PCI: uninline pci_ioremap_bar()
[linux-2.6/mini2440.git] / mm / slub.c
blobf0e2892fe403e57c8b29dfde41d7abf6f3a6b1f6
1 /*
2 * SLUB: A slab allocator that limits cache line use instead of queuing
3 * objects in per cpu and per node lists.
5 * The allocator synchronizes using per slab locks and only
6 * uses a centralized lock to manage a pool of partial slabs.
8 * (C) 2007 SGI, Christoph Lameter
9 */
11 #include <linux/mm.h>
12 #include <linux/module.h>
13 #include <linux/bit_spinlock.h>
14 #include <linux/interrupt.h>
15 #include <linux/bitops.h>
16 #include <linux/slab.h>
17 #include <linux/proc_fs.h>
18 #include <linux/seq_file.h>
19 #include <linux/cpu.h>
20 #include <linux/cpuset.h>
21 #include <linux/mempolicy.h>
22 #include <linux/ctype.h>
23 #include <linux/debugobjects.h>
24 #include <linux/kallsyms.h>
25 #include <linux/memory.h>
26 #include <linux/math64.h>
27 #include <linux/fault-inject.h>
30 * Lock order:
31 * 1. slab_lock(page)
32 * 2. slab->list_lock
34 * The slab_lock protects operations on the object of a particular
35 * slab and its metadata in the page struct. If the slab lock
36 * has been taken then no allocations nor frees can be performed
37 * on the objects in the slab nor can the slab be added or removed
38 * from the partial or full lists since this would mean modifying
39 * the page_struct of the slab.
41 * The list_lock protects the partial and full list on each node and
42 * the partial slab counter. If taken then no new slabs may be added or
43 * removed from the lists nor make the number of partial slabs be modified.
44 * (Note that the total number of slabs is an atomic value that may be
45 * modified without taking the list lock).
47 * The list_lock is a centralized lock and thus we avoid taking it as
48 * much as possible. As long as SLUB does not have to handle partial
49 * slabs, operations can continue without any centralized lock. F.e.
50 * allocating a long series of objects that fill up slabs does not require
51 * the list lock.
53 * The lock order is sometimes inverted when we are trying to get a slab
54 * off a list. We take the list_lock and then look for a page on the list
55 * to use. While we do that objects in the slabs may be freed. We can
56 * only operate on the slab if we have also taken the slab_lock. So we use
57 * a slab_trylock() on the slab. If trylock was successful then no frees
58 * can occur anymore and we can use the slab for allocations etc. If the
59 * slab_trylock() does not succeed then frees are in progress in the slab and
60 * we must stay away from it for a while since we may cause a bouncing
61 * cacheline if we try to acquire the lock. So go onto the next slab.
62 * If all pages are busy then we may allocate a new slab instead of reusing
63 * a partial slab. A new slab has noone operating on it and thus there is
64 * no danger of cacheline contention.
66 * Interrupts are disabled during allocation and deallocation in order to
67 * make the slab allocator safe to use in the context of an irq. In addition
68 * interrupts are disabled to ensure that the processor does not change
69 * while handling per_cpu slabs, due to kernel preemption.
71 * SLUB assigns one slab for allocation to each processor.
72 * Allocations only occur from these slabs called cpu slabs.
74 * Slabs with free elements are kept on a partial list and during regular
75 * operations no list for full slabs is used. If an object in a full slab is
76 * freed then the slab will show up again on the partial lists.
77 * We track full slabs for debugging purposes though because otherwise we
78 * cannot scan all objects.
80 * Slabs are freed when they become empty. Teardown and setup is
81 * minimal so we rely on the page allocators per cpu caches for
82 * fast frees and allocs.
84 * Overloading of page flags that are otherwise used for LRU management.
86 * PageActive The slab is frozen and exempt from list processing.
87 * This means that the slab is dedicated to a purpose
88 * such as satisfying allocations for a specific
89 * processor. Objects may be freed in the slab while
90 * it is frozen but slab_free will then skip the usual
91 * list operations. It is up to the processor holding
92 * the slab to integrate the slab into the slab lists
93 * when the slab is no longer needed.
95 * One use of this flag is to mark slabs that are
96 * used for allocations. Then such a slab becomes a cpu
97 * slab. The cpu slab may be equipped with an additional
98 * freelist that allows lockless access to
99 * free objects in addition to the regular freelist
100 * that requires the slab lock.
102 * PageError Slab requires special handling due to debug
103 * options set. This moves slab handling out of
104 * the fast path and disables lockless freelists.
107 #ifdef CONFIG_SLUB_DEBUG
108 #define SLABDEBUG 1
109 #else
110 #define SLABDEBUG 0
111 #endif
114 * Issues still to be resolved:
116 * - Support PAGE_ALLOC_DEBUG. Should be easy to do.
118 * - Variable sizing of the per node arrays
121 /* Enable to test recovery from slab corruption on boot */
122 #undef SLUB_RESILIENCY_TEST
125 * Mininum number of partial slabs. These will be left on the partial
126 * lists even if they are empty. kmem_cache_shrink may reclaim them.
128 #define MIN_PARTIAL 5
131 * Maximum number of desirable partial slabs.
132 * The existence of more partial slabs makes kmem_cache_shrink
133 * sort the partial list by the number of objects in the.
135 #define MAX_PARTIAL 10
137 #define DEBUG_DEFAULT_FLAGS (SLAB_DEBUG_FREE | SLAB_RED_ZONE | \
138 SLAB_POISON | SLAB_STORE_USER)
141 * Set of flags that will prevent slab merging
143 #define SLUB_NEVER_MERGE (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER | \
144 SLAB_TRACE | SLAB_DESTROY_BY_RCU)
146 #define SLUB_MERGE_SAME (SLAB_DEBUG_FREE | SLAB_RECLAIM_ACCOUNT | \
147 SLAB_CACHE_DMA)
149 #ifndef ARCH_KMALLOC_MINALIGN
150 #define ARCH_KMALLOC_MINALIGN __alignof__(unsigned long long)
151 #endif
153 #ifndef ARCH_SLAB_MINALIGN
154 #define ARCH_SLAB_MINALIGN __alignof__(unsigned long long)
155 #endif
157 #define OO_SHIFT 16
158 #define OO_MASK ((1 << OO_SHIFT) - 1)
159 #define MAX_OBJS_PER_PAGE 65535 /* since page.objects is u16 */
161 /* Internal SLUB flags */
162 #define __OBJECT_POISON 0x80000000 /* Poison object */
163 #define __SYSFS_ADD_DEFERRED 0x40000000 /* Not yet visible via sysfs */
165 static int kmem_size = sizeof(struct kmem_cache);
167 #ifdef CONFIG_SMP
168 static struct notifier_block slab_notifier;
169 #endif
171 static enum {
172 DOWN, /* No slab functionality available */
173 PARTIAL, /* kmem_cache_open() works but kmalloc does not */
174 UP, /* Everything works but does not show up in sysfs */
175 SYSFS /* Sysfs up */
176 } slab_state = DOWN;
178 /* A list of all slab caches on the system */
179 static DECLARE_RWSEM(slub_lock);
180 static LIST_HEAD(slab_caches);
183 * Tracking user of a slab.
185 struct track {
186 unsigned long addr; /* Called from address */
187 int cpu; /* Was running on cpu */
188 int pid; /* Pid context */
189 unsigned long when; /* When did the operation occur */
192 enum track_item { TRACK_ALLOC, TRACK_FREE };
194 #ifdef CONFIG_SLUB_DEBUG
195 static int sysfs_slab_add(struct kmem_cache *);
196 static int sysfs_slab_alias(struct kmem_cache *, const char *);
197 static void sysfs_slab_remove(struct kmem_cache *);
199 #else
200 static inline int sysfs_slab_add(struct kmem_cache *s) { return 0; }
201 static inline int sysfs_slab_alias(struct kmem_cache *s, const char *p)
202 { return 0; }
203 static inline void sysfs_slab_remove(struct kmem_cache *s)
205 kfree(s);
208 #endif
210 static inline void stat(struct kmem_cache_cpu *c, enum stat_item si)
212 #ifdef CONFIG_SLUB_STATS
213 c->stat[si]++;
214 #endif
217 /********************************************************************
218 * Core slab cache functions
219 *******************************************************************/
221 int slab_is_available(void)
223 return slab_state >= UP;
226 static inline struct kmem_cache_node *get_node(struct kmem_cache *s, int node)
228 #ifdef CONFIG_NUMA
229 return s->node[node];
230 #else
231 return &s->local_node;
232 #endif
235 static inline struct kmem_cache_cpu *get_cpu_slab(struct kmem_cache *s, int cpu)
237 #ifdef CONFIG_SMP
238 return s->cpu_slab[cpu];
239 #else
240 return &s->cpu_slab;
241 #endif
244 /* Verify that a pointer has an address that is valid within a slab page */
245 static inline int check_valid_pointer(struct kmem_cache *s,
246 struct page *page, const void *object)
248 void *base;
250 if (!object)
251 return 1;
253 base = page_address(page);
254 if (object < base || object >= base + page->objects * s->size ||
255 (object - base) % s->size) {
256 return 0;
259 return 1;
263 * Slow version of get and set free pointer.
265 * This version requires touching the cache lines of kmem_cache which
266 * we avoid to do in the fast alloc free paths. There we obtain the offset
267 * from the page struct.
269 static inline void *get_freepointer(struct kmem_cache *s, void *object)
271 return *(void **)(object + s->offset);
274 static inline void set_freepointer(struct kmem_cache *s, void *object, void *fp)
276 *(void **)(object + s->offset) = fp;
279 /* Loop over all objects in a slab */
280 #define for_each_object(__p, __s, __addr, __objects) \
281 for (__p = (__addr); __p < (__addr) + (__objects) * (__s)->size;\
282 __p += (__s)->size)
284 /* Scan freelist */
285 #define for_each_free_object(__p, __s, __free) \
286 for (__p = (__free); __p; __p = get_freepointer((__s), __p))
288 /* Determine object index from a given position */
289 static inline int slab_index(void *p, struct kmem_cache *s, void *addr)
291 return (p - addr) / s->size;
294 static inline struct kmem_cache_order_objects oo_make(int order,
295 unsigned long size)
297 struct kmem_cache_order_objects x = {
298 (order << OO_SHIFT) + (PAGE_SIZE << order) / size
301 return x;
304 static inline int oo_order(struct kmem_cache_order_objects x)
306 return x.x >> OO_SHIFT;
309 static inline int oo_objects(struct kmem_cache_order_objects x)
311 return x.x & OO_MASK;
314 #ifdef CONFIG_SLUB_DEBUG
316 * Debug settings:
318 #ifdef CONFIG_SLUB_DEBUG_ON
319 static int slub_debug = DEBUG_DEFAULT_FLAGS;
320 #else
321 static int slub_debug;
322 #endif
324 static char *slub_debug_slabs;
327 * Object debugging
329 static void print_section(char *text, u8 *addr, unsigned int length)
331 int i, offset;
332 int newline = 1;
333 char ascii[17];
335 ascii[16] = 0;
337 for (i = 0; i < length; i++) {
338 if (newline) {
339 printk(KERN_ERR "%8s 0x%p: ", text, addr + i);
340 newline = 0;
342 printk(KERN_CONT " %02x", addr[i]);
343 offset = i % 16;
344 ascii[offset] = isgraph(addr[i]) ? addr[i] : '.';
345 if (offset == 15) {
346 printk(KERN_CONT " %s\n", ascii);
347 newline = 1;
350 if (!newline) {
351 i %= 16;
352 while (i < 16) {
353 printk(KERN_CONT " ");
354 ascii[i] = ' ';
355 i++;
357 printk(KERN_CONT " %s\n", ascii);
361 static struct track *get_track(struct kmem_cache *s, void *object,
362 enum track_item alloc)
364 struct track *p;
366 if (s->offset)
367 p = object + s->offset + sizeof(void *);
368 else
369 p = object + s->inuse;
371 return p + alloc;
374 static void set_track(struct kmem_cache *s, void *object,
375 enum track_item alloc, unsigned long addr)
377 struct track *p;
379 if (s->offset)
380 p = object + s->offset + sizeof(void *);
381 else
382 p = object + s->inuse;
384 p += alloc;
385 if (addr) {
386 p->addr = addr;
387 p->cpu = smp_processor_id();
388 p->pid = current->pid;
389 p->when = jiffies;
390 } else
391 memset(p, 0, sizeof(struct track));
394 static void init_tracking(struct kmem_cache *s, void *object)
396 if (!(s->flags & SLAB_STORE_USER))
397 return;
399 set_track(s, object, TRACK_FREE, 0UL);
400 set_track(s, object, TRACK_ALLOC, 0UL);
403 static void print_track(const char *s, struct track *t)
405 if (!t->addr)
406 return;
408 printk(KERN_ERR "INFO: %s in %pS age=%lu cpu=%u pid=%d\n",
409 s, (void *)t->addr, jiffies - t->when, t->cpu, t->pid);
412 static void print_tracking(struct kmem_cache *s, void *object)
414 if (!(s->flags & SLAB_STORE_USER))
415 return;
417 print_track("Allocated", get_track(s, object, TRACK_ALLOC));
418 print_track("Freed", get_track(s, object, TRACK_FREE));
421 static void print_page_info(struct page *page)
423 printk(KERN_ERR "INFO: Slab 0x%p objects=%u used=%u fp=0x%p flags=0x%04lx\n",
424 page, page->objects, page->inuse, page->freelist, page->flags);
428 static void slab_bug(struct kmem_cache *s, char *fmt, ...)
430 va_list args;
431 char buf[100];
433 va_start(args, fmt);
434 vsnprintf(buf, sizeof(buf), fmt, args);
435 va_end(args);
436 printk(KERN_ERR "========================================"
437 "=====================================\n");
438 printk(KERN_ERR "BUG %s: %s\n", s->name, buf);
439 printk(KERN_ERR "----------------------------------------"
440 "-------------------------------------\n\n");
443 static void slab_fix(struct kmem_cache *s, char *fmt, ...)
445 va_list args;
446 char buf[100];
448 va_start(args, fmt);
449 vsnprintf(buf, sizeof(buf), fmt, args);
450 va_end(args);
451 printk(KERN_ERR "FIX %s: %s\n", s->name, buf);
454 static void print_trailer(struct kmem_cache *s, struct page *page, u8 *p)
456 unsigned int off; /* Offset of last byte */
457 u8 *addr = page_address(page);
459 print_tracking(s, p);
461 print_page_info(page);
463 printk(KERN_ERR "INFO: Object 0x%p @offset=%tu fp=0x%p\n\n",
464 p, p - addr, get_freepointer(s, p));
466 if (p > addr + 16)
467 print_section("Bytes b4", p - 16, 16);
469 print_section("Object", p, min_t(unsigned long, s->objsize, PAGE_SIZE));
471 if (s->flags & SLAB_RED_ZONE)
472 print_section("Redzone", p + s->objsize,
473 s->inuse - s->objsize);
475 if (s->offset)
476 off = s->offset + sizeof(void *);
477 else
478 off = s->inuse;
480 if (s->flags & SLAB_STORE_USER)
481 off += 2 * sizeof(struct track);
483 if (off != s->size)
484 /* Beginning of the filler is the free pointer */
485 print_section("Padding", p + off, s->size - off);
487 dump_stack();
490 static void object_err(struct kmem_cache *s, struct page *page,
491 u8 *object, char *reason)
493 slab_bug(s, "%s", reason);
494 print_trailer(s, page, object);
497 static void slab_err(struct kmem_cache *s, struct page *page, char *fmt, ...)
499 va_list args;
500 char buf[100];
502 va_start(args, fmt);
503 vsnprintf(buf, sizeof(buf), fmt, args);
504 va_end(args);
505 slab_bug(s, "%s", buf);
506 print_page_info(page);
507 dump_stack();
510 static void init_object(struct kmem_cache *s, void *object, int active)
512 u8 *p = object;
514 if (s->flags & __OBJECT_POISON) {
515 memset(p, POISON_FREE, s->objsize - 1);
516 p[s->objsize - 1] = POISON_END;
519 if (s->flags & SLAB_RED_ZONE)
520 memset(p + s->objsize,
521 active ? SLUB_RED_ACTIVE : SLUB_RED_INACTIVE,
522 s->inuse - s->objsize);
525 static u8 *check_bytes(u8 *start, unsigned int value, unsigned int bytes)
527 while (bytes) {
528 if (*start != (u8)value)
529 return start;
530 start++;
531 bytes--;
533 return NULL;
536 static void restore_bytes(struct kmem_cache *s, char *message, u8 data,
537 void *from, void *to)
539 slab_fix(s, "Restoring 0x%p-0x%p=0x%x\n", from, to - 1, data);
540 memset(from, data, to - from);
543 static int check_bytes_and_report(struct kmem_cache *s, struct page *page,
544 u8 *object, char *what,
545 u8 *start, unsigned int value, unsigned int bytes)
547 u8 *fault;
548 u8 *end;
550 fault = check_bytes(start, value, bytes);
551 if (!fault)
552 return 1;
554 end = start + bytes;
555 while (end > fault && end[-1] == value)
556 end--;
558 slab_bug(s, "%s overwritten", what);
559 printk(KERN_ERR "INFO: 0x%p-0x%p. First byte 0x%x instead of 0x%x\n",
560 fault, end - 1, fault[0], value);
561 print_trailer(s, page, object);
563 restore_bytes(s, what, value, fault, end);
564 return 0;
568 * Object layout:
570 * object address
571 * Bytes of the object to be managed.
