tcp: No need to clear retransmit_skb_hint when SACKing
[linux-2.6/mini2440.git] / net / ipv4 / tcp_input.c
blobd017aed6edd74c129faf8bba144d95eae4ca191e
1 /*
2 * INET An implementation of the TCP/IP protocol suite for the LINUX
3 * operating system. INET is implemented using the BSD Socket
4 * interface as the means of communication with the user level.
6 * Implementation of the Transmission Control Protocol(TCP).
8 * Authors: Ross Biro
9 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
10 * Mark Evans, <evansmp@uhura.aston.ac.uk>
11 * Corey Minyard <wf-rch!minyard@relay.EU.net>
12 * Florian La Roche, <flla@stud.uni-sb.de>
13 * Charles Hedrick, <hedrick@klinzhai.rutgers.edu>
14 * Linus Torvalds, <torvalds@cs.helsinki.fi>
15 * Alan Cox, <gw4pts@gw4pts.ampr.org>
16 * Matthew Dillon, <dillon@apollo.west.oic.com>
17 * Arnt Gulbrandsen, <agulbra@nvg.unit.no>
18 * Jorge Cwik, <jorge@laser.satlink.net>
22 * Changes:
23 * Pedro Roque : Fast Retransmit/Recovery.
24 * Two receive queues.
25 * Retransmit queue handled by TCP.
26 * Better retransmit timer handling.
27 * New congestion avoidance.
28 * Header prediction.
29 * Variable renaming.
31 * Eric : Fast Retransmit.
32 * Randy Scott : MSS option defines.
33 * Eric Schenk : Fixes to slow start algorithm.
34 * Eric Schenk : Yet another double ACK bug.
35 * Eric Schenk : Delayed ACK bug fixes.
36 * Eric Schenk : Floyd style fast retrans war avoidance.
37 * David S. Miller : Don't allow zero congestion window.
38 * Eric Schenk : Fix retransmitter so that it sends
39 * next packet on ack of previous packet.
40 * Andi Kleen : Moved open_request checking here
41 * and process RSTs for open_requests.
42 * Andi Kleen : Better prune_queue, and other fixes.
43 * Andrey Savochkin: Fix RTT measurements in the presence of
44 * timestamps.
45 * Andrey Savochkin: Check sequence numbers correctly when
46 * removing SACKs due to in sequence incoming
47 * data segments.
48 * Andi Kleen: Make sure we never ack data there is not
49 * enough room for. Also make this condition
50 * a fatal error if it might still happen.
51 * Andi Kleen: Add tcp_measure_rcv_mss to make
52 * connections with MSS<min(MTU,ann. MSS)
53 * work without delayed acks.
54 * Andi Kleen: Process packets with PSH set in the
55 * fast path.
56 * J Hadi Salim: ECN support
57 * Andrei Gurtov,
58 * Pasi Sarolahti,
59 * Panu Kuhlberg: Experimental audit of TCP (re)transmission
60 * engine. Lots of bugs are found.
61 * Pasi Sarolahti: F-RTO for dealing with spurious RTOs
64 #include <linux/mm.h>
65 #include <linux/module.h>
66 #include <linux/sysctl.h>
67 #include <net/dst.h>
68 #include <net/tcp.h>
69 #include <net/inet_common.h>
70 #include <linux/ipsec.h>
71 #include <asm/unaligned.h>
72 #include <net/netdma.h>
74 int sysctl_tcp_timestamps __read_mostly = 1;
75 int sysctl_tcp_window_scaling __read_mostly = 1;
76 int sysctl_tcp_sack __read_mostly = 1;
77 int sysctl_tcp_fack __read_mostly = 1;
78 int sysctl_tcp_reordering __read_mostly = TCP_FASTRETRANS_THRESH;
79 int sysctl_tcp_ecn __read_mostly;
80 int sysctl_tcp_dsack __read_mostly = 1;
81 int sysctl_tcp_app_win __read_mostly = 31;
82 int sysctl_tcp_adv_win_scale __read_mostly = 2;
84 int sysctl_tcp_stdurg __read_mostly;
85 int sysctl_tcp_rfc1337 __read_mostly;
86 int sysctl_tcp_max_orphans __read_mostly = NR_FILE;
87 int sysctl_tcp_frto __read_mostly = 2;
88 int sysctl_tcp_frto_response __read_mostly;
89 int sysctl_tcp_nometrics_save __read_mostly;
91 int sysctl_tcp_moderate_rcvbuf __read_mostly = 1;
92 int sysctl_tcp_abc __read_mostly;
94 #define FLAG_DATA 0x01 /* Incoming frame contained data. */
95 #define FLAG_WIN_UPDATE 0x02 /* Incoming ACK was a window update. */
96 #define FLAG_DATA_ACKED 0x04 /* This ACK acknowledged new data. */
97 #define FLAG_RETRANS_DATA_ACKED 0x08 /* "" "" some of which was retransmitted. */
98 #define FLAG_SYN_ACKED 0x10 /* This ACK acknowledged SYN. */
99 #define FLAG_DATA_SACKED 0x20 /* New SACK. */
100 #define FLAG_ECE 0x40 /* ECE in this ACK */
101 #define FLAG_DATA_LOST 0x80 /* SACK detected data lossage. */
102 #define FLAG_SLOWPATH 0x100 /* Do not skip RFC checks for window update.*/
103 #define FLAG_ONLY_ORIG_SACKED 0x200 /* SACKs only non-rexmit sent before RTO */
104 #define FLAG_SND_UNA_ADVANCED 0x400 /* Snd_una was changed (!= FLAG_DATA_ACKED) */
105 #define FLAG_DSACKING_ACK 0x800 /* SACK blocks contained D-SACK info */
106 #define FLAG_NONHEAD_RETRANS_ACKED 0x1000 /* Non-head rexmitted data was ACKed */
107 #define FLAG_SACK_RENEGING 0x2000 /* snd_una advanced to a sacked seq */
109 #define FLAG_ACKED (FLAG_DATA_ACKED|FLAG_SYN_ACKED)
110 #define FLAG_NOT_DUP (FLAG_DATA|FLAG_WIN_UPDATE|FLAG_ACKED)
111 #define FLAG_CA_ALERT (FLAG_DATA_SACKED|FLAG_ECE)
112 #define FLAG_FORWARD_PROGRESS (FLAG_ACKED|FLAG_DATA_SACKED)
113 #define FLAG_ANY_PROGRESS (FLAG_FORWARD_PROGRESS|FLAG_SND_UNA_ADVANCED)
115 #define TCP_REMNANT (TCP_FLAG_FIN|TCP_FLAG_URG|TCP_FLAG_SYN|TCP_FLAG_PSH)
116 #define TCP_HP_BITS (~(TCP_RESERVED_BITS|TCP_FLAG_PSH))
118 /* Adapt the MSS value used to make delayed ack decision to the
119 * real world.
121 static void tcp_measure_rcv_mss(struct sock *sk, const struct sk_buff *skb)
123 struct inet_connection_sock *icsk = inet_csk(sk);
124 const unsigned int lss = icsk->icsk_ack.last_seg_size;
125 unsigned int len;
127 icsk->icsk_ack.last_seg_size = 0;
129 /* skb->len may jitter because of SACKs, even if peer
130 * sends good full-sized frames.
132 len = skb_shinfo(skb)->gso_size ? : skb->len;
133 if (len >= icsk->icsk_ack.rcv_mss) {
134 icsk->icsk_ack.rcv_mss = len;
135 } else {
136 /* Otherwise, we make more careful check taking into account,
137 * that SACKs block is variable.
139 * "len" is invariant segment length, including TCP header.
141 len += skb->data - skb_transport_header(skb);
142 if (len >= TCP_MIN_RCVMSS + sizeof(struct tcphdr) ||
143 /* If PSH is not set, packet should be
144 * full sized, provided peer TCP is not badly broken.
145 * This observation (if it is correct 8)) allows
146 * to handle super-low mtu links fairly.
148 (len >= TCP_MIN_MSS + sizeof(struct tcphdr) &&
149 !(tcp_flag_word(tcp_hdr(skb)) & TCP_REMNANT))) {
150 /* Subtract also invariant (if peer is RFC compliant),
151 * tcp header plus fixed timestamp option length.
152 * Resulting "len" is MSS free of SACK jitter.
154 len -= tcp_sk(sk)->tcp_header_len;
155 icsk->icsk_ack.last_seg_size = len;
156 if (len == lss) {
157 icsk->icsk_ack.rcv_mss = len;
158 return;
161 if (icsk->icsk_ack.pending & ICSK_ACK_PUSHED)
162 icsk->icsk_ack.pending |= ICSK_ACK_PUSHED2;
163 icsk->icsk_ack.pending |= ICSK_ACK_PUSHED;
167 static void tcp_incr_quickack(struct sock *sk)
169 struct inet_connection_sock *icsk = inet_csk(sk);
170 unsigned quickacks = tcp_sk(sk)->rcv_wnd / (2 * icsk->icsk_ack.rcv_mss);
172 if (quickacks == 0)
173 quickacks = 2;
174 if (quickacks > icsk->icsk_ack.quick)
175 icsk->icsk_ack.quick = min(quickacks, TCP_MAX_QUICKACKS);
178 void tcp_enter_quickack_mode(struct sock *sk)
180 struct inet_connection_sock *icsk = inet_csk(sk);
181 tcp_incr_quickack(sk);
182 icsk->icsk_ack.pingpong = 0;
183 icsk->icsk_ack.ato = TCP_ATO_MIN;
186 /* Send ACKs quickly, if "quick" count is not exhausted
187 * and the session is not interactive.
190 static inline int tcp_in_quickack_mode(const struct sock *sk)
192 const struct inet_connection_sock *icsk = inet_csk(sk);
193 return icsk->icsk_ack.quick && !icsk->icsk_ack.pingpong;
196 static inline void TCP_ECN_queue_cwr(struct tcp_sock *tp)
198 if (tp->ecn_flags & TCP_ECN_OK)
199 tp->ecn_flags |= TCP_ECN_QUEUE_CWR;
202 static inline void TCP_ECN_accept_cwr(struct tcp_sock *tp, struct sk_buff *skb)
204 if (tcp_hdr(skb)->cwr)
205 tp->ecn_flags &= ~TCP_ECN_DEMAND_CWR;
208 static inline void TCP_ECN_withdraw_cwr(struct tcp_sock *tp)
210 tp->ecn_flags &= ~TCP_ECN_DEMAND_CWR;
213 static inline void TCP_ECN_check_ce(struct tcp_sock *tp, struct sk_buff *skb)
215 if (tp->ecn_flags & TCP_ECN_OK) {
216 if (INET_ECN_is_ce(TCP_SKB_CB(skb)->flags))
217 tp->ecn_flags |= TCP_ECN_DEMAND_CWR;
218 /* Funny extension: if ECT is not set on a segment,
219 * it is surely retransmit. It is not in ECN RFC,
220 * but Linux follows this rule. */
221 else if (INET_ECN_is_not_ect((TCP_SKB_CB(skb)->flags)))
222 tcp_enter_quickack_mode((struct sock *)tp);
226 static inline void TCP_ECN_rcv_synack(struct tcp_sock *tp, struct tcphdr *th)
228 if ((tp->ecn_flags & TCP_ECN_OK) && (!th->ece || th->cwr))
229 tp->ecn_flags &= ~TCP_ECN_OK;
232 static inline void TCP_ECN_rcv_syn(struct tcp_sock *tp, struct tcphdr *th)
234 if ((tp->ecn_flags & TCP_ECN_OK) && (!th->ece || !th->cwr))
235 tp->ecn_flags &= ~TCP_ECN_OK;
238 static inline int TCP_ECN_rcv_ecn_echo(struct tcp_sock *tp, struct tcphdr *th)
240 if (th->ece && !th->syn && (tp->ecn_flags & TCP_ECN_OK))
241 return 1;
242 return 0;
245 /* Buffer size and advertised window tuning.
247 * 1. Tuning sk->sk_sndbuf, when connection enters established state.
250 static void tcp_fixup_sndbuf(struct sock *sk)
252 int sndmem = tcp_sk(sk)->rx_opt.mss_clamp + MAX_TCP_HEADER + 16 +
253 sizeof(struct sk_buff);
255 if (sk->sk_sndbuf < 3 * sndmem)
256 sk->sk_sndbuf = min(3 * sndmem, sysctl_tcp_wmem[2]);
259 /* 2. Tuning advertised window (window_clamp, rcv_ssthresh)
261 * All tcp_full_space() is split to two parts: "network" buffer, allocated
262 * forward and advertised in receiver window (tp->rcv_wnd) and
263 * "application buffer", required to isolate scheduling/application
264 * latencies from network.
265 * window_clamp is maximal advertised window. It can be less than
266 * tcp_full_space(), in this case tcp_full_space() - window_clamp
267 * is reserved for "application" buffer. The less window_clamp is
268 * the smoother our behaviour from viewpoint of network, but the lower
269 * throughput and the higher sensitivity of the connection to losses. 8)
271 * rcv_ssthresh is more strict window_clamp used at "slow start"
272 * phase to predict further behaviour of this connection.
273 * It is used for two goals:
274 * - to enforce header prediction at sender, even when application
275 * requires some significant "application buffer". It is check #1.
276 * - to prevent pruning of receive queue because of misprediction
277 * of receiver window. Check #2.
279 * The scheme does not work when sender sends good segments opening
280 * window and then starts to feed us spaghetti. But it should work
281 * in common situations. Otherwise, we have to rely on queue collapsing.
284 /* Slow part of check#2. */
285 static int __tcp_grow_window(const struct sock *sk, const struct sk_buff *skb)
287 struct tcp_sock *tp = tcp_sk(sk);
288 /* Optimize this! */
289 int truesize = tcp_win_from_space(skb->truesize) >> 1;
290 int window = tcp_win_from_space(sysctl_tcp_rmem[2]) >> 1;
292 while (tp->rcv_ssthresh <= window) {
293 if (truesize <= skb->len)
294 return 2 * inet_csk(sk)->icsk_ack.rcv_mss;
296 truesize >>= 1;
297 window >>= 1;
299 return 0;
302 static void tcp_grow_window(struct sock *sk, struct sk_buff *skb)
304 struct tcp_sock *tp = tcp_sk(sk);
306 /* Check #1 */
307 if (tp->rcv_ssthresh < tp->window_clamp &&
308 (int)tp->rcv_ssthresh < tcp_space(sk) &&
309 !tcp_memory_pressure) {
310 int incr;
312 /* Check #2. Increase window, if skb with such overhead
313 * will fit to rcvbuf in future.
315 if (tcp_win_from_space(skb->truesize) <= skb->len)
316 incr = 2 * tp->advmss;
317 else
318 incr = __tcp_grow_window(sk, skb);
320 if (incr) {
321 tp->rcv_ssthresh = min(tp->rcv_ssthresh + incr,
322 tp->window_clamp);
323 inet_csk(sk)->icsk_ack.quick |= 1;
328 /* 3. Tuning rcvbuf, when connection enters established state. */
330 static void tcp_fixup_rcvbuf(struct sock *sk)
332 struct tcp_sock *tp = tcp_sk(sk);
333 int rcvmem = tp->advmss + MAX_TCP_HEADER + 16 + sizeof(struct sk_buff);
335 /* Try to select rcvbuf so that 4 mss-sized segments
336 * will fit to window and corresponding skbs will fit to our rcvbuf.
337 * (was 3; 4 is minimum to allow fast retransmit to work.)
339 while (tcp_win_from_space(rcvmem) < tp->advmss)
340 rcvmem += 128;
341 if (sk->sk_rcvbuf < 4 * rcvmem)
342 sk->sk_rcvbuf = min(4 * rcvmem, sysctl_tcp_rmem[2]);
345 /* 4. Try to fixup all. It is made immediately after connection enters
346 * established state.
348 static void tcp_init_buffer_space(struct sock *sk)
350 struct tcp_sock *tp = tcp_sk(sk);
351 int maxwin;
353 if (!(sk->sk_userlocks & SOCK_RCVBUF_LOCK))
354 tcp_fixup_rcvbuf(sk);
355 if (!(sk->sk_userlocks & SOCK_SNDBUF_LOCK))
356 tcp_fixup_sndbuf(sk);
358 tp->rcvq_space.space = tp->rcv_wnd;
360 maxwin = tcp_full_space(sk);
362 if (tp->window_clamp >= maxwin) {
363 tp->window_clamp = maxwin;
365 if (sysctl_tcp_app_win && maxwin > 4 * tp->advmss)
366 tp->window_clamp = max(maxwin -
367 (maxwin >> sysctl_tcp_app_win),
368 4 * tp->advmss);
371 /* Force reservation of one segment. */
372 if (sysctl_tcp_app_win &&
373 tp->window_clamp > 2 * tp->advmss &&
374 tp->window_clamp + tp->advmss > maxwin)
375 tp->window_clamp = max(2 * tp->advmss, maxwin - tp->advmss);
377 tp->rcv_ssthresh = min(tp->rcv_ssthresh, tp->window_clamp);
378 tp->snd_cwnd_stamp = tcp_time_stamp;
381 /* 5. Recalculate window clamp after socket hit its memory bounds. */
382 static void tcp_clamp_window(struct sock *sk)
384 struct tcp_sock *tp = tcp_sk(sk);
385 struct inet_connection_sock *icsk = inet_csk(sk);
387 icsk->icsk_ack.quick = 0;
389 if (sk->sk_rcvbuf < sysctl_tcp_rmem[2] &&
390 !(sk->sk_userlocks & SOCK_RCVBUF_LOCK) &&
391 !tcp_memory_pressure &&
392 atomic_read(&tcp_memory_allocated) < sysctl_tcp_mem[0]) {
393 sk->sk_rcvbuf = min(atomic_read(&sk->sk_rmem_alloc),
394 sysctl_tcp_rmem[2]);
396 if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf)
397 tp->rcv_ssthresh = min(tp->window_clamp, 2U * tp->advmss);
400 /* Initialize RCV_MSS value.
401 * RCV_MSS is an our guess about MSS used by the peer.
402 * We haven't any direct information about the MSS.
403 * It's better to underestimate the RCV_MSS rather than overestimate.
404 * Overestimations make us ACKing less frequently than needed.
405 * Underestimations are more easy to detect and fix by tcp_measure_rcv_mss().
407 void tcp_initialize_rcv_mss(struct sock *sk)
409 struct tcp_sock *tp = tcp_sk(sk);
410 unsigned int hint = min_t(unsigned int, tp->advmss, tp->mss_cache);
412 hint = min(hint, tp->rcv_wnd / 2);
413 hint = min(hint, TCP_MIN_RCVMSS);
414 hint = max(hint, TCP_MIN_MSS);
416 inet_csk(sk)->icsk_ack.rcv_mss = hint;
419 /* Receiver "autotuning" code.
421 * The algorithm for RTT estimation w/o timestamps is based on
422 * Dynamic Right-Sizing (DRS) by Wu Feng and Mike Fisk of LANL.
423 * <http://www.lanl.gov/radiant/website/pubs/drs/lacsi2001.ps>
425 * More detail on this code can be found at
426 * <http://www.psc.edu/~jheffner/senior_thesis.ps>,
427 * though this reference is out of date. A new paper
428 * is pending.
430 static void tcp_rcv_rtt_update(struct tcp_sock *tp, u32 sample, int win_dep)
432 u32 new_sample = tp->rcv_rtt_est.rtt;
433 long m = sample;
435 if (m == 0)
436 m = 1;
438 if (new_sample != 0) {
439 /* If we sample in larger samples in the non-timestamp
440 * case, we could grossly overestimate the RTT especially
441 * with chatty applications or bulk transfer apps which
442 * are stalled on filesystem I/O.
444 * Also, since we are only going for a minimum in the
445 * non-timestamp case, we do not smooth things out
446 * else with timestamps disabled convergence takes too
447 * long.
449 if (!win_dep) {
450 m -= (new_sample >> 3);
451 new_sample += m;
452 } else if (m < new_sample)
453 new_sample = m << 3;
454 } else {
455 /* No previous measure. */
456 new_sample = m << 3;
459 if (tp->rcv_rtt_est.rtt != new_sample)
460 tp->rcv_rtt_est.rtt = new_sample;
463 static inline void tcp_rcv_rtt_measure(struct tcp_sock *tp)
465 if (tp->rcv_rtt_est.time == 0)
466 goto new_measure;
467 if (before(tp->rcv_nxt, tp->rcv_rtt_est.seq))
468 return;
469 tcp_rcv_rtt_update(tp, jiffies - tp->rcv_rtt_est.time, 1);
471 new_measure:
472 tp->rcv_rtt_est.seq = tp->rcv_nxt + tp->rcv_wnd;
473 tp->rcv_rtt_est.time = tcp_time_stamp;
476 static inline void tcp_rcv_rtt_measure_ts(struct sock *sk,
477 const struct sk_buff *skb)
479 struct tcp_sock *tp = tcp_sk(sk);
480 if (tp->rx_opt.rcv_tsecr &&
481 (TCP_SKB_CB(skb)->end_seq -
482 TCP_SKB_CB(skb)->seq >= inet_csk(sk)->icsk_ack.rcv_mss))
483 tcp_rcv_rtt_update(tp, tcp_time_stamp - tp->rx_opt.rcv_tsecr, 0);
487 * This function should be called every time data is copied to user space.
488 * It calculates the appropriate TCP receive buffer space.
490 void tcp_rcv_space_adjust(struct sock *sk)
492 struct tcp_sock *tp = tcp_sk(sk);
493 int time;
494 int space;
496 if (tp->rcvq_space.time == 0)
497 goto new_measure;
499 time = tcp_time_stamp - tp->rcvq_space.time;
500 if (time < (tp->rcv_rtt_est.rtt >> 3) || tp->rcv_rtt_est.rtt == 0)
501 return;
503 space = 2 * (tp->copied_seq - tp->rcvq_space.seq);
505 space = max(tp->rcvq_space.space, space);
507 if (tp->rcvq_space.space != space) {
508 int rcvmem;
510 tp->rcvq_space.space = space;
512 if (sysctl_tcp_moderate_rcvbuf &&
513 !(sk->sk_userlocks & SOCK_RCVBUF_LOCK)) {
514 int new_clamp = space;
516 /* Receive space grows, normalize in order to
517 * take into account packet headers and sk_buff
518 * structure overhead.
520 space /= tp->advmss;
521 if (!space)
522 space = 1;
523 rcvmem = (tp->advmss + MAX_TCP_HEADER +
524 16 + sizeof(struct sk_buff));
525 while (tcp_win_from_space(rcvmem) < tp->advmss)
526 rcvmem += 128;
527 space *= rcvmem;
528 space = min(space, sysctl_tcp_rmem[2]);
529 if (space > sk->sk_rcvbuf) {
530 sk->sk_rcvbuf = space;
532 /* Make the window clamp follow along. */
533 tp->window_clamp = new_clamp;
538 new_measure:
539 tp->rcvq_space.seq = tp->copied_seq;
540 tp->rcvq_space.time = tcp_time_stamp;
543 /* There is something which you must keep in mind when you analyze the
544 * behavior of the tp->ato delayed ack timeout interval. When a
545 * connection starts up, we want to ack as quickly as possible. The
546 * problem is that "good" TCP's do slow start at the beginning of data
547 * transmission. The means that until we send the first few ACK's the
548 * sender will sit on his end and only queue most of his data, because
549 * he can only send snd_cwnd unacked packets at any given time. For
550 * each ACK we send, he increments snd_cwnd and transmits more of his
551 * queue. -DaveM
553 static void tcp_event_data_recv(struct sock *sk, struct sk_buff *skb)
555 struct tcp_sock *tp = tcp_sk(sk);
556 struct inet_connection_sock *icsk = inet_csk(sk);
557 u32 now;
559 inet_csk_schedule_ack(sk);
561 tcp_measure_rcv_mss(sk, skb);
563 tcp_rcv_rtt_measure(tp);
565 now = tcp_time_stamp;
567 if (!icsk->icsk_ack.ato) {
568 /* The _first_ data packet received, initialize
569 * delayed ACK engine.
571 tcp_incr_quickack(sk);
572 icsk->icsk_ack.ato = TCP_ATO_MIN;
573 } else {
574 int m = now - icsk->icsk_ack.lrcvtime;
576 if (m <= TCP_ATO_MIN / 2) {
577 /* The fastest case is the first. */
578 icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + TCP_ATO_MIN / 2;
579 } else if (m < icsk->icsk_ack.ato) {
580 icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + m;
581 if (icsk->icsk_ack.ato > icsk->icsk_rto)
582 icsk->icsk_ack.ato = icsk->icsk_rto;
583 } else if (m > icsk->icsk_rto) {
584 /* Too long gap. Apparently sender failed to
585 * restart window, so that we send ACKs quickly.
587 tcp_incr_quickack(sk);
588 sk_mem_reclaim(sk);
591 icsk->icsk_ack.lrcvtime = now;
593 TCP_ECN_check_ce(tp, skb);
595 if (skb->len >= 128)
596 tcp_grow_window(sk, skb);
599 static u32 tcp_rto_min(struct sock *sk)
601 struct dst_entry *dst = __sk_dst_get(sk);
602 u32 rto_min = TCP_RTO_MIN;
604 if (dst && dst_metric_locked(dst, RTAX_RTO_MIN))
605 rto_min = dst_metric_rtt(dst, RTAX_RTO_MIN);
606 return rto_min;
609 /* Called to compute a smoothed rtt estimate. The data fed to this
610 * routine either comes from timestamps, or from segments that were
611 * known _not_ to have been retransmitted [see Karn/Partridge
612 * Proceedings SIGCOMM 87]. The algorithm is from the SIGCOMM 88
613 * piece by Van Jacobson.
614 * NOTE: the next three routines used to be one big routine.
615 * To save cycles in the RFC 1323 implementation it was better to break
616 * it up into three procedures. -- erics
618 static void tcp_rtt_estimator(struct sock *sk, const __u32 mrtt)
620 struct tcp_sock *tp = tcp_sk(sk);
621 long m = mrtt; /* RTT */
623 /* The following amusing code comes from Jacobson's
624 * article in SIGCOMM '88. Note that rtt and mdev
625 * are scaled versions of rtt and mean deviation.
626 * This is designed to be as fast as possible
627 * m stands for "measurement".
