x86: move this_cpu_offset
[linux-2.6/mini2440.git] / block / cfq-iosched.c
blobe8525fa72823a0c88adfd386e84e7b3e5db33af7
1 /*
2 * CFQ, or complete fairness queueing, disk scheduler.
4 * Based on ideas from a previously unfinished io
5 * scheduler (round robin per-process disk scheduling) and Andrea Arcangeli.
7 * Copyright (C) 2003 Jens Axboe <axboe@kernel.dk>
8 */
9 #include <linux/module.h>
10 #include <linux/blkdev.h>
11 #include <linux/elevator.h>
12 #include <linux/rbtree.h>
13 #include <linux/ioprio.h>
14 #include <linux/blktrace_api.h>
17 * tunables
19 /* max queue in one round of service */
20 static const int cfq_quantum = 4;
21 static const int cfq_fifo_expire[2] = { HZ / 4, HZ / 8 };
22 /* maximum backwards seek, in KiB */
23 static const int cfq_back_max = 16 * 1024;
24 /* penalty of a backwards seek */
25 static const int cfq_back_penalty = 2;
26 static const int cfq_slice_sync = HZ / 10;
27 static int cfq_slice_async = HZ / 25;
28 static const int cfq_slice_async_rq = 2;
29 static int cfq_slice_idle = HZ / 125;
32 * offset from end of service tree
34 #define CFQ_IDLE_DELAY (HZ / 5)
37 * below this threshold, we consider thinktime immediate
39 #define CFQ_MIN_TT (2)
41 #define CFQ_SLICE_SCALE (5)
42 #define CFQ_HW_QUEUE_MIN (5)
44 #define RQ_CIC(rq) \
45 ((struct cfq_io_context *) (rq)->elevator_private)
46 #define RQ_CFQQ(rq) (struct cfq_queue *) ((rq)->elevator_private2)
48 static struct kmem_cache *cfq_pool;
49 static struct kmem_cache *cfq_ioc_pool;
51 static DEFINE_PER_CPU(unsigned long, ioc_count);
52 static struct completion *ioc_gone;
53 static DEFINE_SPINLOCK(ioc_gone_lock);
55 #define CFQ_PRIO_LISTS IOPRIO_BE_NR
56 #define cfq_class_idle(cfqq) ((cfqq)->ioprio_class == IOPRIO_CLASS_IDLE)
57 #define cfq_class_rt(cfqq) ((cfqq)->ioprio_class == IOPRIO_CLASS_RT)
59 #define ASYNC (0)
60 #define SYNC (1)
62 #define sample_valid(samples) ((samples) > 80)
65 * Most of our rbtree usage is for sorting with min extraction, so
66 * if we cache the leftmost node we don't have to walk down the tree
67 * to find it. Idea borrowed from Ingo Molnars CFS scheduler. We should
68 * move this into the elevator for the rq sorting as well.
70 struct cfq_rb_root {
71 struct rb_root rb;
72 struct rb_node *left;
74 #define CFQ_RB_ROOT (struct cfq_rb_root) { RB_ROOT, NULL, }
77 * Per block device queue structure
79 struct cfq_data {
80 struct request_queue *queue;
83 * rr list of queues with requests and the count of them
85 struct cfq_rb_root service_tree;
86 unsigned int busy_queues;
88 int rq_in_driver;
89 int sync_flight;
92 * queue-depth detection
94 int rq_queued;
95 int hw_tag;
96 int hw_tag_samples;
97 int rq_in_driver_peak;
100 * idle window management
102 struct timer_list idle_slice_timer;
103 struct work_struct unplug_work;
105 struct cfq_queue *active_queue;
106 struct cfq_io_context *active_cic;
109 * async queue for each priority case
111 struct cfq_queue *async_cfqq[2][IOPRIO_BE_NR];
112 struct cfq_queue *async_idle_cfqq;
114 sector_t last_position;
115 unsigned long last_end_request;
118 * tunables, see top of file
120 unsigned int cfq_quantum;
121 unsigned int cfq_fifo_expire[2];
122 unsigned int cfq_back_penalty;
123 unsigned int cfq_back_max;
124 unsigned int cfq_slice[2];
125 unsigned int cfq_slice_async_rq;
126 unsigned int cfq_slice_idle;
128 struct list_head cic_list;
132 * Per process-grouping structure
134 struct cfq_queue {
135 /* reference count */
136 atomic_t ref;
137 /* various state flags, see below */
138 unsigned int flags;
139 /* parent cfq_data */
140 struct cfq_data *cfqd;
141 /* service_tree member */
142 struct rb_node rb_node;
143 /* service_tree key */
144 unsigned long rb_key;
145 /* sorted list of pending requests */
146 struct rb_root sort_list;
147 /* if fifo isn't expired, next request to serve */
148 struct request *next_rq;
149 /* requests queued in sort_list */
150 int queued[2];
151 /* currently allocated requests */
152 int allocated[2];
153 /* fifo list of requests in sort_list */
154 struct list_head fifo;
156 unsigned long slice_end;
157 long slice_resid;
159 /* pending metadata requests */
160 int meta_pending;
161 /* number of requests that are on the dispatch list or inside driver */
162 int dispatched;
164 /* io prio of this group */
165 unsigned short ioprio, org_ioprio;
166 unsigned short ioprio_class, org_ioprio_class;
168 pid_t pid;
171 enum cfqq_state_flags {
172 CFQ_CFQQ_FLAG_on_rr = 0, /* on round-robin busy list */
173 CFQ_CFQQ_FLAG_wait_request, /* waiting for a request */
174 CFQ_CFQQ_FLAG_must_alloc, /* must be allowed rq alloc */
175 CFQ_CFQQ_FLAG_must_alloc_slice, /* per-slice must_alloc flag */
176 CFQ_CFQQ_FLAG_must_dispatch, /* must dispatch, even if expired */
177 CFQ_CFQQ_FLAG_fifo_expire, /* FIFO checked in this slice */
178 CFQ_CFQQ_FLAG_idle_window, /* slice idling enabled */
179 CFQ_CFQQ_FLAG_prio_changed, /* task priority has changed */
180 CFQ_CFQQ_FLAG_queue_new, /* queue never been serviced */
181 CFQ_CFQQ_FLAG_slice_new, /* no requests dispatched in slice */
182 CFQ_CFQQ_FLAG_sync, /* synchronous queue */
185 #define CFQ_CFQQ_FNS(name) \
186 static inline void cfq_mark_cfqq_##name(struct cfq_queue *cfqq) \
188 (cfqq)->flags |= (1 << CFQ_CFQQ_FLAG_##name); \
190 static inline void cfq_clear_cfqq_##name(struct cfq_queue *cfqq) \
192 (cfqq)->flags &= ~(1 << CFQ_CFQQ_FLAG_##name); \
194 static inline int cfq_cfqq_##name(const struct cfq_queue *cfqq) \
196 return ((cfqq)->flags & (1 << CFQ_CFQQ_FLAG_##name)) != 0; \
199 CFQ_CFQQ_FNS(on_rr);
200 CFQ_CFQQ_FNS(wait_request);
201 CFQ_CFQQ_FNS(must_alloc);
202 CFQ_CFQQ_FNS(must_alloc_slice);
203 CFQ_CFQQ_FNS(must_dispatch);
204 CFQ_CFQQ_FNS(fifo_expire);
205 CFQ_CFQQ_FNS(idle_window);
206 CFQ_CFQQ_FNS(prio_changed);
207 CFQ_CFQQ_FNS(queue_new);
208 CFQ_CFQQ_FNS(slice_new);
209 CFQ_CFQQ_FNS(sync);
210 #undef CFQ_CFQQ_FNS
212 #define cfq_log_cfqq(cfqd, cfqq, fmt, args...) \
213 blk_add_trace_msg((cfqd)->queue, "cfq%d " fmt, (cfqq)->pid, ##args)
214 #define cfq_log(cfqd, fmt, args...) \
215 blk_add_trace_msg((cfqd)->queue, "cfq " fmt, ##args)
217 static void cfq_dispatch_insert(struct request_queue *, struct request *);
218 static struct cfq_queue *cfq_get_queue(struct cfq_data *, int,
219 struct io_context *, gfp_t);
220 static struct cfq_io_context *cfq_cic_lookup(struct cfq_data *,
221 struct io_context *);
223 static inline struct cfq_queue *cic_to_cfqq(struct cfq_io_context *cic,
224 int is_sync)
226 return cic->cfqq[!!is_sync];
229 static inline void cic_set_cfqq(struct cfq_io_context *cic,
230 struct cfq_queue *cfqq, int is_sync)
232 cic->cfqq[!!is_sync] = cfqq;
236 * We regard a request as SYNC, if it's either a read or has the SYNC bit
237 * set (in which case it could also be direct WRITE).
239 static inline int cfq_bio_sync(struct bio *bio)
241 if (bio_data_dir(bio) == READ || bio_sync(bio))
242 return 1;
244 return 0;
248 * scheduler run of queue, if there are requests pending and no one in the
249 * driver that will restart queueing
251 static inline void cfq_schedule_dispatch(struct cfq_data *cfqd)
253 if (cfqd->busy_queues) {
254 cfq_log(cfqd, "schedule dispatch");
255 kblockd_schedule_work(cfqd->queue, &cfqd->unplug_work);
259 static int cfq_queue_empty(struct request_queue *q)
261 struct cfq_data *cfqd = q->elevator->elevator_data;
263 return !cfqd->busy_queues;
267 * Scale schedule slice based on io priority. Use the sync time slice only
268 * if a queue is marked sync and has sync io queued. A sync queue with async
269 * io only, should not get full sync slice length.
271 static inline int cfq_prio_slice(struct cfq_data *cfqd, int sync,
272 unsigned short prio)
274 const int base_slice = cfqd->cfq_slice[sync];
276 WARN_ON(prio >= IOPRIO_BE_NR);
278 return base_slice + (base_slice/CFQ_SLICE_SCALE * (4 - prio));
281 static inline int
282 cfq_prio_to_slice(struct cfq_data *cfqd, struct cfq_queue *cfqq)
284 return cfq_prio_slice(cfqd, cfq_cfqq_sync(cfqq), cfqq->ioprio);
287 static inline void
288 cfq_set_prio_slice(struct cfq_data *cfqd, struct cfq_queue *cfqq)
290 cfqq->slice_end = cfq_prio_to_slice(cfqd, cfqq) + jiffies;
291 cfq_log_cfqq(cfqd, cfqq, "set_slice=%lu", cfqq->slice_end - jiffies);
295 * We need to wrap this check in cfq_cfqq_slice_new(), since ->slice_end
296 * isn't valid until the first request from the dispatch is activated
297 * and the slice time set.
