl(GUEST_SYSENTER_EIP);
907 break;
908 case MSR_IA32_SYSENTER_ESP:
909 data = vmcs_readl(GUEST_SYSENTER_ESP);
910 break;
911 default:
912 vmx_load_host_state(to_vmx(vcpu));
913 msr = find_msr_entry(to_vmx(vcpu), msr_index);
914 if (msr) {
915 data = msr->data;
916 break;
918 return kvm_get_msr_common(vcpu, msr_index, pdata);
921 *pdata = data;
922 return 0;
926 * Writes msr value into into the appropriate "register".
927 * Returns 0 on success, non-0 otherwise.
928 * Assumes vcpu_load() was already called.
930 static int vmx_set_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 data)
932 struct vcpu_vmx *vmx = to_vmx(vcpu);
933 struct kvm_msr_entry *msr;
934 u64 host_tsc;
935 int ret = 0;
937 switch (msr_index) {
938 #ifdef CONFIG_X86_64
939 case MSR_EFER:
940 vmx_load_host_state(vmx);
941 ret = kvm_set_msr_common(vcpu, msr_index, data);
942 break;
943 case MSR_FS_BASE:
944 vmcs_writel(GUEST_FS_BASE, data);
945 break;
946 case MSR_GS_BASE:
947 vmcs_writel(GUEST_GS_BASE, data);
948 break;
949 #endif
950 case MSR_IA32_SYSENTER_CS:
951 vmcs_write32(GUEST_SYSENTER_CS, data);
952 break;
953 case MSR_IA32_SYSENTER_EIP:
954 vmcs_writel(GUEST_SYSENTER_EIP, data);
955 break;
956 case MSR_IA32_SYSENTER_ESP:
957 vmcs_writel(GUEST_SYSENTER_ESP, data);
958 break;
959 case MSR_IA32_TIME_STAMP_COUNTER:
960 rdtscll(host_tsc);
961 guest_write_tsc(data, host_tsc);
962 break;
963 case MSR_P6_PERFCTR0:
964 case MSR_P6_PERFCTR1:
965 case MSR_P6_EVNTSEL0:
966 case MSR_P6_EVNTSEL1:
968 * Just discard all writes to the performance counters; this
969 * should keep both older linux and windows 64-bit guests
970 * happy
972 pr_unimpl(vcpu, "unimplemented perfctr wrmsr: 0x%x data 0x%llx\n", msr_index, data);
974 break;
975 case MSR_IA32_CR_PAT:
976 if (vmcs_config.vmentry_ctrl & VM_ENTRY_LOAD_IA32_PAT) {
977 vmcs_write64(GUEST_IA32_PAT, data);
978 vcpu->arch.pat = data;
979 break;
981 /* Otherwise falls through to kvm_set_msr_common */
982 default:
983 vmx_load_host_state(vmx);
984 msr = find_msr_entry(vmx, msr_index);
985 if (msr) {
986 msr->data = data;
987 break;
989 ret = kvm_set_msr_common(vcpu, msr_index, data);
992 return ret;
995 static void vmx_cache_reg(struct kvm_vcpu *vcpu, enum kvm_reg reg)
997 __set_bit(reg, (unsigned long *)&vcpu->arch.regs_avail);
998 switch (reg) {
999 case VCPU_REGS_RSP:
1000 vcpu->arch.regs[VCPU_REGS_RSP] = vmcs_readl(GUEST_RSP);
1001 break;
1002 case VCPU_REGS_RIP:
1003 vcpu->arch.regs[VCPU_REGS_RIP] = vmcs_readl(GUEST_RIP);
1004 break;
1005 default:
1006 break;
1010 static int set_guest_debug(struct kvm_vcpu *vcpu, struct kvm_guest_debug *dbg)
1012 int old_debug = vcpu->guest_debug;
1013 unsigned long flags;
1015 vcpu->guest_debug = dbg->control;
1016 if (!(vcpu->guest_debug & KVM_GUESTDBG_ENABLE))
1017 vcpu->guest_debug = 0;
1019 if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)
1020 vmcs_writel(GUEST_DR7, dbg->arch.debugreg[7]);
1021 else
1022 vmcs_writel(GUEST_DR7, vcpu->arch.dr7);
1024 flags = vmcs_readl(GUEST_RFLAGS);
1025 if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
1026 flags |= X86_EFLAGS_TF | X86_EFLAGS_RF;
1027 else if (old_debug & KVM_GUESTDBG_SINGLESTEP)
1028 flags &= ~(X86_EFLAGS_TF | X86_EFLAGS_RF);
1029 vmcs_writel(GUEST_RFLAGS, flags);
1031 update_exception_bitmap(vcpu);
1033 return 0;
1036 static int vmx_get_irq(struct kvm_vcpu *vcpu)
1038 if (!vcpu->arch.interrupt.pending)
1039 return -1;
1040 return vcpu->arch.interrupt.nr;
1043 static __init int cpu_has_kvm_support(void)
1045 return cpu_has_vmx();
1048 static __init int vmx_disabled_by_bios(void)
1050 u64 msr;
1052 rdmsrl(MSR_IA32_FEATURE_CONTROL, msr);
1053 return (msr & (FEATURE_CONTROL_LOCKED |
1054 FEATURE_CONTROL_VMXON_ENABLED))
1055 == FEATURE_CONTROL_LOCKED;
1056 /* locked but not enabled */
1059 static void hardware_enable(void *garbage)
1061 int cpu = raw_smp_processor_id();
1062 u64 phys_addr = __pa(per_cpu(vmxarea, cpu));
1063 u64 old;
1065 INIT_LIST_HEAD(&per_cpu(vcpus_on_cpu, cpu));
1066 rdmsrl(MSR_IA32_FEATURE_CONTROL, old);
1067 if ((old & (FEATURE_CONTROL_LOCKED |
1068 FEATURE_CONTROL_VMXON_ENABLED))
1069 != (FEATURE_CONTROL_LOCKED |
1070 FEATURE_CONTROL_VMXON_ENABLED))
1071 /* enable and lock */
1072 wrmsrl(MSR_IA32_FEATURE_CONTROL, old |
1073 FEATURE_CONTROL_LOCKED |
1074 FEATURE_CONTROL_VMXON_ENABLED);
1075 write_cr4(read_cr4() | X86_CR4_VMXE); /* FIXME: not cpu hotplug safe */
1076 asm volatile (ASM_VMX_VMXON_RAX
1077 : : "a"(&phys_addr), "m"(phys_addr)
1078 : "memory", "cc");
1081 static void vmclear_local_vcpus(void)
1083 int cpu = raw_smp_processor_id();
1084 struct vcpu_vmx *vmx, *n;
1086 list_for_each_entry_safe(vmx, n, &per_cpu(vcpus_on_cpu, cpu),
1087 local_vcpus_link)
1088 __vcpu_clear(vmx);
1092 /* Just like cpu_vmxoff(), but with the __kvm_handle_fault_on_reboot()
1093 * tricks.
1095 static void kvm_cpu_vmxoff(void)
1097 asm volatile (__ex(ASM_VMX_VMXOFF) : : : "cc");
1098 write_cr4(read_cr4() & ~X86_CR4_VMXE);
1101 static void hardware_disable(void *garbage)
1103 vmclear_local_vcpus();
1104 kvm_cpu_vmxoff();
1107 static __init int adjust_vmx_controls(u32 ctl_min, u32 ctl_opt,
1108 u32 msr, u32 *result)
1110 u32 vmx_msr_low, vmx_msr_high;
1111 u32 ctl = ctl_min | ctl_opt;
1113 rdmsr(msr, vmx_msr_low, vmx_msr_high);
1115 ctl &= vmx_msr_high; /* bit == 0 in high word ==> must be zero */
1116 ctl |= vmx_msr_low; /* bit == 1 in low word ==> must be one */
1118 /* Ensure minimum (required) set of control bits are supported. */
1119 if (ctl_min & ~ctl)
1120 return -EIO;
1122 *result = ctl;
1123 return 0;
1126 static __init int setup_vmcs_config(struct vmcs_config *vmcs_conf)
1128 u32 vmx_msr_low, vmx_msr_high;
1129 u32 min, opt, min2, opt2;
1130 u32 _pin_based_exec_control = 0;
1131 u32 _cpu_based_exec_control = 0;
1132 u32 _cpu_based_2nd_exec_control = 0;
1133 u32 _vmexit_control = 0;
1134 u32 _vmentry_control = 0;
1136 min = PIN_BASED_EXT_INTR_MASK | PIN_BASED_NMI_EXITING;
1137 opt = PIN_BASED_VIRTUAL_NMIS;
1138 if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_PINBASED_CTLS,
1139 &_pin_based_exec_control) < 0)
1140 return -EIO;
1142 min = CPU_BASED_HLT_EXITING |
1143 #ifdef CONFIG_X86_64
1144 CPU_BASED_CR8_LOAD_EXITING |
1145 CPU_BASED_CR8_STORE_EXITING |
1146 #endif
1147 CPU_BASED_CR3_LOAD_EXITING |
1148 CPU_BASED_CR3_STORE_EXITING |
1149 CPU_BASED_USE_IO_BITMAPS |
1150 CPU_BASED_MOV_DR_EXITING |
1151 CPU_BASED_USE_TSC_OFFSETING |
1152 CPU_BASED_INVLPG_EXITING;
1153 opt = CPU_BASED_TPR_SHADOW |
1154 CPU_BASED_USE_MSR_BITMAPS |
1155 CPU_BASED_ACTIVATE_SECONDARY_CONTROLS;
1156 if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_PROCBASED_CTLS,
1157 &_cpu_based_exec_control) < 0)
1158 return -EIO;
1159 #ifdef CONFIG_X86_64
1160 if ((_cpu_based_exec_control & CPU_BASED_TPR_SHADOW))
1161 _cpu_based_exec_control &= ~CPU_BASED_CR8_LOAD_EXITING &
1162 ~CPU_BASED_CR8_STORE_EXITING;
1163 #endif
1164 if (_cpu_based_exec_control & CPU_BASED_ACTIVATE_SECONDARY_CONTROLS) {
1165 min2 = 0;
1166 opt2 = SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES |
1167 SECONDARY_EXEC_WBINVD_EXITING |
1168 SECONDARY_EXEC_ENABLE_VPID |
1169 SECONDARY_EXEC_ENABLE_EPT;
1170 if (adjust_vmx_controls(min2, opt2,
1171 MSR_IA32_VMX_PROCBASED_CTLS2,
1172 &_cpu_based_2nd_exec_control) < 0)
1173 return -EIO;
1175 #ifndef CONFIG_X86_64
1176 if (!(_cpu_based_2nd_exec_control &
1177 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES))
1178 _cpu_based_exec_control &= ~CPU_BASED_TPR_SHADOW;
1179 #endif
1180 if (_cpu_based_2nd_exec_control & SECONDARY_EXEC_ENABLE_EPT) {
1181 /* CR3 accesses and invlpg don't need to cause VM Exits when EPT
1182 enabled */
1183 min &= ~(CPU_BASED_CR3_LOAD_EXITING |
1184 CPU_BASED_CR3_STORE_EXITING |
1185 CPU_BASED_INVLPG_EXITING);
1186 if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_PROCBASED_CTLS,
1187 &_cpu_based_exec_control) < 0)
1188 return -EIO;
1189 rdmsr(MSR_IA32_VMX_EPT_VPID_CAP,
1190 vmx_capability.ept, vmx_capability.vpid);
1193 min = 0;
1194 #ifdef CONFIG_X86_64
1195 min |= VM_EXIT_HOST_ADDR_SPACE_SIZE;
1196 #endif
1197 opt = VM_EXIT_SAVE_IA32_PAT | VM_EXIT_LOAD_IA32_PAT;
1198 if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_EXIT_CTLS,
1199 &_vmexit_control) < 0)
1200 return -EIO;
1202 min = 0;
1203 opt = VM_ENTRY_LOAD_IA32_PAT;
1204 if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_ENTRY_CTLS,
1205 &_vmentry_control) < 0)
1206 return -EIO;
1208 rdmsr(MSR_IA32_VMX_BASIC, vmx_msr_low, vmx_msr_high);
1210 /* IA-32 SDM Vol 3B: VMCS size is never greater than 4kB. */
1211 if ((vmx_msr_high & 0x1fff) > PAGE_SIZE)
1212 return -EIO;
1214 #ifdef CONFIG_X86_64
1215 /* IA-32 SDM Vol 3B: 64-bit CPUs always have VMX_BASIC_MSR[48]==0. */
1216 if (vmx_msr_high & (1u<<16))
1217 return -EIO;
1218 #endif
1220 /* Require Write-Back (WB) memory type for VMCS accesses. */
1221 if (((vmx_msr_high >> 18) & 15) != 6)
1222 return -EIO;
1224 vmcs_conf->size = vmx_msr_high & 0x1fff;
1225 vmcs_conf->order = get_order(vmcs_config.size);
1226 vmcs_conf->revision_id = vmx_msr_low;
1228 vmcs_conf->pin_based_exec_ctrl = _pin_based_exec_control;
1229 vmcs_conf->cpu_based_exec_ctrl = _cpu_based_exec_control;
1230 vmcs_conf->cpu_based_2nd_exec_ctrl = _cpu_based_2nd_exec_control;
1231 vmcs_conf->vmexit_ctrl = _vmexit_control;
1232 vmcs_conf->vmentry_ctrl = _vmentry_control;
1234 return 0;
1237 static struct vmcs *alloc_vmcs_cpu(int cpu)
1239 int node = cpu_to_node(cpu);
1240 struct page *pages;
1241 struct vmcs *vmcs;
1243 pages = alloc_pages_node(node, GFP_KERNEL, vmcs_config.order);
1244 if (!pages)
1245 return NULL;
1246 vmcs = page_address(pages);
1247 memset(vmcs, 0, vmcs_config.size);
