2 * linux/mm/page_alloc.c
4 * Manages the free list, the system allocates free pages here.
5 * Note that kmalloc() lives in slab.c
7 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
8 * Swap reorganised 29.12.95, Stephen Tweedie
9 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
10 * Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
11 * Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
12 * Zone balancing, Kanoj Sarcar, SGI, Jan 2000
13 * Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
14 * (lots of bits borrowed from Ingo Molnar & Andrew Morton)
17 #include <linux/config.h>
18 #include <linux/stddef.h>
20 #include <linux/swap.h>
21 #include <linux/interrupt.h>
22 #include <linux/pagemap.h>
23 #include <linux/bootmem.h>
24 #include <linux/compiler.h>
25 #include <linux/kernel.h>
26 #include <linux/module.h>
27 #include <linux/suspend.h>
28 #include <linux/pagevec.h>
29 #include <linux/blkdev.h>
30 #include <linux/slab.h>
31 #include <linux/notifier.h>
32 #include <linux/topology.h>
33 #include <linux/sysctl.h>
34 #include <linux/cpu.h>
35 #include <linux/cpuset.h>
36 #include <linux/memory_hotplug.h>
37 #include <linux/nodemask.h>
38 #include <linux/vmalloc.h>
39 #include <linux/mempolicy.h>
41 #include <asm/tlbflush.h>
45 * MCD - HACK: Find somewhere to initialize this EARLY, or make this
48 nodemask_t node_online_map __read_mostly
= { { [0] = 1UL } };
49 EXPORT_SYMBOL(node_online_map
);
50 nodemask_t node_possible_map __read_mostly
= NODE_MASK_ALL
;
51 EXPORT_SYMBOL(node_possible_map
);
52 struct pglist_data
*pgdat_list __read_mostly
;
53 unsigned long totalram_pages __read_mostly
;
54 unsigned long totalhigh_pages __read_mostly
;
56 int percpu_pagelist_fraction
;
58 static void __free_pages_ok(struct page
*page
, unsigned int order
);
61 * results with 256, 32 in the lowmem_reserve sysctl:
62 * 1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
63 * 1G machine -> (16M dma, 784M normal, 224M high)
64 * NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
65 * HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
66 * HIGHMEM allocation will (224M+784M)/256 of ram reserved in ZONE_DMA
68 * TBD: should special case ZONE_DMA32 machines here - in those we normally
69 * don't need any ZONE_NORMAL reservation
71 int sysctl_lowmem_reserve_ratio
[MAX_NR_ZONES
-1] = { 256, 256, 32 };
73 EXPORT_SYMBOL(totalram_pages
);
76 * Used by page_zone() to look up the address of the struct zone whose
77 * id is encoded in the upper bits of page->flags
79 struct zone
*zone_table
[1 << ZONETABLE_SHIFT
] __read_mostly
;
80 EXPORT_SYMBOL(zone_table
);
82 static char *zone_names
[MAX_NR_ZONES
] = { "DMA", "DMA32", "Normal", "HighMem" };
83 int min_free_kbytes
= 1024;
85 unsigned long __initdata nr_kernel_pages
;
86 unsigned long __initdata nr_all_pages
;
88 #ifdef CONFIG_DEBUG_VM
89 static int page_outside_zone_boundaries(struct zone
*zone
, struct page
*page
)
93 unsigned long pfn
= page_to_pfn(page
);
96 seq
= zone_span_seqbegin(zone
);
97 if (pfn
>= zone
->zone_start_pfn
+ zone
->spanned_pages
)
99 else if (pfn
< zone
->zone_start_pfn
)
101 } while (zone_span_seqretry(zone
, seq
));
106 static int page_is_consistent(struct zone
*zone
, struct page
*page
)
108 #ifdef CONFIG_HOLES_IN_ZONE
109 if (!pfn_valid(page_to_pfn(page
)))
112 if (zone
!= page_zone(page
))
118 * Temporary debugging check for pages not lying within a given zone.
120 static int bad_range(struct zone
*zone
, struct page
*page
)
122 if (page_outside_zone_boundaries(zone
, page
))
124 if (!page_is_consistent(zone
, page
))
131 static inline int bad_range(struct zone
*zone
, struct page
*page
)
137 static void bad_page(struct page
*page
)
139 printk(KERN_EMERG
"Bad page state in process '%s'\n"
140 KERN_EMERG
"page:%p flags:0x%0*lx mapping:%p mapcount:%d count:%d\n"
141 KERN_EMERG
"Trying to fix it up, but a reboot is needed\n"
142 KERN_EMERG
"Backtrace:\n",
143 current
->comm
, page
, (int)(2*sizeof(unsigned long)),
144 (unsigned long)page
->flags
, page
->mapping
,
145 page_mapcount(page
), page_count(page
));
147 page
->flags
&= ~(1 << PG_lru
|
156 set_page_count(page
, 0);
157 reset_page_mapcount(page
);
158 page
->mapping
= NULL
;
159 add_taint(TAINT_BAD_PAGE
);
163 * Higher-order pages are called "compound pages". They are structured thusly:
165 * The first PAGE_SIZE page is called the "head page".
167 * The remaining PAGE_SIZE pages are called "tail pages".
169 * All pages have PG_compound set. All pages have their ->private pointing at
170 * the head page (even the head page has this).
172 * The first tail page's ->lru.next holds the address of the compound page's
173 * put_page() function. Its ->lru.prev holds the order of allocation.
174 * This usage means that zero-order pages may not be compound.
177 static void free_compound_page(struct page
*page
)
179 __free_pages_ok(page
, (unsigned long)page
[1].lru
.prev
);
182 static void prep_compound_page(struct page
*page
, unsigned long order
)
185 int nr_pages
= 1 << order
;
187 page
[1].lru
.next
= (void *)free_compound_page
; /* set dtor */
188 page
[1].lru
.prev
= (void *)order
;
189 for (i
= 0; i
< nr_pages
; i
++) {
190 struct page
*p
= page
+ i
;
192 __SetPageCompound(p
);
193 set_page_private(p
, (unsigned long)page
);
197 static void destroy_compound_page(struct page
*page
, unsigned long order
)
200 int nr_pages
= 1 << order
;
202 if (unlikely((unsigned long)page
[1].lru
.prev
!= order
))
205 for (i
= 0; i
< nr_pages
; i
++) {
206 struct page
*p
= page
+ i
;
208 if (unlikely(!PageCompound(p
) |
209 (page_private(p
) != (unsigned long)page
)))
211 __ClearPageCompound(p
);
215 static inline void prep_zero_page(struct page
*page
, int order
, gfp_t gfp_flags
)
219 BUG_ON((gfp_flags
& (__GFP_WAIT
| __GFP_HIGHMEM
)) == __GFP_HIGHMEM
);
220 for (i
= 0; i
< (1 << order
); i
++)
221 clear_highpage(page
+ i
);
225 * function for dealing with page's order in buddy system.
226 * zone->lock is already acquired when we use these.
227 * So, we don't need atomic page->flags operations here.
229 static inline unsigned long page_order(struct page
*page
) {
230 return page_private(page
);
233 static inline void set_page_order(struct page
*page
, int order
) {
234 set_page_private(page
, order
);
235 __SetPagePrivate(page
);
238 static inline void rmv_page_order(struct page
*page
)
240 __ClearPagePrivate(page
);
241 set_page_private(page
, 0);
245 * Locate the struct page for both the matching buddy in our
246 * pair (buddy1) and the combined O(n+1) page they form (page).
248 * 1) Any buddy B1 will have an order O twin B2 which satisfies
249 * the following equation:
251 * For example, if the starting buddy (buddy2) is #8 its order
253 * B2 = 8 ^ (1 << 1) = 8 ^ 2 = 10
255 * 2) Any buddy B will have an order O+1 parent P which
256 * satisfies the following equation:
259 * Assumption: *_mem_map is contigious at least up to MAX_ORDER
261 static inline struct page
*
262 __page_find_buddy(struct page
*page
, unsigned long page_idx
, unsigned int order
)
264 unsigned long buddy_idx
= page_idx
^ (1 << order
);
266 return page
+ (buddy_idx
- page_idx
);
269 static inline unsigned long
270 __find_combined_index(unsigned long page_idx
, unsigned int order
)
272 return (page_idx
& ~(1 << order
));
276 * This function checks whether a page is free && is the buddy
277 * we can do coalesce a page and its buddy if
278 * (a) the buddy is not in a hole &&
279 * (b) the buddy is free &&
280 * (c) the buddy is on the buddy system &&
281 * (d) a page and its buddy have the same order.
282 * for recording page's order, we use page_private(page) and PG_private.
285 static inline int page_is_buddy(struct page
*page
, int order
)
287 #ifdef CONFIG_HOLES_IN_ZONE
288 if (!pfn_valid(page_to_pfn(page
)))
292 if (PagePrivate(page
) &&
293 (page_order(page
) == order
) &&
294 page_count(page
) == 0)
300 * Freeing function for a buddy system allocator.
302 * The concept of a buddy system is to maintain direct-mapped table
303 * (containing bit values) for memory blocks of various "orders".
304 * The bottom level table contains the map for the smallest allocatable
305 * units of memory (here, pages), and each level above it describes
306 * pairs of units from the levels below, hence, "buddies".
307 * At a high level, all that happens here is marking the table entry
308 * at the bottom level available, and propagating the changes upward
309 * as necessary, plus some accounting needed to play nicely with other
310 * parts of the VM system.
311 * At each level, we keep a list of pages, which are heads of continuous
312 * free pages of length of (1 << order) and marked with PG_Private.Page's
313 * order is recorded in page_private(page) field.
314 * So when we are allocating or freeing one, we can derive the state of the
315 * other. That is, if we allocate a small block, and both were
316 * free, the remainder of the region must be split into blocks.
317 * If a block is freed, and its buddy is also free, then this
318 * triggers coalescing into a block of larger size.