629 * On a 1990 paper the rto value is changed to:
630 * RTO = rtt + 4 * mdev
632 * Funny. This algorithm seems to be very broken.
633 * These formulae increase RTO, when it should be decreased, increase
634 * too slowly, when it should be increased quickly, decrease too quickly
635 * etc. I guess in BSD RTO takes ONE value, so that it is absolutely
636 * does not matter how to _calculate_ it. Seems, it was trap
637 * that VJ failed to avoid. 8)
639 if (m == 0)
640 m = 1;
641 if (tp->srtt != 0) {
642 m -= (tp->srtt >> 3); /* m is now error in rtt est */
643 tp->srtt += m; /* rtt = 7/8 rtt + 1/8 new */
644 if (m < 0) {
645 m = -m; /* m is now abs(error) */
646 m -= (tp->mdev >> 2); /* similar update on mdev */
647 /* This is similar to one of Eifel findings.
648 * Eifel blocks mdev updates when rtt decreases.
649 * This solution is a bit different: we use finer gain
650 * for mdev in this case (alpha*beta).
651 * Like Eifel it also prevents growth of rto,
652 * but also it limits too fast rto decreases,
653 * happening in pure Eifel.
655 if (m > 0)
656 m >>= 3;
657 } else {
658 m -= (tp->mdev >> 2); /* similar update on mdev */
660 tp->mdev += m; /* mdev = 3/4 mdev + 1/4 new */
661 if (tp->mdev > tp->mdev_max) {
662 tp->mdev_max = tp->mdev;
663 if (tp->mdev_max > tp->rttvar)
664 tp->rttvar = tp->mdev_max;
666 if (after(tp->snd_una, tp->rtt_seq)) {
667 if (tp->mdev_max < tp->rttvar)
668 tp->rttvar -= (tp->rttvar - tp->mdev_max) >> 2;
669 tp->rtt_seq = tp->snd_nxt;
670 tp->mdev_max = tcp_rto_min(sk);
672 } else {
673 /* no previous measure. */
674 tp->srtt = m << 3; /* take the measured time to be rtt */
675 tp->mdev = m << 1; /* make sure rto = 3*rtt */
676 tp->mdev_max = tp->rttvar = max(tp->mdev, tcp_rto_min(sk));
677 tp->rtt_seq = tp->snd_nxt;
681 /* Calculate rto without backoff. This is the second half of Van Jacobson's
682 * routine referred to above.
684 static inline void tcp_set_rto(struct sock *sk)
686 const struct tcp_sock *tp = tcp_sk(sk);
687 /* Old crap is replaced with new one. 8)
689 * More seriously:
690 * 1. If rtt variance happened to be less 50msec, it is hallucination.
691 * It cannot be less due to utterly erratic ACK generation made
692 * at least by solaris and freebsd. "Erratic ACKs" has _nothing_
693 * to do with delayed acks, because at cwnd>2 true delack timeout
694 * is invisible. Actually, Linux-2.4 also generates erratic
695 * ACKs in some circumstances.
697 inet_csk(sk)->icsk_rto = (tp->srtt >> 3) + tp->rttvar;
699 /* 2. Fixups made earlier cannot be right.
700 * If we do not estimate RTO correctly without them,
701 * all the algo is pure shit and should be replaced
702 * with correct one. It is exactly, which we pretend to do.
706 /* NOTE: clamping at TCP_RTO_MIN is not required, current algo
707 * guarantees that rto is higher.
709 static inline void tcp_bound_rto(struct sock *sk)
711 if (inet_csk(sk)->icsk_rto > TCP_RTO_MAX)
712 inet_csk(sk)->icsk_rto = TCP_RTO_MAX;
715 /* Save metrics learned by this TCP session.
716 This function is called only, when TCP finishes successfully
717 i.e. when it enters TIME-WAIT or goes from LAST-ACK to CLOSE.
719 void tcp_update_metrics(struct sock *sk)
721 struct tcp_sock *tp = tcp_sk(sk);
722 struct dst_entry *dst = __sk_dst_get(sk);
724 if (sysctl_tcp_nometrics_save)
725 return;
727 dst_confirm(dst);
729 if (dst && (dst->flags & DST_HOST)) {
730 const struct inet_connection_sock *icsk = inet_csk(sk);
731 int m;
732 unsigned long rtt;
734 if (icsk->icsk_backoff || !tp->srtt) {
735 /* This session failed to estimate rtt. Why?
736 * Probably, no packets returned in time.
737 * Reset our results.
739 if (!(dst_metric_locked(dst, RTAX_RTT)))
740 dst->metrics[RTAX_RTT - 1] = 0;
741 return;
744 rtt = dst_metric_rtt(dst, RTAX_RTT);
745 m = rtt - tp->srtt;
747 /* If newly calculated rtt larger than stored one,
748 * store new one. Otherwise, use EWMA. Remember,
749 * rtt overestimation is always better than underestimation.
751 if (!(dst_metric_locked(dst, RTAX_RTT))) {
752 if (m <= 0)
753 set_dst_metric_rtt(dst, RTAX_RTT, tp->srtt);
754 else
755 set_dst_metric_rtt(dst, RTAX_RTT, rtt - (m >> 3));
758 if (!(dst_metric_locked(dst, RTAX_RTTVAR))) {
759 unsigned long var;
760 if (m < 0)
761 m = -m;
763 /* Scale deviation to rttvar fixed point */
764 m >>= 1;
765 if (m < tp->mdev)
766 m = tp->mdev;
768 var = dst_metric_rtt(dst, RTAX_RTTVAR);
769 if (m >= var)
770 var = m;
771 else
772 var -= (var - m) >> 2;
774 set_dst_metric_rtt(dst, RTAX_RTTVAR, var);
777 if (tp->snd_ssthresh >= 0xFFFF) {
778 /* Slow start still did not finish. */
779 if (dst_metric(dst, RTAX_SSTHRESH) &&
780 !dst_metric_locked(dst, RTAX_SSTHRESH) &&
781 (tp->snd_cwnd >> 1) > dst_metric(dst, RTAX_SSTHRESH))
782 dst->metrics[RTAX_SSTHRESH-1] = tp->snd_cwnd >> 1;
783 if (!dst_metric_locked(dst, RTAX_CWND) &&
784 tp->snd_cwnd > dst_metric(dst, RTAX_CWND))
785 dst->metrics[RTAX_CWND - 1] = tp->snd_cwnd;
786 } else if (tp->snd_cwnd > tp->snd_ssthresh &&
787 icsk->icsk_ca_state == TCP_CA_Open) {
788 /* Cong. avoidance phase, cwnd is reliable. */
789 if (!dst_metric_locked(dst, RTAX_SSTHRESH))
790 dst->metrics[RTAX_SSTHRESH-1] =
791 max(tp->snd_cwnd >> 1, tp->snd_ssthresh);
792 if (!dst_metric_locked(dst, RTAX_CWND))
793 dst->metrics[RTAX_CWND-1] = (dst_metric(dst, RTAX_CWND) + tp->snd_cwnd) >> 1;
794 } else {
795 /* Else slow start did not finish, cwnd is non-sense,
796 ssthresh may be also invalid.
798 if (!dst_metric_locked(dst, RTAX_CWND))
799 dst->metrics[RTAX_CWND-1] = (dst_metric(dst, RTAX_CWND) + tp->snd_ssthresh) >> 1;
800 if (dst_metric(dst, RTAX_SSTHRESH) &&
801 !dst_metric_locked(dst, RTAX_SSTHRESH) &&
802 tp->snd_ssthresh > dst_metric(dst, RTAX_SSTHRESH))
803 dst->metrics[RTAX_SSTHRESH-1] = tp->snd_ssthresh;
806 if (!dst_metric_locked(dst, RTAX_REORDERING)) {
807 if (dst_metric(dst, RTAX_REORDERING) < tp->reordering &&
808 tp->reordering != sysctl_tcp_reordering)
809 dst->metrics[RTAX_REORDERING-1] = tp->reordering;
814 /* Numbers are taken from RFC3390.
816 * John Heffner states:
818 * The RFC specifies a window of no more than 4380 bytes
819 * unless 2*MSS > 4380. Reading the pseudocode in the RFC
820 * is a bit misleading because they use a clamp at 4380 bytes
821 * rather than use a multiplier in the relevant range.
823 __u32 tcp_init_cwnd(struct tcp_sock *tp, struct dst_entry *dst)
825 __u32 cwnd = (dst ? dst_metric(dst, RTAX_INITCWND) : 0);
827 if (!cwnd) {
828 if (tp->mss_cache > 1460)
829 cwnd = 2;
830 else
831 cwnd = (tp->mss_cache > 1095) ? 3 : 4;
833 return min_t(__u32, cwnd, tp->snd_cwnd_clamp);
836 /* Set slow start threshold and cwnd not falling to slow start */
837 void tcp_enter_cwr(struct sock *sk, const int set_ssthresh)
839 struct tcp_sock *tp = tcp_sk(sk);
840 const struct inet_connection_sock *icsk = inet_csk(sk);
842 tp->prior_ssthresh = 0;
843 tp->bytes_acked = 0;
844 if (icsk->icsk_ca_state < TCP_CA_CWR) {
845 tp->undo_marker = 0;
846 if (set_ssthresh)
847 tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
848 tp->snd_cwnd = min(tp->snd_cwnd,
849 tcp_packets_in_flight(tp) + 1U);
850 tp->snd_cwnd_cnt = 0;
851 tp->high_seq = tp->snd_nxt;
852 tp->snd_cwnd_stamp = tcp_time_stamp;
853 TCP_ECN_queue_cwr(tp);
855 tcp_set_ca_state(sk, TCP_CA_CWR);
860 * Packet counting of FACK is based on in-order assumptions, therefore TCP
861 * disables it when reordering is detected
863 static void tcp_disable_fack(struct tcp_sock *tp)
865 /* RFC3517 uses different metric in lost marker => reset on change */
866 if (tcp_is_fack(tp))
867 tp->lost_skb_hint = NULL;
868 tp->rx_opt.sack_ok &= ~2;
871 /* Take a notice that peer is sending D-SACKs */
872 static void tcp_dsack_seen(struct tcp_sock *tp)
874 tp->rx_opt.sack_ok |= 4;
877 /* Initialize metrics on socket. */
879 static void tcp_init_metrics(struct sock *sk)
881 struct tcp_sock *tp = tcp_sk(sk);
882 struct dst_entry *dst = __sk_dst_get(sk);
884 if (dst == NULL)
885 goto reset;
887 dst_confirm(dst);
889 if (dst_metric_locked(dst, RTAX_CWND))
890 tp->snd_cwnd_clamp = dst_metric(dst, RTAX_CWND);
891 if (dst_metric(dst, RTAX_SSTHRESH)) {
892 tp->snd_ssthresh = dst_metric(dst, RTAX_SSTHRESH);
893 if (tp->snd_ssthresh > tp->snd_cwnd_clamp)
894 tp->snd_ssthresh = tp->snd_cwnd_clamp;
896 if (dst_metric(dst, RTAX_REORDERING) &&
897 tp->reordering != dst_metric(dst, RTAX_REORDERING)) {
898 tcp_disable_fack(tp);
899 tp->reordering = dst_metric(dst, RTAX_REORDERING);
902 if (dst_metric(dst, RTAX_RTT) == 0)
903 goto reset;
905 if (!tp->srtt && dst_metric_rtt(dst, RTAX_RTT) < (TCP_TIMEOUT_INIT << 3))
906 goto reset;
908 /* Initial rtt is determined from SYN,SYN-ACK.
909 * The segment is small and rtt may appear much
910 * less than real one. Use per-dst memory
911 * to make it more realistic.
913 * A bit of theory. RTT is time passed after "normal" sized packet
914 * is sent until it is ACKed. In normal circumstances sending small
915 * packets force peer to delay ACKs and calculation is correct too.
916 * The algorithm is adaptive and, provided we follow specs, it
917 * NEVER underestimate RTT. BUT! If peer tries to make some clever
918 * tricks sort of "quick acks" for time long enough to decrease RTT
919 * to low value, and then abruptly stops to do it and starts to delay
920 * ACKs, wait for troubles.
922 if (dst_metric_rtt(dst, RTAX_RTT) > tp->srtt) {
923 tp->srtt = dst_metric_rtt(dst, RTAX_RTT);
924 tp->rtt_seq = tp->snd_nxt;
926 if (dst_metric_rtt(dst, RTAX_RTTVAR) > tp->mdev) {
927 tp->mdev = dst_metric_rtt(dst, RTAX_RTTVAR);
928 tp->mdev_max = tp->rttvar = max(tp->mdev, tcp_rto_min(sk));
930 tcp_set_rto(sk);
931 tcp_bound_rto(sk);
932 if (inet_csk(sk)->icsk_rto < TCP_TIMEOUT_INIT && !tp->rx_opt.saw_tstamp)
933 goto reset;
934 tp->snd_cwnd = tcp_init_cwnd(tp, dst);
935 tp->snd_cwnd_stamp = tcp_time_stamp;
936 return;
938 reset:
939 /* Play conservative. If timestamps are not
940 * supported, TCP will fail to recalculate correct
941 * rtt, if initial rto is too small. FORGET ALL AND RESET!
943 if (!tp->rx_opt.saw_tstamp && tp->srtt) {
944 tp->srtt = 0;
945 tp->mdev = tp->mdev_max = tp->rttvar = TCP_TIMEOUT_INIT;
946 inet_csk(sk)->icsk_rto = TCP_TIMEOUT_INIT;
950 static void tcp_update_reordering(struct sock *sk, const int metric,
951 const int ts)
953 struct tcp_sock *tp = tcp_sk(sk);
954 if (metric > tp->reordering) {
955 int mib_idx;
957 tp->reordering = min(TCP_MAX_REORDERING, metric);
959 /* This exciting event is worth to be remembered. 8) */
960 if (ts)
961 mib_idx = LINUX_MIB_TCPTSREORDER;
962 else if (tcp_is_reno(tp))
963 mib_idx = LINUX_MIB_TCPRENOREORDER;
964 else if (tcp_is_fack(tp))
965 mib_idx = LINUX_MIB_TCPFACKREORDER;
966 else
967 mib_idx = LINUX_MIB_TCPSACKREORDER;
969 NET_INC_STATS_BH(sock_net(sk), mib_idx);
970 #if FASTRETRANS_DEBUG > 1
971 printk(KERN_DEBUG "Disorder%d %d %u f%u s%u rr%d\n",
972 tp->rx_opt.sack_ok, inet_csk(sk)->icsk_ca_state,
973 tp->reordering,
974 tp->fackets_out,
975 tp->sacked_out,
976 tp->undo_marker ? tp->undo_retrans : 0);
977 #endif
978 tcp_disable_fack(tp);
982 /* This must be called before lost_out is incremented */
983 static void tcp_verify_retransmit_hint(struct tcp_sock *tp, struct sk_buff *skb)
985 if ((tp->retransmit_skb_hint == NULL) ||
986 before(TCP_SKB_CB(skb)->seq,
987 TCP_SKB_CB(tp->retransmit_skb_hint)->seq))
988 tp->retransmit_skb_hint = skb;
990 if (!tp->lost_out ||
991 after(TCP_SKB_CB(skb)->end_seq, tp->retransmit_high))
992 tp->retransmit_high = TCP_SKB_CB(skb)->end_seq;
995 static void tcp_skb_mark_lost(struct tcp_sock *tp, struct sk_buff *skb)
997 if (!(TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_ACKED))) {
998 tcp_verify_retransmit_hint(tp, skb);
1000 tp->lost_out += tcp_skb_pcount(skb);
1001 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
1005 void tcp_skb_mark_lost_uncond_verify(struct tcp_sock *tp, struct sk_buff *skb)
1007 tcp_verify_retransmit_hint(tp, skb);
1009 if (!(TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_ACKED))) {
1010 tp->lost_out += tcp_skb_pcount(skb);
1011 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
1015 /* This procedure tags the retransmission queue when SACKs arrive.
1017 * We have three tag bits: SACKED(S), RETRANS(R) and LOST(L).
1018 * Packets in queue with these bits set are counted in variables
1019 * sacked_out, retrans_out and lost_out, correspondingly.
1021 * Valid combinations are:
1022 * Tag InFlight Description
1023 * 0 1 - orig segment is in flight.
1024 * S 0 - nothing flies, orig reached receiver.
1025 * L 0 - nothing flies, orig lost by net.
1026 * R 2 - both orig and retransmit are in flight.
1027 * L|R 1 - orig is lost, retransmit is in flight.
1028 * S|R 1 - orig reached receiver, retrans is still in flight.
1029 * (L|S|R is logically valid, it could occur when L|R is sacked,
1030 * but it is equivalent to plain S and code short-curcuits it to S.
1031 * L|S is logically invalid, it would mean -1 packet in flight 8))
1033 * These 6 states form finite state machine, controlled by the following events:
1034 * 1. New ACK (+SACK) arrives. (tcp_sacktag_write_queue())
1035 * 2. Retransmission. (tcp_retransmit_skb(), tcp_xmit_retransmit_queue())
1036 * 3. Loss detection event of one of three flavors:
1037 * A. Scoreboard estimator decided the packet is lost.
1038 * A'. Reno "three dupacks" marks head of queue lost.
1039 * A''. Its FACK modfication, head until snd.fack is lost.
1040 * B. SACK arrives sacking data transmitted after never retransmitted
1041 * hole was sent out.
1042 * C. SACK arrives sacking SND.NXT at the moment, when the
1043 * segment was retransmitted.
1044 * 4. D-SACK added new rule: D-SACK changes any tag to S.
1046 * It is pleasant to note, that state diagram turns out to be commutative,
1047 * so that we are allowed not to be bothered by order of our actions,
1048 * when multiple events arrive simultaneously. (see the function below).
1050 * Reordering detection.
1051 * --------------------
1052 * Reordering metric is maximal distance, which a packet can be displaced
1053 * in packet stream. With SACKs we can estimate it:
1055 * 1. SACK fills old hole and the corresponding segment was not
1056 * ever retransmitted -> reordering. Alas, we cannot use it
1057 * when segment was retransmitted.
1058 * 2. The last flaw is solved with D-SACK. D-SACK arrives
1059 * for retransmitted and already SACKed segment -> reordering..
1060 * Both of these heuristics are not used in Loss state, when we cannot
1061 * account for retransmits accurately.
1063 * SACK block validation.
1064 * ----------------------
1066 * SACK block range validation checks that the received SACK block fits to
1067 * the expected sequence limits, i.e., it is between SND.UNA and SND.NXT.
1068 * Note that SND.UNA is not included to the range though being valid because
1069 * it means that the receiver is rather inconsistent with itself reporting
1070 * SACK reneging when it should advance SND.UNA. Such SACK block this is
1071 * perfectly valid, however, in light of RFC2018 which explicitly states
1072 * that "SACK block MUST reflect the newest segment. Even if the newest
1073 * segment is going to be discarded ...", not that it looks very clever
1074 * in case of head skb. Due to potentional receiver driven attacks, we
1075 * choose to avoid immediate execution of a walk in write queue due to
1076 * reneging and defer head skb's loss recovery to standard loss recovery
1077 * procedure that will eventually trigger (nothing forbids us doing this).
1079 * Implements also blockage to start_seq wrap-around. Problem lies in the
1080 * fact that though start_seq (s) is before end_seq (i.e., not reversed),
1081 * there's no guarantee that it will be before snd_nxt (n). The problem
1082 * happens when start_seq resides between end_seq wrap (e_w) and snd_nxt
1083 * wrap (s_w):
1085 * <- outs wnd -> <- wrapzone ->
1086 * u e n u_w e_w s n_w
1087 * | | | | | | |
1088 * |<------------+------+----- TCP seqno space --------------+---------->|
1089 * ...-- <2^31 ->| |<--------...
1090 * ...---- >2^31 ------>| |<--------...
1092 * Current code wouldn't be vulnerable but it's better still to discard such
1093 * crazy SACK blocks. Doing this check for start_seq alone closes somewhat
1094 * similar case (end_seq after snd_nxt wrap) as earlier reversed check in
1095 * snd_nxt wrap -> snd_una region will then become "well defined", i.e.,
1096 * equal to the ideal case (infinite seqno space without wrap caused issues).
1098 * With D-SACK the lower bound is extended to cover sequence space below
1099 * SND.UNA down to undo_marker, which is the last point of interest. Yet
1100 * again, D-SACK block must not to go across snd_una (for the same reason as
1101 * for the normal SACK blocks, explained above). But there all simplicity
1102 * ends, TCP might receive valid D-SACKs below that. As long as they reside
1103 * fully below undo_marker they do not affect behavior in anyway and can
1104 * therefore be safely ignored. In rare cases (which are more or less
1105 * theoretical ones), the D-SACK will nicely cross that boundary due to skb
1106 * fragmentation and packet reordering past skb's retransmission. To consider
1107 * them correctly, the acceptable range must be extended even more though
1108 * the exact amount is rather hard to quantify. However, tp->max_window can
1109 * be used as an exaggerated estimate.
1111 static int tcp_is_sackblock_valid(struct tcp_sock *tp, int is_dsack,
1112 u32 start_seq, u32 end_seq)
1114 /* Too far in future, or reversed (interpretation is ambiguous) */
1115 if (after(end_seq, tp->snd_nxt) || !before(start_seq, end_seq))
1116 return 0;
1118 /* Nasty start_seq wrap-around check (see comments above) */
1119 if (!before(start_seq, tp->snd_nxt))
1120 return 0;
1122 /* In outstanding window? ...This is valid exit for D-SACKs too.
1123 * start_seq == snd_una is non-sensical (see comments above)
1125 if (after(start_seq, tp->snd_una))
1126 return 1;
1128 if (!is_dsack || !tp->undo_marker)
1129 return 0;
1131 /* ...Then it's D-SACK, and must reside below snd_una completely */
1132 if (!after(end_seq, tp->snd_una))
1133 return 0;
1135 if (!before(start_seq, tp->undo_marker))
1136 return 1;
1138 /* Too old */
1139 if (!after(end_seq, tp->undo_marker))
1140 return 0;
1142 /* Undo_marker boundary crossing (overestimates a lot). Known already:
1143 * start_seq < undo_marker and end_seq >= undo_marker.
1145 return !before(start_seq, end_seq - tp->max_window);
1148 /* Check for lost retransmit. This superb idea is borrowed from "ratehalving".
1149 * Event "C". Later note: FACK people cheated me again 8), we have to account
1150 * for reordering! Ugly, but should help.
1152 * Search retransmitted skbs from write_queue that were sent when snd_nxt was
1153 * less than what is now known to be received by the other end (derived from
1154 * highest SACK block). Also calculate the lowest snd_nxt among the remaining
1155 * retransmitted skbs to avoid some costly processing per ACKs.
1157 static void tcp_mark_lost_retrans(struct sock *sk)
1159 const struct inet_connection_sock *icsk = inet_csk(sk);
1160 struct tcp_sock *tp = tcp_sk(sk);
1161 struct sk_buff *skb;
1162 int cnt = 0;
1163 u32 new_low_seq = tp->snd_nxt;
1164 u32 received_upto = tcp_highest_sack_seq(tp);
1166 if (!tcp_is_fack(tp) || !tp->retrans_out ||
1167 !after(received_upto, tp->lost_retrans_low) ||
1168 icsk->icsk_ca_state != TCP_CA_Recovery)
1169 return;
1171 tcp_for_write_queue(skb, sk) {
1172 u32 ack_seq = TCP_SKB_CB(skb)->ack_seq;
1174 if (skb == tcp_send_head(sk))
1175 break;
1176 if (cnt == tp->retrans_out)
1177 break;
1178 if (!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una))
1179 continue;
1181 if (!(TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS))
1182 continue;
1184 if (after(received_upto, ack_seq) &&
1185 (tcp_is_fack(tp) ||
1186 !before(received_upto,
1187 ack_seq + tp->reordering * tp->mss_cache))) {
1188 TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
1189 tp->retrans_out -= tcp_skb_pcount(skb);
1191 tcp_skb_mark_lost_uncond_verify(tp, skb);
1192 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPLOSTRETRANSMIT);
1193 } else {
1194 if (before(ack_seq, new_low_seq))
1195 new_low_seq = ack_seq;
1196 cnt += tcp_skb_pcount(skb);
1200 if (tp->retrans_out)
1201 tp->lost_retrans_low = new_low_seq;
1204 static int tcp_check_dsack(struct sock *sk, struct sk_buff *ack_skb,
1205 struct tcp_sack_block_wire *sp, int num_sacks,
1206 u32 prior_snd_una)
1208 struct tcp_sock *tp = tcp_sk(sk);
1209 u32 start_seq_0 = get_unaligned_be32(&sp[0].start_seq);
1210 u32 end_seq_0 = get_unaligned_be32(&sp[0].end_seq);
1211 int dup_sack = 0;
1213 if (before(start_seq_0, TCP_SKB_CB(ack_skb)->ack_seq)) {
1214 dup_sack = 1;
1215 tcp_dsack_seen(tp);
1216 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPDSACKRECV);
1217 } else if (num_sacks > 1) {
1218 u32 end_seq_1 = get_unaligned_be32(&sp[1].end_seq);
1219 u32 start_seq_1 = get_unaligned_be32(&sp[1].start_seq);
1221 if (!after(end_seq_0, end_seq_1) &&
1222 !before(start_seq_0, start_seq_1)) {
1223 dup_sack = 1;
1224 tcp_dsack_seen(tp);
1225 NET_INC_STATS_BH(sock_net(sk),
1226 LINUX_MIB_TCPDSACKOFORECV);
1230 /* D-SACK for already forgotten data... Do dumb counting. */
1231 if (dup_sack &&
1232 !after(end_seq_0, prior_snd_una) &&
1233 after(end_seq_0, tp->undo_marker))
1234 tp->undo_retrans--;
1236 return dup_sack;
1239 /* Check if skb is fully within the SACK block. In presence of GSO skbs,
1240 * the incoming SACK may not exactly match but we can find smaller MSS
1241 * aligned portion of it that matches. Therefore we might need to fragment
1242 * which may fail and creates some hassle (caller must handle error case
1243 * returns).
