[PATCH] mm: cleanup prep_ stuff
[linux-2.6/mini2440.git] / mm / page_alloc.c
blobbdff85899638f7ce8ce72e42127908bfb61eb425
1 /*
2 * linux/mm/page_alloc.c
4 * Manages the free list, the system allocates free pages here.
5 * Note that kmalloc() lives in slab.c
7 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
8 * Swap reorganised 29.12.95, Stephen Tweedie
9 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
10 * Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
11 * Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
12 * Zone balancing, Kanoj Sarcar, SGI, Jan 2000
13 * Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
14 * (lots of bits borrowed from Ingo Molnar & Andrew Morton)
17 #include <linux/config.h>
18 #include <linux/stddef.h>
19 #include <linux/mm.h>
20 #include <linux/swap.h>
21 #include <linux/interrupt.h>
22 #include <linux/pagemap.h>
23 #include <linux/bootmem.h>
24 #include <linux/compiler.h>
25 #include <linux/kernel.h>
26 #include <linux/module.h>
27 #include <linux/suspend.h>
28 #include <linux/pagevec.h>
29 #include <linux/blkdev.h>
30 #include <linux/slab.h>
31 #include <linux/notifier.h>
32 #include <linux/topology.h>
33 #include <linux/sysctl.h>
34 #include <linux/cpu.h>
35 #include <linux/cpuset.h>
36 #include <linux/memory_hotplug.h>
37 #include <linux/nodemask.h>
38 #include <linux/vmalloc.h>
39 #include <linux/mempolicy.h>
41 #include <asm/tlbflush.h>
42 #include "internal.h"
45 * MCD - HACK: Find somewhere to initialize this EARLY, or make this
46 * initializer cleaner
48 nodemask_t node_online_map __read_mostly = { { [0] = 1UL } };
49 EXPORT_SYMBOL(node_online_map);
50 nodemask_t node_possible_map __read_mostly = NODE_MASK_ALL;
51 EXPORT_SYMBOL(node_possible_map);
52 struct pglist_data *pgdat_list __read_mostly;
53 unsigned long totalram_pages __read_mostly;
54 unsigned long totalhigh_pages __read_mostly;
55 long nr_swap_pages;
56 int percpu_pagelist_fraction;
58 static void __free_pages_ok(struct page *page, unsigned int order);
61 * results with 256, 32 in the lowmem_reserve sysctl:
62 * 1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
63 * 1G machine -> (16M dma, 784M normal, 224M high)
64 * NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
65 * HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
66 * HIGHMEM allocation will (224M+784M)/256 of ram reserved in ZONE_DMA
68 * TBD: should special case ZONE_DMA32 machines here - in those we normally
69 * don't need any ZONE_NORMAL reservation
71 int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES-1] = { 256, 256, 32 };
73 EXPORT_SYMBOL(totalram_pages);
76 * Used by page_zone() to look up the address of the struct zone whose
77 * id is encoded in the upper bits of page->flags
79 struct zone *zone_table[1 << ZONETABLE_SHIFT] __read_mostly;
80 EXPORT_SYMBOL(zone_table);
82 static char *zone_names[MAX_NR_ZONES] = { "DMA", "DMA32", "Normal", "HighMem" };
83 int min_free_kbytes = 1024;
85 unsigned long __initdata nr_kernel_pages;
86 unsigned long __initdata nr_all_pages;
88 #ifdef CONFIG_DEBUG_VM
89 static int page_outside_zone_boundaries(struct zone *zone, struct page *page)
91 int ret = 0;
92 unsigned seq;
93 unsigned long pfn = page_to_pfn(page);
95 do {
96 seq = zone_span_seqbegin(zone);
97 if (pfn >= zone->zone_start_pfn + zone->spanned_pages)
98 ret = 1;
99 else if (pfn < zone->zone_start_pfn)
100 ret = 1;
101 } while (zone_span_seqretry(zone, seq));
103 return ret;
106 static int page_is_consistent(struct zone *zone, struct page *page)
108 #ifdef CONFIG_HOLES_IN_ZONE
109 if (!pfn_valid(page_to_pfn(page)))
110 return 0;
111 #endif
112 if (zone != page_zone(page))
113 return 0;
115 return 1;
118 * Temporary debugging check for pages not lying within a given zone.
120 static int bad_range(struct zone *zone, struct page *page)
122 if (page_outside_zone_boundaries(zone, page))
123 return 1;
124 if (!page_is_consistent(zone, page))
125 return 1;
127 return 0;
130 #else
131 static inline int bad_range(struct zone *zone, struct page *page)
133 return 0;
135 #endif
137 static void bad_page(struct page *page)
139 printk(KERN_EMERG "Bad page state in process '%s'\n"
140 KERN_EMERG "page:%p flags:0x%0*lx mapping:%p mapcount:%d count:%d\n"
141 KERN_EMERG "Trying to fix it up, but a reboot is needed\n"
142 KERN_EMERG "Backtrace:\n",
143 current->comm, page, (int)(2*sizeof(unsigned long)),
144 (unsigned long)page->flags, page->mapping,
145 page_mapcount(page), page_count(page));
146 dump_stack();
147 page->flags &= ~(1 << PG_lru |
148 1 << PG_private |
149 1 << PG_locked |
150 1 << PG_active |
151 1 << PG_dirty |
152 1 << PG_reclaim |
153 1 << PG_slab |
154 1 << PG_swapcache |
155 1 << PG_writeback );
156 set_page_count(page, 0);
157 reset_page_mapcount(page);
158 page->mapping = NULL;
159 add_taint(TAINT_BAD_PAGE);
163 * Higher-order pages are called "compound pages". They are structured thusly:
165 * The first PAGE_SIZE page is called the "head page".
167 * The remaining PAGE_SIZE pages are called "tail pages".
169 * All pages have PG_compound set. All pages have their ->private pointing at
170 * the head page (even the head page has this).
172 * The first tail page's ->lru.next holds the address of the compound page's
173 * put_page() function. Its ->lru.prev holds the order of allocation.
174 * This usage means that zero-order pages may not be compound.
177 static void free_compound_page(struct page *page)
179 __free_pages_ok(page, (unsigned long)page[1].lru.prev);
182 static void prep_compound_page(struct page *page, unsigned long order)
184 int i;
185 int nr_pages = 1 << order;
187 page[1].lru.next = (void *)free_compound_page; /* set dtor */
188 page[1].lru.prev = (void *)order;
189 for (i = 0; i < nr_pages; i++) {
190 struct page *p = page + i;
192 __SetPageCompound(p);
193 set_page_private(p, (unsigned long)page);
197 static void destroy_compound_page(struct page *page, unsigned long order)
199 int i;
200 int nr_pages = 1 << order;
202 if (unlikely((unsigned long)page[1].lru.prev != order))
203 bad_page(page);
205 for (i = 0; i < nr_pages; i++) {
206 struct page *p = page + i;
208 if (unlikely(!PageCompound(p) |
209 (page_private(p) != (unsigned long)page)))
210 bad_page(page);
211 __ClearPageCompound(p);
215 static inline void prep_zero_page(struct page *page, int order, gfp_t gfp_flags)
217 int i;
219 BUG_ON((gfp_flags & (__GFP_WAIT | __GFP_HIGHMEM)) == __GFP_HIGHMEM);
220 for (i = 0; i < (1 << order); i++)
221 clear_highpage(page + i);
225 * function for dealing with page's order in buddy system.
226 * zone->lock is already acquired when we use these.
227 * So, we don't need atomic page->flags operations here.
229 static inline unsigned long page_order(struct page *page) {
230 return page_private(page);
233 static inline void set_page_order(struct page *page, int order) {
234 set_page_private(page, order);
235 __SetPagePrivate(page);
238 static inline void rmv_page_order(struct page *page)
240 __ClearPagePrivate(page);
241 set_page_private(page, 0);
245 * Locate the struct page for both the matching buddy in our
246 * pair (buddy1) and the combined O(n+1) page they form (page).
248 * 1) Any buddy B1 will have an order O twin B2 which satisfies
249 * the following equation:
250 * B2 = B1 ^ (1 << O)
251 * For example, if the starting buddy (buddy2) is #8 its order
252 * 1 buddy is #10:
253 * B2 = 8 ^ (1 << 1) = 8 ^ 2 = 10
255 * 2) Any buddy B will have an order O+1 parent P which
256 * satisfies the following equation:
257 * P = B & ~(1 << O)
259 * Assumption: *_mem_map is contigious at least up to MAX_ORDER
261 static inline struct page *
262 __page_find_buddy(struct page *page, unsigned long page_idx, unsigned int order)
264 unsigned long buddy_idx = page_idx ^ (1 << order);
266 return page + (buddy_idx - page_idx);
269 static inline unsigned long
270 __find_combined_index(unsigned long page_idx, unsigned int order)
272 return (page_idx & ~(1 << order));
276 * This function checks whether a page is free && is the buddy
277 * we can do coalesce a page and its buddy if
278 * (a) the buddy is not in a hole &&
279 * (b) the buddy is free &&
280 * (c) the buddy is on the buddy system &&
281 * (d) a page and its buddy have the same order.
282 * for recording page's order, we use page_private(page) and PG_private.
285 static inline int page_is_buddy(struct page *page, int order)
287 #ifdef CONFIG_HOLES_IN_ZONE
288 if (!pfn_valid(page_to_pfn(page)))
289 return 0;
290 #endif
292 if (PagePrivate(page) &&
293 (page_order(page) == order) &&
294 page_count(page) == 0)
295 return 1;
296 return 0;
300 * Freeing function for a buddy system allocator.
302 * The concept of a buddy system is to maintain direct-mapped table
303 * (containing bit values) for memory blocks of various "orders".
304 * The bottom level table contains the map for the smallest allocatable
305 * units of memory (here, pages), and each level above it describes
306 * pairs of units from the levels below, hence, "buddies".
307 * At a high level, all that happens here is marking the table entry
308 * at the bottom level available, and propagating the changes upward
309 * as necessary, plus some accounting needed to play nicely with other
310 * parts of the VM system.
311 * At each level, we keep a list of pages, which are heads of continuous
312 * free pages of length of (1 << order) and marked with PG_Private.Page's
313 * order is recorded in page_private(page) field.
314 * So when we are allocating or freeing one, we can derive the state of the
315 * other. That is, if we allocate a small block, and both were
316 * free, the remainder of the region must be split into blocks.
317 * If a block is freed, and its buddy is also free, then this
318 * triggers coalescing into a block of larger size.