323 static inline void __free_one_page(struct page
*page
,
324 struct zone
*zone
, unsigned int order
)
326 unsigned long page_idx
;
327 int order_size
= 1 << order
;
329 if (unlikely(PageCompound(page
)))
330 destroy_compound_page(page
, order
);
332 page_idx
= page_to_pfn(page
) & ((1 << MAX_ORDER
) - 1);
334 BUG_ON(page_idx
& (order_size
- 1));
335 BUG_ON(bad_range(zone
, page
));
337 zone
->free_pages
+= order_size
;
338 while (order
< MAX_ORDER
-1) {
339 unsigned long combined_idx
;
340 struct free_area
*area
;
343 buddy
= __page_find_buddy(page
, page_idx
, order
);
344 if (!page_is_buddy(buddy
, order
))
345 break; /* Move the buddy up one level. */
347 list_del(&buddy
->lru
);
348 area
= zone
->free_area
+ order
;
350 rmv_page_order(buddy
);
351 combined_idx
= __find_combined_index(page_idx
, order
);
352 page
= page
+ (combined_idx
- page_idx
);
353 page_idx
= combined_idx
;
356 set_page_order(page
, order
);
357 list_add(&page
->lru
, &zone
->free_area
[order
].free_list
);
358 zone
->free_area
[order
].nr_free
++;
361 static inline int free_pages_check(struct page
*page
)
363 if (unlikely(page_mapcount(page
) |
364 (page
->mapping
!= NULL
) |
365 (page_count(page
) != 0) |
375 1 << PG_reserved
))))
378 __ClearPageDirty(page
);
380 * For now, we report if PG_reserved was found set, but do not
381 * clear it, and do not free the page. But we shall soon need
382 * to do more, for when the ZERO_PAGE count wraps negative.
384 return PageReserved(page
);
388 * Frees a list of pages.
389 * Assumes all pages on list are in same zone, and of same order.
390 * count is the number of pages to free.
392 * If the zone was previously in an "all pages pinned" state then look to
393 * see if this freeing clears that state.
395 * And clear the zone's pages_scanned counter, to hold off the "all pages are
396 * pinned" detection logic.
398 static void free_pages_bulk(struct zone
*zone
, int count
,
399 struct list_head
*list
, int order
)
401 spin_lock(&zone
->lock
);
402 zone
->all_unreclaimable
= 0;
403 zone
->pages_scanned
= 0;
407 BUG_ON(list_empty(list
));
408 page
= list_entry(list
->prev
, struct page
, lru
);
409 /* have to delete it as __free_one_page list manipulates */
410 list_del(&page
->lru
);
411 __free_one_page(page
, zone
, order
);
413 spin_unlock(&zone
->lock
);
416 static void free_one_page(struct zone
*zone
, struct page
*page
, int order
)
419 list_add(&page
->lru
, &list
);
420 free_pages_bulk(zone
, 1, &list
, order
);
423 static void __free_pages_ok(struct page
*page
, unsigned int order
)
429 arch_free_page(page
, order
);
430 if (!PageHighMem(page
))
431 mutex_debug_check_no_locks_freed(page_address(page
),
434 for (i
= 0 ; i
< (1 << order
) ; ++i
)
435 reserved
+= free_pages_check(page
+ i
);
439 kernel_map_pages(page
, 1 << order
, 0);
440 local_irq_save(flags
);
441 __mod_page_state(pgfree
, 1 << order
);
442 free_one_page(page_zone(page
), page
, order
);
443 local_irq_restore(flags
);
447 * permit the bootmem allocator to evade page validation on high-order frees
449 void fastcall __init
__free_pages_bootmem(struct page
*page
, unsigned int order
)
452 __ClearPageReserved(page
);
453 set_page_count(page
, 0);
454 set_page_refcounted(page
);
460 for (loop
= 0; loop
< BITS_PER_LONG
; loop
++) {
461 struct page
*p
= &page
[loop
];
463 if (loop
+ 1 < BITS_PER_LONG
)
465 __ClearPageReserved(p
);
466 set_page_count(p
, 0);
469 set_page_refcounted(page
);
470 __free_pages(page
, order
);
476 * The order of subdivision here is critical for the IO subsystem.
477 * Please do not alter this order without good reasons and regression
478 * testing. Specifically, as large blocks of memory are subdivided,
479 * the order in which smaller blocks are delivered depends on the order
480 * they're subdivided in this function. This is the primary factor
481 * influencing the order in which pages are delivered to the IO
482 * subsystem according to empirical testing, and this is also justified
483 * by considering the behavior of a buddy system containing a single
484 * large block of memory acted on by a series of small allocations.
485 * This behavior is a critical factor in sglist merging's success.
489 static inline void expand(struct zone
*zone
, struct page
*page
,
490 int low
, int high
, struct free_area
*area
)
492 unsigned long size
= 1 << high
;
498 BUG_ON(bad_range(zone
, &page
[size
]));
499 list_add(&page
[size
].lru
, &area
->free_list
);
501 set_page_order(&page
[size
], high
);
506 * This page is about to be returned from the page allocator
508 static int prep_new_page(struct page
*page
, int order
, gfp_t gfp_flags
)
510 if (unlikely(page_mapcount(page
) |
511 (page
->mapping
!= NULL
) |
512 (page_count(page
) != 0) |
523 1 << PG_reserved
))))
527 * For now, we report if PG_reserved was found set, but do not
528 * clear it, and do not allocate the page: as a safety net.
530 if (PageReserved(page
))
533 page
->flags
&= ~(1 << PG_uptodate
| 1 << PG_error
|
534 1 << PG_referenced
| 1 << PG_arch_1
|
535 1 << PG_checked
| 1 << PG_mappedtodisk
);
536 set_page_private(page
, 0);
537 set_page_refcounted(page
);
538 kernel_map_pages(page
, 1 << order
, 1);
540 if (gfp_flags
& __GFP_ZERO
)
541 prep_zero_page(page
, order
, gfp_flags
);
543 if (order
&& (gfp_flags
& __GFP_COMP
))
544 prep_compound_page(page
, order
);
550 * Do the hard work of removing an element from the buddy allocator.
551 * Call me with the zone->lock already held.
553 static struct page
*__rmqueue(struct zone
*zone
, unsigned int order
)
555 struct free_area
* area
;
556 unsigned int current_order
;
559 for (current_order
= order
; current_order
< MAX_ORDER
; ++current_order
) {
560 area
= zone
->free_area
+ current_order
;
561 if (list_empty(&area
->free_list
))
564 page
= list_entry(area
->free_list
.next
, struct page
, lru
);
565 list_del(&page
->lru
);
566 rmv_page_order(page
);
568 zone
->free_pages
-= 1UL << order
;
569 expand(zone
, page
, order
, current_order
, area
);
577 * Obtain a specified number of elements from the buddy allocator, all under
578 * a single hold of the lock, for efficiency. Add them to the supplied list.
579 * Returns the number of new pages which were placed at *list.
581 static int rmqueue_bulk(struct zone
*zone
, unsigned int order
,
582 unsigned long count
, struct list_head
*list
)
586 spin_lock(&zone
->lock
);
587 for (i
= 0; i
< count
; ++i
) {
588 struct page
*page
= __rmqueue(zone
, order
);
589 if (unlikely(page
== NULL
))
591 list_add_tail(&page
->lru
, list
);
593 spin_unlock(&zone
->lock
);
599 * Called from the slab reaper to drain pagesets on a particular node that
600 * belong to the currently executing processor.
602 void drain_node_pages(int nodeid
)
607 local_irq_save(flags
);
608 for (z
= 0; z
< MAX_NR_ZONES
; z
++) {
609 struct zone
*zone
= NODE_DATA(nodeid
)->node_zones
+ z
;
610 struct per_cpu_pageset
*pset
;
612 pset
= zone_pcp(zone
, smp_processor_id());
613 for (i
= 0; i
< ARRAY_SIZE(pset
->pcp
); i
++) {
614 struct per_cpu_pages
*pcp
;
617 free_pages_bulk(zone
, pcp
->count
, &pcp
->list
, 0);
621 local_irq_restore(flags
);
625 #if defined(CONFIG_PM) || defined(CONFIG_HOTPLUG_CPU)
626 static void __drain_pages(unsigned int cpu
)
632 for_each_zone(zone
) {
633 struct per_cpu_pageset
*pset
;
635 pset
= zone_pcp(zone
, cpu
);
636 for (i
= 0; i
< ARRAY_SIZE(pset
->pcp
); i
++) {
637 struct per_cpu_pages
*pcp
;
640 local_irq_save(flags
);
641 free_pages_bulk(zone
, pcp
->count
, &pcp
->list
, 0);
643 local_irq_restore(flags
);
647 #endif /* CONFIG_PM || CONFIG_HOTPLUG_CPU */
651 void mark_free_pages(struct zone
*zone
)
653 unsigned long zone_pfn
, flags
;
655 struct list_head
*curr
;
657 if (!zone
->spanned_pages
)
660 spin_lock_irqsave(&zone
->lock
, flags
);
661 for (zone_pfn
= 0; zone_pfn
< zone
->spanned_pages
; ++zone_pfn
)
662 ClearPageNosaveFree(pfn_to_page(zone_pfn
+ zone
->zone_start_pfn
));
664 for (order
= MAX_ORDER
- 1; order
>= 0; --order
)
665 list_for_each(curr
, &zone
->free_area
[order
].free_list
) {
666 unsigned long start_pfn
, i
;
668 start_pfn
= page_to_pfn(list_entry(curr
, struct page
, lru
));
670 for (i
=0; i
< (1<<order
); i
++)
671 SetPageNosaveFree(pfn_to_page(start_pfn
+i
));
673 spin_unlock_irqrestore(&zone
->lock
, flags
);
677 * Spill all of this CPU's per-cpu pages back into the buddy allocator.