1245 static int tcp_match_skb_to_sack(struct sock *sk, struct sk_buff *skb,
1246 u32 start_seq, u32 end_seq)
1248 int in_sack, err;
1249 unsigned int pkt_len;
1251 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq) &&
1252 !before(end_seq, TCP_SKB_CB(skb)->end_seq);
1254 if (tcp_skb_pcount(skb) > 1 && !in_sack &&
1255 after(TCP_SKB_CB(skb)->end_seq, start_seq)) {
1257 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq);
1259 if (!in_sack)
1260 pkt_len = start_seq - TCP_SKB_CB(skb)->seq;
1261 else
1262 pkt_len = end_seq - TCP_SKB_CB(skb)->seq;
1263 err = tcp_fragment(sk, skb, pkt_len, skb_shinfo(skb)->gso_size);
1264 if (err < 0)
1265 return err;
1268 return in_sack;
1271 static int tcp_sacktag_one(struct sk_buff *skb, struct sock *sk,
1272 int *reord, int dup_sack, int fack_count)
1274 struct tcp_sock *tp = tcp_sk(sk);
1275 u8 sacked = TCP_SKB_CB(skb)->sacked;
1276 int flag = 0;
1278 /* Account D-SACK for retransmitted packet. */
1279 if (dup_sack && (sacked & TCPCB_RETRANS)) {
1280 if (after(TCP_SKB_CB(skb)->end_seq, tp->undo_marker))
1281 tp->undo_retrans--;
1282 if (sacked & TCPCB_SACKED_ACKED)
1283 *reord = min(fack_count, *reord);
1286 /* Nothing to do; acked frame is about to be dropped (was ACKed). */
1287 if (!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una))
1288 return flag;
1290 if (!(sacked & TCPCB_SACKED_ACKED)) {
1291 if (sacked & TCPCB_SACKED_RETRANS) {
1292 /* If the segment is not tagged as lost,
1293 * we do not clear RETRANS, believing
1294 * that retransmission is still in flight.
1296 if (sacked & TCPCB_LOST) {
1297 TCP_SKB_CB(skb)->sacked &=
1298 ~(TCPCB_LOST|TCPCB_SACKED_RETRANS);
1299 tp->lost_out -= tcp_skb_pcount(skb);
1300 tp->retrans_out -= tcp_skb_pcount(skb);
1302 } else {
1303 if (!(sacked & TCPCB_RETRANS)) {
1304 /* New sack for not retransmitted frame,
1305 * which was in hole. It is reordering.
1307 if (before(TCP_SKB_CB(skb)->seq,
1308 tcp_highest_sack_seq(tp)))
1309 *reord = min(fack_count, *reord);
1311 /* SACK enhanced F-RTO (RFC4138; Appendix B) */
1312 if (!after(TCP_SKB_CB(skb)->end_seq, tp->frto_highmark))
1313 flag |= FLAG_ONLY_ORIG_SACKED;
1316 if (sacked & TCPCB_LOST) {
1317 TCP_SKB_CB(skb)->sacked &= ~TCPCB_LOST;
1318 tp->lost_out -= tcp_skb_pcount(skb);
1322 TCP_SKB_CB(skb)->sacked |= TCPCB_SACKED_ACKED;
1323 flag |= FLAG_DATA_SACKED;
1324 tp->sacked_out += tcp_skb_pcount(skb);
1326 fack_count += tcp_skb_pcount(skb);
1328 /* Lost marker hint past SACKed? Tweak RFC3517 cnt */
1329 if (!tcp_is_fack(tp) && (tp->lost_skb_hint != NULL) &&
1330 before(TCP_SKB_CB(skb)->seq,
1331 TCP_SKB_CB(tp->lost_skb_hint)->seq))
1332 tp->lost_cnt_hint += tcp_skb_pcount(skb);
1334 if (fack_count > tp->fackets_out)
1335 tp->fackets_out = fack_count;
1337 if (!before(TCP_SKB_CB(skb)->seq, tcp_highest_sack_seq(tp)))
1338 tcp_advance_highest_sack(sk, skb);
1341 /* D-SACK. We can detect redundant retransmission in S|R and plain R
1342 * frames and clear it. undo_retrans is decreased above, L|R frames
1343 * are accounted above as well.
1345 if (dup_sack && (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS)) {
1346 TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
1347 tp->retrans_out -= tcp_skb_pcount(skb);
1350 return flag;
1353 static struct sk_buff *tcp_sacktag_walk(struct sk_buff *skb, struct sock *sk,
1354 struct tcp_sack_block *next_dup,
1355 u32 start_seq, u32 end_seq,
1356 int dup_sack_in, int *fack_count,
1357 int *reord, int *flag)
1359 tcp_for_write_queue_from(skb, sk) {
1360 int in_sack = 0;
1361 int dup_sack = dup_sack_in;
1363 if (skb == tcp_send_head(sk))
1364 break;
1366 /* queue is in-order => we can short-circuit the walk early */
1367 if (!before(TCP_SKB_CB(skb)->seq, end_seq))
1368 break;
1370 if ((next_dup != NULL) &&
1371 before(TCP_SKB_CB(skb)->seq, next_dup->end_seq)) {
1372 in_sack = tcp_match_skb_to_sack(sk, skb,
1373 next_dup->start_seq,
1374 next_dup->end_seq);
1375 if (in_sack > 0)
1376 dup_sack = 1;
1379 if (in_sack <= 0)
1380 in_sack = tcp_match_skb_to_sack(sk, skb, start_seq,
1381 end_seq);
1382 if (unlikely(in_sack < 0))
1383 break;
1385 if (in_sack)
1386 *flag |= tcp_sacktag_one(skb, sk, reord, dup_sack,
1387 *fack_count);
1389 *fack_count += tcp_skb_pcount(skb);
1391 return skb;
1394 /* Avoid all extra work that is being done by sacktag while walking in
1395 * a normal way
1397 static struct sk_buff *tcp_sacktag_skip(struct sk_buff *skb, struct sock *sk,
1398 u32 skip_to_seq, int *fack_count)
1400 tcp_for_write_queue_from(skb, sk) {
1401 if (skb == tcp_send_head(sk))
1402 break;
1404 if (!before(TCP_SKB_CB(skb)->end_seq, skip_to_seq))
1405 break;
1407 *fack_count += tcp_skb_pcount(skb);
1409 return skb;
1412 static struct sk_buff *tcp_maybe_skipping_dsack(struct sk_buff *skb,
1413 struct sock *sk,
1414 struct tcp_sack_block *next_dup,
1415 u32 skip_to_seq,
1416 int *fack_count, int *reord,
1417 int *flag)
1419 if (next_dup == NULL)
1420 return skb;
1422 if (before(next_dup->start_seq, skip_to_seq)) {
1423 skb = tcp_sacktag_skip(skb, sk, next_dup->start_seq, fack_count);
1424 skb = tcp_sacktag_walk(skb, sk, NULL,
1425 next_dup->start_seq, next_dup->end_seq,
1426 1, fack_count, reord, flag);
1429 return skb;
1432 static int tcp_sack_cache_ok(struct tcp_sock *tp, struct tcp_sack_block *cache)
1434 return cache < tp->recv_sack_cache + ARRAY_SIZE(tp->recv_sack_cache);
1437 static int
1438 tcp_sacktag_write_queue(struct sock *sk, struct sk_buff *ack_skb,
1439 u32 prior_snd_una)
1441 const struct inet_connection_sock *icsk = inet_csk(sk);
1442 struct tcp_sock *tp = tcp_sk(sk);
1443 unsigned char *ptr = (skb_transport_header(ack_skb) +
1444 TCP_SKB_CB(ack_skb)->sacked);
1445 struct tcp_sack_block_wire *sp_wire = (struct tcp_sack_block_wire *)(ptr+2);
1446 struct tcp_sack_block sp[TCP_NUM_SACKS];
1447 struct tcp_sack_block *cache;
1448 struct sk_buff *skb;
1449 int num_sacks = min(TCP_NUM_SACKS, (ptr[1] - TCPOLEN_SACK_BASE) >> 3);
1450 int used_sacks;
1451 int reord = tp->packets_out;
1452 int flag = 0;
1453 int found_dup_sack = 0;
1454 int fack_count;
1455 int i, j;
1456 int first_sack_index;
1458 if (!tp->sacked_out) {
1459 if (WARN_ON(tp->fackets_out))
1460 tp->fackets_out = 0;
1461 tcp_highest_sack_reset(sk);
1464 found_dup_sack = tcp_check_dsack(sk, ack_skb, sp_wire,
1465 num_sacks, prior_snd_una);
1466 if (found_dup_sack)
1467 flag |= FLAG_DSACKING_ACK;
1469 /* Eliminate too old ACKs, but take into
1470 * account more or less fresh ones, they can
1471 * contain valid SACK info.
1473 if (before(TCP_SKB_CB(ack_skb)->ack_seq, prior_snd_una - tp->max_window))
1474 return 0;
1476 if (!tp->packets_out)
1477 goto out;
1479 used_sacks = 0;
1480 first_sack_index = 0;
1481 for (i = 0; i < num_sacks; i++) {
1482 int dup_sack = !i && found_dup_sack;
1484 sp[used_sacks].start_seq = get_unaligned_be32(&sp_wire[i].start_seq);
1485 sp[used_sacks].end_seq = get_unaligned_be32(&sp_wire[i].end_seq);
1487 if (!tcp_is_sackblock_valid(tp, dup_sack,
1488 sp[used_sacks].start_seq,
1489 sp[used_sacks].end_seq)) {
1490 int mib_idx;
1492 if (dup_sack) {
1493 if (!tp->undo_marker)
1494 mib_idx = LINUX_MIB_TCPDSACKIGNOREDNOUNDO;
1495 else
1496 mib_idx = LINUX_MIB_TCPDSACKIGNOREDOLD;
1497 } else {
1498 /* Don't count olds caused by ACK reordering */
1499 if ((TCP_SKB_CB(ack_skb)->ack_seq != tp->snd_una) &&
1500 !after(sp[used_sacks].end_seq, tp->snd_una))
1501 continue;
1502 mib_idx = LINUX_MIB_TCPSACKDISCARD;
1505 NET_INC_STATS_BH(sock_net(sk), mib_idx);
1506 if (i == 0)
1507 first_sack_index = -1;
1508 continue;
1511 /* Ignore very old stuff early */
1512 if (!after(sp[used_sacks].end_seq, prior_snd_una))
1513 continue;
1515 used_sacks++;
1518 /* order SACK blocks to allow in order walk of the retrans queue */
1519 for (i = used_sacks - 1; i > 0; i--) {
1520 for (j = 0; j < i; j++) {
1521 if (after(sp[j].start_seq, sp[j + 1].start_seq)) {
1522 struct tcp_sack_block tmp;
1524 tmp = sp[j];
1525 sp[j] = sp[j + 1];
1526 sp[j + 1] = tmp;
1528 /* Track where the first SACK block goes to */
1529 if (j == first_sack_index)
1530 first_sack_index = j + 1;
1535 skb = tcp_write_queue_head(sk);
1536 fack_count = 0;
1537 i = 0;
1539 if (!tp->sacked_out) {
1540 /* It's already past, so skip checking against it */
1541 cache = tp->recv_sack_cache + ARRAY_SIZE(tp->recv_sack_cache);
1542 } else {
1543 cache = tp->recv_sack_cache;
1544 /* Skip empty blocks in at head of the cache */
1545 while (tcp_sack_cache_ok(tp, cache) && !cache->start_seq &&
1546 !cache->end_seq)
1547 cache++;
1550 while (i < used_sacks) {
1551 u32 start_seq = sp[i].start_seq;
1552 u32 end_seq = sp[i].end_seq;
1553 int dup_sack = (found_dup_sack && (i == first_sack_index));
1554 struct tcp_sack_block *next_dup = NULL;
1556 if (found_dup_sack && ((i + 1) == first_sack_index))
1557 next_dup = &sp[i + 1];
1559 /* Event "B" in the comment above. */
1560 if (after(end_seq, tp->high_seq))
1561 flag |= FLAG_DATA_LOST;
1563 /* Skip too early cached blocks */
1564 while (tcp_sack_cache_ok(tp, cache) &&
1565 !before(start_seq, cache->end_seq))
1566 cache++;
1568 /* Can skip some work by looking recv_sack_cache? */
1569 if (tcp_sack_cache_ok(tp, cache) && !dup_sack &&
1570 after(end_seq, cache->start_seq)) {
1572 /* Head todo? */
1573 if (before(start_seq, cache->start_seq)) {
1574 skb = tcp_sacktag_skip(skb, sk, start_seq,
1575 &fack_count);
1576 skb = tcp_sacktag_walk(skb, sk, next_dup,
1577 start_seq,
1578 cache->start_seq,
1579 dup_sack, &fack_count,
1580 &reord, &flag);
1583 /* Rest of the block already fully processed? */
1584 if (!after(end_seq, cache->end_seq))
1585 goto advance_sp;
1587 skb = tcp_maybe_skipping_dsack(skb, sk, next_dup,
1588 cache->end_seq,
1589 &fack_count, &reord,
1590 &flag);
1592 /* ...tail remains todo... */
1593 if (tcp_highest_sack_seq(tp) == cache->end_seq) {
1594 /* ...but better entrypoint exists! */
1595 skb = tcp_highest_sack(sk);
1596 if (skb == NULL)
1597 break;
1598 fack_count = tp->fackets_out;
1599 cache++;
1600 goto walk;
1603 skb = tcp_sacktag_skip(skb, sk, cache->end_seq,
1604 &fack_count);
1605 /* Check overlap against next cached too (past this one already) */
1606 cache++;
1607 continue;
1610 if (!before(start_seq, tcp_highest_sack_seq(tp))) {
1611 skb = tcp_highest_sack(sk);
1612 if (skb == NULL)
1613 break;
1614 fack_count = tp->fackets_out;
1616 skb = tcp_sacktag_skip(skb, sk, start_seq, &fack_count);
1618 walk:
1619 skb = tcp_sacktag_walk(skb, sk, next_dup, start_seq, end_seq,
1620 dup_sack, &fack_count, &reord, &flag);
1622 advance_sp:
1623 /* SACK enhanced FRTO (RFC4138, Appendix B): Clearing correct
1624 * due to in-order walk
1626 if (after(end_seq, tp->frto_highmark))
1627 flag &= ~FLAG_ONLY_ORIG_SACKED;
1629 i++;
1632 /* Clear the head of the cache sack blocks so we can skip it next time */
1633 for (i = 0; i < ARRAY_SIZE(tp->recv_sack_cache) - used_sacks; i++) {
1634 tp->recv_sack_cache[i].start_seq = 0;
1635 tp->recv_sack_cache[i].end_seq = 0;
1637 for (j = 0; j < used_sacks; j++)
1638 tp->recv_sack_cache[i++] = sp[j];
1640 tcp_mark_lost_retrans(sk);
1642 tcp_verify_left_out(tp);
1644 if ((reord < tp->fackets_out) &&
1645 ((icsk->icsk_ca_state != TCP_CA_Loss) || tp->undo_marker) &&
1646 (!tp->frto_highmark || after(tp->snd_una, tp->frto_highmark)))
1647 tcp_update_reordering(sk, tp->fackets_out - reord, 0);
1649 out:
1651 #if FASTRETRANS_DEBUG > 0
1652 WARN_ON((int)tp->sacked_out < 0);
1653 WARN_ON((int)tp->lost_out < 0);
1654 WARN_ON((int)tp->retrans_out < 0);
1655 WARN_ON((int)tcp_packets_in_flight(tp) < 0);
1656 #endif
1657 return flag;
1660 /* Limits sacked_out so that sum with lost_out isn't ever larger than
1661 * packets_out. Returns zero if sacked_out adjustement wasn't necessary.
1663 int tcp_limit_reno_sacked(struct tcp_sock *tp)
1665 u32 holes;
1667 holes = max(tp->lost_out, 1U);
1668 holes = min(holes, tp->packets_out);
1670 if ((tp->sacked_out + holes) > tp->packets_out) {
1671 tp->sacked_out = tp->packets_out - holes;
1672 return 1;
1674 return 0;
1677 /* If we receive more dupacks than we expected counting segments
1678 * in assumption of absent reordering, interpret this as reordering.
1679 * The only another reason could be bug in receiver TCP.
1681 static void tcp_check_reno_reordering(struct sock *sk, const int addend)
1683 struct tcp_sock *tp = tcp_sk(sk);
1684 if (tcp_limit_reno_sacked(tp))
1685 tcp_update_reordering(sk, tp->packets_out + addend, 0);
1688 /* Emulate SACKs for SACKless connection: account for a new dupack. */
1690 static void tcp_add_reno_sack(struct sock *sk)
1692 struct tcp_sock *tp = tcp_sk(sk);
1693 tp->sacked_out++;
1694 tcp_check_reno_reordering(sk, 0);
1695 tcp_verify_left_out(tp);
1698 /* Account for ACK, ACKing some data in Reno Recovery phase. */
1700 static void tcp_remove_reno_sacks(struct sock *sk, int acked)
1702 struct tcp_sock *tp = tcp_sk(sk);
1704 if (acked > 0) {
1705 /* One ACK acked hole. The rest eat duplicate ACKs. */
1706 if (acked - 1 >= tp->sacked_out)
1707 tp->sacked_out = 0;
1708 else
1709 tp->sacked_out -= acked - 1;
1711 tcp_check_reno_reordering(sk, acked);
1712 tcp_verify_left_out(tp);
1715 static inline void tcp_reset_reno_sack(struct tcp_sock *tp)
1717 tp->sacked_out = 0;
1720 static int tcp_is_sackfrto(const struct tcp_sock *tp)
1722 return (sysctl_tcp_frto == 0x2) && !tcp_is_reno(tp);
1725 /* F-RTO can only be used if TCP has never retransmitted anything other than
1726 * head (SACK enhanced variant from Appendix B of RFC4138 is more robust here)
1728 int tcp_use_frto(struct sock *sk)
1730 const struct tcp_sock *tp = tcp_sk(sk);
1731 const struct inet_connection_sock *icsk = inet_csk(sk);
1732 struct sk_buff *skb;
1734 if (!sysctl_tcp_frto)
1735 return 0;
1737 /* MTU probe and F-RTO won't really play nicely along currently */
1738 if (icsk->icsk_mtup.probe_size)
1739 return 0;
1741 if (tcp_is_sackfrto(tp))
1742 return 1;
1744 /* Avoid expensive walking of rexmit queue if possible */
1745 if (tp->retrans_out > 1)
1746 return 0;
1748 skb = tcp_write_queue_head(sk);
1749 skb = tcp_write_queue_next(sk, skb); /* Skips head */
1750 tcp_for_write_queue_from(skb, sk) {
1751 if (skb == tcp_send_head(sk))
1752 break;
1753 if (TCP_SKB_CB(skb)->sacked & TCPCB_RETRANS)
1754 return 0;
1755 /* Short-circuit when first non-SACKed skb has been checked */
1756 if (!(TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED))
1757 break;
1759 return 1;
1762 /* RTO occurred, but do not yet enter Loss state. Instead, defer RTO
1763 * recovery a bit and use heuristics in tcp_process_frto() to detect if
1764 * the RTO was spurious. Only clear SACKED_RETRANS of the head here to
1765 * keep retrans_out counting accurate (with SACK F-RTO, other than head
1766 * may still have that bit set); TCPCB_LOST and remaining SACKED_RETRANS
1767 * bits are handled if the Loss state is really to be entered (in
1768 * tcp_enter_frto_loss).
1770 * Do like tcp_enter_loss() would; when RTO expires the second time it
1771 * does:
1772 * "Reduce ssthresh if it has not yet been made inside this window."
1774 void tcp_enter_frto(struct sock *sk)
1776 const struct inet_connection_sock *icsk = inet_csk(sk);
1777 struct tcp_sock *tp = tcp_sk(sk);
1778 struct sk_buff *skb;
1780 if ((!tp->frto_counter && icsk->icsk_ca_state <= TCP_CA_Disorder) ||
1781 tp->snd_una == tp->high_seq ||
1782 ((icsk->icsk_ca_state == TCP_CA_Loss || tp->frto_counter) &&
1783 !icsk->icsk_retransmits)) {
1784 tp->prior_ssthresh = tcp_current_ssthresh(sk);
1785 /* Our state is too optimistic in ssthresh() call because cwnd
1786 * is not reduced until tcp_enter_frto_loss() when previous F-RTO
1787 * recovery has not yet completed. Pattern would be this: RTO,
1788 * Cumulative ACK, RTO (2xRTO for the same segment does not end
1789 * up here twice).
1790 * RFC4138 should be more specific on what to do, even though
1791 * RTO is quite unlikely to occur after the first Cumulative ACK
1792 * due to back-off and complexity of triggering events ...
1794 if (tp->frto_counter) {
1795 u32 stored_cwnd;
1796 stored_cwnd = tp->snd_cwnd;
1797 tp->snd_cwnd = 2;
1798 tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
1799 tp->snd_cwnd = stored_cwnd;
1800 } else {
1801 tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
1803 /* ... in theory, cong.control module could do "any tricks" in
1804 * ssthresh(), which means that ca_state, lost bits and lost_out
1805 * counter would have to be faked before the call occurs. We
1806 * consider that too expensive, unlikely and hacky, so modules
1807 * using these in ssthresh() must deal these incompatibility
1808 * issues if they receives CA_EVENT_FRTO and frto_counter != 0
1810 tcp_ca_event(sk, CA_EVENT_FRTO);
1813 tp->undo_marker = tp->snd_una;
1814 tp->undo_retrans = 0;
1816 skb = tcp_write_queue_head(sk);
1817 if (TCP_SKB_CB(skb)->sacked & TCPCB_RETRANS)
1818 tp->undo_marker = 0;
1819 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS) {
1820 TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
1821 tp->retrans_out -= tcp_skb_pcount(skb);
1823 tcp_verify_left_out(tp);
1825 /* Too bad if TCP was application limited */
1826 tp->snd_cwnd = min(tp->snd_cwnd, tcp_packets_in_flight(tp) + 1);
1828 /* Earlier loss recovery underway (see RFC4138; Appendix B).
1829 * The last condition is necessary at least in tp->frto_counter case.
1831 if (tcp_is_sackfrto(tp) && (tp->frto_counter ||
1832 ((1 << icsk->icsk_ca_state) & (TCPF_CA_Recovery|TCPF_CA_Loss))) &&
1833 after(tp->high_seq, tp->snd_una)) {
1834 tp->frto_highmark = tp->high_seq;
1835 } else {
1836 tp->frto_highmark = tp->snd_nxt;
1838 tcp_set_ca_state(sk, TCP_CA_Disorder);
1839 tp->high_seq = tp->snd_nxt;
1840 tp->frto_counter = 1;
1843 /* Enter Loss state after F-RTO was applied. Dupack arrived after RTO,
1844 * which indicates that we should follow the traditional RTO recovery,
1845 * i.e. mark everything lost and do go-back-N retransmission.
1847 static void tcp_enter_frto_loss(struct sock *sk, int allowed_segments, int flag)
1849 struct tcp_sock *tp = tcp_sk(sk);
1850 struct sk_buff *skb;
1852 tp->lost_out = 0;
1853 tp->retrans_out = 0;
1854 if (tcp_is_reno(tp))
1855 tcp_reset_reno_sack(tp);
1857 tcp_for_write_queue(skb, sk) {
1858 if (skb == tcp_send_head(sk))
1859 break;
1861 TCP_SKB_CB(skb)->sacked &= ~TCPCB_LOST;
1863 * Count the retransmission made on RTO correctly (only when
1864 * waiting for the first ACK and did not get it)...
1866 if ((tp->frto_counter == 1) && !(flag & FLAG_DATA_ACKED)) {
1867 /* For some reason this R-bit might get cleared? */
1868 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS)
1869 tp->retrans_out += tcp_skb_pcount(skb);
1870 /* ...enter this if branch just for the first segment */
1871 flag |= FLAG_DATA_ACKED;
1872 } else {
1873 if (TCP_SKB_CB(skb)->sacked & TCPCB_RETRANS)
1874 tp->undo_marker = 0;
1875 TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
1878 /* Marking forward transmissions that were made after RTO lost
1879 * can cause unnecessary retransmissions in some scenarios,
1880 * SACK blocks will mitigate that in some but not in all cases.
1881 * We used to not mark them but it was causing break-ups with
1882 * receivers that do only in-order receival.
1884 * TODO: we could detect presence of such receiver and select
1885 * different behavior per flow.
1887 if (!(TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)) {
1888 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
1889 tp->lost_out += tcp_skb_pcount(skb);
1890 tp->retransmit_high = TCP_SKB_CB(skb)->end_seq;
1893 tcp_verify_left_out(tp);
1895 tp->snd_cwnd = tcp_packets_in_flight(tp) + allowed_segments;
1896 tp->snd_cwnd_cnt = 0;
1897 tp->snd_cwnd_stamp = tcp_time_stamp;
1898 tp->frto_counter = 0;
1899 tp->bytes_acked = 0;
1901 tp->reordering = min_t(unsigned int, tp->reordering,
1902 sysctl_tcp_reordering);
1903 tcp_set_ca_state(sk, TCP_CA_Loss);
1904 tp->high_seq = tp->snd_nxt;
1905 TCP_ECN_queue_cwr(tp);
1907 tcp_clear_all_retrans_hints(tp);
1910 static void tcp_clear_retrans_partial(struct tcp_sock *tp)
1912 tp->retrans_out = 0;
1913 tp->lost_out = 0;
1915 tp->undo_marker = 0;
1916 tp->undo_retrans = 0;
1919 void tcp_clear_retrans(struct tcp_sock *tp)
1921 tcp_clear_retrans_partial(tp);
1923 tp->fackets_out = 0;
1924 tp->sacked_out = 0;
1927 /* Enter Loss state. If "how" is not zero, forget all SACK information
1928 * and reset tags completely, otherwise preserve SACKs. If receiver
1929 * dropped its ofo queue, we will know this due to reneging detection.