320 * -- wli
323 static inline void __free_one_page(struct page *page,
324 struct zone *zone, unsigned int order)
326 unsigned long page_idx;
327 int order_size = 1 << order;
329 if (unlikely(PageCompound(page)))
330 destroy_compound_page(page, order);
332 page_idx = page_to_pfn(page) & ((1 << MAX_ORDER) - 1);
334 BUG_ON(page_idx & (order_size - 1));
335 BUG_ON(bad_range(zone, page));
337 zone->free_pages += order_size;
338 while (order < MAX_ORDER-1) {
339 unsigned long combined_idx;
340 struct free_area *area;
341 struct page *buddy;
343 buddy = __page_find_buddy(page, page_idx, order);
344 if (!page_is_buddy(buddy, order))
345 break; /* Move the buddy up one level. */
347 list_del(&buddy->lru);
348 area = zone->free_area + order;
349 area->nr_free--;
350 rmv_page_order(buddy);
351 combined_idx = __find_combined_index(page_idx, order);
352 page = page + (combined_idx - page_idx);
353 page_idx = combined_idx;
354 order++;
356 set_page_order(page, order);
357 list_add(&page->lru, &zone->free_area[order].free_list);
358 zone->free_area[order].nr_free++;
361 static inline int free_pages_check(struct page *page)
363 if (unlikely(page_mapcount(page) |
364 (page->mapping != NULL) |
365 (page_count(page) != 0) |
366 (page->flags & (
367 1 << PG_lru |
368 1 << PG_private |
369 1 << PG_locked |
370 1 << PG_active |
371 1 << PG_reclaim |
372 1 << PG_slab |
373 1 << PG_swapcache |
374 1 << PG_writeback |
375 1 << PG_reserved ))))
376 bad_page(page);
377 if (PageDirty(page))
378 __ClearPageDirty(page);
380 * For now, we report if PG_reserved was found set, but do not
381 * clear it, and do not free the page. But we shall soon need
382 * to do more, for when the ZERO_PAGE count wraps negative.
384 return PageReserved(page);
388 * Frees a list of pages.
389 * Assumes all pages on list are in same zone, and of same order.
390 * count is the number of pages to free.
392 * If the zone was previously in an "all pages pinned" state then look to
393 * see if this freeing clears that state.
395 * And clear the zone's pages_scanned counter, to hold off the "all pages are
396 * pinned" detection logic.
398 static void free_pages_bulk(struct zone *zone, int count,
399 struct list_head *list, int order)
401 spin_lock(&zone->lock);
402 zone->all_unreclaimable = 0;
403 zone->pages_scanned = 0;
404 while (count--) {
405 struct page *page;
407 BUG_ON(list_empty(list));
408 page = list_entry(list->prev, struct page, lru);
409 /* have to delete it as __free_one_page list manipulates */
410 list_del(&page->lru);
411 __free_one_page(page, zone, order);
413 spin_unlock(&zone->lock);
416 static void free_one_page(struct zone *zone, struct page *page, int order)
418 LIST_HEAD(list);
419 list_add(&page->lru, &list);
420 free_pages_bulk(zone, 1, &list, order);
423 static void __free_pages_ok(struct page *page, unsigned int order)
425 unsigned long flags;
426 int i;
427 int reserved = 0;
429 arch_free_page(page, order);
430 if (!PageHighMem(page))
431 mutex_debug_check_no_locks_freed(page_address(page),
432 PAGE_SIZE<<order);
434 for (i = 0 ; i < (1 << order) ; ++i)
435 reserved += free_pages_check(page + i);
436 if (reserved)
437 return;
439 kernel_map_pages(page, 1 << order, 0);
440 local_irq_save(flags);
441 __mod_page_state(pgfree, 1 << order);
442 free_one_page(page_zone(page), page, order);
443 local_irq_restore(flags);
447 * permit the bootmem allocator to evade page validation on high-order frees
449 void fastcall __init __free_pages_bootmem(struct page *page, unsigned int order)
451 if (order == 0) {
452 __ClearPageReserved(page);
453 set_page_count(page, 0);
454 set_page_refcounted(page);
455 __free_page(page);
456 } else {
457 int loop;
459 prefetchw(page);
460 for (loop = 0; loop < BITS_PER_LONG; loop++) {
461 struct page *p = &page[loop];
463 if (loop + 1 < BITS_PER_LONG)
464 prefetchw(p + 1);
465 __ClearPageReserved(p);
466 set_page_count(p, 0);
469 set_page_refcounted(page);
470 __free_pages(page, order);
476 * The order of subdivision here is critical for the IO subsystem.
477 * Please do not alter this order without good reasons and regression
478 * testing. Specifically, as large blocks of memory are subdivided,
479 * the order in which smaller blocks are delivered depends on the order
480 * they're subdivided in this function. This is the primary factor
481 * influencing the order in which pages are delivered to the IO
482 * subsystem according to empirical testing, and this is also justified
483 * by considering the behavior of a buddy system containing a single
484 * large block of memory acted on by a series of small allocations.
485 * This behavior is a critical factor in sglist merging's success.
487 * -- wli
489 static inline void expand(struct zone *zone, struct page *page,
490 int low, int high, struct free_area *area)
492 unsigned long size = 1 << high;
494 while (high > low) {
495 area--;
496 high--;
497 size >>= 1;
498 BUG_ON(bad_range(zone, &page[size]));
499 list_add(&page[size].lru, &area->free_list);
500 area->nr_free++;
501 set_page_order(&page[size], high);
506 * This page is about to be returned from the page allocator
508 static int prep_new_page(struct page *page, int order, gfp_t gfp_flags)
510 if (unlikely(page_mapcount(page) |
511 (page->mapping != NULL) |
512 (page_count(page) != 0) |
513 (page->flags & (
514 1 << PG_lru |
515 1 << PG_private |
516 1 << PG_locked |
517 1 << PG_active |
518 1 << PG_dirty |
519 1 << PG_reclaim |
520 1 << PG_slab |
521 1 << PG_swapcache |
522 1 << PG_writeback |
523 1 << PG_reserved ))))
524 bad_page(page);
527 * For now, we report if PG_reserved was found set, but do not
528 * clear it, and do not allocate the page: as a safety net.
530 if (PageReserved(page))
531 return 1;
533 page->flags &= ~(1 << PG_uptodate | 1 << PG_error |
534 1 << PG_referenced | 1 << PG_arch_1 |
535 1 << PG_checked | 1 << PG_mappedtodisk);
536 set_page_private(page, 0);
537 set_page_refcounted(page);
538 kernel_map_pages(page, 1 << order, 1);
540 if (gfp_flags & __GFP_ZERO)
541 prep_zero_page(page, order, gfp_flags);
543 if (order && (gfp_flags & __GFP_COMP))
544 prep_compound_page(page, order);
546 return 0;
550 * Do the hard work of removing an element from the buddy allocator.
551 * Call me with the zone->lock already held.
553 static struct page *__rmqueue(struct zone *zone, unsigned int order)
555 struct free_area * area;
556 unsigned int current_order;
557 struct page *page;
559 for (current_order = order; current_order < MAX_ORDER; ++current_order) {
560 area = zone->free_area + current_order;
561 if (list_empty(&area->free_list))
562 continue;
564 page = list_entry(area->free_list.next, struct page, lru);
565 list_del(&page->lru);
566 rmv_page_order(page);
567 area->nr_free--;
568 zone->free_pages -= 1UL << order;
569 expand(zone, page, order, current_order, area);
570 return page;
573 return NULL;
577 * Obtain a specified number of elements from the buddy allocator, all under
578 * a single hold of the lock, for efficiency. Add them to the supplied list.
579 * Returns the number of new pages which were placed at *list.
581 static int rmqueue_bulk(struct zone *zone, unsigned int order,
582 unsigned long count, struct list_head *list)
584 int i;
586 spin_lock(&zone->lock);
587 for (i = 0; i < count; ++i) {
588 struct page *page = __rmqueue(zone, order);
589 if (unlikely(page == NULL))
590 break;
591 list_add_tail(&page->lru, list);
593 spin_unlock(&zone->lock);
594 return i;
597 #ifdef CONFIG_NUMA
599 * Called from the slab reaper to drain pagesets on a particular node that
600 * belong to the currently executing processor.
602 void drain_node_pages(int nodeid)
604 int i, z;
605 unsigned long flags;
607 local_irq_save(flags);
608 for (z = 0; z < MAX_NR_ZONES; z++) {
609 struct zone *zone = NODE_DATA(nodeid)->node_zones + z;
610 struct per_cpu_pageset *pset;
612 pset = zone_pcp(zone, smp_processor_id());
613 for (i = 0; i < ARRAY_SIZE(pset->pcp); i++) {
614 struct per_cpu_pages *pcp;
616 pcp = &pset->pcp[i];
617 free_pages_bulk(zone, pcp->count, &pcp->list, 0);
618 pcp->count = 0;
621 local_irq_restore(flags);
623 #endif
625 #if defined(CONFIG_PM) || defined(CONFIG_HOTPLUG_CPU)
626 static void __drain_pages(unsigned int cpu)
628 unsigned long flags;
629 struct zone *zone;
630 int i;
632 for_each_zone(zone) {
633 struct per_cpu_pageset *pset;
635 pset = zone_pcp(zone, cpu);
636 for (i = 0; i < ARRAY_SIZE(pset->pcp); i++) {
637 struct per_cpu_pages *pcp;
639 pcp = &pset->pcp[i];
640 local_irq_save(flags);
641 free_pages_bulk(zone, pcp->count, &pcp->list, 0);
642 pcp->count = 0;
643 local_irq_restore(flags);
647 #endif /* CONFIG_PM || CONFIG_HOTPLUG_CPU */
649 #ifdef CONFIG_PM
651 void mark_free_pages(struct zone *zone)
653 unsigned long zone_pfn, flags;
654 int order;
655 struct list_head *curr;
657 if (!zone->spanned_pages)
658 return;
660 spin_lock_irqsave(&zone->lock, flags);
661 for (zone_pfn = 0; zone_pfn < zone->spanned_pages; ++zone_pfn)
662 ClearPageNosaveFree(pfn_to_page(zone_pfn + zone->zone_start_pfn));
664 for (order = MAX_ORDER - 1; order >= 0; --order)
665 list_for_each(curr, &zone->free_area[order].free_list) {
666 unsigned long start_pfn, i;
668 start_pfn = page_to_pfn(list_entry(curr, struct page, lru));
670 for (i=0; i < (1<<order); i++)
671 SetPageNosaveFree(pfn_to_page(start_pfn+i));
673 spin_unlock_irqrestore(&zone->lock, flags);
677 * Spill all of this CPU's per-cpu pages back into the buddy allocator.