299 static inline int cfq_slice_used(struct cfq_queue *cfqq)
301 if (cfq_cfqq_slice_new(cfqq))
302 return 0;
303 if (time_before(jiffies, cfqq->slice_end))
304 return 0;
306 return 1;
310 * Lifted from AS - choose which of rq1 and rq2 that is best served now.
311 * We choose the request that is closest to the head right now. Distance
312 * behind the head is penalized and only allowed to a certain extent.
314 static struct request *
315 cfq_choose_req(struct cfq_data *cfqd, struct request *rq1, struct request *rq2)
317 sector_t last, s1, s2, d1 = 0, d2 = 0;
318 unsigned long back_max;
319 #define CFQ_RQ1_WRAP 0x01 /* request 1 wraps */
320 #define CFQ_RQ2_WRAP 0x02 /* request 2 wraps */
321 unsigned wrap = 0; /* bit mask: requests behind the disk head? */
323 if (rq1 == NULL || rq1 == rq2)
324 return rq2;
325 if (rq2 == NULL)
326 return rq1;
328 if (rq_is_sync(rq1) && !rq_is_sync(rq2))
329 return rq1;
330 else if (rq_is_sync(rq2) && !rq_is_sync(rq1))
331 return rq2;
332 if (rq_is_meta(rq1) && !rq_is_meta(rq2))
333 return rq1;
334 else if (rq_is_meta(rq2) && !rq_is_meta(rq1))
335 return rq2;
337 s1 = rq1->sector;
338 s2 = rq2->sector;
340 last = cfqd->last_position;
343 * by definition, 1KiB is 2 sectors
345 back_max = cfqd->cfq_back_max * 2;
348 * Strict one way elevator _except_ in the case where we allow
349 * short backward seeks which are biased as twice the cost of a
350 * similar forward seek.
352 if (s1 >= last)
353 d1 = s1 - last;
354 else if (s1 + back_max >= last)
355 d1 = (last - s1) * cfqd->cfq_back_penalty;
356 else
357 wrap |= CFQ_RQ1_WRAP;
359 if (s2 >= last)
360 d2 = s2 - last;
361 else if (s2 + back_max >= last)
362 d2 = (last - s2) * cfqd->cfq_back_penalty;
363 else
364 wrap |= CFQ_RQ2_WRAP;
366 /* Found required data */
369 * By doing switch() on the bit mask "wrap" we avoid having to
370 * check two variables for all permutations: --> faster!
372 switch (wrap) {
373 case 0: /* common case for CFQ: rq1 and rq2 not wrapped */
374 if (d1 < d2)
375 return rq1;
376 else if (d2 < d1)
377 return rq2;
378 else {
379 if (s1 >= s2)
380 return rq1;
381 else
382 return rq2;
385 case CFQ_RQ2_WRAP:
386 return rq1;
387 case CFQ_RQ1_WRAP:
388 return rq2;
389 case (CFQ_RQ1_WRAP|CFQ_RQ2_WRAP): /* both rqs wrapped */
390 default:
392 * Since both rqs are wrapped,
393 * start with the one that's further behind head
394 * (--> only *one* back seek required),
395 * since back seek takes more time than forward.
397 if (s1 <= s2)
398 return rq1;
399 else
400 return rq2;
405 * The below is leftmost cache rbtree addon
407 static struct cfq_queue *cfq_rb_first(struct cfq_rb_root *root)
409 if (!root->left)
410 root->left = rb_first(&root->rb);
412 if (root->left)
413 return rb_entry(root->left, struct cfq_queue, rb_node);
415 return NULL;
418 static void cfq_rb_erase(struct rb_node *n, struct cfq_rb_root *root)
420 if (root->left == n)
421 root->left = NULL;
423 rb_erase(n, &root->rb);
424 RB_CLEAR_NODE(n);
428 * would be nice to take fifo expire time into account as well
430 static struct request *
431 cfq_find_next_rq(struct cfq_data *cfqd, struct cfq_queue *cfqq,
432 struct request *last)
434 struct rb_node *rbnext = rb_next(&last->rb_node);
435 struct rb_node *rbprev = rb_prev(&last->rb_node);
436 struct request *next = NULL, *prev = NULL;
438 BUG_ON(RB_EMPTY_NODE(&last->rb_node));
440 if (rbprev)
441 prev = rb_entry_rq(rbprev);
443 if (rbnext)
444 next = rb_entry_rq(rbnext);
445 else {
446 rbnext = rb_first(&cfqq->sort_list);
447 if (rbnext && rbnext != &last->rb_node)
448 next = rb_entry_rq(rbnext);
451 return cfq_choose_req(cfqd, next, prev);
454 static unsigned long cfq_slice_offset(struct cfq_data *cfqd,
455 struct cfq_queue *cfqq)
458 * just an approximation, should be ok.
460 return (cfqd->busy_queues - 1) * (cfq_prio_slice(cfqd, 1, 0) -
461 cfq_prio_slice(cfqd, cfq_cfqq_sync(cfqq), cfqq->ioprio));
465 * The cfqd->service_tree holds all pending cfq_queue's that have
466 * requests waiting to be processed. It is sorted in the order that
467 * we will service the queues.
469 static void cfq_service_tree_add(struct cfq_data *cfqd,
470 struct cfq_queue *cfqq, int add_front)
472 struct rb_node **p, *parent;
473 struct cfq_queue *__cfqq;
474 unsigned long rb_key;
475 int left;
477 if (cfq_class_idle(cfqq)) {
478 rb_key = CFQ_IDLE_DELAY;
479 parent = rb_last(&cfqd->service_tree.rb);
480 if (parent && parent != &cfqq->rb_node) {
481 __cfqq = rb_entry(parent, struct cfq_queue, rb_node);
482 rb_key += __cfqq->rb_key;
483 } else
484 rb_key += jiffies;
485 } else if (!add_front) {
486 rb_key = cfq_slice_offset(cfqd, cfqq) + jiffies;
487 rb_key += cfqq->slice_resid;
488 cfqq->slice_resid = 0;
489 } else
490 rb_key = 0;
492 if (!RB_EMPTY_NODE(&cfqq->rb_node)) {
494 * same position, nothing more to do
496 if (rb_key == cfqq->rb_key)
497 return;
499 cfq_rb_erase(&cfqq->rb_node, &cfqd->service_tree);
502 left = 1;
503 parent = NULL;
504 p = &cfqd->service_tree.rb.rb_node;
505 while (*p) {
506 struct rb_node **n;
508 parent = *p;
509 __cfqq = rb_entry(parent, struct cfq_queue, rb_node);
512 * sort RT queues first, we always want to give
513 * preference to them. IDLE queues goes to the back.
514 * after that, sort on the next service time.
516 if (cfq_class_rt(cfqq) > cfq_class_rt(__cfqq))
517 n = &(*p)->rb_left;
518 else if (cfq_class_rt(cfqq) < cfq_class_rt(__cfqq))
519 n = &(*p)->rb_right;
520 else if (cfq_class_idle(cfqq) < cfq_class_idle(__cfqq))
521 n = &(*p)->rb_left;
522 else if (cfq_class_idle(cfqq) > cfq_class_idle(__cfqq))
523 n = &(*p)->rb_right;
524 else if (rb_key < __cfqq->rb_key)
525 n = &(*p)->rb_left;
526 else
527 n = &(*p)->rb_right;
529 if (n == &(*p)->rb_right)
530 left = 0;
532 p = n;
535 if (left)
536 cfqd->service_tree.left = &cfqq->rb_node;
538 cfqq->rb_key = rb_key;
539 rb_link_node(&cfqq->rb_node, parent, p);
540 rb_insert_color(&cfqq->rb_node, &cfqd->service_tree.rb);
544 * Update cfqq's position in the service tree.
546 static void cfq_resort_rr_list(struct cfq_data *cfqd, struct cfq_queue *cfqq)
549 * Resorting requires the cfqq to be on the RR list already.
551 if (cfq_cfqq_on_rr(cfqq))
552 cfq_service_tree_add(cfqd, cfqq, 0);
556 * add to busy list of queues for service, trying to be fair in ordering
557 * the pending list according to last request service
559 static void cfq_add_cfqq_rr(struct cfq_data *cfqd, struct cfq_queue *cfqq)
561 cfq_log_cfqq(cfqd, cfqq, "add_to_rr");
562 BUG_ON(cfq_cfqq_on_rr(cfqq));
563 cfq_mark_cfqq_on_rr(cfqq);
564 cfqd->busy_queues++;
566 cfq_resort_rr_list(cfqd, cfqq);
570 * Called when the cfqq no longer has requests pending, remove it from
571 * the service tree.
573 static void cfq_del_cfqq_rr(struct cfq_data *cfqd, struct cfq_queue *cfqq)
575 cfq_log_cfqq(cfqd, cfqq, "del_from_rr");
576 BUG_ON(!cfq_cfqq_on_rr(cfqq));
577 cfq_clear_cfqq_on_rr(cfqq);
579 if (!RB_EMPTY_NODE(&cfqq->rb_node))
580 cfq_rb_erase(&cfqq->rb_node, &cfqd->service_tree);
582 BUG_ON(!cfqd->busy_queues);
583 cfqd->busy_queues--;
587 * rb tree support functions
589 static void cfq_del_rq_rb(struct request *rq)
591 struct cfq_queue *cfqq = RQ_CFQQ(rq);
592 struct cfq_data *cfqd = cfqq->cfqd;
593 const int sync = rq_is_sync(rq);
595 BUG_ON(!cfqq->queued[sync]);
596 cfqq->queued[sync]--;
598 elv_rb_del(&cfqq->sort_list, rq);
600 if (cfq_cfqq_on_rr(cfqq) && RB_EMPTY_ROOT(&cfqq->sort_list))
601 cfq_del_cfqq_rr(cfqd, cfqq);
604 static void cfq_add_rq_rb(struct request *rq)
606 struct cfq_queue *cfqq = RQ_CFQQ(rq);
607 struct cfq_data *cfqd = cfqq->cfqd;
608 struct request *__alias;
610 cfqq->queued[rq_is_sync(rq)]++;
613 * looks a little odd, but the first insert might return an alias.