679 void drain_local_pages(void)
683 local_irq_save(flags
);
684 __drain_pages(smp_processor_id());
685 local_irq_restore(flags
);
687 #endif /* CONFIG_PM */
689 static void zone_statistics(struct zonelist
*zonelist
, struct zone
*z
, int cpu
)
692 pg_data_t
*pg
= z
->zone_pgdat
;
693 pg_data_t
*orig
= zonelist
->zones
[0]->zone_pgdat
;
694 struct per_cpu_pageset
*p
;
696 p
= zone_pcp(z
, cpu
);
701 zone_pcp(zonelist
->zones
[0], cpu
)->numa_foreign
++;
703 if (pg
== NODE_DATA(numa_node_id()))
711 * Free a 0-order page
713 static void fastcall
free_hot_cold_page(struct page
*page
, int cold
)
715 struct zone
*zone
= page_zone(page
);
716 struct per_cpu_pages
*pcp
;
719 arch_free_page(page
, 0);
722 page
->mapping
= NULL
;
723 if (free_pages_check(page
))
726 kernel_map_pages(page
, 1, 0);
728 pcp
= &zone_pcp(zone
, get_cpu())->pcp
[cold
];
729 local_irq_save(flags
);
730 __inc_page_state(pgfree
);
731 list_add(&page
->lru
, &pcp
->list
);
733 if (pcp
->count
>= pcp
->high
) {
734 free_pages_bulk(zone
, pcp
->batch
, &pcp
->list
, 0);
735 pcp
->count
-= pcp
->batch
;
737 local_irq_restore(flags
);
741 void fastcall
free_hot_page(struct page
*page
)
743 free_hot_cold_page(page
, 0);
746 void fastcall
free_cold_page(struct page
*page
)
748 free_hot_cold_page(page
, 1);
752 * split_page takes a non-compound higher-order page, and splits it into
753 * n (1<<order) sub-pages: page[0..n]
754 * Each sub-page must be freed individually.
756 * Note: this is probably too low level an operation for use in drivers.
757 * Please consult with lkml before using this in your driver.
759 void split_page(struct page
*page
, unsigned int order
)
763 BUG_ON(PageCompound(page
));
764 BUG_ON(!page_count(page
));
765 for (i
= 1; i
< (1 << order
); i
++)
766 set_page_refcounted(page
+ i
);
770 * Really, prep_compound_page() should be called from __rmqueue_bulk(). But
771 * we cheat by calling it from here, in the order > 0 path. Saves a branch
774 static struct page
*buffered_rmqueue(struct zonelist
*zonelist
,
775 struct zone
*zone
, int order
, gfp_t gfp_flags
)
779 int cold
= !!(gfp_flags
& __GFP_COLD
);
784 if (likely(order
== 0)) {
785 struct per_cpu_pages
*pcp
;
787 pcp
= &zone_pcp(zone
, cpu
)->pcp
[cold
];
788 local_irq_save(flags
);
790 pcp
->count
+= rmqueue_bulk(zone
, 0,
791 pcp
->batch
, &pcp
->list
);
792 if (unlikely(!pcp
->count
))
795 page
= list_entry(pcp
->list
.next
, struct page
, lru
);
796 list_del(&page
->lru
);
799 spin_lock_irqsave(&zone
->lock
, flags
);
800 page
= __rmqueue(zone
, order
);
801 spin_unlock(&zone
->lock
);
806 __mod_page_state_zone(zone
, pgalloc
, 1 << order
);
807 zone_statistics(zonelist
, zone
, cpu
);
808 local_irq_restore(flags
);
811 BUG_ON(bad_range(zone
, page
));
812 if (prep_new_page(page
, order
, gfp_flags
))
817 local_irq_restore(flags
);
822 #define ALLOC_NO_WATERMARKS 0x01 /* don't check watermarks at all */
823 #define ALLOC_WMARK_MIN 0x02 /* use pages_min watermark */
824 #define ALLOC_WMARK_LOW 0x04 /* use pages_low watermark */
825 #define ALLOC_WMARK_HIGH 0x08 /* use pages_high watermark */
826 #define ALLOC_HARDER 0x10 /* try to alloc harder */
827 #define ALLOC_HIGH 0x20 /* __GFP_HIGH set */
828 #define ALLOC_CPUSET 0x40 /* check for correct cpuset */
831 * Return 1 if free pages are above 'mark'. This takes into account the order
834 int zone_watermark_ok(struct zone
*z
, int order
, unsigned long mark
,
835 int classzone_idx
, int alloc_flags
)
837 /* free_pages my go negative - that's OK */
838 long min
= mark
, free_pages
= z
->free_pages
- (1 << order
) + 1;
841 if (alloc_flags
& ALLOC_HIGH
)
843 if (alloc_flags
& ALLOC_HARDER
)
846 if (free_pages
<= min
+ z
->lowmem_reserve
[classzone_idx
])
848 for (o
= 0; o
< order
; o
++) {
849 /* At the next order, this order's pages become unavailable */
850 free_pages
-= z
->free_area
[o
].nr_free
<< o
;
852 /* Require fewer higher order pages to be free */
855 if (free_pages
<= min
)
862 * get_page_from_freeliest goes through the zonelist trying to allocate
866 get_page_from_freelist(gfp_t gfp_mask
, unsigned int order
,
867 struct zonelist
*zonelist
, int alloc_flags
)
869 struct zone
**z
= zonelist
->zones
;
870 struct page
*page
= NULL
;
871 int classzone_idx
= zone_idx(*z
);
874 * Go through the zonelist once, looking for a zone with enough free.
875 * See also cpuset_zone_allowed() comment in kernel/cpuset.c.
878 if ((alloc_flags
& ALLOC_CPUSET
) &&
879 !cpuset_zone_allowed(*z
, gfp_mask
))
882 if (!(alloc_flags
& ALLOC_NO_WATERMARKS
)) {
884 if (alloc_flags
& ALLOC_WMARK_MIN
)
885 mark
= (*z
)->pages_min
;
886 else if (alloc_flags
& ALLOC_WMARK_LOW
)
887 mark
= (*z
)->pages_low
;
889 mark
= (*z
)->pages_high
;
890 if (!zone_watermark_ok(*z
, order
, mark
,
891 classzone_idx
, alloc_flags
))
892 if (!zone_reclaim_mode
||
893 !zone_reclaim(*z
, gfp_mask
, order
))
897 page
= buffered_rmqueue(zonelist
, *z
, order
, gfp_mask
);
901 } while (*(++z
) != NULL
);
906 * This is the 'heart' of the zoned buddy allocator.
908 struct page
* fastcall
909 __alloc_pages(gfp_t gfp_mask
, unsigned int order
,
910 struct zonelist
*zonelist
)
912 const gfp_t wait
= gfp_mask
& __GFP_WAIT
;
915 struct reclaim_state reclaim_state
;
916 struct task_struct
*p
= current
;
919 int did_some_progress
;
921 might_sleep_if(wait
);
924 z
= zonelist
->zones
; /* the list of zones suitable for gfp_mask */
926 if (unlikely(*z
== NULL
)) {
927 /* Should this ever happen?? */
931 page
= get_page_from_freelist(gfp_mask
|__GFP_HARDWALL
, order
,
932 zonelist
, ALLOC_WMARK_LOW
|ALLOC_CPUSET
);
937 wakeup_kswapd(*z
, order
);
941 * OK, we're below the kswapd watermark and have kicked background
942 * reclaim. Now things get more complex, so set up alloc_flags according
943 * to how we want to proceed.
945 * The caller may dip into page reserves a bit more if the caller
946 * cannot run direct reclaim, or if the caller has realtime scheduling
947 * policy or is asking for __GFP_HIGH memory. GFP_ATOMIC requests will
948 * set both ALLOC_HARDER (!wait) and ALLOC_HIGH (__GFP_HIGH).
950 alloc_flags
= ALLOC_WMARK_MIN
;
951 if ((unlikely(rt_task(p
)) && !in_interrupt()) || !wait
)
952 alloc_flags
|= ALLOC_HARDER
;
953 if (gfp_mask
& __GFP_HIGH
)
954 alloc_flags
|= ALLOC_HIGH
;
955 alloc_flags
|= ALLOC_CPUSET
;
958 * Go through the zonelist again. Let __GFP_HIGH and allocations
959 * coming from realtime tasks go deeper into reserves.
961 * This is the last chance, in general, before the goto nopage.
962 * Ignore cpuset if GFP_ATOMIC (!wait) rather than fail alloc.
963 * See also cpuset_zone_allowed() comment in kernel/cpuset.c.
965 page
= get_page_from_freelist(gfp_mask
, order
, zonelist
, alloc_flags
);
969 /* This allocation should allow future memory freeing. */
971 if (((p
->flags
& PF_MEMALLOC
) || unlikely(test_thread_flag(TIF_MEMDIE
)))
972 && !in_interrupt()) {
973 if (!(gfp_mask
& __GFP_NOMEMALLOC
)) {
975 /* go through the zonelist yet again, ignoring mins */
976 page
= get_page_from_freelist(gfp_mask
, order
,
977 zonelist
, ALLOC_NO_WATERMARKS
);
980 if (gfp_mask
& __GFP_NOFAIL
) {
981 blk_congestion_wait(WRITE
, HZ
/50);
988 /* Atomic allocations - we can't balance anything */
995 /* We now go into synchronous reclaim */
996 cpuset_memory_pressure_bump();
997 p
->flags
|= PF_MEMALLOC
;
998 reclaim_state
.reclaimed_slab
= 0;
999 p
->reclaim_state
= &reclaim_state
;
1001 did_some_progress
= try_to_free_pages(zonelist
->zones
, gfp_mask
);
1003 p
->reclaim_state
= NULL
;
1004 p
->flags
&= ~PF_MEMALLOC
;
1008 if (likely(did_some_progress
)) {
1009 page
= get_page_from_freelist(gfp_mask
, order
,
1010 zonelist
, alloc_flags
);
1013 } else if ((gfp_mask
& __GFP_FS
) && !(gfp_mask
& __GFP_NORETRY
)) {
1015 * Go through the zonelist yet one more time, keep
1016 * very high watermark here, this is only to catch
1017 * a parallel oom killing, we must fail if we're still
1018 * under heavy pressure.