1931 void tcp_enter_loss(struct sock *sk, int how)
1933 const struct inet_connection_sock *icsk = inet_csk(sk);
1934 struct tcp_sock *tp = tcp_sk(sk);
1935 struct sk_buff *skb;
1937 /* Reduce ssthresh if it has not yet been made inside this window. */
1938 if (icsk->icsk_ca_state <= TCP_CA_Disorder || tp->snd_una == tp->high_seq ||
1939 (icsk->icsk_ca_state == TCP_CA_Loss && !icsk->icsk_retransmits)) {
1940 tp->prior_ssthresh = tcp_current_ssthresh(sk);
1941 tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
1942 tcp_ca_event(sk, CA_EVENT_LOSS);
1944 tp->snd_cwnd = 1;
1945 tp->snd_cwnd_cnt = 0;
1946 tp->snd_cwnd_stamp = tcp_time_stamp;
1948 tp->bytes_acked = 0;
1949 tcp_clear_retrans_partial(tp);
1951 if (tcp_is_reno(tp))
1952 tcp_reset_reno_sack(tp);
1954 if (!how) {
1955 /* Push undo marker, if it was plain RTO and nothing
1956 * was retransmitted. */
1957 tp->undo_marker = tp->snd_una;
1958 } else {
1959 tp->sacked_out = 0;
1960 tp->fackets_out = 0;
1962 tcp_clear_all_retrans_hints(tp);
1964 tcp_for_write_queue(skb, sk) {
1965 if (skb == tcp_send_head(sk))
1966 break;
1968 if (TCP_SKB_CB(skb)->sacked & TCPCB_RETRANS)
1969 tp->undo_marker = 0;
1970 TCP_SKB_CB(skb)->sacked &= (~TCPCB_TAGBITS)|TCPCB_SACKED_ACKED;
1971 if (!(TCP_SKB_CB(skb)->sacked&TCPCB_SACKED_ACKED) || how) {
1972 TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_ACKED;
1973 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
1974 tp->lost_out += tcp_skb_pcount(skb);
1975 tp->retransmit_high = TCP_SKB_CB(skb)->end_seq;
1978 tcp_verify_left_out(tp);
1980 tp->reordering = min_t(unsigned int, tp->reordering,
1981 sysctl_tcp_reordering);
1982 tcp_set_ca_state(sk, TCP_CA_Loss);
1983 tp->high_seq = tp->snd_nxt;
1984 TCP_ECN_queue_cwr(tp);
1985 /* Abort F-RTO algorithm if one is in progress */
1986 tp->frto_counter = 0;
1989 /* If ACK arrived pointing to a remembered SACK, it means that our
1990 * remembered SACKs do not reflect real state of receiver i.e.
1991 * receiver _host_ is heavily congested (or buggy).
1993 * Do processing similar to RTO timeout.
1995 static int tcp_check_sack_reneging(struct sock *sk, int flag)
1997 if (flag & FLAG_SACK_RENEGING) {
1998 struct inet_connection_sock *icsk = inet_csk(sk);
1999 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPSACKRENEGING);
2001 tcp_enter_loss(sk, 1);
2002 icsk->icsk_retransmits++;
2003 tcp_retransmit_skb(sk, tcp_write_queue_head(sk));
2004 inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
2005 icsk->icsk_rto, TCP_RTO_MAX);
2006 return 1;
2008 return 0;
2011 static inline int tcp_fackets_out(struct tcp_sock *tp)
2013 return tcp_is_reno(tp) ? tp->sacked_out + 1 : tp->fackets_out;
2016 /* Heurestics to calculate number of duplicate ACKs. There's no dupACKs
2017 * counter when SACK is enabled (without SACK, sacked_out is used for
2018 * that purpose).
2020 * Instead, with FACK TCP uses fackets_out that includes both SACKed
2021 * segments up to the highest received SACK block so far and holes in
2022 * between them.
2024 * With reordering, holes may still be in flight, so RFC3517 recovery
2025 * uses pure sacked_out (total number of SACKed segments) even though
2026 * it violates the RFC that uses duplicate ACKs, often these are equal
2027 * but when e.g. out-of-window ACKs or packet duplication occurs,
2028 * they differ. Since neither occurs due to loss, TCP should really
2029 * ignore them.
2031 static inline int tcp_dupack_heurestics(struct tcp_sock *tp)
2033 return tcp_is_fack(tp) ? tp->fackets_out : tp->sacked_out + 1;
2036 static inline int tcp_skb_timedout(struct sock *sk, struct sk_buff *skb)
2038 return (tcp_time_stamp - TCP_SKB_CB(skb)->when > inet_csk(sk)->icsk_rto);
2041 static inline int tcp_head_timedout(struct sock *sk)
2043 struct tcp_sock *tp = tcp_sk(sk);
2045 return tp->packets_out &&
2046 tcp_skb_timedout(sk, tcp_write_queue_head(sk));
2049 /* Linux NewReno/SACK/FACK/ECN state machine.
2050 * --------------------------------------
2052 * "Open" Normal state, no dubious events, fast path.
2053 * "Disorder" In all the respects it is "Open",
2054 * but requires a bit more attention. It is entered when
2055 * we see some SACKs or dupacks. It is split of "Open"
2056 * mainly to move some processing from fast path to slow one.
2057 * "CWR" CWND was reduced due to some Congestion Notification event.
2058 * It can be ECN, ICMP source quench, local device congestion.
2059 * "Recovery" CWND was reduced, we are fast-retransmitting.
2060 * "Loss" CWND was reduced due to RTO timeout or SACK reneging.
2062 * tcp_fastretrans_alert() is entered:
2063 * - each incoming ACK, if state is not "Open"
2064 * - when arrived ACK is unusual, namely:
2065 * * SACK
2066 * * Duplicate ACK.
2067 * * ECN ECE.
2069 * Counting packets in flight is pretty simple.
2071 * in_flight = packets_out - left_out + retrans_out
2073 * packets_out is SND.NXT-SND.UNA counted in packets.
2075 * retrans_out is number of retransmitted segments.
2077 * left_out is number of segments left network, but not ACKed yet.
2079 * left_out = sacked_out + lost_out
2081 * sacked_out: Packets, which arrived to receiver out of order
2082 * and hence not ACKed. With SACKs this number is simply
2083 * amount of SACKed data. Even without SACKs
2084 * it is easy to give pretty reliable estimate of this number,
2085 * counting duplicate ACKs.
2087 * lost_out: Packets lost by network. TCP has no explicit
2088 * "loss notification" feedback from network (for now).
2089 * It means that this number can be only _guessed_.
2090 * Actually, it is the heuristics to predict lossage that
2091 * distinguishes different algorithms.
2093 * F.e. after RTO, when all the queue is considered as lost,
2094 * lost_out = packets_out and in_flight = retrans_out.
2096 * Essentially, we have now two algorithms counting
2097 * lost packets.
2099 * FACK: It is the simplest heuristics. As soon as we decided
2100 * that something is lost, we decide that _all_ not SACKed
2101 * packets until the most forward SACK are lost. I.e.
2102 * lost_out = fackets_out - sacked_out and left_out = fackets_out.
2103 * It is absolutely correct estimate, if network does not reorder
2104 * packets. And it loses any connection to reality when reordering
2105 * takes place. We use FACK by default until reordering
2106 * is suspected on the path to this destination.
2108 * NewReno: when Recovery is entered, we assume that one segment
2109 * is lost (classic Reno). While we are in Recovery and
2110 * a partial ACK arrives, we assume that one more packet
2111 * is lost (NewReno). This heuristics are the same in NewReno
2112 * and SACK.
2114 * Imagine, that's all! Forget about all this shamanism about CWND inflation
2115 * deflation etc. CWND is real congestion window, never inflated, changes
2116 * only according to classic VJ rules.
2118 * Really tricky (and requiring careful tuning) part of algorithm
2119 * is hidden in functions tcp_time_to_recover() and tcp_xmit_retransmit_queue().
2120 * The first determines the moment _when_ we should reduce CWND and,
2121 * hence, slow down forward transmission. In fact, it determines the moment
2122 * when we decide that hole is caused by loss, rather than by a reorder.
2124 * tcp_xmit_retransmit_queue() decides, _what_ we should retransmit to fill
2125 * holes, caused by lost packets.
2127 * And the most logically complicated part of algorithm is undo
2128 * heuristics. We detect false retransmits due to both too early
2129 * fast retransmit (reordering) and underestimated RTO, analyzing
2130 * timestamps and D-SACKs. When we detect that some segments were
2131 * retransmitted by mistake and CWND reduction was wrong, we undo
2132 * window reduction and abort recovery phase. This logic is hidden
2133 * inside several functions named tcp_try_undo_<something>.
2136 /* This function decides, when we should leave Disordered state
2137 * and enter Recovery phase, reducing congestion window.
2139 * Main question: may we further continue forward transmission
2140 * with the same cwnd?
2142 static int tcp_time_to_recover(struct sock *sk)
2144 struct tcp_sock *tp = tcp_sk(sk);
2145 __u32 packets_out;
2147 /* Do not perform any recovery during F-RTO algorithm */
2148 if (tp->frto_counter)
2149 return 0;
2151 /* Trick#1: The loss is proven. */
2152 if (tp->lost_out)
2153 return 1;
2155 /* Not-A-Trick#2 : Classic rule... */
2156 if (tcp_dupack_heurestics(tp) > tp->reordering)
2157 return 1;
2159 /* Trick#3 : when we use RFC2988 timer restart, fast
2160 * retransmit can be triggered by timeout of queue head.
2162 if (tcp_is_fack(tp) && tcp_head_timedout(sk))
2163 return 1;
2165 /* Trick#4: It is still not OK... But will it be useful to delay
2166 * recovery more?
2168 packets_out = tp->packets_out;
2169 if (packets_out <= tp->reordering &&
2170 tp->sacked_out >= max_t(__u32, packets_out/2, sysctl_tcp_reordering) &&
2171 !tcp_may_send_now(sk)) {
2172 /* We have nothing to send. This connection is limited
2173 * either by receiver window or by application.
2175 return 1;
2178 return 0;
2181 /* Mark head of queue up as lost. With RFC3517 SACK, the packets is
2182 * is against sacked "cnt", otherwise it's against facked "cnt"
2184 static void tcp_mark_head_lost(struct sock *sk, int packets)
2186 struct tcp_sock *tp = tcp_sk(sk);
2187 struct sk_buff *skb;
2188 int cnt, oldcnt;
2189 int err;
2190 unsigned int mss;
2192 WARN_ON(packets > tp->packets_out);
2193 if (tp->lost_skb_hint) {
2194 skb = tp->lost_skb_hint;
2195 cnt = tp->lost_cnt_hint;
2196 } else {
2197 skb = tcp_write_queue_head(sk);
2198 cnt = 0;
2201 tcp_for_write_queue_from(skb, sk) {
2202 if (skb == tcp_send_head(sk))
2203 break;
2204 /* TODO: do this better */
2205 /* this is not the most efficient way to do this... */
2206 tp->lost_skb_hint = skb;
2207 tp->lost_cnt_hint = cnt;
2209 if (after(TCP_SKB_CB(skb)->end_seq, tp->high_seq))
2210 break;
2212 oldcnt = cnt;
2213 if (tcp_is_fack(tp) || tcp_is_reno(tp) ||
2214 (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED))
2215 cnt += tcp_skb_pcount(skb);
2217 if (cnt > packets) {
2218 if (tcp_is_sack(tp) || (oldcnt >= packets))
2219 break;
2221 mss = skb_shinfo(skb)->gso_size;
2222 err = tcp_fragment(sk, skb, (packets - oldcnt) * mss, mss);
2223 if (err < 0)
2224 break;
2225 cnt = packets;
2228 tcp_skb_mark_lost(tp, skb);
2230 tcp_verify_left_out(tp);
2233 /* Account newly detected lost packet(s) */
2235 static void tcp_update_scoreboard(struct sock *sk, int fast_rexmit)
2237 struct tcp_sock *tp = tcp_sk(sk);
2239 if (tcp_is_reno(tp)) {
2240 tcp_mark_head_lost(sk, 1);
2241 } else if (tcp_is_fack(tp)) {
2242 int lost = tp->fackets_out - tp->reordering;
2243 if (lost <= 0)
2244 lost = 1;
2245 tcp_mark_head_lost(sk, lost);
2246 } else {
2247 int sacked_upto = tp->sacked_out - tp->reordering;
2248 if (sacked_upto < fast_rexmit)
2249 sacked_upto = fast_rexmit;
2250 tcp_mark_head_lost(sk, sacked_upto);
2253 /* New heuristics: it is possible only after we switched
2254 * to restart timer each time when something is ACKed.
2255 * Hence, we can detect timed out packets during fast
2256 * retransmit without falling to slow start.
2258 if (tcp_is_fack(tp) && tcp_head_timedout(sk)) {
2259 struct sk_buff *skb;
2261 skb = tp->scoreboard_skb_hint ? tp->scoreboard_skb_hint
2262 : tcp_write_queue_head(sk);
2264 tcp_for_write_queue_from(skb, sk) {
2265 if (skb == tcp_send_head(sk))
2266 break;
2267 if (!tcp_skb_timedout(sk, skb))
2268 break;
2270 tcp_skb_mark_lost(tp, skb);
2273 tp->scoreboard_skb_hint = skb;
2275 tcp_verify_left_out(tp);
2279 /* CWND moderation, preventing bursts due to too big ACKs
2280 * in dubious situations.
2282 static inline void tcp_moderate_cwnd(struct tcp_sock *tp)
2284 tp->snd_cwnd = min(tp->snd_cwnd,
2285 tcp_packets_in_flight(tp) + tcp_max_burst(tp));
2286 tp->snd_cwnd_stamp = tcp_time_stamp;
2289 /* Lower bound on congestion window is slow start threshold
2290 * unless congestion avoidance choice decides to overide it.
2292 static inline u32 tcp_cwnd_min(const struct sock *sk)
2294 const struct tcp_congestion_ops *ca_ops = inet_csk(sk)->icsk_ca_ops;
2296 return ca_ops->min_cwnd ? ca_ops->min_cwnd(sk) : tcp_sk(sk)->snd_ssthresh;
2299 /* Decrease cwnd each second ack. */
2300 static void tcp_cwnd_down(struct sock *sk, int flag)
2302 struct tcp_sock *tp = tcp_sk(sk);
2303 int decr = tp->snd_cwnd_cnt + 1;
2305 if ((flag & (FLAG_ANY_PROGRESS | FLAG_DSACKING_ACK)) ||
2306 (tcp_is_reno(tp) && !(flag & FLAG_NOT_DUP))) {
2307 tp->snd_cwnd_cnt = decr & 1;
2308 decr >>= 1;
2310 if (decr && tp->snd_cwnd > tcp_cwnd_min(sk))
2311 tp->snd_cwnd -= decr;
2313 tp->snd_cwnd = min(tp->snd_cwnd, tcp_packets_in_flight(tp) + 1);
2314 tp->snd_cwnd_stamp = tcp_time_stamp;
2318 /* Nothing was retransmitted or returned timestamp is less
2319 * than timestamp of the first retransmission.
2321 static inline int tcp_packet_delayed(struct tcp_sock *tp)
2323 return !tp->retrans_stamp ||
2324 (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
2325 before(tp->rx_opt.rcv_tsecr, tp->retrans_stamp));
2328 /* Undo procedures. */
2330 #if FASTRETRANS_DEBUG > 1
2331 static void DBGUNDO(struct sock *sk, const char *msg)
2333 struct tcp_sock *tp = tcp_sk(sk);
2334 struct inet_sock *inet = inet_sk(sk);
2336 if (sk->sk_family == AF_INET) {
2337 printk(KERN_DEBUG "Undo %s " NIPQUAD_FMT "/%u c%u l%u ss%u/%u p%u\n",
2338 msg,
2339 NIPQUAD(inet->daddr), ntohs(inet->dport),
2340 tp->snd_cwnd, tcp_left_out(tp),
2341 tp->snd_ssthresh, tp->prior_ssthresh,
2342 tp->packets_out);
2344 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
2345 else if (sk->sk_family == AF_INET6) {
2346 struct ipv6_pinfo *np = inet6_sk(sk);
2347 printk(KERN_DEBUG "Undo %s " NIP6_FMT "/%u c%u l%u ss%u/%u p%u\n",
2348 msg,
2349 NIP6(np->daddr), ntohs(inet->dport),
2350 tp->snd_cwnd, tcp_left_out(tp),
2351 tp->snd_ssthresh, tp->prior_ssthresh,
2352 tp->packets_out);
2354 #endif
2356 #else
2357 #define DBGUNDO(x...) do { } while (0)
2358 #endif
2360 static void tcp_undo_cwr(struct sock *sk, const int undo)
2362 struct tcp_sock *tp = tcp_sk(sk);
2364 if (tp->prior_ssthresh) {
2365 const struct inet_connection_sock *icsk = inet_csk(sk);
2367 if (icsk->icsk_ca_ops->undo_cwnd)
2368 tp->snd_cwnd = icsk->icsk_ca_ops->undo_cwnd(sk);
2369 else
2370 tp->snd_cwnd = max(tp->snd_cwnd, tp->snd_ssthresh << 1);
2372 if (undo && tp->prior_ssthresh > tp->snd_ssthresh) {
2373 tp->snd_ssthresh = tp->prior_ssthresh;
2374 TCP_ECN_withdraw_cwr(tp);
2376 } else {
2377 tp->snd_cwnd = max(tp->snd_cwnd, tp->snd_ssthresh);
2379 tcp_moderate_cwnd(tp);
2380 tp->snd_cwnd_stamp = tcp_time_stamp;
2383 static inline int tcp_may_undo(struct tcp_sock *tp)
2385 return tp->undo_marker && (!tp->undo_retrans || tcp_packet_delayed(tp));
2388 /* People celebrate: "We love our President!" */
2389 static int tcp_try_undo_recovery(struct sock *sk)
2391 struct tcp_sock *tp = tcp_sk(sk);
2393 if (tcp_may_undo(tp)) {
2394 int mib_idx;
2396 /* Happy end! We did not retransmit anything
2397 * or our original transmission succeeded.
2399 DBGUNDO(sk, inet_csk(sk)->icsk_ca_state == TCP_CA_Loss ? "loss" : "retrans");
2400 tcp_undo_cwr(sk, 1);
2401 if (inet_csk(sk)->icsk_ca_state == TCP_CA_Loss)
2402 mib_idx = LINUX_MIB_TCPLOSSUNDO;
2403 else
2404 mib_idx = LINUX_MIB_TCPFULLUNDO;
2406 NET_INC_STATS_BH(sock_net(sk), mib_idx);
2407 tp->undo_marker = 0;
2409 if (tp->snd_una == tp->high_seq && tcp_is_reno(tp)) {
2410 /* Hold old state until something *above* high_seq
2411 * is ACKed. For Reno it is MUST to prevent false
2412 * fast retransmits (RFC2582). SACK TCP is safe. */
2413 tcp_moderate_cwnd(tp);
2414 return 1;
2416 tcp_set_ca_state(sk, TCP_CA_Open);
2417 return 0;
2420 /* Try to undo cwnd reduction, because D-SACKs acked all retransmitted data */
2421 static void tcp_try_undo_dsack(struct sock *sk)
2423 struct tcp_sock *tp = tcp_sk(sk);
2425 if (tp->undo_marker && !tp->undo_retrans) {
2426 DBGUNDO(sk, "D-SACK");
2427 tcp_undo_cwr(sk, 1);
2428 tp->undo_marker = 0;
2429 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPDSACKUNDO);
2433 /* Undo during fast recovery after partial ACK. */
2435 static int tcp_try_undo_partial(struct sock *sk, int acked)
2437 struct tcp_sock *tp = tcp_sk(sk);
2438 /* Partial ACK arrived. Force Hoe's retransmit. */
2439 int failed = tcp_is_reno(tp) || (tcp_fackets_out(tp) > tp->reordering);
2441 if (tcp_may_undo(tp)) {
2442 /* Plain luck! Hole if filled with delayed
2443 * packet, rather than with a retransmit.
2445 if (tp->retrans_out == 0)
2446 tp->retrans_stamp = 0;
2448 tcp_update_reordering(sk, tcp_fackets_out(tp) + acked, 1);
2450 DBGUNDO(sk, "Hoe");
2451 tcp_undo_cwr(sk, 0);
2452 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPPARTIALUNDO);
2454 /* So... Do not make Hoe's retransmit yet.
2455 * If the first packet was delayed, the rest
2456 * ones are most probably delayed as well.
2458 failed = 0;
2460 return failed;
2463 /* Undo during loss recovery after partial ACK. */
2464 static int tcp_try_undo_loss(struct sock *sk)
2466 struct tcp_sock *tp = tcp_sk(sk);
2468 if (tcp_may_undo(tp)) {
2469 struct sk_buff *skb;
2470 tcp_for_write_queue(skb, sk) {
2471 if (skb == tcp_send_head(sk))
2472 break;
2473 TCP_SKB_CB(skb)->sacked &= ~TCPCB_LOST;
2476 tcp_clear_all_retrans_hints(tp);
2478 DBGUNDO(sk, "partial loss");
2479 tp->lost_out = 0;
2480 tcp_undo_cwr(sk, 1);
2481 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPLOSSUNDO);
2482 inet_csk(sk)->icsk_retransmits = 0;
2483 tp->undo_marker = 0;
2484 if (tcp_is_sack(tp))
2485 tcp_set_ca_state(sk, TCP_CA_Open);
2486 return 1;
2488 return 0;
2491 static inline void tcp_complete_cwr(struct sock *sk)
2493 struct tcp_sock *tp = tcp_sk(sk);
2494 tp->snd_cwnd = min(tp->snd_cwnd, tp->snd_ssthresh);
2495 tp->snd_cwnd_stamp = tcp_time_stamp;
2496 tcp_ca_event(sk, CA_EVENT_COMPLETE_CWR);
2499 static void tcp_try_keep_open(struct sock *sk)
2501 struct tcp_sock *tp = tcp_sk(sk);
2502 int state = TCP_CA_Open;
2504 if (tcp_left_out(tp) || tp->retrans_out || tp->undo_marker)
2505 state = TCP_CA_Disorder;
2507 if (inet_csk(sk)->icsk_ca_state != state) {
2508 tcp_set_ca_state(sk, state);
2509 tp->high_seq = tp->snd_nxt;
2513 static void tcp_try_to_open(struct sock *sk, int flag)
2515 struct tcp_sock *tp = tcp_sk(sk);
2517 tcp_verify_left_out(tp);
2519 if (!tp->frto_counter && tp->retrans_out == 0)
2520 tp->retrans_stamp = 0;
2522 if (flag & FLAG_ECE)
2523 tcp_enter_cwr(sk, 1);
2525 if (inet_csk(sk)->icsk_ca_state != TCP_CA_CWR) {
2526 tcp_try_keep_open(sk);
2527 tcp_moderate_cwnd(tp);
2528 } else {
2529 tcp_cwnd_down(sk, flag);
2533 static void tcp_mtup_probe_failed(struct sock *sk)
2535 struct inet_connection_sock *icsk = inet_csk(sk);
2537 icsk->icsk_mtup.search_high = icsk->icsk_mtup.probe_size - 1;
2538 icsk->icsk_mtup.probe_size = 0;
2541 static void tcp_mtup_probe_success(struct sock *sk, struct sk_buff *skb)
2543 struct tcp_sock *tp = tcp_sk(sk);
2544 struct inet_connection_sock *icsk = inet_csk(sk);
2546 /* FIXME: breaks with very large cwnd */
2547 tp->prior_ssthresh = tcp_current_ssthresh(sk);
2548 tp->snd_cwnd = tp->snd_cwnd *
2549 tcp_mss_to_mtu(sk, tp->mss_cache) /
2550 icsk->icsk_mtup.probe_size;
2551 tp->snd_cwnd_cnt = 0;
2552 tp->snd_cwnd_stamp = tcp_time_stamp;
2553 tp->rcv_ssthresh = tcp_current_ssthresh(sk);
2555 icsk->icsk_mtup.search_low = icsk->icsk_mtup.probe_size;
2556 icsk->icsk_mtup.probe_size = 0;
2557 tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
2560 /* Process an event, which can update packets-in-flight not trivially.
2561 * Main goal of this function is to calculate new estimate for left_out,
2562 * taking into account both packets sitting in receiver's buffer and
2563 * packets lost by network.
2565 * Besides that it does CWND reduction, when packet loss is detected
2566 * and changes state of machine.
2568 * It does _not_ decide what to send, it is made in function
2569 * tcp_xmit_retransmit_queue().
2571 static void tcp_fastretrans_alert(struct sock *sk, int pkts_acked, int flag)
2573 struct inet_connection_sock *icsk = inet_csk(sk);
2574 struct tcp_sock *tp = tcp_sk(sk);
2575 int is_dupack = !(flag & (FLAG_SND_UNA_ADVANCED | FLAG_NOT_DUP));
2576 int do_lost = is_dupack || ((flag & FLAG_DATA_SACKED) &&
2577 (tcp_fackets_out(tp) > tp->reordering));
2578 int fast_rexmit = 0, mib_idx;
2580 if (WARN_ON(!tp->packets_out && tp->sacked_out))
2581 tp->sacked_out = 0;
2582 if (WARN_ON(!tp->sacked_out && tp->fackets_out))
2583 tp->fackets_out = 0;
2585 /* Now state machine starts.