679 void drain_local_pages(void)
681 unsigned long flags;
683 local_irq_save(flags);
684 __drain_pages(smp_processor_id());
685 local_irq_restore(flags);
687 #endif /* CONFIG_PM */
689 static void zone_statistics(struct zonelist *zonelist, struct zone *z, int cpu)
691 #ifdef CONFIG_NUMA
692 pg_data_t *pg = z->zone_pgdat;
693 pg_data_t *orig = zonelist->zones[0]->zone_pgdat;
694 struct per_cpu_pageset *p;
696 p = zone_pcp(z, cpu);
697 if (pg == orig) {
698 p->numa_hit++;
699 } else {
700 p->numa_miss++;
701 zone_pcp(zonelist->zones[0], cpu)->numa_foreign++;
703 if (pg == NODE_DATA(numa_node_id()))
704 p->local_node++;
705 else
706 p->other_node++;
707 #endif
711 * Free a 0-order page
713 static void fastcall free_hot_cold_page(struct page *page, int cold)
715 struct zone *zone = page_zone(page);
716 struct per_cpu_pages *pcp;
717 unsigned long flags;
719 arch_free_page(page, 0);
721 if (PageAnon(page))
722 page->mapping = NULL;
723 if (free_pages_check(page))
724 return;
726 kernel_map_pages(page, 1, 0);
728 pcp = &zone_pcp(zone, get_cpu())->pcp[cold];
729 local_irq_save(flags);
730 __inc_page_state(pgfree);
731 list_add(&page->lru, &pcp->list);
732 pcp->count++;
733 if (pcp->count >= pcp->high) {
734 free_pages_bulk(zone, pcp->batch, &pcp->list, 0);
735 pcp->count -= pcp->batch;
737 local_irq_restore(flags);
738 put_cpu();
741 void fastcall free_hot_page(struct page *page)
743 free_hot_cold_page(page, 0);
746 void fastcall free_cold_page(struct page *page)
748 free_hot_cold_page(page, 1);
752 * split_page takes a non-compound higher-order page, and splits it into
753 * n (1<<order) sub-pages: page[0..n]
754 * Each sub-page must be freed individually.
756 * Note: this is probably too low level an operation for use in drivers.
757 * Please consult with lkml before using this in your driver.
759 void split_page(struct page *page, unsigned int order)
761 int i;
763 BUG_ON(PageCompound(page));
764 BUG_ON(!page_count(page));
765 for (i = 1; i < (1 << order); i++)
766 set_page_refcounted(page + i);
770 * Really, prep_compound_page() should be called from __rmqueue_bulk(). But
771 * we cheat by calling it from here, in the order > 0 path. Saves a branch
772 * or two.
774 static struct page *buffered_rmqueue(struct zonelist *zonelist,
775 struct zone *zone, int order, gfp_t gfp_flags)
777 unsigned long flags;
778 struct page *page;
779 int cold = !!(gfp_flags & __GFP_COLD);
780 int cpu;
782 again:
783 cpu = get_cpu();
784 if (likely(order == 0)) {
785 struct per_cpu_pages *pcp;
787 pcp = &zone_pcp(zone, cpu)->pcp[cold];
788 local_irq_save(flags);
789 if (!pcp->count) {
790 pcp->count += rmqueue_bulk(zone, 0,
791 pcp->batch, &pcp->list);
792 if (unlikely(!pcp->count))
793 goto failed;
795 page = list_entry(pcp->list.next, struct page, lru);
796 list_del(&page->lru);
797 pcp->count--;
798 } else {
799 spin_lock_irqsave(&zone->lock, flags);
800 page = __rmqueue(zone, order);
801 spin_unlock(&zone->lock);
802 if (!page)
803 goto failed;
806 __mod_page_state_zone(zone, pgalloc, 1 << order);
807 zone_statistics(zonelist, zone, cpu);
808 local_irq_restore(flags);
809 put_cpu();
811 BUG_ON(bad_range(zone, page));
812 if (prep_new_page(page, order, gfp_flags))
813 goto again;
814 return page;
816 failed:
817 local_irq_restore(flags);
818 put_cpu();
819 return NULL;
822 #define ALLOC_NO_WATERMARKS 0x01 /* don't check watermarks at all */
823 #define ALLOC_WMARK_MIN 0x02 /* use pages_min watermark */
824 #define ALLOC_WMARK_LOW 0x04 /* use pages_low watermark */
825 #define ALLOC_WMARK_HIGH 0x08 /* use pages_high watermark */
826 #define ALLOC_HARDER 0x10 /* try to alloc harder */
827 #define ALLOC_HIGH 0x20 /* __GFP_HIGH set */
828 #define ALLOC_CPUSET 0x40 /* check for correct cpuset */
831 * Return 1 if free pages are above 'mark'. This takes into account the order
832 * of the allocation.
834 int zone_watermark_ok(struct zone *z, int order, unsigned long mark,
835 int classzone_idx, int alloc_flags)
837 /* free_pages my go negative - that's OK */
838 long min = mark, free_pages = z->free_pages - (1 << order) + 1;
839 int o;
841 if (alloc_flags & ALLOC_HIGH)
842 min -= min / 2;
843 if (alloc_flags & ALLOC_HARDER)
844 min -= min / 4;
846 if (free_pages <= min + z->lowmem_reserve[classzone_idx])
847 return 0;
848 for (o = 0; o < order; o++) {
849 /* At the next order, this order's pages become unavailable */
850 free_pages -= z->free_area[o].nr_free << o;
852 /* Require fewer higher order pages to be free */
853 min >>= 1;
855 if (free_pages <= min)
856 return 0;
858 return 1;
862 * get_page_from_freeliest goes through the zonelist trying to allocate
863 * a page.
865 static struct page *
866 get_page_from_freelist(gfp_t gfp_mask, unsigned int order,
867 struct zonelist *zonelist, int alloc_flags)
869 struct zone **z = zonelist->zones;
870 struct page *page = NULL;
871 int classzone_idx = zone_idx(*z);
874 * Go through the zonelist once, looking for a zone with enough free.
875 * See also cpuset_zone_allowed() comment in kernel/cpuset.c.
877 do {
878 if ((alloc_flags & ALLOC_CPUSET) &&
879 !cpuset_zone_allowed(*z, gfp_mask))
880 continue;
882 if (!(alloc_flags & ALLOC_NO_WATERMARKS)) {
883 unsigned long mark;
884 if (alloc_flags & ALLOC_WMARK_MIN)
885 mark = (*z)->pages_min;
886 else if (alloc_flags & ALLOC_WMARK_LOW)
887 mark = (*z)->pages_low;
888 else
889 mark = (*z)->pages_high;
890 if (!zone_watermark_ok(*z, order, mark,
891 classzone_idx, alloc_flags))
892 if (!zone_reclaim_mode ||
893 !zone_reclaim(*z, gfp_mask, order))
894 continue;
897 page = buffered_rmqueue(zonelist, *z, order, gfp_mask);
898 if (page) {
899 break;
901 } while (*(++z) != NULL);
902 return page;
906 * This is the 'heart' of the zoned buddy allocator.
908 struct page * fastcall
909 __alloc_pages(gfp_t gfp_mask, unsigned int order,
910 struct zonelist *zonelist)
912 const gfp_t wait = gfp_mask & __GFP_WAIT;
913 struct zone **z;
914 struct page *page;
915 struct reclaim_state reclaim_state;
916 struct task_struct *p = current;
917 int do_retry;
918 int alloc_flags;
919 int did_some_progress;
921 might_sleep_if(wait);
923 restart:
924 z = zonelist->zones; /* the list of zones suitable for gfp_mask */
926 if (unlikely(*z == NULL)) {
927 /* Should this ever happen?? */
928 return NULL;
931 page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, order,
932 zonelist, ALLOC_WMARK_LOW|ALLOC_CPUSET);
933 if (page)
934 goto got_pg;
936 do {
937 wakeup_kswapd(*z, order);
938 } while (*(++z));
941 * OK, we're below the kswapd watermark and have kicked background
942 * reclaim. Now things get more complex, so set up alloc_flags according
943 * to how we want to proceed.
945 * The caller may dip into page reserves a bit more if the caller
946 * cannot run direct reclaim, or if the caller has realtime scheduling
947 * policy or is asking for __GFP_HIGH memory. GFP_ATOMIC requests will
948 * set both ALLOC_HARDER (!wait) and ALLOC_HIGH (__GFP_HIGH).
950 alloc_flags = ALLOC_WMARK_MIN;
951 if ((unlikely(rt_task(p)) && !in_interrupt()) || !wait)
952 alloc_flags |= ALLOC_HARDER;
953 if (gfp_mask & __GFP_HIGH)
954 alloc_flags |= ALLOC_HIGH;
955 alloc_flags |= ALLOC_CPUSET;
958 * Go through the zonelist again. Let __GFP_HIGH and allocations
959 * coming from realtime tasks go deeper into reserves.
961 * This is the last chance, in general, before the goto nopage.
962 * Ignore cpuset if GFP_ATOMIC (!wait) rather than fail alloc.
963 * See also cpuset_zone_allowed() comment in kernel/cpuset.c.
965 page = get_page_from_freelist(gfp_mask, order, zonelist, alloc_flags);
966 if (page)
967 goto got_pg;
969 /* This allocation should allow future memory freeing. */
971 if (((p->flags & PF_MEMALLOC) || unlikely(test_thread_flag(TIF_MEMDIE)))
972 && !in_interrupt()) {
973 if (!(gfp_mask & __GFP_NOMEMALLOC)) {
974 nofail_alloc:
975 /* go through the zonelist yet again, ignoring mins */
976 page = get_page_from_freelist(gfp_mask, order,
977 zonelist, ALLOC_NO_WATERMARKS);
978 if (page)
979 goto got_pg;
980 if (gfp_mask & __GFP_NOFAIL) {
981 blk_congestion_wait(WRITE, HZ/50);
982 goto nofail_alloc;
985 goto nopage;
988 /* Atomic allocations - we can't balance anything */
989 if (!wait)
990 goto nopage;
992 rebalance:
993 cond_resched();
995 /* We now go into synchronous reclaim */
996 cpuset_memory_pressure_bump();
997 p->flags |= PF_MEMALLOC;
998 reclaim_state.reclaimed_slab = 0;
999 p->reclaim_state = &reclaim_state;
1001 did_some_progress = try_to_free_pages(zonelist->zones, gfp_mask);
1003 p->reclaim_state = NULL;
1004 p->flags &= ~PF_MEMALLOC;
1006 cond_resched();
1008 if (likely(did_some_progress)) {
1009 page = get_page_from_freelist(gfp_mask, order,
1010 zonelist, alloc_flags);
1011 if (page)
1012 goto got_pg;
1013 } else if ((gfp_mask & __GFP_FS) && !(gfp_mask & __GFP_NORETRY)) {
1015 * Go through the zonelist yet one more time, keep
1016 * very high watermark here, this is only to catch
1017 * a parallel oom killing, we must fail if we're still
1018 * under heavy pressure.
1020 page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, order,
1021 zonelist, ALLOC_WMARK_HIGH|ALLOC_CPUSET);
1022 if (page)
1023 goto got_pg;
1025 out_of_memory(zonelist, gfp_mask, order);
1026 goto restart;
1030 * Don't let big-order allocations loop unless the caller explicitly
1031 * requests that. Wait for some write requests to complete then retry.
1033 * In this implementation, __GFP_REPEAT means __GFP_NOFAIL for order
1034 * <= 3, but that may not be true in other implementations.