1020 page
= get_page_from_freelist(gfp_mask
|__GFP_HARDWALL
, order
,
1021 zonelist
, ALLOC_WMARK_HIGH
|ALLOC_CPUSET
);
1025 out_of_memory(zonelist
, gfp_mask
, order
);
1030 * Don't let big-order allocations loop unless the caller explicitly
1031 * requests that. Wait for some write requests to complete then retry.
1033 * In this implementation, __GFP_REPEAT means __GFP_NOFAIL for order
1034 * <= 3, but that may not be true in other implementations.
1037 if (!(gfp_mask
& __GFP_NORETRY
)) {
1038 if ((order
<= 3) || (gfp_mask
& __GFP_REPEAT
))
1040 if (gfp_mask
& __GFP_NOFAIL
)
1044 blk_congestion_wait(WRITE
, HZ
/50);
1049 if (!(gfp_mask
& __GFP_NOWARN
) && printk_ratelimit()) {
1050 printk(KERN_WARNING
"%s: page allocation failure."
1051 " order:%d, mode:0x%x\n",
1052 p
->comm
, order
, gfp_mask
);
1060 EXPORT_SYMBOL(__alloc_pages
);
1063 * Common helper functions.
1065 fastcall
unsigned long __get_free_pages(gfp_t gfp_mask
, unsigned int order
)
1068 page
= alloc_pages(gfp_mask
, order
);
1071 return (unsigned long) page_address(page
);
1074 EXPORT_SYMBOL(__get_free_pages
);
1076 fastcall
unsigned long get_zeroed_page(gfp_t gfp_mask
)
1081 * get_zeroed_page() returns a 32-bit address, which cannot represent
1084 BUG_ON((gfp_mask
& __GFP_HIGHMEM
) != 0);
1086 page
= alloc_pages(gfp_mask
| __GFP_ZERO
, 0);
1088 return (unsigned long) page_address(page
);
1092 EXPORT_SYMBOL(get_zeroed_page
);
1094 void __pagevec_free(struct pagevec
*pvec
)
1096 int i
= pagevec_count(pvec
);
1099 free_hot_cold_page(pvec
->pages
[i
], pvec
->cold
);
1102 fastcall
void __free_pages(struct page
*page
, unsigned int order
)
1104 if (put_page_testzero(page
)) {
1106 free_hot_page(page
);
1108 __free_pages_ok(page
, order
);
1112 EXPORT_SYMBOL(__free_pages
);
1114 fastcall
void free_pages(unsigned long addr
, unsigned int order
)
1117 BUG_ON(!virt_addr_valid((void *)addr
));
1118 __free_pages(virt_to_page((void *)addr
), order
);
1122 EXPORT_SYMBOL(free_pages
);
1125 * Total amount of free (allocatable) RAM:
1127 unsigned int nr_free_pages(void)
1129 unsigned int sum
= 0;
1133 sum
+= zone
->free_pages
;
1138 EXPORT_SYMBOL(nr_free_pages
);
1141 unsigned int nr_free_pages_pgdat(pg_data_t
*pgdat
)
1143 unsigned int i
, sum
= 0;
1145 for (i
= 0; i
< MAX_NR_ZONES
; i
++)
1146 sum
+= pgdat
->node_zones
[i
].free_pages
;
1152 static unsigned int nr_free_zone_pages(int offset
)
1154 /* Just pick one node, since fallback list is circular */
1155 pg_data_t
*pgdat
= NODE_DATA(numa_node_id());
1156 unsigned int sum
= 0;
1158 struct zonelist
*zonelist
= pgdat
->node_zonelists
+ offset
;
1159 struct zone
**zonep
= zonelist
->zones
;
1162 for (zone
= *zonep
++; zone
; zone
= *zonep
++) {
1163 unsigned long size
= zone
->present_pages
;
1164 unsigned long high
= zone
->pages_high
;
1173 * Amount of free RAM allocatable within ZONE_DMA and ZONE_NORMAL
1175 unsigned int nr_free_buffer_pages(void)
1177 return nr_free_zone_pages(gfp_zone(GFP_USER
));
1181 * Amount of free RAM allocatable within all zones
1183 unsigned int nr_free_pagecache_pages(void)
1185 return nr_free_zone_pages(gfp_zone(GFP_HIGHUSER
));
1188 #ifdef CONFIG_HIGHMEM
1189 unsigned int nr_free_highpages (void)
1192 unsigned int pages
= 0;
1194 for_each_pgdat(pgdat
)
1195 pages
+= pgdat
->node_zones
[ZONE_HIGHMEM
].free_pages
;
1202 static void show_node(struct zone
*zone
)
1204 printk("Node %d ", zone
->zone_pgdat
->node_id
);
1207 #define show_node(zone) do { } while (0)
1211 * Accumulate the page_state information across all CPUs.
1212 * The result is unavoidably approximate - it can change
1213 * during and after execution of this function.
1215 static DEFINE_PER_CPU(struct page_state
, page_states
) = {0};
1217 atomic_t nr_pagecache
= ATOMIC_INIT(0);
1218 EXPORT_SYMBOL(nr_pagecache
);
1220 DEFINE_PER_CPU(long, nr_pagecache_local
) = 0;
1223 static void __get_page_state(struct page_state
*ret
, int nr
, cpumask_t
*cpumask
)
1227 memset(ret
, 0, nr
* sizeof(unsigned long));
1228 cpus_and(*cpumask
, *cpumask
, cpu_online_map
);
1230 for_each_cpu_mask(cpu
, *cpumask
) {
1236 in
= (unsigned long *)&per_cpu(page_states
, cpu
);
1238 next_cpu
= next_cpu(cpu
, *cpumask
);
1239 if (likely(next_cpu
< NR_CPUS
))
1240 prefetch(&per_cpu(page_states
, next_cpu
));
1242 out
= (unsigned long *)ret
;
1243 for (off
= 0; off
< nr
; off
++)
1248 void get_page_state_node(struct page_state
*ret
, int node
)
1251 cpumask_t mask
= node_to_cpumask(node
);
1253 nr
= offsetof(struct page_state
, GET_PAGE_STATE_LAST
);
1254 nr
/= sizeof(unsigned long);
1256 __get_page_state(ret
, nr
+1, &mask
);
1259 void get_page_state(struct page_state
*ret
)
1262 cpumask_t mask
= CPU_MASK_ALL
;
1264 nr
= offsetof(struct page_state
, GET_PAGE_STATE_LAST
);
1265 nr
/= sizeof(unsigned long);
1267 __get_page_state(ret
, nr
+ 1, &mask
);
1270 void get_full_page_state(struct page_state
*ret
)
1272 cpumask_t mask
= CPU_MASK_ALL
;
1274 __get_page_state(ret
, sizeof(*ret
) / sizeof(unsigned long), &mask
);
1277 unsigned long read_page_state_offset(unsigned long offset
)
1279 unsigned long ret
= 0;
1282 for_each_online_cpu(cpu
) {
1285 in
= (unsigned long)&per_cpu(page_states
, cpu
) + offset
;
1286 ret
+= *((unsigned long *)in
);
1291 void __mod_page_state_offset(unsigned long offset
, unsigned long delta
)
1295 ptr
= &__get_cpu_var(page_states
);
1296 *(unsigned long *)(ptr
+ offset
) += delta
;
1298 EXPORT_SYMBOL(__mod_page_state_offset
);
1300 void mod_page_state_offset(unsigned long offset
, unsigned long delta
)
1302 unsigned long flags
;
1305 local_irq_save(flags
);
1306 ptr
= &__get_cpu_var(page_states
);
1307 *(unsigned long *)(ptr
+ offset
) += delta
;
1308 local_irq_restore(flags
);
1310 EXPORT_SYMBOL(mod_page_state_offset
);
1312 void __get_zone_counts(unsigned long *active
, unsigned long *inactive
,
1313 unsigned long *free
, struct pglist_data
*pgdat
)
1315 struct zone
*zones
= pgdat
->node_zones
;
1321 for (i
= 0; i
< MAX_NR_ZONES
; i
++) {
1322 *active
+= zones
[i
].nr_active
;
1323 *inactive
+= zones
[i
].nr_inactive
;
1324 *free
+= zones
[i
].free_pages
;
1328 void get_zone_counts(unsigned long *active
,
1329 unsigned long *inactive
, unsigned long *free
)
1331 struct pglist_data
*pgdat
;
1336 for_each_pgdat(pgdat
) {
1337 unsigned long l
, m
, n
;
1338 __get_zone_counts(&l
, &m
, &n
, pgdat
);
1345 void si_meminfo(struct sysinfo
*val
)
1347 val
->totalram
= totalram_pages
;
1349 val
->freeram
= nr_free_pages();
1350 val
->bufferram
= nr_blockdev_pages();
1351 #ifdef CONFIG_HIGHMEM
1352 val
->totalhigh
= totalhigh_pages
;
1353 val
->freehigh
= nr_free_highpages();
1358 val
->mem_unit
= PAGE_SIZE
;
1361 EXPORT_SYMBOL(si_meminfo
);
1364 void si_meminfo_node(struct sysinfo
*val
, int nid
)
1366 pg_data_t
*pgdat
= NODE_DATA(nid
);
1368 val
->totalram
= pgdat
->node_present_pages
;
1369 val
->freeram
= nr_free_pages_pgdat(pgdat
);
1370 val
->totalhigh
= pgdat
->node_zones
[ZONE_HIGHMEM
].present_pages
;
1371 val
->freehigh
= pgdat
->node_zones
[ZONE_HIGHMEM
].free_pages
;
1372 val
->mem_unit
= PAGE_SIZE
;
1376 #define K(x) ((x) << (PAGE_SHIFT-10))
1379 * Show free area list (used inside shift_scroll-lock stuff)
1380 * We also calculate the percentage fragmentation. We do this by counting the
1381 * memory on each free list with the exception of the first item on the list.