2586 * A. ECE, hence prohibit cwnd undoing, the reduction is required. */
2587 if (flag & FLAG_ECE)
2588 tp->prior_ssthresh = 0;
2590 /* B. In all the states check for reneging SACKs. */
2591 if (tcp_check_sack_reneging(sk, flag))
2592 return;
2594 /* C. Process data loss notification, provided it is valid. */
2595 if (tcp_is_fack(tp) && (flag & FLAG_DATA_LOST) &&
2596 before(tp->snd_una, tp->high_seq) &&
2597 icsk->icsk_ca_state != TCP_CA_Open &&
2598 tp->fackets_out > tp->reordering) {
2599 tcp_mark_head_lost(sk, tp->fackets_out - tp->reordering);
2600 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPLOSS);
2603 /* D. Check consistency of the current state. */
2604 tcp_verify_left_out(tp);
2606 /* E. Check state exit conditions. State can be terminated
2607 * when high_seq is ACKed. */
2608 if (icsk->icsk_ca_state == TCP_CA_Open) {
2609 WARN_ON(tp->retrans_out != 0);
2610 tp->retrans_stamp = 0;
2611 } else if (!before(tp->snd_una, tp->high_seq)) {
2612 switch (icsk->icsk_ca_state) {
2613 case TCP_CA_Loss:
2614 icsk->icsk_retransmits = 0;
2615 if (tcp_try_undo_recovery(sk))
2616 return;
2617 break;
2619 case TCP_CA_CWR:
2620 /* CWR is to be held something *above* high_seq
2621 * is ACKed for CWR bit to reach receiver. */
2622 if (tp->snd_una != tp->high_seq) {
2623 tcp_complete_cwr(sk);
2624 tcp_set_ca_state(sk, TCP_CA_Open);
2626 break;
2628 case TCP_CA_Disorder:
2629 tcp_try_undo_dsack(sk);
2630 if (!tp->undo_marker ||
2631 /* For SACK case do not Open to allow to undo
2632 * catching for all duplicate ACKs. */
2633 tcp_is_reno(tp) || tp->snd_una != tp->high_seq) {
2634 tp->undo_marker = 0;
2635 tcp_set_ca_state(sk, TCP_CA_Open);
2637 break;
2639 case TCP_CA_Recovery:
2640 if (tcp_is_reno(tp))
2641 tcp_reset_reno_sack(tp);
2642 if (tcp_try_undo_recovery(sk))
2643 return;
2644 tcp_complete_cwr(sk);
2645 break;
2649 /* F. Process state. */
2650 switch (icsk->icsk_ca_state) {
2651 case TCP_CA_Recovery:
2652 if (!(flag & FLAG_SND_UNA_ADVANCED)) {
2653 if (tcp_is_reno(tp) && is_dupack)
2654 tcp_add_reno_sack(sk);
2655 } else
2656 do_lost = tcp_try_undo_partial(sk, pkts_acked);
2657 break;
2658 case TCP_CA_Loss:
2659 if (flag & FLAG_DATA_ACKED)
2660 icsk->icsk_retransmits = 0;
2661 if (tcp_is_reno(tp) && flag & FLAG_SND_UNA_ADVANCED)
2662 tcp_reset_reno_sack(tp);
2663 if (!tcp_try_undo_loss(sk)) {
2664 tcp_moderate_cwnd(tp);
2665 tcp_xmit_retransmit_queue(sk);
2666 return;
2668 if (icsk->icsk_ca_state != TCP_CA_Open)
2669 return;
2670 /* Loss is undone; fall through to processing in Open state. */
2671 default:
2672 if (tcp_is_reno(tp)) {
2673 if (flag & FLAG_SND_UNA_ADVANCED)
2674 tcp_reset_reno_sack(tp);
2675 if (is_dupack)
2676 tcp_add_reno_sack(sk);
2679 if (icsk->icsk_ca_state == TCP_CA_Disorder)
2680 tcp_try_undo_dsack(sk);
2682 if (!tcp_time_to_recover(sk)) {
2683 tcp_try_to_open(sk, flag);
2684 return;
2687 /* MTU probe failure: don't reduce cwnd */
2688 if (icsk->icsk_ca_state < TCP_CA_CWR &&
2689 icsk->icsk_mtup.probe_size &&
2690 tp->snd_una == tp->mtu_probe.probe_seq_start) {
2691 tcp_mtup_probe_failed(sk);
2692 /* Restores the reduction we did in tcp_mtup_probe() */
2693 tp->snd_cwnd++;
2694 tcp_simple_retransmit(sk);
2695 return;
2698 /* Otherwise enter Recovery state */
2700 if (tcp_is_reno(tp))
2701 mib_idx = LINUX_MIB_TCPRENORECOVERY;
2702 else
2703 mib_idx = LINUX_MIB_TCPSACKRECOVERY;
2705 NET_INC_STATS_BH(sock_net(sk), mib_idx);
2707 tp->high_seq = tp->snd_nxt;
2708 tp->prior_ssthresh = 0;
2709 tp->undo_marker = tp->snd_una;
2710 tp->undo_retrans = tp->retrans_out;
2712 if (icsk->icsk_ca_state < TCP_CA_CWR) {
2713 if (!(flag & FLAG_ECE))
2714 tp->prior_ssthresh = tcp_current_ssthresh(sk);
2715 tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
2716 TCP_ECN_queue_cwr(tp);
2719 tp->bytes_acked = 0;
2720 tp->snd_cwnd_cnt = 0;
2721 tcp_set_ca_state(sk, TCP_CA_Recovery);
2722 fast_rexmit = 1;
2725 if (do_lost || (tcp_is_fack(tp) && tcp_head_timedout(sk)))
2726 tcp_update_scoreboard(sk, fast_rexmit);
2727 tcp_cwnd_down(sk, flag);
2728 tcp_xmit_retransmit_queue(sk);
2731 /* Read draft-ietf-tcplw-high-performance before mucking
2732 * with this code. (Supersedes RFC1323)
2734 static void tcp_ack_saw_tstamp(struct sock *sk, int flag)
2736 /* RTTM Rule: A TSecr value received in a segment is used to
2737 * update the averaged RTT measurement only if the segment
2738 * acknowledges some new data, i.e., only if it advances the
2739 * left edge of the send window.
2741 * See draft-ietf-tcplw-high-performance-00, section 3.3.
2742 * 1998/04/10 Andrey V. Savochkin <saw@msu.ru>
2744 * Changed: reset backoff as soon as we see the first valid sample.
2745 * If we do not, we get strongly overestimated rto. With timestamps
2746 * samples are accepted even from very old segments: f.e., when rtt=1
2747 * increases to 8, we retransmit 5 times and after 8 seconds delayed
2748 * answer arrives rto becomes 120 seconds! If at least one of segments
2749 * in window is lost... Voila. --ANK (010210)
2751 struct tcp_sock *tp = tcp_sk(sk);
2752 const __u32 seq_rtt = tcp_time_stamp - tp->rx_opt.rcv_tsecr;
2753 tcp_rtt_estimator(sk, seq_rtt);
2754 tcp_set_rto(sk);
2755 inet_csk(sk)->icsk_backoff = 0;
2756 tcp_bound_rto(sk);
2759 static void tcp_ack_no_tstamp(struct sock *sk, u32 seq_rtt, int flag)
2761 /* We don't have a timestamp. Can only use
2762 * packets that are not retransmitted to determine
2763 * rtt estimates. Also, we must not reset the
2764 * backoff for rto until we get a non-retransmitted
2765 * packet. This allows us to deal with a situation
2766 * where the network delay has increased suddenly.
2767 * I.e. Karn's algorithm. (SIGCOMM '87, p5.)
2770 if (flag & FLAG_RETRANS_DATA_ACKED)
2771 return;
2773 tcp_rtt_estimator(sk, seq_rtt);
2774 tcp_set_rto(sk);
2775 inet_csk(sk)->icsk_backoff = 0;
2776 tcp_bound_rto(sk);
2779 static inline void tcp_ack_update_rtt(struct sock *sk, const int flag,
2780 const s32 seq_rtt)
2782 const struct tcp_sock *tp = tcp_sk(sk);
2783 /* Note that peer MAY send zero echo. In this case it is ignored. (rfc1323) */
2784 if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr)
2785 tcp_ack_saw_tstamp(sk, flag);
2786 else if (seq_rtt >= 0)
2787 tcp_ack_no_tstamp(sk, seq_rtt, flag);
2790 static void tcp_cong_avoid(struct sock *sk, u32 ack, u32 in_flight)
2792 const struct inet_connection_sock *icsk = inet_csk(sk);
2793 icsk->icsk_ca_ops->cong_avoid(sk, ack, in_flight);
2794 tcp_sk(sk)->snd_cwnd_stamp = tcp_time_stamp;
2797 /* Restart timer after forward progress on connection.
2798 * RFC2988 recommends to restart timer to now+rto.
2800 static void tcp_rearm_rto(struct sock *sk)
2802 struct tcp_sock *tp = tcp_sk(sk);
2804 if (!tp->packets_out) {
2805 inet_csk_clear_xmit_timer(sk, ICSK_TIME_RETRANS);
2806 } else {
2807 inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
2808 inet_csk(sk)->icsk_rto, TCP_RTO_MAX);
2812 /* If we get here, the whole TSO packet has not been acked. */
2813 static u32 tcp_tso_acked(struct sock *sk, struct sk_buff *skb)
2815 struct tcp_sock *tp = tcp_sk(sk);
2816 u32 packets_acked;
2818 BUG_ON(!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una));
2820 packets_acked = tcp_skb_pcount(skb);
2821 if (tcp_trim_head(sk, skb, tp->snd_una - TCP_SKB_CB(skb)->seq))
2822 return 0;
2823 packets_acked -= tcp_skb_pcount(skb);
2825 if (packets_acked) {
2826 BUG_ON(tcp_skb_pcount(skb) == 0);
2827 BUG_ON(!before(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq));
2830 return packets_acked;
2833 /* Remove acknowledged frames from the retransmission queue. If our packet
2834 * is before the ack sequence we can discard it as it's confirmed to have
2835 * arrived at the other end.
2837 static int tcp_clean_rtx_queue(struct sock *sk, int prior_fackets)
2839 struct tcp_sock *tp = tcp_sk(sk);
2840 const struct inet_connection_sock *icsk = inet_csk(sk);
2841 struct sk_buff *skb;
2842 u32 now = tcp_time_stamp;
2843 int fully_acked = 1;
2844 int flag = 0;
2845 u32 pkts_acked = 0;
2846 u32 reord = tp->packets_out;
2847 s32 seq_rtt = -1;
2848 s32 ca_seq_rtt = -1;
2849 ktime_t last_ackt = net_invalid_timestamp();
2851 while ((skb = tcp_write_queue_head(sk)) && skb != tcp_send_head(sk)) {
2852 struct tcp_skb_cb *scb = TCP_SKB_CB(skb);
2853 u32 end_seq;
2854 u32 acked_pcount;
2855 u8 sacked = scb->sacked;
2857 /* Determine how many packets and what bytes were acked, tso and else */
2858 if (after(scb->end_seq, tp->snd_una)) {
2859 if (tcp_skb_pcount(skb) == 1 ||
2860 !after(tp->snd_una, scb->seq))
2861 break;
2863 acked_pcount = tcp_tso_acked(sk, skb);
2864 if (!acked_pcount)
2865 break;
2867 fully_acked = 0;
2868 end_seq = tp->snd_una;
2869 } else {
2870 acked_pcount = tcp_skb_pcount(skb);
2871 end_seq = scb->end_seq;
2874 /* MTU probing checks */
2875 if (fully_acked && icsk->icsk_mtup.probe_size &&
2876 !after(tp->mtu_probe.probe_seq_end, scb->end_seq)) {
2877 tcp_mtup_probe_success(sk, skb);
2880 if (sacked & TCPCB_RETRANS) {
2881 if (sacked & TCPCB_SACKED_RETRANS)
2882 tp->retrans_out -= acked_pcount;
2883 flag |= FLAG_RETRANS_DATA_ACKED;
2884 ca_seq_rtt = -1;
2885 seq_rtt = -1;
2886 if ((flag & FLAG_DATA_ACKED) || (acked_pcount > 1))
2887 flag |= FLAG_NONHEAD_RETRANS_ACKED;
2888 } else {
2889 ca_seq_rtt = now - scb->when;
2890 last_ackt = skb->tstamp;
2891 if (seq_rtt < 0) {
2892 seq_rtt = ca_seq_rtt;
2894 if (!(sacked & TCPCB_SACKED_ACKED))
2895 reord = min(pkts_acked, reord);
2898 if (sacked & TCPCB_SACKED_ACKED)
2899 tp->sacked_out -= acked_pcount;
2900 if (sacked & TCPCB_LOST)
2901 tp->lost_out -= acked_pcount;
2903 if (unlikely(tp->urg_mode && !before(end_seq, tp->snd_up)))
2904 tp->urg_mode = 0;
2906 tp->packets_out -= acked_pcount;
2907 pkts_acked += acked_pcount;
2909 /* Initial outgoing SYN's get put onto the write_queue
2910 * just like anything else we transmit. It is not
2911 * true data, and if we misinform our callers that
2912 * this ACK acks real data, we will erroneously exit
2913 * connection startup slow start one packet too
2914 * quickly. This is severely frowned upon behavior.
2916 if (!(scb->flags & TCPCB_FLAG_SYN)) {
2917 flag |= FLAG_DATA_ACKED;
2918 } else {
2919 flag |= FLAG_SYN_ACKED;
2920 tp->retrans_stamp = 0;
2923 if (!fully_acked)
2924 break;
2926 tcp_unlink_write_queue(skb, sk);
2927 sk_wmem_free_skb(sk, skb);
2928 tcp_clear_all_retrans_hints(tp);
2931 if (skb && (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED))
2932 flag |= FLAG_SACK_RENEGING;
2934 if (flag & FLAG_ACKED) {
2935 const struct tcp_congestion_ops *ca_ops
2936 = inet_csk(sk)->icsk_ca_ops;
2938 tcp_ack_update_rtt(sk, flag, seq_rtt);
2939 tcp_rearm_rto(sk);
2941 if (tcp_is_reno(tp)) {
2942 tcp_remove_reno_sacks(sk, pkts_acked);
2943 } else {
2944 /* Non-retransmitted hole got filled? That's reordering */
2945 if (reord < prior_fackets)
2946 tcp_update_reordering(sk, tp->fackets_out - reord, 0);
2949 tp->fackets_out -= min(pkts_acked, tp->fackets_out);
2951 if (ca_ops->pkts_acked) {
2952 s32 rtt_us = -1;
2954 /* Is the ACK triggering packet unambiguous? */
2955 if (!(flag & FLAG_RETRANS_DATA_ACKED)) {
2956 /* High resolution needed and available? */
2957 if (ca_ops->flags & TCP_CONG_RTT_STAMP &&
2958 !ktime_equal(last_ackt,
2959 net_invalid_timestamp()))
2960 rtt_us = ktime_us_delta(ktime_get_real(),
2961 last_ackt);
2962 else if (ca_seq_rtt > 0)
2963 rtt_us = jiffies_to_usecs(ca_seq_rtt);
2966 ca_ops->pkts_acked(sk, pkts_acked, rtt_us);
2970 #if FASTRETRANS_DEBUG > 0
2971 WARN_ON((int)tp->sacked_out < 0);
2972 WARN_ON((int)tp->lost_out < 0);
2973 WARN_ON((int)tp->retrans_out < 0);
2974 if (!tp->packets_out && tcp_is_sack(tp)) {
2975 icsk = inet_csk(sk);
2976 if (tp->lost_out) {
2977 printk(KERN_DEBUG "Leak l=%u %d\n",
2978 tp->lost_out, icsk->icsk_ca_state);
2979 tp->lost_out = 0;
2981 if (tp->sacked_out) {
2982 printk(KERN_DEBUG "Leak s=%u %d\n",
2983 tp->sacked_out, icsk->icsk_ca_state);
2984 tp->sacked_out = 0;
2986 if (tp->retrans_out) {
2987 printk(KERN_DEBUG "Leak r=%u %d\n",
2988 tp->retrans_out, icsk->icsk_ca_state);
2989 tp->retrans_out = 0;
2992 #endif
2993 return flag;
2996 static void tcp_ack_probe(struct sock *sk)
2998 const struct tcp_sock *tp = tcp_sk(sk);
2999 struct inet_connection_sock *icsk = inet_csk(sk);
3001 /* Was it a usable window open? */
3003 if (!after(TCP_SKB_CB(tcp_send_head(sk))->end_seq, tcp_wnd_end(tp))) {
3004 icsk->icsk_backoff = 0;
3005 inet_csk_clear_xmit_timer(sk, ICSK_TIME_PROBE0);
3006 /* Socket must be waked up by subsequent tcp_data_snd_check().
3007 * This function is not for random using!
3009 } else {
3010 inet_csk_reset_xmit_timer(sk, ICSK_TIME_PROBE0,
3011 min(icsk->icsk_rto << icsk->icsk_backoff, TCP_RTO_MAX),
3012 TCP_RTO_MAX);
3016 static inline int tcp_ack_is_dubious(const struct sock *sk, const int flag)
3018 return (!(flag & FLAG_NOT_DUP) || (flag & FLAG_CA_ALERT) ||
3019 inet_csk(sk)->icsk_ca_state != TCP_CA_Open);
3022 static inline int tcp_may_raise_cwnd(const struct sock *sk, const int flag)
3024 const struct tcp_sock *tp = tcp_sk(sk);
3025 return (!(flag & FLAG_ECE) || tp->snd_cwnd < tp->snd_ssthresh) &&
3026 !((1 << inet_csk(sk)->icsk_ca_state) & (TCPF_CA_Recovery | TCPF_CA_CWR));
3029 /* Check that window update is acceptable.
3030 * The function assumes that snd_una<=ack<=snd_next.
3032 static inline int tcp_may_update_window(const struct tcp_sock *tp,
3033 const u32 ack, const u32 ack_seq,
3034 const u32 nwin)
3036 return (after(ack, tp->snd_una) ||
3037 after(ack_seq, tp->snd_wl1) ||
3038 (ack_seq == tp->snd_wl1 && nwin > tp->snd_wnd));
3041 /* Update our send window.
3043 * Window update algorithm, described in RFC793/RFC1122 (used in linux-2.2
3044 * and in FreeBSD. NetBSD's one is even worse.) is wrong.
3046 static int tcp_ack_update_window(struct sock *sk, struct sk_buff *skb, u32 ack,
3047 u32 ack_seq)
3049 struct tcp_sock *tp = tcp_sk(sk);
3050 int flag = 0;
3051 u32 nwin = ntohs(tcp_hdr(skb)->window);
3053 if (likely(!tcp_hdr(skb)->syn))
3054 nwin <<= tp->rx_opt.snd_wscale;
3056 if (tcp_may_update_window(tp, ack, ack_seq, nwin)) {
3057 flag |= FLAG_WIN_UPDATE;
3058 tcp_update_wl(tp, ack, ack_seq);
3060 if (tp->snd_wnd != nwin) {
3061 tp->snd_wnd = nwin;
3063 /* Note, it is the only place, where
3064 * fast path is recovered for sending TCP.
3066 tp->pred_flags = 0;
3067 tcp_fast_path_check(sk);
3069 if (nwin > tp->max_window) {
3070 tp->max_window = nwin;
3071 tcp_sync_mss(sk, inet_csk(sk)->icsk_pmtu_cookie);
3076 tp->snd_una = ack;
3078 return flag;
3081 /* A very conservative spurious RTO response algorithm: reduce cwnd and
3082 * continue in congestion avoidance.
3084 static void tcp_conservative_spur_to_response(struct tcp_sock *tp)
3086 tp->snd_cwnd = min(tp->snd_cwnd, tp->snd_ssthresh);
3087 tp->snd_cwnd_cnt = 0;
3088 tp->bytes_acked = 0;
3089 TCP_ECN_queue_cwr(tp);
3090 tcp_moderate_cwnd(tp);
3093 /* A conservative spurious RTO response algorithm: reduce cwnd using
3094 * rate halving and continue in congestion avoidance.
3096 static void tcp_ratehalving_spur_to_response(struct sock *sk)
3098 tcp_enter_cwr(sk, 0);
3101 static void tcp_undo_spur_to_response(struct sock *sk, int flag)
3103 if (flag & FLAG_ECE)
3104 tcp_ratehalving_spur_to_response(sk);
3105 else
3106 tcp_undo_cwr(sk, 1);
3109 /* F-RTO spurious RTO detection algorithm (RFC4138)
3111 * F-RTO affects during two new ACKs following RTO (well, almost, see inline
3112 * comments). State (ACK number) is kept in frto_counter. When ACK advances
3113 * window (but not to or beyond highest sequence sent before RTO):
3114 * On First ACK, send two new segments out.
3115 * On Second ACK, RTO was likely spurious. Do spurious response (response
3116 * algorithm is not part of the F-RTO detection algorithm
3117 * given in RFC4138 but can be selected separately).
3118 * Otherwise (basically on duplicate ACK), RTO was (likely) caused by a loss
3119 * and TCP falls back to conventional RTO recovery. F-RTO allows overriding
3120 * of Nagle, this is done using frto_counter states 2 and 3, when a new data
3121 * segment of any size sent during F-RTO, state 2 is upgraded to 3.
3123 * Rationale: if the RTO was spurious, new ACKs should arrive from the
3124 * original window even after we transmit two new data segments.
3126 * SACK version:
3127 * on first step, wait until first cumulative ACK arrives, then move to
3128 * the second step. In second step, the next ACK decides.
3130 * F-RTO is implemented (mainly) in four functions:
3131 * - tcp_use_frto() is used to determine if TCP is can use F-RTO
3132 * - tcp_enter_frto() prepares TCP state on RTO if F-RTO is used, it is
3133 * called when tcp_use_frto() showed green light
3134 * - tcp_process_frto() handles incoming ACKs during F-RTO algorithm
3135 * - tcp_enter_frto_loss() is called if there is not enough evidence
3136 * to prove that the RTO is indeed spurious. It transfers the control
3137 * from F-RTO to the conventional RTO recovery
3139 static int tcp_process_frto(struct sock *sk, int flag)
3141 struct tcp_sock *tp = tcp_sk(sk);
3143 tcp_verify_left_out(tp);
3145 /* Duplicate the behavior from Loss state (fastretrans_alert) */
3146 if (flag & FLAG_DATA_ACKED)
3147 inet_csk(sk)->icsk_retransmits = 0;
3149 if ((flag & FLAG_NONHEAD_RETRANS_ACKED) ||
3150 ((tp->frto_counter >= 2) && (flag & FLAG_RETRANS_DATA_ACKED)))
3151 tp->undo_marker = 0;
3153 if (!before(tp->snd_una, tp->frto_highmark)) {
3154 tcp_enter_frto_loss(sk, (tp->frto_counter == 1 ? 2 : 3), flag);
3155 return 1;
3158 if (!tcp_is_sackfrto(tp)) {
3159 /* RFC4138 shortcoming in step 2; should also have case c):
3160 * ACK isn't duplicate nor advances window, e.g., opposite dir
3161 * data, winupdate
3163 if (!(flag & FLAG_ANY_PROGRESS) && (flag & FLAG_NOT_DUP))
3164 return 1;
3166 if (!(flag & FLAG_DATA_ACKED)) {
3167 tcp_enter_frto_loss(sk, (tp->frto_counter == 1 ? 0 : 3),
3168 flag);
3169 return 1;
3171 } else {
3172 if (!(flag & FLAG_DATA_ACKED) && (tp->frto_counter == 1)) {
3173 /* Prevent sending of new data. */
3174 tp->snd_cwnd = min(tp->snd_cwnd,
3175 tcp_packets_in_flight(tp));
3176 return 1;
3179 if ((tp->frto_counter >= 2) &&
3180 (!(flag & FLAG_FORWARD_PROGRESS) ||
3181 ((flag & FLAG_DATA_SACKED) &&
3182 !(flag & FLAG_ONLY_ORIG_SACKED)))) {
3183 /* RFC4138 shortcoming (see comment above) */
3184 if (!(flag & FLAG_FORWARD_PROGRESS) &&
3185 (flag & FLAG_NOT_DUP))
3186 return 1;
3188 tcp_enter_frto_loss(sk, 3, flag);
3189 return 1;
3193 if (tp->frto_counter == 1) {
3194 /* tcp_may_send_now needs to see updated state */
3195 tp->snd_cwnd = tcp_packets_in_flight(tp) + 2;
3196 tp->frto_counter = 2;
3198 if (!tcp_may_send_now(sk))
3199 tcp_enter_frto_loss(sk, 2, flag);
3201 return 1;
3202 } else {
3203 switch (sysctl_tcp_frto_response) {
3204 case 2:
3205 tcp_undo_spur_to_response(sk, flag);
3206 break;
3207 case 1:
3208 tcp_conservative_spur_to_response(tp);
3209 break;
3210 default:
3211 tcp_ratehalving_spur_to_response(sk);
3212 break;
3214 tp->frto_counter = 0;
3215 tp->undo_marker = 0;
3216 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPSPURIOUSRTOS);
3218 return 0;
3221 /* This routine deals with incoming acks, but not outgoing ones. */
3222 static int tcp_ack(struct sock *sk, struct sk_buff *skb, int flag)
3224 struct inet_connection_sock *icsk = inet_csk(sk);
3225 struct tcp_sock *tp = tcp_sk(sk);
3226 u32 prior_snd_una = tp->snd_una;
3227 u32 ack_seq = TCP_SKB_CB(skb)->seq;
3228 u32 ack = TCP_SKB_CB(skb)->ack_seq;
3229 u32 prior_in_flight;
3230 u32 prior_fackets;
3231 int prior_packets;
3232 int frto_cwnd = 0;
3234 /* If the ack is newer than sent or older than previous acks
3235 * then we can probably ignore it.
3237 if (after(ack, tp->snd_nxt))
3238 goto uninteresting_ack;
3240 if (before(ack, prior_snd_una))
3241 goto old_ack;
3243 if (after(ack, prior_snd_una))
3244 flag |= FLAG_SND_UNA_ADVANCED;
3246 if (sysctl_tcp_abc) {
3247 if (icsk->icsk_ca_state < TCP_CA_CWR)
3248 tp->bytes_acked += ack - prior_snd_una;
3249 else if (icsk->icsk_ca_state == TCP_CA_Loss)
3250 /* we assume just one segment left network */
3251 tp->bytes_acked += min(ack - prior_snd_una,
3252 tp->mss_cache);
3255 prior_fackets = tp->fackets_out;
3256 prior_in_flight = tcp_packets_in_flight(tp);
3258 if (!(flag & FLAG_SLOWPATH) && after(ack, prior_snd_una)) {
3259 /* Window is constant, pure forward advance.
3260 * No more checks are required.
3261 * Note, we use the fact that SND.UNA>=SND.WL2.
3263 tcp_update_wl(tp, ack, ack_seq);
3264 tp->snd_una = ack;
3265 flag |= FLAG_WIN_UPDATE;
3267 tcp_ca_event(sk, CA_EVENT_FAST_ACK);
3269 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPHPACKS);
3270 } else {
3271 if (ack_seq != TCP_SKB_CB(skb)->end_seq)
3272 flag |= FLAG_DATA;
3273 else
3274 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPPUREACKS);
3276 flag |= tcp_ack_update_window(sk, skb, ack, ack_seq);
3278 if (TCP_SKB_CB(skb)->sacked)
3279 flag |= tcp_sacktag_write_queue(sk, skb, prior_snd_una);
3281 if (TCP_ECN_rcv_ecn_echo(tp, tcp_hdr(skb)))
3282 flag |= FLAG_ECE;
3284 tcp_ca_event(sk, CA_EVENT_SLOW_ACK);
3287 /* We passed data and got it acked, remove any soft error
3288 * log. Something worked...