1036 do_retry = 0;
1037 if (!(gfp_mask & __GFP_NORETRY)) {
1038 if ((order <= 3) || (gfp_mask & __GFP_REPEAT))
1039 do_retry = 1;
1040 if (gfp_mask & __GFP_NOFAIL)
1041 do_retry = 1;
1043 if (do_retry) {
1044 blk_congestion_wait(WRITE, HZ/50);
1045 goto rebalance;
1048 nopage:
1049 if (!(gfp_mask & __GFP_NOWARN) && printk_ratelimit()) {
1050 printk(KERN_WARNING "%s: page allocation failure."
1051 " order:%d, mode:0x%x\n",
1052 p->comm, order, gfp_mask);
1053 dump_stack();
1054 show_mem();
1056 got_pg:
1057 return page;
1060 EXPORT_SYMBOL(__alloc_pages);
1063 * Common helper functions.
1065 fastcall unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order)
1067 struct page * page;
1068 page = alloc_pages(gfp_mask, order);
1069 if (!page)
1070 return 0;
1071 return (unsigned long) page_address(page);
1074 EXPORT_SYMBOL(__get_free_pages);
1076 fastcall unsigned long get_zeroed_page(gfp_t gfp_mask)
1078 struct page * page;
1081 * get_zeroed_page() returns a 32-bit address, which cannot represent
1082 * a highmem page
1084 BUG_ON((gfp_mask & __GFP_HIGHMEM) != 0);
1086 page = alloc_pages(gfp_mask | __GFP_ZERO, 0);
1087 if (page)
1088 return (unsigned long) page_address(page);
1089 return 0;
1092 EXPORT_SYMBOL(get_zeroed_page);
1094 void __pagevec_free(struct pagevec *pvec)
1096 int i = pagevec_count(pvec);
1098 while (--i >= 0)
1099 free_hot_cold_page(pvec->pages[i], pvec->cold);
1102 fastcall void __free_pages(struct page *page, unsigned int order)
1104 if (put_page_testzero(page)) {
1105 if (order == 0)
1106 free_hot_page(page);
1107 else
1108 __free_pages_ok(page, order);
1112 EXPORT_SYMBOL(__free_pages);
1114 fastcall void free_pages(unsigned long addr, unsigned int order)
1116 if (addr != 0) {
1117 BUG_ON(!virt_addr_valid((void *)addr));
1118 __free_pages(virt_to_page((void *)addr), order);
1122 EXPORT_SYMBOL(free_pages);
1125 * Total amount of free (allocatable) RAM:
1127 unsigned int nr_free_pages(void)
1129 unsigned int sum = 0;
1130 struct zone *zone;
1132 for_each_zone(zone)
1133 sum += zone->free_pages;
1135 return sum;
1138 EXPORT_SYMBOL(nr_free_pages);
1140 #ifdef CONFIG_NUMA
1141 unsigned int nr_free_pages_pgdat(pg_data_t *pgdat)
1143 unsigned int i, sum = 0;
1145 for (i = 0; i < MAX_NR_ZONES; i++)
1146 sum += pgdat->node_zones[i].free_pages;
1148 return sum;
1150 #endif
1152 static unsigned int nr_free_zone_pages(int offset)
1154 /* Just pick one node, since fallback list is circular */
1155 pg_data_t *pgdat = NODE_DATA(numa_node_id());
1156 unsigned int sum = 0;
1158 struct zonelist *zonelist = pgdat->node_zonelists + offset;
1159 struct zone **zonep = zonelist->zones;
1160 struct zone *zone;
1162 for (zone = *zonep++; zone; zone = *zonep++) {
1163 unsigned long size = zone->present_pages;
1164 unsigned long high = zone->pages_high;
1165 if (size > high)
1166 sum += size - high;
1169 return sum;
1173 * Amount of free RAM allocatable within ZONE_DMA and ZONE_NORMAL
1175 unsigned int nr_free_buffer_pages(void)
1177 return nr_free_zone_pages(gfp_zone(GFP_USER));
1181 * Amount of free RAM allocatable within all zones
1183 unsigned int nr_free_pagecache_pages(void)
1185 return nr_free_zone_pages(gfp_zone(GFP_HIGHUSER));
1188 #ifdef CONFIG_HIGHMEM
1189 unsigned int nr_free_highpages (void)
1191 pg_data_t *pgdat;
1192 unsigned int pages = 0;
1194 for_each_pgdat(pgdat)
1195 pages += pgdat->node_zones[ZONE_HIGHMEM].free_pages;
1197 return pages;
1199 #endif
1201 #ifdef CONFIG_NUMA
1202 static void show_node(struct zone *zone)
1204 printk("Node %d ", zone->zone_pgdat->node_id);
1206 #else
1207 #define show_node(zone) do { } while (0)
1208 #endif
1211 * Accumulate the page_state information across all CPUs.
1212 * The result is unavoidably approximate - it can change
1213 * during and after execution of this function.
1215 static DEFINE_PER_CPU(struct page_state, page_states) = {0};
1217 atomic_t nr_pagecache = ATOMIC_INIT(0);
1218 EXPORT_SYMBOL(nr_pagecache);
1219 #ifdef CONFIG_SMP
1220 DEFINE_PER_CPU(long, nr_pagecache_local) = 0;
1221 #endif
1223 static void __get_page_state(struct page_state *ret, int nr, cpumask_t *cpumask)
1225 unsigned cpu;
1227 memset(ret, 0, nr * sizeof(unsigned long));
1228 cpus_and(*cpumask, *cpumask, cpu_online_map);
1230 for_each_cpu_mask(cpu, *cpumask) {
1231 unsigned long *in;
1232 unsigned long *out;
1233 unsigned off;
1234 unsigned next_cpu;
1236 in = (unsigned long *)&per_cpu(page_states, cpu);
1238 next_cpu = next_cpu(cpu, *cpumask);
1239 if (likely(next_cpu < NR_CPUS))
1240 prefetch(&per_cpu(page_states, next_cpu));
1242 out = (unsigned long *)ret;
1243 for (off = 0; off < nr; off++)
1244 *out++ += *in++;
1248 void get_page_state_node(struct page_state *ret, int node)
1250 int nr;
1251 cpumask_t mask = node_to_cpumask(node);
1253 nr = offsetof(struct page_state, GET_PAGE_STATE_LAST);
1254 nr /= sizeof(unsigned long);
1256 __get_page_state(ret, nr+1, &mask);
1259 void get_page_state(struct page_state *ret)
1261 int nr;
1262 cpumask_t mask = CPU_MASK_ALL;
1264 nr = offsetof(struct page_state, GET_PAGE_STATE_LAST);
1265 nr /= sizeof(unsigned long);
1267 __get_page_state(ret, nr + 1, &mask);
1270 void get_full_page_state(struct page_state *ret)
1272 cpumask_t mask = CPU_MASK_ALL;
1274 __get_page_state(ret, sizeof(*ret) / sizeof(unsigned long), &mask);
1277 unsigned long read_page_state_offset(unsigned long offset)
1279 unsigned long ret = 0;
1280 int cpu;
1282 for_each_online_cpu(cpu) {
1283 unsigned long in;
1285 in = (unsigned long)&per_cpu(page_states, cpu) + offset;
1286 ret += *((unsigned long *)in);
1288 return ret;
1291 void __mod_page_state_offset(unsigned long offset, unsigned long delta)
1293 void *ptr;
1295 ptr = &__get_cpu_var(page_states);
1296 *(unsigned long *)(ptr + offset) += delta;
1298 EXPORT_SYMBOL(__mod_page_state_offset);
1300 void mod_page_state_offset(unsigned long offset, unsigned long delta)
1302 unsigned long flags;
1303 void *ptr;
1305 local_irq_save(flags);
1306 ptr = &__get_cpu_var(page_states);
1307 *(unsigned long *)(ptr + offset) += delta;
1308 local_irq_restore(flags);
1310 EXPORT_SYMBOL(mod_page_state_offset);
1312 void __get_zone_counts(unsigned long *active, unsigned long *inactive,
1313 unsigned long *free, struct pglist_data *pgdat)
1315 struct zone *zones = pgdat->node_zones;
1316 int i;
1318 *active = 0;
1319 *inactive = 0;
1320 *free = 0;
1321 for (i = 0; i < MAX_NR_ZONES; i++) {
1322 *active += zones[i].nr_active;
1323 *inactive += zones[i].nr_inactive;
1324 *free += zones[i].free_pages;
1328 void get_zone_counts(unsigned long *active,
1329 unsigned long *inactive, unsigned long *free)
1331 struct pglist_data *pgdat;
1333 *active = 0;
1334 *inactive = 0;
1335 *free = 0;
1336 for_each_pgdat(pgdat) {
1337 unsigned long l, m, n;
1338 __get_zone_counts(&l, &m, &n, pgdat);
1339 *active += l;
1340 *inactive += m;
1341 *free += n;
1345 void si_meminfo(struct sysinfo *val)
1347 val->totalram = totalram_pages;
1348 val->sharedram = 0;
1349 val->freeram = nr_free_pages();
1350 val->bufferram = nr_blockdev_pages();
1351 #ifdef CONFIG_HIGHMEM
1352 val->totalhigh = totalhigh_pages;
1353 val->freehigh = nr_free_highpages();
1354 #else
1355 val->totalhigh = 0;
1356 val->freehigh = 0;
1357 #endif
1358 val->mem_unit = PAGE_SIZE;
1361 EXPORT_SYMBOL(si_meminfo);
1363 #ifdef CONFIG_NUMA
1364 void si_meminfo_node(struct sysinfo *val, int nid)
1366 pg_data_t *pgdat = NODE_DATA(nid);
1368 val->totalram = pgdat->node_present_pages;
1369 val->freeram = nr_free_pages_pgdat(pgdat);
1370 val->totalhigh = pgdat->node_zones[ZONE_HIGHMEM].present_pages;
1371 val->freehigh = pgdat->node_zones[ZONE_HIGHMEM].free_pages;
1372 val->mem_unit = PAGE_SIZE;
1374 #endif
1376 #define K(x) ((x) << (PAGE_SHIFT-10))
1379 * Show free area list (used inside shift_scroll-lock stuff)
1380 * We also calculate the percentage fragmentation. We do this by counting the
1381 * memory on each free list with the exception of the first item on the list.