1383 void show_free_areas(void)
1385 struct page_state ps
;
1386 int cpu
, temperature
;
1387 unsigned long active
;
1388 unsigned long inactive
;
1392 for_each_zone(zone
) {
1394 printk("%s per-cpu:", zone
->name
);
1396 if (!populated_zone(zone
)) {
1402 for_each_online_cpu(cpu
) {
1403 struct per_cpu_pageset
*pageset
;
1405 pageset
= zone_pcp(zone
, cpu
);
1407 for (temperature
= 0; temperature
< 2; temperature
++)
1408 printk("cpu %d %s: high %d, batch %d used:%d\n",
1410 temperature
? "cold" : "hot",
1411 pageset
->pcp
[temperature
].high
,
1412 pageset
->pcp
[temperature
].batch
,
1413 pageset
->pcp
[temperature
].count
);
1417 get_page_state(&ps
);
1418 get_zone_counts(&active
, &inactive
, &free
);
1420 printk("Free pages: %11ukB (%ukB HighMem)\n",
1422 K(nr_free_highpages()));
1424 printk("Active:%lu inactive:%lu dirty:%lu writeback:%lu "
1425 "unstable:%lu free:%u slab:%lu mapped:%lu pagetables:%lu\n",
1434 ps
.nr_page_table_pages
);
1436 for_each_zone(zone
) {
1448 " pages_scanned:%lu"
1449 " all_unreclaimable? %s"
1452 K(zone
->free_pages
),
1455 K(zone
->pages_high
),
1457 K(zone
->nr_inactive
),
1458 K(zone
->present_pages
),
1459 zone
->pages_scanned
,
1460 (zone
->all_unreclaimable
? "yes" : "no")
1462 printk("lowmem_reserve[]:");
1463 for (i
= 0; i
< MAX_NR_ZONES
; i
++)
1464 printk(" %lu", zone
->lowmem_reserve
[i
]);
1468 for_each_zone(zone
) {
1469 unsigned long nr
, flags
, order
, total
= 0;
1472 printk("%s: ", zone
->name
);
1473 if (!populated_zone(zone
)) {
1478 spin_lock_irqsave(&zone
->lock
, flags
);
1479 for (order
= 0; order
< MAX_ORDER
; order
++) {
1480 nr
= zone
->free_area
[order
].nr_free
;
1481 total
+= nr
<< order
;
1482 printk("%lu*%lukB ", nr
, K(1UL) << order
);
1484 spin_unlock_irqrestore(&zone
->lock
, flags
);
1485 printk("= %lukB\n", K(total
));
1488 show_swap_cache_info();
1492 * Builds allocation fallback zone lists.
1494 * Add all populated zones of a node to the zonelist.
1496 static int __init
build_zonelists_node(pg_data_t
*pgdat
,
1497 struct zonelist
*zonelist
, int nr_zones
, int zone_type
)
1501 BUG_ON(zone_type
> ZONE_HIGHMEM
);
1504 zone
= pgdat
->node_zones
+ zone_type
;
1505 if (populated_zone(zone
)) {
1506 #ifndef CONFIG_HIGHMEM
1507 BUG_ON(zone_type
> ZONE_NORMAL
);
1509 zonelist
->zones
[nr_zones
++] = zone
;
1510 check_highest_zone(zone_type
);
1514 } while (zone_type
>= 0);
1518 static inline int highest_zone(int zone_bits
)
1520 int res
= ZONE_NORMAL
;
1521 if (zone_bits
& (__force
int)__GFP_HIGHMEM
)
1523 if (zone_bits
& (__force
int)__GFP_DMA32
)
1525 if (zone_bits
& (__force
int)__GFP_DMA
)
1531 #define MAX_NODE_LOAD (num_online_nodes())
1532 static int __initdata node_load
[MAX_NUMNODES
];
1534 * find_next_best_node - find the next node that should appear in a given node's fallback list
1535 * @node: node whose fallback list we're appending
1536 * @used_node_mask: nodemask_t of already used nodes
1538 * We use a number of factors to determine which is the next node that should
1539 * appear on a given node's fallback list. The node should not have appeared
1540 * already in @node's fallback list, and it should be the next closest node
1541 * according to the distance array (which contains arbitrary distance values
1542 * from each node to each node in the system), and should also prefer nodes
1543 * with no CPUs, since presumably they'll have very little allocation pressure
1544 * on them otherwise.
1545 * It returns -1 if no node is found.
1547 static int __init
find_next_best_node(int node
, nodemask_t
*used_node_mask
)
1550 int min_val
= INT_MAX
;
1553 /* Use the local node if we haven't already */
1554 if (!node_isset(node
, *used_node_mask
)) {
1555 node_set(node
, *used_node_mask
);
1559 for_each_online_node(n
) {
1562 /* Don't want a node to appear more than once */
1563 if (node_isset(n
, *used_node_mask
))
1566 /* Use the distance array to find the distance */
1567 val
= node_distance(node
, n
);
1569 /* Penalize nodes under us ("prefer the next node") */
1572 /* Give preference to headless and unused nodes */
1573 tmp
= node_to_cpumask(n
);
1574 if (!cpus_empty(tmp
))
1575 val
+= PENALTY_FOR_NODE_WITH_CPUS
;
1577 /* Slight preference for less loaded node */
1578 val
*= (MAX_NODE_LOAD
*MAX_NUMNODES
);
1579 val
+= node_load
[n
];
1581 if (val
< min_val
) {
1588 node_set(best_node
, *used_node_mask
);
1593 static void __init
build_zonelists(pg_data_t
*pgdat
)
1595 int i
, j
, k
, node
, local_node
;
1596 int prev_node
, load
;
1597 struct zonelist
*zonelist
;
1598 nodemask_t used_mask
;
1600 /* initialize zonelists */
1601 for (i
= 0; i
< GFP_ZONETYPES
; i
++) {
1602 zonelist
= pgdat
->node_zonelists
+ i
;
1603 zonelist
->zones
[0] = NULL
;
1606 /* NUMA-aware ordering of nodes */
1607 local_node
= pgdat
->node_id
;
1608 load
= num_online_nodes();
1609 prev_node
= local_node
;
1610 nodes_clear(used_mask
);
1611 while ((node
= find_next_best_node(local_node
, &used_mask
)) >= 0) {
1612 int distance
= node_distance(local_node
, node
);
1615 * If another node is sufficiently far away then it is better
1616 * to reclaim pages in a zone before going off node.
1618 if (distance
> RECLAIM_DISTANCE
)
1619 zone_reclaim_mode
= 1;
1622 * We don't want to pressure a particular node.
1623 * So adding penalty to the first node in same
1624 * distance group to make it round-robin.
1627 if (distance
!= node_distance(local_node
, prev_node
))
1628 node_load
[node
] += load
;
1631 for (i
= 0; i
< GFP_ZONETYPES
; i
++) {
1632 zonelist
= pgdat
->node_zonelists
+ i
;
1633 for (j
= 0; zonelist
->zones
[j
] != NULL
; j
++);
1635 k
= highest_zone(i
);
1637 j
= build_zonelists_node(NODE_DATA(node
), zonelist
, j
, k
);
1638 zonelist
->zones
[j
] = NULL
;
1643 #else /* CONFIG_NUMA */
1645 static void __init
build_zonelists(pg_data_t
*pgdat
)
1647 int i
, j
, k
, node
, local_node
;
1649 local_node
= pgdat
->node_id
;
1650 for (i
= 0; i
< GFP_ZONETYPES
; i
++) {
1651 struct zonelist
*zonelist
;
1653 zonelist
= pgdat
->node_zonelists
+ i
;
1656 k
= highest_zone(i
);
1657 j
= build_zonelists_node(pgdat
, zonelist
, j
, k
);
1659 * Now we build the zonelist so that it contains the zones
1660 * of all the other nodes.
1661 * We don't want to pressure a particular node, so when
1662 * building the zones for node N, we make sure that the
1663 * zones coming right after the local ones are those from
1664 * node N+1 (modulo N)
1666 for (node
= local_node
+ 1; node
< MAX_NUMNODES
; node
++) {
1667 if (!node_online(node
))
1669 j
= build_zonelists_node(NODE_DATA(node
), zonelist
, j
, k
);
1671 for (node
= 0; node
< local_node
; node
++) {
1672 if (!node_online(node
))
1674 j
= build_zonelists_node(NODE_DATA(node
), zonelist
, j
, k
);
1677 zonelist
->zones
[j
] = NULL
;
1681 #endif /* CONFIG_NUMA */
1683 void __init
build_all_zonelists(void)
1687 for_each_online_node(i
)
1688 build_zonelists(NODE_DATA(i
));
1689 printk("Built %i zonelists\n", num_online_nodes());
1690 cpuset_init_current_mems_allowed();
1694 * Helper functions to size the waitqueue hash table.
1695 * Essentially these want to choose hash table sizes sufficiently
1696 * large so that collisions trying to wait on pages are rare.
1697 * But in fact, the number of active page waitqueues on typical
1698 * systems is ridiculously low, less than 200. So this is even
1699 * conservative, even though it seems large.
1701 * The constant PAGES_PER_WAITQUEUE specifies the ratio of pages to
1702 * waitqueues, i.e. the size of the waitq table given the number of pages.
1704 #define PAGES_PER_WAITQUEUE 256
1706 static inline unsigned long wait_table_size(unsigned long pages
)
1708 unsigned long size
= 1;
1710 pages
/= PAGES_PER_WAITQUEUE
;
1712 while (size
< pages
)
1716 * Once we have dozens or even hundreds of threads sleeping
1717 * on IO we've got bigger problems than wait queue collision.
1718 * Limit the size of the wait table to a reasonable size.
1720 size
= min(size
, 4096UL);
1722 return max(size
, 4UL);
1726 * This is an integer logarithm so that shifts can be used later
1727 * to extract the more random high bits from the multiplicative
1728 * hash function before the remainder is taken.