614 * if that happens, put the alias on the dispatch list
616 while ((__alias = elv_rb_add(&cfqq->sort_list, rq)) != NULL)
617 cfq_dispatch_insert(cfqd->queue, __alias);
619 if (!cfq_cfqq_on_rr(cfqq))
620 cfq_add_cfqq_rr(cfqd, cfqq);
623 * check if this request is a better next-serve candidate
625 cfqq->next_rq = cfq_choose_req(cfqd, cfqq->next_rq, rq);
626 BUG_ON(!cfqq->next_rq);
629 static void cfq_reposition_rq_rb(struct cfq_queue *cfqq, struct request *rq)
631 elv_rb_del(&cfqq->sort_list, rq);
632 cfqq->queued[rq_is_sync(rq)]--;
633 cfq_add_rq_rb(rq);
636 static struct request *
637 cfq_find_rq_fmerge(struct cfq_data *cfqd, struct bio *bio)
639 struct task_struct *tsk = current;
640 struct cfq_io_context *cic;
641 struct cfq_queue *cfqq;
643 cic = cfq_cic_lookup(cfqd, tsk->io_context);
644 if (!cic)
645 return NULL;
647 cfqq = cic_to_cfqq(cic, cfq_bio_sync(bio));
648 if (cfqq) {
649 sector_t sector = bio->bi_sector + bio_sectors(bio);
651 return elv_rb_find(&cfqq->sort_list, sector);
654 return NULL;
657 static void cfq_activate_request(struct request_queue *q, struct request *rq)
659 struct cfq_data *cfqd = q->elevator->elevator_data;
661 cfqd->rq_in_driver++;
662 cfq_log_cfqq(cfqd, RQ_CFQQ(rq), "activate rq, drv=%d",
663 cfqd->rq_in_driver);
665 cfqd->last_position = rq->hard_sector + rq->hard_nr_sectors;
668 static void cfq_deactivate_request(struct request_queue *q, struct request *rq)
670 struct cfq_data *cfqd = q->elevator->elevator_data;
672 WARN_ON(!cfqd->rq_in_driver);
673 cfqd->rq_in_driver--;
674 cfq_log_cfqq(cfqd, RQ_CFQQ(rq), "deactivate rq, drv=%d",
675 cfqd->rq_in_driver);
678 static void cfq_remove_request(struct request *rq)
680 struct cfq_queue *cfqq = RQ_CFQQ(rq);
682 if (cfqq->next_rq == rq)
683 cfqq->next_rq = cfq_find_next_rq(cfqq->cfqd, cfqq, rq);
685 list_del_init(&rq->queuelist);
686 cfq_del_rq_rb(rq);
688 cfqq->cfqd->rq_queued--;
689 if (rq_is_meta(rq)) {
690 WARN_ON(!cfqq->meta_pending);
691 cfqq->meta_pending--;
695 static int cfq_merge(struct request_queue *q, struct request **req,
696 struct bio *bio)
698 struct cfq_data *cfqd = q->elevator->elevator_data;
699 struct request *__rq;
701 __rq = cfq_find_rq_fmerge(cfqd, bio);
702 if (__rq && elv_rq_merge_ok(__rq, bio)) {
703 *req = __rq;
704 return ELEVATOR_FRONT_MERGE;
707 return ELEVATOR_NO_MERGE;
710 static void cfq_merged_request(struct request_queue *q, struct request *req,
711 int type)
713 if (type == ELEVATOR_FRONT_MERGE) {
714 struct cfq_queue *cfqq = RQ_CFQQ(req);
716 cfq_reposition_rq_rb(cfqq, req);
720 static void
721 cfq_merged_requests(struct request_queue *q, struct request *rq,
722 struct request *next)
725 * reposition in fifo if next is older than rq
727 if (!list_empty(&rq->queuelist) && !list_empty(&next->queuelist) &&
728 time_before(next->start_time, rq->start_time))
729 list_move(&rq->queuelist, &next->queuelist);
731 cfq_remove_request(next);
734 static int cfq_allow_merge(struct request_queue *q, struct request *rq,
735 struct bio *bio)
737 struct cfq_data *cfqd = q->elevator->elevator_data;
738 struct cfq_io_context *cic;
739 struct cfq_queue *cfqq;
742 * Disallow merge of a sync bio into an async request.
744 if (cfq_bio_sync(bio) && !rq_is_sync(rq))
745 return 0;
748 * Lookup the cfqq that this bio will be queued with. Allow
749 * merge only if rq is queued there.
751 cic = cfq_cic_lookup(cfqd, current->io_context);
752 if (!cic)
753 return 0;
755 cfqq = cic_to_cfqq(cic, cfq_bio_sync(bio));
756 if (cfqq == RQ_CFQQ(rq))
757 return 1;
759 return 0;
762 static void __cfq_set_active_queue(struct cfq_data *cfqd,
763 struct cfq_queue *cfqq)
765 if (cfqq) {
766 cfq_log_cfqq(cfqd, cfqq, "set_active");
767 cfqq->slice_end = 0;
768 cfq_clear_cfqq_must_alloc_slice(cfqq);
769 cfq_clear_cfqq_fifo_expire(cfqq);
770 cfq_mark_cfqq_slice_new(cfqq);
771 cfq_clear_cfqq_queue_new(cfqq);
774 cfqd->active_queue = cfqq;
778 * current cfqq expired its slice (or was too idle), select new one
780 static void
781 __cfq_slice_expired(struct cfq_data *cfqd, struct cfq_queue *cfqq,
782 int timed_out)
784 cfq_log_cfqq(cfqd, cfqq, "slice expired t=%d", timed_out);
786 if (cfq_cfqq_wait_request(cfqq))
787 del_timer(&cfqd->idle_slice_timer);
789 cfq_clear_cfqq_must_dispatch(cfqq);
790 cfq_clear_cfqq_wait_request(cfqq);
793 * store what was left of this slice, if the queue idled/timed out
795 if (timed_out && !cfq_cfqq_slice_new(cfqq)) {
796 cfqq->slice_resid = cfqq->slice_end - jiffies;
797 cfq_log_cfqq(cfqd, cfqq, "resid=%ld", cfqq->slice_resid);
800 cfq_resort_rr_list(cfqd, cfqq);
802 if (cfqq == cfqd->active_queue)
803 cfqd->active_queue = NULL;
805 if (cfqd->active_cic) {
806 put_io_context(cfqd->active_cic->ioc);
807 cfqd->active_cic = NULL;
811 static inline void cfq_slice_expired(struct cfq_data *cfqd, int timed_out)
813 struct cfq_queue *cfqq = cfqd->active_queue;
815 if (cfqq)
816 __cfq_slice_expired(cfqd, cfqq, timed_out);
820 * Get next queue for service. Unless we have a queue preemption,
821 * we'll simply select the first cfqq in the service tree.
823 static struct cfq_queue *cfq_get_next_queue(struct cfq_data *cfqd)
825 if (RB_EMPTY_ROOT(&cfqd->service_tree.rb))
826 return NULL;
828 return cfq_rb_first(&cfqd->service_tree);
832 * Get and set a new active queue for service.
834 static struct cfq_queue *cfq_set_active_queue(struct cfq_data *cfqd)
836 struct cfq_queue *cfqq;
838 cfqq = cfq_get_next_queue(cfqd);
839 __cfq_set_active_queue(cfqd, cfqq);
840 return cfqq;
843 static inline sector_t cfq_dist_from_last(struct cfq_data *cfqd,
844 struct request *rq)
846 if (rq->sector >= cfqd->last_position)
847 return rq->sector - cfqd->last_position;
848 else
849 return cfqd->last_position - rq->sector;
852 static inline int cfq_rq_close(struct cfq_data *cfqd, struct request *rq)
854 struct cfq_io_context *cic = cfqd->active_cic;
856 if (!sample_valid(cic->seek_samples))
857 return 0;
859 return cfq_dist_from_last(cfqd, rq) <= cic->seek_mean;
862 static int cfq_close_cooperator(struct cfq_data *cfq_data,
863 struct cfq_queue *cfqq)
866 * We should notice if some of the queues are cooperating, eg
867 * working closely on the same area of the disk. In that case,
868 * we can group them together and don't waste time idling.
870 return 0;
873 #define CIC_SEEKY(cic) ((cic)->seek_mean > (8 * 1024))
875 static void cfq_arm_slice_timer(struct cfq_data *cfqd)
877 struct cfq_queue *cfqq = cfqd->active_queue;
878 struct cfq_io_context *cic;
879 unsigned long sl;
882 * SSD device without seek penalty, disable idling. But only do so
883 * for devices that support queuing, otherwise we still have a problem
884 * with sync vs async workloads.
886 if (blk_queue_nonrot(cfqd->queue) && cfqd->hw_tag)
887 return;
889 WARN_ON(!RB_EMPTY_ROOT(&cfqq->sort_list));
890 WARN_ON(cfq_cfqq_slice_new(cfqq));
893 * idle is disabled, either manually or by past process history
895 if (!cfqd->cfq_slice_idle || !cfq_cfqq_idle_window(cfqq))
896 return;
899 * still requests with the driver, don't idle
901 if (cfqd->rq_in_driver)
902 return;
905 * task has exited, don't wait
907 cic = cfqd->active_cic;
908 if (!cic || !atomic_read(&cic->ioc->nr_tasks))
909 return;
912 * See if this prio level has a good candidate
914 if (cfq_close_cooperator(cfqd, cfqq) &&
915 (sample_valid(cic->ttime_samples) && cic->ttime_mean > 2))
916 return;
918 cfq_mark_cfqq_must_dispatch(cfqq);
919 cfq_mark_cfqq_wait_request(cfqq);
922 * we don't want to idle for seeks, but we do want to allow
923 * fair distribution of slice time for a process doing back-to-back
924 * seeks. so allow a little bit of time for him to submit a new rq
926 sl = cfqd->cfq_slice_idle;
927 if (sample_valid(cic->seek_samples) && CIC_SEEKY(cic))
928 sl = min(sl, msecs_to_jiffies(CFQ_MIN_TT));
930 mod_timer(&cfqd->idle_slice_timer, jiffies + sl);
931 cfq_log(cfqd, "arm_idle: %lu", sl);
935 * Move request from internal lists to the request queue dispatch list.