1383 void show_free_areas(void)
1385 struct page_state ps;
1386 int cpu, temperature;
1387 unsigned long active;
1388 unsigned long inactive;
1389 unsigned long free;
1390 struct zone *zone;
1392 for_each_zone(zone) {
1393 show_node(zone);
1394 printk("%s per-cpu:", zone->name);
1396 if (!populated_zone(zone)) {
1397 printk(" empty\n");
1398 continue;
1399 } else
1400 printk("\n");
1402 for_each_online_cpu(cpu) {
1403 struct per_cpu_pageset *pageset;
1405 pageset = zone_pcp(zone, cpu);
1407 for (temperature = 0; temperature < 2; temperature++)
1408 printk("cpu %d %s: high %d, batch %d used:%d\n",
1409 cpu,
1410 temperature ? "cold" : "hot",
1411 pageset->pcp[temperature].high,
1412 pageset->pcp[temperature].batch,
1413 pageset->pcp[temperature].count);
1417 get_page_state(&ps);
1418 get_zone_counts(&active, &inactive, &free);
1420 printk("Free pages: %11ukB (%ukB HighMem)\n",
1421 K(nr_free_pages()),
1422 K(nr_free_highpages()));
1424 printk("Active:%lu inactive:%lu dirty:%lu writeback:%lu "
1425 "unstable:%lu free:%u slab:%lu mapped:%lu pagetables:%lu\n",
1426 active,
1427 inactive,
1428 ps.nr_dirty,
1429 ps.nr_writeback,
1430 ps.nr_unstable,
1431 nr_free_pages(),
1432 ps.nr_slab,
1433 ps.nr_mapped,
1434 ps.nr_page_table_pages);
1436 for_each_zone(zone) {
1437 int i;
1439 show_node(zone);
1440 printk("%s"
1441 " free:%lukB"
1442 " min:%lukB"
1443 " low:%lukB"
1444 " high:%lukB"
1445 " active:%lukB"
1446 " inactive:%lukB"
1447 " present:%lukB"
1448 " pages_scanned:%lu"
1449 " all_unreclaimable? %s"
1450 "\n",
1451 zone->name,
1452 K(zone->free_pages),
1453 K(zone->pages_min),
1454 K(zone->pages_low),
1455 K(zone->pages_high),
1456 K(zone->nr_active),
1457 K(zone->nr_inactive),
1458 K(zone->present_pages),
1459 zone->pages_scanned,
1460 (zone->all_unreclaimable ? "yes" : "no")
1462 printk("lowmem_reserve[]:");
1463 for (i = 0; i < MAX_NR_ZONES; i++)
1464 printk(" %lu", zone->lowmem_reserve[i]);
1465 printk("\n");
1468 for_each_zone(zone) {
1469 unsigned long nr, flags, order, total = 0;
1471 show_node(zone);
1472 printk("%s: ", zone->name);
1473 if (!populated_zone(zone)) {
1474 printk("empty\n");
1475 continue;
1478 spin_lock_irqsave(&zone->lock, flags);
1479 for (order = 0; order < MAX_ORDER; order++) {
1480 nr = zone->free_area[order].nr_free;
1481 total += nr << order;
1482 printk("%lu*%lukB ", nr, K(1UL) << order);
1484 spin_unlock_irqrestore(&zone->lock, flags);
1485 printk("= %lukB\n", K(total));
1488 show_swap_cache_info();
1492 * Builds allocation fallback zone lists.
1494 * Add all populated zones of a node to the zonelist.
1496 static int __init build_zonelists_node(pg_data_t *pgdat,
1497 struct zonelist *zonelist, int nr_zones, int zone_type)
1499 struct zone *zone;
1501 BUG_ON(zone_type > ZONE_HIGHMEM);
1503 do {
1504 zone = pgdat->node_zones + zone_type;
1505 if (populated_zone(zone)) {
1506 #ifndef CONFIG_HIGHMEM
1507 BUG_ON(zone_type > ZONE_NORMAL);
1508 #endif
1509 zonelist->zones[nr_zones++] = zone;
1510 check_highest_zone(zone_type);
1512 zone_type--;
1514 } while (zone_type >= 0);
1515 return nr_zones;
1518 static inline int highest_zone(int zone_bits)
1520 int res = ZONE_NORMAL;
1521 if (zone_bits & (__force int)__GFP_HIGHMEM)
1522 res = ZONE_HIGHMEM;
1523 if (zone_bits & (__force int)__GFP_DMA32)
1524 res = ZONE_DMA32;
1525 if (zone_bits & (__force int)__GFP_DMA)
1526 res = ZONE_DMA;
1527 return res;
1530 #ifdef CONFIG_NUMA
1531 #define MAX_NODE_LOAD (num_online_nodes())
1532 static int __initdata node_load[MAX_NUMNODES];
1534 * find_next_best_node - find the next node that should appear in a given node's fallback list
1535 * @node: node whose fallback list we're appending
1536 * @used_node_mask: nodemask_t of already used nodes
1538 * We use a number of factors to determine which is the next node that should
1539 * appear on a given node's fallback list. The node should not have appeared
1540 * already in @node's fallback list, and it should be the next closest node
1541 * according to the distance array (which contains arbitrary distance values
1542 * from each node to each node in the system), and should also prefer nodes
1543 * with no CPUs, since presumably they'll have very little allocation pressure
1544 * on them otherwise.
1545 * It returns -1 if no node is found.
1547 static int __init find_next_best_node(int node, nodemask_t *used_node_mask)
1549 int n, val;
1550 int min_val = INT_MAX;
1551 int best_node = -1;
1553 /* Use the local node if we haven't already */
1554 if (!node_isset(node, *used_node_mask)) {
1555 node_set(node, *used_node_mask);
1556 return node;
1559 for_each_online_node(n) {
1560 cpumask_t tmp;
1562 /* Don't want a node to appear more than once */
1563 if (node_isset(n, *used_node_mask))
1564 continue;
1566 /* Use the distance array to find the distance */
1567 val = node_distance(node, n);
1569 /* Penalize nodes under us ("prefer the next node") */
1570 val += (n < node);
1572 /* Give preference to headless and unused nodes */
1573 tmp = node_to_cpumask(n);
1574 if (!cpus_empty(tmp))
1575 val += PENALTY_FOR_NODE_WITH_CPUS;
1577 /* Slight preference for less loaded node */
1578 val *= (MAX_NODE_LOAD*MAX_NUMNODES);
1579 val += node_load[n];
1581 if (val < min_val) {
1582 min_val = val;
1583 best_node = n;
1587 if (best_node >= 0)
1588 node_set(best_node, *used_node_mask);
1590 return best_node;
1593 static void __init build_zonelists(pg_data_t *pgdat)
1595 int i, j, k, node, local_node;
1596 int prev_node, load;
1597 struct zonelist *zonelist;
1598 nodemask_t used_mask;
1600 /* initialize zonelists */
1601 for (i = 0; i < GFP_ZONETYPES; i++) {
1602 zonelist = pgdat->node_zonelists + i;
1603 zonelist->zones[0] = NULL;
1606 /* NUMA-aware ordering of nodes */
1607 local_node = pgdat->node_id;
1608 load = num_online_nodes();
1609 prev_node = local_node;
1610 nodes_clear(used_mask);
1611 while ((node = find_next_best_node(local_node, &used_mask)) >= 0) {
1612 int distance = node_distance(local_node, node);
1615 * If another node is sufficiently far away then it is better
1616 * to reclaim pages in a zone before going off node.
1618 if (distance > RECLAIM_DISTANCE)
1619 zone_reclaim_mode = 1;
1622 * We don't want to pressure a particular node.
1623 * So adding penalty to the first node in same
1624 * distance group to make it round-robin.
1627 if (distance != node_distance(local_node, prev_node))
1628 node_load[node] += load;
1629 prev_node = node;
1630 load--;
1631 for (i = 0; i < GFP_ZONETYPES; i++) {
1632 zonelist = pgdat->node_zonelists + i;
1633 for (j = 0; zonelist->zones[j] != NULL; j++);
1635 k = highest_zone(i);
1637 j = build_zonelists_node(NODE_DATA(node), zonelist, j, k);
1638 zonelist->zones[j] = NULL;
1643 #else /* CONFIG_NUMA */
1645 static void __init build_zonelists(pg_data_t *pgdat)
1647 int i, j, k, node, local_node;
1649 local_node = pgdat->node_id;
1650 for (i = 0; i < GFP_ZONETYPES; i++) {
1651 struct zonelist *zonelist;
1653 zonelist = pgdat->node_zonelists + i;
1655 j = 0;
1656 k = highest_zone(i);
1657 j = build_zonelists_node(pgdat, zonelist, j, k);
1659 * Now we build the zonelist so that it contains the zones
1660 * of all the other nodes.
1661 * We don't want to pressure a particular node, so when
1662 * building the zones for node N, we make sure that the
1663 * zones coming right after the local ones are those from
1664 * node N+1 (modulo N)
1666 for (node = local_node + 1; node < MAX_NUMNODES; node++) {
1667 if (!node_online(node))
1668 continue;
1669 j = build_zonelists_node(NODE_DATA(node), zonelist, j, k);
1671 for (node = 0; node < local_node; node++) {
1672 if (!node_online(node))
1673 continue;
1674 j = build_zonelists_node(NODE_DATA(node), zonelist, j, k);
1677 zonelist->zones[j] = NULL;
1681 #endif /* CONFIG_NUMA */
1683 void __init build_all_zonelists(void)
1685 int i;
1687 for_each_online_node(i)
1688 build_zonelists(NODE_DATA(i));
1689 printk("Built %i zonelists\n", num_online_nodes());
1690 cpuset_init_current_mems_allowed();
1694 * Helper functions to size the waitqueue hash table.
1695 * Essentially these want to choose hash table sizes sufficiently
1696 * large so that collisions trying to wait on pages are rare.
1697 * But in fact, the number of active page waitqueues on typical
1698 * systems is ridiculously low, less than 200. So this is even
1699 * conservative, even though it seems large.
1701 * The constant PAGES_PER_WAITQUEUE specifies the ratio of pages to
1702 * waitqueues, i.e. the size of the waitq table given the number of pages.
1704 #define PAGES_PER_WAITQUEUE 256
1706 static inline unsigned long wait_table_size(unsigned long pages)
1708 unsigned long size = 1;
1710 pages /= PAGES_PER_WAITQUEUE;
1712 while (size < pages)
1713 size <<= 1;
1716 * Once we have dozens or even hundreds of threads sleeping
1717 * on IO we've got bigger problems than wait queue collision.
1718 * Limit the size of the wait table to a reasonable size.
1720 size = min(size, 4096UL);
1722 return max(size, 4UL);
1726 * This is an integer logarithm so that shifts can be used later
1727 * to extract the more random high bits from the multiplicative
1728 * hash function before the remainder is taken.
1730 static inline unsigned long wait_table_bits(unsigned long size)
1732 return ffz(~size);
1735 #define LONG_ALIGN(x) (((x)+(sizeof(long))-1)&~((sizeof(long))-1))
1737 static void __init calculate_zone_totalpages(struct pglist_data *pgdat,
1738 unsigned long *zones_size, unsigned long *zholes_size)
1740 unsigned long realtotalpages, totalpages = 0;
1741 int i;
1743 for (i = 0; i < MAX_NR_ZONES; i++)
1744 totalpages += zones_size[i];
1745 pgdat->node_spanned_pages = totalpages;
1747 realtotalpages = totalpages;
1748 if (zholes_size)
1749 for (i = 0; i < MAX_NR_ZONES; i++)
1750 realtotalpages -= zholes_size[i];
1751 pgdat->node_present_pages = realtotalpages;
1752 printk(KERN_DEBUG "On node %d totalpages: %lu\n", pgdat->node_id, realtotalpages);
1757 * Initially all pages are reserved - free ones are freed
1758 * up by free_all_bootmem() once the early boot process is
1759 * done. Non-atomic initialization, single-pass.