1248 vmcs->revision_id = vmcs_config.revision_id; /* vmcs revision id */
1249 return vmcs;
1252 static struct vmcs *alloc_vmcs(void)
1254 return alloc_vmcs_cpu(raw_smp_processor_id());
1257 static void free_vmcs(struct vmcs *vmcs)
1259 free_pages((unsigned long)vmcs, vmcs_config.order);
1262 static void free_kvm_area(void)
1264 int cpu;
1266 for_each_online_cpu(cpu)
1267 free_vmcs(per_cpu(vmxarea, cpu));
1270 static __init int alloc_kvm_area(void)
1272 int cpu;
1274 for_each_online_cpu(cpu) {
1275 struct vmcs *vmcs;
1277 vmcs = alloc_vmcs_cpu(cpu);
1278 if (!vmcs) {
1279 free_kvm_area();
1280 return -ENOMEM;
1283 per_cpu(vmxarea, cpu) = vmcs;
1285 return 0;
1288 static __init int hardware_setup(void)
1290 if (setup_vmcs_config(&vmcs_config) < 0)
1291 return -EIO;
1293 if (boot_cpu_has(X86_FEATURE_NX))
1294 kvm_enable_efer_bits(EFER_NX);
1296 return alloc_kvm_area();
1299 static __exit void hardware_unsetup(void)
1301 free_kvm_area();
1304 static void fix_pmode_dataseg(int seg, struct kvm_save_segment *save)
1306 struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
1308 if (vmcs_readl(sf->base) == save->base && (save->base & AR_S_MASK)) {
1309 vmcs_write16(sf->selector, save->selector);
1310 vmcs_writel(sf->base, save->base);
1311 vmcs_write32(sf->limit, save->limit);
1312 vmcs_write32(sf->ar_bytes, save->ar);
1313 } else {
1314 u32 dpl = (vmcs_read16(sf->selector) & SELECTOR_RPL_MASK)
1315 << AR_DPL_SHIFT;
1316 vmcs_write32(sf->ar_bytes, 0x93 | dpl);
1320 static void enter_pmode(struct kvm_vcpu *vcpu)
1322 unsigned long flags;
1323 struct vcpu_vmx *vmx = to_vmx(vcpu);
1325 vmx->emulation_required = 1;
1326 vcpu->arch.rmode.active = 0;
1328 vmcs_writel(GUEST_TR_BASE, vcpu->arch.rmode.tr.base);
1329 vmcs_write32(GUEST_TR_LIMIT, vcpu->arch.rmode.tr.limit);
1330 vmcs_write32(GUEST_TR_AR_BYTES, vcpu->arch.rmode.tr.ar);
1332 flags = vmcs_readl(GUEST_RFLAGS);
1333 flags &= ~(X86_EFLAGS_IOPL | X86_EFLAGS_VM);
1334 flags |= (vcpu->arch.rmode.save_iopl << IOPL_SHIFT);
1335 vmcs_writel(GUEST_RFLAGS, flags);
1337 vmcs_writel(GUEST_CR4, (vmcs_readl(GUEST_CR4) & ~X86_CR4_VME) |
1338 (vmcs_readl(CR4_READ_SHADOW) & X86_CR4_VME));
1340 update_exception_bitmap(vcpu);
1342 if (emulate_invalid_guest_state)
1343 return;
1345 fix_pmode_dataseg(VCPU_SREG_ES, &vcpu->arch.rmode.es);
1346 fix_pmode_dataseg(VCPU_SREG_DS, &vcpu->arch.rmode.ds);
1347 fix_pmode_dataseg(VCPU_SREG_GS, &vcpu->arch.rmode.gs);
1348 fix_pmode_dataseg(VCPU_SREG_FS, &vcpu->arch.rmode.fs);
1350 vmcs_write16(GUEST_SS_SELECTOR, 0);
1351 vmcs_write32(GUEST_SS_AR_BYTES, 0x93);
1353 vmcs_write16(GUEST_CS_SELECTOR,
1354 vmcs_read16(GUEST_CS_SELECTOR) & ~SELECTOR_RPL_MASK);
1355 vmcs_write32(GUEST_CS_AR_BYTES, 0x9b);
1358 static gva_t rmode_tss_base(struct kvm *kvm)
1360 if (!kvm->arch.tss_addr) {
1361 gfn_t base_gfn = kvm->memslots[0].base_gfn +
1362 kvm->memslots[0].npages - 3;
1363 return base_gfn << PAGE_SHIFT;
1365 return kvm->arch.tss_addr;
1368 static void fix_rmode_seg(int seg, struct kvm_save_segment *save)
1370 struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
1372 save->selector = vmcs_read16(sf->selector);
1373 save->base = vmcs_readl(sf->base);
1374 save->limit = vmcs_read32(sf->limit);
1375 save->ar = vmcs_read32(sf->ar_bytes);
1376 vmcs_write16(sf->selector, save->base >> 4);
1377 vmcs_write32(sf->base, save->base & 0xfffff);
1378 vmcs_write32(sf->limit, 0xffff);
1379 vmcs_write32(sf->ar_bytes, 0xf3);
1382 static void enter_rmode(struct kvm_vcpu *vcpu)
1384 unsigned long flags;
1385 struct vcpu_vmx *vmx = to_vmx(vcpu);
1387 vmx->emulation_required = 1;
1388 vcpu->arch.rmode.active = 1;
1390 vcpu->arch.rmode.tr.base = vmcs_readl(GUEST_TR_BASE);
1391 vmcs_writel(GUEST_TR_BASE, rmode_tss_base(vcpu->kvm));
1393 vcpu->arch.rmode.tr.limit = vmcs_read32(GUEST_TR_LIMIT);
1394 vmcs_write32(GUEST_TR_LIMIT, RMODE_TSS_SIZE - 1);
1396 vcpu->arch.rmode.tr.ar = vmcs_read32(GUEST_TR_AR_BYTES);
1397 vmcs_write32(GUEST_TR_AR_BYTES, 0x008b);
1399 flags = vmcs_readl(GUEST_RFLAGS);
1400 vcpu->arch.rmode.save_iopl
1401 = (flags & X86_EFLAGS_IOPL) >> IOPL_SHIFT;
1403 flags |= X86_EFLAGS_IOPL | X86_EFLAGS_VM;
1405 vmcs_writel(GUEST_RFLAGS, flags);
1406 vmcs_writel(GUEST_CR4, vmcs_readl(GUEST_CR4) | X86_CR4_VME);
1407 update_exception_bitmap(vcpu);
1409 if (emulate_invalid_guest_state)
1410 goto continue_rmode;
1412 vmcs_write16(GUEST_SS_SELECTOR, vmcs_readl(GUEST_SS_BASE) >> 4);
1413 vmcs_write32(GUEST_SS_LIMIT, 0xffff);
1414 vmcs_write32(GUEST_SS_AR_BYTES, 0xf3);
1416 vmcs_write32(GUEST_CS_AR_BYTES, 0xf3);
1417 vmcs_write32(GUEST_CS_LIMIT, 0xffff);
1418 if (vmcs_readl(GUEST_CS_BASE) == 0xffff0000)
1419 vmcs_writel(GUEST_CS_BASE, 0xf0000);
1420 vmcs_write16(GUEST_CS_SELECTOR, vmcs_readl(GUEST_CS_BASE) >> 4);
1422 fix_rmode_seg(VCPU_SREG_ES, &vcpu->arch.rmode.es);
1423 fix_rmode_seg(VCPU_SREG_DS, &vcpu->arch.rmode.ds);
1424 fix_rmode_seg(VCPU_SREG_GS, &vcpu->arch.rmode.gs);
1425 fix_rmode_seg(VCPU_SREG_FS, &vcpu->arch.rmode.fs);
1427 continue_rmode:
1428 kvm_mmu_reset_context(vcpu);
1429 init_rmode(vcpu->kvm);
1432 #ifdef CONFIG_X86_64
1434 static void enter_lmode(struct kvm_vcpu *vcpu)
1436 u32 guest_tr_ar;
1438 guest_tr_ar = vmcs_read32(GUEST_TR_AR_BYTES);
1439 if ((guest_tr_ar & AR_TYPE_MASK) != AR_TYPE_BUSY_64_TSS) {
1440 printk(KERN_DEBUG "%s: tss fixup for long mode. \n",
1441 __func__);
1442 vmcs_write32(GUEST_TR_AR_BYTES,
1443 (guest_tr_ar & ~AR_TYPE_MASK)
1444 | AR_TYPE_BUSY_64_TSS);
1447 vcpu->arch.shadow_efer |= EFER_LMA;
1449 find_msr_entry(to_vmx(vcpu), MSR_EFER)->data |= EFER_LMA | EFER_LME;
1450 vmcs_write32(VM_ENTRY_CONTROLS,
1451 vmcs_read32(VM_ENTRY_CONTROLS)
1452 | VM_ENTRY_IA32E_MODE);
1455 static void exit_lmode(struct kvm_vcpu *vcpu)
1457 vcpu->arch.shadow_efer &= ~EFER_LMA;
1459 vmcs_write32(VM_ENTRY_CONTROLS,
1460 vmcs_read32(VM_ENTRY_CONTROLS)
1461 & ~VM_ENTRY_IA32E_MODE);
1464 #endif
1466 static void vmx_flush_tlb(struct kvm_vcpu *vcpu)
1468 vpid_sync_vcpu_all(to_vmx(vcpu));
1469 if (vm_need_ept())
1470 ept_sync_context(construct_eptp(vcpu->arch.mmu.root_hpa));
1473 static void vmx_decache_cr4_guest_bits(struct kvm_vcpu *vcpu)
1475 vcpu->arch.cr4 &= KVM_GUEST_CR4_MASK;
1476 vcpu->arch.cr4 |= vmcs_readl(GUEST_CR4) & ~KVM_GUEST_CR4_MASK;
1479 static void ept_load_pdptrs(struct kvm_vcpu *vcpu)
1481 if (is_paging(vcpu) && is_pae(vcpu) && !is_long_mode(vcpu)) {
1482 if (!load_pdptrs(vcpu, vcpu->arch.cr3)) {
1483 printk(KERN_ERR "EPT: Fail to load pdptrs!\n");
1484 return;
1486 vmcs_write64(GUEST_PDPTR0, vcpu->arch.pdptrs[0]);
1487 vmcs_write64(GUEST_PDPTR1, vcpu->arch.pdptrs[1]);
1488 vmcs_write64(GUEST_PDPTR2, vcpu->arch.pdptrs[2]);
1489 vmcs_write64(GUEST_PDPTR3, vcpu->arch.pdptrs[3]);
1493 static void vmx_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4);
1495 static void ept_update_paging_mode_cr0(unsigned long *hw_cr0,
1496 unsigned long cr0,
1497 struct kvm_vcpu *vcpu)
1499 if (!(cr0 & X86_CR0_PG)) {
1500 /* From paging/starting to nonpaging */
1501 vmcs_write32(CPU_BASED_VM_EXEC_CONTROL,
1502 vmcs_read32(CPU_BASED_VM_EXEC_CONTROL) |
1503 (CPU_BASED_CR3_LOAD_EXITING |
1504 CPU_BASED_CR3_STORE_EXITING));
1505 vcpu->arch.cr0 = cr0;
1506 vmx_set_cr4(vcpu, vcpu->arch.cr4);
1507 *hw_cr0 |= X86_CR0_PE | X86_CR0_PG;
1508 *hw_cr0 &= ~X86_CR0_WP;
1509 } else if (!is_paging(vcpu)) {
1510 /* From nonpaging to paging */
1511 vmcs_write32(CPU_BASED_VM_EXEC_CONTROL,
1512 vmcs_read32(CPU_BASED_VM_EXEC_CONTROL) &
1513 ~(CPU_BASED_CR3_LOAD_EXITING |
1514 CPU_BASED_CR3_STORE_EXITING));
1515 vcpu->arch.cr0 = cr0;
1516 vmx_set_cr4(vcpu, vcpu->arch.cr4);
1517 if (!(vcpu->arch.cr0 & X86_CR0_WP))
1518 *hw_cr0 &= ~X86_CR0_WP;
1522 static void ept_update_paging_mode_cr4(unsigned long *hw_cr4,
1523 struct kvm_vcpu *vcpu)
1525 if (!is_paging(vcpu)) {
1526 *hw_cr4 &= ~X86_CR4_PAE;
1527 *hw_cr4 |= X86_CR4_PSE;
1528 } else if (!(vcpu->arch.cr4 & X86_CR4_PAE))
1529 *hw_cr4 &= ~X86_CR4_PAE;
1532 static void vmx_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
1534 unsigned long hw_cr0 = (cr0 & ~KVM_GUEST_CR0_MASK) |
1535 KVM_VM_CR0_ALWAYS_ON;
1537 vmx_fpu_deactivate(vcpu);
1539 if (vcpu->arch.rmode.active && (cr0 & X86_CR0_PE))
1540 enter_pmode(vcpu);
1542 if (!vcpu->arch.rmode.active && !(cr0 & X86_CR0_PE))
1543 enter_rmode(vcpu);
1545 #ifdef CONFIG_X86_64
1546 if (vcpu->arch.shadow_efer & EFER_LME) {
1547 if (!is_paging(vcpu) && (cr0 & X86_CR0_PG))
1548 enter_lmode(vcpu);
1549 if (is_paging(vcpu) && !(cr0 & X86_CR0_PG))
1550 exit_lmode(vcpu);
1552 #endif
1554 if (vm_need_ept())
1555 ept_update_paging_mode_cr0(&hw_cr0, cr0, vcpu);
1557 vmcs_writel(CR0_READ_SHADOW, cr0);
1558 vmcs_writel(GUEST_CR0, hw_cr0);
1559 vcpu->arch.cr0 = cr0;
1561 if (!(cr0 & X86_CR0_TS) || !(cr0 & X86_CR0_PE))
1562 vmx_fpu_activate(vcpu);
1565 static u64 construct_eptp(unsigned long root_hpa)
1567 u64 eptp;
1569 /* TODO write the value reading from MSR */
1570 eptp = VMX_EPT_DEFAULT_MT |
1571 VMX_EPT_DEFAULT_GAW << VMX_EPT_GAW_EPTP_SHIFT;
1572 eptp |= (root_hpa & PAGE_MASK);
1574 return eptp;
1577 static void vmx_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3)
1579 unsigned long guest_cr3;
1580 u64 eptp;
1582 guest_cr3 = cr3;
1583 if (vm_need_ept()) {
1584 eptp = construct_eptp(cr3);
1585 vmcs_write64(EPT_POINTER, eptp);
1586 ept_sync_context(eptp);
1587 ept_load_pdptrs(vcpu);
1588 guest_cr3 = is_paging(vcpu) ? vcpu->arch.cr3 :
1589 VMX_EPT_IDENTITY_PAGETABLE_ADDR;
1592 vmx_flush_tlb(vcpu);
1593 vmcs_writel(GUEST_CR3, guest_cr3);
1594 if (vcpu->arch.cr0 & X86_CR0_PE)
1595 vmx_fpu_deactivate(vcpu);
1598 static void vmx_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
1600 unsigned long hw_cr4 = cr4 | (vcpu->arch.rmode.active ?