1730 static inline unsigned long wait_table_bits(unsigned long size
)
1735 #define LONG_ALIGN(x) (((x)+(sizeof(long))-1)&~((sizeof(long))-1))
1737 static void __init
calculate_zone_totalpages(struct pglist_data
*pgdat
,
1738 unsigned long *zones_size
, unsigned long *zholes_size
)
1740 unsigned long realtotalpages
, totalpages
= 0;
1743 for (i
= 0; i
< MAX_NR_ZONES
; i
++)
1744 totalpages
+= zones_size
[i
];
1745 pgdat
->node_spanned_pages
= totalpages
;
1747 realtotalpages
= totalpages
;
1749 for (i
= 0; i
< MAX_NR_ZONES
; i
++)
1750 realtotalpages
-= zholes_size
[i
];
1751 pgdat
->node_present_pages
= realtotalpages
;
1752 printk(KERN_DEBUG
"On node %d totalpages: %lu\n", pgdat
->node_id
, realtotalpages
);
1757 * Initially all pages are reserved - free ones are freed
1758 * up by free_all_bootmem() once the early boot process is
1759 * done. Non-atomic initialization, single-pass.
1761 void __meminit
memmap_init_zone(unsigned long size
, int nid
, unsigned long zone
,
1762 unsigned long start_pfn
)
1765 unsigned long end_pfn
= start_pfn
+ size
;
1768 for (pfn
= start_pfn
; pfn
< end_pfn
; pfn
++) {
1769 if (!early_pfn_valid(pfn
))
1771 page
= pfn_to_page(pfn
);
1772 set_page_links(page
, zone
, nid
, pfn
);
1773 init_page_count(page
);
1774 reset_page_mapcount(page
);
1775 SetPageReserved(page
);
1776 INIT_LIST_HEAD(&page
->lru
);
1777 #ifdef WANT_PAGE_VIRTUAL
1778 /* The shift won't overflow because ZONE_NORMAL is below 4G. */
1779 if (!is_highmem_idx(zone
))
1780 set_page_address(page
, __va(pfn
<< PAGE_SHIFT
));
1785 void zone_init_free_lists(struct pglist_data
*pgdat
, struct zone
*zone
,
1789 for (order
= 0; order
< MAX_ORDER
; order
++) {
1790 INIT_LIST_HEAD(&zone
->free_area
[order
].free_list
);
1791 zone
->free_area
[order
].nr_free
= 0;
1795 #define ZONETABLE_INDEX(x, zone_nr) ((x << ZONES_SHIFT) | zone_nr)
1796 void zonetable_add(struct zone
*zone
, int nid
, int zid
, unsigned long pfn
,
1799 unsigned long snum
= pfn_to_section_nr(pfn
);
1800 unsigned long end
= pfn_to_section_nr(pfn
+ size
);
1803 zone_table
[ZONETABLE_INDEX(nid
, zid
)] = zone
;
1805 for (; snum
<= end
; snum
++)
1806 zone_table
[ZONETABLE_INDEX(snum
, zid
)] = zone
;
1809 #ifndef __HAVE_ARCH_MEMMAP_INIT
1810 #define memmap_init(size, nid, zone, start_pfn) \
1811 memmap_init_zone((size), (nid), (zone), (start_pfn))
1814 static int __cpuinit
zone_batchsize(struct zone
*zone
)
1819 * The per-cpu-pages pools are set to around 1000th of the
1820 * size of the zone. But no more than 1/2 of a meg.
1822 * OK, so we don't know how big the cache is. So guess.
1824 batch
= zone
->present_pages
/ 1024;
1825 if (batch
* PAGE_SIZE
> 512 * 1024)
1826 batch
= (512 * 1024) / PAGE_SIZE
;
1827 batch
/= 4; /* We effectively *= 4 below */
1832 * Clamp the batch to a 2^n - 1 value. Having a power
1833 * of 2 value was found to be more likely to have
1834 * suboptimal cache aliasing properties in some cases.
1836 * For example if 2 tasks are alternately allocating
1837 * batches of pages, one task can end up with a lot
1838 * of pages of one half of the possible page colors
1839 * and the other with pages of the other colors.
1841 batch
= (1 << (fls(batch
+ batch
/2)-1)) - 1;
1846 inline void setup_pageset(struct per_cpu_pageset
*p
, unsigned long batch
)
1848 struct per_cpu_pages
*pcp
;
1850 memset(p
, 0, sizeof(*p
));
1852 pcp
= &p
->pcp
[0]; /* hot */
1854 pcp
->high
= 6 * batch
;
1855 pcp
->batch
= max(1UL, 1 * batch
);
1856 INIT_LIST_HEAD(&pcp
->list
);
1858 pcp
= &p
->pcp
[1]; /* cold*/
1860 pcp
->high
= 2 * batch
;
1861 pcp
->batch
= max(1UL, batch
/2);
1862 INIT_LIST_HEAD(&pcp
->list
);
1866 * setup_pagelist_highmark() sets the high water mark for hot per_cpu_pagelist
1867 * to the value high for the pageset p.
1870 static void setup_pagelist_highmark(struct per_cpu_pageset
*p
,
1873 struct per_cpu_pages
*pcp
;
1875 pcp
= &p
->pcp
[0]; /* hot list */
1877 pcp
->batch
= max(1UL, high
/4);
1878 if ((high
/4) > (PAGE_SHIFT
* 8))
1879 pcp
->batch
= PAGE_SHIFT
* 8;
1885 * Boot pageset table. One per cpu which is going to be used for all
1886 * zones and all nodes. The parameters will be set in such a way
1887 * that an item put on a list will immediately be handed over to
1888 * the buddy list. This is safe since pageset manipulation is done
1889 * with interrupts disabled.
1891 * Some NUMA counter updates may also be caught by the boot pagesets.
1893 * The boot_pagesets must be kept even after bootup is complete for
1894 * unused processors and/or zones. They do play a role for bootstrapping
1895 * hotplugged processors.
1897 * zoneinfo_show() and maybe other functions do
1898 * not check if the processor is online before following the pageset pointer.
1899 * Other parts of the kernel may not check if the zone is available.
1901 static struct per_cpu_pageset boot_pageset
[NR_CPUS
];
1904 * Dynamically allocate memory for the
1905 * per cpu pageset array in struct zone.
1907 static int __cpuinit
process_zones(int cpu
)
1909 struct zone
*zone
, *dzone
;
1911 for_each_zone(zone
) {
1913 zone_pcp(zone
, cpu
) = kmalloc_node(sizeof(struct per_cpu_pageset
),
1914 GFP_KERNEL
, cpu_to_node(cpu
));
1915 if (!zone_pcp(zone
, cpu
))
1918 setup_pageset(zone_pcp(zone
, cpu
), zone_batchsize(zone
));
1920 if (percpu_pagelist_fraction
)
1921 setup_pagelist_highmark(zone_pcp(zone
, cpu
),
1922 (zone
->present_pages
/ percpu_pagelist_fraction
));
1927 for_each_zone(dzone
) {
1930 kfree(zone_pcp(dzone
, cpu
));
1931 zone_pcp(dzone
, cpu
) = NULL
;
1936 static inline void free_zone_pagesets(int cpu
)
1940 for_each_zone(zone
) {
1941 struct per_cpu_pageset
*pset
= zone_pcp(zone
, cpu
);
1943 zone_pcp(zone
, cpu
) = NULL
;
1948 static int __cpuinit
pageset_cpuup_callback(struct notifier_block
*nfb
,
1949 unsigned long action
,
1952 int cpu
= (long)hcpu
;
1953 int ret
= NOTIFY_OK
;
1956 case CPU_UP_PREPARE
:
1957 if (process_zones(cpu
))
1960 case CPU_UP_CANCELED
:
1962 free_zone_pagesets(cpu
);
1970 static struct notifier_block pageset_notifier
=
1971 { &pageset_cpuup_callback
, NULL
, 0 };
1973 void __init
setup_per_cpu_pageset(void)
1977 /* Initialize per_cpu_pageset for cpu 0.