937 static void cfq_dispatch_insert(struct request_queue *q, struct request *rq)
939 struct cfq_data *cfqd = q->elevator->elevator_data;
940 struct cfq_queue *cfqq = RQ_CFQQ(rq);
942 cfq_log_cfqq(cfqd, cfqq, "dispatch_insert");
944 cfq_remove_request(rq);
945 cfqq->dispatched++;
946 elv_dispatch_sort(q, rq);
948 if (cfq_cfqq_sync(cfqq))
949 cfqd->sync_flight++;
953 * return expired entry, or NULL to just start from scratch in rbtree
955 static struct request *cfq_check_fifo(struct cfq_queue *cfqq)
957 struct cfq_data *cfqd = cfqq->cfqd;
958 struct request *rq;
959 int fifo;
961 if (cfq_cfqq_fifo_expire(cfqq))
962 return NULL;
964 cfq_mark_cfqq_fifo_expire(cfqq);
966 if (list_empty(&cfqq->fifo))
967 return NULL;
969 fifo = cfq_cfqq_sync(cfqq);
970 rq = rq_entry_fifo(cfqq->fifo.next);
972 if (time_before(jiffies, rq->start_time + cfqd->cfq_fifo_expire[fifo]))
973 rq = NULL;
975 cfq_log_cfqq(cfqd, cfqq, "fifo=%p", rq);
976 return rq;
979 static inline int
980 cfq_prio_to_maxrq(struct cfq_data *cfqd, struct cfq_queue *cfqq)
982 const int base_rq = cfqd->cfq_slice_async_rq;
984 WARN_ON(cfqq->ioprio >= IOPRIO_BE_NR);
986 return 2 * (base_rq + base_rq * (CFQ_PRIO_LISTS - 1 - cfqq->ioprio));
990 * Select a queue for service. If we have a current active queue,
991 * check whether to continue servicing it, or retrieve and set a new one.
993 static struct cfq_queue *cfq_select_queue(struct cfq_data *cfqd)
995 struct cfq_queue *cfqq;
997 cfqq = cfqd->active_queue;
998 if (!cfqq)
999 goto new_queue;
1002 * The active queue has run out of time, expire it and select new.
1004 if (cfq_slice_used(cfqq))
1005 goto expire;
1008 * The active queue has requests and isn't expired, allow it to
1009 * dispatch.
1011 if (!RB_EMPTY_ROOT(&cfqq->sort_list))
1012 goto keep_queue;
1015 * No requests pending. If the active queue still has requests in
1016 * flight or is idling for a new request, allow either of these
1017 * conditions to happen (or time out) before selecting a new queue.
1019 if (timer_pending(&cfqd->idle_slice_timer) ||
1020 (cfqq->dispatched && cfq_cfqq_idle_window(cfqq))) {
1021 cfqq = NULL;
1022 goto keep_queue;
1025 expire:
1026 cfq_slice_expired(cfqd, 0);
1027 new_queue:
1028 cfqq = cfq_set_active_queue(cfqd);
1029 keep_queue:
1030 return cfqq;
1034 * Dispatch some requests from cfqq, moving them to the request queue
1035 * dispatch list.
1037 static int
1038 __cfq_dispatch_requests(struct cfq_data *cfqd, struct cfq_queue *cfqq,
1039 int max_dispatch)
1041 int dispatched = 0;
1043 BUG_ON(RB_EMPTY_ROOT(&cfqq->sort_list));
1045 do {
1046 struct request *rq;
1049 * follow expired path, else get first next available
1051 rq = cfq_check_fifo(cfqq);
1052 if (rq == NULL)
1053 rq = cfqq->next_rq;
1056 * finally, insert request into driver dispatch list
1058 cfq_dispatch_insert(cfqd->queue, rq);
1060 dispatched++;
1062 if (!cfqd->active_cic) {
1063 atomic_inc(&RQ_CIC(rq)->ioc->refcount);
1064 cfqd->active_cic = RQ_CIC(rq);
1067 if (RB_EMPTY_ROOT(&cfqq->sort_list))
1068 break;
1070 } while (dispatched < max_dispatch);
1073 * expire an async queue immediately if it has used up its slice. idle
1074 * queue always expire after 1 dispatch round.
1076 if (cfqd->busy_queues > 1 && ((!cfq_cfqq_sync(cfqq) &&
1077 dispatched >= cfq_prio_to_maxrq(cfqd, cfqq)) ||
1078 cfq_class_idle(cfqq))) {
1079 cfqq->slice_end = jiffies + 1;
1080 cfq_slice_expired(cfqd, 0);
1083 return dispatched;
1086 static int __cfq_forced_dispatch_cfqq(struct cfq_queue *cfqq)
1088 int dispatched = 0;
1090 while (cfqq->next_rq) {
1091 cfq_dispatch_insert(cfqq->cfqd->queue, cfqq->next_rq);
1092 dispatched++;
1095 BUG_ON(!list_empty(&cfqq->fifo));
1096 return dispatched;
1100 * Drain our current requests. Used for barriers and when switching
1101 * io schedulers on-the-fly.
1103 static int cfq_forced_dispatch(struct cfq_data *cfqd)
1105 struct cfq_queue *cfqq;
1106 int dispatched = 0;
1108 while ((cfqq = cfq_rb_first(&cfqd->service_tree)) != NULL)
1109 dispatched += __cfq_forced_dispatch_cfqq(cfqq);
1111 cfq_slice_expired(cfqd, 0);
1113 BUG_ON(cfqd->busy_queues);
1115 cfq_log(cfqd, "forced_dispatch=%d\n", dispatched);
1116 return dispatched;
1119 static int cfq_dispatch_requests(struct request_queue *q, int force)
1121 struct cfq_data *cfqd = q->elevator->elevator_data;
1122 struct cfq_queue *cfqq;
1123 int dispatched;
1125 if (!cfqd->busy_queues)
1126 return 0;
1128 if (unlikely(force))
1129 return cfq_forced_dispatch(cfqd);
1131 dispatched = 0;
1132 while ((cfqq = cfq_select_queue(cfqd)) != NULL) {
1133 int max_dispatch;
1135 max_dispatch = cfqd->cfq_quantum;
1136 if (cfq_class_idle(cfqq))
1137 max_dispatch = 1;
1139 if (cfqq->dispatched >= max_dispatch && cfqd->busy_queues > 1)
1140 break;
1142 if (cfqd->sync_flight && !cfq_cfqq_sync(cfqq))
1143 break;
1145 cfq_clear_cfqq_must_dispatch(cfqq);
1146 cfq_clear_cfqq_wait_request(cfqq);
1147 del_timer(&cfqd->idle_slice_timer);
1149 dispatched += __cfq_dispatch_requests(cfqd, cfqq, max_dispatch);
1152 cfq_log(cfqd, "dispatched=%d", dispatched);
1153 return dispatched;
1157 * task holds one reference to the queue, dropped when task exits. each rq
1158 * in-flight on this queue also holds a reference, dropped when rq is freed.
1160 * queue lock must be held here.
1162 static void cfq_put_queue(struct cfq_queue *cfqq)
1164 struct cfq_data *cfqd = cfqq->cfqd;
1166 BUG_ON(atomic_read(&cfqq->ref) <= 0);
1168 if (!atomic_dec_and_test(&cfqq->ref))
1169 return;
1171 cfq_log_cfqq(cfqd, cfqq, "put_queue");
1172 BUG_ON(rb_first(&cfqq->sort_list));
1173 BUG_ON(cfqq->allocated[READ] + cfqq->allocated[WRITE]);
1174 BUG_ON(cfq_cfqq_on_rr(cfqq));
1176 if (unlikely(cfqd->active_queue == cfqq)) {
1177 __cfq_slice_expired(cfqd, cfqq, 0);
1178 cfq_schedule_dispatch(cfqd);
1181 kmem_cache_free(cfq_pool, cfqq);
1185 * Must always be called with the rcu_read_lock() held
1187 static void
1188 __call_for_each_cic(struct io_context *ioc,
1189 void (*func)(struct io_context *, struct cfq_io_context *))
1191 struct cfq_io_context *cic;
1192 struct hlist_node *n;
1194 hlist_for_each_entry_rcu(cic, n, &ioc->cic_list, cic_list)
1195 func(ioc, cic);
1199 * Call func for each cic attached to this ioc.
1201 static void
1202 call_for_each_cic(struct io_context *ioc,
1203 void (*func)(struct io_context *, struct cfq_io_context *))
1205 rcu_read_lock();
1206 __call_for_each_cic(ioc, func);
1207 rcu_read_unlock();
1210 static void cfq_cic_free_rcu(struct rcu_head *head)
1212 struct cfq_io_context *cic;
1214 cic = container_of(head, struct cfq_io_context, rcu_head);
1216 kmem_cache_free(cfq_ioc_pool, cic);
1217 elv_ioc_count_dec(ioc_count);
1219 if (ioc_gone) {
1221 * CFQ scheduler is exiting, grab exit lock and check
1222 * the pending io context count. If it hits zero,
1223 * complete ioc_gone and set it back to NULL
1225 spin_lock(&ioc_gone_lock);
1226 if (ioc_gone && !elv_ioc_count_read(ioc_count)) {
1227 complete(ioc_gone);
1228 ioc_gone = NULL;
1230 spin_unlock(&ioc_gone_lock);
1234 static void cfq_cic_free(struct cfq_io_context *cic)
1236 call_rcu(&cic->rcu_head, cfq_cic_free_rcu);
1239 static void cic_free_func(struct io_context *ioc, struct cfq_io_context *cic)
1241 unsigned long flags;
1243 BUG_ON(!cic->dead_key);
1245 spin_lock_irqsave(&ioc->lock, flags);
1246 radix_tree_delete(&ioc->radix_root, cic->dead_key);
1247 hlist_del_rcu(&cic->cic_list);
1248 spin_unlock_irqrestore(&ioc->lock, flags);
1250 cfq_cic_free(cic);
1254 * Must be called with rcu_read_lock() held or preemption otherwise disabled.
1255 * Only two callers of this - ->dtor() which is called with the rcu_read_lock(),
1256 * and ->trim() which is called with the task lock held
1258 static void cfq_free_io_context(struct io_context *ioc)
1261 * ioc->refcount is zero here, or we are called from elv_unregister(),
1262 * so no more cic's are allowed to be linked into this ioc. So it
1263 * should be ok to iterate over the known list, we will see all cic's
1264 * since no new ones are added.