572 * If the freepointer may overlay the object then the free
573 * pointer is the first word of the object.
575 * Poisoning uses 0x6b (POISON_FREE) and the last byte is
576 * 0xa5 (POISON_END)
578 * object + s->objsize
579 * Padding to reach word boundary. This is also used for Redzoning.
580 * Padding is extended by another word if Redzoning is enabled and
581 * objsize == inuse.
583 * We fill with 0xbb (RED_INACTIVE) for inactive objects and with
584 * 0xcc (RED_ACTIVE) for objects in use.
586 * object + s->inuse
587 * Meta data starts here.
589 * A. Free pointer (if we cannot overwrite object on free)
590 * B. Tracking data for SLAB_STORE_USER
591 * C. Padding to reach required alignment boundary or at mininum
592 * one word if debugging is on to be able to detect writes
593 * before the word boundary.
595 * Padding is done using 0x5a (POISON_INUSE)
597 * object + s->size
598 * Nothing is used beyond s->size.
600 * If slabcaches are merged then the objsize and inuse boundaries are mostly
601 * ignored. And therefore no slab options that rely on these boundaries
602 * may be used with merged slabcaches.
605 static int check_pad_bytes(struct kmem_cache *s, struct page *page, u8 *p)
607 unsigned long off = s->inuse; /* The end of info */
609 if (s->offset)
610 /* Freepointer is placed after the object. */
611 off += sizeof(void *);
613 if (s->flags & SLAB_STORE_USER)
614 /* We also have user information there */
615 off += 2 * sizeof(struct track);
617 if (s->size == off)
618 return 1;
620 return check_bytes_and_report(s, page, p, "Object padding",
621 p + off, POISON_INUSE, s->size - off);
624 /* Check the pad bytes at the end of a slab page */
625 static int slab_pad_check(struct kmem_cache *s, struct page *page)
627 u8 *start;
628 u8 *fault;
629 u8 *end;
630 int length;
631 int remainder;
633 if (!(s->flags & SLAB_POISON))
634 return 1;
636 start = page_address(page);
637 length = (PAGE_SIZE << compound_order(page));
638 end = start + length;
639 remainder = length % s->size;
640 if (!remainder)
641 return 1;
643 fault = check_bytes(end - remainder, POISON_INUSE, remainder);
644 if (!fault)
645 return 1;
646 while (end > fault && end[-1] == POISON_INUSE)
647 end--;
649 slab_err(s, page, "Padding overwritten. 0x%p-0x%p", fault, end - 1);
650 print_section("Padding", end - remainder, remainder);
652 restore_bytes(s, "slab padding", POISON_INUSE, start, end);
653 return 0;
656 static int check_object(struct kmem_cache *s, struct page *page,
657 void *object, int active)
659 u8 *p = object;
660 u8 *endobject = object + s->objsize;
662 if (s->flags & SLAB_RED_ZONE) {
663 unsigned int red =
664 active ? SLUB_RED_ACTIVE : SLUB_RED_INACTIVE;
666 if (!check_bytes_and_report(s, page, object, "Redzone",
667 endobject, red, s->inuse - s->objsize))
668 return 0;
669 } else {
670 if ((s->flags & SLAB_POISON) && s->objsize < s->inuse) {
671 check_bytes_and_report(s, page, p, "Alignment padding",
672 endobject, POISON_INUSE, s->inuse - s->objsize);
676 if (s->flags & SLAB_POISON) {
677 if (!active && (s->flags & __OBJECT_POISON) &&
678 (!check_bytes_and_report(s, page, p, "Poison", p,
679 POISON_FREE, s->objsize - 1) ||
680 !check_bytes_and_report(s, page, p, "Poison",
681 p + s->objsize - 1, POISON_END, 1)))
682 return 0;
684 * check_pad_bytes cleans up on its own.
686 check_pad_bytes(s, page, p);
689 if (!s->offset && active)
691 * Object and freepointer overlap. Cannot check
692 * freepointer while object is allocated.
694 return 1;
696 /* Check free pointer validity */
697 if (!check_valid_pointer(s, page, get_freepointer(s, p))) {
698 object_err(s, page, p, "Freepointer corrupt");
700 * No choice but to zap it and thus lose the remainder
701 * of the free objects in this slab. May cause
702 * another error because the object count is now wrong.
704 set_freepointer(s, p, NULL);
705 return 0;
707 return 1;
710 static int check_slab(struct kmem_cache *s, struct page *page)
712 int maxobj;
714 VM_BUG_ON(!irqs_disabled());
716 if (!PageSlab(page)) {
717 slab_err(s, page, "Not a valid slab page");
718 return 0;
721 maxobj = (PAGE_SIZE << compound_order(page)) / s->size;
722 if (page->objects > maxobj) {
723 slab_err(s, page, "objects %u > max %u",
724 s->name, page->objects, maxobj);
725 return 0;
727 if (page->inuse > page->objects) {
728 slab_err(s, page, "inuse %u > max %u",
729 s->name, page->inuse, page->objects);
730 return 0;
732 /* Slab_pad_check fixes things up after itself */
733 slab_pad_check(s, page);
734 return 1;
738 * Determine if a certain object on a page is on the freelist. Must hold the
739 * slab lock to guarantee that the chains are in a consistent state.
741 static int on_freelist(struct kmem_cache *s, struct page *page, void *search)
743 int nr = 0;
744 void *fp = page->freelist;
745 void *object = NULL;
746 unsigned long max_objects;
748 while (fp && nr <= page->objects) {
749 if (fp == search)
750 return 1;
751 if (!check_valid_pointer(s, page, fp)) {
752 if (object) {
753 object_err(s, page, object,
754 "Freechain corrupt");
755 set_freepointer(s, object, NULL);
756 break;
757 } else {
758 slab_err(s, page, "Freepointer corrupt");
759 page->freelist = NULL;
760 page->inuse = page->objects;
761 slab_fix(s, "Freelist cleared");
762 return 0;
764 break;
766 object = fp;
767 fp = get_freepointer(s, object);
768 nr++;
771 max_objects = (PAGE_SIZE << compound_order(page)) / s->size;
772 if (max_objects > MAX_OBJS_PER_PAGE)
773 max_objects = MAX_OBJS_PER_PAGE;
775 if (page->objects != max_objects) {
776 slab_err(s, page, "Wrong number of objects. Found %d but "
777 "should be %d", page->objects, max_objects);
778 page->objects = max_objects;
779 slab_fix(s, "Number of objects adjusted.");
781 if (page->inuse != page->objects - nr) {
782 slab_err(s, page, "Wrong object count. Counter is %d but "
783 "counted were %d", page->inuse, page->objects - nr);
784 page->inuse = page->objects - nr;
785 slab_fix(s, "Object count adjusted.");
787 return search == NULL;
790 static void trace(struct kmem_cache *s, struct page *page, void *object,
791 int alloc)
793 if (s->flags & SLAB_TRACE) {
794 printk(KERN_INFO "TRACE %s %s 0x%p inuse=%d fp=0x%p\n",
795 s->name,
796 alloc ? "alloc" : "free",
797 object, page->inuse,
798 page->freelist);
800 if (!alloc)
801 print_section("Object", (void *)object, s->objsize);
803 dump_stack();
808 * Tracking of fully allocated slabs for debugging purposes.
810 static void add_full(struct kmem_cache_node *n, struct page *page)
812 spin_lock(&n->list_lock);
813 list_add(&page->lru, &n->full);
814 spin_unlock(&n->list_lock);
817 static void remove_full(struct kmem_cache *s, struct page *page)
819 struct kmem_cache_node *n;
821 if (!(s->flags & SLAB_STORE_USER))
822 return;
824 n = get_node(s, page_to_nid(page));
826 spin_lock(&n->list_lock);
827 list_del(&page->lru);
828 spin_unlock(&n->list_lock);
831 /* Tracking of the number of slabs for debugging purposes */
832 static inline unsigned long slabs_node(struct kmem_cache *s, int node)
834 struct kmem_cache_node *n = get_node(s, node);
836 return atomic_long_read(&n->nr_slabs);
839 static inline void inc_slabs_node(struct kmem_cache *s, int node, int objects)
841 struct kmem_cache_node *n = get_node(s, node);
844 * May be called early in order to allocate a slab for the
845 * kmem_cache_node structure. Solve the chicken-egg
846 * dilemma by deferring the increment of the count during
847 * bootstrap (see early_kmem_cache_node_alloc).
849 if (!NUMA_BUILD || n) {
850 atomic_long_inc(&n->nr_slabs);
851 atomic_long_add(objects, &n->total_objects);
854 static inline void dec_slabs_node(struct kmem_cache *s, int node, int objects)
856 struct kmem_cache_node *n = get_node(s, node);
858 atomic_long_dec(&n->nr_slabs);
859 atomic_long_sub(objects, &n->total_objects);
862 /* Object debug checks for alloc/free paths */
863 static void setup_object_debug(struct kmem_cache *s, struct page *page,
864 void *object)
866 if (!(s->flags & (SLAB_STORE_USER|SLAB_RED_ZONE|__OBJECT_POISON)))
867 return;
869 init_object(s, object, 0);
870 init_tracking(s, object);
873 static int alloc_debug_processing(struct kmem_cache *s, struct page *page,
874 void *object, unsigned long addr)
876 if (!check_slab(s, page))
877 goto bad;
879 if (!on_freelist(s, page, object)) {
880 object_err(s, page, object, "Object already allocated");
881 goto bad;
884 if (!check_valid_pointer(s, page, object)) {
885 object_err(s, page, object, "Freelist Pointer check fails");
886 goto bad;
889 if (!check_object(s, page, object, 0))
890 goto bad;
892 /* Success perform special debug activities for allocs */
893 if (s->flags & SLAB_STORE_USER)
894 set_track(s, object, TRACK_ALLOC, addr);
895 trace(s, page, object, 1);
896 init_object(s, object, 1);
897 return 1;
899 bad:
900 if (PageSlab(page)) {
902 * If this is a slab page then lets do the best we can
903 * to avoid issues in the future. Marking all objects
904 * as used avoids touching the remaining objects.
906 slab_fix(s, "Marking all objects used");
907 page->inuse = page->objects;
908 page->freelist = NULL;
910 return 0;
913 static int free_debug_processing(struct kmem_cache *s, struct page *page,
914 void *object, unsigned long addr)
916 if (!check_slab(s, page))
917 goto fail;
919 if (!check_valid_pointer(s, page, object)) {
920 slab_err(s, page, "Invalid object pointer 0x%p", object);
921 goto fail;
924 if (on_freelist(s, page, object)) {
925 object_err(s, page, object, "Object already free");
926 goto fail;
929 if (!check_object(s, page, object, 1))
930 return 0;
932 if (unlikely(s != page->slab)) {
933 if (!PageSlab(page)) {
934 slab_err(s, page, "Attempt to free object(0x%p) "
935 "outside of slab", object);
936 } else if (!page->slab) {
937 printk(KERN_ERR
938 "SLUB <none>: no slab for object 0x%p.\n",
939 object);
940 dump_stack();
941 } else
942 object_err(s, page, object,
943 "page slab pointer corrupt.");
944 goto fail;
947 /* Special debug activities for freeing objects */
948 if (!PageSlubFrozen(page) && !page->freelist)
949 remove_full(s, page);
950 if (s->flags & SLAB_STORE_USER)
951 set_track(s, object, TRACK_FREE, addr);
952 trace(s, page, object, 0);
953 init_object(s, object, 0);
954 return 1;
956 fail:
957 slab_fix(s, "Object at 0x%p not freed", object);
958 return 0;
961 static int __init setup_slub_debug(char *str)
963 slub_debug = DEBUG_DEFAULT_FLAGS;
964 if (*str++ != '=' || !*str)
966 * No options specified. Switch on full debugging.
968 goto out;
970 if (*str == ',')
972 * No options but restriction on slabs. This means full
973 * debugging for slabs matching a pattern.
975 goto check_slabs;
977 slub_debug = 0;
978 if (*str == '-')
980 * Switch off all debugging measures.
982 goto out;
985 * Determine which debug features should be switched on
987 for (; *str && *str != ','; str++) {
988 switch (tolower(*str)) {
989 case 'f':
990 slub_debug |= SLAB_DEBUG_FREE;
991 break;
992 case 'z':
993 slub_debug |= SLAB_RED_ZONE;
994 break;
995 case 'p':
996 slub_debug |= SLAB_POISON;
997 break;
998 case 'u':
999 slub_debug |= SLAB_STORE_USER;
1000 break;
1001 case 't':
1002 slub_debug |= SLAB_TRACE;
1003 break;
1004 default:
1005 printk(KERN_ERR "slub_debug option '%c' "
1006 "unknown. skipped\n", *str);
1010 check_slabs:
1011 if (*str == ',')
1012 slub_debug_slabs = str + 1;
1013 out:
1014 return 1;
1017 __setup("slub_debug", setup_slub_debug);
1019 static unsigned long kmem_cache_flags(unsigned long objsize,
1020 unsigned long flags, const char *name,
1021 void (*ctor)(void *))
1024 * Enable debugging if selected on the kernel commandline.
1026 if (slub_debug && (!slub_debug_slabs ||
1027 strncmp(slub_debug_slabs, name, strlen(slub_debug_slabs)) == 0))
1028 flags |= slub_debug;
1030 return flags;
1032 #else
1033 static inline void setup_object_debug(struct kmem_cache *s,
1034 struct page *page, void *object) {}
1036 static inline int alloc_debug_processing(struct kmem_cache *s,
1037 struct page *page, void *object, unsigned long addr) { return 0; }
1039 static inline int free_debug_processing(struct kmem_cache *s,
1040 struct page *page, void *object, unsigned long addr) { return 0; }
1042 static inline int slab_pad_check(struct kmem_cache *s, struct page *page)
1043 { return 1; }
1044 static inline int check_object(struct kmem_cache *s, struct page *page,
1045 void *object, int active) { return 1; }
1046 static inline void add_full(struct kmem_cache_node *n, struct page *page) {}
1047 static inline unsigned long kmem_cache_flags(unsigned long objsize,
1048 unsigned long flags, const char *name,
1049 void (*ctor)(void *))
1051 return flags;
1053 #define slub_debug 0
1055 static inline unsigned long slabs_node(struct kmem_cache *s, int node)
1056 { return 0; }
1057 static inline void inc_slabs_node(struct kmem_cache *s, int node,
1058 int objects) {}
1059 static inline void dec_slabs_node(struct kmem_cache *s, int node,
1060 int objects) {}
1061 #endif
1064 * Slab allocation and freeing
1066 static inline struct page *alloc_slab_page(gfp_t flags, int node,
1067 struct kmem_cache_order_objects oo)
1069 int order = oo_order(oo);
1071 if (node == -1)
1072 return alloc_pages(flags, order);
1073 else
1074 return alloc_pages_node(node, flags, order);
1077 static struct page *allocate_slab(struct kmem_cache *s, gfp_t flags, int node)
1079 struct page *page;
1080 struct kmem_cache_order_objects oo = s->oo;
1082 flags |= s->allocflags;
1084 page = alloc_slab_page(flags | __GFP_NOWARN | __GFP_NORETRY, node,
1085 oo);
1086 if (unlikely(!page)) {
1087 oo = s->min;
1089 * Allocation may have failed due to fragmentation.
1090 * Try a lower order alloc if possible
1092 page = alloc_slab_page(flags, node, oo);
1093 if (!page)
1094 return NULL;
1096 stat(get_cpu_slab(s, raw_smp_processor_id()), ORDER_FALLBACK);
1098 page->objects = oo_objects(oo);
1099 mod_zone_page_state(page_zone(page),
1100 (s->flags & SLAB_RECLAIM_ACCOUNT) ?
1101 NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE,
1102 1 << oo_order(oo));
1104 return page;
1107 static void setup_object(struct kmem_cache *s, struct page *page,
1108 void *object)
1110 setup_object_debug(s, page, object);
1111 if (unlikely(s->ctor))
1112 s->ctor(object);
1115 static struct page *new_slab(struct kmem_cache *s, gfp_t flags, int node)
1117 struct page *page;
1118 void *start;
1119 void *last;
1120 void *p;
1122 BUG_ON(flags & GFP_SLAB_BUG_MASK);
1124 page = allocate_slab(s,
1125 flags & (GFP_RECLAIM_MASK | GFP_CONSTRAINT_MASK), node);
1126 if (!page)
1127 goto out;
1129 inc_slabs_node(s, page_to_nid(page), page->objects);
1130 page->slab = s;
1131 page->flags |= 1 << PG_slab;
1132 if (s->flags & (SLAB_DEBUG_FREE | SLAB_RED_ZONE | SLAB_POISON |
1133 SLAB_STORE_USER | SLAB_TRACE))
1134 __SetPageSlubDebug(page);
1136 start = page_address(page);
1138 if (unlikely(s->flags & SLAB_POISON))
1139 memset(start, POISON_INUSE, PAGE_SIZE << compound_order(page));
1141 last = start;
1142 for_each_object(p, s, start, page->objects) {
1143 setup_object(s, page, last);
1144 set_freepointer(s, last, p);
1145 last = p;
1147 setup_object(s, page, last);
1148 set_freepointer(s, last, NULL);
1150 page->freelist = start;
1151 page->inuse = 0;
1152 out:
1153 return page;
1156 static void __free_slab(struct kmem_cache *s, struct page *page)
1158 int order = compound_order(page);
1159 int pages = 1 << order;
1161 if (unlikely(SLABDEBUG && PageSlubDebug(page))) {
1162 void *p;
1164 slab_pad_check(s, page);
1165 for_each_object(p, s, page_address(page),
1166 page->objects)
1167 check_object(s, page, p, 0);
1168 __ClearPageSlubDebug(page);
1171 mod_zone_page_state(page_zone(page),
1172 (s->flags & SLAB_RECLAIM_ACCOUNT) ?