1978 * A cpuup callback will do this for every cpu
1979 * as it comes online
1981 err
= process_zones(smp_processor_id());
1983 register_cpu_notifier(&pageset_notifier
);
1989 void zone_wait_table_init(struct zone
*zone
, unsigned long zone_size_pages
)
1992 struct pglist_data
*pgdat
= zone
->zone_pgdat
;
1995 * The per-page waitqueue mechanism uses hashed waitqueues
1998 zone
->wait_table_size
= wait_table_size(zone_size_pages
);
1999 zone
->wait_table_bits
= wait_table_bits(zone
->wait_table_size
);
2000 zone
->wait_table
= (wait_queue_head_t
*)
2001 alloc_bootmem_node(pgdat
, zone
->wait_table_size
2002 * sizeof(wait_queue_head_t
));
2004 for(i
= 0; i
< zone
->wait_table_size
; ++i
)
2005 init_waitqueue_head(zone
->wait_table
+ i
);
2008 static __meminit
void zone_pcp_init(struct zone
*zone
)
2011 unsigned long batch
= zone_batchsize(zone
);
2013 for (cpu
= 0; cpu
< NR_CPUS
; cpu
++) {
2015 /* Early boot. Slab allocator not functional yet */
2016 zone_pcp(zone
, cpu
) = &boot_pageset
[cpu
];
2017 setup_pageset(&boot_pageset
[cpu
],0);
2019 setup_pageset(zone_pcp(zone
,cpu
), batch
);
2022 printk(KERN_DEBUG
" %s zone: %lu pages, LIFO batch:%lu\n",
2023 zone
->name
, zone
->present_pages
, batch
);
2026 static __meminit
void init_currently_empty_zone(struct zone
*zone
,
2027 unsigned long zone_start_pfn
, unsigned long size
)
2029 struct pglist_data
*pgdat
= zone
->zone_pgdat
;
2031 zone_wait_table_init(zone
, size
);
2032 pgdat
->nr_zones
= zone_idx(zone
) + 1;
2034 zone
->zone_mem_map
= pfn_to_page(zone_start_pfn
);
2035 zone
->zone_start_pfn
= zone_start_pfn
;
2037 memmap_init(size
, pgdat
->node_id
, zone_idx(zone
), zone_start_pfn
);
2039 zone_init_free_lists(pgdat
, zone
, zone
->spanned_pages
);
2043 * Set up the zone data structures:
2044 * - mark all pages reserved
2045 * - mark all memory queues empty
2046 * - clear the memory bitmaps
2048 static void __init
free_area_init_core(struct pglist_data
*pgdat
,
2049 unsigned long *zones_size
, unsigned long *zholes_size
)
2052 int nid
= pgdat
->node_id
;
2053 unsigned long zone_start_pfn
= pgdat
->node_start_pfn
;
2055 pgdat_resize_init(pgdat
);
2056 pgdat
->nr_zones
= 0;
2057 init_waitqueue_head(&pgdat
->kswapd_wait
);
2058 pgdat
->kswapd_max_order
= 0;
2060 for (j
= 0; j
< MAX_NR_ZONES
; j
++) {
2061 struct zone
*zone
= pgdat
->node_zones
+ j
;
2062 unsigned long size
, realsize
;
2064 realsize
= size
= zones_size
[j
];
2066 realsize
-= zholes_size
[j
];
2068 if (j
< ZONE_HIGHMEM
)
2069 nr_kernel_pages
+= realsize
;
2070 nr_all_pages
+= realsize
;
2072 zone
->spanned_pages
= size
;
2073 zone
->present_pages
= realsize
;
2074 zone
->name
= zone_names
[j
];
2075 spin_lock_init(&zone
->lock
);
2076 spin_lock_init(&zone
->lru_lock
);
2077 zone_seqlock_init(zone
);
2078 zone
->zone_pgdat
= pgdat
;
2079 zone
->free_pages
= 0;
2081 zone
->temp_priority
= zone
->prev_priority
= DEF_PRIORITY
;
2083 zone_pcp_init(zone
);
2084 INIT_LIST_HEAD(&zone
->active_list
);
2085 INIT_LIST_HEAD(&zone
->inactive_list
);
2086 zone
->nr_scan_active
= 0;
2087 zone
->nr_scan_inactive
= 0;
2088 zone
->nr_active
= 0;
2089 zone
->nr_inactive
= 0;
2090 atomic_set(&zone
->reclaim_in_progress
, 0);
2094 zonetable_add(zone
, nid
, j
, zone_start_pfn
, size
);
2095 init_currently_empty_zone(zone
, zone_start_pfn
, size
);
2096 zone_start_pfn
+= size
;
2100 static void __init
alloc_node_mem_map(struct pglist_data
*pgdat
)
2102 /* Skip empty nodes */
2103 if (!pgdat
->node_spanned_pages
)
2106 #ifdef CONFIG_FLAT_NODE_MEM_MAP
2107 /* ia64 gets its own node_mem_map, before this, without bootmem */
2108 if (!pgdat
->node_mem_map
) {
2112 size
= (pgdat
->node_spanned_pages
+ 1) * sizeof(struct page
);
2113 map
= alloc_remap(pgdat
->node_id
, size
);
2115 map
= alloc_bootmem_node(pgdat
, size
);
2116 pgdat
->node_mem_map
= map
;
2118 #ifdef CONFIG_FLATMEM
2120 * With no DISCONTIG, the global mem_map is just set as node 0's
2122 if (pgdat
== NODE_DATA(0))
2123 mem_map
= NODE_DATA(0)->node_mem_map
;
2125 #endif /* CONFIG_FLAT_NODE_MEM_MAP */
2128 void __init
free_area_init_node(int nid
, struct pglist_data
*pgdat
,
2129 unsigned long *zones_size
, unsigned long node_start_pfn
,
2130 unsigned long *zholes_size
)
2132 pgdat
->node_id
= nid
;
2133 pgdat
->node_start_pfn
= node_start_pfn
;
2134 calculate_zone_totalpages(pgdat
, zones_size
, zholes_size
);
2136 alloc_node_mem_map(pgdat
);
2138 free_area_init_core(pgdat
, zones_size
, zholes_size
);
2141 #ifndef CONFIG_NEED_MULTIPLE_NODES
2142 static bootmem_data_t contig_bootmem_data
;
2143 struct pglist_data contig_page_data
= { .bdata
= &contig_bootmem_data
};
2145 EXPORT_SYMBOL(contig_page_data
);
2148 void __init
free_area_init(unsigned long *zones_size
)
2150 free_area_init_node(0, NODE_DATA(0), zones_size
,
2151 __pa(PAGE_OFFSET
) >> PAGE_SHIFT
, NULL
);
2154 #ifdef CONFIG_PROC_FS
2156 #include <linux/seq_file.h>
2158 static void *frag_start(struct seq_file
*m
, loff_t
*pos
)
2163 for (pgdat
= pgdat_list
; pgdat
&& node
; pgdat
= pgdat
->pgdat_next
)
2169 static void *frag_next(struct seq_file
*m
, void *arg
, loff_t
*pos
)
2171 pg_data_t
*pgdat
= (pg_data_t
*)arg
;
2174 return pgdat
->pgdat_next
;
2177 static void frag_stop(struct seq_file
*m
, void *arg
)
2182 * This walks the free areas for each zone.
2184 static int frag_show(struct seq_file
*m
, void *arg
)
2186 pg_data_t
*pgdat
= (pg_data_t
*)arg
;
2188 struct zone
*node_zones
= pgdat
->node_zones
;
2189 unsigned long flags
;
2192 for (zone
= node_zones
; zone
- node_zones
< MAX_NR_ZONES
; ++zone
) {
2193 if (!populated_zone(zone
))
2196 spin_lock_irqsave(&zone
->lock
, flags
);
2197 seq_printf(m
, "Node %d, zone %8s ", pgdat
->node_id
, zone
->name
);
2198 for (order
= 0; order
< MAX_ORDER
; ++order
)
2199 seq_printf(m
, "%6lu ", zone
->free_area
[order
].nr_free
);
2200 spin_unlock_irqrestore(&zone
->lock
, flags
);
2206 struct seq_operations fragmentation_op
= {
2207 .start
= frag_start
,
2214 * Output information about zones in @pgdat.
2216 static int zoneinfo_show(struct seq_file
*m
, void *arg
)
2218 pg_data_t
*pgdat
= arg
;
2220 struct zone
*node_zones
= pgdat
->node_zones
;
2221 unsigned long flags
;
2223 for (zone
= node_zones
; zone
- node_zones
< MAX_NR_ZONES
; zone
++) {
2226 if (!populated_zone(zone
))
2229 spin_lock_irqsave(&zone
->lock
, flags
);
2230 seq_printf(m
, "Node %d, zone %8s", pgdat
->node_id
, zone
->name
);
2238 "\n scanned %lu (a: %lu i: %lu)"
2247 zone
->pages_scanned
,
2248 zone
->nr_scan_active
, zone
->nr_scan_inactive
,
2249 zone
->spanned_pages
,
2250 zone
->present_pages
);
2252 "\n protection: (%lu",
2253 zone
->lowmem_reserve
[0]);
2254 for (i
= 1; i
< ARRAY_SIZE(zone
->lowmem_reserve
); i
++)
2255 seq_printf(m
, ", %lu", zone
->lowmem_reserve
[i
]);
2259 for_each_online_cpu(i
) {
2260 struct per_cpu_pageset
*pageset
;
2263 pageset
= zone_pcp(zone
, i
);
2264 for (j
= 0; j
< ARRAY_SIZE(pageset
->pcp
); j
++) {
2265 if (pageset
->pcp
[j
].count
)
2268 if (j
== ARRAY_SIZE(pageset
->pcp
))
2270 for (j
= 0; j
< ARRAY_SIZE(pageset
->pcp
); j
++) {
2272 "\n cpu: %i pcp: %i"
2277 pageset
->pcp
[j
].count
,
2278 pageset
->pcp
[j
].high
,
2279 pageset
->pcp
[j
].batch
);
2285 "\n numa_foreign: %lu"
2286 "\n interleave_hit: %lu"
2287 "\n local_node: %lu"
2288 "\n other_node: %lu",
2291 pageset
->numa_foreign
,
2292 pageset
->interleave_hit
,
2293 pageset
->local_node
,
2294 pageset
->other_node
);
2298 "\n all_unreclaimable: %u"
2299 "\n prev_priority: %i"
2300 "\n temp_priority: %i"
2301 "\n start_pfn: %lu",
2302 zone
->all_unreclaimable
,
2303 zone
->prev_priority
,
2304 zone
->temp_priority
,
2305 zone
->zone_start_pfn
);
2306 spin_unlock_irqrestore(&zone
->lock
, flags
);
2312 struct seq_operations zoneinfo_op
= {
2313 .start
= frag_start
, /* iterate over all zones. The same as in
2317 .show
= zoneinfo_show
,
2320 static char *vmstat_text
[] = {
2324 "nr_page_table_pages",
2355 "pgscan_kswapd_high",
2356 "pgscan_kswapd_normal",
2357 "pgscan_kswapd_dma32",
2358 "pgscan_kswapd_dma",
2360 "pgscan_direct_high",
2361 "pgscan_direct_normal",
2362 "pgscan_direct_dma32",
2363 "pgscan_direct_dma",
2368 "kswapd_inodesteal",
2376 static void *vmstat_start(struct seq_file
*m
, loff_t
*pos
)
2378 struct page_state
*ps
;
2380 if (*pos
>= ARRAY_SIZE(vmstat_text
))
2383 ps
= kmalloc(sizeof(*ps
), GFP_KERNEL
);
2386 return ERR_PTR(-ENOMEM
);
2387 get_full_page_state(ps
);
2388 ps
->pgpgin
/= 2; /* sectors -> kbytes */
2390 return (unsigned long *)ps
+ *pos
;
2393 static void *vmstat_next(struct seq_file
*m
, void *arg
, loff_t
*pos
)
2396 if (*pos
>= ARRAY_SIZE(vmstat_text
))
2398 return (unsigned long *)m
->private + *pos
;
2401 static int vmstat_show(struct seq_file
*m
, void *arg
)
2403 unsigned long *l
= arg
;
2404 unsigned long off
= l
- (unsigned long *)m
->private;
2406 seq_printf(m
, "%s %lu\n", vmstat_text
[off
], *l
);
2410 static void vmstat_stop(struct seq_file
*m
, void *arg
)
2416 struct seq_operations vmstat_op
= {
2417 .start
= vmstat_start
,
2418 .next
= vmstat_next
,
2419 .stop
= vmstat_stop
,
2420 .show
= vmstat_show
,
2423 #endif /* CONFIG_PROC_FS */
2425 #ifdef CONFIG_HOTPLUG_CPU
2426 static int page_alloc_cpu_notify(struct notifier_block
*self
,
2427 unsigned long action
, void *hcpu
)
2429 int cpu
= (unsigned long)hcpu
;
2431 unsigned long *src
, *dest
;
2433 if (action
== CPU_DEAD
) {
2436 /* Drain local pagecache count. */
2437 count
= &per_cpu(nr_pagecache_local
, cpu
);
2438 atomic_add(*count
, &nr_pagecache
);
2440 local_irq_disable();
2443 /* Add dead cpu's page_states to our own. */
2444 dest
= (unsigned long *)&__get_cpu_var(page_states
);
2445 src
= (unsigned long *)&per_cpu(page_states
, cpu
);
2447 for (i
= 0; i
< sizeof(struct page_state
)/sizeof(unsigned long);
2457 #endif /* CONFIG_HOTPLUG_CPU */
2459 void __init
page_alloc_init(void)
2461 hotcpu_notifier(page_alloc_cpu_notify
, 0);
2465 * setup_per_zone_lowmem_reserve - called whenever
2466 * sysctl_lower_zone_reserve_ratio changes. Ensures that each zone
2467 * has a correct pages reserved value, so an adequate number of
2468 * pages are left in the zone after a successful __alloc_pages().