3290 sk->sk_err_soft = 0;
3291 icsk->icsk_probes_out = 0;
3292 tp->rcv_tstamp = tcp_time_stamp;
3293 prior_packets = tp->packets_out;
3294 if (!prior_packets)
3295 goto no_queue;
3297 /* See if we can take anything off of the retransmit queue. */
3298 flag |= tcp_clean_rtx_queue(sk, prior_fackets);
3300 if (tp->frto_counter)
3301 frto_cwnd = tcp_process_frto(sk, flag);
3302 /* Guarantee sacktag reordering detection against wrap-arounds */
3303 if (before(tp->frto_highmark, tp->snd_una))
3304 tp->frto_highmark = 0;
3306 if (tcp_ack_is_dubious(sk, flag)) {
3307 /* Advance CWND, if state allows this. */
3308 if ((flag & FLAG_DATA_ACKED) && !frto_cwnd &&
3309 tcp_may_raise_cwnd(sk, flag))
3310 tcp_cong_avoid(sk, ack, prior_in_flight);
3311 tcp_fastretrans_alert(sk, prior_packets - tp->packets_out,
3312 flag);
3313 } else {
3314 if ((flag & FLAG_DATA_ACKED) && !frto_cwnd)
3315 tcp_cong_avoid(sk, ack, prior_in_flight);
3318 if ((flag & FLAG_FORWARD_PROGRESS) || !(flag & FLAG_NOT_DUP))
3319 dst_confirm(sk->sk_dst_cache);
3321 return 1;
3323 no_queue:
3324 /* If this ack opens up a zero window, clear backoff. It was
3325 * being used to time the probes, and is probably far higher than
3326 * it needs to be for normal retransmission.
3328 if (tcp_send_head(sk))
3329 tcp_ack_probe(sk);
3330 return 1;
3332 old_ack:
3333 if (TCP_SKB_CB(skb)->sacked) {
3334 tcp_sacktag_write_queue(sk, skb, prior_snd_una);
3335 if (icsk->icsk_ca_state == TCP_CA_Open)
3336 tcp_try_keep_open(sk);
3339 uninteresting_ack:
3340 SOCK_DEBUG(sk, "Ack %u out of %u:%u\n", ack, tp->snd_una, tp->snd_nxt);
3341 return 0;
3344 /* Look for tcp options. Normally only called on SYN and SYNACK packets.
3345 * But, this can also be called on packets in the established flow when
3346 * the fast version below fails.
3348 void tcp_parse_options(struct sk_buff *skb, struct tcp_options_received *opt_rx,
3349 int estab)
3351 unsigned char *ptr;
3352 struct tcphdr *th = tcp_hdr(skb);
3353 int length = (th->doff * 4) - sizeof(struct tcphdr);
3355 ptr = (unsigned char *)(th + 1);
3356 opt_rx->saw_tstamp = 0;
3358 while (length > 0) {
3359 int opcode = *ptr++;
3360 int opsize;
3362 switch (opcode) {
3363 case TCPOPT_EOL:
3364 return;
3365 case TCPOPT_NOP: /* Ref: RFC 793 section 3.1 */
3366 length--;
3367 continue;
3368 default:
3369 opsize = *ptr++;
3370 if (opsize < 2) /* "silly options" */
3371 return;
3372 if (opsize > length)
3373 return; /* don't parse partial options */
3374 switch (opcode) {
3375 case TCPOPT_MSS:
3376 if (opsize == TCPOLEN_MSS && th->syn && !estab) {
3377 u16 in_mss = get_unaligned_be16(ptr);
3378 if (in_mss) {
3379 if (opt_rx->user_mss &&
3380 opt_rx->user_mss < in_mss)
3381 in_mss = opt_rx->user_mss;
3382 opt_rx->mss_clamp = in_mss;
3385 break;
3386 case TCPOPT_WINDOW:
3387 if (opsize == TCPOLEN_WINDOW && th->syn &&
3388 !estab && sysctl_tcp_window_scaling) {
3389 __u8 snd_wscale = *(__u8 *)ptr;
3390 opt_rx->wscale_ok = 1;
3391 if (snd_wscale > 14) {
3392 if (net_ratelimit())
3393 printk(KERN_INFO "tcp_parse_options: Illegal window "
3394 "scaling value %d >14 received.\n",
3395 snd_wscale);
3396 snd_wscale = 14;
3398 opt_rx->snd_wscale = snd_wscale;
3400 break;
3401 case TCPOPT_TIMESTAMP:
3402 if ((opsize == TCPOLEN_TIMESTAMP) &&
3403 ((estab && opt_rx->tstamp_ok) ||
3404 (!estab && sysctl_tcp_timestamps))) {
3405 opt_rx->saw_tstamp = 1;
3406 opt_rx->rcv_tsval = get_unaligned_be32(ptr);
3407 opt_rx->rcv_tsecr = get_unaligned_be32(ptr + 4);
3409 break;
3410 case TCPOPT_SACK_PERM:
3411 if (opsize == TCPOLEN_SACK_PERM && th->syn &&
3412 !estab && sysctl_tcp_sack) {
3413 opt_rx->sack_ok = 1;
3414 tcp_sack_reset(opt_rx);
3416 break;
3418 case TCPOPT_SACK:
3419 if ((opsize >= (TCPOLEN_SACK_BASE + TCPOLEN_SACK_PERBLOCK)) &&
3420 !((opsize - TCPOLEN_SACK_BASE) % TCPOLEN_SACK_PERBLOCK) &&
3421 opt_rx->sack_ok) {
3422 TCP_SKB_CB(skb)->sacked = (ptr - 2) - (unsigned char *)th;
3424 break;
3425 #ifdef CONFIG_TCP_MD5SIG
3426 case TCPOPT_MD5SIG:
3428 * The MD5 Hash has already been
3429 * checked (see tcp_v{4,6}_do_rcv()).
3431 break;
3432 #endif
3435 ptr += opsize-2;
3436 length -= opsize;
3441 static int tcp_parse_aligned_timestamp(struct tcp_sock *tp, struct tcphdr *th)
3443 __be32 *ptr = (__be32 *)(th + 1);
3445 if (*ptr == htonl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16)
3446 | (TCPOPT_TIMESTAMP << 8) | TCPOLEN_TIMESTAMP)) {
3447 tp->rx_opt.saw_tstamp = 1;
3448 ++ptr;
3449 tp->rx_opt.rcv_tsval = ntohl(*ptr);
3450 ++ptr;
3451 tp->rx_opt.rcv_tsecr = ntohl(*ptr);
3452 return 1;
3454 return 0;
3457 /* Fast parse options. This hopes to only see timestamps.
3458 * If it is wrong it falls back on tcp_parse_options().
3460 static int tcp_fast_parse_options(struct sk_buff *skb, struct tcphdr *th,
3461 struct tcp_sock *tp)
3463 if (th->doff == sizeof(struct tcphdr) >> 2) {
3464 tp->rx_opt.saw_tstamp = 0;
3465 return 0;
3466 } else if (tp->rx_opt.tstamp_ok &&
3467 th->doff == (sizeof(struct tcphdr)>>2)+(TCPOLEN_TSTAMP_ALIGNED>>2)) {
3468 if (tcp_parse_aligned_timestamp(tp, th))
3469 return 1;
3471 tcp_parse_options(skb, &tp->rx_opt, 1);
3472 return 1;
3475 #ifdef CONFIG_TCP_MD5SIG
3477 * Parse MD5 Signature option
3479 u8 *tcp_parse_md5sig_option(struct tcphdr *th)
3481 int length = (th->doff << 2) - sizeof (*th);
3482 u8 *ptr = (u8*)(th + 1);
3484 /* If the TCP option is too short, we can short cut */
3485 if (length < TCPOLEN_MD5SIG)
3486 return NULL;
3488 while (length > 0) {
3489 int opcode = *ptr++;
3490 int opsize;
3492 switch(opcode) {
3493 case TCPOPT_EOL:
3494 return NULL;
3495 case TCPOPT_NOP:
3496 length--;
3497 continue;
3498 default:
3499 opsize = *ptr++;
3500 if (opsize < 2 || opsize > length)
3501 return NULL;
3502 if (opcode == TCPOPT_MD5SIG)
3503 return ptr;
3505 ptr += opsize - 2;
3506 length -= opsize;
3508 return NULL;
3510 #endif
3512 static inline void tcp_store_ts_recent(struct tcp_sock *tp)
3514 tp->rx_opt.ts_recent = tp->rx_opt.rcv_tsval;
3515 tp->rx_opt.ts_recent_stamp = get_seconds();
3518 static inline void tcp_replace_ts_recent(struct tcp_sock *tp, u32 seq)
3520 if (tp->rx_opt.saw_tstamp && !after(seq, tp->rcv_wup)) {
3521 /* PAWS bug workaround wrt. ACK frames, the PAWS discard
3522 * extra check below makes sure this can only happen
3523 * for pure ACK frames. -DaveM
3525 * Not only, also it occurs for expired timestamps.
3528 if ((s32)(tp->rx_opt.rcv_tsval - tp->rx_opt.ts_recent) >= 0 ||
3529 get_seconds() >= tp->rx_opt.ts_recent_stamp + TCP_PAWS_24DAYS)
3530 tcp_store_ts_recent(tp);
3534 /* Sorry, PAWS as specified is broken wrt. pure-ACKs -DaveM
3536 * It is not fatal. If this ACK does _not_ change critical state (seqs, window)
3537 * it can pass through stack. So, the following predicate verifies that
3538 * this segment is not used for anything but congestion avoidance or
3539 * fast retransmit. Moreover, we even are able to eliminate most of such
3540 * second order effects, if we apply some small "replay" window (~RTO)
3541 * to timestamp space.
3543 * All these measures still do not guarantee that we reject wrapped ACKs
3544 * on networks with high bandwidth, when sequence space is recycled fastly,
3545 * but it guarantees that such events will be very rare and do not affect
3546 * connection seriously. This doesn't look nice, but alas, PAWS is really
3547 * buggy extension.
3549 * [ Later note. Even worse! It is buggy for segments _with_ data. RFC
3550 * states that events when retransmit arrives after original data are rare.
3551 * It is a blatant lie. VJ forgot about fast retransmit! 8)8) It is
3552 * the biggest problem on large power networks even with minor reordering.
3553 * OK, let's give it small replay window. If peer clock is even 1hz, it is safe
3554 * up to bandwidth of 18Gigabit/sec. 8) ]
3557 static int tcp_disordered_ack(const struct sock *sk, const struct sk_buff *skb)
3559 struct tcp_sock *tp = tcp_sk(sk);
3560 struct tcphdr *th = tcp_hdr(skb);
3561 u32 seq = TCP_SKB_CB(skb)->seq;
3562 u32 ack = TCP_SKB_CB(skb)->ack_seq;
3564 return (/* 1. Pure ACK with correct sequence number. */
3565 (th->ack && seq == TCP_SKB_CB(skb)->end_seq && seq == tp->rcv_nxt) &&
3567 /* 2. ... and duplicate ACK. */
3568 ack == tp->snd_una &&
3570 /* 3. ... and does not update window. */
3571 !tcp_may_update_window(tp, ack, seq, ntohs(th->window) << tp->rx_opt.snd_wscale) &&
3573 /* 4. ... and sits in replay window. */
3574 (s32)(tp->rx_opt.ts_recent - tp->rx_opt.rcv_tsval) <= (inet_csk(sk)->icsk_rto * 1024) / HZ);
3577 static inline int tcp_paws_discard(const struct sock *sk,
3578 const struct sk_buff *skb)
3580 const struct tcp_sock *tp = tcp_sk(sk);
3581 return ((s32)(tp->rx_opt.ts_recent - tp->rx_opt.rcv_tsval) > TCP_PAWS_WINDOW &&
3582 get_seconds() < tp->rx_opt.ts_recent_stamp + TCP_PAWS_24DAYS &&
3583 !tcp_disordered_ack(sk, skb));
3586 /* Check segment sequence number for validity.
3588 * Segment controls are considered valid, if the segment
3589 * fits to the window after truncation to the window. Acceptability
3590 * of data (and SYN, FIN, of course) is checked separately.
3591 * See tcp_data_queue(), for example.
3593 * Also, controls (RST is main one) are accepted using RCV.WUP instead
3594 * of RCV.NXT. Peer still did not advance his SND.UNA when we
3595 * delayed ACK, so that hisSND.UNA<=ourRCV.WUP.
3596 * (borrowed from freebsd)
3599 static inline int tcp_sequence(struct tcp_sock *tp, u32 seq, u32 end_seq)
3601 return !before(end_seq, tp->rcv_wup) &&
3602 !after(seq, tp->rcv_nxt + tcp_receive_window(tp));
3605 /* When we get a reset we do this. */
3606 static void tcp_reset(struct sock *sk)
3608 /* We want the right error as BSD sees it (and indeed as we do). */
3609 switch (sk->sk_state) {
3610 case TCP_SYN_SENT:
3611 sk->sk_err = ECONNREFUSED;
3612 break;
3613 case TCP_CLOSE_WAIT:
3614 sk->sk_err = EPIPE;
3615 break;
3616 case TCP_CLOSE:
3617 return;
3618 default:
3619 sk->sk_err = ECONNRESET;
3622 if (!sock_flag(sk, SOCK_DEAD))
3623 sk->sk_error_report(sk);
3625 tcp_done(sk);
3629 * Process the FIN bit. This now behaves as it is supposed to work
3630 * and the FIN takes effect when it is validly part of sequence
3631 * space. Not before when we get holes.
3633 * If we are ESTABLISHED, a received fin moves us to CLOSE-WAIT
3634 * (and thence onto LAST-ACK and finally, CLOSE, we never enter
3635 * TIME-WAIT)
3637 * If we are in FINWAIT-1, a received FIN indicates simultaneous
3638 * close and we go into CLOSING (and later onto TIME-WAIT)
3640 * If we are in FINWAIT-2, a received FIN moves us to TIME-WAIT.
3642 static void tcp_fin(struct sk_buff *skb, struct sock *sk, struct tcphdr *th)
3644 struct tcp_sock *tp = tcp_sk(sk);
3646 inet_csk_schedule_ack(sk);
3648 sk->sk_shutdown |= RCV_SHUTDOWN;
3649 sock_set_flag(sk, SOCK_DONE);
3651 switch (sk->sk_state) {
3652 case TCP_SYN_RECV:
3653 case TCP_ESTABLISHED:
3654 /* Move to CLOSE_WAIT */
3655 tcp_set_state(sk, TCP_CLOSE_WAIT);
3656 inet_csk(sk)->icsk_ack.pingpong = 1;
3657 break;
3659 case TCP_CLOSE_WAIT:
3660 case TCP_CLOSING:
3661 /* Received a retransmission of the FIN, do
3662 * nothing.
3664 break;
3665 case TCP_LAST_ACK:
3666 /* RFC793: Remain in the LAST-ACK state. */
3667 break;
3669 case TCP_FIN_WAIT1:
3670 /* This case occurs when a simultaneous close
3671 * happens, we must ack the received FIN and
3672 * enter the CLOSING state.
3674 tcp_send_ack(sk);
3675 tcp_set_state(sk, TCP_CLOSING);
3676 break;
3677 case TCP_FIN_WAIT2:
3678 /* Received a FIN -- send ACK and enter TIME_WAIT. */
3679 tcp_send_ack(sk);
3680 tcp_time_wait(sk, TCP_TIME_WAIT, 0);
3681 break;
3682 default:
3683 /* Only TCP_LISTEN and TCP_CLOSE are left, in these
3684 * cases we should never reach this piece of code.
3686 printk(KERN_ERR "%s: Impossible, sk->sk_state=%d\n",
3687 __func__, sk->sk_state);
3688 break;
3691 /* It _is_ possible, that we have something out-of-order _after_ FIN.
3692 * Probably, we should reset in this case. For now drop them.
3694 __skb_queue_purge(&tp->out_of_order_queue);
3695 if (tcp_is_sack(tp))
3696 tcp_sack_reset(&tp->rx_opt);
3697 sk_mem_reclaim(sk);
3699 if (!sock_flag(sk, SOCK_DEAD)) {
3700 sk->sk_state_change(sk);
3702 /* Do not send POLL_HUP for half duplex close. */
3703 if (sk->sk_shutdown == SHUTDOWN_MASK ||
3704 sk->sk_state == TCP_CLOSE)
3705 sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_HUP);
3706 else
3707 sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_IN);
3711 static inline int tcp_sack_extend(struct tcp_sack_block *sp, u32 seq,
3712 u32 end_seq)
3714 if (!after(seq, sp->end_seq) && !after(sp->start_seq, end_seq)) {
3715 if (before(seq, sp->start_seq))
3716 sp->start_seq = seq;
3717 if (after(end_seq, sp->end_seq))
3718 sp->end_seq = end_seq;
3719 return 1;
3721 return 0;
3724 static void tcp_dsack_set(struct sock *sk, u32 seq, u32 end_seq)
3726 struct tcp_sock *tp = tcp_sk(sk);
3728 if (tcp_is_sack(tp) && sysctl_tcp_dsack) {
3729 int mib_idx;
3731 if (before(seq, tp->rcv_nxt))
3732 mib_idx = LINUX_MIB_TCPDSACKOLDSENT;
3733 else
3734 mib_idx = LINUX_MIB_TCPDSACKOFOSENT;
3736 NET_INC_STATS_BH(sock_net(sk), mib_idx);
3738 tp->rx_opt.dsack = 1;
3739 tp->duplicate_sack[0].start_seq = seq;
3740 tp->duplicate_sack[0].end_seq = end_seq;
3741 tp->rx_opt.eff_sacks = tp->rx_opt.num_sacks + 1;
3745 static void tcp_dsack_extend(struct sock *sk, u32 seq, u32 end_seq)
3747 struct tcp_sock *tp = tcp_sk(sk);
3749 if (!tp->rx_opt.dsack)
3750 tcp_dsack_set(sk, seq, end_seq);
3751 else
3752 tcp_sack_extend(tp->duplicate_sack, seq, end_seq);
3755 static void tcp_send_dupack(struct sock *sk, struct sk_buff *skb)
3757 struct tcp_sock *tp = tcp_sk(sk);
3759 if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
3760 before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
3761 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_DELAYEDACKLOST);
3762 tcp_enter_quickack_mode(sk);
3764 if (tcp_is_sack(tp) && sysctl_tcp_dsack) {
3765 u32 end_seq = TCP_SKB_CB(skb)->end_seq;
3767 if (after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt))
3768 end_seq = tp->rcv_nxt;
3769 tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, end_seq);
3773 tcp_send_ack(sk);
3776 /* These routines update the SACK block as out-of-order packets arrive or
3777 * in-order packets close up the sequence space.
3779 static void tcp_sack_maybe_coalesce(struct tcp_sock *tp)
3781 int this_sack;
3782 struct tcp_sack_block *sp = &tp->selective_acks[0];
3783 struct tcp_sack_block *swalk = sp + 1;
3785 /* See if the recent change to the first SACK eats into
3786 * or hits the sequence space of other SACK blocks, if so coalesce.
3788 for (this_sack = 1; this_sack < tp->rx_opt.num_sacks;) {
3789 if (tcp_sack_extend(sp, swalk->start_seq, swalk->end_seq)) {
3790 int i;
3792 /* Zap SWALK, by moving every further SACK up by one slot.
3793 * Decrease num_sacks.
3795 tp->rx_opt.num_sacks--;
3796 tp->rx_opt.eff_sacks = tp->rx_opt.num_sacks +
3797 tp->rx_opt.dsack;
3798 for (i = this_sack; i < tp->rx_opt.num_sacks; i++)
3799 sp[i] = sp[i + 1];
3800 continue;
3802 this_sack++, swalk++;
3806 static inline void tcp_sack_swap(struct tcp_sack_block *sack1,
3807 struct tcp_sack_block *sack2)
3809 __u32 tmp;
3811 tmp = sack1->start_seq;
3812 sack1->start_seq = sack2->start_seq;
3813 sack2->start_seq = tmp;
3815 tmp = sack1->end_seq;
3816 sack1->end_seq = sack2->end_seq;
3817 sack2->end_seq = tmp;
3820 static void tcp_sack_new_ofo_skb(struct sock *sk, u32 seq, u32 end_seq)
3822 struct tcp_sock *tp = tcp_sk(sk);
3823 struct tcp_sack_block *sp = &tp->selective_acks[0];
3824 int cur_sacks = tp->rx_opt.num_sacks;
3825 int this_sack;
3827 if (!cur_sacks)
3828 goto new_sack;
3830 for (this_sack = 0; this_sack < cur_sacks; this_sack++, sp++) {
3831 if (tcp_sack_extend(sp, seq, end_seq)) {
3832 /* Rotate this_sack to the first one. */
3833 for (; this_sack > 0; this_sack--, sp--)
3834 tcp_sack_swap(sp, sp - 1);
3835 if (cur_sacks > 1)
3836 tcp_sack_maybe_coalesce(tp);
3837 return;
3841 /* Could not find an adjacent existing SACK, build a new one,
3842 * put it at the front, and shift everyone else down. We
3843 * always know there is at least one SACK present already here.
3845 * If the sack array is full, forget about the last one.
3847 if (this_sack >= TCP_NUM_SACKS) {
3848 this_sack--;
3849 tp->rx_opt.num_sacks--;
3850 sp--;
3852 for (; this_sack > 0; this_sack--, sp--)
3853 *sp = *(sp - 1);
3855 new_sack:
3856 /* Build the new head SACK, and we're done. */
3857 sp->start_seq = seq;
3858 sp->end_seq = end_seq;
3859 tp->rx_opt.num_sacks++;
3860 tp->rx_opt.eff_sacks = tp->rx_opt.num_sacks + tp->rx_opt.dsack;
3863 /* RCV.NXT advances, some SACKs should be eaten. */
3865 static void tcp_sack_remove(struct tcp_sock *tp)
3867 struct tcp_sack_block *sp = &tp->selective_acks[0];
3868 int num_sacks = tp->rx_opt.num_sacks;
3869 int this_sack;
3871 /* Empty ofo queue, hence, all the SACKs are eaten. Clear. */
3872 if (skb_queue_empty(&tp->out_of_order_queue)) {
3873 tp->rx_opt.num_sacks = 0;
3874 tp->rx_opt.eff_sacks = tp->rx_opt.dsack;
3875 return;
3878 for (this_sack = 0; this_sack < num_sacks;) {
3879 /* Check if the start of the sack is covered by RCV.NXT. */
3880 if (!before(tp->rcv_nxt, sp->start_seq)) {
3881 int i;
3883 /* RCV.NXT must cover all the block! */
3884 WARN_ON(before(tp->rcv_nxt, sp->end_seq));
3886 /* Zap this SACK, by moving forward any other SACKS. */
3887 for (i=this_sack+1; i < num_sacks; i++)
3888 tp->selective_acks[i-1] = tp->selective_acks[i];
3889 num_sacks--;
3890 continue;
3892 this_sack++;
3893 sp++;
3895 if (num_sacks != tp->rx_opt.num_sacks) {
3896 tp->rx_opt.num_sacks = num_sacks;
3897 tp->rx_opt.eff_sacks = tp->rx_opt.num_sacks +
3898 tp->rx_opt.dsack;
3902 /* This one checks to see if we can put data from the
3903 * out_of_order queue into the receive_queue.
3905 static void tcp_ofo_queue(struct sock *sk)
3907 struct tcp_sock *tp = tcp_sk(sk);
3908 __u32 dsack_high = tp->rcv_nxt;
3909 struct sk_buff *skb;
3911 while ((skb = skb_peek(&tp->out_of_order_queue)) != NULL) {
3912 if (after(TCP_SKB_CB(skb)->seq, tp->rcv_nxt))
3913 break;
3915 if (before(TCP_SKB_CB(skb)->seq, dsack_high)) {
3916 __u32 dsack = dsack_high;
3917 if (before(TCP_SKB_CB(skb)->end_seq, dsack_high))
3918 dsack_high = TCP_SKB_CB(skb)->end_seq;
3919 tcp_dsack_extend(sk, TCP_SKB_CB(skb)->seq, dsack);
3922 if (!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt)) {
3923 SOCK_DEBUG(sk, "ofo packet was already received \n");
3924 __skb_unlink(skb, &tp->out_of_order_queue);
3925 __kfree_skb(skb);
3926 continue;
3928 SOCK_DEBUG(sk, "ofo requeuing : rcv_next %X seq %X - %X\n",
3929 tp->rcv_nxt, TCP_SKB_CB(skb)->seq,
3930 TCP_SKB_CB(skb)->end_seq);
3932 __skb_unlink(skb, &tp->out_of_order_queue);
3933 __skb_queue_tail(&sk->sk_receive_queue, skb);
3934 tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
3935 if (tcp_hdr(skb)->fin)
3936 tcp_fin(skb, sk, tcp_hdr(skb));
3940 static int tcp_prune_ofo_queue(struct sock *sk);
3941 static int tcp_prune_queue(struct sock *sk);
3943 static inline int tcp_try_rmem_schedule(struct sock *sk, unsigned int size)
3945 if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf ||
3946 !sk_rmem_schedule(sk, size)) {
3948 if (tcp_prune_queue(sk) < 0)
3949 return -1;
3951 if (!sk_rmem_schedule(sk, size)) {
3952 if (!tcp_prune_ofo_queue(sk))
3953 return -1;
3955 if (!sk_rmem_schedule(sk, size))
3956 return -1;
3959 return 0;
3962 static void tcp_data_queue(struct sock *sk, struct sk_buff *skb)
3964 struct tcphdr *th = tcp_hdr(skb);
3965 struct tcp_sock *tp = tcp_sk(sk);
3966 int eaten = -1;
3968 if (TCP_SKB_CB(skb)->seq == TCP_SKB_CB(skb)->end_seq)
3969 goto drop;
3971 __skb_pull(skb, th->doff * 4);
3973 TCP_ECN_accept_cwr(tp, skb);
3975 if (tp->rx_opt.dsack) {
3976 tp->rx_opt.dsack = 0;
3977 tp->rx_opt.eff_sacks = tp->rx_opt.num_sacks;
3980 /* Queue data for delivery to the user.
3981 * Packets in sequence go to the receive queue.
3982 * Out of sequence packets to the out_of_order_queue.