1173 NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE,
1174 -pages);
1176 __ClearPageSlab(page);
1177 reset_page_mapcount(page);
1178 __free_pages(page, order);
1181 static void rcu_free_slab(struct rcu_head *h)
1183 struct page *page;
1185 page = container_of((struct list_head *)h, struct page, lru);
1186 __free_slab(page->slab, page);
1189 static void free_slab(struct kmem_cache *s, struct page *page)
1191 if (unlikely(s->flags & SLAB_DESTROY_BY_RCU)) {
1193 * RCU free overloads the RCU head over the LRU
1195 struct rcu_head *head = (void *)&page->lru;
1197 call_rcu(head, rcu_free_slab);
1198 } else
1199 __free_slab(s, page);
1202 static void discard_slab(struct kmem_cache *s, struct page *page)
1204 dec_slabs_node(s, page_to_nid(page), page->objects);
1205 free_slab(s, page);
1209 * Per slab locking using the pagelock
1211 static __always_inline void slab_lock(struct page *page)
1213 bit_spin_lock(PG_locked, &page->flags);
1216 static __always_inline void slab_unlock(struct page *page)
1218 __bit_spin_unlock(PG_locked, &page->flags);
1221 static __always_inline int slab_trylock(struct page *page)
1223 int rc = 1;
1225 rc = bit_spin_trylock(PG_locked, &page->flags);
1226 return rc;
1230 * Management of partially allocated slabs
1232 static void add_partial(struct kmem_cache_node *n,
1233 struct page *page, int tail)
1235 spin_lock(&n->list_lock);
1236 n->nr_partial++;
1237 if (tail)
1238 list_add_tail(&page->lru, &n->partial);
1239 else
1240 list_add(&page->lru, &n->partial);
1241 spin_unlock(&n->list_lock);
1244 static void remove_partial(struct kmem_cache *s, struct page *page)
1246 struct kmem_cache_node *n = get_node(s, page_to_nid(page));
1248 spin_lock(&n->list_lock);
1249 list_del(&page->lru);
1250 n->nr_partial--;
1251 spin_unlock(&n->list_lock);
1255 * Lock slab and remove from the partial list.
1257 * Must hold list_lock.
1259 static inline int lock_and_freeze_slab(struct kmem_cache_node *n,
1260 struct page *page)
1262 if (slab_trylock(page)) {
1263 list_del(&page->lru);
1264 n->nr_partial--;
1265 __SetPageSlubFrozen(page);
1266 return 1;
1268 return 0;
1272 * Try to allocate a partial slab from a specific node.
1274 static struct page *get_partial_node(struct kmem_cache_node *n)
1276 struct page *page;
1279 * Racy check. If we mistakenly see no partial slabs then we
1280 * just allocate an empty slab. If we mistakenly try to get a
1281 * partial slab and there is none available then get_partials()
1282 * will return NULL.
1284 if (!n || !n->nr_partial)
1285 return NULL;
1287 spin_lock(&n->list_lock);
1288 list_for_each_entry(page, &n->partial, lru)
1289 if (lock_and_freeze_slab(n, page))
1290 goto out;
1291 page = NULL;
1292 out:
1293 spin_unlock(&n->list_lock);
1294 return page;
1298 * Get a page from somewhere. Search in increasing NUMA distances.
1300 static struct page *get_any_partial(struct kmem_cache *s, gfp_t flags)
1302 #ifdef CONFIG_NUMA
1303 struct zonelist *zonelist;
1304 struct zoneref *z;
1305 struct zone *zone;
1306 enum zone_type high_zoneidx = gfp_zone(flags);
1307 struct page *page;
1310 * The defrag ratio allows a configuration of the tradeoffs between
1311 * inter node defragmentation and node local allocations. A lower
1312 * defrag_ratio increases the tendency to do local allocations
1313 * instead of attempting to obtain partial slabs from other nodes.
1315 * If the defrag_ratio is set to 0 then kmalloc() always
1316 * returns node local objects. If the ratio is higher then kmalloc()
1317 * may return off node objects because partial slabs are obtained
1318 * from other nodes and filled up.
1320 * If /sys/kernel/slab/xx/defrag_ratio is set to 100 (which makes
1321 * defrag_ratio = 1000) then every (well almost) allocation will
1322 * first attempt to defrag slab caches on other nodes. This means
1323 * scanning over all nodes to look for partial slabs which may be
1324 * expensive if we do it every time we are trying to find a slab
1325 * with available objects.
1327 if (!s->remote_node_defrag_ratio ||
1328 get_cycles() % 1024 > s->remote_node_defrag_ratio)
1329 return NULL;
1331 zonelist = node_zonelist(slab_node(current->mempolicy), flags);
1332 for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) {
1333 struct kmem_cache_node *n;
1335 n = get_node(s, zone_to_nid(zone));
1337 if (n && cpuset_zone_allowed_hardwall(zone, flags) &&
1338 n->nr_partial > n->min_partial) {
1339 page = get_partial_node(n);
1340 if (page)
1341 return page;
1344 #endif
1345 return NULL;
1349 * Get a partial page, lock it and return it.
1351 static struct page *get_partial(struct kmem_cache *s, gfp_t flags, int node)
1353 struct page *page;
1354 int searchnode = (node == -1) ? numa_node_id() : node;
1356 page = get_partial_node(get_node(s, searchnode));
1357 if (page || (flags & __GFP_THISNODE))
1358 return page;
1360 return get_any_partial(s, flags);
1364 * Move a page back to the lists.
1366 * Must be called with the slab lock held.
1368 * On exit the slab lock will have been dropped.
1370 static void unfreeze_slab(struct kmem_cache *s, struct page *page, int tail)
1372 struct kmem_cache_node *n = get_node(s, page_to_nid(page));
1373 struct kmem_cache_cpu *c = get_cpu_slab(s, smp_processor_id());
1375 __ClearPageSlubFrozen(page);
1376 if (page->inuse) {
1378 if (page->freelist) {
1379 add_partial(n, page, tail);
1380 stat(c, tail ? DEACTIVATE_TO_TAIL : DEACTIVATE_TO_HEAD);
1381 } else {
1382 stat(c, DEACTIVATE_FULL);
1383 if (SLABDEBUG && PageSlubDebug(page) &&
1384 (s->flags & SLAB_STORE_USER))
1385 add_full(n, page);
1387 slab_unlock(page);
1388 } else {
1389 stat(c, DEACTIVATE_EMPTY);
1390 if (n->nr_partial < n->min_partial) {
1392 * Adding an empty slab to the partial slabs in order
1393 * to avoid page allocator overhead. This slab needs
1394 * to come after the other slabs with objects in
1395 * so that the others get filled first. That way the
1396 * size of the partial list stays small.
1398 * kmem_cache_shrink can reclaim any empty slabs from
1399 * the partial list.
1401 add_partial(n, page, 1);
1402 slab_unlock(page);
1403 } else {
1404 slab_unlock(page);
1405 stat(get_cpu_slab(s, raw_smp_processor_id()), FREE_SLAB);
1406 discard_slab(s, page);
1412 * Remove the cpu slab
1414 static void deactivate_slab(struct kmem_cache *s, struct kmem_cache_cpu *c)
1416 struct page *page = c->page;
1417 int tail = 1;
1419 if (page->freelist)
1420 stat(c, DEACTIVATE_REMOTE_FREES);
1422 * Merge cpu freelist into slab freelist. Typically we get here
1423 * because both freelists are empty. So this is unlikely
1424 * to occur.
1426 while (unlikely(c->freelist)) {
1427 void **object;
1429 tail = 0; /* Hot objects. Put the slab first */
1431 /* Retrieve object from cpu_freelist */
1432 object = c->freelist;
1433 c->freelist = c->freelist[c->offset];
1435 /* And put onto the regular freelist */
1436 object[c->offset] = page->freelist;
1437 page->freelist = object;
1438 page->inuse--;
1440 c->page = NULL;
1441 unfreeze_slab(s, page, tail);
1444 static inline void flush_slab(struct kmem_cache *s, struct kmem_cache_cpu *c)
1446 stat(c, CPUSLAB_FLUSH);
1447 slab_lock(c->page);
1448 deactivate_slab(s, c);
1452 * Flush cpu slab.
1454 * Called from IPI handler with interrupts disabled.
1456 static inline void __flush_cpu_slab(struct kmem_cache *s, int cpu)
1458 struct kmem_cache_cpu *c = get_cpu_slab(s, cpu);
1460 if (likely(c && c->page))
1461 flush_slab(s, c);
1464 static void flush_cpu_slab(void *d)
1466 struct kmem_cache *s = d;
1468 __flush_cpu_slab(s, smp_processor_id());
1471 static void flush_all(struct kmem_cache *s)
1473 on_each_cpu(flush_cpu_slab, s, 1);
1477 * Check if the objects in a per cpu structure fit numa
1478 * locality expectations.
1480 static inline int node_match(struct kmem_cache_cpu *c, int node)
1482 #ifdef CONFIG_NUMA
1483 if (node != -1 && c->node != node)
1484 return 0;
1485 #endif
1486 return 1;
1490 * Slow path. The lockless freelist is empty or we need to perform
1491 * debugging duties.
1493 * Interrupts are disabled.
1495 * Processing is still very fast if new objects have been freed to the
1496 * regular freelist. In that case we simply take over the regular freelist
1497 * as the lockless freelist and zap the regular freelist.
1499 * If that is not working then we fall back to the partial lists. We take the
1500 * first element of the freelist as the object to allocate now and move the
1501 * rest of the freelist to the lockless freelist.
1503 * And if we were unable to get a new slab from the partial slab lists then
1504 * we need to allocate a new slab. This is the slowest path since it involves
1505 * a call to the page allocator and the setup of a new slab.
1507 static void *__slab_alloc(struct kmem_cache *s, gfp_t gfpflags, int node,
1508 unsigned long addr, struct kmem_cache_cpu *c)
1510 void **object;
1511 struct page *new;
1513 /* We handle __GFP_ZERO in the caller */
1514 gfpflags &= ~__GFP_ZERO;
1516 if (!c->page)
1517 goto new_slab;
1519 slab_lock(c->page);
1520 if (unlikely(!node_match(c, node)))
1521 goto another_slab;
1523 stat(c, ALLOC_REFILL);
1525 load_freelist:
1526 object = c->page->freelist;
1527 if (unlikely(!object))
1528 goto another_slab;
1529 if (unlikely(SLABDEBUG && PageSlubDebug(c->page)))
1530 goto debug;
1532 c->freelist = object[c->offset];
1533 c->page->inuse = c->page->objects;
1534 c->page->freelist = NULL;
1535 c->node = page_to_nid(c->page);
1536 unlock_out:
1537 slab_unlock(c->page);
1538 stat(c, ALLOC_SLOWPATH);
1539 return object;
1541 another_slab:
1542 deactivate_slab(s, c);
1544 new_slab:
1545 new = get_partial(s, gfpflags, node);
1546 if (new) {
1547 c->page = new;
1548 stat(c, ALLOC_FROM_PARTIAL);
1549 goto load_freelist;
1552 if (gfpflags & __GFP_WAIT)
1553 local_irq_enable();
1555 new = new_slab(s, gfpflags, node);
1557 if (gfpflags & __GFP_WAIT)
1558 local_irq_disable();
1560 if (new) {
1561 c = get_cpu_slab(s, smp_processor_id());
1562 stat(c, ALLOC_SLAB);
1563 if (c->page)
1564 flush_slab(s, c);
1565 slab_lock(new);
1566 __SetPageSlubFrozen(new);
1567 c->page = new;
1568 goto load_freelist;
1570 return NULL;
1571 debug:
1572 if (!alloc_debug_processing(s, c->page, object, addr))
1573 goto another_slab;
1575 c->page->inuse++;
1576 c->page->freelist = object[c->offset];
1577 c->node = -1;
1578 goto unlock_out;
1582 * Inlined fastpath so that allocation functions (kmalloc, kmem_cache_alloc)
1583 * have the fastpath folded into their functions. So no function call
1584 * overhead for requests that can be satisfied on the fastpath.
1586 * The fastpath works by first checking if the lockless freelist can be used.
1587 * If not then __slab_alloc is called for slow processing.
1589 * Otherwise we can simply pick the next object from the lockless free list.
1591 static __always_inline void *slab_alloc(struct kmem_cache *s,
1592 gfp_t gfpflags, int node, unsigned long addr)
1594 void **object;
1595 struct kmem_cache_cpu *c;
1596 unsigned long flags;
1597 unsigned int objsize;
1599 might_sleep_if(gfpflags & __GFP_WAIT);
1601 if (should_failslab(s->objsize, gfpflags))
1602 return NULL;
1604 local_irq_save(flags);
1605 c = get_cpu_slab(s, smp_processor_id());
1606 objsize = c->objsize;
1607 if (unlikely(!c->freelist || !node_match(c, node)))
1609 object = __slab_alloc(s, gfpflags, node, addr, c);
1611 else {
1612 object = c->freelist;
1613 c->freelist = object[c->offset];
1614 stat(c, ALLOC_FASTPATH);
1616 local_irq_restore(flags);
1618 if (unlikely((gfpflags & __GFP_ZERO) && object))
1619 memset(object, 0, objsize);
1621 return object;
1624 void *kmem_cache_alloc(struct kmem_cache *s, gfp_t gfpflags)
1626 return slab_alloc(s, gfpflags, -1, _RET_IP_);
1628 EXPORT_SYMBOL(kmem_cache_alloc);
1630 #ifdef CONFIG_NUMA
1631 void *kmem_cache_alloc_node(struct kmem_cache *s, gfp_t gfpflags, int node)
1633 return slab_alloc(s, gfpflags, node, _RET_IP_);
1635 EXPORT_SYMBOL(kmem_cache_alloc_node);
1636 #endif
1639 * Slow patch handling. This may still be called frequently since objects
1640 * have a longer lifetime than the cpu slabs in most processing loads.
1642 * So we still attempt to reduce cache line usage. Just take the slab
1643 * lock and free the item. If there is no additional partial page
1644 * handling required then we can return immediately.
1646 static void __slab_free(struct kmem_cache *s, struct page *page,
1647 void *x, unsigned long addr, unsigned int offset)
1649 void *prior;
1650 void **object = (void *)x;
1651 struct kmem_cache_cpu *c;
1653 c = get_cpu_slab(s, raw_smp_processor_id());
1654 stat(c, FREE_SLOWPATH);
1655 slab_lock(page);
1657 if (unlikely(SLABDEBUG && PageSlubDebug(page)))
1658 goto debug;
1660 checks_ok:
1661 prior = object[offset] = page->freelist;
1662 page->freelist = object;
1663 page->inuse--;
1665 if (unlikely(PageSlubFrozen(page))) {
1666 stat(c, FREE_FROZEN);
1667 goto out_unlock;
1670 if (unlikely(!page->inuse))
1671 goto slab_empty;
1674 * Objects left in the slab. If it was not on the partial list before
1675 * then add it.
1677 if (unlikely(!prior)) {
1678 add_partial(get_node(s, page_to_nid(page)), page, 1);
1679 stat(c, FREE_ADD_PARTIAL);
1682 out_unlock:
1683 slab_unlock(page);
1684 return;
1686 slab_empty:
1687 if (prior) {
1689 * Slab still on the partial list.
1691 remove_partial(s, page);
1692 stat(c, FREE_REMOVE_PARTIAL);
1694 slab_unlock(page);
1695 stat(c, FREE_SLAB);
1696 discard_slab(s, page);
1697 return;
1699 debug:
1700 if (!free_debug_processing(s, page, x, addr))
1701 goto out_unlock;
1702 goto checks_ok;
1706 * Fastpath with forced inlining to produce a kfree and kmem_cache_free that
1707 * can perform fastpath freeing without additional function calls.
1709 * The fastpath is only possible if we are freeing to the current cpu slab
1710 * of this processor. This typically the case if we have just allocated
1711 * the item before.
1713 * If fastpath is not possible then fall back to __slab_free where we deal
1714 * with all sorts of special processing.
1716 static __always_inline void slab_free(struct kmem_cache *s,
1717 struct page *page, void *x, unsigned long addr)
1719 void **object = (void *)x;
1720 struct kmem_cache_cpu *c;
1721 unsigned long flags;
1723 local_irq_save(flags);
1724 c = get_cpu_slab(s, smp_processor_id());
1725 debug_check_no_locks_freed(object, c->objsize);
1726 if (!(s->flags & SLAB_DEBUG_OBJECTS))
1727 debug_check_no_obj_freed(object, s->objsize);
1728 if (likely(page == c->page && c->node >= 0)) {
1729 object[c->offset] = c->freelist;
1730 c->freelist = object;
1731 stat(c, FREE_FASTPATH);
1732 } else
1733 __slab_free(s, page, x, addr, c->offset);
1735 local_irq_restore(flags);
1738 void kmem_cache_free(struct kmem_cache *s, void *x)
1740 struct page *page;
1742 page = virt_to_head_page(x);
1744 slab_free(s, page, x, _RET_IP_);
1746 EXPORT_SYMBOL(kmem_cache_free);
1748 /* Figure out on which slab page the object resides */
1749 static struct page *get_object_page(const void *x)
1751 struct page *page = virt_to_head_page(x);
1753 if (!PageSlab(page))
1754 return NULL;
1756 return page;
1760 * Object placement in a slab is made very easy because we always start at
1761 * offset 0. If we tune the size of the object to the alignment then we can
1762 * get the required alignment by putting one properly sized object after
1763 * another.