1761 void __meminit memmap_init_zone(unsigned long size, int nid, unsigned long zone,
1762 unsigned long start_pfn)
1764 struct page *page;
1765 unsigned long end_pfn = start_pfn + size;
1766 unsigned long pfn;
1768 for (pfn = start_pfn; pfn < end_pfn; pfn++) {
1769 if (!early_pfn_valid(pfn))
1770 continue;
1771 page = pfn_to_page(pfn);
1772 set_page_links(page, zone, nid, pfn);
1773 init_page_count(page);
1774 reset_page_mapcount(page);
1775 SetPageReserved(page);
1776 INIT_LIST_HEAD(&page->lru);
1777 #ifdef WANT_PAGE_VIRTUAL
1778 /* The shift won't overflow because ZONE_NORMAL is below 4G. */
1779 if (!is_highmem_idx(zone))
1780 set_page_address(page, __va(pfn << PAGE_SHIFT));
1781 #endif
1785 void zone_init_free_lists(struct pglist_data *pgdat, struct zone *zone,
1786 unsigned long size)
1788 int order;
1789 for (order = 0; order < MAX_ORDER ; order++) {
1790 INIT_LIST_HEAD(&zone->free_area[order].free_list);
1791 zone->free_area[order].nr_free = 0;
1795 #define ZONETABLE_INDEX(x, zone_nr) ((x << ZONES_SHIFT) | zone_nr)
1796 void zonetable_add(struct zone *zone, int nid, int zid, unsigned long pfn,
1797 unsigned long size)
1799 unsigned long snum = pfn_to_section_nr(pfn);
1800 unsigned long end = pfn_to_section_nr(pfn + size);
1802 if (FLAGS_HAS_NODE)
1803 zone_table[ZONETABLE_INDEX(nid, zid)] = zone;
1804 else
1805 for (; snum <= end; snum++)
1806 zone_table[ZONETABLE_INDEX(snum, zid)] = zone;
1809 #ifndef __HAVE_ARCH_MEMMAP_INIT
1810 #define memmap_init(size, nid, zone, start_pfn) \
1811 memmap_init_zone((size), (nid), (zone), (start_pfn))
1812 #endif
1814 static int __cpuinit zone_batchsize(struct zone *zone)
1816 int batch;
1819 * The per-cpu-pages pools are set to around 1000th of the
1820 * size of the zone. But no more than 1/2 of a meg.
1822 * OK, so we don't know how big the cache is. So guess.
1824 batch = zone->present_pages / 1024;
1825 if (batch * PAGE_SIZE > 512 * 1024)
1826 batch = (512 * 1024) / PAGE_SIZE;
1827 batch /= 4; /* We effectively *= 4 below */
1828 if (batch < 1)
1829 batch = 1;
1832 * Clamp the batch to a 2^n - 1 value. Having a power
1833 * of 2 value was found to be more likely to have
1834 * suboptimal cache aliasing properties in some cases.
1836 * For example if 2 tasks are alternately allocating
1837 * batches of pages, one task can end up with a lot
1838 * of pages of one half of the possible page colors
1839 * and the other with pages of the other colors.
1841 batch = (1 << (fls(batch + batch/2)-1)) - 1;
1843 return batch;
1846 inline void setup_pageset(struct per_cpu_pageset *p, unsigned long batch)
1848 struct per_cpu_pages *pcp;
1850 memset(p, 0, sizeof(*p));
1852 pcp = &p->pcp[0]; /* hot */
1853 pcp->count = 0;
1854 pcp->high = 6 * batch;
1855 pcp->batch = max(1UL, 1 * batch);
1856 INIT_LIST_HEAD(&pcp->list);
1858 pcp = &p->pcp[1]; /* cold*/
1859 pcp->count = 0;
1860 pcp->high = 2 * batch;
1861 pcp->batch = max(1UL, batch/2);
1862 INIT_LIST_HEAD(&pcp->list);
1866 * setup_pagelist_highmark() sets the high water mark for hot per_cpu_pagelist
1867 * to the value high for the pageset p.
1870 static void setup_pagelist_highmark(struct per_cpu_pageset *p,
1871 unsigned long high)
1873 struct per_cpu_pages *pcp;
1875 pcp = &p->pcp[0]; /* hot list */
1876 pcp->high = high;
1877 pcp->batch = max(1UL, high/4);
1878 if ((high/4) > (PAGE_SHIFT * 8))
1879 pcp->batch = PAGE_SHIFT * 8;
1883 #ifdef CONFIG_NUMA
1885 * Boot pageset table. One per cpu which is going to be used for all
1886 * zones and all nodes. The parameters will be set in such a way
1887 * that an item put on a list will immediately be handed over to
1888 * the buddy list. This is safe since pageset manipulation is done
1889 * with interrupts disabled.
1891 * Some NUMA counter updates may also be caught by the boot pagesets.
1893 * The boot_pagesets must be kept even after bootup is complete for
1894 * unused processors and/or zones. They do play a role for bootstrapping
1895 * hotplugged processors.
1897 * zoneinfo_show() and maybe other functions do
1898 * not check if the processor is online before following the pageset pointer.
1899 * Other parts of the kernel may not check if the zone is available.
1901 static struct per_cpu_pageset boot_pageset[NR_CPUS];
1904 * Dynamically allocate memory for the
1905 * per cpu pageset array in struct zone.
1907 static int __cpuinit process_zones(int cpu)
1909 struct zone *zone, *dzone;
1911 for_each_zone(zone) {
1913 zone_pcp(zone, cpu) = kmalloc_node(sizeof(struct per_cpu_pageset),
1914 GFP_KERNEL, cpu_to_node(cpu));
1915 if (!zone_pcp(zone, cpu))
1916 goto bad;
1918 setup_pageset(zone_pcp(zone, cpu), zone_batchsize(zone));
1920 if (percpu_pagelist_fraction)
1921 setup_pagelist_highmark(zone_pcp(zone, cpu),
1922 (zone->present_pages / percpu_pagelist_fraction));
1925 return 0;
1926 bad:
1927 for_each_zone(dzone) {
1928 if (dzone == zone)
1929 break;
1930 kfree(zone_pcp(dzone, cpu));
1931 zone_pcp(dzone, cpu) = NULL;
1933 return -ENOMEM;
1936 static inline void free_zone_pagesets(int cpu)
1938 struct zone *zone;
1940 for_each_zone(zone) {
1941 struct per_cpu_pageset *pset = zone_pcp(zone, cpu);
1943 zone_pcp(zone, cpu) = NULL;
1944 kfree(pset);
1948 static int __cpuinit pageset_cpuup_callback(struct notifier_block *nfb,
1949 unsigned long action,
1950 void *hcpu)
1952 int cpu = (long)hcpu;
1953 int ret = NOTIFY_OK;
1955 switch (action) {
1956 case CPU_UP_PREPARE:
1957 if (process_zones(cpu))
1958 ret = NOTIFY_BAD;
1959 break;
1960 case CPU_UP_CANCELED:
1961 case CPU_DEAD:
1962 free_zone_pagesets(cpu);
1963 break;
1964 default:
1965 break;
1967 return ret;
1970 static struct notifier_block pageset_notifier =
1971 { &pageset_cpuup_callback, NULL, 0 };
1973 void __init setup_per_cpu_pageset(void)
1975 int err;
1977 /* Initialize per_cpu_pageset for cpu 0.
1978 * A cpuup callback will do this for every cpu
1979 * as it comes online
1981 err = process_zones(smp_processor_id());
1982 BUG_ON(err);
1983 register_cpu_notifier(&pageset_notifier);
1986 #endif
1988 static __meminit
1989 void zone_wait_table_init(struct zone *zone, unsigned long zone_size_pages)
1991 int i;
1992 struct pglist_data *pgdat = zone->zone_pgdat;
1995 * The per-page waitqueue mechanism uses hashed waitqueues
1996 * per zone.