1601 KVM_RMODE_VM_CR4_ALWAYS_ON : KVM_PMODE_VM_CR4_ALWAYS_ON);
1603 vcpu->arch.cr4 = cr4;
1604 if (vm_need_ept())
1605 ept_update_paging_mode_cr4(&hw_cr4, vcpu);
1607 vmcs_writel(CR4_READ_SHADOW, cr4);
1608 vmcs_writel(GUEST_CR4, hw_cr4);
1611 static void vmx_set_efer(struct kvm_vcpu *vcpu, u64 efer)
1613 struct vcpu_vmx *vmx = to_vmx(vcpu);
1614 struct kvm_msr_entry *msr = find_msr_entry(vmx, MSR_EFER);
1616 vcpu->arch.shadow_efer = efer;
1617 if (!msr)
1618 return;
1619 if (efer & EFER_LMA) {
1620 vmcs_write32(VM_ENTRY_CONTROLS,
1621 vmcs_read32(VM_ENTRY_CONTROLS) |
1622 VM_ENTRY_IA32E_MODE);
1623 msr->data = efer;
1625 } else {
1626 vmcs_write32(VM_ENTRY_CONTROLS,
1627 vmcs_read32(VM_ENTRY_CONTROLS) &
1628 ~VM_ENTRY_IA32E_MODE);
1630 msr->data = efer & ~EFER_LME;
1632 setup_msrs(vmx);
1635 static u64 vmx_get_segment_base(struct kvm_vcpu *vcpu, int seg)
1637 struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
1639 return vmcs_readl(sf->base);
1642 static void vmx_get_segment(struct kvm_vcpu *vcpu,
1643 struct kvm_segment *var, int seg)
1645 struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
1646 u32 ar;
1648 var->base = vmcs_readl(sf->base);
1649 var->limit = vmcs_read32(sf->limit);
1650 var->selector = vmcs_read16(sf->selector);
1651 ar = vmcs_read32(sf->ar_bytes);
1652 if (ar & AR_UNUSABLE_MASK)
1653 ar = 0;
1654 var->type = ar & 15;
1655 var->s = (ar >> 4) & 1;
1656 var->dpl = (ar >> 5) & 3;
1657 var->present = (ar >> 7) & 1;
1658 var->avl = (ar >> 12) & 1;
1659 var->l = (ar >> 13) & 1;
1660 var->db = (ar >> 14) & 1;
1661 var->g = (ar >> 15) & 1;
1662 var->unusable = (ar >> 16) & 1;
1665 static int vmx_get_cpl(struct kvm_vcpu *vcpu)
1667 struct kvm_segment kvm_seg;
1669 if (!(vcpu->arch.cr0 & X86_CR0_PE)) /* if real mode */
1670 return 0;
1672 if (vmx_get_rflags(vcpu) & X86_EFLAGS_VM) /* if virtual 8086 */
1673 return 3;
1675 vmx_get_segment(vcpu, &kvm_seg, VCPU_SREG_CS);
1676 return kvm_seg.selector & 3;
1679 static u32 vmx_segment_access_rights(struct kvm_segment *var)
1681 u32 ar;
1683 if (var->unusable)
1684 ar = 1 << 16;
1685 else {
1686 ar = var->type & 15;
1687 ar |= (var->s & 1) << 4;
1688 ar |= (var->dpl & 3) << 5;
1689 ar |= (var->present & 1) << 7;
1690 ar |= (var->avl & 1) << 12;
1691 ar |= (var->l & 1) << 13;
1692 ar |= (var->db & 1) << 14;
1693 ar |= (var->g & 1) << 15;
1695 if (ar == 0) /* a 0 value means unusable */
1696 ar = AR_UNUSABLE_MASK;
1698 return ar;
1701 static void vmx_set_segment(struct kvm_vcpu *vcpu,
1702 struct kvm_segment *var, int seg)
1704 struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
1705 u32 ar;
1707 if (vcpu->arch.rmode.active && seg == VCPU_SREG_TR) {
1708 vcpu->arch.rmode.tr.selector = var->selector;
1709 vcpu->arch.rmode.tr.base = var->base;
1710 vcpu->arch.rmode.tr.limit = var->limit;
1711 vcpu->arch.rmode.tr.ar = vmx_segment_access_rights(var);
1712 return;
1714 vmcs_writel(sf->base, var->base);
1715 vmcs_write32(sf->limit, var->limit);
1716 vmcs_write16(sf->selector, var->selector);
1717 if (vcpu->arch.rmode.active && var->s) {
1719 * Hack real-mode segments into vm86 compatibility.
1721 if (var->base == 0xffff0000 && var->selector == 0xf000)
1722 vmcs_writel(sf->base, 0xf0000);
1723 ar = 0xf3;
1724 } else
1725 ar = vmx_segment_access_rights(var);
1726 vmcs_write32(sf->ar_bytes, ar);
1729 static void vmx_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l)
1731 u32 ar = vmcs_read32(GUEST_CS_AR_BYTES);
1733 *db = (ar >> 14) & 1;
1734 *l = (ar >> 13) & 1;
1737 static void vmx_get_idt(struct kvm_vcpu *vcpu, struct descriptor_table *dt)
1739 dt->limit = vmcs_read32(GUEST_IDTR_LIMIT);
1740 dt->base = vmcs_readl(GUEST_IDTR_BASE);
1743 static void vmx_set_idt(struct kvm_vcpu *vcpu, struct descriptor_table *dt)
1745 vmcs_write32(GUEST_IDTR_LIMIT, dt->limit);
1746 vmcs_writel(GUEST_IDTR_BASE, dt->base);
1749 static void vmx_get_gdt(struct kvm_vcpu *vcpu, struct descriptor_table *dt)
1751 dt->limit = vmcs_read32(GUEST_GDTR_LIMIT);
1752 dt->base = vmcs_readl(GUEST_GDTR_BASE);
1755 static void vmx_set_gdt(struct kvm_vcpu *vcpu, struct descriptor_table *dt)
1757 vmcs_write32(GUEST_GDTR_LIMIT, dt->limit);
1758 vmcs_writel(GUEST_GDTR_BASE, dt->base);
1761 static bool rmode_segment_valid(struct kvm_vcpu *vcpu, int seg)
1763 struct kvm_segment var;
1764 u32 ar;
1766 vmx_get_segment(vcpu, &var, seg);
1767 ar = vmx_segment_access_rights(&var);
1769 if (var.base != (var.selector << 4))
1770 return false;
1771 if (var.limit != 0xffff)
1772 return false;
1773 if (ar != 0xf3)
1774 return false;
1776 return true;
1779 static bool code_segment_valid(struct kvm_vcpu *vcpu)
1781 struct kvm_segment cs;
1782 unsigned int cs_rpl;
1784 vmx_get_segment(vcpu, &cs, VCPU_SREG_CS);
1785 cs_rpl = cs.selector & SELECTOR_RPL_MASK;
1787 if (cs.unusable)
1788 return false;
1789 if (~cs.type & (AR_TYPE_CODE_MASK|AR_TYPE_ACCESSES_MASK))
1790 return false;
1791 if (!cs.s)
1792 return false;
1793 if (cs.type & AR_TYPE_WRITEABLE_MASK) {
1794 if (cs.dpl > cs_rpl)
1795 return false;
1796 } else {
1797 if (cs.dpl != cs_rpl)
1798 return false;
1800 if (!cs.present)
1801 return false;
1803 /* TODO: Add Reserved field check, this'll require a new member in the kvm_segment_field structure */
1804 return true;
1807 static bool stack_segment_valid(struct kvm_vcpu *vcpu)
1809 struct kvm_segment ss;
1810 unsigned int ss_rpl;
1812 vmx_get_segment(vcpu, &ss, VCPU_SREG_SS);
1813 ss_rpl = ss.selector & SELECTOR_RPL_MASK;
1815 if (ss.unusable)
1816 return true;
1817 if (ss.type != 3 && ss.type != 7)
1818 return false;
1819 if (!ss.s)
1820 return false;
1821 if (ss.dpl != ss_rpl) /* DPL != RPL */
1822 return false;
1823 if (!ss.present)
1824 return false;
1826 return true;
1829 static bool data_segment_valid(struct kvm_vcpu *vcpu, int seg)
1831 struct kvm_segment var;
1832 unsigned int rpl;
1834 vmx_get_segment(vcpu, &var, seg);
1835 rpl = var.selector & SELECTOR_RPL_MASK;
1837 if (var.unusable)
1838 return true;
1839 if (!var.s)
1840 return false;
1841 if (!var.present)
1842 return false;
1843 if (~var.type & (AR_TYPE_CODE_MASK|AR_TYPE_WRITEABLE_MASK)) {
1844 if (var.dpl < rpl) /* DPL < RPL */
1845 return false;
1848 /* TODO: Add other members to kvm_segment_field to allow checking for other access
1849 * rights flags
1851 return true;
1854 static bool tr_valid(struct kvm_vcpu *vcpu)
1856 struct kvm_segment tr;
1858 vmx_get_segment(vcpu, &tr, VCPU_SREG_TR);
1860 if (tr.unusable)
1861 return false;
1862 if (tr.selector & SELECTOR_TI_MASK) /* TI = 1 */
1863 return false;
1864 if (tr.type != 3 && tr.type != 11) /* TODO: Check if guest is in IA32e mode */
1865 return false;
1866 if (!tr.present)
1867 return false;
1869 return true;
1872 static bool ldtr_valid(struct kvm_vcpu *vcpu)
1874 struct kvm_segment ldtr;
1876 vmx_get_segment(vcpu, &ldtr, VCPU_SREG_LDTR);
1878 if (ldtr.unusable)
1879 return true;
1880 if (ldtr.selector & SELECTOR_TI_MASK) /* TI = 1 */
1881 return false;
1882 if (ldtr.type != 2)
1883 return false;
1884 if (!ldtr.present)
1885 return false;
1887 return true;
1890 static bool cs_ss_rpl_check(struct kvm_vcpu *vcpu)
1892 struct kvm_segment cs, ss;
1894 vmx_get_segment(vcpu, &cs, VCPU_SREG_CS);
1895 vmx_get_segment(vcpu, &ss, VCPU_SREG_SS);
1897 return ((cs.selector & SELECTOR_RPL_MASK) ==
1898 (ss.selector & SELECTOR_RPL_MASK));
1902 * Check if guest state is valid. Returns true if valid, false if
1903 * not.
1904 * We assume that registers are always usable
1906 static bool guest_state_valid(struct kvm_vcpu *vcpu)
1908 /* real mode guest state checks */
1909 if (!(vcpu->arch.cr0 & X86_CR0_PE)) {
1910 if (!rmode_segment_valid(vcpu, VCPU_SREG_CS))
1911 return false;
1912 if (!rmode_segment_valid(vcpu, VCPU_SREG_SS))
1913 return false;
1914 if (!rmode_segment_valid(vcpu, VCPU_SREG_DS))
1915 return false;
1916 if (!rmode_segment_valid(vcpu, VCPU_SREG_ES))
1917 return false;
1918 if (!rmode_segment_valid(vcpu, VCPU_SREG_FS))
1919 return false;
1920 if (!rmode_segment_valid(vcpu, VCPU_SREG_GS))
1921 return false;
1922 } else {
1923 /* protected mode guest state checks */
1924 if (!cs_ss_rpl_check(vcpu))
1925 return false;
1926 if (!code_segment_valid(vcpu))
1927 return false;
1928 if (!stack_segment_valid(vcpu))
1929 return false;
1930 if (!data_segment_valid(vcpu, VCPU_SREG_DS))
1931 return false;
1932 if (!data_segment_valid(vcpu, VCPU_SREG_ES))
1933 return false;
1934 if (!data_segment_valid(vcpu, VCPU_SREG_FS))
1935 return false;
1936 if (!data_segment_valid(vcpu, VCPU_SREG_GS))
1937 return false;
1938 if (!tr_valid(vcpu))
1939 return false;
1940 if (!ldtr_valid(vcpu))
1941 return false;
1943 /* TODO:
1944 * - Add checks on RIP
1945 * - Add checks on RFLAGS
1948 return true;
1951 static int init_rmode_tss(struct kvm *kvm)
1953 gfn_t fn = rmode_tss_base(kvm) >> PAGE_SHIFT;
1954 u16 data = 0;
1955 int ret = 0;
1956 int r;
1958 r = kvm_clear_guest_page(kvm, fn, 0, PAGE_SIZE);
1959 if (r < 0)
1960 goto out;
1961 data = TSS_BASE_SIZE + TSS_REDIRECTION_SIZE;
1962 r = kvm_write_guest_page(kvm, fn++, &data,
1963 TSS_IOPB_BASE_OFFSET, sizeof(u16));
1964 if (r < 0)
1965 goto out;
1966 r = kvm_clear_guest_page(kvm, fn++, 0, PAGE_SIZE);
1967 if (r < 0)
1968 goto out;
1969 r = kvm_clear_guest_page(kvm, fn, 0, PAGE_SIZE);
1970 if (r < 0)
1971 goto out;
1972 data = ~0;
1973 r = kvm_write_guest_page(kvm, fn, &data,
1974 RMODE_TSS_SIZE - 2 * PAGE_SIZE - 1,
1975 sizeof(u8));
1976 if (r < 0)
1977 goto out;
1979 ret = 1;
1980 out:
1981 return ret;
1984 static int init_rmode_identity_map(struct kvm *kvm)
1986 int i, r, ret;
1987 pfn_t identity_map_pfn;
1988 u32 tmp;
1990 if (!vm_need_ept())
1991 return 1;
1992 if (unlikely(!kvm->arch.ept_identity_pagetable)) {
1993 printk(KERN_ERR "EPT: identity-mapping pagetable "
1994 "haven't been allocated!\n");
1995 return 0;
1997 if (likely(kvm->arch.ept_identity_pagetable_done))
1998 return 1;
1999 ret = 0;
2000 identity_map_pfn = VMX_EPT_IDENTITY_PAGETABLE_ADDR >> PAGE_SHIFT;
2001 r = kvm_clear_guest_page(kvm, identity_map_pfn, 0, PAGE_SIZE);
2002 if (r < 0)
2003 goto out;
2004 /* Set up identity-mapping pagetable for EPT in real mode */
2005 for (i = 0; i < PT32_ENT_PER_PAGE; i++) {
2006 tmp = (i << 22) + (_PAGE_PRESENT | _PAGE_RW | _PAGE_USER |
2007 _PAGE_ACCESSED | _PAGE_DIRTY | _PAGE_PSE);
2008 r = kvm_write_guest_page(kvm, identity_map_pfn,
2009 &tmp, i * sizeof(tmp), sizeof(tmp));
2010 if (r < 0)
2011 goto out;
2013 kvm->arch.ept_identity_pagetable_done = true;
2014 ret = 1;
2015 out:
2016 return ret;
2019 static void seg_setup(int seg)
2021 struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
2023 vmcs_write16(sf->selector, 0);
2024 vmcs_writel(sf->base, 0);
2025 vmcs_write32(sf->limit, 0xffff);
2026 vmcs_write32(sf->ar_bytes, 0xf3);
2029 static int alloc_apic_access_page(struct kvm *kvm)
2031 struct kvm_userspace_memory_region kvm_userspace_mem;
2032 int r = 0;
2034 down_write(&kvm->slots_lock);
2035 if (kvm->arch.apic_access_page)
2036 goto out;
2037 kvm_userspace_mem.slot = APIC_ACCESS_PAGE_PRIVATE_MEMSLOT;
2038 kvm_userspace_mem.flags = 0;
2039 kvm_userspace_mem.guest_phys_addr = 0xfee00000ULL;
2040 kvm_userspace_mem.memory_size = PAGE_SIZE;
2041 r = __kvm_set_memory_region(kvm, &kvm_userspace_mem, 0);
2042 if (r)
2043 goto out;
2045 kvm->arch.apic_access_page = gfn_to_page(kvm, 0xfee00);
2046 out:
2047 up_write(&kvm->slots_lock);
2048 return r;
2051 static int alloc_identity_pagetable(struct kvm *kvm)
2053 struct kvm_userspace_memory_region kvm_userspace_mem;
2054 int r = 0;
2056 down_write(&kvm->slots_lock);
2057 if (kvm->arch.ept_identity_pagetable)
2058 goto out;
2059 kvm_userspace_mem.slot = IDENTITY_PAGETABLE_PRIVATE_MEMSLOT;
2060 kvm_userspace_mem.flags = 0;
2061 kvm_userspace_mem.guest_phys_addr = VMX_EPT_IDENTITY_PAGETABLE_ADDR;
2062 kvm_userspace_mem.memory_size = PAGE_SIZE;
2063 r = __kvm_set_memory_region(kvm, &kvm_userspace_mem, 0);
2064 if (r)
2065 goto out;
2067 kvm->arch.ept_identity_pagetable = gfn_to_page(kvm,
2068 VMX_EPT_IDENTITY_PAGETABLE_ADDR >> PAGE_SHIFT);
2069 out:
2070 up_write(&kvm->slots_lock);
2071 return r;
2074 static void allocate_vpid(struct vcpu_vmx *vmx)
2076 int vpid;
2078 vmx->vpid = 0;
2079 if (!enable_vpid || !cpu_has_vmx_vpid())
2080 return;
2081 spin_lock(&vmx_vpid_lock);
2082 vpid = find_first_zero_bit(vmx_vpid_bitmap, VMX_NR_VPIDS);
2083 if (vpid < VMX_NR_VPIDS) {
2084 vmx->vpid = vpid;
2085 __set_bit(vpid, vmx_vpid_bitmap);
2087 spin_unlock(&vmx_vpid_lock);
2090 static void vmx_disable_intercept_for_msr(struct page *msr_bitmap, u32 msr)
2092 void *va;
2094 if (!cpu_has_vmx_msr_bitmap())
2095 return;
2098 * See Intel PRM Vol. 3, 20.6.9 (MSR-Bitmap Address). Early manuals
2099 * have the write-low and read-high bitmap offsets the wrong way round.