1765 * Notice that the allocation order determines the sizes of the per cpu
1766 * caches. Each processor has always one slab available for allocations.
1767 * Increasing the allocation order reduces the number of times that slabs
1768 * must be moved on and off the partial lists and is therefore a factor in
1769 * locking overhead.
1773 * Mininum / Maximum order of slab pages. This influences locking overhead
1774 * and slab fragmentation. A higher order reduces the number of partial slabs
1775 * and increases the number of allocations possible without having to
1776 * take the list_lock.
1778 static int slub_min_order;
1779 static int slub_max_order = PAGE_ALLOC_COSTLY_ORDER;
1780 static int slub_min_objects;
1783 * Merge control. If this is set then no merging of slab caches will occur.
1784 * (Could be removed. This was introduced to pacify the merge skeptics.)
1786 static int slub_nomerge;
1789 * Calculate the order of allocation given an slab object size.
1791 * The order of allocation has significant impact on performance and other
1792 * system components. Generally order 0 allocations should be preferred since
1793 * order 0 does not cause fragmentation in the page allocator. Larger objects
1794 * be problematic to put into order 0 slabs because there may be too much
1795 * unused space left. We go to a higher order if more than 1/16th of the slab
1796 * would be wasted.
1798 * In order to reach satisfactory performance we must ensure that a minimum
1799 * number of objects is in one slab. Otherwise we may generate too much
1800 * activity on the partial lists which requires taking the list_lock. This is
1801 * less a concern for large slabs though which are rarely used.
1803 * slub_max_order specifies the order where we begin to stop considering the
1804 * number of objects in a slab as critical. If we reach slub_max_order then
1805 * we try to keep the page order as low as possible. So we accept more waste
1806 * of space in favor of a small page order.
1808 * Higher order allocations also allow the placement of more objects in a
1809 * slab and thereby reduce object handling overhead. If the user has
1810 * requested a higher mininum order then we start with that one instead of
1811 * the smallest order which will fit the object.
1813 static inline int slab_order(int size, int min_objects,
1814 int max_order, int fract_leftover)
1816 int order;
1817 int rem;
1818 int min_order = slub_min_order;
1820 if ((PAGE_SIZE << min_order) / size > MAX_OBJS_PER_PAGE)
1821 return get_order(size * MAX_OBJS_PER_PAGE) - 1;
1823 for (order = max(min_order,
1824 fls(min_objects * size - 1) - PAGE_SHIFT);
1825 order <= max_order; order++) {
1827 unsigned long slab_size = PAGE_SIZE << order;
1829 if (slab_size < min_objects * size)
1830 continue;
1832 rem = slab_size % size;
1834 if (rem <= slab_size / fract_leftover)
1835 break;
1839 return order;
1842 static inline int calculate_order(int size)
1844 int order;
1845 int min_objects;
1846 int fraction;
1849 * Attempt to find best configuration for a slab. This
1850 * works by first attempting to generate a layout with
1851 * the best configuration and backing off gradually.
1853 * First we reduce the acceptable waste in a slab. Then
1854 * we reduce the minimum objects required in a slab.
1856 min_objects = slub_min_objects;
1857 if (!min_objects)
1858 min_objects = 4 * (fls(nr_cpu_ids) + 1);
1859 while (min_objects > 1) {
1860 fraction = 16;
1861 while (fraction >= 4) {
1862 order = slab_order(size, min_objects,
1863 slub_max_order, fraction);
1864 if (order <= slub_max_order)
1865 return order;
1866 fraction /= 2;
1868 min_objects /= 2;
1872 * We were unable to place multiple objects in a slab. Now
1873 * lets see if we can place a single object there.
1875 order = slab_order(size, 1, slub_max_order, 1);
1876 if (order <= slub_max_order)
1877 return order;
1880 * Doh this slab cannot be placed using slub_max_order.
1882 order = slab_order(size, 1, MAX_ORDER, 1);
1883 if (order <= MAX_ORDER)
1884 return order;
1885 return -ENOSYS;
1889 * Figure out what the alignment of the objects will be.
1891 static unsigned long calculate_alignment(unsigned long flags,
1892 unsigned long align, unsigned long size)
1895 * If the user wants hardware cache aligned objects then follow that
1896 * suggestion if the object is sufficiently large.
1898 * The hardware cache alignment cannot override the specified
1899 * alignment though. If that is greater then use it.
1901 if (flags & SLAB_HWCACHE_ALIGN) {
1902 unsigned long ralign = cache_line_size();
1903 while (size <= ralign / 2)
1904 ralign /= 2;
1905 align = max(align, ralign);
1908 if (align < ARCH_SLAB_MINALIGN)
1909 align = ARCH_SLAB_MINALIGN;
1911 return ALIGN(align, sizeof(void *));
1914 static void init_kmem_cache_cpu(struct kmem_cache *s,
1915 struct kmem_cache_cpu *c)
1917 c->page = NULL;
1918 c->freelist = NULL;
1919 c->node = 0;
1920 c->offset = s->offset / sizeof(void *);
1921 c->objsize = s->objsize;
1922 #ifdef CONFIG_SLUB_STATS
1923 memset(c->stat, 0, NR_SLUB_STAT_ITEMS * sizeof(unsigned));
1924 #endif
1927 static void
1928 init_kmem_cache_node(struct kmem_cache_node *n, struct kmem_cache *s)
1930 n->nr_partial = 0;
1933 * The larger the object size is, the more pages we want on the partial
1934 * list to avoid pounding the page allocator excessively.
1936 n->min_partial = ilog2(s->size);
1937 if (n->min_partial < MIN_PARTIAL)
1938 n->min_partial = MIN_PARTIAL;
1939 else if (n->min_partial > MAX_PARTIAL)
1940 n->min_partial = MAX_PARTIAL;
1942 spin_lock_init(&n->list_lock);
1943 INIT_LIST_HEAD(&n->partial);
1944 #ifdef CONFIG_SLUB_DEBUG
1945 atomic_long_set(&n->nr_slabs, 0);
1946 atomic_long_set(&n->total_objects, 0);
1947 INIT_LIST_HEAD(&n->full);
1948 #endif
1951 #ifdef CONFIG_SMP
1953 * Per cpu array for per cpu structures.
1955 * The per cpu array places all kmem_cache_cpu structures from one processor
1956 * close together meaning that it becomes possible that multiple per cpu
1957 * structures are contained in one cacheline. This may be particularly
1958 * beneficial for the kmalloc caches.
1960 * A desktop system typically has around 60-80 slabs. With 100 here we are
1961 * likely able to get per cpu structures for all caches from the array defined
1962 * here. We must be able to cover all kmalloc caches during bootstrap.
1964 * If the per cpu array is exhausted then fall back to kmalloc
1965 * of individual cachelines. No sharing is possible then.
1967 #define NR_KMEM_CACHE_CPU 100
1969 static DEFINE_PER_CPU(struct kmem_cache_cpu,
1970 kmem_cache_cpu)[NR_KMEM_CACHE_CPU];
1972 static DEFINE_PER_CPU(struct kmem_cache_cpu *, kmem_cache_cpu_free);
1973 static DECLARE_BITMAP(kmem_cach_cpu_free_init_once, CONFIG_NR_CPUS);
1975 static struct kmem_cache_cpu *alloc_kmem_cache_cpu(struct kmem_cache *s,
1976 int cpu, gfp_t flags)
1978 struct kmem_cache_cpu *c = per_cpu(kmem_cache_cpu_free, cpu);
1980 if (c)
1981 per_cpu(kmem_cache_cpu_free, cpu) =
1982 (void *)c->freelist;
1983 else {
1984 /* Table overflow: So allocate ourselves */
1985 c = kmalloc_node(
1986 ALIGN(sizeof(struct kmem_cache_cpu), cache_line_size()),
1987 flags, cpu_to_node(cpu));
1988 if (!c)
1989 return NULL;
1992 init_kmem_cache_cpu(s, c);
1993 return c;
1996 static void free_kmem_cache_cpu(struct kmem_cache_cpu *c, int cpu)
1998 if (c < per_cpu(kmem_cache_cpu, cpu) ||
1999 c > per_cpu(kmem_cache_cpu, cpu) + NR_KMEM_CACHE_CPU) {
2000 kfree(c);
2001 return;
2003 c->freelist = (void *)per_cpu(kmem_cache_cpu_free, cpu);
2004 per_cpu(kmem_cache_cpu_free, cpu) = c;
2007 static void free_kmem_cache_cpus(struct kmem_cache *s)
2009 int cpu;
2011 for_each_online_cpu(cpu) {
2012 struct kmem_cache_cpu *c = get_cpu_slab(s, cpu);
2014 if (c) {
2015 s->cpu_slab[cpu] = NULL;
2016 free_kmem_cache_cpu(c, cpu);
2021 static int alloc_kmem_cache_cpus(struct kmem_cache *s, gfp_t flags)
2023 int cpu;
2025 for_each_online_cpu(cpu) {
2026 struct kmem_cache_cpu *c = get_cpu_slab(s, cpu);
2028 if (c)
2029 continue;
2031 c = alloc_kmem_cache_cpu(s, cpu, flags);
2032 if (!c) {
2033 free_kmem_cache_cpus(s);
2034 return 0;
2036 s->cpu_slab[cpu] = c;
2038 return 1;
2042 * Initialize the per cpu array.
2044 static void init_alloc_cpu_cpu(int cpu)
2046 int i;
2048 if (cpumask_test_cpu(cpu, to_cpumask(kmem_cach_cpu_free_init_once)))
2049 return;
2051 for (i = NR_KMEM_CACHE_CPU - 1; i >= 0; i--)
2052 free_kmem_cache_cpu(&per_cpu(kmem_cache_cpu, cpu)[i], cpu);
2054 cpumask_set_cpu(cpu, to_cpumask(kmem_cach_cpu_free_init_once));
2057 static void __init init_alloc_cpu(void)
2059 int cpu;
2061 for_each_online_cpu(cpu)
2062 init_alloc_cpu_cpu(cpu);
2065 #else
2066 static inline void free_kmem_cache_cpus(struct kmem_cache *s) {}
2067 static inline void init_alloc_cpu(void) {}
2069 static inline int alloc_kmem_cache_cpus(struct kmem_cache *s, gfp_t flags)
2071 init_kmem_cache_cpu(s, &s->cpu_slab);
2072 return 1;
2074 #endif
2076 #ifdef CONFIG_NUMA
2078 * No kmalloc_node yet so do it by hand. We know that this is the first
2079 * slab on the node for this slabcache. There are no concurrent accesses
2080 * possible.
2082 * Note that this function only works on the kmalloc_node_cache
2083 * when allocating for the kmalloc_node_cache. This is used for bootstrapping
2084 * memory on a fresh node that has no slab structures yet.
2086 static void early_kmem_cache_node_alloc(gfp_t gfpflags, int node)
2088 struct page *page;
2089 struct kmem_cache_node *n;
2090 unsigned long flags;
2092 BUG_ON(kmalloc_caches->size < sizeof(struct kmem_cache_node));
2094 page = new_slab(kmalloc_caches, gfpflags, node);
2096 BUG_ON(!page);
2097 if (page_to_nid(page) != node) {
2098 printk(KERN_ERR "SLUB: Unable to allocate memory from "
2099 "node %d\n", node);
2100 printk(KERN_ERR "SLUB: Allocating a useless per node structure "
2101 "in order to be able to continue\n");
2104 n = page->freelist;
2105 BUG_ON(!n);
2106 page->freelist = get_freepointer(kmalloc_caches, n);
2107 page->inuse++;
2108 kmalloc_caches->node[node] = n;
2109 #ifdef CONFIG_SLUB_DEBUG
2110 init_object(kmalloc_caches, n, 1);
2111 init_tracking(kmalloc_caches, n);
2112 #endif
2113 init_kmem_cache_node(n, kmalloc_caches);
2114 inc_slabs_node(kmalloc_caches, node, page->objects);
2117 * lockdep requires consistent irq usage for each lock
2118 * so even though there cannot be a race this early in
2119 * the boot sequence, we still disable irqs.
2121 local_irq_save(flags);
2122 add_partial(n, page, 0);
2123 local_irq_restore(flags);
2126 static void free_kmem_cache_nodes(struct kmem_cache *s)
2128 int node;
2130 for_each_node_state(node, N_NORMAL_MEMORY) {
2131 struct kmem_cache_node *n = s->node[node];
2132 if (n && n != &s->local_node)
2133 kmem_cache_free(kmalloc_caches, n);
2134 s->node[node] = NULL;
2138 static int init_kmem_cache_nodes(struct kmem_cache *s, gfp_t gfpflags)
2140 int node;
2141 int local_node;
2143 if (slab_state >= UP)
2144 local_node = page_to_nid(virt_to_page(s));
2145 else
2146 local_node = 0;
2148 for_each_node_state(node, N_NORMAL_MEMORY) {
2149 struct kmem_cache_node *n;
2151 if (local_node == node)
2152 n = &s->local_node;
2153 else {
2154 if (slab_state == DOWN) {
2155 early_kmem_cache_node_alloc(gfpflags, node);
2156 continue;
2158 n = kmem_cache_alloc_node(kmalloc_caches,
2159 gfpflags, node);
2161 if (!n) {
2162 free_kmem_cache_nodes(s);
2163 return 0;
2167 s->node[node] = n;
2168 init_kmem_cache_node(n, s);
2170 return 1;
2172 #else
2173 static void free_kmem_cache_nodes(struct kmem_cache *s)
2177 static int init_kmem_cache_nodes(struct kmem_cache *s, gfp_t gfpflags)
2179 init_kmem_cache_node(&s->local_node, s);
2180 return 1;
2182 #endif
2185 * calculate_sizes() determines the order and the distribution of data within
2186 * a slab object.
2188 static int calculate_sizes(struct kmem_cache *s, int forced_order)
2190 unsigned long flags = s->flags;
2191 unsigned long size = s->objsize;
2192 unsigned long align = s->align;
2193 int order;
2196 * Round up object size to the next word boundary. We can only
2197 * place the free pointer at word boundaries and this determines
2198 * the possible location of the free pointer.
2200 size = ALIGN(size, sizeof(void *));
2202 #ifdef CONFIG_SLUB_DEBUG
2204 * Determine if we can poison the object itself. If the user of
2205 * the slab may touch the object after free or before allocation
2206 * then we should never poison the object itself.
2208 if ((flags & SLAB_POISON) && !(flags & SLAB_DESTROY_BY_RCU) &&
2209 !s->ctor)
2210 s->flags |= __OBJECT_POISON;
2211 else
2212 s->flags &= ~__OBJECT_POISON;
2216 * If we are Redzoning then check if there is some space between the
2217 * end of the object and the free pointer. If not then add an
2218 * additional word to have some bytes to store Redzone information.
2220 if ((flags & SLAB_RED_ZONE) && size == s->objsize)
2221 size += sizeof(void *);
2222 #endif
2225 * With that we have determined the number of bytes in actual use
2226 * by the object. This is the potential offset to the free pointer.
2228 s->inuse = size;
2230 if (((flags & (SLAB_DESTROY_BY_RCU | SLAB_POISON)) ||
2231 s->ctor)) {
2233 * Relocate free pointer after the object if it is not
2234 * permitted to overwrite the first word of the object on
2235 * kmem_cache_free.
2237 * This is the case if we do RCU, have a constructor or
2238 * destructor or are poisoning the objects.
2240 s->offset = size;
2241 size += sizeof(void *);
2244 #ifdef CONFIG_SLUB_DEBUG
2245 if (flags & SLAB_STORE_USER)
2247 * Need to store information about allocs and frees after
2248 * the object.
2250 size += 2 * sizeof(struct track);
2252 if (flags & SLAB_RED_ZONE)
2254 * Add some empty padding so that we can catch
2255 * overwrites from earlier objects rather than let
2256 * tracking information or the free pointer be
2257 * corrupted if an user writes before the start
2258 * of the object.
2260 size += sizeof(void *);
2261 #endif
2264 * Determine the alignment based on various parameters that the
2265 * user specified and the dynamic determination of cache line size
2266 * on bootup.
2268 align = calculate_alignment(flags, align, s->objsize);
2271 * SLUB stores one object immediately after another beginning from
2272 * offset 0. In order to align the objects we have to simply size
2273 * each object to conform to the alignment.