3984 if (TCP_SKB_CB(skb)->seq == tp->rcv_nxt) {
3985 if (tcp_receive_window(tp) == 0)
3986 goto out_of_window;
3988 /* Ok. In sequence. In window. */
3989 if (tp->ucopy.task == current &&
3990 tp->copied_seq == tp->rcv_nxt && tp->ucopy.len &&
3991 sock_owned_by_user(sk) && !tp->urg_data) {
3992 int chunk = min_t(unsigned int, skb->len,
3993 tp->ucopy.len);
3995 __set_current_state(TASK_RUNNING);
3997 local_bh_enable();
3998 if (!skb_copy_datagram_iovec(skb, 0, tp->ucopy.iov, chunk)) {
3999 tp->ucopy.len -= chunk;
4000 tp->copied_seq += chunk;
4001 eaten = (chunk == skb->len && !th->fin);
4002 tcp_rcv_space_adjust(sk);
4004 local_bh_disable();
4007 if (eaten <= 0) {
4008 queue_and_out:
4009 if (eaten < 0 &&
4010 tcp_try_rmem_schedule(sk, skb->truesize))
4011 goto drop;
4013 skb_set_owner_r(skb, sk);
4014 __skb_queue_tail(&sk->sk_receive_queue, skb);
4016 tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
4017 if (skb->len)
4018 tcp_event_data_recv(sk, skb);
4019 if (th->fin)
4020 tcp_fin(skb, sk, th);
4022 if (!skb_queue_empty(&tp->out_of_order_queue)) {
4023 tcp_ofo_queue(sk);
4025 /* RFC2581. 4.2. SHOULD send immediate ACK, when
4026 * gap in queue is filled.
4028 if (skb_queue_empty(&tp->out_of_order_queue))
4029 inet_csk(sk)->icsk_ack.pingpong = 0;
4032 if (tp->rx_opt.num_sacks)
4033 tcp_sack_remove(tp);
4035 tcp_fast_path_check(sk);
4037 if (eaten > 0)
4038 __kfree_skb(skb);
4039 else if (!sock_flag(sk, SOCK_DEAD))
4040 sk->sk_data_ready(sk, 0);
4041 return;
4044 if (!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt)) {
4045 /* A retransmit, 2nd most common case. Force an immediate ack. */
4046 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_DELAYEDACKLOST);
4047 tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq);
4049 out_of_window:
4050 tcp_enter_quickack_mode(sk);
4051 inet_csk_schedule_ack(sk);
4052 drop:
4053 __kfree_skb(skb);
4054 return;
4057 /* Out of window. F.e. zero window probe. */
4058 if (!before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt + tcp_receive_window(tp)))
4059 goto out_of_window;
4061 tcp_enter_quickack_mode(sk);
4063 if (before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
4064 /* Partial packet, seq < rcv_next < end_seq */
4065 SOCK_DEBUG(sk, "partial packet: rcv_next %X seq %X - %X\n",
4066 tp->rcv_nxt, TCP_SKB_CB(skb)->seq,
4067 TCP_SKB_CB(skb)->end_seq);
4069 tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, tp->rcv_nxt);
4071 /* If window is closed, drop tail of packet. But after
4072 * remembering D-SACK for its head made in previous line.
4074 if (!tcp_receive_window(tp))
4075 goto out_of_window;
4076 goto queue_and_out;
4079 TCP_ECN_check_ce(tp, skb);
4081 if (tcp_try_rmem_schedule(sk, skb->truesize))
4082 goto drop;
4084 /* Disable header prediction. */
4085 tp->pred_flags = 0;
4086 inet_csk_schedule_ack(sk);
4088 SOCK_DEBUG(sk, "out of order segment: rcv_next %X seq %X - %X\n",
4089 tp->rcv_nxt, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq);
4091 skb_set_owner_r(skb, sk);
4093 if (!skb_peek(&tp->out_of_order_queue)) {
4094 /* Initial out of order segment, build 1 SACK. */
4095 if (tcp_is_sack(tp)) {
4096 tp->rx_opt.num_sacks = 1;
4097 tp->rx_opt.dsack = 0;
4098 tp->rx_opt.eff_sacks = 1;
4099 tp->selective_acks[0].start_seq = TCP_SKB_CB(skb)->seq;
4100 tp->selective_acks[0].end_seq =
4101 TCP_SKB_CB(skb)->end_seq;
4103 __skb_queue_head(&tp->out_of_order_queue, skb);
4104 } else {
4105 struct sk_buff *skb1 = tp->out_of_order_queue.prev;
4106 u32 seq = TCP_SKB_CB(skb)->seq;
4107 u32 end_seq = TCP_SKB_CB(skb)->end_seq;
4109 if (seq == TCP_SKB_CB(skb1)->end_seq) {
4110 __skb_queue_after(&tp->out_of_order_queue, skb1, skb);
4112 if (!tp->rx_opt.num_sacks ||
4113 tp->selective_acks[0].end_seq != seq)
4114 goto add_sack;
4116 /* Common case: data arrive in order after hole. */
4117 tp->selective_acks[0].end_seq = end_seq;
4118 return;
4121 /* Find place to insert this segment. */
4122 do {
4123 if (!after(TCP_SKB_CB(skb1)->seq, seq))
4124 break;
4125 } while ((skb1 = skb1->prev) !=
4126 (struct sk_buff *)&tp->out_of_order_queue);
4128 /* Do skb overlap to previous one? */
4129 if (skb1 != (struct sk_buff *)&tp->out_of_order_queue &&
4130 before(seq, TCP_SKB_CB(skb1)->end_seq)) {
4131 if (!after(end_seq, TCP_SKB_CB(skb1)->end_seq)) {
4132 /* All the bits are present. Drop. */
4133 __kfree_skb(skb);
4134 tcp_dsack_set(sk, seq, end_seq);
4135 goto add_sack;
4137 if (after(seq, TCP_SKB_CB(skb1)->seq)) {
4138 /* Partial overlap. */
4139 tcp_dsack_set(sk, seq,
4140 TCP_SKB_CB(skb1)->end_seq);
4141 } else {
4142 skb1 = skb1->prev;
4145 __skb_insert(skb, skb1, skb1->next, &tp->out_of_order_queue);
4147 /* And clean segments covered by new one as whole. */
4148 while ((skb1 = skb->next) !=
4149 (struct sk_buff *)&tp->out_of_order_queue &&
4150 after(end_seq, TCP_SKB_CB(skb1)->seq)) {
4151 if (before(end_seq, TCP_SKB_CB(skb1)->end_seq)) {
4152 tcp_dsack_extend(sk, TCP_SKB_CB(skb1)->seq,
4153 end_seq);
4154 break;
4156 __skb_unlink(skb1, &tp->out_of_order_queue);
4157 tcp_dsack_extend(sk, TCP_SKB_CB(skb1)->seq,
4158 TCP_SKB_CB(skb1)->end_seq);
4159 __kfree_skb(skb1);
4162 add_sack:
4163 if (tcp_is_sack(tp))
4164 tcp_sack_new_ofo_skb(sk, seq, end_seq);
4168 static struct sk_buff *tcp_collapse_one(struct sock *sk, struct sk_buff *skb,
4169 struct sk_buff_head *list)
4171 struct sk_buff *next = skb->next;
4173 __skb_unlink(skb, list);
4174 __kfree_skb(skb);
4175 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPRCVCOLLAPSED);
4177 return next;
4180 /* Collapse contiguous sequence of skbs head..tail with
4181 * sequence numbers start..end.
4182 * Segments with FIN/SYN are not collapsed (only because this
4183 * simplifies code)
4185 static void
4186 tcp_collapse(struct sock *sk, struct sk_buff_head *list,
4187 struct sk_buff *head, struct sk_buff *tail,
4188 u32 start, u32 end)
4190 struct sk_buff *skb;
4192 /* First, check that queue is collapsible and find
4193 * the point where collapsing can be useful. */
4194 for (skb = head; skb != tail;) {
4195 /* No new bits? It is possible on ofo queue. */
4196 if (!before(start, TCP_SKB_CB(skb)->end_seq)) {
4197 skb = tcp_collapse_one(sk, skb, list);
4198 continue;
4201 /* The first skb to collapse is:
4202 * - not SYN/FIN and
4203 * - bloated or contains data before "start" or
4204 * overlaps to the next one.
4206 if (!tcp_hdr(skb)->syn && !tcp_hdr(skb)->fin &&
4207 (tcp_win_from_space(skb->truesize) > skb->len ||
4208 before(TCP_SKB_CB(skb)->seq, start) ||
4209 (skb->next != tail &&
4210 TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb->next)->seq)))
4211 break;
4213 /* Decided to skip this, advance start seq. */
4214 start = TCP_SKB_CB(skb)->end_seq;
4215 skb = skb->next;
4217 if (skb == tail || tcp_hdr(skb)->syn || tcp_hdr(skb)->fin)
4218 return;
4220 while (before(start, end)) {
4221 struct sk_buff *nskb;
4222 unsigned int header = skb_headroom(skb);
4223 int copy = SKB_MAX_ORDER(header, 0);
4225 /* Too big header? This can happen with IPv6. */
4226 if (copy < 0)
4227 return;
4228 if (end - start < copy)
4229 copy = end - start;
4230 nskb = alloc_skb(copy + header, GFP_ATOMIC);
4231 if (!nskb)
4232 return;
4234 skb_set_mac_header(nskb, skb_mac_header(skb) - skb->head);
4235 skb_set_network_header(nskb, (skb_network_header(skb) -
4236 skb->head));
4237 skb_set_transport_header(nskb, (skb_transport_header(skb) -
4238 skb->head));
4239 skb_reserve(nskb, header);
4240 memcpy(nskb->head, skb->head, header);
4241 memcpy(nskb->cb, skb->cb, sizeof(skb->cb));
4242 TCP_SKB_CB(nskb)->seq = TCP_SKB_CB(nskb)->end_seq = start;
4243 __skb_insert(nskb, skb->prev, skb, list);
4244 skb_set_owner_r(nskb, sk);
4246 /* Copy data, releasing collapsed skbs. */
4247 while (copy > 0) {
4248 int offset = start - TCP_SKB_CB(skb)->seq;
4249 int size = TCP_SKB_CB(skb)->end_seq - start;
4251 BUG_ON(offset < 0);
4252 if (size > 0) {
4253 size = min(copy, size);
4254 if (skb_copy_bits(skb, offset, skb_put(nskb, size), size))
4255 BUG();
4256 TCP_SKB_CB(nskb)->end_seq += size;
4257 copy -= size;
4258 start += size;
4260 if (!before(start, TCP_SKB_CB(skb)->end_seq)) {
4261 skb = tcp_collapse_one(sk, skb, list);
4262 if (skb == tail ||
4263 tcp_hdr(skb)->syn ||
4264 tcp_hdr(skb)->fin)
4265 return;
4271 /* Collapse ofo queue. Algorithm: select contiguous sequence of skbs
4272 * and tcp_collapse() them until all the queue is collapsed.
4274 static void tcp_collapse_ofo_queue(struct sock *sk)
4276 struct tcp_sock *tp = tcp_sk(sk);
4277 struct sk_buff *skb = skb_peek(&tp->out_of_order_queue);
4278 struct sk_buff *head;
4279 u32 start, end;
4281 if (skb == NULL)
4282 return;
4284 start = TCP_SKB_CB(skb)->seq;
4285 end = TCP_SKB_CB(skb)->end_seq;
4286 head = skb;
4288 for (;;) {
4289 skb = skb->next;
4291 /* Segment is terminated when we see gap or when
4292 * we are at the end of all the queue. */
4293 if (skb == (struct sk_buff *)&tp->out_of_order_queue ||
4294 after(TCP_SKB_CB(skb)->seq, end) ||
4295 before(TCP_SKB_CB(skb)->end_seq, start)) {
4296 tcp_collapse(sk, &tp->out_of_order_queue,
4297 head, skb, start, end);
4298 head = skb;
4299 if (skb == (struct sk_buff *)&tp->out_of_order_queue)
4300 break;
4301 /* Start new segment */
4302 start = TCP_SKB_CB(skb)->seq;
4303 end = TCP_SKB_CB(skb)->end_seq;
4304 } else {
4305 if (before(TCP_SKB_CB(skb)->seq, start))
4306 start = TCP_SKB_CB(skb)->seq;
4307 if (after(TCP_SKB_CB(skb)->end_seq, end))
4308 end = TCP_SKB_CB(skb)->end_seq;
4314 * Purge the out-of-order queue.
4315 * Return true if queue was pruned.
4317 static int tcp_prune_ofo_queue(struct sock *sk)
4319 struct tcp_sock *tp = tcp_sk(sk);
4320 int res = 0;
4322 if (!skb_queue_empty(&tp->out_of_order_queue)) {
4323 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_OFOPRUNED);
4324 __skb_queue_purge(&tp->out_of_order_queue);
4326 /* Reset SACK state. A conforming SACK implementation will
4327 * do the same at a timeout based retransmit. When a connection
4328 * is in a sad state like this, we care only about integrity
4329 * of the connection not performance.
4331 if (tp->rx_opt.sack_ok)
4332 tcp_sack_reset(&tp->rx_opt);
4333 sk_mem_reclaim(sk);
4334 res = 1;
4336 return res;
4339 /* Reduce allocated memory if we can, trying to get
4340 * the socket within its memory limits again.
4342 * Return less than zero if we should start dropping frames
4343 * until the socket owning process reads some of the data
4344 * to stabilize the situation.
4346 static int tcp_prune_queue(struct sock *sk)
4348 struct tcp_sock *tp = tcp_sk(sk);
4350 SOCK_DEBUG(sk, "prune_queue: c=%x\n", tp->copied_seq);
4352 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_PRUNECALLED);
4354 if (atomic_read(&sk->sk_rmem_alloc) >= sk->sk_rcvbuf)
4355 tcp_clamp_window(sk);
4356 else if (tcp_memory_pressure)
4357 tp->rcv_ssthresh = min(tp->rcv_ssthresh, 4U * tp->advmss);
4359 tcp_collapse_ofo_queue(sk);
4360 tcp_collapse(sk, &sk->sk_receive_queue,
4361 sk->sk_receive_queue.next,
4362 (struct sk_buff *)&sk->sk_receive_queue,
4363 tp->copied_seq, tp->rcv_nxt);
4364 sk_mem_reclaim(sk);
4366 if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf)
4367 return 0;
4369 /* Collapsing did not help, destructive actions follow.
4370 * This must not ever occur. */
4372 tcp_prune_ofo_queue(sk);
4374 if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf)
4375 return 0;
4377 /* If we are really being abused, tell the caller to silently
4378 * drop receive data on the floor. It will get retransmitted
4379 * and hopefully then we'll have sufficient space.
4381 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_RCVPRUNED);
4383 /* Massive buffer overcommit. */
4384 tp->pred_flags = 0;
4385 return -1;
4388 /* RFC2861, slow part. Adjust cwnd, after it was not full during one rto.
4389 * As additional protections, we do not touch cwnd in retransmission phases,
4390 * and if application hit its sndbuf limit recently.
4392 void tcp_cwnd_application_limited(struct sock *sk)
4394 struct tcp_sock *tp = tcp_sk(sk);
4396 if (inet_csk(sk)->icsk_ca_state == TCP_CA_Open &&
4397 sk->sk_socket && !test_bit(SOCK_NOSPACE, &sk->sk_socket->flags)) {
4398 /* Limited by application or receiver window. */
4399 u32 init_win = tcp_init_cwnd(tp, __sk_dst_get(sk));
4400 u32 win_used = max(tp->snd_cwnd_used, init_win);
4401 if (win_used < tp->snd_cwnd) {
4402 tp->snd_ssthresh = tcp_current_ssthresh(sk);
4403 tp->snd_cwnd = (tp->snd_cwnd + win_used) >> 1;
4405 tp->snd_cwnd_used = 0;
4407 tp->snd_cwnd_stamp = tcp_time_stamp;
4410 static int tcp_should_expand_sndbuf(struct sock *sk)
4412 struct tcp_sock *tp = tcp_sk(sk);
4414 /* If the user specified a specific send buffer setting, do
4415 * not modify it.
4417 if (sk->sk_userlocks & SOCK_SNDBUF_LOCK)
4418 return 0;
4420 /* If we are under global TCP memory pressure, do not expand. */
4421 if (tcp_memory_pressure)
4422 return 0;
4424 /* If we are under soft global TCP memory pressure, do not expand. */
4425 if (atomic_read(&tcp_memory_allocated) >= sysctl_tcp_mem[0])
4426 return 0;
4428 /* If we filled the congestion window, do not expand. */
4429 if (tp->packets_out >= tp->snd_cwnd)
4430 return 0;
4432 return 1;
4435 /* When incoming ACK allowed to free some skb from write_queue,
4436 * we remember this event in flag SOCK_QUEUE_SHRUNK and wake up socket
4437 * on the exit from tcp input handler.
4439 * PROBLEM: sndbuf expansion does not work well with largesend.
4441 static void tcp_new_space(struct sock *sk)
4443 struct tcp_sock *tp = tcp_sk(sk);
4445 if (tcp_should_expand_sndbuf(sk)) {
4446 int sndmem = max_t(u32, tp->rx_opt.mss_clamp, tp->mss_cache) +
4447 MAX_TCP_HEADER + 16 + sizeof(struct sk_buff),
4448 demanded = max_t(unsigned int, tp->snd_cwnd,
4449 tp->reordering + 1);
4450 sndmem *= 2 * demanded;
4451 if (sndmem > sk->sk_sndbuf)
4452 sk->sk_sndbuf = min(sndmem, sysctl_tcp_wmem[2]);
4453 tp->snd_cwnd_stamp = tcp_time_stamp;
4456 sk->sk_write_space(sk);
4459 static void tcp_check_space(struct sock *sk)
4461 if (sock_flag(sk, SOCK_QUEUE_SHRUNK)) {
4462 sock_reset_flag(sk, SOCK_QUEUE_SHRUNK);
4463 if (sk->sk_socket &&
4464 test_bit(SOCK_NOSPACE, &sk->sk_socket->flags))
4465 tcp_new_space(sk);
4469 static inline void tcp_data_snd_check(struct sock *sk)
4471 tcp_push_pending_frames(sk);
4472 tcp_check_space(sk);
4476 * Check if sending an ack is needed.
4478 static void __tcp_ack_snd_check(struct sock *sk, int ofo_possible)
4480 struct tcp_sock *tp = tcp_sk(sk);
4482 /* More than one full frame received... */
4483 if (((tp->rcv_nxt - tp->rcv_wup) > inet_csk(sk)->icsk_ack.rcv_mss
4484 /* ... and right edge of window advances far enough.
4485 * (tcp_recvmsg() will send ACK otherwise). Or...
4487 && __tcp_select_window(sk) >= tp->rcv_wnd) ||
4488 /* We ACK each frame or... */
4489 tcp_in_quickack_mode(sk) ||
4490 /* We have out of order data. */
4491 (ofo_possible && skb_peek(&tp->out_of_order_queue))) {
4492 /* Then ack it now */
4493 tcp_send_ack(sk);
4494 } else {
4495 /* Else, send delayed ack. */
4496 tcp_send_delayed_ack(sk);
4500 static inline void tcp_ack_snd_check(struct sock *sk)
4502 if (!inet_csk_ack_scheduled(sk)) {
4503 /* We sent a data segment already. */
4504 return;
4506 __tcp_ack_snd_check(sk, 1);
4510 * This routine is only called when we have urgent data
4511 * signaled. Its the 'slow' part of tcp_urg. It could be
4512 * moved inline now as tcp_urg is only called from one
4513 * place. We handle URGent data wrong. We have to - as
4514 * BSD still doesn't use the correction from RFC961.
4515 * For 1003.1g we should support a new option TCP_STDURG to permit
4516 * either form (or just set the sysctl tcp_stdurg).
4519 static void tcp_check_urg(struct sock *sk, struct tcphdr *th)
4521 struct tcp_sock *tp = tcp_sk(sk);
4522 u32 ptr = ntohs(th->urg_ptr);
4524 if (ptr && !sysctl_tcp_stdurg)
4525 ptr--;
4526 ptr += ntohl(th->seq);
4528 /* Ignore urgent data that we've already seen and read. */
4529 if (after(tp->copied_seq, ptr))
4530 return;
4532 /* Do not replay urg ptr.
4534 * NOTE: interesting situation not covered by specs.
4535 * Misbehaving sender may send urg ptr, pointing to segment,
4536 * which we already have in ofo queue. We are not able to fetch
4537 * such data and will stay in TCP_URG_NOTYET until will be eaten
4538 * by recvmsg(). Seems, we are not obliged to handle such wicked
4539 * situations. But it is worth to think about possibility of some
4540 * DoSes using some hypothetical application level deadlock.
4542 if (before(ptr, tp->rcv_nxt))
4543 return;
4545 /* Do we already have a newer (or duplicate) urgent pointer? */
4546 if (tp->urg_data && !after(ptr, tp->urg_seq))
4547 return;
4549 /* Tell the world about our new urgent pointer. */
4550 sk_send_sigurg(sk);
4552 /* We may be adding urgent data when the last byte read was
4553 * urgent. To do this requires some care. We cannot just ignore
4554 * tp->copied_seq since we would read the last urgent byte again
4555 * as data, nor can we alter copied_seq until this data arrives
4556 * or we break the semantics of SIOCATMARK (and thus sockatmark())
4558 * NOTE. Double Dutch. Rendering to plain English: author of comment
4559 * above did something sort of send("A", MSG_OOB); send("B", MSG_OOB);
4560 * and expect that both A and B disappear from stream. This is _wrong_.
4561 * Though this happens in BSD with high probability, this is occasional.
4562 * Any application relying on this is buggy. Note also, that fix "works"
4563 * only in this artificial test. Insert some normal data between A and B and we will
4564 * decline of BSD again. Verdict: it is better to remove to trap
4565 * buggy users.
4567 if (tp->urg_seq == tp->copied_seq && tp->urg_data &&
4568 !sock_flag(sk, SOCK_URGINLINE) && tp->copied_seq != tp->rcv_nxt) {
4569 struct sk_buff *skb = skb_peek(&sk->sk_receive_queue);
4570 tp->copied_seq++;
4571 if (skb && !before(tp->copied_seq, TCP_SKB_CB(skb)->end_seq)) {
4572 __skb_unlink(skb, &sk->sk_receive_queue);
4573 __kfree_skb(skb);
4577 tp->urg_data = TCP_URG_NOTYET;
4578 tp->urg_seq = ptr;
4580 /* Disable header prediction. */
4581 tp->pred_flags = 0;
4584 /* This is the 'fast' part of urgent handling. */
4585 static void tcp_urg(struct sock *sk, struct sk_buff *skb, struct tcphdr *th)
4587 struct tcp_sock *tp = tcp_sk(sk);
4589 /* Check if we get a new urgent pointer - normally not. */
4590 if (th->urg)
4591 tcp_check_urg(sk, th);
4593 /* Do we wait for any urgent data? - normally not... */
4594 if (tp->urg_data == TCP_URG_NOTYET) {
4595 u32 ptr = tp->urg_seq - ntohl(th->seq) + (th->doff * 4) -
4596 th->syn;
4598 /* Is the urgent pointer pointing into this packet? */
4599 if (ptr < skb->len) {
4600 u8 tmp;
4601 if (skb_copy_bits(skb, ptr, &tmp, 1))
4602 BUG();
4603 tp->urg_data = TCP_URG_VALID | tmp;
4604 if (!sock_flag(sk, SOCK_DEAD))
4605 sk->sk_data_ready(sk, 0);
4610 static int tcp_copy_to_iovec(struct sock *sk, struct sk_buff *skb, int hlen)
4612 struct tcp_sock *tp = tcp_sk(sk);
4613 int chunk = skb->len - hlen;
4614 int err;
4616 local_bh_enable();
4617 if (skb_csum_unnecessary(skb))
4618 err = skb_copy_datagram_iovec(skb, hlen, tp->ucopy.iov, chunk);
4619 else
4620 err = skb_copy_and_csum_datagram_iovec(skb, hlen,
4621 tp->ucopy.iov);
4623 if (!err) {
4624 tp->ucopy.len -= chunk;
4625 tp->copied_seq += chunk;
4626 tcp_rcv_space_adjust(sk);
4629 local_bh_disable();
4630 return err;
4633 static __sum16 __tcp_checksum_complete_user(struct sock *sk,
4634 struct sk_buff *skb)
4636 __sum16 result;
4638 if (sock_owned_by_user(sk)) {
4639 local_bh_enable();
4640 result = __tcp_checksum_complete(skb);
4641 local_bh_disable();
4642 } else {
4643 result = __tcp_checksum_complete(skb);
4645 return result;
4648 static inline int tcp_checksum_complete_user(struct sock *sk,
4649 struct sk_buff *skb)
4651 return !skb_csum_unnecessary(skb) &&
4652 __tcp_checksum_complete_user(sk, skb);
4655 #ifdef CONFIG_NET_DMA
4656 static int tcp_dma_try_early_copy(struct sock *sk, struct sk_buff *skb,
4657 int hlen)
4659 struct tcp_sock *tp = tcp_sk(sk);
4660 int chunk = skb->len - hlen;
4661 int dma_cookie;
4662 int copied_early = 0;
4664 if (tp->ucopy.wakeup)
4665 return 0;
4667 if (!tp->ucopy.dma_chan && tp->ucopy.pinned_list)
4668 tp->ucopy.dma_chan = get_softnet_dma();
4670 if (tp->ucopy.dma_chan && skb_csum_unnecessary(skb)) {
4672 dma_cookie = dma_skb_copy_datagram_iovec(tp->ucopy.dma_chan,
4673 skb, hlen,
4674 tp->ucopy.iov, chunk,
4675 tp->ucopy.pinned_list);
4677 if (dma_cookie < 0)
4678 goto out;
4680 tp->ucopy.dma_cookie = dma_cookie;
4681 copied_early = 1;
4683 tp->ucopy.len -= chunk;
4684 tp->copied_seq += chunk;
4685 tcp_rcv_space_adjust(sk);
4687 if ((tp->ucopy.len == 0) ||
4688 (tcp_flag_word(tcp_hdr(skb)) & TCP_FLAG_PSH) ||
4689 (atomic_read(&sk->sk_rmem_alloc) > (sk->sk_rcvbuf >> 1))) {
4690 tp->ucopy.wakeup = 1;
4691 sk->sk_data_ready(sk, 0);
4693 } else if (chunk > 0) {
4694 tp->ucopy.wakeup = 1;
4695 sk->sk_data_ready(sk, 0);
4697 out:
4698 return copied_early;
4700 #endif /* CONFIG_NET_DMA */
4702 /* Does PAWS and seqno based validation of an incoming segment, flags will
4703 * play significant role here.