2100 * We can control MSRs 0x00000000-0x00001fff and 0xc0000000-0xc0001fff.
2102 va = kmap(msr_bitmap);
2103 if (msr <= 0x1fff) {
2104 __clear_bit(msr, va + 0x000); /* read-low */
2105 __clear_bit(msr, va + 0x800); /* write-low */
2106 } else if ((msr >= 0xc0000000) && (msr <= 0xc0001fff)) {
2107 msr &= 0x1fff;
2108 __clear_bit(msr, va + 0x400); /* read-high */
2109 __clear_bit(msr, va + 0xc00); /* write-high */
2111 kunmap(msr_bitmap);
2115 * Sets up the vmcs for emulated real mode.
2117 static int vmx_vcpu_setup(struct vcpu_vmx *vmx)
2119 u32 host_sysenter_cs, msr_low, msr_high;
2120 u32 junk;
2121 u64 host_pat, tsc_this, tsc_base;
2122 unsigned long a;
2123 struct descriptor_table dt;
2124 int i;
2125 unsigned long kvm_vmx_return;
2126 u32 exec_control;
2128 /* I/O */
2129 vmcs_write64(IO_BITMAP_A, page_to_phys(vmx_io_bitmap_a));
2130 vmcs_write64(IO_BITMAP_B, page_to_phys(vmx_io_bitmap_b));
2132 if (cpu_has_vmx_msr_bitmap())
2133 vmcs_write64(MSR_BITMAP, page_to_phys(vmx_msr_bitmap));
2135 vmcs_write64(VMCS_LINK_POINTER, -1ull); /* 22.3.1.5 */
2137 /* Control */
2138 vmcs_write32(PIN_BASED_VM_EXEC_CONTROL,
2139 vmcs_config.pin_based_exec_ctrl);
2141 exec_control = vmcs_config.cpu_based_exec_ctrl;
2142 if (!vm_need_tpr_shadow(vmx->vcpu.kvm)) {
2143 exec_control &= ~CPU_BASED_TPR_SHADOW;
2144 #ifdef CONFIG_X86_64
2145 exec_control |= CPU_BASED_CR8_STORE_EXITING |
2146 CPU_BASED_CR8_LOAD_EXITING;
2147 #endif
2149 if (!vm_need_ept())
2150 exec_control |= CPU_BASED_CR3_STORE_EXITING |
2151 CPU_BASED_CR3_LOAD_EXITING |
2152 CPU_BASED_INVLPG_EXITING;
2153 vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, exec_control);
2155 if (cpu_has_secondary_exec_ctrls()) {
2156 exec_control = vmcs_config.cpu_based_2nd_exec_ctrl;
2157 if (!vm_need_virtualize_apic_accesses(vmx->vcpu.kvm))
2158 exec_control &=
2159 ~SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
2160 if (vmx->vpid == 0)
2161 exec_control &= ~SECONDARY_EXEC_ENABLE_VPID;
2162 if (!vm_need_ept())
2163 exec_control &= ~SECONDARY_EXEC_ENABLE_EPT;
2164 vmcs_write32(SECONDARY_VM_EXEC_CONTROL, exec_control);
2167 vmcs_write32(PAGE_FAULT_ERROR_CODE_MASK, !!bypass_guest_pf);
2168 vmcs_write32(PAGE_FAULT_ERROR_CODE_MATCH, !!bypass_guest_pf);
2169 vmcs_write32(CR3_TARGET_COUNT, 0); /* 22.2.1 */
2171 vmcs_writel(HOST_CR0, read_cr0()); /* 22.2.3 */
2172 vmcs_writel(HOST_CR4, read_cr4()); /* 22.2.3, 22.2.5 */
2173 vmcs_writel(HOST_CR3, read_cr3()); /* 22.2.3 FIXME: shadow tables */
2175 vmcs_write16(HOST_CS_SELECTOR, __KERNEL_CS); /* 22.2.4 */
2176 vmcs_write16(HOST_DS_SELECTOR, __KERNEL_DS); /* 22.2.4 */
2177 vmcs_write16(HOST_ES_SELECTOR, __KERNEL_DS); /* 22.2.4 */
2178 vmcs_write16(HOST_FS_SELECTOR, kvm_read_fs()); /* 22.2.4 */
2179 vmcs_write16(HOST_GS_SELECTOR, kvm_read_gs()); /* 22.2.4 */
2180 vmcs_write16(HOST_SS_SELECTOR, __KERNEL_DS); /* 22.2.4 */
2181 #ifdef CONFIG_X86_64
2182 rdmsrl(MSR_FS_BASE, a);
2183 vmcs_writel(HOST_FS_BASE, a); /* 22.2.4 */
2184 rdmsrl(MSR_GS_BASE, a);
2185 vmcs_writel(HOST_GS_BASE, a); /* 22.2.4 */
2186 #else
2187 vmcs_writel(HOST_FS_BASE, 0); /* 22.2.4 */
2188 vmcs_writel(HOST_GS_BASE, 0); /* 22.2.4 */
2189 #endif
2191 vmcs_write16(HOST_TR_SELECTOR, GDT_ENTRY_TSS*8); /* 22.2.4 */
2193 kvm_get_idt(&dt);
2194 vmcs_writel(HOST_IDTR_BASE, dt.base); /* 22.2.4 */
2196 asm("mov $.Lkvm_vmx_return, %0" : "=r"(kvm_vmx_return));
2197 vmcs_writel(HOST_RIP, kvm_vmx_return); /* 22.2.5 */
2198 vmcs_write32(VM_EXIT_MSR_STORE_COUNT, 0);
2199 vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, 0);
2200 vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, 0);
2202 rdmsr(MSR_IA32_SYSENTER_CS, host_sysenter_cs, junk);
2203 vmcs_write32(HOST_IA32_SYSENTER_CS, host_sysenter_cs);
2204 rdmsrl(MSR_IA32_SYSENTER_ESP, a);
2205 vmcs_writel(HOST_IA32_SYSENTER_ESP, a); /* 22.2.3 */
2206 rdmsrl(MSR_IA32_SYSENTER_EIP, a);
2207 vmcs_writel(HOST_IA32_SYSENTER_EIP, a); /* 22.2.3 */
2209 if (vmcs_config.vmexit_ctrl & VM_EXIT_LOAD_IA32_PAT) {
2210 rdmsr(MSR_IA32_CR_PAT, msr_low, msr_high);
2211 host_pat = msr_low | ((u64) msr_high << 32);
2212 vmcs_write64(HOST_IA32_PAT, host_pat);
2214 if (vmcs_config.vmentry_ctrl & VM_ENTRY_LOAD_IA32_PAT) {
2215 rdmsr(MSR_IA32_CR_PAT, msr_low, msr_high);
2216 host_pat = msr_low | ((u64) msr_high << 32);
2217 /* Write the default value follow host pat */
2218 vmcs_write64(GUEST_IA32_PAT, host_pat);
2219 /* Keep arch.pat sync with GUEST_IA32_PAT */
2220 vmx->vcpu.arch.pat = host_pat;
2223 for (i = 0; i < NR_VMX_MSR; ++i) {
2224 u32 index = vmx_msr_index[i];
2225 u32 data_low, data_high;
2226 u64 data;
2227 int j = vmx->nmsrs;
2229 if (rdmsr_safe(index, &data_low, &data_high) < 0)
2230 continue;
2231 if (wrmsr_safe(index, data_low, data_high) < 0)
2232 continue;
2233 data = data_low | ((u64)data_high << 32);
2234 vmx->host_msrs[j].index = index;
2235 vmx->host_msrs[j].reserved = 0;
2236 vmx->host_msrs[j].data = data;
2237 vmx->guest_msrs[j] = vmx->host_msrs[j];
2238 ++vmx->nmsrs;
2241 vmcs_write32(VM_EXIT_CONTROLS, vmcs_config.vmexit_ctrl);
2243 /* 22.2.1, 20.8.1 */
2244 vmcs_write32(VM_ENTRY_CONTROLS, vmcs_config.vmentry_ctrl);
2246 vmcs_writel(CR0_GUEST_HOST_MASK, ~0UL);
2247 vmcs_writel(CR4_GUEST_HOST_MASK, KVM_GUEST_CR4_MASK);
2249 tsc_base = vmx->vcpu.kvm->arch.vm_init_tsc;
2250 rdtscll(tsc_this);
2251 if (tsc_this < vmx->vcpu.kvm->arch.vm_init_tsc)
2252 tsc_base = tsc_this;
2254 guest_write_tsc(0, tsc_base);
2256 return 0;
2259 static int init_rmode(struct kvm *kvm)
2261 if (!init_rmode_tss(kvm))
2262 return 0;
2263 if (!init_rmode_identity_map(kvm))
2264 return 0;
2265 return 1;
2268 static int vmx_vcpu_reset(struct kvm_vcpu *vcpu)
2270 struct vcpu_vmx *vmx = to_vmx(vcpu);
2271 u64 msr;
2272 int ret;
2274 vcpu->arch.regs_avail = ~((1 << VCPU_REGS_RIP) | (1 << VCPU_REGS_RSP));
2275 down_read(&vcpu->kvm->slots_lock);
2276 if (!init_rmode(vmx->vcpu.kvm)) {
2277 ret = -ENOMEM;
2278 goto out;
2281 vmx->vcpu.arch.rmode.active = 0;
2283 vmx->soft_vnmi_blocked = 0;
2285 vmx->vcpu.arch.regs[VCPU_REGS_RDX] = get_rdx_init_val();
2286 kvm_set_cr8(&vmx->vcpu, 0);
2287 msr = 0xfee00000 | MSR_IA32_APICBASE_ENABLE;
2288 if (vmx->vcpu.vcpu_id == 0)
2289 msr |= MSR_IA32_APICBASE_BSP;
2290 kvm_set_apic_base(&vmx->vcpu, msr);
2292 fx_init(&vmx->vcpu);
2294 seg_setup(VCPU_SREG_CS);
2296 * GUEST_CS_BASE should really be 0xffff0000, but VT vm86 mode
2297 * insists on having GUEST_CS_BASE == GUEST_CS_SELECTOR << 4. Sigh.