2275 size = ALIGN(size, align);
2276 s->size = size;
2277 if (forced_order >= 0)
2278 order = forced_order;
2279 else
2280 order = calculate_order(size);
2282 if (order < 0)
2283 return 0;
2285 s->allocflags = 0;
2286 if (order)
2287 s->allocflags |= __GFP_COMP;
2289 if (s->flags & SLAB_CACHE_DMA)
2290 s->allocflags |= SLUB_DMA;
2292 if (s->flags & SLAB_RECLAIM_ACCOUNT)
2293 s->allocflags |= __GFP_RECLAIMABLE;
2296 * Determine the number of objects per slab
2298 s->oo = oo_make(order, size);
2299 s->min = oo_make(get_order(size), size);
2300 if (oo_objects(s->oo) > oo_objects(s->max))
2301 s->max = s->oo;
2303 return !!oo_objects(s->oo);
2307 static int kmem_cache_open(struct kmem_cache *s, gfp_t gfpflags,
2308 const char *name, size_t size,
2309 size_t align, unsigned long flags,
2310 void (*ctor)(void *))
2312 memset(s, 0, kmem_size);
2313 s->name = name;
2314 s->ctor = ctor;
2315 s->objsize = size;
2316 s->align = align;
2317 s->flags = kmem_cache_flags(size, flags, name, ctor);
2319 if (!calculate_sizes(s, -1))
2320 goto error;
2322 s->refcount = 1;
2323 #ifdef CONFIG_NUMA
2324 s->remote_node_defrag_ratio = 1000;
2325 #endif
2326 if (!init_kmem_cache_nodes(s, gfpflags & ~SLUB_DMA))
2327 goto error;
2329 if (alloc_kmem_cache_cpus(s, gfpflags & ~SLUB_DMA))
2330 return 1;
2331 free_kmem_cache_nodes(s);
2332 error:
2333 if (flags & SLAB_PANIC)
2334 panic("Cannot create slab %s size=%lu realsize=%u "
2335 "order=%u offset=%u flags=%lx\n",
2336 s->name, (unsigned long)size, s->size, oo_order(s->oo),
2337 s->offset, flags);
2338 return 0;
2342 * Check if a given pointer is valid
2344 int kmem_ptr_validate(struct kmem_cache *s, const void *object)
2346 struct page *page;
2348 page = get_object_page(object);
2350 if (!page || s != page->slab)
2351 /* No slab or wrong slab */
2352 return 0;
2354 if (!check_valid_pointer(s, page, object))
2355 return 0;
2358 * We could also check if the object is on the slabs freelist.
2359 * But this would be too expensive and it seems that the main
2360 * purpose of kmem_ptr_valid() is to check if the object belongs
2361 * to a certain slab.
2363 return 1;
2365 EXPORT_SYMBOL(kmem_ptr_validate);
2368 * Determine the size of a slab object
2370 unsigned int kmem_cache_size(struct kmem_cache *s)
2372 return s->objsize;
2374 EXPORT_SYMBOL(kmem_cache_size);
2376 const char *kmem_cache_name(struct kmem_cache *s)
2378 return s->name;
2380 EXPORT_SYMBOL(kmem_cache_name);
2382 static void list_slab_objects(struct kmem_cache *s, struct page *page,
2383 const char *text)
2385 #ifdef CONFIG_SLUB_DEBUG
2386 void *addr = page_address(page);
2387 void *p;
2388 DECLARE_BITMAP(map, page->objects);
2390 bitmap_zero(map, page->objects);
2391 slab_err(s, page, "%s", text);
2392 slab_lock(page);
2393 for_each_free_object(p, s, page->freelist)
2394 set_bit(slab_index(p, s, addr), map);
2396 for_each_object(p, s, addr, page->objects) {
2398 if (!test_bit(slab_index(p, s, addr), map)) {
2399 printk(KERN_ERR "INFO: Object 0x%p @offset=%tu\n",
2400 p, p - addr);
2401 print_tracking(s, p);
2404 slab_unlock(page);
2405 #endif
2409 * Attempt to free all partial slabs on a node.
2411 static void free_partial(struct kmem_cache *s, struct kmem_cache_node *n)
2413 unsigned long flags;
2414 struct page *page, *h;
2416 spin_lock_irqsave(&n->list_lock, flags);
2417 list_for_each_entry_safe(page, h, &n->partial, lru) {
2418 if (!page->inuse) {
2419 list_del(&page->lru);
2420 discard_slab(s, page);
2421 n->nr_partial--;
2422 } else {
2423 list_slab_objects(s, page,
2424 "Objects remaining on kmem_cache_close()");
2427 spin_unlock_irqrestore(&n->list_lock, flags);
2431 * Release all resources used by a slab cache.
2433 static inline int kmem_cache_close(struct kmem_cache *s)
2435 int node;
2437 flush_all(s);
2439 /* Attempt to free all objects */
2440 free_kmem_cache_cpus(s);
2441 for_each_node_state(node, N_NORMAL_MEMORY) {
2442 struct kmem_cache_node *n = get_node(s, node);
2444 free_partial(s, n);
2445 if (n->nr_partial || slabs_node(s, node))
2446 return 1;
2448 free_kmem_cache_nodes(s);
2449 return 0;
2453 * Close a cache and release the kmem_cache structure
2454 * (must be used for caches created using kmem_cache_create)
2456 void kmem_cache_destroy(struct kmem_cache *s)
2458 down_write(&slub_lock);
2459 s->refcount--;
2460 if (!s->refcount) {
2461 list_del(&s->list);
2462 up_write(&slub_lock);
2463 if (kmem_cache_close(s)) {
2464 printk(KERN_ERR "SLUB %s: %s called for cache that "
2465 "still has objects.\n", s->name, __func__);
2466 dump_stack();
2468 sysfs_slab_remove(s);
2469 } else
2470 up_write(&slub_lock);
2472 EXPORT_SYMBOL(kmem_cache_destroy);
2474 /********************************************************************
2475 * Kmalloc subsystem
2476 *******************************************************************/
2478 struct kmem_cache kmalloc_caches[PAGE_SHIFT + 1] __cacheline_aligned;
2479 EXPORT_SYMBOL(kmalloc_caches);
2481 static int __init setup_slub_min_order(char *str)
2483 get_option(&str, &slub_min_order);
2485 return 1;
2488 __setup("slub_min_order=", setup_slub_min_order);
2490 static int __init setup_slub_max_order(char *str)
2492 get_option(&str, &slub_max_order);
2494 return 1;
2497 __setup("slub_max_order=", setup_slub_max_order);
2499 static int __init setup_slub_min_objects(char *str)
2501 get_option(&str, &slub_min_objects);
2503 return 1;
2506 __setup("slub_min_objects=", setup_slub_min_objects);
2508 static int __init setup_slub_nomerge(char *str)
2510 slub_nomerge = 1;
2511 return 1;
2514 __setup("slub_nomerge", setup_slub_nomerge);
2516 static struct kmem_cache *create_kmalloc_cache(struct kmem_cache *s,
2517 const char *name, int size, gfp_t gfp_flags)
2519 unsigned int flags = 0;
2521 if (gfp_flags & SLUB_DMA)
2522 flags = SLAB_CACHE_DMA;
2524 down_write(&slub_lock);
2525 if (!kmem_cache_open(s, gfp_flags, name, size, ARCH_KMALLOC_MINALIGN,
2526 flags, NULL))
2527 goto panic;
2529 list_add(&s->list, &slab_caches);
2530 up_write(&slub_lock);
2531 if (sysfs_slab_add(s))
2532 goto panic;
2533 return s;
2535 panic:
2536 panic("Creation of kmalloc slab %s size=%d failed.\n", name, size);
2539 #ifdef CONFIG_ZONE_DMA
2540 static struct kmem_cache *kmalloc_caches_dma[PAGE_SHIFT + 1];
2542 static void sysfs_add_func(struct work_struct *w)
2544 struct kmem_cache *s;
2546 down_write(&slub_lock);
2547 list_for_each_entry(s, &slab_caches, list) {
2548 if (s->flags & __SYSFS_ADD_DEFERRED) {
2549 s->flags &= ~__SYSFS_ADD_DEFERRED;
2550 sysfs_slab_add(s);
2553 up_write(&slub_lock);
2556 static DECLARE_WORK(sysfs_add_work, sysfs_add_func);
2558 static noinline struct kmem_cache *dma_kmalloc_cache(int index, gfp_t flags)
2560 struct kmem_cache *s;
2561 char *text;
2562 size_t realsize;
2564 s = kmalloc_caches_dma[index];
2565 if (s)
2566 return s;
2568 /* Dynamically create dma cache */
2569 if (flags & __GFP_WAIT)
2570 down_write(&slub_lock);
2571 else {
2572 if (!down_write_trylock(&slub_lock))
2573 goto out;
2576 if (kmalloc_caches_dma[index])
2577 goto unlock_out;
2579 realsize = kmalloc_caches[index].objsize;
2580 text = kasprintf(flags & ~SLUB_DMA, "kmalloc_dma-%d",
2581 (unsigned int)realsize);
2582 s = kmalloc(kmem_size, flags & ~SLUB_DMA);
2584 if (!s || !text || !kmem_cache_open(s, flags, text,
2585 realsize, ARCH_KMALLOC_MINALIGN,
2586 SLAB_CACHE_DMA|__SYSFS_ADD_DEFERRED, NULL)) {
2587 kfree(s);
2588 kfree(text);
2589 goto unlock_out;
2592 list_add(&s->list, &slab_caches);
2593 kmalloc_caches_dma[index] = s;
2595 schedule_work(&sysfs_add_work);
2597 unlock_out:
2598 up_write(&slub_lock);
2599 out:
2600 return kmalloc_caches_dma[index];
2602 #endif
2605 * Conversion table for small slabs sizes / 8 to the index in the
2606 * kmalloc array. This is necessary for slabs < 192 since we have non power
2607 * of two cache sizes there. The size of larger slabs can be determined using
2608 * fls.
2610 static s8 size_index[24] = {
2611 3, /* 8 */
2612 4, /* 16 */
2613 5, /* 24 */
2614 5, /* 32 */
2615 6, /* 40 */
2616 6, /* 48 */
2617 6, /* 56 */
2618 6, /* 64 */
2619 1, /* 72 */
2620 1, /* 80 */
2621 1, /* 88 */
2622 1, /* 96 */
2623 7, /* 104 */
2624 7, /* 112 */
2625 7, /* 120 */
2626 7, /* 128 */
2627 2, /* 136 */
2628 2, /* 144 */
2629 2, /* 152 */
2630 2, /* 160 */
2631 2, /* 168 */
2632 2, /* 176 */
2633 2, /* 184 */
2634 2 /* 192 */
2637 static struct kmem_cache *get_slab(size_t size, gfp_t flags)
2639 int index;
2641 if (size <= 192) {
2642 if (!size)
2643 return ZERO_SIZE_PTR;
2645 index = size_index[(size - 1) / 8];
2646 } else
2647 index = fls(size - 1);
2649 #ifdef CONFIG_ZONE_DMA
2650 if (unlikely((flags & SLUB_DMA)))
2651 return dma_kmalloc_cache(index, flags);
2653 #endif
2654 return &kmalloc_caches[index];
2657 void *__kmalloc(size_t size, gfp_t flags)
2659 struct kmem_cache *s;
2661 if (unlikely(size > PAGE_SIZE))
2662 return kmalloc_large(size, flags);
2664 s = get_slab(size, flags);
2666 if (unlikely(ZERO_OR_NULL_PTR(s)))
2667 return s;
2669 return slab_alloc(s, flags, -1, _RET_IP_);
2671 EXPORT_SYMBOL(__kmalloc);
2673 static void *kmalloc_large_node(size_t size, gfp_t flags, int node)
2675 struct page *page = alloc_pages_node(node, flags | __GFP_COMP,
2676 get_order(size));
2678 if (page)
2679 return page_address(page);
2680 else
2681 return NULL;
2684 #ifdef CONFIG_NUMA
2685 void *__kmalloc_node(size_t size, gfp_t flags, int node)
2687 struct kmem_cache *s;
2689 if (unlikely(size > PAGE_SIZE))
2690 return kmalloc_large_node(size, flags, node);
2692 s = get_slab(size, flags);
2694 if (unlikely(ZERO_OR_NULL_PTR(s)))
2695 return s;
2697 return slab_alloc(s, flags, node, _RET_IP_);
2699 EXPORT_SYMBOL(__kmalloc_node);
2700 #endif
2702 size_t ksize(const void *object)
2704 struct page *page;
2705 struct kmem_cache *s;
2707 if (unlikely(object == ZERO_SIZE_PTR))
2708 return 0;
2710 page = virt_to_head_page(object);
2712 if (unlikely(!PageSlab(page))) {
2713 WARN_ON(!PageCompound(page));
2714 return PAGE_SIZE << compound_order(page);
2716 s = page->slab;
2718 #ifdef CONFIG_SLUB_DEBUG
2720 * Debugging requires use of the padding between object
2721 * and whatever may come after it.
2723 if (s->flags & (SLAB_RED_ZONE | SLAB_POISON))
2724 return s->objsize;
2726 #endif
2728 * If we have the need to store the freelist pointer
2729 * back there or track user information then we can
2730 * only use the space before that information.
2732 if (s->flags & (SLAB_DESTROY_BY_RCU | SLAB_STORE_USER))
2733 return s->inuse;
2735 * Else we can use all the padding etc for the allocation
2737 return s->size;
2740 void kfree(const void *x)
2742 struct page *page;
2743 void *object = (void *)x;
2745 if (unlikely(ZERO_OR_NULL_PTR(x)))
2746 return;
2748 page = virt_to_head_page(x);
2749 if (unlikely(!PageSlab(page))) {
2750 BUG_ON(!PageCompound(page));
2751 put_page(page);
2752 return;
2754 slab_free(page->slab, page, object, _RET_IP_);
2756 EXPORT_SYMBOL(kfree);
2759 * kmem_cache_shrink removes empty slabs from the partial lists and sorts
2760 * the remaining slabs by the number of items in use. The slabs with the
2761 * most items in use come first. New allocations will then fill those up
2762 * and thus they can be removed from the partial lists.
2764 * The slabs with the least items are placed last. This results in them
2765 * being allocated from last increasing the chance that the last objects
2766 * are freed in them.
2768 int kmem_cache_shrink(struct kmem_cache *s)
2770 int node;
2771 int i;
2772 struct kmem_cache_node *n;
2773 struct page *page;
2774 struct page *t;
2775 int objects = oo_objects(s->max);
2776 struct list_head *slabs_by_inuse =
2777 kmalloc(sizeof(struct list_head) * objects, GFP_KERNEL);
2778 unsigned long flags;
2780 if (!slabs_by_inuse)
2781 return -ENOMEM;
2783 flush_all(s);
2784 for_each_node_state(node, N_NORMAL_MEMORY) {
2785 n = get_node(s, node);
2787 if (!n->nr_partial)
2788 continue;
2790 for (i = 0; i < objects; i++)
2791 INIT_LIST_HEAD(slabs_by_inuse + i);
2793 spin_lock_irqsave(&n->list_lock, flags);
2796 * Build lists indexed by the items in use in each slab.
2798 * Note that concurrent frees may occur while we hold the
2799 * list_lock. page->inuse here is the upper limit.
2801 list_for_each_entry_safe(page, t, &n->partial, lru) {
2802 if (!page->inuse && slab_trylock(page)) {
2804 * Must hold slab lock here because slab_free
2805 * may have freed the last object and be
2806 * waiting to release the slab.
2808 list_del(&page->lru);
2809 n->nr_partial--;
2810 slab_unlock(page);
2811 discard_slab(s, page);
2812 } else {
2813 list_move(&page->lru,
2814 slabs_by_inuse + page->inuse);
2819 * Rebuild the partial list with the slabs filled up most
2820 * first and the least used slabs at the end.
2822 for (i = objects - 1; i >= 0; i--)
2823 list_splice(slabs_by_inuse + i, n->partial.prev);
2825 spin_unlock_irqrestore(&n->list_lock, flags);
2828 kfree(slabs_by_inuse);
2829 return 0;
2831 EXPORT_SYMBOL(kmem_cache_shrink);
2833 #if defined(CONFIG_NUMA) && defined(CONFIG_MEMORY_HOTPLUG)
2834 static int slab_mem_going_offline_callback(void *arg)
2836 struct kmem_cache *s;
2838 down_read(&slub_lock);
2839 list_for_each_entry(s, &slab_caches, list)
2840 kmem_cache_shrink(s);
2841 up_read(&slub_lock);
2843 return 0;
2846 static void slab_mem_offline_callback(void *arg)
2848 struct kmem_cache_node *n;
2849 struct kmem_cache *s;
2850 struct memory_notify *marg = arg;
2851 int offline_node;
2853 offline_node = marg->status_change_nid;
2856 * If the node still has available memory. we need kmem_cache_node
2857 * for it yet.
2859 if (offline_node < 0)
2860 return;
2862 down_read(&slub_lock);
2863 list_for_each_entry(s, &slab_caches, list) {
2864 n = get_node(s, offline_node);
2865 if (n) {
2867 * if n->nr_slabs > 0, slabs still exist on the node
2868 * that is going down. We were unable to free them,
2869 * and offline_pages() function shoudn't call this
2870 * callback. So, we must fail.
2872 BUG_ON(slabs_node(s, offline_node));
2874 s->node[offline_node] = NULL;
2875 kmem_cache_free(kmalloc_caches, n);
2878 up_read(&slub_lock);
2881 static int slab_mem_going_online_callback(void *arg)
2883 struct kmem_cache_node *n;
2884 struct kmem_cache *s;
2885 struct memory_notify *marg = arg;
2886 int nid = marg->status_change_nid;
2887 int ret = 0;
2890 * If the node's memory is already available, then kmem_cache_node is
2891 * already created. Nothing to do.
2893 if (nid < 0)
2894 return 0;
2897 * We are bringing a node online. No memory is available yet. We must
2898 * allocate a kmem_cache_node structure in order to bring the node
2899 * online.