1266 __call_for_each_cic(ioc, cic_free_func);
1269 static void cfq_exit_cfqq(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1271 if (unlikely(cfqq == cfqd->active_queue)) {
1272 __cfq_slice_expired(cfqd, cfqq, 0);
1273 cfq_schedule_dispatch(cfqd);
1276 cfq_put_queue(cfqq);
1279 static void __cfq_exit_single_io_context(struct cfq_data *cfqd,
1280 struct cfq_io_context *cic)
1282 struct io_context *ioc = cic->ioc;
1284 list_del_init(&cic->queue_list);
1287 * Make sure key == NULL is seen for dead queues
1289 smp_wmb();
1290 cic->dead_key = (unsigned long) cic->key;
1291 cic->key = NULL;
1293 if (ioc->ioc_data == cic)
1294 rcu_assign_pointer(ioc->ioc_data, NULL);
1296 if (cic->cfqq[ASYNC]) {
1297 cfq_exit_cfqq(cfqd, cic->cfqq[ASYNC]);
1298 cic->cfqq[ASYNC] = NULL;
1301 if (cic->cfqq[SYNC]) {
1302 cfq_exit_cfqq(cfqd, cic->cfqq[SYNC]);
1303 cic->cfqq[SYNC] = NULL;
1307 static void cfq_exit_single_io_context(struct io_context *ioc,
1308 struct cfq_io_context *cic)
1310 struct cfq_data *cfqd = cic->key;
1312 if (cfqd) {
1313 struct request_queue *q = cfqd->queue;
1314 unsigned long flags;
1316 spin_lock_irqsave(q->queue_lock, flags);
1319 * Ensure we get a fresh copy of the ->key to prevent
1320 * race between exiting task and queue
1322 smp_read_barrier_depends();
1323 if (cic->key)
1324 __cfq_exit_single_io_context(cfqd, cic);
1326 spin_unlock_irqrestore(q->queue_lock, flags);
1331 * The process that ioc belongs to has exited, we need to clean up
1332 * and put the internal structures we have that belongs to that process.
1334 static void cfq_exit_io_context(struct io_context *ioc)
1336 call_for_each_cic(ioc, cfq_exit_single_io_context);
1339 static struct cfq_io_context *
1340 cfq_alloc_io_context(struct cfq_data *cfqd, gfp_t gfp_mask)
1342 struct cfq_io_context *cic;
1344 cic = kmem_cache_alloc_node(cfq_ioc_pool, gfp_mask | __GFP_ZERO,
1345 cfqd->queue->node);
1346 if (cic) {
1347 cic->last_end_request = jiffies;
1348 INIT_LIST_HEAD(&cic->queue_list);
1349 INIT_HLIST_NODE(&cic->cic_list);
1350 cic->dtor = cfq_free_io_context;
1351 cic->exit = cfq_exit_io_context;
1352 elv_ioc_count_inc(ioc_count);
1355 return cic;
1358 static void cfq_init_prio_data(struct cfq_queue *cfqq, struct io_context *ioc)
1360 struct task_struct *tsk = current;
1361 int ioprio_class;
1363 if (!cfq_cfqq_prio_changed(cfqq))
1364 return;
1366 ioprio_class = IOPRIO_PRIO_CLASS(ioc->ioprio);
1367 switch (ioprio_class) {
1368 default:
1369 printk(KERN_ERR "cfq: bad prio %x\n", ioprio_class);
1370 case IOPRIO_CLASS_NONE:
1372 * no prio set, inherit CPU scheduling settings
1374 cfqq->ioprio = task_nice_ioprio(tsk);
1375 cfqq->ioprio_class = task_nice_ioclass(tsk);
1376 break;
1377 case IOPRIO_CLASS_RT:
1378 cfqq->ioprio = task_ioprio(ioc);
1379 cfqq->ioprio_class = IOPRIO_CLASS_RT;
1380 break;
1381 case IOPRIO_CLASS_BE:
1382 cfqq->ioprio = task_ioprio(ioc);
1383 cfqq->ioprio_class = IOPRIO_CLASS_BE;
1384 break;
1385 case IOPRIO_CLASS_IDLE:
1386 cfqq->ioprio_class = IOPRIO_CLASS_IDLE;
1387 cfqq->ioprio = 7;
1388 cfq_clear_cfqq_idle_window(cfqq);
1389 break;
1393 * keep track of original prio settings in case we have to temporarily
1394 * elevate the priority of this queue
1396 cfqq->org_ioprio = cfqq->ioprio;
1397 cfqq->org_ioprio_class = cfqq->ioprio_class;
1398 cfq_clear_cfqq_prio_changed(cfqq);
1401 static void changed_ioprio(struct io_context *ioc, struct cfq_io_context *cic)
1403 struct cfq_data *cfqd = cic->key;
1404 struct cfq_queue *cfqq;
1405 unsigned long flags;
1407 if (unlikely(!cfqd))
1408 return;
1410 spin_lock_irqsave(cfqd->queue->queue_lock, flags);
1412 cfqq = cic->cfqq[ASYNC];
1413 if (cfqq) {
1414 struct cfq_queue *new_cfqq;
1415 new_cfqq = cfq_get_queue(cfqd, ASYNC, cic->ioc, GFP_ATOMIC);
1416 if (new_cfqq) {
1417 cic->cfqq[ASYNC] = new_cfqq;
1418 cfq_put_queue(cfqq);
1422 cfqq = cic->cfqq[SYNC];
1423 if (cfqq)
1424 cfq_mark_cfqq_prio_changed(cfqq);
1426 spin_unlock_irqrestore(cfqd->queue->queue_lock, flags);
1429 static void cfq_ioc_set_ioprio(struct io_context *ioc)
1431 call_for_each_cic(ioc, changed_ioprio);
1432 ioc->ioprio_changed = 0;
1435 static struct cfq_queue *
1436 cfq_find_alloc_queue(struct cfq_data *cfqd, int is_sync,
1437 struct io_context *ioc, gfp_t gfp_mask)
1439 struct cfq_queue *cfqq, *new_cfqq = NULL;
1440 struct cfq_io_context *cic;
1442 retry:
1443 cic = cfq_cic_lookup(cfqd, ioc);
1444 /* cic always exists here */
1445 cfqq = cic_to_cfqq(cic, is_sync);
1447 if (!cfqq) {
1448 if (new_cfqq) {
1449 cfqq = new_cfqq;
1450 new_cfqq = NULL;
1451 } else if (gfp_mask & __GFP_WAIT) {
1453 * Inform the allocator of the fact that we will
1454 * just repeat this allocation if it fails, to allow
1455 * the allocator to do whatever it needs to attempt to
1456 * free memory.
1458 spin_unlock_irq(cfqd->queue->queue_lock);
1459 new_cfqq = kmem_cache_alloc_node(cfq_pool,
1460 gfp_mask | __GFP_NOFAIL | __GFP_ZERO,
1461 cfqd->queue->node);
1462 spin_lock_irq(cfqd->queue->queue_lock);
1463 goto retry;
1464 } else {
1465 cfqq = kmem_cache_alloc_node(cfq_pool,
1466 gfp_mask | __GFP_ZERO,
1467 cfqd->queue->node);
1468 if (!cfqq)
1469 goto out;
1472 RB_CLEAR_NODE(&cfqq->rb_node);
1473 INIT_LIST_HEAD(&cfqq->fifo);
1475 atomic_set(&cfqq->ref, 0);
1476 cfqq->cfqd = cfqd;
1478 cfq_mark_cfqq_prio_changed(cfqq);
1479 cfq_mark_cfqq_queue_new(cfqq);
1481 cfq_init_prio_data(cfqq, ioc);
1483 if (is_sync) {
1484 if (!cfq_class_idle(cfqq))
1485 cfq_mark_cfqq_idle_window(cfqq);
1486 cfq_mark_cfqq_sync(cfqq);
1488 cfqq->pid = current->pid;
1489 cfq_log_cfqq(cfqd, cfqq, "alloced");
1492 if (new_cfqq)
1493 kmem_cache_free(cfq_pool, new_cfqq);
1495 out:
1496 WARN_ON((gfp_mask & __GFP_WAIT) && !cfqq);
1497 return cfqq;
1500 static struct cfq_queue **
1501 cfq_async_queue_prio(struct cfq_data *cfqd, int ioprio_class, int ioprio)
1503 switch (ioprio_class) {
1504 case IOPRIO_CLASS_RT:
1505 return &cfqd->async_cfqq[0][ioprio];
1506 case IOPRIO_CLASS_BE:
1507 return &cfqd->async_cfqq[1][ioprio];
1508 case IOPRIO_CLASS_IDLE:
1509 return &cfqd->async_idle_cfqq;
1510 default:
1511 BUG();
1515 static struct cfq_queue *
1516 cfq_get_queue(struct cfq_data *cfqd, int is_sync, struct io_context *ioc,
1517 gfp_t gfp_mask)
1519 const int ioprio = task_ioprio(ioc);
1520 const int ioprio_class = task_ioprio_class(ioc);
1521 struct cfq_queue **async_cfqq = NULL;
1522 struct cfq_queue *cfqq = NULL;
1524 if (!is_sync) {
1525 async_cfqq = cfq_async_queue_prio(cfqd, ioprio_class, ioprio);
1526 cfqq = *async_cfqq;
1529 if (!cfqq) {
1530 cfqq = cfq_find_alloc_queue(cfqd, is_sync, ioc, gfp_mask);
1531 if (!cfqq)
1532 return NULL;
1536 * pin the queue now that it's allocated, scheduler exit will prune it
1538 if (!is_sync && !(*async_cfqq)) {
1539 atomic_inc(&cfqq->ref);
1540 *async_cfqq = cfqq;
1543 atomic_inc(&cfqq->ref);
1544 return cfqq;
1548 * We drop cfq io contexts lazily, so we may find a dead one.