2470 static void setup_per_zone_lowmem_reserve(void)
2472 struct pglist_data
*pgdat
;
2475 for_each_pgdat(pgdat
) {
2476 for (j
= 0; j
< MAX_NR_ZONES
; j
++) {
2477 struct zone
*zone
= pgdat
->node_zones
+ j
;
2478 unsigned long present_pages
= zone
->present_pages
;
2480 zone
->lowmem_reserve
[j
] = 0;
2482 for (idx
= j
-1; idx
>= 0; idx
--) {
2483 struct zone
*lower_zone
;
2485 if (sysctl_lowmem_reserve_ratio
[idx
] < 1)
2486 sysctl_lowmem_reserve_ratio
[idx
] = 1;
2488 lower_zone
= pgdat
->node_zones
+ idx
;
2489 lower_zone
->lowmem_reserve
[j
] = present_pages
/
2490 sysctl_lowmem_reserve_ratio
[idx
];
2491 present_pages
+= lower_zone
->present_pages
;
2498 * setup_per_zone_pages_min - called when min_free_kbytes changes. Ensures
2499 * that the pages_{min,low,high} values for each zone are set correctly
2500 * with respect to min_free_kbytes.
2502 void setup_per_zone_pages_min(void)
2504 unsigned long pages_min
= min_free_kbytes
>> (PAGE_SHIFT
- 10);
2505 unsigned long lowmem_pages
= 0;
2507 unsigned long flags
;
2509 /* Calculate total number of !ZONE_HIGHMEM pages */
2510 for_each_zone(zone
) {
2511 if (!is_highmem(zone
))
2512 lowmem_pages
+= zone
->present_pages
;
2515 for_each_zone(zone
) {
2517 spin_lock_irqsave(&zone
->lru_lock
, flags
);
2518 tmp
= (pages_min
* zone
->present_pages
) / lowmem_pages
;
2519 if (is_highmem(zone
)) {
2521 * __GFP_HIGH and PF_MEMALLOC allocations usually don't
2522 * need highmem pages, so cap pages_min to a small
2525 * The (pages_high-pages_low) and (pages_low-pages_min)
2526 * deltas controls asynch page reclaim, and so should
2527 * not be capped for highmem.
2531 min_pages
= zone
->present_pages
/ 1024;
2532 if (min_pages
< SWAP_CLUSTER_MAX
)
2533 min_pages
= SWAP_CLUSTER_MAX
;
2534 if (min_pages
> 128)
2536 zone
->pages_min
= min_pages
;
2539 * If it's a lowmem zone, reserve a number of pages
2540 * proportionate to the zone's size.
2542 zone
->pages_min
= tmp
;
2545 zone
->pages_low
= zone
->pages_min
+ tmp
/ 4;
2546 zone
->pages_high
= zone
->pages_min
+ tmp
/ 2;
2547 spin_unlock_irqrestore(&zone
->lru_lock
, flags
);
2552 * Initialise min_free_kbytes.
2554 * For small machines we want it small (128k min). For large machines
2555 * we want it large (64MB max). But it is not linear, because network
2556 * bandwidth does not increase linearly with machine size. We use
2558 * min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
2559 * min_free_kbytes = sqrt(lowmem_kbytes * 16)
2575 static int __init
init_per_zone_pages_min(void)
2577 unsigned long lowmem_kbytes
;
2579 lowmem_kbytes
= nr_free_buffer_pages() * (PAGE_SIZE
>> 10);
2581 min_free_kbytes
= int_sqrt(lowmem_kbytes
* 16);
2582 if (min_free_kbytes
< 128)
2583 min_free_kbytes
= 128;
2584 if (min_free_kbytes
> 65536)
2585 min_free_kbytes
= 65536;
2586 setup_per_zone_pages_min();
2587 setup_per_zone_lowmem_reserve();
2590 module_init(init_per_zone_pages_min
)
2593 * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
2594 * that we can call two helper functions whenever min_free_kbytes
2597 int min_free_kbytes_sysctl_handler(ctl_table
*table
, int write
,
2598 struct file
*file
, void __user
*buffer
, size_t *length
, loff_t
*ppos
)
2600 proc_dointvec(table
, write
, file
, buffer
, length
, ppos
);
2601 setup_per_zone_pages_min();
2606 * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
2607 * proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
2608 * whenever sysctl_lowmem_reserve_ratio changes.
2610 * The reserve ratio obviously has absolutely no relation with the
2611 * pages_min watermarks. The lowmem reserve ratio can only make sense
2612 * if in function of the boot time zone sizes.
2614 int lowmem_reserve_ratio_sysctl_handler(ctl_table
*table
, int write
,
2615 struct file
*file
, void __user
*buffer
, size_t *length
, loff_t
*ppos
)
2617 proc_dointvec_minmax(table
, write
, file
, buffer
, length
, ppos
);
2618 setup_per_zone_lowmem_reserve();
2623 * percpu_pagelist_fraction - changes the pcp->high for each zone on each
2624 * cpu. It is the fraction of total pages in each zone that a hot per cpu pagelist
2625 * can have before it gets flushed back to buddy allocator.
2628 int percpu_pagelist_fraction_sysctl_handler(ctl_table
*table
, int write
,
2629 struct file
*file
, void __user
*buffer
, size_t *length
, loff_t
*ppos
)
2635 ret
= proc_dointvec_minmax(table
, write
, file
, buffer
, length
, ppos
);
2636 if (!write
|| (ret
== -EINVAL
))
2638 for_each_zone(zone
) {
2639 for_each_online_cpu(cpu
) {
2641 high
= zone
->present_pages
/ percpu_pagelist_fraction
;
2642 setup_pagelist_highmark(zone_pcp(zone
, cpu
), high
);
2648 __initdata
int hashdist
= HASHDIST_DEFAULT
;
2651 static int __init
set_hashdist(char *str
)
2655 hashdist
= simple_strtoul(str
, &str
, 0);
2658 __setup("hashdist=", set_hashdist
);
2662 * allocate a large system hash table from bootmem
2663 * - it is assumed that the hash table must contain an exact power-of-2
2664 * quantity of entries
2665 * - limit is the number of hash buckets, not the total allocation size
2667 void *__init
alloc_large_system_hash(const char *tablename
,
2668 unsigned long bucketsize
,
2669 unsigned long numentries
,
2672 unsigned int *_hash_shift
,
2673 unsigned int *_hash_mask
,
2674 unsigned long limit
)
2676 unsigned long long max
= limit
;
2677 unsigned long log2qty
, size
;
2680 /* allow the kernel cmdline to have a say */
2682 /* round applicable memory size up to nearest megabyte */
2683 numentries
= (flags
& HASH_HIGHMEM
) ? nr_all_pages
: nr_kernel_pages
;
2684 numentries
+= (1UL << (20 - PAGE_SHIFT
)) - 1;
2685 numentries
>>= 20 - PAGE_SHIFT
;
2686 numentries
<<= 20 - PAGE_SHIFT
;
2688 /* limit to 1 bucket per 2^scale bytes of low memory */
2689 if (scale
> PAGE_SHIFT
)
2690 numentries
>>= (scale
- PAGE_SHIFT
);
2692 numentries
<<= (PAGE_SHIFT
- scale
);
2694 /* rounded up to nearest power of 2 in size */
2695 numentries
= 1UL << (long_log2(numentries
) + 1);
2697 /* limit allocation size to 1/16 total memory by default */
2699 max
= ((unsigned long long)nr_all_pages
<< PAGE_SHIFT
) >> 4;
2700 do_div(max
, bucketsize
);
2703 if (numentries
> max
)
2706 log2qty
= long_log2(numentries
);
2709 size
= bucketsize
<< log2qty
;
2710 if (flags
& HASH_EARLY
)
2711 table
= alloc_bootmem(size
);
2713 table
= __vmalloc(size
, GFP_ATOMIC
, PAGE_KERNEL
);
2715 unsigned long order
;
2716 for (order
= 0; ((1UL << order
) << PAGE_SHIFT
) < size
; order
++)
2718 table
= (void*) __get_free_pages(GFP_ATOMIC
, order
);
2720 } while (!table
&& size
> PAGE_SIZE
&& --log2qty
);
2723 panic("Failed to allocate %s hash table\n", tablename
);
2725 printk("%s hash table entries: %d (order: %d, %lu bytes)\n",
2728 long_log2(size
) - PAGE_SHIFT
,
2732 *_hash_shift
= log2qty
;
2734 *_hash_mask
= (1 << log2qty
) - 1;