2901 down_read(&slub_lock);
2902 list_for_each_entry(s, &slab_caches, list) {
2904 * XXX: kmem_cache_alloc_node will fallback to other nodes
2905 * since memory is not yet available from the node that
2906 * is brought up.
2908 n = kmem_cache_alloc(kmalloc_caches, GFP_KERNEL);
2909 if (!n) {
2910 ret = -ENOMEM;
2911 goto out;
2913 init_kmem_cache_node(n, s);
2914 s->node[nid] = n;
2916 out:
2917 up_read(&slub_lock);
2918 return ret;
2921 static int slab_memory_callback(struct notifier_block *self,
2922 unsigned long action, void *arg)
2924 int ret = 0;
2926 switch (action) {
2927 case MEM_GOING_ONLINE:
2928 ret = slab_mem_going_online_callback(arg);
2929 break;
2930 case MEM_GOING_OFFLINE:
2931 ret = slab_mem_going_offline_callback(arg);
2932 break;
2933 case MEM_OFFLINE:
2934 case MEM_CANCEL_ONLINE:
2935 slab_mem_offline_callback(arg);
2936 break;
2937 case MEM_ONLINE:
2938 case MEM_CANCEL_OFFLINE:
2939 break;
2941 if (ret)
2942 ret = notifier_from_errno(ret);
2943 else
2944 ret = NOTIFY_OK;
2945 return ret;
2948 #endif /* CONFIG_MEMORY_HOTPLUG */
2950 /********************************************************************
2951 * Basic setup of slabs
2952 *******************************************************************/
2954 void __init kmem_cache_init(void)
2956 int i;
2957 int caches = 0;
2959 init_alloc_cpu();
2961 #ifdef CONFIG_NUMA
2963 * Must first have the slab cache available for the allocations of the
2964 * struct kmem_cache_node's. There is special bootstrap code in
2965 * kmem_cache_open for slab_state == DOWN.
2967 create_kmalloc_cache(&kmalloc_caches[0], "kmem_cache_node",
2968 sizeof(struct kmem_cache_node), GFP_KERNEL);
2969 kmalloc_caches[0].refcount = -1;
2970 caches++;
2972 hotplug_memory_notifier(slab_memory_callback, SLAB_CALLBACK_PRI);
2973 #endif
2975 /* Able to allocate the per node structures */
2976 slab_state = PARTIAL;
2978 /* Caches that are not of the two-to-the-power-of size */
2979 if (KMALLOC_MIN_SIZE <= 64) {
2980 create_kmalloc_cache(&kmalloc_caches[1],
2981 "kmalloc-96", 96, GFP_KERNEL);
2982 caches++;
2983 create_kmalloc_cache(&kmalloc_caches[2],
2984 "kmalloc-192", 192, GFP_KERNEL);
2985 caches++;
2988 for (i = KMALLOC_SHIFT_LOW; i <= PAGE_SHIFT; i++) {
2989 create_kmalloc_cache(&kmalloc_caches[i],
2990 "kmalloc", 1 << i, GFP_KERNEL);
2991 caches++;
2996 * Patch up the size_index table if we have strange large alignment
2997 * requirements for the kmalloc array. This is only the case for
2998 * MIPS it seems. The standard arches will not generate any code here.
3000 * Largest permitted alignment is 256 bytes due to the way we
3001 * handle the index determination for the smaller caches.
3003 * Make sure that nothing crazy happens if someone starts tinkering
3004 * around with ARCH_KMALLOC_MINALIGN
3006 BUILD_BUG_ON(KMALLOC_MIN_SIZE > 256 ||
3007 (KMALLOC_MIN_SIZE & (KMALLOC_MIN_SIZE - 1)));
3009 for (i = 8; i < KMALLOC_MIN_SIZE; i += 8)
3010 size_index[(i - 1) / 8] = KMALLOC_SHIFT_LOW;
3012 if (KMALLOC_MIN_SIZE == 128) {
3014 * The 192 byte sized cache is not used if the alignment
3015 * is 128 byte. Redirect kmalloc to use the 256 byte cache
3016 * instead.
3018 for (i = 128 + 8; i <= 192; i += 8)
3019 size_index[(i - 1) / 8] = 8;
3022 slab_state = UP;
3024 /* Provide the correct kmalloc names now that the caches are up */
3025 for (i = KMALLOC_SHIFT_LOW; i <= PAGE_SHIFT; i++)
3026 kmalloc_caches[i]. name =
3027 kasprintf(GFP_KERNEL, "kmalloc-%d", 1 << i);
3029 #ifdef CONFIG_SMP
3030 register_cpu_notifier(&slab_notifier);
3031 kmem_size = offsetof(struct kmem_cache, cpu_slab) +
3032 nr_cpu_ids * sizeof(struct kmem_cache_cpu *);
3033 #else
3034 kmem_size = sizeof(struct kmem_cache);
3035 #endif
3037 printk(KERN_INFO
3038 "SLUB: Genslabs=%d, HWalign=%d, Order=%d-%d, MinObjects=%d,"
3039 " CPUs=%d, Nodes=%d\n",
3040 caches, cache_line_size(),
3041 slub_min_order, slub_max_order, slub_min_objects,
3042 nr_cpu_ids, nr_node_ids);
3046 * Find a mergeable slab cache
3048 static int slab_unmergeable(struct kmem_cache *s)
3050 if (slub_nomerge || (s->flags & SLUB_NEVER_MERGE))
3051 return 1;
3053 if (s->ctor)
3054 return 1;
3057 * We may have set a slab to be unmergeable during bootstrap.
3059 if (s->refcount < 0)
3060 return 1;
3062 return 0;
3065 static struct kmem_cache *find_mergeable(size_t size,
3066 size_t align, unsigned long flags, const char *name,
3067 void (*ctor)(void *))
3069 struct kmem_cache *s;
3071 if (slub_nomerge || (flags & SLUB_NEVER_MERGE))
3072 return NULL;
3074 if (ctor)
3075 return NULL;
3077 size = ALIGN(size, sizeof(void *));
3078 align = calculate_alignment(flags, align, size);
3079 size = ALIGN(size, align);
3080 flags = kmem_cache_flags(size, flags, name, NULL);
3082 list_for_each_entry(s, &slab_caches, list) {
3083 if (slab_unmergeable(s))
3084 continue;
3086 if (size > s->size)
3087 continue;
3089 if ((flags & SLUB_MERGE_SAME) != (s->flags & SLUB_MERGE_SAME))
3090 continue;
3092 * Check if alignment is compatible.
3093 * Courtesy of Adrian Drzewiecki
3095 if ((s->size & ~(align - 1)) != s->size)
3096 continue;
3098 if (s->size - size >= sizeof(void *))
3099 continue;
3101 return s;
3103 return NULL;
3106 struct kmem_cache *kmem_cache_create(const char *name, size_t size,
3107 size_t align, unsigned long flags, void (*ctor)(void *))
3109 struct kmem_cache *s;
3111 down_write(&slub_lock);
3112 s = find_mergeable(size, align, flags, name, ctor);
3113 if (s) {
3114 int cpu;
3116 s->refcount++;
3118 * Adjust the object sizes so that we clear
3119 * the complete object on kzalloc.
3121 s->objsize = max(s->objsize, (int)size);
3124 * And then we need to update the object size in the
3125 * per cpu structures
3127 for_each_online_cpu(cpu)
3128 get_cpu_slab(s, cpu)->objsize = s->objsize;
3130 s->inuse = max_t(int, s->inuse, ALIGN(size, sizeof(void *)));
3131 up_write(&slub_lock);
3133 if (sysfs_slab_alias(s, name)) {
3134 down_write(&slub_lock);
3135 s->refcount--;
3136 up_write(&slub_lock);
3137 goto err;
3139 return s;
3142 s = kmalloc(kmem_size, GFP_KERNEL);
3143 if (s) {
3144 if (kmem_cache_open(s, GFP_KERNEL, name,
3145 size, align, flags, ctor)) {
3146 list_add(&s->list, &slab_caches);
3147 up_write(&slub_lock);
3148 if (sysfs_slab_add(s)) {
3149 down_write(&slub_lock);
3150 list_del(&s->list);
3151 up_write(&slub_lock);
3152 kfree(s);
3153 goto err;
3155 return s;
3157 kfree(s);
3159 up_write(&slub_lock);
3161 err:
3162 if (flags & SLAB_PANIC)
3163 panic("Cannot create slabcache %s\n", name);
3164 else
3165 s = NULL;
3166 return s;
3168 EXPORT_SYMBOL(kmem_cache_create);
3170 #ifdef CONFIG_SMP
3172 * Use the cpu notifier to insure that the cpu slabs are flushed when
3173 * necessary.
3175 static int __cpuinit slab_cpuup_callback(struct notifier_block *nfb,
3176 unsigned long action, void *hcpu)
3178 long cpu = (long)hcpu;
3179 struct kmem_cache *s;
3180 unsigned long flags;
3182 switch (action) {
3183 case CPU_UP_PREPARE:
3184 case CPU_UP_PREPARE_FROZEN:
3185 init_alloc_cpu_cpu(cpu);
3186 down_read(&slub_lock);
3187 list_for_each_entry(s, &slab_caches, list)
3188 s->cpu_slab[cpu] = alloc_kmem_cache_cpu(s, cpu,
3189 GFP_KERNEL);
3190 up_read(&slub_lock);
3191 break;
3193 case CPU_UP_CANCELED:
3194 case CPU_UP_CANCELED_FROZEN:
3195 case CPU_DEAD:
3196 case CPU_DEAD_FROZEN:
3197 down_read(&slub_lock);
3198 list_for_each_entry(s, &slab_caches, list) {
3199 struct kmem_cache_cpu *c = get_cpu_slab(s, cpu);
3201 local_irq_save(flags);
3202 __flush_cpu_slab(s, cpu);
3203 local_irq_restore(flags);
3204 free_kmem_cache_cpu(c, cpu);
3205 s->cpu_slab[cpu] = NULL;
3207 up_read(&slub_lock);
3208 break;
3209 default:
3210 break;
3212 return NOTIFY_OK;
3215 static struct notifier_block __cpuinitdata slab_notifier = {
3216 .notifier_call = slab_cpuup_callback
3219 #endif
3221 void *__kmalloc_track_caller(size_t size, gfp_t gfpflags, unsigned long caller)
3223 struct kmem_cache *s;
3225 if (unlikely(size > PAGE_SIZE))
3226 return kmalloc_large(size, gfpflags);
3228 s = get_slab(size, gfpflags);
3230 if (unlikely(ZERO_OR_NULL_PTR(s)))
3231 return s;
3233 return slab_alloc(s, gfpflags, -1, caller);
3236 void *__kmalloc_node_track_caller(size_t size, gfp_t gfpflags,
3237 int node, unsigned long caller)
3239 struct kmem_cache *s;
3241 if (unlikely(size > PAGE_SIZE))
3242 return kmalloc_large_node(size, gfpflags, node);
3244 s = get_slab(size, gfpflags);
3246 if (unlikely(ZERO_OR_NULL_PTR(s)))
3247 return s;
3249 return slab_alloc(s, gfpflags, node, caller);
3252 #ifdef CONFIG_SLUB_DEBUG
3253 static unsigned long count_partial(struct kmem_cache_node *n,
3254 int (*get_count)(struct page *))
3256 unsigned long flags;
3257 unsigned long x = 0;
3258 struct page *page;
3260 spin_lock_irqsave(&n->list_lock, flags);
3261 list_for_each_entry(page, &n->partial, lru)
3262 x += get_count(page);
3263 spin_unlock_irqrestore(&n->list_lock, flags);
3264 return x;
3267 static int count_inuse(struct page *page)
3269 return page->inuse;
3272 static int count_total(struct page *page)
3274 return page->objects;
3277 static int count_free(struct page *page)
3279 return page->objects - page->inuse;
3282 static int validate_slab(struct kmem_cache *s, struct page *page,
3283 unsigned long *map)
3285 void *p;
3286 void *addr = page_address(page);
3288 if (!check_slab(s, page) ||
3289 !on_freelist(s, page, NULL))
3290 return 0;
3292 /* Now we know that a valid freelist exists */
3293 bitmap_zero(map, page->objects);
3295 for_each_free_object(p, s, page->freelist) {
3296 set_bit(slab_index(p, s, addr), map);
3297 if (!check_object(s, page, p, 0))
3298 return 0;
3301 for_each_object(p, s, addr, page->objects)
3302 if (!test_bit(slab_index(p, s, addr), map))
3303 if (!check_object(s, page, p, 1))
3304 return 0;
3305 return 1;
3308 static void validate_slab_slab(struct kmem_cache *s, struct page *page,
3309 unsigned long *map)
3311 if (slab_trylock(page)) {
3312 validate_slab(s, page, map);
3313 slab_unlock(page);
3314 } else
3315 printk(KERN_INFO "SLUB %s: Skipped busy slab 0x%p\n",
3316 s->name, page);
3318 if (s->flags & DEBUG_DEFAULT_FLAGS) {
3319 if (!PageSlubDebug(page))
3320 printk(KERN_ERR "SLUB %s: SlubDebug not set "
3321 "on slab 0x%p\n", s->name, page);
3322 } else {
3323 if (PageSlubDebug(page))
3324 printk(KERN_ERR "SLUB %s: SlubDebug set on "
3325 "slab 0x%p\n", s->name, page);
3329 static int validate_slab_node(struct kmem_cache *s,
3330 struct kmem_cache_node *n, unsigned long *map)
3332 unsigned long count = 0;
3333 struct page *page;
3334 unsigned long flags;
3336 spin_lock_irqsave(&n->list_lock, flags);
3338 list_for_each_entry(page, &n->partial, lru) {
3339 validate_slab_slab(s, page, map);
3340 count++;
3342 if (count != n->nr_partial)
3343 printk(KERN_ERR "SLUB %s: %ld partial slabs counted but "
3344 "counter=%ld\n", s->name, count, n->nr_partial);
3346 if (!(s->flags & SLAB_STORE_USER))
3347 goto out;
3349 list_for_each_entry(page, &n->full, lru) {
3350 validate_slab_slab(s, page, map);
3351 count++;
3353 if (count != atomic_long_read(&n->nr_slabs))
3354 printk(KERN_ERR "SLUB: %s %ld slabs counted but "
3355 "counter=%ld\n", s->name, count,
3356 atomic_long_read(&n->nr_slabs));
3358 out:
3359 spin_unlock_irqrestore(&n->list_lock, flags);
3360 return count;
3363 static long validate_slab_cache(struct kmem_cache *s)
3365 int node;
3366 unsigned long count = 0;
3367 unsigned long *map = kmalloc(BITS_TO_LONGS(oo_objects(s->max)) *
3368 sizeof(unsigned long), GFP_KERNEL);
3370 if (!map)
3371 return -ENOMEM;
3373 flush_all(s);
3374 for_each_node_state(node, N_NORMAL_MEMORY) {
3375 struct kmem_cache_node *n = get_node(s, node);
3377 count += validate_slab_node(s, n, map);
3379 kfree(map);
3380 return count;
3383 #ifdef SLUB_RESILIENCY_TEST
3384 static void resiliency_test(void)
3386 u8 *p;
3388 printk(KERN_ERR "SLUB resiliency testing\n");
3389 printk(KERN_ERR "-----------------------\n");
3390 printk(KERN_ERR "A. Corruption after allocation\n");
3392 p = kzalloc(16, GFP_KERNEL);
3393 p[16] = 0x12;
3394 printk(KERN_ERR "\n1. kmalloc-16: Clobber Redzone/next pointer"
3395 " 0x12->0x%p\n\n", p + 16);
3397 validate_slab_cache(kmalloc_caches + 4);
3399 /* Hmmm... The next two are dangerous */
3400 p = kzalloc(32, GFP_KERNEL);
3401 p[32 + sizeof(void *)] = 0x34;
3402 printk(KERN_ERR "\n2. kmalloc-32: Clobber next pointer/next slab"
3403 " 0x34 -> -0x%p\n", p);
3404 printk(KERN_ERR
3405 "If allocated object is overwritten then not detectable\n\n");
3407 validate_slab_cache(kmalloc_caches + 5);
3408 p = kzalloc(64, GFP_KERNEL);
3409 p += 64 + (get_cycles() & 0xff) * sizeof(void *);
3410 *p = 0x56;
3411 printk(KERN_ERR "\n3. kmalloc-64: corrupting random byte 0x56->0x%p\n",
3413 printk(KERN_ERR
3414 "If allocated object is overwritten then not detectable\n\n");
3415 validate_slab_cache(kmalloc_caches + 6);
3417 printk(KERN_ERR "\nB. Corruption after free\n");
3418 p = kzalloc(128, GFP_KERNEL);
3419 kfree(p);
3420 *p = 0x78;
3421 printk(KERN_ERR "1. kmalloc-128: Clobber first word 0x78->0x%p\n\n", p);
3422 validate_slab_cache(kmalloc_caches + 7);
3424 p = kzalloc(256, GFP_KERNEL);
3425 kfree(p);
3426 p[50] = 0x9a;
3427 printk(KERN_ERR "\n2. kmalloc-256: Clobber 50th byte 0x9a->0x%p\n\n",
3429 validate_slab_cache(kmalloc_caches + 8);
3431 p = kzalloc(512, GFP_KERNEL);
3432 kfree(p);
3433 p[512] = 0xab;
3434 printk(KERN_ERR "\n3. kmalloc-512: Clobber redzone 0xab->0x%p\n\n", p);
3435 validate_slab_cache(kmalloc_caches + 9);
3437 #else
3438 static void resiliency_test(void) {};
3439 #endif
3442 * Generate lists of code addresses where slabcache objects are allocated
3443 * and freed.