1550 static void
1551 cfq_drop_dead_cic(struct cfq_data *cfqd, struct io_context *ioc,
1552 struct cfq_io_context *cic)
1554 unsigned long flags;
1556 WARN_ON(!list_empty(&cic->queue_list));
1558 spin_lock_irqsave(&ioc->lock, flags);
1560 BUG_ON(ioc->ioc_data == cic);
1562 radix_tree_delete(&ioc->radix_root, (unsigned long) cfqd);
1563 hlist_del_rcu(&cic->cic_list);
1564 spin_unlock_irqrestore(&ioc->lock, flags);
1566 cfq_cic_free(cic);
1569 static struct cfq_io_context *
1570 cfq_cic_lookup(struct cfq_data *cfqd, struct io_context *ioc)
1572 struct cfq_io_context *cic;
1573 unsigned long flags;
1574 void *k;
1576 if (unlikely(!ioc))
1577 return NULL;
1579 rcu_read_lock();
1582 * we maintain a last-hit cache, to avoid browsing over the tree
1584 cic = rcu_dereference(ioc->ioc_data);
1585 if (cic && cic->key == cfqd) {
1586 rcu_read_unlock();
1587 return cic;
1590 do {
1591 cic = radix_tree_lookup(&ioc->radix_root, (unsigned long) cfqd);
1592 rcu_read_unlock();
1593 if (!cic)
1594 break;
1595 /* ->key must be copied to avoid race with cfq_exit_queue() */
1596 k = cic->key;
1597 if (unlikely(!k)) {
1598 cfq_drop_dead_cic(cfqd, ioc, cic);
1599 rcu_read_lock();
1600 continue;
1603 spin_lock_irqsave(&ioc->lock, flags);
1604 rcu_assign_pointer(ioc->ioc_data, cic);
1605 spin_unlock_irqrestore(&ioc->lock, flags);
1606 break;
1607 } while (1);
1609 return cic;
1613 * Add cic into ioc, using cfqd as the search key. This enables us to lookup
1614 * the process specific cfq io context when entered from the block layer.
1615 * Also adds the cic to a per-cfqd list, used when this queue is removed.
1617 static int cfq_cic_link(struct cfq_data *cfqd, struct io_context *ioc,
1618 struct cfq_io_context *cic, gfp_t gfp_mask)
1620 unsigned long flags;
1621 int ret;
1623 ret = radix_tree_preload(gfp_mask);
1624 if (!ret) {
1625 cic->ioc = ioc;
1626 cic->key = cfqd;
1628 spin_lock_irqsave(&ioc->lock, flags);
1629 ret = radix_tree_insert(&ioc->radix_root,
1630 (unsigned long) cfqd, cic);
1631 if (!ret)
1632 hlist_add_head_rcu(&cic->cic_list, &ioc->cic_list);
1633 spin_unlock_irqrestore(&ioc->lock, flags);
1635 radix_tree_preload_end();
1637 if (!ret) {
1638 spin_lock_irqsave(cfqd->queue->queue_lock, flags);
1639 list_add(&cic->queue_list, &cfqd->cic_list);
1640 spin_unlock_irqrestore(cfqd->queue->queue_lock, flags);
1644 if (ret)
1645 printk(KERN_ERR "cfq: cic link failed!\n");
1647 return ret;
1651 * Setup general io context and cfq io context. There can be several cfq
1652 * io contexts per general io context, if this process is doing io to more
1653 * than one device managed by cfq.
1655 static struct cfq_io_context *
1656 cfq_get_io_context(struct cfq_data *cfqd, gfp_t gfp_mask)
1658 struct io_context *ioc = NULL;
1659 struct cfq_io_context *cic;
1661 might_sleep_if(gfp_mask & __GFP_WAIT);
1663 ioc = get_io_context(gfp_mask, cfqd->queue->node);
1664 if (!ioc)
1665 return NULL;
1667 cic = cfq_cic_lookup(cfqd, ioc);
1668 if (cic)
1669 goto out;
1671 cic = cfq_alloc_io_context(cfqd, gfp_mask);
1672 if (cic == NULL)
1673 goto err;
1675 if (cfq_cic_link(cfqd, ioc, cic, gfp_mask))
1676 goto err_free;
1678 out:
1679 smp_read_barrier_depends();
1680 if (unlikely(ioc->ioprio_changed))
1681 cfq_ioc_set_ioprio(ioc);
1683 return cic;
1684 err_free:
1685 cfq_cic_free(cic);
1686 err:
1687 put_io_context(ioc);
1688 return NULL;
1691 static void
1692 cfq_update_io_thinktime(struct cfq_data *cfqd, struct cfq_io_context *cic)
1694 unsigned long elapsed = jiffies - cic->last_end_request;
1695 unsigned long ttime = min(elapsed, 2UL * cfqd->cfq_slice_idle);
1697 cic->ttime_samples = (7*cic->ttime_samples + 256) / 8;
1698 cic->ttime_total = (7*cic->ttime_total + 256*ttime) / 8;
1699 cic->ttime_mean = (cic->ttime_total + 128) / cic->ttime_samples;
1702 static void
1703 cfq_update_io_seektime(struct cfq_data *cfqd, struct cfq_io_context *cic,
1704 struct request *rq)
1706 sector_t sdist;
1707 u64 total;
1709 if (cic->last_request_pos < rq->sector)
1710 sdist = rq->sector - cic->last_request_pos;
1711 else
1712 sdist = cic->last_request_pos - rq->sector;
1715 * Don't allow the seek distance to get too large from the
1716 * odd fragment, pagein, etc
1718 if (cic->seek_samples <= 60) /* second&third seek */
1719 sdist = min(sdist, (cic->seek_mean * 4) + 2*1024*1024);
1720 else
1721 sdist = min(sdist, (cic->seek_mean * 4) + 2*1024*64);
1723 cic->seek_samples = (7*cic->seek_samples + 256) / 8;
1724 cic->seek_total = (7*cic->seek_total + (u64)256*sdist) / 8;
1725 total = cic->seek_total + (cic->seek_samples/2);
1726 do_div(total, cic->seek_samples);
1727 cic->seek_mean = (sector_t)total;
1731 * Disable idle window if the process thinks too long or seeks so much that
1732 * it doesn't matter
1734 static void
1735 cfq_update_idle_window(struct cfq_data *cfqd, struct cfq_queue *cfqq,
1736 struct cfq_io_context *cic)
1738 int old_idle, enable_idle;
1741 * Don't idle for async or idle io prio class
1743 if (!cfq_cfqq_sync(cfqq) || cfq_class_idle(cfqq))
1744 return;
1746 enable_idle = old_idle = cfq_cfqq_idle_window(cfqq);
1748 if (!atomic_read(&cic->ioc->nr_tasks) || !cfqd->cfq_slice_idle ||
1749 (cfqd->hw_tag && CIC_SEEKY(cic)))
1750 enable_idle = 0;
1751 else if (sample_valid(cic->ttime_samples)) {
1752 if (cic->ttime_mean > cfqd->cfq_slice_idle)
1753 enable_idle = 0;
1754 else
1755 enable_idle = 1;
1758 if (old_idle != enable_idle) {
1759 cfq_log_cfqq(cfqd, cfqq, "idle=%d", enable_idle);
1760 if (enable_idle)
1761 cfq_mark_cfqq_idle_window(cfqq);
1762 else
1763 cfq_clear_cfqq_idle_window(cfqq);
1768 * Check if new_cfqq should preempt the currently active queue. Return 0 for
1769 * no or if we aren't sure, a 1 will cause a preempt.
1771 static int
1772 cfq_should_preempt(struct cfq_data *cfqd, struct cfq_queue *new_cfqq,
1773 struct request *rq)
1775 struct cfq_queue *cfqq;
1777 cfqq = cfqd->active_queue;
1778 if (!cfqq)
1779 return 0;
1781 if (cfq_slice_used(cfqq))
1782 return 1;
1784 if (cfq_class_idle(new_cfqq))
1785 return 0;
1787 if (cfq_class_idle(cfqq))
1788 return 1;
1791 * if the new request is sync, but the currently running queue is
1792 * not, let the sync request have priority.
1794 if (rq_is_sync(rq) && !cfq_cfqq_sync(cfqq))
1795 return 1;
1798 * So both queues are sync. Let the new request get disk time if
1799 * it's a metadata request and the current queue is doing regular IO.
1801 if (rq_is_meta(rq) && !cfqq->meta_pending)
1802 return 1;
1804 if (!cfqd->active_cic || !cfq_cfqq_wait_request(cfqq))
1805 return 0;
1808 * if this request is as-good as one we would expect from the
1809 * current cfqq, let it preempt
1811 if (cfq_rq_close(cfqd, rq))
1812 return 1;
1814 return 0;
1818 * cfqq preempts the active queue. if we allowed preempt with no slice left,
1819 * let it have half of its nominal slice.
1821 static void cfq_preempt_queue(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1823 cfq_log_cfqq(cfqd, cfqq, "preempt");
1824 cfq_slice_expired(cfqd, 1);
1827 * Put the new queue at the front of the of the current list,
1828 * so we know that it will be selected next.
1830 BUG_ON(!cfq_cfqq_on_rr(cfqq));
1832 cfq_service_tree_add(cfqd, cfqq, 1);
1834 cfqq->slice_end = 0;
1835 cfq_mark_cfqq_slice_new(cfqq);
1839 * Called when a new fs request (rq) is added (to cfqq). Check if there's
1840 * something we should do about it
1842 static void
1843 cfq_rq_enqueued(struct cfq_data *cfqd, struct cfq_queue *cfqq,
1844 struct request *rq)
1846 struct cfq_io_context *cic = RQ_CIC(rq);
1848 cfqd->rq_queued++;
1849 if (rq_is_meta(rq))
1850 cfqq->meta_pending++;
1852 cfq_update_io_thinktime(cfqd, cic);
1853 cfq_update_io_seektime(cfqd, cic, rq);
1854 cfq_update_idle_window(cfqd, cfqq, cic);
1856 cic->last_request_pos = rq->sector + rq->nr_sectors;
1858 if (cfqq == cfqd->active_queue) {
1860 * if we are waiting for a request for this queue, let it rip
1861 * immediately and flag that we must not expire this queue
1862 * just now
1864 if (cfq_cfqq_wait_request(cfqq)) {
1865 cfq_mark_cfqq_must_dispatch(cfqq);
1866 del_timer(&cfqd->idle_slice_timer);
1867 blk_start_queueing(cfqd->queue);
1869 } else if (cfq_should_preempt(cfqd, cfqq, rq)) {
1871 * not the active queue - expire current slice if it is
1872 * idle and has expired it's mean thinktime or this new queue
1873 * has some old slice time left and is of higher priority
1875 cfq_preempt_queue(cfqd, cfqq);
1876 cfq_mark_cfqq_must_dispatch(cfqq);
1877 blk_start_queueing(cfqd->queue);
1881 static void cfq_insert_request(struct request_queue *q, struct request *rq)
1883 struct cfq_data *cfqd = q->elevator->elevator_data;
1884 struct cfq_queue *cfqq = RQ_CFQQ(rq);
1886 cfq_log_cfqq(cfqd, cfqq, "insert_request");
1887 cfq_init_prio_data(cfqq, RQ_CIC(rq)->ioc);
1889 cfq_add_rq_rb(rq);
1891 list_add_tail(&rq->queuelist, &cfqq->fifo);
1893 cfq_rq_enqueued(cfqd, cfqq, rq);
1897 * Update hw_tag based on peak queue depth over 50 samples under
1898 * sufficient load.