1998 zone->wait_table_size = wait_table_size(zone_size_pages);
1999 zone->wait_table_bits = wait_table_bits(zone->wait_table_size);
2000 zone->wait_table = (wait_queue_head_t *)
2001 alloc_bootmem_node(pgdat, zone->wait_table_size
2002 * sizeof(wait_queue_head_t));
2004 for(i = 0; i < zone->wait_table_size; ++i)
2005 init_waitqueue_head(zone->wait_table + i);
2008 static __meminit void zone_pcp_init(struct zone *zone)
2010 int cpu;
2011 unsigned long batch = zone_batchsize(zone);
2013 for (cpu = 0; cpu < NR_CPUS; cpu++) {
2014 #ifdef CONFIG_NUMA
2015 /* Early boot. Slab allocator not functional yet */
2016 zone_pcp(zone, cpu) = &boot_pageset[cpu];
2017 setup_pageset(&boot_pageset[cpu],0);
2018 #else
2019 setup_pageset(zone_pcp(zone,cpu), batch);
2020 #endif
2022 printk(KERN_DEBUG " %s zone: %lu pages, LIFO batch:%lu\n",
2023 zone->name, zone->present_pages, batch);
2026 static __meminit void init_currently_empty_zone(struct zone *zone,
2027 unsigned long zone_start_pfn, unsigned long size)
2029 struct pglist_data *pgdat = zone->zone_pgdat;
2031 zone_wait_table_init(zone, size);
2032 pgdat->nr_zones = zone_idx(zone) + 1;
2034 zone->zone_mem_map = pfn_to_page(zone_start_pfn);
2035 zone->zone_start_pfn = zone_start_pfn;
2037 memmap_init(size, pgdat->node_id, zone_idx(zone), zone_start_pfn);
2039 zone_init_free_lists(pgdat, zone, zone->spanned_pages);
2043 * Set up the zone data structures:
2044 * - mark all pages reserved
2045 * - mark all memory queues empty
2046 * - clear the memory bitmaps
2048 static void __init free_area_init_core(struct pglist_data *pgdat,
2049 unsigned long *zones_size, unsigned long *zholes_size)
2051 unsigned long j;
2052 int nid = pgdat->node_id;
2053 unsigned long zone_start_pfn = pgdat->node_start_pfn;
2055 pgdat_resize_init(pgdat);
2056 pgdat->nr_zones = 0;
2057 init_waitqueue_head(&pgdat->kswapd_wait);
2058 pgdat->kswapd_max_order = 0;
2060 for (j = 0; j < MAX_NR_ZONES; j++) {
2061 struct zone *zone = pgdat->node_zones + j;
2062 unsigned long size, realsize;
2064 realsize = size = zones_size[j];
2065 if (zholes_size)
2066 realsize -= zholes_size[j];
2068 if (j < ZONE_HIGHMEM)
2069 nr_kernel_pages += realsize;
2070 nr_all_pages += realsize;
2072 zone->spanned_pages = size;
2073 zone->present_pages = realsize;
2074 zone->name = zone_names[j];
2075 spin_lock_init(&zone->lock);
2076 spin_lock_init(&zone->lru_lock);
2077 zone_seqlock_init(zone);
2078 zone->zone_pgdat = pgdat;
2079 zone->free_pages = 0;
2081 zone->temp_priority = zone->prev_priority = DEF_PRIORITY;
2083 zone_pcp_init(zone);
2084 INIT_LIST_HEAD(&zone->active_list);
2085 INIT_LIST_HEAD(&zone->inactive_list);
2086 zone->nr_scan_active = 0;
2087 zone->nr_scan_inactive = 0;
2088 zone->nr_active = 0;
2089 zone->nr_inactive = 0;
2090 atomic_set(&zone->reclaim_in_progress, 0);
2091 if (!size)
2092 continue;
2094 zonetable_add(zone, nid, j, zone_start_pfn, size);
2095 init_currently_empty_zone(zone, zone_start_pfn, size);
2096 zone_start_pfn += size;
2100 static void __init alloc_node_mem_map(struct pglist_data *pgdat)
2102 /* Skip empty nodes */
2103 if (!pgdat->node_spanned_pages)
2104 return;
2106 #ifdef CONFIG_FLAT_NODE_MEM_MAP
2107 /* ia64 gets its own node_mem_map, before this, without bootmem */
2108 if (!pgdat->node_mem_map) {
2109 unsigned long size;
2110 struct page *map;
2112 size = (pgdat->node_spanned_pages + 1) * sizeof(struct page);
2113 map = alloc_remap(pgdat->node_id, size);
2114 if (!map)
2115 map = alloc_bootmem_node(pgdat, size);
2116 pgdat->node_mem_map = map;
2118 #ifdef CONFIG_FLATMEM
2120 * With no DISCONTIG, the global mem_map is just set as node 0's
2122 if (pgdat == NODE_DATA(0))
2123 mem_map = NODE_DATA(0)->node_mem_map;
2124 #endif
2125 #endif /* CONFIG_FLAT_NODE_MEM_MAP */
2128 void __init free_area_init_node(int nid, struct pglist_data *pgdat,
2129 unsigned long *zones_size, unsigned long node_start_pfn,
2130 unsigned long *zholes_size)
2132 pgdat->node_id = nid;
2133 pgdat->node_start_pfn = node_start_pfn;
2134 calculate_zone_totalpages(pgdat, zones_size, zholes_size);
2136 alloc_node_mem_map(pgdat);
2138 free_area_init_core(pgdat, zones_size, zholes_size);
2141 #ifndef CONFIG_NEED_MULTIPLE_NODES
2142 static bootmem_data_t contig_bootmem_data;
2143 struct pglist_data contig_page_data = { .bdata = &contig_bootmem_data };
2145 EXPORT_SYMBOL(contig_page_data);
2146 #endif
2148 void __init free_area_init(unsigned long *zones_size)
2150 free_area_init_node(0, NODE_DATA(0), zones_size,
2151 __pa(PAGE_OFFSET) >> PAGE_SHIFT, NULL);
2154 #ifdef CONFIG_PROC_FS
2156 #include <linux/seq_file.h>
2158 static void *frag_start(struct seq_file *m, loff_t *pos)
2160 pg_data_t *pgdat;
2161 loff_t node = *pos;
2163 for (pgdat = pgdat_list; pgdat && node; pgdat = pgdat->pgdat_next)
2164 --node;
2166 return pgdat;
2169 static void *frag_next(struct seq_file *m, void *arg, loff_t *pos)
2171 pg_data_t *pgdat = (pg_data_t *)arg;
2173 (*pos)++;
2174 return pgdat->pgdat_next;
2177 static void frag_stop(struct seq_file *m, void *arg)
2182 * This walks the free areas for each zone.
2184 static int frag_show(struct seq_file *m, void *arg)
2186 pg_data_t *pgdat = (pg_data_t *)arg;
2187 struct zone *zone;
2188 struct zone *node_zones = pgdat->node_zones;
2189 unsigned long flags;
2190 int order;
2192 for (zone = node_zones; zone - node_zones < MAX_NR_ZONES; ++zone) {
2193 if (!populated_zone(zone))
2194 continue;
2196 spin_lock_irqsave(&zone->lock, flags);
2197 seq_printf(m, "Node %d, zone %8s ", pgdat->node_id, zone->name);
2198 for (order = 0; order < MAX_ORDER; ++order)
2199 seq_printf(m, "%6lu ", zone->free_area[order].nr_free);
2200 spin_unlock_irqrestore(&zone->lock, flags);
2201 seq_putc(m, '\n');
2203 return 0;
2206 struct seq_operations fragmentation_op = {
2207 .start = frag_start,
2208 .next = frag_next,
2209 .stop = frag_stop,
2210 .show = frag_show,
2214 * Output information about zones in @pgdat.
2216 static int zoneinfo_show(struct seq_file *m, void *arg)
2218 pg_data_t *pgdat = arg;
2219 struct zone *zone;
2220 struct zone *node_zones = pgdat->node_zones;
2221 unsigned long flags;
2223 for (zone = node_zones; zone - node_zones < MAX_NR_ZONES; zone++) {
2224 int i;
2226 if (!populated_zone(zone))
2227 continue;
2229 spin_lock_irqsave(&zone->lock, flags);
2230 seq_printf(m, "Node %d, zone %8s", pgdat->node_id, zone->name);
2231 seq_printf(m,
2232 "\n pages free %lu"
2233 "\n min %lu"
2234 "\n low %lu"
2235 "\n high %lu"
2236 "\n active %lu"
2237 "\n inactive %lu"
2238 "\n scanned %lu (a: %lu i: %lu)"
2239 "\n spanned %lu"
2240 "\n present %lu",
2241 zone->free_pages,
2242 zone->pages_min,
2243 zone->pages_low,
2244 zone->pages_high,
2245 zone->nr_active,
2246 zone->nr_inactive,
2247 zone->pages_scanned,
2248 zone->nr_scan_active, zone->nr_scan_inactive,
2249 zone->spanned_pages,
2250 zone->present_pages);
2251 seq_printf(m,
2252 "\n protection: (%lu",
2253 zone->lowmem_reserve[0]);
2254 for (i = 1; i < ARRAY_SIZE(zone->lowmem_reserve); i++)
2255 seq_printf(m, ", %lu", zone->lowmem_reserve[i]);
2256 seq_printf(m,
2258 "\n pagesets");
2259 for_each_online_cpu(i) {
2260 struct per_cpu_pageset *pageset;
2261 int j;
2263 pageset = zone_pcp(zone, i);
2264 for (j = 0; j < ARRAY_SIZE(pageset->pcp); j++) {
2265 if (pageset->pcp[j].count)
2266 break;
2268 if (j == ARRAY_SIZE(pageset->pcp))
2269 continue;
2270 for (j = 0; j < ARRAY_SIZE(pageset->pcp); j++) {
2271 seq_printf(m,
2272 "\n cpu: %i pcp: %i"
2273 "\n count: %i"
2274 "\n high: %i"
2275 "\n batch: %i",
2276 i, j,
2277 pageset->pcp[j].count,
2278 pageset->pcp[j].high,
2279 pageset->pcp[j].batch);
2281 #ifdef CONFIG_NUMA
2282 seq_printf(m,
2283 "\n numa_hit: %lu"
2284 "\n numa_miss: %lu"
2285 "\n numa_foreign: %lu"
2286 "\n interleave_hit: %lu"
2287 "\n local_node: %lu"
2288 "\n other_node: %lu",
2289 pageset->numa_hit,
2290 pageset->numa_miss,
2291 pageset->numa_foreign,
2292 pageset->interleave_hit,
2293 pageset->local_node,
2294 pageset->other_node);
2295 #endif
2297 seq_printf(m,
2298 "\n all_unreclaimable: %u"
2299 "\n prev_priority: %i"
2300 "\n temp_priority: %i"
2301 "\n start_pfn: %lu",
2302 zone->all_unreclaimable,
2303 zone->prev_priority,
2304 zone->temp_priority,
2305 zone->zone_start_pfn);
2306 spin_unlock_irqrestore(&zone->lock, flags);
2307 seq_putc(m, '\n');
2309 return 0;
2312 struct seq_operations zoneinfo_op = {
2313 .start = frag_start, /* iterate over all zones. The same as in
2314 * fragmentation. */
2315 .next = frag_next,
2316 .stop = frag_stop,
2317 .show = zoneinfo_show,
2320 static char *vmstat_text[] = {
2321 "nr_dirty",
2322 "nr_writeback",
2323 "nr_unstable",
2324 "nr_page_table_pages",
2325 "nr_mapped",
2326 "nr_slab",
2328 "pgpgin",
2329 "pgpgout",
2330 "pswpin",
2331 "pswpout",
2333 "pgalloc_high",
2334 "pgalloc_normal",
2335 "pgalloc_dma32",
2336 "pgalloc_dma",
2338 "pgfree",
2339 "pgactivate",
2340 "pgdeactivate",
2342 "pgfault",
2343 "pgmajfault",
2345 "pgrefill_high",
2346 "pgrefill_normal",
2347 "pgrefill_dma32",
2348 "pgrefill_dma",
2350 "pgsteal_high",
2351 "pgsteal_normal",
2352 "pgsteal_dma32",
2353 "pgsteal_dma",
2355 "pgscan_kswapd_high",
2356 "pgscan_kswapd_normal",
2357 "pgscan_kswapd_dma32",
2358 "pgscan_kswapd_dma",
2360 "pgscan_direct_high",
2361 "pgscan_direct_normal",
2362 "pgscan_direct_dma32",
2363 "pgscan_direct_dma",
2365 "pginodesteal",
2366 "slabs_scanned",
2367 "kswapd_steal",
2368 "kswapd_inodesteal",
2369 "pageoutrun",
2370 "allocstall",
2372 "pgrotated",
2373 "nr_bounce",
2376 static void *vmstat_start(struct seq_file *m, loff_t *pos)
2378 struct page_state *ps;
2380 if (*pos >= ARRAY_SIZE(vmstat_text))
2381 return NULL;
2383 ps = kmalloc(sizeof(*ps), GFP_KERNEL);
2384 m->private = ps;
2385 if (!ps)
2386 return ERR_PTR(-ENOMEM);
2387 get_full_page_state(ps);
2388 ps->pgpgin /= 2; /* sectors -> kbytes */
2389 ps->pgpgout /= 2;
2390 return (unsigned long *)ps + *pos;
2393 static void *vmstat_next(struct seq_file *m, void *arg, loff_t *pos)
2395 (*pos)++;
2396 if (*pos >= ARRAY_SIZE(vmstat_text))
2397 return NULL;
2398 return (unsigned long *)m->private + *pos;
2401 static int vmstat_show(struct seq_file *m, void *arg)
2403 unsigned long *l = arg;
2404 unsigned long off = l - (unsigned long *)m->private;
2406 seq_printf(m, "%s %lu\n", vmstat_text[off], *l);
2407 return 0;
2410 static void vmstat_stop(struct seq_file *m, void *arg)
2412 kfree(m->private);
2413 m->private = NULL;
2416 struct seq_operations vmstat_op = {
2417 .start = vmstat_start,
2418 .next = vmstat_next,
2419 .stop = vmstat_stop,
2420 .show = vmstat_show,
2423 #endif /* CONFIG_PROC_FS */
2425 #ifdef CONFIG_HOTPLUG_CPU
2426 static int page_alloc_cpu_notify(struct notifier_block *self,
2427 unsigned long action, void *hcpu)
2429 int cpu = (unsigned long)hcpu;
2430 long *count;
2431 unsigned long *src, *dest;
2433 if (action == CPU_DEAD) {
2434 int i;
2436 /* Drain local pagecache count. */
2437 count = &per_cpu(nr_pagecache_local, cpu);
2438 atomic_add(*count, &nr_pagecache);
2439 *count = 0;
2440 local_irq_disable();
2441 __drain_pages(cpu);
2443 /* Add dead cpu's page_states to our own. */
2444 dest = (unsigned long *)&__get_cpu_var(page_states);
2445 src = (unsigned long *)&per_cpu(page_states, cpu);
2447 for (i = 0; i < sizeof(struct page_state)/sizeof(unsigned long);
2448 i++) {
2449 dest[i] += src[i];
2450 src[i] = 0;
2453 local_irq_enable();
2455 return NOTIFY_OK;
2457 #endif /* CONFIG_HOTPLUG_CPU */
2459 void __init page_alloc_init(void)
2461 hotcpu_notifier(page_alloc_cpu_notify, 0);
2465 * setup_per_zone_lowmem_reserve - called whenever
2466 * sysctl_lower_zone_reserve_ratio changes. Ensures that each zone
2467 * has a correct pages reserved value, so an adequate number of
2468 * pages are left in the zone after a successful __alloc_pages().