3446 struct location {
3447 unsigned long count;
3448 unsigned long addr;
3449 long long sum_time;
3450 long min_time;
3451 long max_time;
3452 long min_pid;
3453 long max_pid;
3454 DECLARE_BITMAP(cpus, NR_CPUS);
3455 nodemask_t nodes;
3458 struct loc_track {
3459 unsigned long max;
3460 unsigned long count;
3461 struct location *loc;
3464 static void free_loc_track(struct loc_track *t)
3466 if (t->max)
3467 free_pages((unsigned long)t->loc,
3468 get_order(sizeof(struct location) * t->max));
3471 static int alloc_loc_track(struct loc_track *t, unsigned long max, gfp_t flags)
3473 struct location *l;
3474 int order;
3476 order = get_order(sizeof(struct location) * max);
3478 l = (void *)__get_free_pages(flags, order);
3479 if (!l)
3480 return 0;
3482 if (t->count) {
3483 memcpy(l, t->loc, sizeof(struct location) * t->count);
3484 free_loc_track(t);
3486 t->max = max;
3487 t->loc = l;
3488 return 1;
3491 static int add_location(struct loc_track *t, struct kmem_cache *s,
3492 const struct track *track)
3494 long start, end, pos;
3495 struct location *l;
3496 unsigned long caddr;
3497 unsigned long age = jiffies - track->when;
3499 start = -1;
3500 end = t->count;
3502 for ( ; ; ) {
3503 pos = start + (end - start + 1) / 2;
3506 * There is nothing at "end". If we end up there
3507 * we need to add something to before end.
3509 if (pos == end)
3510 break;
3512 caddr = t->loc[pos].addr;
3513 if (track->addr == caddr) {
3515 l = &t->loc[pos];
3516 l->count++;
3517 if (track->when) {
3518 l->sum_time += age;
3519 if (age < l->min_time)
3520 l->min_time = age;
3521 if (age > l->max_time)
3522 l->max_time = age;
3524 if (track->pid < l->min_pid)
3525 l->min_pid = track->pid;
3526 if (track->pid > l->max_pid)
3527 l->max_pid = track->pid;
3529 cpumask_set_cpu(track->cpu,
3530 to_cpumask(l->cpus));
3532 node_set(page_to_nid(virt_to_page(track)), l->nodes);
3533 return 1;
3536 if (track->addr < caddr)
3537 end = pos;
3538 else
3539 start = pos;
3543 * Not found. Insert new tracking element.
3545 if (t->count >= t->max && !alloc_loc_track(t, 2 * t->max, GFP_ATOMIC))
3546 return 0;
3548 l = t->loc + pos;
3549 if (pos < t->count)
3550 memmove(l + 1, l,
3551 (t->count - pos) * sizeof(struct location));
3552 t->count++;
3553 l->count = 1;
3554 l->addr = track->addr;
3555 l->sum_time = age;
3556 l->min_time = age;
3557 l->max_time = age;
3558 l->min_pid = track->pid;
3559 l->max_pid = track->pid;
3560 cpumask_clear(to_cpumask(l->cpus));
3561 cpumask_set_cpu(track->cpu, to_cpumask(l->cpus));
3562 nodes_clear(l->nodes);
3563 node_set(page_to_nid(virt_to_page(track)), l->nodes);
3564 return 1;
3567 static void process_slab(struct loc_track *t, struct kmem_cache *s,
3568 struct page *page, enum track_item alloc)
3570 void *addr = page_address(page);
3571 DECLARE_BITMAP(map, page->objects);
3572 void *p;
3574 bitmap_zero(map, page->objects);
3575 for_each_free_object(p, s, page->freelist)
3576 set_bit(slab_index(p, s, addr), map);
3578 for_each_object(p, s, addr, page->objects)
3579 if (!test_bit(slab_index(p, s, addr), map))
3580 add_location(t, s, get_track(s, p, alloc));
3583 static int list_locations(struct kmem_cache *s, char *buf,
3584 enum track_item alloc)
3586 int len = 0;
3587 unsigned long i;
3588 struct loc_track t = { 0, 0, NULL };
3589 int node;
3591 if (!alloc_loc_track(&t, PAGE_SIZE / sizeof(struct location),
3592 GFP_TEMPORARY))
3593 return sprintf(buf, "Out of memory\n");
3595 /* Push back cpu slabs */
3596 flush_all(s);
3598 for_each_node_state(node, N_NORMAL_MEMORY) {
3599 struct kmem_cache_node *n = get_node(s, node);
3600 unsigned long flags;
3601 struct page *page;
3603 if (!atomic_long_read(&n->nr_slabs))
3604 continue;
3606 spin_lock_irqsave(&n->list_lock, flags);
3607 list_for_each_entry(page, &n->partial, lru)
3608 process_slab(&t, s, page, alloc);
3609 list_for_each_entry(page, &n->full, lru)
3610 process_slab(&t, s, page, alloc);
3611 spin_unlock_irqrestore(&n->list_lock, flags);
3614 for (i = 0; i < t.count; i++) {
3615 struct location *l = &t.loc[i];
3617 if (len > PAGE_SIZE - KSYM_SYMBOL_LEN - 100)
3618 break;
3619 len += sprintf(buf + len, "%7ld ", l->count);
3621 if (l->addr)
3622 len += sprint_symbol(buf + len, (unsigned long)l->addr);
3623 else
3624 len += sprintf(buf + len, "<not-available>");
3626 if (l->sum_time != l->min_time) {
3627 len += sprintf(buf + len, " age=%ld/%ld/%ld",
3628 l->min_time,
3629 (long)div_u64(l->sum_time, l->count),
3630 l->max_time);
3631 } else
3632 len += sprintf(buf + len, " age=%ld",
3633 l->min_time);
3635 if (l->min_pid != l->max_pid)
3636 len += sprintf(buf + len, " pid=%ld-%ld",
3637 l->min_pid, l->max_pid);
3638 else
3639 len += sprintf(buf + len, " pid=%ld",
3640 l->min_pid);
3642 if (num_online_cpus() > 1 &&
3643 !cpumask_empty(to_cpumask(l->cpus)) &&
3644 len < PAGE_SIZE - 60) {
3645 len += sprintf(buf + len, " cpus=");
3646 len += cpulist_scnprintf(buf + len, PAGE_SIZE - len - 50,
3647 to_cpumask(l->cpus));
3650 if (num_online_nodes() > 1 && !nodes_empty(l->nodes) &&
3651 len < PAGE_SIZE - 60) {
3652 len += sprintf(buf + len, " nodes=");
3653 len += nodelist_scnprintf(buf + len, PAGE_SIZE - len - 50,
3654 l->nodes);
3657 len += sprintf(buf + len, "\n");
3660 free_loc_track(&t);
3661 if (!t.count)
3662 len += sprintf(buf, "No data\n");
3663 return len;
3666 enum slab_stat_type {
3667 SL_ALL, /* All slabs */
3668 SL_PARTIAL, /* Only partially allocated slabs */
3669 SL_CPU, /* Only slabs used for cpu caches */
3670 SL_OBJECTS, /* Determine allocated objects not slabs */
3671 SL_TOTAL /* Determine object capacity not slabs */
3674 #define SO_ALL (1 << SL_ALL)
3675 #define SO_PARTIAL (1 << SL_PARTIAL)
3676 #define SO_CPU (1 << SL_CPU)
3677 #define SO_OBJECTS (1 << SL_OBJECTS)
3678 #define SO_TOTAL (1 << SL_TOTAL)
3680 static ssize_t show_slab_objects(struct kmem_cache *s,
3681 char *buf, unsigned long flags)
3683 unsigned long total = 0;
3684 int node;
3685 int x;
3686 unsigned long *nodes;
3687 unsigned long *per_cpu;
3689 nodes = kzalloc(2 * sizeof(unsigned long) * nr_node_ids, GFP_KERNEL);
3690 if (!nodes)
3691 return -ENOMEM;
3692 per_cpu = nodes + nr_node_ids;
3694 if (flags & SO_CPU) {
3695 int cpu;
3697 for_each_possible_cpu(cpu) {
3698 struct kmem_cache_cpu *c = get_cpu_slab(s, cpu);
3700 if (!c || c->node < 0)
3701 continue;
3703 if (c->page) {
3704 if (flags & SO_TOTAL)
3705 x = c->page->objects;
3706 else if (flags & SO_OBJECTS)
3707 x = c->page->inuse;
3708 else
3709 x = 1;
3711 total += x;
3712 nodes[c->node] += x;
3714 per_cpu[c->node]++;
3718 if (flags & SO_ALL) {
3719 for_each_node_state(node, N_NORMAL_MEMORY) {
3720 struct kmem_cache_node *n = get_node(s, node);
3722 if (flags & SO_TOTAL)
3723 x = atomic_long_read(&n->total_objects);
3724 else if (flags & SO_OBJECTS)
3725 x = atomic_long_read(&n->total_objects) -
3726 count_partial(n, count_free);
3728 else
3729 x = atomic_long_read(&n->nr_slabs);
3730 total += x;
3731 nodes[node] += x;
3734 } else if (flags & SO_PARTIAL) {
3735 for_each_node_state(node, N_NORMAL_MEMORY) {
3736 struct kmem_cache_node *n = get_node(s, node);
3738 if (flags & SO_TOTAL)
3739 x = count_partial(n, count_total);
3740 else if (flags & SO_OBJECTS)
3741 x = count_partial(n, count_inuse);
3742 else
3743 x = n->nr_partial;
3744 total += x;
3745 nodes[node] += x;
3748 x = sprintf(buf, "%lu", total);
3749 #ifdef CONFIG_NUMA
3750 for_each_node_state(node, N_NORMAL_MEMORY)
3751 if (nodes[node])
3752 x += sprintf(buf + x, " N%d=%lu",
3753 node, nodes[node]);
3754 #endif
3755 kfree(nodes);
3756 return x + sprintf(buf + x, "\n");
3759 static int any_slab_objects(struct kmem_cache *s)
3761 int node;
3763 for_each_online_node(node) {
3764 struct kmem_cache_node *n = get_node(s, node);
3766 if (!n)
3767 continue;
3769 if (atomic_long_read(&n->total_objects))
3770 return 1;
3772 return 0;
3775 #define to_slab_attr(n) container_of(n, struct slab_attribute, attr)
3776 #define to_slab(n) container_of(n, struct kmem_cache, kobj);
3778 struct slab_attribute {
3779 struct attribute attr;
3780 ssize_t (*show)(struct kmem_cache *s, char *buf);
3781 ssize_t (*store)(struct kmem_cache *s, const char *x, size_t count);
3784 #define SLAB_ATTR_RO(_name) \
3785 static struct slab_attribute _name##_attr = __ATTR_RO(_name)
3787 #define SLAB_ATTR(_name) \
3788 static struct slab_attribute _name##_attr = \
3789 __ATTR(_name, 0644, _name##_show, _name##_store)
3791 static ssize_t slab_size_show(struct kmem_cache *s, char *buf)
3793 return sprintf(buf, "%d\n", s->size);
3795 SLAB_ATTR_RO(slab_size);
3797 static ssize_t align_show(struct kmem_cache *s, char *buf)
3799 return sprintf(buf, "%d\n", s->align);
3801 SLAB_ATTR_RO(align);
3803 static ssize_t object_size_show(struct kmem_cache *s, char *buf)
3805 return sprintf(buf, "%d\n", s->objsize);
3807 SLAB_ATTR_RO(object_size);
3809 static ssize_t objs_per_slab_show(struct kmem_cache *s, char *buf)
3811 return sprintf(buf, "%d\n", oo_objects(s->oo));
3813 SLAB_ATTR_RO(objs_per_slab);
3815 static ssize_t order_store(struct kmem_cache *s,
3816 const char *buf, size_t length)
3818 unsigned long order;
3819 int err;
3821 err = strict_strtoul(buf, 10, &order);
3822 if (err)
3823 return err;
3825 if (order > slub_max_order || order < slub_min_order)
3826 return -EINVAL;
3828 calculate_sizes(s, order);
3829 return length;
3832 static ssize_t order_show(struct kmem_cache *s, char *buf)
3834 return sprintf(buf, "%d\n", oo_order(s->oo));
3836 SLAB_ATTR(order);
3838 static ssize_t ctor_show(struct kmem_cache *s, char *buf)
3840 if (s->ctor) {
3841 int n = sprint_symbol(buf, (unsigned long)s->ctor);
3843 return n + sprintf(buf + n, "\n");
3845 return 0;
3847 SLAB_ATTR_RO(ctor);
3849 static ssize_t aliases_show(struct kmem_cache *s, char *buf)
3851 return sprintf(buf, "%d\n", s->refcount - 1);
3853 SLAB_ATTR_RO(aliases);
3855 static ssize_t slabs_show(struct kmem_cache *s, char *buf)
3857 return show_slab_objects(s, buf, SO_ALL);
3859 SLAB_ATTR_RO(slabs);
3861 static ssize_t partial_show(struct kmem_cache *s, char *buf)
3863 return show_slab_objects(s, buf, SO_PARTIAL);
3865 SLAB_ATTR_RO(partial);
3867 static ssize_t cpu_slabs_show(struct kmem_cache *s, char *buf)
3869 return show_slab_objects(s, buf, SO_CPU);
3871 SLAB_ATTR_RO(cpu_slabs);
3873 static ssize_t objects_show(struct kmem_cache *s, char *buf)
3875 return show_slab_objects(s, buf, SO_ALL|SO_OBJECTS);
3877 SLAB_ATTR_RO(objects);
3879 static ssize_t objects_partial_show(struct kmem_cache *s, char *buf)
3881 return show_slab_objects(s, buf, SO_PARTIAL|SO_OBJECTS);
3883 SLAB_ATTR_RO(objects_partial);
3885 static ssize_t total_objects_show(struct kmem_cache *s, char *buf)
3887 return show_slab_objects(s, buf, SO_ALL|SO_TOTAL);
3889 SLAB_ATTR_RO(total_objects);
3891 static ssize_t sanity_checks_show(struct kmem_cache *s, char *buf)
3893 return sprintf(buf, "%d\n", !!(s->flags & SLAB_DEBUG_FREE));
3896 static ssize_t sanity_checks_store(struct kmem_cache *s,
3897 const char *buf, size_t length)
3899 s->flags &= ~SLAB_DEBUG_FREE;
3900 if (buf[0] == '1')
3901 s->flags |= SLAB_DEBUG_FREE;
3902 return length;
3904 SLAB_ATTR(sanity_checks);
3906 static ssize_t trace_show(struct kmem_cache *s, char *buf)
3908 return sprintf(buf, "%d\n", !!(s->flags & SLAB_TRACE));
3911 static ssize_t trace_store(struct kmem_cache *s, const char *buf,
3912 size_t length)
3914 s->flags &= ~SLAB_TRACE;
3915 if (buf[0] == '1')
3916 s->flags |= SLAB_TRACE;
3917 return length;
3919 SLAB_ATTR(trace);
3921 static ssize_t reclaim_account_show(struct kmem_cache *s, char *buf)
3923 return sprintf(buf, "%d\n", !!(s->flags & SLAB_RECLAIM_ACCOUNT));
3926 static ssize_t reclaim_account_store(struct kmem_cache *s,
3927 const char *buf, size_t length)
3929 s->flags &= ~SLAB_RECLAIM_ACCOUNT;
3930 if (buf[0] == '1')
3931 s->flags |= SLAB_RECLAIM_ACCOUNT;
3932 return length;
3934 SLAB_ATTR(reclaim_account);
3936 static ssize_t hwcache_align_show(struct kmem_cache *s, char *buf)
3938 return sprintf(buf, "%d\n", !!(s->flags & SLAB_HWCACHE_ALIGN));
3940 SLAB_ATTR_RO(hwcache_align);
3942 #ifdef CONFIG_ZONE_DMA
3943 static ssize_t cache_dma_show(struct kmem_cache *s, char *buf)
3945 return sprintf(buf, "%d\n", !!(s->flags & SLAB_CACHE_DMA));
3947 SLAB_ATTR_RO(cache_dma);
3948 #endif
3950 static ssize_t destroy_by_rcu_show(struct kmem_cache *s, char *buf)
3952 return sprintf(buf, "%d\n", !!(s->flags & SLAB_DESTROY_BY_RCU));
3954 SLAB_ATTR_RO(destroy_by_rcu);
3956 static ssize_t red_zone_show(struct kmem_cache *s, char *buf)
3958 return sprintf(buf, "%d\n", !!(s->flags & SLAB_RED_ZONE));
3961 static ssize_t red_zone_store(struct kmem_cache *s,
3962 const char *buf, size_t length)
3964 if (any_slab_objects(s))
3965 return -EBUSY;
3967 s->flags &= ~SLAB_RED_ZONE;
3968 if (buf[0] == '1')
3969 s->flags |= SLAB_RED_ZONE;
3970 calculate_sizes(s, -1);
3971 return length;
3973 SLAB_ATTR(red_zone);
3975 static ssize_t poison_show(struct kmem_cache *s, char *buf)
3977 return sprintf(buf, "%d\n", !!(s->flags & SLAB_POISON));
3980 static ssize_t poison_store(struct kmem_cache *s,
3981 const char *buf, size_t length)