1900 static void cfq_update_hw_tag(struct cfq_data *cfqd)
1902 if (cfqd->rq_in_driver > cfqd->rq_in_driver_peak)
1903 cfqd->rq_in_driver_peak = cfqd->rq_in_driver;
1905 if (cfqd->rq_queued <= CFQ_HW_QUEUE_MIN &&
1906 cfqd->rq_in_driver <= CFQ_HW_QUEUE_MIN)
1907 return;
1909 if (cfqd->hw_tag_samples++ < 50)
1910 return;
1912 if (cfqd->rq_in_driver_peak >= CFQ_HW_QUEUE_MIN)
1913 cfqd->hw_tag = 1;
1914 else
1915 cfqd->hw_tag = 0;
1917 cfqd->hw_tag_samples = 0;
1918 cfqd->rq_in_driver_peak = 0;
1921 static void cfq_completed_request(struct request_queue *q, struct request *rq)
1923 struct cfq_queue *cfqq = RQ_CFQQ(rq);
1924 struct cfq_data *cfqd = cfqq->cfqd;
1925 const int sync = rq_is_sync(rq);
1926 unsigned long now;
1928 now = jiffies;
1929 cfq_log_cfqq(cfqd, cfqq, "complete");
1931 cfq_update_hw_tag(cfqd);
1933 WARN_ON(!cfqd->rq_in_driver);
1934 WARN_ON(!cfqq->dispatched);
1935 cfqd->rq_in_driver--;
1936 cfqq->dispatched--;
1938 if (cfq_cfqq_sync(cfqq))
1939 cfqd->sync_flight--;
1941 if (!cfq_class_idle(cfqq))
1942 cfqd->last_end_request = now;
1944 if (sync)
1945 RQ_CIC(rq)->last_end_request = now;
1948 * If this is the active queue, check if it needs to be expired,
1949 * or if we want to idle in case it has no pending requests.
1951 if (cfqd->active_queue == cfqq) {
1952 if (cfq_cfqq_slice_new(cfqq)) {
1953 cfq_set_prio_slice(cfqd, cfqq);
1954 cfq_clear_cfqq_slice_new(cfqq);
1956 if (cfq_slice_used(cfqq) || cfq_class_idle(cfqq))
1957 cfq_slice_expired(cfqd, 1);
1958 else if (sync && RB_EMPTY_ROOT(&cfqq->sort_list))
1959 cfq_arm_slice_timer(cfqd);
1962 if (!cfqd->rq_in_driver)
1963 cfq_schedule_dispatch(cfqd);
1967 * we temporarily boost lower priority queues if they are holding fs exclusive
1968 * resources. they are boosted to normal prio (CLASS_BE/4)
1970 static void cfq_prio_boost(struct cfq_queue *cfqq)
1972 if (has_fs_excl()) {
1974 * boost idle prio on transactions that would lock out other
1975 * users of the filesystem
1977 if (cfq_class_idle(cfqq))
1978 cfqq->ioprio_class = IOPRIO_CLASS_BE;
1979 if (cfqq->ioprio > IOPRIO_NORM)
1980 cfqq->ioprio = IOPRIO_NORM;
1981 } else {
1983 * check if we need to unboost the queue
1985 if (cfqq->ioprio_class != cfqq->org_ioprio_class)
1986 cfqq->ioprio_class = cfqq->org_ioprio_class;
1987 if (cfqq->ioprio != cfqq->org_ioprio)
1988 cfqq->ioprio = cfqq->org_ioprio;
1992 static inline int __cfq_may_queue(struct cfq_queue *cfqq)
1994 if ((cfq_cfqq_wait_request(cfqq) || cfq_cfqq_must_alloc(cfqq)) &&
1995 !cfq_cfqq_must_alloc_slice(cfqq)) {
1996 cfq_mark_cfqq_must_alloc_slice(cfqq);
1997 return ELV_MQUEUE_MUST;
2000 return ELV_MQUEUE_MAY;
2003 static int cfq_may_queue(struct request_queue *q, int rw)
2005 struct cfq_data *cfqd = q->elevator->elevator_data;
2006 struct task_struct *tsk = current;
2007 struct cfq_io_context *cic;
2008 struct cfq_queue *cfqq;
2011 * don't force setup of a queue from here, as a call to may_queue
2012 * does not necessarily imply that a request actually will be queued.
2013 * so just lookup a possibly existing queue, or return 'may queue'
2014 * if that fails
2016 cic = cfq_cic_lookup(cfqd, tsk->io_context);
2017 if (!cic)
2018 return ELV_MQUEUE_MAY;
2020 cfqq = cic_to_cfqq(cic, rw & REQ_RW_SYNC);
2021 if (cfqq) {
2022 cfq_init_prio_data(cfqq, cic->ioc);
2023 cfq_prio_boost(cfqq);
2025 return __cfq_may_queue(cfqq);
2028 return ELV_MQUEUE_MAY;
2032 * queue lock held here
2034 static void cfq_put_request(struct request *rq)
2036 struct cfq_queue *cfqq = RQ_CFQQ(rq);
2038 if (cfqq) {
2039 const int rw = rq_data_dir(rq);
2041 BUG_ON(!cfqq->allocated[rw]);
2042 cfqq->allocated[rw]--;
2044 put_io_context(RQ_CIC(rq)->ioc);
2046 rq->elevator_private = NULL;
2047 rq->elevator_private2 = NULL;
2049 cfq_put_queue(cfqq);
2054 * Allocate cfq data structures associated with this request.
2056 static int
2057 cfq_set_request(struct request_queue *q, struct request *rq, gfp_t gfp_mask)
2059 struct cfq_data *cfqd = q->elevator->elevator_data;
2060 struct cfq_io_context *cic;
2061 const int rw = rq_data_dir(rq);
2062 const int is_sync = rq_is_sync(rq);
2063 struct cfq_queue *cfqq;
2064 unsigned long flags;
2066 might_sleep_if(gfp_mask & __GFP_WAIT);
2068 cic = cfq_get_io_context(cfqd, gfp_mask);
2070 spin_lock_irqsave(q->queue_lock, flags);
2072 if (!cic)
2073 goto queue_fail;
2075 cfqq = cic_to_cfqq(cic, is_sync);
2076 if (!cfqq) {
2077 cfqq = cfq_get_queue(cfqd, is_sync, cic->ioc, gfp_mask);
2079 if (!cfqq)
2080 goto queue_fail;
2082 cic_set_cfqq(cic, cfqq, is_sync);
2085 cfqq->allocated[rw]++;
2086 cfq_clear_cfqq_must_alloc(cfqq);
2087 atomic_inc(&cfqq->ref);
2089 spin_unlock_irqrestore(q->queue_lock, flags);
2091 rq->elevator_private = cic;
2092 rq->elevator_private2 = cfqq;
2093 return 0;
2095 queue_fail:
2096 if (cic)
2097 put_io_context(cic->ioc);
2099 cfq_schedule_dispatch(cfqd);
2100 spin_unlock_irqrestore(q->queue_lock, flags);
2101 cfq_log(cfqd, "set_request fail");
2102 return 1;
2105 static void cfq_kick_queue(struct work_struct *work)
2107 struct cfq_data *cfqd =
2108 container_of(work, struct cfq_data, unplug_work);
2109 struct request_queue *q = cfqd->queue;
2110 unsigned long flags;
2112 spin_lock_irqsave(q->queue_lock, flags);
2113 blk_start_queueing(q);
2114 spin_unlock_irqrestore(q->queue_lock, flags);
2118 * Timer running if the active_queue is currently idling inside its time slice
2120 static void cfq_idle_slice_timer(unsigned long data)
2122 struct cfq_data *cfqd = (struct cfq_data *) data;
2123 struct cfq_queue *cfqq;
2124 unsigned long flags;
2125 int timed_out = 1;
2127 cfq_log(cfqd, "idle timer fired");
2129 spin_lock_irqsave(cfqd->queue->queue_lock, flags);
2131 cfqq = cfqd->active_queue;
2132 if (cfqq) {
2133 timed_out = 0;
2136 * expired
2138 if (cfq_slice_used(cfqq))
2139 goto expire;
2142 * only expire and reinvoke request handler, if there are
2143 * other queues with pending requests
2145 if (!cfqd->busy_queues)
2146 goto out_cont;
2149 * not expired and it has a request pending, let it dispatch
2151 if (!RB_EMPTY_ROOT(&cfqq->sort_list)) {
2152 cfq_mark_cfqq_must_dispatch(cfqq);
2153 goto out_kick;
2156 expire:
2157 cfq_slice_expired(cfqd, timed_out);
2158 out_kick:
2159 cfq_schedule_dispatch(cfqd);
2160 out_cont:
2161 spin_unlock_irqrestore(cfqd->queue->queue_lock, flags);
2164 static void cfq_shutdown_timer_wq(struct cfq_data *cfqd)
2166 del_timer_sync(&cfqd->idle_slice_timer);
2167 cancel_work_sync(&cfqd->unplug_work);
2170 static void cfq_put_async_queues(struct cfq_data *cfqd)
2172 int i;
2174 for (i = 0; i < IOPRIO_BE_NR; i++) {
2175 if (cfqd->async_cfqq[0][i])
2176 cfq_put_queue(cfqd->async_cfqq[0][i]);
2177 if (cfqd->async_cfqq[1][i])
2178 cfq_put_queue(cfqd->async_cfqq[1][i]);
2181 if (cfqd->async_idle_cfqq)
2182 cfq_put_queue(cfqd->async_idle_cfqq);
2185 static void cfq_exit_queue(struct elevator_queue *e)
2187 struct cfq_data *cfqd = e->elevator_data;
2188 struct request_queue *q = cfqd->queue;
2190 cfq_shutdown_timer_wq(cfqd);
2192 spin_lock_irq(q->queue_lock);
2194 if (cfqd->active_queue)
2195 __cfq_slice_expired(cfqd, cfqd->active_queue, 0);
2197 while (!list_empty(&cfqd->cic_list)) {
2198 struct cfq_io_context *cic = list_entry(cfqd->cic_list.next,
2199 struct cfq_io_context,
2200 queue_list);
2202 __cfq_exit_single_io_context(cfqd, cic);
2205 cfq_put_async_queues(cfqd);
2207 spin_unlock_irq(q->queue_lock);
2209 cfq_shutdown_timer_wq(cfqd);
2211 kfree(cfqd);
2214 static void *cfq_init_queue(struct request_queue *q)
2216 struct cfq_data *cfqd;
2218 cfqd = kmalloc_node(sizeof(*cfqd), GFP_KERNEL | __GFP_ZERO, q->node);
2219 if (!cfqd)
2220 return NULL;
2222 cfqd->service_tree = CFQ_RB_ROOT;
2223 INIT_LIST_HEAD(&cfqd->cic_list);
2225 cfqd->queue = q;
2227 init_timer(&cfqd->idle_slice_timer);
2228 cfqd->idle_slice_timer.function = cfq_idle_slice_timer;
2229 cfqd->idle_slice_timer.data = (unsigned long) cfqd;
2231 INIT_WORK(&cfqd->unplug_work, cfq_kick_queue);
2233 cfqd->last_end_request = jiffies;
2234 cfqd->cfq_quantum = cfq_quantum;
2235 cfqd->cfq_fifo_expire[0] = cfq_fifo_expire[0];
2236 cfqd->cfq_fifo_expire[1] = cfq_fifo_expire[1];
2237 cfqd->cfq_back_max = cfq_back_max;
2238 cfqd->cfq_back_penalty = cfq_back_penalty;
2239 cfqd->cfq_slice[0] = cfq_slice_async;
2240 cfqd->cfq_slice[1] = cfq_slice_sync;
2241 cfqd->cfq_slice_async_rq = cfq_slice_async_rq;
2242 cfqd->cfq_slice_idle = cfq_slice_idle;
2243 cfqd->hw_tag = 1;
2245 return cfqd;
2248 static void cfq_slab_kill(void)
2251 * Caller already ensured that pending RCU callbacks are completed,
2252 * so we should have no busy allocations at this point.