2299 if (vmx->vcpu.vcpu_id == 0) {
2300 vmcs_write16(GUEST_CS_SELECTOR, 0xf000);
2301 vmcs_writel(GUEST_CS_BASE, 0x000f0000);
2302 } else {
2303 vmcs_write16(GUEST_CS_SELECTOR, vmx->vcpu.arch.sipi_vector << 8);
2304 vmcs_writel(GUEST_CS_BASE, vmx->vcpu.arch.sipi_vector << 12);
2307 seg_setup(VCPU_SREG_DS);
2308 seg_setup(VCPU_SREG_ES);
2309 seg_setup(VCPU_SREG_FS);
2310 seg_setup(VCPU_SREG_GS);
2311 seg_setup(VCPU_SREG_SS);
2313 vmcs_write16(GUEST_TR_SELECTOR, 0);
2314 vmcs_writel(GUEST_TR_BASE, 0);
2315 vmcs_write32(GUEST_TR_LIMIT, 0xffff);
2316 vmcs_write32(GUEST_TR_AR_BYTES, 0x008b);
2318 vmcs_write16(GUEST_LDTR_SELECTOR, 0);
2319 vmcs_writel(GUEST_LDTR_BASE, 0);
2320 vmcs_write32(GUEST_LDTR_LIMIT, 0xffff);
2321 vmcs_write32(GUEST_LDTR_AR_BYTES, 0x00082);
2323 vmcs_write32(GUEST_SYSENTER_CS, 0);
2324 vmcs_writel(GUEST_SYSENTER_ESP, 0);
2325 vmcs_writel(GUEST_SYSENTER_EIP, 0);
2327 vmcs_writel(GUEST_RFLAGS, 0x02);
2328 if (vmx->vcpu.vcpu_id == 0)
2329 kvm_rip_write(vcpu, 0xfff0);
2330 else
2331 kvm_rip_write(vcpu, 0);
2332 kvm_register_write(vcpu, VCPU_REGS_RSP, 0);
2334 vmcs_writel(GUEST_DR7, 0x400);
2336 vmcs_writel(GUEST_GDTR_BASE, 0);
2337 vmcs_write32(GUEST_GDTR_LIMIT, 0xffff);
2339 vmcs_writel(GUEST_IDTR_BASE, 0);
2340 vmcs_write32(GUEST_IDTR_LIMIT, 0xffff);
2342 vmcs_write32(GUEST_ACTIVITY_STATE, 0);
2343 vmcs_write32(GUEST_INTERRUPTIBILITY_INFO, 0);
2344 vmcs_write32(GUEST_PENDING_DBG_EXCEPTIONS, 0);
2346 /* Special registers */
2347 vmcs_write64(GUEST_IA32_DEBUGCTL, 0);
2349 setup_msrs(vmx);
2351 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, 0); /* 22.2.1 */
2353 if (cpu_has_vmx_tpr_shadow()) {
2354 vmcs_write64(VIRTUAL_APIC_PAGE_ADDR, 0);
2355 if (vm_need_tpr_shadow(vmx->vcpu.kvm))
2356 vmcs_write64(VIRTUAL_APIC_PAGE_ADDR,
2357 page_to_phys(vmx->vcpu.arch.apic->regs_page));
2358 vmcs_write32(TPR_THRESHOLD, 0);
2361 if (vm_need_virtualize_apic_accesses(vmx->vcpu.kvm))
2362 vmcs_write64(APIC_ACCESS_ADDR,
2363 page_to_phys(vmx->vcpu.kvm->arch.apic_access_page));
2365 if (vmx->vpid != 0)
2366 vmcs_write16(VIRTUAL_PROCESSOR_ID, vmx->vpid);
2368 vmx->vcpu.arch.cr0 = 0x60000010;
2369 vmx_set_cr0(&vmx->vcpu, vmx->vcpu.arch.cr0); /* enter rmode */
2370 vmx_set_cr4(&vmx->vcpu, 0);
2371 vmx_set_efer(&vmx->vcpu, 0);
2372 vmx_fpu_activate(&vmx->vcpu);
2373 update_exception_bitmap(&vmx->vcpu);
2375 vpid_sync_vcpu_all(vmx);
2377 ret = 0;
2379 /* HACK: Don't enable emulation on guest boot/reset */
2380 vmx->emulation_required = 0;
2382 out:
2383 up_read(&vcpu->kvm->slots_lock);
2384 return ret;
2387 static void enable_irq_window(struct kvm_vcpu *vcpu)
2389 u32 cpu_based_vm_exec_control;
2391 cpu_based_vm_exec_control = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
2392 cpu_based_vm_exec_control |= CPU_BASED_VIRTUAL_INTR_PENDING;
2393 vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control);
2396 static void enable_nmi_window(struct kvm_vcpu *vcpu)
2398 u32 cpu_based_vm_exec_control;
2400 if (!cpu_has_virtual_nmis()) {
2401 enable_irq_window(vcpu);
2402 return;
2405 cpu_based_vm_exec_control = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
2406 cpu_based_vm_exec_control |= CPU_BASED_VIRTUAL_NMI_PENDING;
2407 vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control);
2410 static void vmx_inject_irq(struct kvm_vcpu *vcpu, int irq)
2412 struct vcpu_vmx *vmx = to_vmx(vcpu);
2414 KVMTRACE_1D(INJ_VIRQ, vcpu, (u32)irq, handler);
2416 ++vcpu->stat.irq_injections;
2417 if (vcpu->arch.rmode.active) {
2418 vmx->rmode.irq.pending = true;
2419 vmx->rmode.irq.vector = irq;
2420 vmx->rmode.irq.rip = kvm_rip_read(vcpu);
2421 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
2422 irq | INTR_TYPE_SOFT_INTR | INTR_INFO_VALID_MASK);
2423 vmcs_write32(VM_ENTRY_INSTRUCTION_LEN, 1);
2424 kvm_rip_write(vcpu, vmx->rmode.irq.rip - 1);
2425 return;
2427 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
2428 irq | INTR_TYPE_EXT_INTR | INTR_INFO_VALID_MASK);
2431 static void vmx_inject_nmi(struct kvm_vcpu *vcpu)
2433 struct vcpu_vmx *vmx = to_vmx(vcpu);
2435 if (!cpu_has_virtual_nmis()) {
2437 * Tracking the NMI-blocked state in software is built upon
2438 * finding the next open IRQ window. This, in turn, depends on
2439 * well-behaving guests: They have to keep IRQs disabled at
2440 * least as long as the NMI handler runs. Otherwise we may
2441 * cause NMI nesting, maybe breaking the guest. But as this is
2442 * highly unlikely, we can live with the residual risk.
2444 vmx->soft_vnmi_blocked = 1;
2445 vmx->vnmi_blocked_time = 0;
2448 ++vcpu->stat.nmi_injections;
2449 if (vcpu->arch.rmode.active) {
2450 vmx->rmode.irq.pending = true;
2451 vmx->rmode.irq.vector = NMI_VECTOR;
2452 vmx->rmode.irq.rip = kvm_rip_read(vcpu);
2453 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
2454 NMI_VECTOR | INTR_TYPE_SOFT_INTR |
2455 INTR_INFO_VALID_MASK);
2456 vmcs_write32(VM_ENTRY_INSTRUCTION_LEN, 1);
2457 kvm_rip_write(vcpu, vmx->rmode.irq.rip - 1);
2458 return;
2460 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
2461 INTR_TYPE_NMI_INTR | INTR_INFO_VALID_MASK | NMI_VECTOR);
2464 static void vmx_update_window_states(struct kvm_vcpu *vcpu)
2466 u32 guest_intr = vmcs_read32(GUEST_INTERRUPTIBILITY_INFO);
2468 vcpu->arch.nmi_window_open =
2469 !(guest_intr & (GUEST_INTR_STATE_STI |
2470 GUEST_INTR_STATE_MOV_SS |
2471 GUEST_INTR_STATE_NMI));
2472 if (!cpu_has_virtual_nmis() && to_vmx(vcpu)->soft_vnmi_blocked)
2473 vcpu->arch.nmi_window_open = 0;
2475 vcpu->arch.interrupt_window_open =
2476 ((vmcs_readl(GUEST_RFLAGS) & X86_EFLAGS_IF) &&
2477 !(guest_intr & (GUEST_INTR_STATE_STI |
2478 GUEST_INTR_STATE_MOV_SS)));
2481 static void kvm_do_inject_irq(struct kvm_vcpu *vcpu)
2483 int word_index = __ffs(vcpu->arch.irq_summary);
2484 int bit_index = __ffs(vcpu->arch.irq_pending[word_index]);
2485 int irq = word_index * BITS_PER_LONG + bit_index;
2487 clear_bit(bit_index, &vcpu->arch.irq_pending[word_index]);
2488 if (!vcpu->arch.irq_pending[word_index])
2489 clear_bit(word_index, &vcpu->arch.irq_summary);
2490 kvm_queue_interrupt(vcpu, irq);
2493 static void do_interrupt_requests(struct kvm_vcpu *vcpu,
2494 struct kvm_run *kvm_run)
2496 vmx_update_window_states(vcpu);
2498 if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
2499 vmcs_clear_bits(GUEST_INTERRUPTIBILITY_INFO,
2500 GUEST_INTR_STATE_STI |
2501 GUEST_INTR_STATE_MOV_SS);
2503 if (vcpu->arch.nmi_pending && !vcpu->arch.nmi_injected) {
2504 if (vcpu->arch.interrupt.pending) {
2505 enable_nmi_window(vcpu);
2506 } else if (vcpu->arch.nmi_window_open) {
2507 vcpu->arch.nmi_pending = false;
2508 vcpu->arch.nmi_injected = true;
2509 } else {
2510 enable_nmi_window(vcpu);
2511 return;
2514 if (vcpu->arch.nmi_injected) {
2515 vmx_inject_nmi(vcpu);
2516 if (vcpu->arch.nmi_pending)
2517 enable_nmi_window(vcpu);
2518 else if (vcpu->arch.irq_summary
2519 || kvm_run->request_interrupt_window)
2520 enable_irq_window(vcpu);
2521 return;
2524 if (vcpu->arch.interrupt_window_open) {
2525 if (vcpu->arch.irq_summary && !vcpu->arch.interrupt.pending)
2526 kvm_do_inject_irq(vcpu);
2528 if (vcpu->arch.interrupt.pending)
2529 vmx_inject_irq(vcpu, vcpu->arch.interrupt.nr);
2531 if (!vcpu->arch.interrupt_window_open &&
2532 (vcpu->arch.irq_summary || kvm_run->request_interrupt_window))
2533 enable_irq_window(vcpu);
2536 static int vmx_set_tss_addr(struct kvm *kvm, unsigned int addr)
2538 int ret;
2539 struct kvm_userspace_memory_region tss_mem = {
2540 .slot = TSS_PRIVATE_MEMSLOT,
2541 .guest_phys_addr = addr,
2542 .memory_size = PAGE_SIZE * 3,
2543 .flags = 0,
2546 ret = kvm_set_memory_region(kvm, &tss_mem, 0);
2547 if (ret)
2548 return ret;
2549 kvm->arch.tss_addr = addr;
2550 return 0;
2553 static int handle_rmode_exception(struct kvm_vcpu *vcpu,
2554 int vec, u32 err_code)
2557 * Instruction with address size override prefix opcode 0x67
2558 * Cause the #SS fault with 0 error code in VM86 mode.
2560 if (((vec == GP_VECTOR) || (vec == SS_VECTOR)) && err_code == 0)
2561 if (emulate_instruction(vcpu, NULL, 0, 0, 0) == EMULATE_DONE)
2562 return 1;
2564 * Forward all other exceptions that are valid in real mode.
2565 * FIXME: Breaks guest debugging in real mode, needs to be fixed with
2566 * the required debugging infrastructure rework.
2568 switch (vec) {
2569 case DB_VECTOR:
2570 if (vcpu->guest_debug &
2571 (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP))
2572 return 0;
2573 kvm_queue_exception(vcpu, vec);
2574 return 1;
2575 case BP_VECTOR:
2576 if (vcpu->guest_debug & KVM_GUESTDBG_USE_SW_BP)
2577 return 0;
2578 /* fall through */
2579 case DE_VECTOR:
2580 case OF_VECTOR:
2581 case BR_VECTOR:
2582 case UD_VECTOR:
2583 case DF_VECTOR:
2584 case SS_VECTOR:
2585 case GP_VECTOR:
2586 case MF_VECTOR:
2587 kvm_queue_exception(vcpu, vec);
2588 return 1;
2590 return 0;
2593 static int handle_exception(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
2595 struct vcpu_vmx *vmx = to_vmx(vcpu);
2596 u32 intr_info, ex_no, error_code;
2597 unsigned long cr2, rip, dr6;
2598 u32 vect_info;
2599 enum emulation_result er;
2601 vect_info = vmx->idt_vectoring_info;
2602 intr_info = vmcs_read32(VM_EXIT_INTR_INFO);
2604 if ((vect_info & VECTORING_INFO_VALID_MASK) &&
2605 !is_page_fault(intr_info))
2606 printk(KERN_ERR "%s: unexpected, vectoring info 0x%x "
2607 "intr info 0x%x\n", __func__, vect_info, intr_info);
2609 if (!irqchip_in_kernel(vcpu->kvm) && is_external_interrupt(vect_info)) {
2610 int irq = vect_info & VECTORING_INFO_VECTOR_MASK;
2611 set_bit(irq, vcpu->arch.irq_pending);
2612 set_bit(irq / BITS_PER_LONG, &vcpu->arch.irq_summary);
2615 if ((intr_info & INTR_INFO_INTR_TYPE_MASK) == INTR_TYPE_NMI_INTR)
2616 return 1; /* already handled by vmx_vcpu_run() */
2618 if (is_no_device(intr_info)) {
2619 vmx_fpu_activate(vcpu);
2620 return 1;
2623 if (is_invalid_opcode(intr_info)) {
2624 er = emulate_instruction(vcpu, kvm_run, 0, 0, EMULTYPE_TRAP_UD);
2625 if (er != EMULATE_DONE)
2626 kvm_queue_exception(vcpu, UD_VECTOR);
2627 return 1;
2630 error_code = 0;
2631 rip = kvm_rip_read(vcpu);
2632 if (intr_info & INTR_INFO_DELIVER_CODE_MASK)
2633 error_code = vmcs_read32(VM_EXIT_INTR_ERROR_CODE);
2634 if (is_page_fault(intr_info)) {
2635 /* EPT won't cause page fault directly */
2636 if (vm_need_ept())
2637 BUG();
2638 cr2 = vmcs_readl(EXIT_QUALIFICATION);
2639 KVMTRACE_3D(PAGE_FAULT, vcpu, error_code, (u32)cr2,
2640 (u32)((u64)cr2 >> 32), handler);
2641 if (vcpu->arch.interrupt.pending || vcpu->arch.exception.pending)
2642 kvm_mmu_unprotect_page_virt(vcpu, cr2);
2643 return kvm_mmu_page_fault(vcpu, cr2, error_code);
2646 if (vcpu->arch.rmode.active &&
2647 handle_rmode_exception(vcpu, intr_info & INTR_INFO_VECTOR_MASK,
2648 error_code)) {
2649 if (vcpu->arch.halt_request) {
2650 vcpu->arch.halt_request = 0;
2651 return kvm_emulate_halt(vcpu);
2653 return 1;
2656 ex_no = intr_info & INTR_INFO_VECTOR_MASK;
2657 switch (ex_no) {
2658 case DB_VECTOR:
2659 dr6 = vmcs_readl(EXIT_QUALIFICATION);
2660 if (!(vcpu->guest_debug &
2661 (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP))) {
2662 vcpu->arch.dr6 = dr6 | DR6_FIXED_1;
2663 kvm_queue_exception(vcpu, DB_VECTOR);
2664 return 1;
2666 kvm_run->debug.arch.dr6 = dr6 | DR6_FIXED_1;
2667 kvm_run->debug.arch.dr7 = vmcs_readl(GUEST_DR7);
2668 /* fall through */
2669 case BP_VECTOR:
2670 kvm_run->exit_reason = KVM_EXIT_DEBUG;
2671 kvm_run->debug.arch.pc = vmcs_readl(GUEST_CS_BASE) + rip;
2672 kvm_run->debug.arch.exception = ex_no;
2673 break;
2674 default:
2675 kvm_run->exit_reason = KVM_EXIT_EXCEPTION;
2676 kvm_run->ex.exception = ex_no;
2677 kvm_run->ex.error_code = error_code;
2678 break;
2680 return 0;
2683 static int handle_external_interrupt(struct kvm_vcpu *vcpu,
2684 struct kvm_run *kvm_run)
2686 ++vcpu->stat.irq_exits;
2687 KVMTRACE_1D(INTR, vcpu, vmcs_read32(VM_EXIT_INTR_INFO), handler);
2688 return 1;
2691 static int handle_triple_fault(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
2693 kvm_run->exit_reason = KVM_EXIT_SHUTDOWN;
2694 return 0;
2697 static int handle_io(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
2699 unsigned long exit_qualification;
2700 int size, down, in, string, rep;
2701 unsigned port;
2703 ++vcpu->stat.io_exits;
2704 exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
2705 string = (exit_qualification & 16) != 0;
2707 if (string) {
2708 if (emulate_instruction(vcpu,
2709 kvm_run, 0, 0, 0) == EMULATE_DO_MMIO)
2710 return 0;
2711 return 1;
2714 size = (exit_qualification & 7) + 1;
2715 in = (exit_qualification & 8) != 0;
2716 down = (vmcs_readl(GUEST_RFLAGS) & X86_EFLAGS_DF) != 0;
2717 rep = (exit_qualification & 32) != 0;
2718 port = exit_qualification >> 16;
2720 skip_emulated_instruction(vcpu);
2721 return kvm_emulate_pio(vcpu, kvm_run, in, size, port);
2724 static void
2725 vmx_patch_hypercall(struct kvm_vcpu *vcpu, unsigned char *hypercall)
2728 * Patch in the VMCALL instruction:
2730 hypercall[0] = 0x0f;
2731 hypercall[1] = 0x01;
2732 hypercall[2] = 0xc1;
2735 static int handle_cr(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
2737 unsigned long exit_qualification;
2738 int cr;
2739 int reg;
2741 exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
2742 cr = exit_qualification & 15;
2743 reg = (exit_qualification >> 8) & 15;
2744 switch ((exit_qualification >> 4) & 3) {
2745 case 0: /* mov to cr */
2746 KVMTRACE_3D(CR_WRITE, vcpu, (u32)cr,
2747 (u32)kvm_register_read(vcpu, reg),
2748 (u32)((u64)kvm_register_read(vcpu, reg) >> 32),
2749 handler);
2750 switch (cr) {
2751 case 0:
2752 kvm_set_cr0(vcpu, kvm_register_read(vcpu, reg));
2753 skip_emulated_instruction(vcpu);
2754 return 1;
2755 case 3:
2756 kvm_set_cr3(vcpu, kvm_register_read(vcpu, reg));
2757 skip_emulated_instruction(vcpu);
2758 return 1;
2759 case 4:
2760 kvm_set_cr4(vcpu, kvm_register_read(vcpu, reg));
2761 skip_emulated_instruction(vcpu);
2762 return 1;
2763 case 8:
2764 kvm_set_cr8(vcpu, kvm_register_read(vcpu, reg));
2765 skip_emulated_instruction(vcpu);
2766 if (irqchip_in_kernel(vcpu->kvm))
2767 return 1;
2768 kvm_run->exit_reason = KVM_EXIT_SET_TPR;
2769 return 0;
2771 break;
2772 case 2: /* clts */
2773 vmx_fpu_deactivate(vcpu);
2774 vcpu->arch.cr0 &= ~X86_CR0_TS;
2775 vmcs_writel(CR0_READ_SHADOW, vcpu->arch.cr0);
2776 vmx_fpu_activate(vcpu);
2777 KVMTRACE_0D(CLTS, vcpu, handler);
2778 skip_emulated_instruction(vcpu);
2779 return 1;
2780 case 1: /*mov from cr*/
2781 switch (cr) {
2782 case 3:
2783 kvm_register_write(vcpu, reg, vcpu->arch.cr3);
2784 KVMTRACE_3D(CR_READ, vcpu, (u32)cr,
2785 (u32)kvm_register_read(vcpu, reg),
2786 (u32)((u64)kvm_register_read(vcpu, reg) >> 32),
2787 handler);
2788 skip_emulated_instruction(vcpu);
2789 return 1;
2790 case 8:
2791 kvm_register_write(vcpu, reg, kvm_get_cr8(vcpu));
2792 KVMTRACE_2D(CR_READ, vcpu, (u32)cr,
2793 (u32)kvm_register_read(vcpu, reg), handler);
2794 skip_emulated_instruction(vcpu);
2795 return 1;
2797 break;
2798 case 3: /* lmsw */
2799 kvm_lmsw(vcpu, (exit_qualification >> LMSW_SOURCE_DATA_SHIFT) & 0x0f);
2801 skip_emulated_instruction(vcpu);
2802 return 1;
2803 default:
2804 break;
2806 kvm_run->exit_reason = 0;
2807 pr_unimpl(vcpu, "unhandled control register: op %d cr %d\n",
2808 (int)(exit_qualification >> 4) & 3, cr);
2809 return 0;
2812 static int handle_dr(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
2814 unsigned long exit_qualification;
2815 unsigned long val;
2816 int dr, reg;
2818 dr = vmcs_readl(GUEST_DR7);
2819 if (dr & DR7_GD) {
2821 * As the vm-exit takes precedence over the debug trap, we
2822 * need to emulate the latter, either for the host or the
2823 * guest debugging itself.