2470 static void setup_per_zone_lowmem_reserve(void)
2472 struct pglist_data *pgdat;
2473 int j, idx;
2475 for_each_pgdat(pgdat) {
2476 for (j = 0; j < MAX_NR_ZONES; j++) {
2477 struct zone *zone = pgdat->node_zones + j;
2478 unsigned long present_pages = zone->present_pages;
2480 zone->lowmem_reserve[j] = 0;
2482 for (idx = j-1; idx >= 0; idx--) {
2483 struct zone *lower_zone;
2485 if (sysctl_lowmem_reserve_ratio[idx] < 1)
2486 sysctl_lowmem_reserve_ratio[idx] = 1;
2488 lower_zone = pgdat->node_zones + idx;
2489 lower_zone->lowmem_reserve[j] = present_pages /
2490 sysctl_lowmem_reserve_ratio[idx];
2491 present_pages += lower_zone->present_pages;
2498 * setup_per_zone_pages_min - called when min_free_kbytes changes. Ensures
2499 * that the pages_{min,low,high} values for each zone are set correctly
2500 * with respect to min_free_kbytes.
2502 void setup_per_zone_pages_min(void)
2504 unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10);
2505 unsigned long lowmem_pages = 0;
2506 struct zone *zone;
2507 unsigned long flags;
2509 /* Calculate total number of !ZONE_HIGHMEM pages */
2510 for_each_zone(zone) {
2511 if (!is_highmem(zone))
2512 lowmem_pages += zone->present_pages;
2515 for_each_zone(zone) {
2516 unsigned long tmp;
2517 spin_lock_irqsave(&zone->lru_lock, flags);
2518 tmp = (pages_min * zone->present_pages) / lowmem_pages;
2519 if (is_highmem(zone)) {
2521 * __GFP_HIGH and PF_MEMALLOC allocations usually don't
2522 * need highmem pages, so cap pages_min to a small
2523 * value here.
2525 * The (pages_high-pages_low) and (pages_low-pages_min)
2526 * deltas controls asynch page reclaim, and so should
2527 * not be capped for highmem.
2529 int min_pages;
2531 min_pages = zone->present_pages / 1024;
2532 if (min_pages < SWAP_CLUSTER_MAX)
2533 min_pages = SWAP_CLUSTER_MAX;
2534 if (min_pages > 128)
2535 min_pages = 128;
2536 zone->pages_min = min_pages;
2537 } else {
2539 * If it's a lowmem zone, reserve a number of pages
2540 * proportionate to the zone's size.
2542 zone->pages_min = tmp;
2545 zone->pages_low = zone->pages_min + tmp / 4;
2546 zone->pages_high = zone->pages_min + tmp / 2;
2547 spin_unlock_irqrestore(&zone->lru_lock, flags);
2552 * Initialise min_free_kbytes.
2554 * For small machines we want it small (128k min). For large machines
2555 * we want it large (64MB max). But it is not linear, because network
2556 * bandwidth does not increase linearly with machine size. We use
2558 * min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
2559 * min_free_kbytes = sqrt(lowmem_kbytes * 16)
2561 * which yields
2563 * 16MB: 512k
2564 * 32MB: 724k
2565 * 64MB: 1024k
2566 * 128MB: 1448k
2567 * 256MB: 2048k
2568 * 512MB: 2896k
2569 * 1024MB: 4096k
2570 * 2048MB: 5792k
2571 * 4096MB: 8192k
2572 * 8192MB: 11584k
2573 * 16384MB: 16384k
2575 static int __init init_per_zone_pages_min(void)
2577 unsigned long lowmem_kbytes;
2579 lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10);
2581 min_free_kbytes = int_sqrt(lowmem_kbytes * 16);
2582 if (min_free_kbytes < 128)
2583 min_free_kbytes = 128;
2584 if (min_free_kbytes > 65536)
2585 min_free_kbytes = 65536;
2586 setup_per_zone_pages_min();
2587 setup_per_zone_lowmem_reserve();
2588 return 0;
2590 module_init(init_per_zone_pages_min)
2593 * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
2594 * that we can call two helper functions whenever min_free_kbytes
2595 * changes.
2597 int min_free_kbytes_sysctl_handler(ctl_table *table, int write,
2598 struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
2600 proc_dointvec(table, write, file, buffer, length, ppos);
2601 setup_per_zone_pages_min();
2602 return 0;
2606 * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
2607 * proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
2608 * whenever sysctl_lowmem_reserve_ratio changes.
2610 * The reserve ratio obviously has absolutely no relation with the
2611 * pages_min watermarks. The lowmem reserve ratio can only make sense
2612 * if in function of the boot time zone sizes.
2614 int lowmem_reserve_ratio_sysctl_handler(ctl_table *table, int write,
2615 struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
2617 proc_dointvec_minmax(table, write, file, buffer, length, ppos);
2618 setup_per_zone_lowmem_reserve();
2619 return 0;
2623 * percpu_pagelist_fraction - changes the pcp->high for each zone on each
2624 * cpu. It is the fraction of total pages in each zone that a hot per cpu pagelist
2625 * can have before it gets flushed back to buddy allocator.
2628 int percpu_pagelist_fraction_sysctl_handler(ctl_table *table, int write,
2629 struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
2631 struct zone *zone;
2632 unsigned int cpu;
2633 int ret;
2635 ret = proc_dointvec_minmax(table, write, file, buffer, length, ppos);
2636 if (!write || (ret == -EINVAL))
2637 return ret;
2638 for_each_zone(zone) {
2639 for_each_online_cpu(cpu) {
2640 unsigned long high;
2641 high = zone->present_pages / percpu_pagelist_fraction;
2642 setup_pagelist_highmark(zone_pcp(zone, cpu), high);
2645 return 0;
2648 __initdata int hashdist = HASHDIST_DEFAULT;
2650 #ifdef CONFIG_NUMA
2651 static int __init set_hashdist(char *str)
2653 if (!str)
2654 return 0;
2655 hashdist = simple_strtoul(str, &str, 0);
2656 return 1;
2658 __setup("hashdist=", set_hashdist);
2659 #endif
2662 * allocate a large system hash table from bootmem
2663 * - it is assumed that the hash table must contain an exact power-of-2
2664 * quantity of entries
2665 * - limit is the number of hash buckets, not the total allocation size
2667 void *__init alloc_large_system_hash(const char *tablename,
2668 unsigned long bucketsize,
2669 unsigned long numentries,
2670 int scale,
2671 int flags,
2672 unsigned int *_hash_shift,
2673 unsigned int *_hash_mask,
2674 unsigned long limit)
2676 unsigned long long max = limit;
2677 unsigned long log2qty, size;
2678 void *table = NULL;
2680 /* allow the kernel cmdline to have a say */
2681 if (!numentries) {
2682 /* round applicable memory size up to nearest megabyte */
2683 numentries = (flags & HASH_HIGHMEM) ? nr_all_pages : nr_kernel_pages;
2684 numentries += (1UL << (20 - PAGE_SHIFT)) - 1;
2685 numentries >>= 20 - PAGE_SHIFT;
2686 numentries <<= 20 - PAGE_SHIFT;
2688 /* limit to 1 bucket per 2^scale bytes of low memory */
2689 if (scale > PAGE_SHIFT)
2690 numentries >>= (scale - PAGE_SHIFT);
2691 else
2692 numentries <<= (PAGE_SHIFT - scale);
2694 /* rounded up to nearest power of 2 in size */
2695 numentries = 1UL << (long_log2(numentries) + 1);
2697 /* limit allocation size to 1/16 total memory by default */
2698 if (max == 0) {
2699 max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4;
2700 do_div(max, bucketsize);
2703 if (numentries > max)
2704 numentries = max;
2706 log2qty = long_log2(numentries);
2708 do {
2709 size = bucketsize << log2qty;
2710 if (flags & HASH_EARLY)
2711 table = alloc_bootmem(size);
2712 else if (hashdist)
2713 table = __vmalloc(size, GFP_ATOMIC, PAGE_KERNEL);
2714 else {
2715 unsigned long order;
2716 for (order = 0; ((1UL << order) << PAGE_SHIFT) < size; order++)
2718 table = (void*) __get_free_pages(GFP_ATOMIC, order);
2720 } while (!table && size > PAGE_SIZE && --log2qty);
2722 if (!table)
2723 panic("Failed to allocate %s hash table\n", tablename);
2725 printk("%s hash table entries: %d (order: %d, %lu bytes)\n",
2726 tablename,
2727 (1U << log2qty),
2728 long_log2(size) - PAGE_SHIFT,
2729 size);
2731 if (_hash_shift)
2732 *_hash_shift = log2qty;
2733 if (_hash_mask)
2734 *_hash_mask = (1 << log2qty) - 1;
2736 return table;