2254 if (cfq_pool)
2255 kmem_cache_destroy(cfq_pool);
2256 if (cfq_ioc_pool)
2257 kmem_cache_destroy(cfq_ioc_pool);
2260 static int __init cfq_slab_setup(void)
2262 cfq_pool = KMEM_CACHE(cfq_queue, 0);
2263 if (!cfq_pool)
2264 goto fail;
2266 cfq_ioc_pool = KMEM_CACHE(cfq_io_context, 0);
2267 if (!cfq_ioc_pool)
2268 goto fail;
2270 return 0;
2271 fail:
2272 cfq_slab_kill();
2273 return -ENOMEM;
2277 * sysfs parts below -->
2279 static ssize_t
2280 cfq_var_show(unsigned int var, char *page)
2282 return sprintf(page, "%d\n", var);
2285 static ssize_t
2286 cfq_var_store(unsigned int *var, const char *page, size_t count)
2288 char *p = (char *) page;
2290 *var = simple_strtoul(p, &p, 10);
2291 return count;
2294 #define SHOW_FUNCTION(__FUNC, __VAR, __CONV) \
2295 static ssize_t __FUNC(struct elevator_queue *e, char *page) \
2297 struct cfq_data *cfqd = e->elevator_data; \
2298 unsigned int __data = __VAR; \
2299 if (__CONV) \
2300 __data = jiffies_to_msecs(__data); \
2301 return cfq_var_show(__data, (page)); \
2303 SHOW_FUNCTION(cfq_quantum_show, cfqd->cfq_quantum, 0);
2304 SHOW_FUNCTION(cfq_fifo_expire_sync_show, cfqd->cfq_fifo_expire[1], 1);
2305 SHOW_FUNCTION(cfq_fifo_expire_async_show, cfqd->cfq_fifo_expire[0], 1);
2306 SHOW_FUNCTION(cfq_back_seek_max_show, cfqd->cfq_back_max, 0);
2307 SHOW_FUNCTION(cfq_back_seek_penalty_show, cfqd->cfq_back_penalty, 0);
2308 SHOW_FUNCTION(cfq_slice_idle_show, cfqd->cfq_slice_idle, 1);
2309 SHOW_FUNCTION(cfq_slice_sync_show, cfqd->cfq_slice[1], 1);
2310 SHOW_FUNCTION(cfq_slice_async_show, cfqd->cfq_slice[0], 1);
2311 SHOW_FUNCTION(cfq_slice_async_rq_show, cfqd->cfq_slice_async_rq, 0);
2312 #undef SHOW_FUNCTION
2314 #define STORE_FUNCTION(__FUNC, __PTR, MIN, MAX, __CONV) \
2315 static ssize_t __FUNC(struct elevator_queue *e, const char *page, size_t count) \
2317 struct cfq_data *cfqd = e->elevator_data; \
2318 unsigned int __data; \
2319 int ret = cfq_var_store(&__data, (page), count); \
2320 if (__data < (MIN)) \
2321 __data = (MIN); \
2322 else if (__data > (MAX)) \
2323 __data = (MAX); \
2324 if (__CONV) \
2325 *(__PTR) = msecs_to_jiffies(__data); \
2326 else \
2327 *(__PTR) = __data; \
2328 return ret; \
2330 STORE_FUNCTION(cfq_quantum_store, &cfqd->cfq_quantum, 1, UINT_MAX, 0);
2331 STORE_FUNCTION(cfq_fifo_expire_sync_store, &cfqd->cfq_fifo_expire[1], 1,
2332 UINT_MAX, 1);
2333 STORE_FUNCTION(cfq_fifo_expire_async_store, &cfqd->cfq_fifo_expire[0], 1,
2334 UINT_MAX, 1);
2335 STORE_FUNCTION(cfq_back_seek_max_store, &cfqd->cfq_back_max, 0, UINT_MAX, 0);
2336 STORE_FUNCTION(cfq_back_seek_penalty_store, &cfqd->cfq_back_penalty, 1,
2337 UINT_MAX, 0);
2338 STORE_FUNCTION(cfq_slice_idle_store, &cfqd->cfq_slice_idle, 0, UINT_MAX, 1);
2339 STORE_FUNCTION(cfq_slice_sync_store, &cfqd->cfq_slice[1], 1, UINT_MAX, 1);
2340 STORE_FUNCTION(cfq_slice_async_store, &cfqd->cfq_slice[0], 1, UINT_MAX, 1);
2341 STORE_FUNCTION(cfq_slice_async_rq_store, &cfqd->cfq_slice_async_rq, 1,
2342 UINT_MAX, 0);
2343 #undef STORE_FUNCTION
2345 #define CFQ_ATTR(name) \
2346 __ATTR(name, S_IRUGO|S_IWUSR, cfq_##name##_show, cfq_##name##_store)
2348 static struct elv_fs_entry cfq_attrs[] = {
2349 CFQ_ATTR(quantum),
2350 CFQ_ATTR(fifo_expire_sync),
2351 CFQ_ATTR(fifo_expire_async),
2352 CFQ_ATTR(back_seek_max),
2353 CFQ_ATTR(back_seek_penalty),
2354 CFQ_ATTR(slice_sync),
2355 CFQ_ATTR(slice_async),
2356 CFQ_ATTR(slice_async_rq),
2357 CFQ_ATTR(slice_idle),
2358 __ATTR_NULL
2361 static struct elevator_type iosched_cfq = {
2362 .ops = {
2363 .elevator_merge_fn = cfq_merge,
2364 .elevator_merged_fn = cfq_merged_request,
2365 .elevator_merge_req_fn = cfq_merged_requests,
2366 .elevator_allow_merge_fn = cfq_allow_merge,
2367 .elevator_dispatch_fn = cfq_dispatch_requests,
2368 .elevator_add_req_fn = cfq_insert_request,
2369 .elevator_activate_req_fn = cfq_activate_request,
2370 .elevator_deactivate_req_fn = cfq_deactivate_request,
2371 .elevator_queue_empty_fn = cfq_queue_empty,
2372 .elevator_completed_req_fn = cfq_completed_request,
2373 .elevator_former_req_fn = elv_rb_former_request,
2374 .elevator_latter_req_fn = elv_rb_latter_request,
2375 .elevator_set_req_fn = cfq_set_request,
2376 .elevator_put_req_fn = cfq_put_request,
2377 .elevator_may_queue_fn = cfq_may_queue,
2378 .elevator_init_fn = cfq_init_queue,
2379 .elevator_exit_fn = cfq_exit_queue,
2380 .trim = cfq_free_io_context,
2382 .elevator_attrs = cfq_attrs,
2383 .elevator_name = "cfq",
2384 .elevator_owner = THIS_MODULE,
2387 static int __init cfq_init(void)
2390 * could be 0 on HZ < 1000 setups
2392 if (!cfq_slice_async)
2393 cfq_slice_async = 1;
2394 if (!cfq_slice_idle)
2395 cfq_slice_idle = 1;
2397 if (cfq_slab_setup())
2398 return -ENOMEM;
2400 elv_register(&iosched_cfq);
2402 return 0;
2405 static void __exit cfq_exit(void)
2407 DECLARE_COMPLETION_ONSTACK(all_gone);
2408 elv_unregister(&iosched_cfq);
2409 ioc_gone = &all_gone;
2410 /* ioc_gone's update must be visible before reading ioc_count */
2411 smp_wmb();
2414 * this also protects us from entering cfq_slab_kill() with
2415 * pending RCU callbacks
2417 if (elv_ioc_count_read(ioc_count))
2418 wait_for_completion(&all_gone);
2419 cfq_slab_kill();
2422 module_init(cfq_init);
2423 module_exit(cfq_exit);
2425 MODULE_AUTHOR("Jens Axboe");
2426 MODULE_LICENSE("GPL");
2427 MODULE_DESCRIPTION("Completely Fair Queueing IO scheduler");