3983 if (any_slab_objects(s))
3984 return -EBUSY;
3986 s->flags &= ~SLAB_POISON;
3987 if (buf[0] == '1')
3988 s->flags |= SLAB_POISON;
3989 calculate_sizes(s, -1);
3990 return length;
3992 SLAB_ATTR(poison);
3994 static ssize_t store_user_show(struct kmem_cache *s, char *buf)
3996 return sprintf(buf, "%d\n", !!(s->flags & SLAB_STORE_USER));
3999 static ssize_t store_user_store(struct kmem_cache *s,
4000 const char *buf, size_t length)
4002 if (any_slab_objects(s))
4003 return -EBUSY;
4005 s->flags &= ~SLAB_STORE_USER;
4006 if (buf[0] == '1')
4007 s->flags |= SLAB_STORE_USER;
4008 calculate_sizes(s, -1);
4009 return length;
4011 SLAB_ATTR(store_user);
4013 static ssize_t validate_show(struct kmem_cache *s, char *buf)
4015 return 0;
4018 static ssize_t validate_store(struct kmem_cache *s,
4019 const char *buf, size_t length)
4021 int ret = -EINVAL;
4023 if (buf[0] == '1') {
4024 ret = validate_slab_cache(s);
4025 if (ret >= 0)
4026 ret = length;
4028 return ret;
4030 SLAB_ATTR(validate);
4032 static ssize_t shrink_show(struct kmem_cache *s, char *buf)
4034 return 0;
4037 static ssize_t shrink_store(struct kmem_cache *s,
4038 const char *buf, size_t length)
4040 if (buf[0] == '1') {
4041 int rc = kmem_cache_shrink(s);
4043 if (rc)
4044 return rc;
4045 } else
4046 return -EINVAL;
4047 return length;
4049 SLAB_ATTR(shrink);
4051 static ssize_t alloc_calls_show(struct kmem_cache *s, char *buf)
4053 if (!(s->flags & SLAB_STORE_USER))
4054 return -ENOSYS;
4055 return list_locations(s, buf, TRACK_ALLOC);
4057 SLAB_ATTR_RO(alloc_calls);
4059 static ssize_t free_calls_show(struct kmem_cache *s, char *buf)
4061 if (!(s->flags & SLAB_STORE_USER))
4062 return -ENOSYS;
4063 return list_locations(s, buf, TRACK_FREE);
4065 SLAB_ATTR_RO(free_calls);
4067 #ifdef CONFIG_NUMA
4068 static ssize_t remote_node_defrag_ratio_show(struct kmem_cache *s, char *buf)
4070 return sprintf(buf, "%d\n", s->remote_node_defrag_ratio / 10);
4073 static ssize_t remote_node_defrag_ratio_store(struct kmem_cache *s,
4074 const char *buf, size_t length)
4076 unsigned long ratio;
4077 int err;
4079 err = strict_strtoul(buf, 10, &ratio);
4080 if (err)
4081 return err;
4083 if (ratio <= 100)
4084 s->remote_node_defrag_ratio = ratio * 10;
4086 return length;
4088 SLAB_ATTR(remote_node_defrag_ratio);
4089 #endif
4091 #ifdef CONFIG_SLUB_STATS
4092 static int show_stat(struct kmem_cache *s, char *buf, enum stat_item si)
4094 unsigned long sum = 0;
4095 int cpu;
4096 int len;
4097 int *data = kmalloc(nr_cpu_ids * sizeof(int), GFP_KERNEL);
4099 if (!data)
4100 return -ENOMEM;
4102 for_each_online_cpu(cpu) {
4103 unsigned x = get_cpu_slab(s, cpu)->stat[si];
4105 data[cpu] = x;
4106 sum += x;
4109 len = sprintf(buf, "%lu", sum);
4111 #ifdef CONFIG_SMP
4112 for_each_online_cpu(cpu) {
4113 if (data[cpu] && len < PAGE_SIZE - 20)
4114 len += sprintf(buf + len, " C%d=%u", cpu, data[cpu]);
4116 #endif
4117 kfree(data);
4118 return len + sprintf(buf + len, "\n");
4121 #define STAT_ATTR(si, text) \
4122 static ssize_t text##_show(struct kmem_cache *s, char *buf) \
4124 return show_stat(s, buf, si); \
4126 SLAB_ATTR_RO(text); \
4128 STAT_ATTR(ALLOC_FASTPATH, alloc_fastpath);
4129 STAT_ATTR(ALLOC_SLOWPATH, alloc_slowpath);
4130 STAT_ATTR(FREE_FASTPATH, free_fastpath);
4131 STAT_ATTR(FREE_SLOWPATH, free_slowpath);
4132 STAT_ATTR(FREE_FROZEN, free_frozen);
4133 STAT_ATTR(FREE_ADD_PARTIAL, free_add_partial);
4134 STAT_ATTR(FREE_REMOVE_PARTIAL, free_remove_partial);
4135 STAT_ATTR(ALLOC_FROM_PARTIAL, alloc_from_partial);
4136 STAT_ATTR(ALLOC_SLAB, alloc_slab);
4137 STAT_ATTR(ALLOC_REFILL, alloc_refill);
4138 STAT_ATTR(FREE_SLAB, free_slab);
4139 STAT_ATTR(CPUSLAB_FLUSH, cpuslab_flush);
4140 STAT_ATTR(DEACTIVATE_FULL, deactivate_full);
4141 STAT_ATTR(DEACTIVATE_EMPTY, deactivate_empty);
4142 STAT_ATTR(DEACTIVATE_TO_HEAD, deactivate_to_head);
4143 STAT_ATTR(DEACTIVATE_TO_TAIL, deactivate_to_tail);
4144 STAT_ATTR(DEACTIVATE_REMOTE_FREES, deactivate_remote_frees);
4145 STAT_ATTR(ORDER_FALLBACK, order_fallback);
4146 #endif
4148 static struct attribute *slab_attrs[] = {
4149 &slab_size_attr.attr,
4150 &object_size_attr.attr,
4151 &objs_per_slab_attr.attr,
4152 &order_attr.attr,
4153 &objects_attr.attr,
4154 &objects_partial_attr.attr,
4155 &total_objects_attr.attr,
4156 &slabs_attr.attr,
4157 &partial_attr.attr,
4158 &cpu_slabs_attr.attr,
4159 &ctor_attr.attr,
4160 &aliases_attr.attr,
4161 &align_attr.attr,
4162 &sanity_checks_attr.attr,
4163 &trace_attr.attr,
4164 &hwcache_align_attr.attr,
4165 &reclaim_account_attr.attr,
4166 &destroy_by_rcu_attr.attr,
4167 &red_zone_attr.attr,
4168 &poison_attr.attr,
4169 &store_user_attr.attr,
4170 &validate_attr.attr,
4171 &shrink_attr.attr,
4172 &alloc_calls_attr.attr,
4173 &free_calls_attr.attr,
4174 #ifdef CONFIG_ZONE_DMA
4175 &cache_dma_attr.attr,
4176 #endif
4177 #ifdef CONFIG_NUMA
4178 &remote_node_defrag_ratio_attr.attr,
4179 #endif
4180 #ifdef CONFIG_SLUB_STATS
4181 &alloc_fastpath_attr.attr,
4182 &alloc_slowpath_attr.attr,
4183 &free_fastpath_attr.attr,
4184 &free_slowpath_attr.attr,
4185 &free_frozen_attr.attr,
4186 &free_add_partial_attr.attr,
4187 &free_remove_partial_attr.attr,
4188 &alloc_from_partial_attr.attr,
4189 &alloc_slab_attr.attr,
4190 &alloc_refill_attr.attr,
4191 &free_slab_attr.attr,
4192 &cpuslab_flush_attr.attr,
4193 &deactivate_full_attr.attr,
4194 &deactivate_empty_attr.attr,
4195 &deactivate_to_head_attr.attr,
4196 &deactivate_to_tail_attr.attr,
4197 &deactivate_remote_frees_attr.attr,
4198 &order_fallback_attr.attr,
4199 #endif
4200 NULL
4203 static struct attribute_group slab_attr_group = {
4204 .attrs = slab_attrs,
4207 static ssize_t slab_attr_show(struct kobject *kobj,
4208 struct attribute *attr,
4209 char *buf)
4211 struct slab_attribute *attribute;
4212 struct kmem_cache *s;
4213 int err;
4215 attribute = to_slab_attr(attr);
4216 s = to_slab(kobj);
4218 if (!attribute->show)
4219 return -EIO;
4221 err = attribute->show(s, buf);
4223 return err;
4226 static ssize_t slab_attr_store(struct kobject *kobj,
4227 struct attribute *attr,
4228 const char *buf, size_t len)
4230 struct slab_attribute *attribute;
4231 struct kmem_cache *s;
4232 int err;
4234 attribute = to_slab_attr(attr);
4235 s = to_slab(kobj);
4237 if (!attribute->store)
4238 return -EIO;
4240 err = attribute->store(s, buf, len);
4242 return err;
4245 static void kmem_cache_release(struct kobject *kobj)
4247 struct kmem_cache *s = to_slab(kobj);
4249 kfree(s);
4252 static struct sysfs_ops slab_sysfs_ops = {
4253 .show = slab_attr_show,
4254 .store = slab_attr_store,
4257 static struct kobj_type slab_ktype = {
4258 .sysfs_ops = &slab_sysfs_ops,
4259 .release = kmem_cache_release
4262 static int uevent_filter(struct kset *kset, struct kobject *kobj)
4264 struct kobj_type *ktype = get_ktype(kobj);
4266 if (ktype == &slab_ktype)
4267 return 1;
4268 return 0;
4271 static struct kset_uevent_ops slab_uevent_ops = {
4272 .filter = uevent_filter,
4275 static struct kset *slab_kset;
4277 #define ID_STR_LENGTH 64
4279 /* Create a unique string id for a slab cache:
4281 * Format :[flags-]size
4283 static char *create_unique_id(struct kmem_cache *s)
4285 char *name = kmalloc(ID_STR_LENGTH, GFP_KERNEL);
4286 char *p = name;
4288 BUG_ON(!name);
4290 *p++ = ':';
4292 * First flags affecting slabcache operations. We will only
4293 * get here for aliasable slabs so we do not need to support
4294 * too many flags. The flags here must cover all flags that
4295 * are matched during merging to guarantee that the id is
4296 * unique.
4298 if (s->flags & SLAB_CACHE_DMA)
4299 *p++ = 'd';
4300 if (s->flags & SLAB_RECLAIM_ACCOUNT)
4301 *p++ = 'a';
4302 if (s->flags & SLAB_DEBUG_FREE)
4303 *p++ = 'F';
4304 if (p != name + 1)
4305 *p++ = '-';
4306 p += sprintf(p, "%07d", s->size);
4307 BUG_ON(p > name + ID_STR_LENGTH - 1);
4308 return name;
4311 static int sysfs_slab_add(struct kmem_cache *s)
4313 int err;
4314 const char *name;
4315 int unmergeable;
4317 if (slab_state < SYSFS)
4318 /* Defer until later */
4319 return 0;
4321 unmergeable = slab_unmergeable(s);
4322 if (unmergeable) {
4324 * Slabcache can never be merged so we can use the name proper.
4325 * This is typically the case for debug situations. In that
4326 * case we can catch duplicate names easily.
4328 sysfs_remove_link(&slab_kset->kobj, s->name);
4329 name = s->name;
4330 } else {
4332 * Create a unique name for the slab as a target
4333 * for the symlinks.
4335 name = create_unique_id(s);
4338 s->kobj.kset = slab_kset;
4339 err = kobject_init_and_add(&s->kobj, &slab_ktype, NULL, name);
4340 if (err) {
4341 kobject_put(&s->kobj);
4342 return err;
4345 err = sysfs_create_group(&s->kobj, &slab_attr_group);
4346 if (err)
4347 return err;
4348 kobject_uevent(&s->kobj, KOBJ_ADD);
4349 if (!unmergeable) {
4350 /* Setup first alias */
4351 sysfs_slab_alias(s, s->name);
4352 kfree(name);
4354 return 0;
4357 static void sysfs_slab_remove(struct kmem_cache *s)
4359 kobject_uevent(&s->kobj, KOBJ_REMOVE);
4360 kobject_del(&s->kobj);
4361 kobject_put(&s->kobj);
4365 * Need to buffer aliases during bootup until sysfs becomes
4366 * available lest we lose that information.
4368 struct saved_alias {
4369 struct kmem_cache *s;
4370 const char *name;
4371 struct saved_alias *next;
4374 static struct saved_alias *alias_list;
4376 static int sysfs_slab_alias(struct kmem_cache *s, const char *name)
4378 struct saved_alias *al;
4380 if (slab_state == SYSFS) {
4382 * If we have a leftover link then remove it.
4384 sysfs_remove_link(&slab_kset->kobj, name);
4385 return sysfs_create_link(&slab_kset->kobj, &s->kobj, name);
4388 al = kmalloc(sizeof(struct saved_alias), GFP_KERNEL);
4389 if (!al)
4390 return -ENOMEM;
4392 al->s = s;
4393 al->name = name;
4394 al->next = alias_list;
4395 alias_list = al;
4396 return 0;
4399 static int __init slab_sysfs_init(void)
4401 struct kmem_cache *s;
4402 int err;
4404 slab_kset = kset_create_and_add("slab", &slab_uevent_ops, kernel_kobj);
4405 if (!slab_kset) {
4406 printk(KERN_ERR "Cannot register slab subsystem.\n");
4407 return -ENOSYS;
4410 slab_state = SYSFS;
4412 list_for_each_entry(s, &slab_caches, list) {
4413 err = sysfs_slab_add(s);
4414 if (err)
4415 printk(KERN_ERR "SLUB: Unable to add boot slab %s"
4416 " to sysfs\n", s->name);
4419 while (alias_list) {
4420 struct saved_alias *al = alias_list;
4422 alias_list = alias_list->next;
4423 err = sysfs_slab_alias(al->s, al->name);
4424 if (err)
4425 printk(KERN_ERR "SLUB: Unable to add boot slab alias"
4426 " %s to sysfs\n", s->name);
4427 kfree(al);
4430 resiliency_test();
4431 return 0;
4434 __initcall(slab_sysfs_init);
4435 #endif
4438 * The /proc/slabinfo ABI
4440 #ifdef CONFIG_SLABINFO
4441 static void print_slabinfo_header(struct seq_file *m)
4443 seq_puts(m, "slabinfo - version: 2.1\n");
4444 seq_puts(m, "# name <active_objs> <num_objs> <objsize> "
4445 "<objperslab> <pagesperslab>");
4446 seq_puts(m, " : tunables <limit> <batchcount> <sharedfactor>");
4447 seq_puts(m, " : slabdata <active_slabs> <num_slabs> <sharedavail>");
4448 seq_putc(m, '\n');
4451 static void *s_start(struct seq_file *m, loff_t *pos)
4453 loff_t n = *pos;
4455 down_read(&slub_lock);
4456 if (!n)
4457 print_slabinfo_header(m);
4459 return seq_list_start(&slab_caches, *pos);
4462 static void *s_next(struct seq_file *m, void *p, loff_t *pos)
4464 return seq_list_next(p, &slab_caches, pos);
4467 static void s_stop(struct seq_file *m, void *p)
4469 up_read(&slub_lock);
4472 static int s_show(struct seq_file *m, void *p)
4474 unsigned long nr_partials = 0;
4475 unsigned long nr_slabs = 0;
4476 unsigned long nr_inuse = 0;
4477 unsigned long nr_objs = 0;
4478 unsigned long nr_free = 0;
4479 struct kmem_cache *s;
4480 int node;
4482 s = list_entry(p, struct kmem_cache, list);
4484 for_each_online_node(node) {
4485 struct kmem_cache_node *n = get_node(s, node);
4487 if (!n)
4488 continue;
4490 nr_partials += n->nr_partial;
4491 nr_slabs += atomic_long_read(&n->nr_slabs);
4492 nr_objs += atomic_long_read(&n->total_objects);
4493 nr_free += count_partial(n, count_free);
4496 nr_inuse = nr_objs - nr_free;
4498 seq_printf(m, "%-17s %6lu %6lu %6u %4u %4d", s->name, nr_inuse,
4499 nr_objs, s->size, oo_objects(s->oo),
4500 (1 << oo_order(s->oo)));
4501 seq_printf(m, " : tunables %4u %4u %4u", 0, 0, 0);
4502 seq_printf(m, " : slabdata %6lu %6lu %6lu", nr_slabs, nr_slabs,
4503 0UL);
4504 seq_putc(m, '\n');
4505 return 0;
4508 static const struct seq_operations slabinfo_op = {
4509 .start = s_start,
4510 .next = s_next,
4511 .stop = s_stop,
4512 .show = s_show,
4515 static int slabinfo_open(struct inode *inode, struct file *file)
4517 return seq_open(file, &slabinfo_op);
4520 static const struct file_operations proc_slabinfo_operations = {
4521 .open = slabinfo_open,
4522 .read = seq_read,
4523 .llseek = seq_lseek,
4524 .release = seq_release,
4527 static int __init slab_proc_init(void)
4529 proc_create("slabinfo",S_IWUSR|S_IRUGO,NULL,&proc_slabinfo_operations);
4530 return 0;
4532 module_init(slab_proc_init);
4533 #endif /* CONFIG_SLABINFO */