4705 static int tcp_validate_incoming(struct sock *sk, struct sk_buff *skb,
4706 struct tcphdr *th, int syn_inerr)
4708 struct tcp_sock *tp = tcp_sk(sk);
4710 /* RFC1323: H1. Apply PAWS check first. */
4711 if (tcp_fast_parse_options(skb, th, tp) && tp->rx_opt.saw_tstamp &&
4712 tcp_paws_discard(sk, skb)) {
4713 if (!th->rst) {
4714 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_PAWSESTABREJECTED);
4715 tcp_send_dupack(sk, skb);
4716 goto discard;
4718 /* Reset is accepted even if it did not pass PAWS. */
4721 /* Step 1: check sequence number */
4722 if (!tcp_sequence(tp, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq)) {
4723 /* RFC793, page 37: "In all states except SYN-SENT, all reset
4724 * (RST) segments are validated by checking their SEQ-fields."
4725 * And page 69: "If an incoming segment is not acceptable,
4726 * an acknowledgment should be sent in reply (unless the RST
4727 * bit is set, if so drop the segment and return)".
4729 if (!th->rst)
4730 tcp_send_dupack(sk, skb);
4731 goto discard;
4734 /* Step 2: check RST bit */
4735 if (th->rst) {
4736 tcp_reset(sk);
4737 goto discard;
4740 /* ts_recent update must be made after we are sure that the packet
4741 * is in window.
4743 tcp_replace_ts_recent(tp, TCP_SKB_CB(skb)->seq);
4745 /* step 3: check security and precedence [ignored] */
4747 /* step 4: Check for a SYN in window. */
4748 if (th->syn && !before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
4749 if (syn_inerr)
4750 TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_INERRS);
4751 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPABORTONSYN);
4752 tcp_reset(sk);
4753 return -1;
4756 return 1;
4758 discard:
4759 __kfree_skb(skb);
4760 return 0;
4764 * TCP receive function for the ESTABLISHED state.
4766 * It is split into a fast path and a slow path. The fast path is
4767 * disabled when:
4768 * - A zero window was announced from us - zero window probing
4769 * is only handled properly in the slow path.
4770 * - Out of order segments arrived.
4771 * - Urgent data is expected.
4772 * - There is no buffer space left
4773 * - Unexpected TCP flags/window values/header lengths are received
4774 * (detected by checking the TCP header against pred_flags)
4775 * - Data is sent in both directions. Fast path only supports pure senders
4776 * or pure receivers (this means either the sequence number or the ack
4777 * value must stay constant)
4778 * - Unexpected TCP option.
4780 * When these conditions are not satisfied it drops into a standard
4781 * receive procedure patterned after RFC793 to handle all cases.
4782 * The first three cases are guaranteed by proper pred_flags setting,
4783 * the rest is checked inline. Fast processing is turned on in
4784 * tcp_data_queue when everything is OK.
4786 int tcp_rcv_established(struct sock *sk, struct sk_buff *skb,
4787 struct tcphdr *th, unsigned len)
4789 struct tcp_sock *tp = tcp_sk(sk);
4790 int res;
4793 * Header prediction.
4794 * The code loosely follows the one in the famous
4795 * "30 instruction TCP receive" Van Jacobson mail.
4797 * Van's trick is to deposit buffers into socket queue
4798 * on a device interrupt, to call tcp_recv function
4799 * on the receive process context and checksum and copy
4800 * the buffer to user space. smart...
4802 * Our current scheme is not silly either but we take the
4803 * extra cost of the net_bh soft interrupt processing...
4804 * We do checksum and copy also but from device to kernel.
4807 tp->rx_opt.saw_tstamp = 0;
4809 /* pred_flags is 0xS?10 << 16 + snd_wnd
4810 * if header_prediction is to be made
4811 * 'S' will always be tp->tcp_header_len >> 2
4812 * '?' will be 0 for the fast path, otherwise pred_flags is 0 to
4813 * turn it off (when there are holes in the receive
4814 * space for instance)
4815 * PSH flag is ignored.
4818 if ((tcp_flag_word(th) & TCP_HP_BITS) == tp->pred_flags &&
4819 TCP_SKB_CB(skb)->seq == tp->rcv_nxt) {
4820 int tcp_header_len = tp->tcp_header_len;
4822 /* Timestamp header prediction: tcp_header_len
4823 * is automatically equal to th->doff*4 due to pred_flags
4824 * match.
4827 /* Check timestamp */
4828 if (tcp_header_len == sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) {
4829 /* No? Slow path! */
4830 if (!tcp_parse_aligned_timestamp(tp, th))
4831 goto slow_path;
4833 /* If PAWS failed, check it more carefully in slow path */
4834 if ((s32)(tp->rx_opt.rcv_tsval - tp->rx_opt.ts_recent) < 0)
4835 goto slow_path;
4837 /* DO NOT update ts_recent here, if checksum fails
4838 * and timestamp was corrupted part, it will result
4839 * in a hung connection since we will drop all
4840 * future packets due to the PAWS test.
4844 if (len <= tcp_header_len) {
4845 /* Bulk data transfer: sender */
4846 if (len == tcp_header_len) {
4847 /* Predicted packet is in window by definition.
4848 * seq == rcv_nxt and rcv_wup <= rcv_nxt.
4849 * Hence, check seq<=rcv_wup reduces to:
4851 if (tcp_header_len ==
4852 (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) &&
4853 tp->rcv_nxt == tp->rcv_wup)
4854 tcp_store_ts_recent(tp);
4856 /* We know that such packets are checksummed
4857 * on entry.
4859 tcp_ack(sk, skb, 0);
4860 __kfree_skb(skb);
4861 tcp_data_snd_check(sk);
4862 return 0;
4863 } else { /* Header too small */
4864 TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_INERRS);
4865 goto discard;
4867 } else {
4868 int eaten = 0;
4869 int copied_early = 0;
4871 if (tp->copied_seq == tp->rcv_nxt &&
4872 len - tcp_header_len <= tp->ucopy.len) {
4873 #ifdef CONFIG_NET_DMA
4874 if (tcp_dma_try_early_copy(sk, skb, tcp_header_len)) {
4875 copied_early = 1;
4876 eaten = 1;
4878 #endif
4879 if (tp->ucopy.task == current &&
4880 sock_owned_by_user(sk) && !copied_early) {
4881 __set_current_state(TASK_RUNNING);
4883 if (!tcp_copy_to_iovec(sk, skb, tcp_header_len))
4884 eaten = 1;
4886 if (eaten) {
4887 /* Predicted packet is in window by definition.
4888 * seq == rcv_nxt and rcv_wup <= rcv_nxt.
4889 * Hence, check seq<=rcv_wup reduces to:
4891 if (tcp_header_len ==
4892 (sizeof(struct tcphdr) +
4893 TCPOLEN_TSTAMP_ALIGNED) &&
4894 tp->rcv_nxt == tp->rcv_wup)
4895 tcp_store_ts_recent(tp);
4897 tcp_rcv_rtt_measure_ts(sk, skb);
4899 __skb_pull(skb, tcp_header_len);
4900 tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
4901 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPHPHITSTOUSER);
4903 if (copied_early)
4904 tcp_cleanup_rbuf(sk, skb->len);
4906 if (!eaten) {
4907 if (tcp_checksum_complete_user(sk, skb))
4908 goto csum_error;
4910 /* Predicted packet is in window by definition.
4911 * seq == rcv_nxt and rcv_wup <= rcv_nxt.
4912 * Hence, check seq<=rcv_wup reduces to:
4914 if (tcp_header_len ==
4915 (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) &&
4916 tp->rcv_nxt == tp->rcv_wup)
4917 tcp_store_ts_recent(tp);
4919 tcp_rcv_rtt_measure_ts(sk, skb);
4921 if ((int)skb->truesize > sk->sk_forward_alloc)
4922 goto step5;
4924 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPHPHITS);
4926 /* Bulk data transfer: receiver */
4927 __skb_pull(skb, tcp_header_len);
4928 __skb_queue_tail(&sk->sk_receive_queue, skb);
4929 skb_set_owner_r(skb, sk);
4930 tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
4933 tcp_event_data_recv(sk, skb);
4935 if (TCP_SKB_CB(skb)->ack_seq != tp->snd_una) {
4936 /* Well, only one small jumplet in fast path... */
4937 tcp_ack(sk, skb, FLAG_DATA);
4938 tcp_data_snd_check(sk);
4939 if (!inet_csk_ack_scheduled(sk))
4940 goto no_ack;
4943 __tcp_ack_snd_check(sk, 0);
4944 no_ack:
4945 #ifdef CONFIG_NET_DMA
4946 if (copied_early)
4947 __skb_queue_tail(&sk->sk_async_wait_queue, skb);
4948 else
4949 #endif
4950 if (eaten)
4951 __kfree_skb(skb);
4952 else
4953 sk->sk_data_ready(sk, 0);
4954 return 0;
4958 slow_path:
4959 if (len < (th->doff << 2) || tcp_checksum_complete_user(sk, skb))
4960 goto csum_error;
4963 * Standard slow path.
4966 res = tcp_validate_incoming(sk, skb, th, 1);
4967 if (res <= 0)
4968 return -res;
4970 step5:
4971 if (th->ack)
4972 tcp_ack(sk, skb, FLAG_SLOWPATH);
4974 tcp_rcv_rtt_measure_ts(sk, skb);
4976 /* Process urgent data. */
4977 tcp_urg(sk, skb, th);
4979 /* step 7: process the segment text */
4980 tcp_data_queue(sk, skb);
4982 tcp_data_snd_check(sk);
4983 tcp_ack_snd_check(sk);
4984 return 0;
4986 csum_error:
4987 TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_INERRS);
4989 discard:
4990 __kfree_skb(skb);
4991 return 0;
4994 static int tcp_rcv_synsent_state_process(struct sock *sk, struct sk_buff *skb,
4995 struct tcphdr *th, unsigned len)
4997 struct tcp_sock *tp = tcp_sk(sk);
4998 struct inet_connection_sock *icsk = inet_csk(sk);
4999 int saved_clamp = tp->rx_opt.mss_clamp;
5001 tcp_parse_options(skb, &tp->rx_opt, 0);
5003 if (th->ack) {
5004 /* rfc793:
5005 * "If the state is SYN-SENT then
5006 * first check the ACK bit
5007 * If the ACK bit is set
5008 * If SEG.ACK =< ISS, or SEG.ACK > SND.NXT, send
5009 * a reset (unless the RST bit is set, if so drop
5010 * the segment and return)"
5012 * We do not send data with SYN, so that RFC-correct
5013 * test reduces to:
5015 if (TCP_SKB_CB(skb)->ack_seq != tp->snd_nxt)
5016 goto reset_and_undo;
5018 if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
5019 !between(tp->rx_opt.rcv_tsecr, tp->retrans_stamp,
5020 tcp_time_stamp)) {
5021 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_PAWSACTIVEREJECTED);
5022 goto reset_and_undo;
5025 /* Now ACK is acceptable.
5027 * "If the RST bit is set
5028 * If the ACK was acceptable then signal the user "error:
5029 * connection reset", drop the segment, enter CLOSED state,
5030 * delete TCB, and return."
5033 if (th->rst) {
5034 tcp_reset(sk);
5035 goto discard;
5038 /* rfc793:
5039 * "fifth, if neither of the SYN or RST bits is set then
5040 * drop the segment and return."
5042 * See note below!
5043 * --ANK(990513)
5045 if (!th->syn)
5046 goto discard_and_undo;
5048 /* rfc793:
5049 * "If the SYN bit is on ...
5050 * are acceptable then ...
5051 * (our SYN has been ACKed), change the connection
5052 * state to ESTABLISHED..."
5055 TCP_ECN_rcv_synack(tp, th);
5057 tp->snd_wl1 = TCP_SKB_CB(skb)->seq;
5058 tcp_ack(sk, skb, FLAG_SLOWPATH);
5060 /* Ok.. it's good. Set up sequence numbers and
5061 * move to established.
5063 tp->rcv_nxt = TCP_SKB_CB(skb)->seq + 1;
5064 tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1;
5066 /* RFC1323: The window in SYN & SYN/ACK segments is
5067 * never scaled.
5069 tp->snd_wnd = ntohs(th->window);
5070 tcp_init_wl(tp, TCP_SKB_CB(skb)->ack_seq, TCP_SKB_CB(skb)->seq);
5072 if (!tp->rx_opt.wscale_ok) {
5073 tp->rx_opt.snd_wscale = tp->rx_opt.rcv_wscale = 0;
5074 tp->window_clamp = min(tp->window_clamp, 65535U);
5077 if (tp->rx_opt.saw_tstamp) {
5078 tp->rx_opt.tstamp_ok = 1;
5079 tp->tcp_header_len =
5080 sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED;
5081 tp->advmss -= TCPOLEN_TSTAMP_ALIGNED;
5082 tcp_store_ts_recent(tp);
5083 } else {
5084 tp->tcp_header_len = sizeof(struct tcphdr);
5087 if (tcp_is_sack(tp) && sysctl_tcp_fack)
5088 tcp_enable_fack(tp);
5090 tcp_mtup_init(sk);
5091 tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
5092 tcp_initialize_rcv_mss(sk);
5094 /* Remember, tcp_poll() does not lock socket!
5095 * Change state from SYN-SENT only after copied_seq
5096 * is initialized. */
5097 tp->copied_seq = tp->rcv_nxt;
5098 smp_mb();
5099 tcp_set_state(sk, TCP_ESTABLISHED);
5101 security_inet_conn_established(sk, skb);
5103 /* Make sure socket is routed, for correct metrics. */
5104 icsk->icsk_af_ops->rebuild_header(sk);
5106 tcp_init_metrics(sk);
5108 tcp_init_congestion_control(sk);
5110 /* Prevent spurious tcp_cwnd_restart() on first data
5111 * packet.
5113 tp->lsndtime = tcp_time_stamp;
5115 tcp_init_buffer_space(sk);
5117 if (sock_flag(sk, SOCK_KEEPOPEN))
5118 inet_csk_reset_keepalive_timer(sk, keepalive_time_when(tp));
5120 if (!tp->rx_opt.snd_wscale)
5121 __tcp_fast_path_on(tp, tp->snd_wnd);
5122 else
5123 tp->pred_flags = 0;
5125 if (!sock_flag(sk, SOCK_DEAD)) {
5126 sk->sk_state_change(sk);
5127 sk_wake_async(sk, SOCK_WAKE_IO, POLL_OUT);
5130 if (sk->sk_write_pending ||
5131 icsk->icsk_accept_queue.rskq_defer_accept ||
5132 icsk->icsk_ack.pingpong) {
5133 /* Save one ACK. Data will be ready after
5134 * several ticks, if write_pending is set.
5136 * It may be deleted, but with this feature tcpdumps
5137 * look so _wonderfully_ clever, that I was not able
5138 * to stand against the temptation 8) --ANK
5140 inet_csk_schedule_ack(sk);
5141 icsk->icsk_ack.lrcvtime = tcp_time_stamp;
5142 icsk->icsk_ack.ato = TCP_ATO_MIN;
5143 tcp_incr_quickack(sk);
5144 tcp_enter_quickack_mode(sk);
5145 inet_csk_reset_xmit_timer(sk, ICSK_TIME_DACK,
5146 TCP_DELACK_MAX, TCP_RTO_MAX);
5148 discard:
5149 __kfree_skb(skb);
5150 return 0;
5151 } else {
5152 tcp_send_ack(sk);
5154 return -1;
5157 /* No ACK in the segment */
5159 if (th->rst) {
5160 /* rfc793:
5161 * "If the RST bit is set
5163 * Otherwise (no ACK) drop the segment and return."
5166 goto discard_and_undo;
5169 /* PAWS check. */
5170 if (tp->rx_opt.ts_recent_stamp && tp->rx_opt.saw_tstamp &&
5171 tcp_paws_check(&tp->rx_opt, 0))
5172 goto discard_and_undo;
5174 if (th->syn) {
5175 /* We see SYN without ACK. It is attempt of
5176 * simultaneous connect with crossed SYNs.
5177 * Particularly, it can be connect to self.
5179 tcp_set_state(sk, TCP_SYN_RECV);
5181 if (tp->rx_opt.saw_tstamp) {
5182 tp->rx_opt.tstamp_ok = 1;
5183 tcp_store_ts_recent(tp);
5184 tp->tcp_header_len =
5185 sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED;
5186 } else {
5187 tp->tcp_header_len = sizeof(struct tcphdr);
5190 tp->rcv_nxt = TCP_SKB_CB(skb)->seq + 1;
5191 tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1;
5193 /* RFC1323: The window in SYN & SYN/ACK segments is
5194 * never scaled.
5196 tp->snd_wnd = ntohs(th->window);
5197 tp->snd_wl1 = TCP_SKB_CB(skb)->seq;
5198 tp->max_window = tp->snd_wnd;
5200 TCP_ECN_rcv_syn(tp, th);
5202 tcp_mtup_init(sk);
5203 tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
5204 tcp_initialize_rcv_mss(sk);
5206 tcp_send_synack(sk);
5207 #if 0
5208 /* Note, we could accept data and URG from this segment.
5209 * There are no obstacles to make this.
5211 * However, if we ignore data in ACKless segments sometimes,
5212 * we have no reasons to accept it sometimes.
5213 * Also, seems the code doing it in step6 of tcp_rcv_state_process
5214 * is not flawless. So, discard packet for sanity.
5215 * Uncomment this return to process the data.
5217 return -1;
5218 #else
5219 goto discard;
5220 #endif
5222 /* "fifth, if neither of the SYN or RST bits is set then
5223 * drop the segment and return."
5226 discard_and_undo:
5227 tcp_clear_options(&tp->rx_opt);
5228 tp->rx_opt.mss_clamp = saved_clamp;
5229 goto discard;
5231 reset_and_undo:
5232 tcp_clear_options(&tp->rx_opt);
5233 tp->rx_opt.mss_clamp = saved_clamp;
5234 return 1;
5238 * This function implements the receiving procedure of RFC 793 for
5239 * all states except ESTABLISHED and TIME_WAIT.
5240 * It's called from both tcp_v4_rcv and tcp_v6_rcv and should be
5241 * address independent.
5244 int tcp_rcv_state_process(struct sock *sk, struct sk_buff *skb,
5245 struct tcphdr *th, unsigned len)
5247 struct tcp_sock *tp = tcp_sk(sk);
5248 struct inet_connection_sock *icsk = inet_csk(sk);
5249 int queued = 0;
5250 int res;
5252 tp->rx_opt.saw_tstamp = 0;
5254 switch (sk->sk_state) {
5255 case TCP_CLOSE:
5256 goto discard;
5258 case TCP_LISTEN:
5259 if (th->ack)
5260 return 1;
5262 if (th->rst)
5263 goto discard;
5265 if (th->syn) {
5266 if (icsk->icsk_af_ops->conn_request(sk, skb) < 0)
5267 return 1;
5269 /* Now we have several options: In theory there is
5270 * nothing else in the frame. KA9Q has an option to
5271 * send data with the syn, BSD accepts data with the
5272 * syn up to the [to be] advertised window and
5273 * Solaris 2.1 gives you a protocol error. For now
5274 * we just ignore it, that fits the spec precisely
5275 * and avoids incompatibilities. It would be nice in
5276 * future to drop through and process the data.
5278 * Now that TTCP is starting to be used we ought to
5279 * queue this data.
5280 * But, this leaves one open to an easy denial of
5281 * service attack, and SYN cookies can't defend
5282 * against this problem. So, we drop the data
5283 * in the interest of security over speed unless
5284 * it's still in use.
5286 kfree_skb(skb);
5287 return 0;
5289 goto discard;
5291 case TCP_SYN_SENT:
5292 queued = tcp_rcv_synsent_state_process(sk, skb, th, len);
5293 if (queued >= 0)
5294 return queued;
5296 /* Do step6 onward by hand. */
5297 tcp_urg(sk, skb, th);
5298 __kfree_skb(skb);
5299 tcp_data_snd_check(sk);
5300 return 0;
5303 res = tcp_validate_incoming(sk, skb, th, 0);
5304 if (res <= 0)
5305 return -res;
5307 /* step 5: check the ACK field */
5308 if (th->ack) {
5309 int acceptable = tcp_ack(sk, skb, FLAG_SLOWPATH);
5311 switch (sk->sk_state) {
5312 case TCP_SYN_RECV:
5313 if (acceptable) {
5314 tp->copied_seq = tp->rcv_nxt;
5315 smp_mb();
5316 tcp_set_state(sk, TCP_ESTABLISHED);
5317 sk->sk_state_change(sk);
5319 /* Note, that this wakeup is only for marginal
5320 * crossed SYN case. Passively open sockets
5321 * are not waked up, because sk->sk_sleep ==
5322 * NULL and sk->sk_socket == NULL.
5324 if (sk->sk_socket)
5325 sk_wake_async(sk,
5326 SOCK_WAKE_IO, POLL_OUT);
5328 tp->snd_una = TCP_SKB_CB(skb)->ack_seq;
5329 tp->snd_wnd = ntohs(th->window) <<
5330 tp->rx_opt.snd_wscale;
5331 tcp_init_wl(tp, TCP_SKB_CB(skb)->ack_seq,
5332 TCP_SKB_CB(skb)->seq);
5334 /* tcp_ack considers this ACK as duplicate
5335 * and does not calculate rtt.
5336 * Fix it at least with timestamps.
5338 if (tp->rx_opt.saw_tstamp &&
5339 tp->rx_opt.rcv_tsecr && !tp->srtt)
5340 tcp_ack_saw_tstamp(sk, 0);
5342 if (tp->rx_opt.tstamp_ok)
5343 tp->advmss -= TCPOLEN_TSTAMP_ALIGNED;
5345 /* Make sure socket is routed, for
5346 * correct metrics.
5348 icsk->icsk_af_ops->rebuild_header(sk);
5350 tcp_init_metrics(sk);
5352 tcp_init_congestion_control(sk);
5354 /* Prevent spurious tcp_cwnd_restart() on
5355 * first data packet.
5357 tp->lsndtime = tcp_time_stamp;
5359 tcp_mtup_init(sk);
5360 tcp_initialize_rcv_mss(sk);
5361 tcp_init_buffer_space(sk);
5362 tcp_fast_path_on(tp);
5363 } else {
5364 return 1;
5366 break;
5368 case TCP_FIN_WAIT1:
5369 if (tp->snd_una == tp->write_seq) {
5370 tcp_set_state(sk, TCP_FIN_WAIT2);
5371 sk->sk_shutdown |= SEND_SHUTDOWN;
5372 dst_confirm(sk->sk_dst_cache);
5374 if (!sock_flag(sk, SOCK_DEAD))
5375 /* Wake up lingering close() */
5376 sk->sk_state_change(sk);
5377 else {
5378 int tmo;
5380 if (tp->linger2 < 0 ||
5381 (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
5382 after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt))) {
5383 tcp_done(sk);
5384 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPABORTONDATA);
5385 return 1;
5388 tmo = tcp_fin_time(sk);
5389 if (tmo > TCP_TIMEWAIT_LEN) {
5390 inet_csk_reset_keepalive_timer(sk, tmo - TCP_TIMEWAIT_LEN);
5391 } else if (th->fin || sock_owned_by_user(sk)) {
5392 /* Bad case. We could lose such FIN otherwise.
5393 * It is not a big problem, but it looks confusing
5394 * and not so rare event. We still can lose it now,
5395 * if it spins in bh_lock_sock(), but it is really
5396 * marginal case.
5398 inet_csk_reset_keepalive_timer(sk, tmo);
5399 } else {
5400 tcp_time_wait(sk, TCP_FIN_WAIT2, tmo);
5401 goto discard;
5405 break;
5407 case TCP_CLOSING:
5408 if (tp->snd_una == tp->write_seq) {
5409 tcp_time_wait(sk, TCP_TIME_WAIT, 0);
5410 goto discard;
5412 break;
5414 case TCP_LAST_ACK:
5415 if (tp->snd_una == tp->write_seq) {
5416 tcp_update_metrics(sk);
5417 tcp_done(sk);
5418 goto discard;
5420 break;
5422 } else
5423 goto discard;
5425 /* step 6: check the URG bit */
5426 tcp_urg(sk, skb, th);
5428 /* step 7: process the segment text */
5429 switch (sk->sk_state) {
5430 case TCP_CLOSE_WAIT:
5431 case TCP_CLOSING:
5432 case TCP_LAST_ACK:
5433 if (!before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt))
5434 break;
5435 case TCP_FIN_WAIT1:
5436 case TCP_FIN_WAIT2:
5437 /* RFC 793 says to queue data in these states,
5438 * RFC 1122 says we MUST send a reset.
5439 * BSD 4.4 also does reset.
5441 if (sk->sk_shutdown & RCV_SHUTDOWN) {
5442 if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
5443 after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt)) {
5444 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPABORTONDATA);
5445 tcp_reset(sk);
5446 return 1;
5449 /* Fall through */
5450 case TCP_ESTABLISHED:
5451 tcp_data_queue(sk, skb);
5452 queued = 1;
5453 break;
5456 /* tcp_data could move socket to TIME-WAIT */
5457 if (sk->sk_state != TCP_CLOSE) {
5458 tcp_data_snd_check(sk);
5459 tcp_ack_snd_check(sk);
5462 if (!queued) {
5463 discard:
5464 __kfree_skb(skb);
5466 return 0;
5469 EXPORT_SYMBOL(sysctl_tcp_ecn);
5470 EXPORT_SYMBOL(sysctl_tcp_reordering);
5471 EXPORT_SYMBOL(sysctl_tcp_adv_win_scale);
5472 EXPORT_SYMBOL(tcp_parse_options);
5473 #ifdef CONFIG_TCP_MD5SIG
5474 EXPORT_SYMBOL(tcp_parse_md5sig_option);
5475 #endif
5476 EXPORT_SYMBOL(tcp_rcv_established);
5477 EXPORT_SYMBOL(tcp_rcv_state_process);
5478 EXPORT_SYMBOL(tcp_initialize_rcv_mss);