2825 if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) {
2826 kvm_run->debug.arch.dr6 = vcpu->arch.dr6;
2827 kvm_run->debug.arch.dr7 = dr;
2828 kvm_run->debug.arch.pc =
2829 vmcs_readl(GUEST_CS_BASE) +
2830 vmcs_readl(GUEST_RIP);
2831 kvm_run->debug.arch.exception = DB_VECTOR;
2832 kvm_run->exit_reason = KVM_EXIT_DEBUG;
2833 return 0;
2834 } else {
2835 vcpu->arch.dr7 &= ~DR7_GD;
2836 vcpu->arch.dr6 |= DR6_BD;
2837 vmcs_writel(GUEST_DR7, vcpu->arch.dr7);
2838 kvm_queue_exception(vcpu, DB_VECTOR);
2839 return 1;
2843 exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
2844 dr = exit_qualification & DEBUG_REG_ACCESS_NUM;
2845 reg = DEBUG_REG_ACCESS_REG(exit_qualification);
2846 if (exit_qualification & TYPE_MOV_FROM_DR) {
2847 switch (dr) {
2848 case 0 ... 3:
2849 val = vcpu->arch.db[dr];
2850 break;
2851 case 6:
2852 val = vcpu->arch.dr6;
2853 break;
2854 case 7:
2855 val = vcpu->arch.dr7;
2856 break;
2857 default:
2858 val = 0;
2860 kvm_register_write(vcpu, reg, val);
2861 KVMTRACE_2D(DR_READ, vcpu, (u32)dr, (u32)val, handler);
2862 } else {
2863 val = vcpu->arch.regs[reg];
2864 switch (dr) {
2865 case 0 ... 3:
2866 vcpu->arch.db[dr] = val;
2867 if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP))
2868 vcpu->arch.eff_db[dr] = val;
2869 break;
2870 case 4 ... 5:
2871 if (vcpu->arch.cr4 & X86_CR4_DE)
2872 kvm_queue_exception(vcpu, UD_VECTOR);
2873 break;
2874 case 6:
2875 if (val & 0xffffffff00000000ULL) {
2876 kvm_queue_exception(vcpu, GP_VECTOR);
2877 break;
2879 vcpu->arch.dr6 = (val & DR6_VOLATILE) | DR6_FIXED_1;
2880 break;
2881 case 7:
2882 if (val & 0xffffffff00000000ULL) {
2883 kvm_queue_exception(vcpu, GP_VECTOR);
2884 break;
2886 vcpu->arch.dr7 = (val & DR7_VOLATILE) | DR7_FIXED_1;
2887 if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)) {
2888 vmcs_writel(GUEST_DR7, vcpu->arch.dr7);
2889 vcpu->arch.switch_db_regs =
2890 (val & DR7_BP_EN_MASK);
2892 break;
2894 KVMTRACE_2D(DR_WRITE, vcpu, (u32)dr, (u32)val, handler);
2896 skip_emulated_instruction(vcpu);
2897 return 1;
2900 static int handle_cpuid(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
2902 kvm_emulate_cpuid(vcpu);
2903 return 1;
2906 static int handle_rdmsr(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
2908 u32 ecx = vcpu->arch.regs[VCPU_REGS_RCX];
2909 u64 data;
2911 if (vmx_get_msr(vcpu, ecx, &data)) {
2912 kvm_inject_gp(vcpu, 0);
2913 return 1;
2916 KVMTRACE_3D(MSR_READ, vcpu, ecx, (u32)data, (u32)(data >> 32),
2917 handler);
2919 /* FIXME: handling of bits 32:63 of rax, rdx */
2920 vcpu->arch.regs[VCPU_REGS_RAX] = data & -1u;
2921 vcpu->arch.regs[VCPU_REGS_RDX] = (data >> 32) & -1u;
2922 skip_emulated_instruction(vcpu);
2923 return 1;
2926 static int handle_wrmsr(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
2928 u32 ecx = vcpu->arch.regs[VCPU_REGS_RCX];
2929 u64 data = (vcpu->arch.regs[VCPU_REGS_RAX] & -1u)
2930 | ((u64)(vcpu->arch.regs[VCPU_REGS_RDX] & -1u) << 32);
2932 KVMTRACE_3D(MSR_WRITE, vcpu, ecx, (u32)data, (u32)(data >> 32),
2933 handler);
2935 if (vmx_set_msr(vcpu, ecx, data) != 0) {
2936 kvm_inject_gp(vcpu, 0);
2937 return 1;
2940 skip_emulated_instruction(vcpu);
2941 return 1;
2944 static int handle_tpr_below_threshold(struct kvm_vcpu *vcpu,
2945 struct kvm_run *kvm_run)
2947 return 1;
2950 static int handle_interrupt_window(struct kvm_vcpu *vcpu,
2951 struct kvm_run *kvm_run)
2953 u32 cpu_based_vm_exec_control;
2955 /* clear pending irq */
2956 cpu_based_vm_exec_control = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
2957 cpu_based_vm_exec_control &= ~CPU_BASED_VIRTUAL_INTR_PENDING;
2958 vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control);
2960 KVMTRACE_0D(PEND_INTR, vcpu, handler);
2961 ++vcpu->stat.irq_window_exits;
2964 * If the user space waits to inject interrupts, exit as soon as
2965 * possible
2967 if (kvm_run->request_interrupt_window &&
2968 !vcpu->arch.irq_summary) {
2969 kvm_run->exit_reason = KVM_EXIT_IRQ_WINDOW_OPEN;
2970 return 0;
2972 return 1;
2975 static int handle_halt(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
2977 skip_emulated_instruction(vcpu);
2978 return kvm_emulate_halt(vcpu);
2981 static int handle_vmcall(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
2983 skip_emulated_instruction(vcpu);
2984 kvm_emulate_hypercall(vcpu);
2985 return 1;
2988 static int handle_invlpg(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
2990 u64 exit_qualification = vmcs_read64(EXIT_QUALIFICATION);
2992 kvm_mmu_invlpg(vcpu, exit_qualification);
2993 skip_emulated_instruction(vcpu);
2994 return 1;
2997 static int handle_wbinvd(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
2999 skip_emulated_instruction(vcpu);
3000 /* TODO: Add support for VT-d/pass-through device */
3001 return 1;
3004 static int handle_apic_access(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
3006 u64 exit_qualification;
3007 enum emulation_result er;
3008 unsigned long offset;
3010 exit_qualification = vmcs_read64(EXIT_QUALIFICATION);
3011 offset = exit_qualification & 0xffful;
3013 er = emulate_instruction(vcpu, kvm_run, 0, 0, 0);
3015 if (er != EMULATE_DONE) {
3016 printk(KERN_ERR
3017 "Fail to handle apic access vmexit! Offset is 0x%lx\n",
3018 offset);
3019 return -ENOTSUPP;
3021 return 1;
3024 static int handle_task_switch(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
3026 struct vcpu_vmx *vmx = to_vmx(vcpu);
3027 unsigned long exit_qualification;
3028 u16 tss_selector;
3029 int reason;
3031 exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
3033 reason = (u32)exit_qualification >> 30;
3034 if (reason == TASK_SWITCH_GATE && vmx->vcpu.arch.nmi_injected &&
3035 (vmx->idt_vectoring_info & VECTORING_INFO_VALID_MASK) &&
3036 (vmx->idt_vectoring_info & VECTORING_INFO_TYPE_MASK)
3037 == INTR_TYPE_NMI_INTR) {
3038 vcpu->arch.nmi_injected = false;
3039 if (cpu_has_virtual_nmis())
3040 vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO,
3041 GUEST_INTR_STATE_NMI);
3043 tss_selector = exit_qualification;
3045 if (!kvm_task_switch(vcpu, tss_selector, reason))
3046 return 0;
3048 /* clear all local breakpoint enable flags */
3049 vmcs_writel(GUEST_DR7, vmcs_readl(GUEST_DR7) & ~55);
3052 * TODO: What about debug traps on tss switch?
3053 * Are we supposed to inject them and update dr6?
3056 return 1;
3059 static int handle_ept_violation(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
3061 u64 exit_qualification;
3062 enum emulation_result er;
3063 gpa_t gpa;
3064 unsigned long hva;
3065 int gla_validity;
3066 int r;
3068 exit_qualification = vmcs_read64(EXIT_QUALIFICATION);
3070 if (exit_qualification & (1 << 6)) {
3071 printk(KERN_ERR "EPT: GPA exceeds GAW!\n");
3072 return -ENOTSUPP;
3075 gla_validity = (exit_qualification >> 7) & 0x3;
3076 if (gla_validity != 0x3 && gla_validity != 0x1 && gla_validity != 0) {
3077 printk(KERN_ERR "EPT: Handling EPT violation failed!\n");
3078 printk(KERN_ERR "EPT: GPA: 0x%lx, GVA: 0x%lx\n",
3079 (long unsigned int)vmcs_read64(GUEST_PHYSICAL_ADDRESS),
3080 (long unsigned int)vmcs_read64(GUEST_LINEAR_ADDRESS));
3081 printk(KERN_ERR "EPT: Exit qualification is 0x%lx\n",
3082 (long unsigned int)exit_qualification);
3083 kvm_run->exit_reason = KVM_EXIT_UNKNOWN;
3084 kvm_run->hw.hardware_exit_reason = 0;
3085 return -ENOTSUPP;
3088 gpa = vmcs_read64(GUEST_PHYSICAL_ADDRESS);
3089 hva = gfn_to_hva(vcpu->kvm, gpa >> PAGE_SHIFT);
3090 if (!kvm_is_error_hva(hva)) {
3091 r = kvm_mmu_page_fault(vcpu, gpa & PAGE_MASK, 0);
3092 if (r < 0) {
3093 printk(KERN_ERR "EPT: Not enough memory!\n");
3094 return -ENOMEM;
3096 return 1;
3097 } else {
3098 /* must be MMIO */
3099 er = emulate_instruction(vcpu, kvm_run, 0, 0, 0);
3101 if (er == EMULATE_FAIL) {
3102 printk(KERN_ERR
3103 "EPT: Fail to handle EPT violation vmexit!er is %d\n",
3104 er);
3105 printk(KERN_ERR "EPT: GPA: 0x%lx, GVA: 0x%lx\n",
3106 (long unsigned int)vmcs_read64(GUEST_PHYSICAL_ADDRESS),
3107 (long unsigned int)vmcs_read64(GUEST_LINEAR_ADDRESS));
3108 printk(KERN_ERR "EPT: Exit qualification is 0x%lx\n",
3109 (long unsigned int)exit_qualification);
3110 return -ENOTSUPP;
3111 } else if (er == EMULATE_DO_MMIO)
3112 return 0;
3114 return 1;
3117 static int handle_nmi_window(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
3119 u32 cpu_based_vm_exec_control;
3121 /* clear pending NMI */
3122 cpu_based_vm_exec_control = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
3123 cpu_based_vm_exec_control &= ~CPU_BASED_VIRTUAL_NMI_PENDING;
3124 vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control);
3125 ++vcpu->stat.nmi_window_exits;
3127 return 1;
3130 static void handle_invalid_guest_state(struct kvm_vcpu *vcpu,
3131 struct kvm_run *kvm_run)
3133 struct vcpu_vmx *vmx = to_vmx(vcpu);
3134 int err;
3136 preempt_enable();
3137 local_irq_enable();
3139 while (!guest_state_valid(vcpu)) {
3140 err = emulate_instruction(vcpu, kvm_run, 0, 0, 0);
3142 if (err == EMULATE_DO_MMIO)
3143 break;
3145 if (err != EMULATE_DONE) {
3146 kvm_report_emulation_failure(vcpu, "emulation failure");
3147 return;
3150 if (signal_pending(current))
3151 break;
3152 if (need_resched())
3153 schedule();
3156 local_irq_disable();
3157 preempt_disable();
3159 /* Guest state should be valid now except if we need to
3160 * emulate an MMIO */
3161 if (guest_state_valid(vcpu))
3162 vmx->emulation_required = 0;
3166 * The exit handlers return 1 if the exit was handled fully and guest execution
3167 * may resume. Otherwise they set the kvm_run parameter to indicate what needs
3168 * to be done to userspace and return 0.
3170 static int (*kvm_vmx_exit_handlers[])(struct kvm_vcpu *vcpu,
3171 struct kvm_run *kvm_run) = {
3172 [EXIT_REASON_EXCEPTION_NMI] = handle_exception,
3173 [EXIT_REASON_EXTERNAL_INTERRUPT] = handle_external_interrupt,
3174 [EXIT_REASON_TRIPLE_FAULT] = handle_triple_fault,
3175 [EXIT_REASON_NMI_WINDOW] = handle_nmi_window,
3176 [EXIT_REASON_IO_INSTRUCTION] = handle_io,
3177 [EXIT_REASON_CR_ACCESS] = handle_cr,
3178 [EXIT_REASON_DR_ACCESS] = handle_dr,
3179 [EXIT_REASON_CPUID] = handle_cpuid,
3180 [EXIT_REASON_MSR_READ] = handle_rdmsr,
3181 [EXIT_REASON_MSR_WRITE] = handle_wrmsr,
3182 [EXIT_REASON_PENDING_INTERRUPT] = handle_interrupt_window,
3183 [EXIT_REASON_HLT] = handle_halt,
3184 [EXIT_REASON_INVLPG] = handle_invlpg,
3185 [EXIT_REASON_VMCALL] = handle_vmcall,
3186 [EXIT_REASON_TPR_BELOW_THRESHOLD] = handle_tpr_below_threshold,
3187 [EXIT_REASON_APIC_ACCESS] = handle_apic_access,
3188 [EXIT_REASON_WBINVD] = handle_wbinvd,
3189 [EXIT_REASON_TASK_SWITCH] = handle_task_switch,
3190 [EXIT_REASON_EPT_VIOLATION] = handle_ept_violation,
3193 static const int kvm_vmx_max_exit_handlers =
3194 ARRAY_SIZE(kvm_vmx_exit_handlers);
3197 * The guest has exited. See if we can fix it or if we need userspace
3198 * assistance.
3200 static int kvm_handle_exit(struct kvm_run *kvm_run, struct kvm_vcpu *vcpu)
3202 u32 exit_reason = vmcs_read32(VM_EXIT_REASON);
3203 struct vcpu_vmx *vmx = to_vmx(vcpu);
3204 u32 vectoring_info = vmx->idt_vectoring_info;
3206 KVMTRACE_3D(VMEXIT, vcpu, exit_reason, (u32)kvm_rip_read(vcpu),
3207 (u32)((u64)kvm_rip_read(vcpu) >> 32), entryexit);
3209 /* If we need to emulate an MMIO from handle_invalid_guest_state
3210 * we just return 0 */
3211 if (vmx->emulation_required && emulate_invalid_guest_state)
3212 return 0;
3214 /* Access CR3 don't cause VMExit in paging mode, so we need
3215 * to sync with guest real CR3. */
3216 if (vm_need_ept() && is_paging(vcpu)) {
3217 vcpu->arch.cr3 = vmcs_readl(GUEST_CR3);
3218 ept_load_pdptrs(vcpu);
3221 if (unlikely(vmx->fail)) {
3222 kvm_run->exit_reason = KVM_EXIT_FAIL_ENTRY;
3223 kvm_run->fail_entry.hardware_entry_failure_reason
3224 = vmcs_read32(VM_INSTRUCTION_ERROR);
3225 return 0;
3228 if ((vectoring_info & VECTORING_INFO_VALID_MASK) &&
3229 (exit_reason != EXIT_REASON_EXCEPTION_NMI &&
3230 exit_reason != EXIT_REASON_EPT_VIOLATION &&
3231 exit_reason != EXIT_REASON_TASK_SWITCH))
3232 printk(KERN_WARNING "%s: unexpected, valid vectoring info "
3233 "(0x%x) and exit reason is 0x%x\n",
3234 __func__, vectoring_info, exit_reason);
3236 if (unlikely(!cpu_has_virtual_nmis() && vmx->soft_vnmi_blocked)) {
3237 if (vcpu->arch.interrupt_window_open) {
3238 vmx->soft_vnmi_blocked = 0;
3239 vcpu->arch.nmi_window_open = 1;
3240 } else if (vmx->vnmi_blocked_time > 1000000000LL &&
3241 vcpu->arch.nmi_pending) {
3243 * This CPU don't support us in finding the end of an
3244 * NMI-blocked window if the guest runs with IRQs
3245 * disabled. So we pull the trigger after 1 s of
3246 * futile waiting, but inform the user about this.
3248 printk(KERN_WARNING "%s: Breaking out of NMI-blocked "
3249 "state on VCPU %d after 1 s timeout\n",
3250 __func__, vcpu->vcpu_id);
3251 vmx->soft_vnmi_blocked = 0;
3252 vmx->vcpu.arch.nmi_window_open = 1;
3256 if (exit_reason < kvm_vmx_max_exit_handlers
3257 && kvm_vmx_exit_handlers[exit_reason])
3258 return kvm_vmx_exit_handlers[exit_reason](vcpu, kvm_run);
3259 else {
3260 kvm_run->exit_reason = KVM_EXIT_UNKNOWN;
3261 kvm_run->hw.hardware_exit_reason = exit_reason;
3263 return 0;
3266 static void update_tpr_threshold(struct kvm_vcpu *vcpu)
3268 int max_irr, tpr;
3270 if (!vm_need_tpr_shadow(vcpu->kvm))
3271 return;
3273 if (!kvm_lapic_enabled(vcpu) ||
3274 ((max_irr = kvm_lapic_find_highest_irr(vcpu)) == -1)) {
3275 vmcs_write32(TPR_THRESHOLD, 0);
3276 return;
3279 tpr = (kvm_lapic_get_cr8(vcpu) & 0x0f) << 4;
3280 vmcs_write32(TPR_THRESHOLD, (max_irr > tpr) ? tpr >> 4 : max_irr >> 4);
3283 static void vmx_complete_interrupts(struct vcpu_vmx *vmx)
3285 u32 exit_intr_info;
3286 u32 idt_vectoring_info;
3287 bool unblock_nmi;
3288 u8 vector;
3289 int type;
3290 bool idtv_info_valid;
3291 u32 error;
3293 exit_intr_info = vmcs_read32(VM_EXIT_INTR_INFO);
3294 if (cpu_has_virtual_nmis()) {
3295 unblock_nmi = (exit_intr_info & INTR_INFO_UNBLOCK_NMI) != 0;
3296 vector = exit_intr_info & INTR_INFO_VECTOR_MASK;
3298 * SDM 3: 25.7.1.2
3299 * Re-set bit "block by NMI" before VM entry if vmexit caused by
3300 * a guest IRET fault.
3302 if (unblock_nmi && vector != DF_VECTOR)
3303 vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO,
3304 GUEST_INTR_STATE_NMI);
3305 } else if (unlikely(vmx->soft_vnmi_blocked))
3306 vmx->vnmi_blocked_time +=
3307 ktime_to_ns(ktime_sub(ktime_get(), vmx->entry_time));
3309 idt_vectoring_info = vmx->idt_vectoring_info;
3310 idtv_info_valid = idt_vectoring_info & VECTORING_INFO_VALID_MASK;
3311 vector = idt_vectoring_info & VECTORING_INFO_VECTOR_MASK;
3312 type = idt_vectoring_info & VECTORING_INFO_TYPE_MASK;
3313 if (vmx->vcpu.arch.nmi_injected) {
3315 * SDM 3: 25.7.1.2
3316 * Clear bit "block by NMI" before VM entry if a NMI delivery
3317 * faulted.
3319 if (idtv_info_valid && type == INTR_TYPE_NMI_INTR)
3320 vmcs_clear_bits(GUEST_INTERRUPTIBILITY_INFO,
3321 GUEST_INTR_STATE_NMI);
3322 else
3323 vmx->vcpu.arch.nmi_injected = false;
3325 kvm_clear_exception_queue(&vmx->vcpu);
3326 if (idtv_info_valid && (type == INTR_TYPE_HARD_EXCEPTION ||
3327 type == INTR_TYPE_SOFT_EXCEPTION)) {
3328 if (idt_vectoring_info & VECTORING_INFO_DELIVER_CODE_MASK) {
3329 error = vmcs_read32(IDT_VECTORING_ERROR_CODE);
3330 kvm_queue_exception_e(&vmx->vcpu, vector, error);
3331 } else
3332 kvm_queue_exception(&vmx->vcpu, vector);
3333 vmx->idt_vectoring_info = 0;
3335 kvm_clear_interrupt_queue(&vmx->vcpu);
3336 if (idtv_info_valid && type == INTR_TYPE_EXT_INTR) {
3337 kvm_queue_interrupt(&vmx->vcpu, vector);
3338 vmx->idt_vectoring_info = 0;
3342 static void vmx_intr_assist(struct kvm_vcpu *vcpu)
3344 update_tpr_threshold(vcpu);
3346 vmx_update_window_states(vcpu);
3348 if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
3349 vmcs_clear_bits(GUEST_INTERRUPTIBILITY_INFO,
3350 GUEST_INTR_STATE_STI |
3351 GUEST_INTR_STATE_MOV_SS);
3353 if (vcpu->arch.nmi_pending && !vcpu->arch.nmi_injected) {
3354 if (vcpu->arch.interrupt.pending) {
3355 enable_nmi_window(vcpu);
3356 } else if (vcpu->arch.nmi_window_open) {
3357 vcpu->arch.nmi_pending = false;
3358 vcpu->arch.nmi_injected = true;
3359 } else {
3360 enable_nmi_window(vcpu);
3361 return;
3364 if (vcpu->arch.nmi_injected) {
3365 vmx_inject_nmi(vcpu);
3366 if (vcpu->arch.nmi_pending)
3367 enable_nmi_window(vcpu);
3368 else if (kvm_cpu_has_interrupt(vcpu))
3369 enable_irq_window(vcpu);
3370 return;
3372 if (!vcpu->arch.interrupt.pending && kvm_cpu_has_interrupt(vcpu)) {
3373 if (vcpu->arch.interrupt_window_open)
3374 kvm_queue_interrupt(vcpu, kvm_cpu_get_interrupt(vcpu));
3375 else
3376 enable_irq_window(vcpu);
3378 if (vcpu->arch.interrupt.pending) {
3379 vmx_inject_irq(vcpu, vcpu->arch.interrupt.nr);
3380 if (kvm_cpu_has_interrupt(vcpu))
3381 enable_irq_window(vcpu);
3386 * Failure to inject an interrupt should give us the information
3387 * in IDT_VECTORING_INFO_FIELD. However, if the failure occurs
3388 * when fetching the interrupt redirection bitmap in the real-mode
3389 * tss, this doesn't happen. So we do it ourselves.
3391 static void fixup_rmode_irq(struct vcpu_vmx *vmx)
3393 vmx->rmode.irq.pending = 0;
3394 if (kvm_rip_read(&vmx->vcpu) + 1 != vmx->rmode.irq.rip)
3395 return;
3396 kvm_rip_write(&vmx->vcpu, vmx->rmode.irq.rip);
3397 if (vmx->idt_vectoring_info & VECTORING_INFO_VALID_MASK) {
3398 vmx->idt_vectoring_info &= ~VECTORING_INFO_TYPE_MASK;
3399 vmx->idt_vectoring_info |= INTR_TYPE_EXT_INTR;
3400 return;
3402 vmx->idt_vectoring_info =
3403 VECTORING_INFO_VALID_MASK
3404 | INTR_TYPE_EXT_INTR
3405 | vmx->rmode.irq.vector;
3408 #ifdef CONFIG_X86_64
3409 #define R "r"
3410 #define Q "q"
3411 #else
3412 #define R "e"
3413 #define Q "l"
3414 #endif
3416 static void vmx_vcpu_run(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
3418 struct vcpu_vmx *vmx = to_vmx(vcpu);
3419 u32 intr_info;
3421 /* Record the guest's net vcpu time for enforced NMI injections. */
3422 if (unlikely(!cpu_has_virtual_nmis() && vmx->soft_vnmi_blocked))
3423 vmx->entry_time = ktime_get();
3425 /* Handle invalid guest state instead of entering VMX */
3426 if (vmx->emulation_required && emulate_invalid_guest_state) {
3427 handle_invalid_guest_state(vcpu, kvm_run);
3428 return;
3431 if (test_bit(VCPU_REGS_RSP, (unsigned long *)&vcpu->arch.regs_dirty))
3432 vmcs_writel(GUEST_RSP, vcpu->arch.regs[VCPU_REGS_RSP]);
3433 if (test_bit(VCPU_REGS_RIP, (unsigned long *)&vcpu->arch.regs_dirty))
3434 vmcs_writel(GUEST_RIP, vcpu->arch.regs[VCPU_REGS_RIP]);
3437 * Loading guest fpu may have cleared host cr0.ts
3439 vmcs_writel(HOST_CR0, read_cr0());
3441 set_debugreg(vcpu->arch.dr6, 6);
3443 asm(
3444 /* Store host registers */
3445 "push %%"R"dx; push %%"R"bp;"
3446 "push %%"R"cx \n\t"
3447 "cmp %%"R"sp, %c[host_rsp](%0) \n\t"
3448 "je 1f \n\t"
3449 "mov %%"R"sp, %c[host_rsp](%0) \n\t"
3450 __ex(ASM_VMX_VMWRITE_RSP_RDX) "\n\t"
3451 "1: \n\t"
3452 /* Check if vmlaunch of vmresume is needed */
3453 "cmpl $0, %c[launched](%0) \n\t"
3454 /* Load guest registers. Don't clobber flags. */
3455 "mov %c[cr2](%0), %%"R"ax \n\t"
3456 "mov %%"R"ax, %%cr2 \n\t"
3457 "mov %c[rax](%0), %%"R"ax \n\t"
3458 "mov %c[rbx](%0), %%"R"bx \n\t"
3459 "mov %c[rdx](%0), %%"R"dx \n\t"
3460 "mov %c[rsi](%0), %%"R"si \n\t"
3461 "mov %c[rdi](%0), %%"R"di \n\t"
3462 "mov %c[rbp](%0), %%"R"bp \n\t"
3463 #ifdef CONFIG_X86_64
3464 "mov %c[r8](%0), %%r8 \n\t"
3465 "mov %c[r9](%0), %%r9 \n\t"
3466 "mov %c[r10](%0), %%r10 \n\t"
3467 "mov %c[r11](%0), %%r11 \n\t"
3468 "mov %c[r12](%0), %%r12 \n\t"
3469 "mov %c[r13](%0), %%r13 \n\t"
3470 "mov %c[r14](%0), %%r14 \n\t"
3471 "mov %c[r15](%0), %%r15 \n\t"
3472 #endif
3473 "mov %c[rcx](%0), %%"R"cx \n\t" /* kills %0 (ecx) */
3475 /* Enter guest mode */
3476 "jne .Llaunched \n\t"
3477 __ex(ASM_VMX_VMLAUNCH) "\n\t"
3478 "jmp .Lkvm_vmx_return \n\t"
3479 ".Llaunched: " __ex(ASM_VMX_VMRESUME) "\n\t"
3480 ".Lkvm_vmx_return: "
3481 /* Save guest registers, load host registers, keep flags */
3482 "xchg %0, (%%"R"sp) \n\t"
3483 "mov %%"R"ax, %c[rax](%0) \n\t"
3484 "mov %%"R"bx, %c[rbx](%0) \n\t"
3485 "push"Q" (%%"R"sp); pop"Q" %c[rcx](%0) \n\t"
3486 "mov %%"R"dx, %c[rdx](%0) \n\t"
3487 "mov %%"R"si, %c[rsi](%0) \n\t"
3488 "mov %%"R"di, %c[rdi](%0) \n\t"
3489 "mov %%"R"bp, %c[rbp](%0) \n\t"
3490 #ifdef CONFIG_X86_64
3491 "mov %%r8, %c[r8](%0) \n\t"
3492 "mov %%r9, %c[r9](%0) \n\t"
3493 "mov %%r10, %c[r10](%0) \n\t"
3494 "mov %%r11, %c[r11](%0) \n\t"
3495 "mov %%r12, %c[r12](%0) \n\t"
3496 "mov %%r13, %c[r13](%0) \n\t"
3497 "mov %%r14, %c[r14](%0) \n\t"
3498 "mov %%r15, %c[r15](%0) \n\t"
3499 #endif
3500 "mov %%cr2, %%"R"ax \n\t"
3501 "mov %%"R"ax, %c[cr2](%0) \n\t"
3503 "pop %%"R"bp; pop %%"R"bp; pop %%"R"dx \n\t"
3504 "setbe %c[fail](%0) \n\t"
3505 : : "c"(vmx), "d"((unsigned long)HOST_RSP),
3506 [launched]"i"(offsetof(struct vcpu_vmx, launched)),
3507 [fail]"i"(offsetof(struct vcpu_vmx, fail)),
3508 [host_rsp]"i"(offsetof(struct vcpu_vmx, host_rsp)),
3509 [rax]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RAX])),
3510 [rbx]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RBX])),
3511 [rcx]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RCX])),
3512 [rdx]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RDX])),
3513 [rsi]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RSI])),
3514 [rdi]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RDI])),
3515 [rbp]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RBP])),
3516 #ifdef CONFIG_X86_64
3517 [r8]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R8])),
3518 [r9]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R9])),
3519 [r10]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R10])),
3520 [r11]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R11])),
3521 [r12]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R12])),
3522 [r13]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R13])),
3523 [r14]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R14])),
3524 [r15]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R15])),
3525 #endif
3526 [cr2]"i"(offsetof(struct vcpu_vmx, vcpu.arch.cr2))
3527 : "cc", "memory"
3528 , R"bx", R"di", R"si"
3529 #ifdef CONFIG_X86_64
3530 , "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15"
3531 #endif
3534 vcpu->arch.regs_avail = ~((1 << VCPU_REGS_RIP) | (1 << VCPU_REGS_RSP));
3535 vcpu->arch.regs_dirty = 0;
3537 get_debugreg(vcpu->arch.dr6, 6);
3539 vmx->idt_vectoring_info = vmcs_read32(IDT_VECTORING_INFO_FIELD);
3540 if (vmx->rmode.irq.pending)
3541 fixup_rmode_irq(vmx);
3543 vmx_update_window_states(vcpu);
3545 asm("mov %0, %%ds; mov %0, %%es" : : "r"(__USER_DS));
3546 vmx->launched = 1;
3548 intr_info = vmcs_read32(VM_EXIT_INTR_INFO);
3550 /* We need to handle NMIs before interrupts are enabled */
3551 if ((intr_info & INTR_INFO_INTR_TYPE_MASK) == INTR_TYPE_NMI_INTR &&
3552 (intr_info & INTR_INFO_VALID_MASK)) {
3553 KVMTRACE_0D(NMI, vcpu, handler);
3554 asm("int $2");
3557 vmx_complete_interrupts(vmx);
3560 #undef R
3561 #undef Q
3563 static void vmx_free_vmcs(struct kvm_vcpu *vcpu)
3565 struct vcpu_vmx *vmx = to_vmx(vcpu);
3567 if (vmx->vmcs) {
3568 vcpu_clear(vmx);
3569 free_vmcs(vmx->vmcs);
3570 vmx->vmcs = NULL;
3574 static void vmx_free_vcpu(struct kvm_vcpu *vcpu)
3576 struct vcpu_vmx *vmx = to_vmx(vcpu);
3578 spin_lock(&vmx_vpid_lock);
3579 if (vmx->vpid != 0)
3580 __clear_bit(vmx->vpid, vmx_vpid_bitmap);
3581 spin_unlock(&vmx_vpid_lock);
3582 vmx_free_vmcs(vcpu);
3583 kfree(vmx->host_msrs);
3584 kfree(vmx->guest_msrs);
3585 kvm_vcpu_uninit(vcpu);
3586 kmem_cache_free(kvm_vcpu_cache, vmx);
3589 static struct kvm_vcpu *vmx_create_vcpu(struct kvm *kvm, unsigned int id)
3591 int err;
3592 struct vcpu_vmx *vmx = kmem_cache_zalloc(kvm_vcpu_cache, GFP_KERNEL);
3593 int cpu;
3595 if (!vmx)
3596 return ERR_PTR(-ENOMEM);
3598 allocate_vpid(vmx);
3600 err = kvm_vcpu_init(&vmx->vcpu, kvm, id);
3601 if (err)
3602 goto free_vcpu;
3604 vmx->guest_msrs = kmalloc(PAGE_SIZE, GFP_KERNEL);
3605 if (!vmx->guest_msrs) {
3606 err = -ENOMEM;
3607 goto uninit_vcpu;
3610 vmx->host_msrs = kmalloc(PAGE_SIZE, GFP_KERNEL);
3611 if (!vmx->host_msrs)
3612 goto free_guest_msrs;
3614 vmx->vmcs = alloc_vmcs();
3615 if (!vmx->vmcs)
3616 goto free_msrs;
3618 vmcs_clear(vmx->vmcs);
3620 cpu = get_cpu();
3621 vmx_vcpu_load(&vmx->vcpu, cpu);
3622 err = vmx_vcpu_setup(vmx);
3623 vmx_vcpu_put(&vmx->vcpu);
3624 put_cpu();
3625 if (err)
3626 goto free_vmcs;
3627 if (vm_need_virtualize_apic_accesses(kvm))
3628 if (alloc_apic_access_page(kvm) != 0)
3629 goto free_vmcs;
3631 if (vm_need_ept())
3632 if (alloc_identity_pagetable(kvm) != 0)
3633 goto free_vmcs;
3635 return &vmx->vcpu;
3637 free_vmcs:
3638 free_vmcs(vmx->vmcs);
3639 free_msrs:
3640 kfree(vmx->host_msrs);
3641 free_guest_msrs:
3642 kfree(vmx->guest_msrs);
3643 uninit_vcpu:
3644 kvm_vcpu_uninit(&vmx->vcpu);
3645 free_vcpu:
3646 kmem_cache_free(kvm_vcpu_cache, vmx);
3647 return ERR_PTR(err);
3650 static void __init vmx_check_processor_compat(void *rtn)
3652 struct vmcs_config vmcs_conf;
3654 *(int *)rtn = 0;
3655 if (setup_vmcs_config(&vmcs_conf) < 0)
3656 *(int *)rtn = -EIO;
3657 if (memcmp(&vmcs_config, &vmcs_conf, sizeof(struct vmcs_config)) != 0) {
3658 printk(KERN_ERR "kvm: CPU %d feature inconsistency!\n",
3659 smp_processor_id());
3660 *(int *)rtn = -EIO;
3664 static int get_ept_level(void)
3666 return VMX_EPT_DEFAULT_GAW + 1;
3669 static int vmx_get_mt_mask_shift(void)
3671 return VMX_EPT_MT_EPTE_SHIFT;
3674 static struct kvm_x86_ops vmx_x86_ops = {
3675 .cpu_has_kvm_support = cpu_has_kvm_support,
3676 .disabled_by_bios = vmx_disabled_by_bios,
3677 .hardware_setup = hardware_setup,
3678 .hardware_unsetup = hardware_unsetup,
3679 .check_processor_compatibility = vmx_check_processor_compat,
3680 .hardware_enable = hardware_enable,
3681 .hardware_disable = hardware_disable,
3682 .cpu_has_accelerated_tpr = cpu_has_vmx_virtualize_apic_accesses,
3684 .vcpu_create = vmx_create_vcpu,
3685 .vcpu_free = vmx_free_vcpu,
3686 .vcpu_reset = vmx_vcpu_reset,
3688 .prepare_guest_switch = vmx_save_host_state,
3689 .vcpu_load = vmx_vcpu_load,
3690 .vcpu_put = vmx_vcpu_put,
3692 .set_guest_debug = set_guest_debug,
3693 .get_msr = vmx_get_msr,
3694 .set_msr = vmx_set_msr,
3695 .get_segment_base = vmx_get_segment_base,
3696 .get_segment = vmx_get_segment,
3697 .set_segment = vmx_set_segment,
3698 .get_cpl = vmx_get_cpl,
3699 .get_cs_db_l_bits = vmx_get_cs_db_l_bits,
3700 .decache_cr4_guest_bits = vmx_decache_cr4_guest_bits,
3701 .set_cr0 = vmx_set_cr0,
3702 .set_cr3 = vmx_set_cr3,
3703 .set_cr4 = vmx_set_cr4,
3704 .set_efer = vmx_set_efer,
3705 .get_idt = vmx_get_idt,
3706 .set_idt = vmx_set_idt,
3707 .get_gdt = vmx_get_gdt,
3708 .set_gdt = vmx_set_gdt,
3709 .cache_reg = vmx_cache_reg,
3710 .get_rflags = vmx_get_rflags,
3711 .set_rflags = vmx_set_rflags,
3713 .tlb_flush = vmx_flush_tlb,
3715 .run = vmx_vcpu_run,
3716 .handle_exit = kvm_handle_exit,
3717 .skip_emulated_instruction = skip_emulated_instruction,
3718 .patch_hypercall = vmx_patch_hypercall,
3719 .get_irq = vmx_get_irq,
3720 .set_irq = vmx_inject_irq,
3721 .queue_exception = vmx_queue_exception,
3722 .exception_injected = vmx_exception_injected,
3723 .inject_pending_irq = vmx_intr_assist,
3724 .inject_pending_vectors = do_interrupt_requests,
3726 .set_tss_addr = vmx_set_tss_addr,
3727 .get_tdp_level = get_ept_level,
3728 .get_mt_mask_shift = vmx_get_mt_mask_shift,
3731 static int __init vmx_init(void)
3733 void *va;
3734 int r;
3736 vmx_io_bitmap_a = alloc_page(GFP_KERNEL | __GFP_HIGHMEM);
3737 if (!vmx_io_bitmap_a)
3738 return -ENOMEM;
3740 vmx_io_bitmap_b = alloc_page(GFP_KERNEL | __GFP_HIGHMEM);
3741 if (!vmx_io_bitmap_b) {
3742 r = -ENOMEM;
3743 goto out;
3746 vmx_msr_bitmap = alloc_page(GFP_KERNEL | __GFP_HIGHMEM);
3747 if (!vmx_msr_bitmap) {
3748 r = -ENOMEM;
3749 goto out1;
3753 * Allow direct access to the PC debug port (it is often used for I/O
3754 * delays, but the vmexits simply slow things down).
3756 va = kmap(vmx_io_bitmap_a);
3757 memset(va, 0xff, PAGE_SIZE);
3758 clear_bit(0x80, va);
3759 kunmap(vmx_io_bitmap_a);
3761 va = kmap(vmx_io_bitmap_b);
3762 memset(va, 0xff, PAGE_SIZE);
3763 kunmap(vmx_io_bitmap_b);
3765 va = kmap(vmx_msr_bitmap);
3766 memset(va, 0xff, PAGE_SIZE);
3767 kunmap(vmx_msr_bitmap);
3769 set_bit(0, vmx_vpid_bitmap); /* 0 is reserved for host */
3771 r = kvm_init(&vmx_x86_ops, sizeof(struct vcpu_vmx), THIS_MODULE);
3772 if (r)
3773 goto out2;
3775 vmx_disable_intercept_for_msr(vmx_msr_bitmap, MSR_FS_BASE);
3776 vmx_disable_intercept_for_msr(vmx_msr_bitmap, MSR_GS_BASE);
3777 vmx_disable_intercept_for_msr(vmx_msr_bitmap, MSR_IA32_SYSENTER_CS);
3778 vmx_disable_intercept_for_msr(vmx_msr_bitmap, MSR_IA32_SYSENTER_ESP);
3779 vmx_disable_intercept_for_msr(vmx_msr_bitmap, MSR_IA32_SYSENTER_EIP);
3781 if (vm_need_ept()) {
3782 bypass_guest_pf = 0;
3783 kvm_mmu_set_base_ptes(VMX_EPT_READABLE_MASK |
3784 VMX_EPT_WRITABLE_MASK);
3785 kvm_mmu_set_mask_ptes(0ull, 0ull, 0ull, 0ull,
3786 VMX_EPT_EXECUTABLE_MASK,
3787 VMX_EPT_DEFAULT_MT << VMX_EPT_MT_EPTE_SHIFT);
3788 kvm_enable_tdp();
3789 } else
3790 kvm_disable_tdp();
3792 if (bypass_guest_pf)
3793 kvm_mmu_set_nonpresent_ptes(~0xffeull, 0ull);
3795 ept_sync_global();
3797 return 0;
3799 out2:
3800 __free_page(vmx_msr_bitmap);
3801 out1:
3802 __free_page(vmx_io_bitmap_b);
3803 out:
3804 __free_page(vmx_io_bitmap_a);
3805 return r;
3808 static void __exit vmx_exit(void)
3810 __free_page(vmx_msr_bitmap);
3811 __free_page(vmx_io_bitmap_b);
3812 __free_page(vmx_io_bitmap_a);
3814 kvm_exit();
3817 module_init(vmx_init)
3818 module_exit(vmx_exit)