4 * Copyright (C) 1994-1999 Linus Torvalds
8 * This file handles the generic file mmap semantics used by
9 * most "normal" filesystems (but you don't /have/ to use this:
10 * the NFS filesystem used to do this differently, for example)
12 #include <linux/module.h>
13 #include <linux/slab.h>
14 #include <linux/compiler.h>
16 #include <linux/uaccess.h>
17 #include <linux/aio.h>
18 #include <linux/capability.h>
19 #include <linux/kernel_stat.h>
21 #include <linux/swap.h>
22 #include <linux/mman.h>
23 #include <linux/pagemap.h>
24 #include <linux/file.h>
25 #include <linux/uio.h>
26 #include <linux/hash.h>
27 #include <linux/writeback.h>
28 #include <linux/pagevec.h>
29 #include <linux/blkdev.h>
30 #include <linux/security.h>
31 #include <linux/syscalls.h>
32 #include <linux/cpuset.h>
37 * FIXME: remove all knowledge of the buffer layer from the core VM
39 #include <linux/buffer_head.h> /* for generic_osync_inode */
44 generic_file_direct_IO(int rw
, struct kiocb
*iocb
, const struct iovec
*iov
,
45 loff_t offset
, unsigned long nr_segs
);
48 * Shared mappings implemented 30.11.1994. It's not fully working yet,
51 * Shared mappings now work. 15.8.1995 Bruno.
53 * finished 'unifying' the page and buffer cache and SMP-threaded the
54 * page-cache, 21.05.1999, Ingo Molnar <mingo@redhat.com>
56 * SMP-threaded pagemap-LRU 1999, Andrea Arcangeli <andrea@suse.de>
62 * ->i_mmap_lock (vmtruncate)
63 * ->private_lock (__free_pte->__set_page_dirty_buffers)
64 * ->swap_lock (exclusive_swap_page, others)
65 * ->mapping->tree_lock
68 * ->i_mmap_lock (truncate->unmap_mapping_range)
72 * ->page_table_lock or pte_lock (various, mainly in memory.c)
73 * ->mapping->tree_lock (arch-dependent flush_dcache_mmap_lock)
76 * ->lock_page (access_process_vm)
82 * ->i_alloc_sem (various)
85 * ->sb_lock (fs/fs-writeback.c)
86 * ->mapping->tree_lock (__sync_single_inode)
89 * ->anon_vma.lock (vma_adjust)
92 * ->page_table_lock or pte_lock (anon_vma_prepare and various)
94 * ->page_table_lock or pte_lock
95 * ->swap_lock (try_to_unmap_one)
96 * ->private_lock (try_to_unmap_one)
97 * ->tree_lock (try_to_unmap_one)
98 * ->zone.lru_lock (follow_page->mark_page_accessed)
99 * ->zone.lru_lock (check_pte_range->isolate_lru_page)
100 * ->private_lock (page_remove_rmap->set_page_dirty)
101 * ->tree_lock (page_remove_rmap->set_page_dirty)
102 * ->inode_lock (page_remove_rmap->set_page_dirty)
103 * ->inode_lock (zap_pte_range->set_page_dirty)
104 * ->private_lock (zap_pte_range->__set_page_dirty_buffers)
107 * ->dcache_lock (proc_pid_lookup)
111 * Remove a page from the page cache and free it. Caller has to make
112 * sure the page is locked and that nobody else uses it - or that usage
113 * is safe. The caller must hold a write_lock on the mapping's tree_lock.
115 void __remove_from_page_cache(struct page
*page
)
117 struct address_space
*mapping
= page
->mapping
;
119 radix_tree_delete(&mapping
->page_tree
, page
->index
);
120 page
->mapping
= NULL
;
122 __dec_zone_page_state(page
, NR_FILE_PAGES
);
125 void remove_from_page_cache(struct page
*page
)
127 struct address_space
*mapping
= page
->mapping
;
129 BUG_ON(!PageLocked(page
));
131 write_lock_irq(&mapping
->tree_lock
);
132 __remove_from_page_cache(page
);
133 write_unlock_irq(&mapping
->tree_lock
);
136 static int sync_page(void *word
)
138 struct address_space
*mapping
;
141 page
= container_of((unsigned long *)word
, struct page
, flags
);
144 * page_mapping() is being called without PG_locked held.
145 * Some knowledge of the state and use of the page is used to
146 * reduce the requirements down to a memory barrier.
147 * The danger here is of a stale page_mapping() return value
148 * indicating a struct address_space different from the one it's
149 * associated with when it is associated with one.
150 * After smp_mb(), it's either the correct page_mapping() for
151 * the page, or an old page_mapping() and the page's own
152 * page_mapping() has gone NULL.
153 * The ->sync_page() address_space operation must tolerate
154 * page_mapping() going NULL. By an amazing coincidence,
155 * this comes about because none of the users of the page
156 * in the ->sync_page() methods make essential use of the
157 * page_mapping(), merely passing the page down to the backing
158 * device's unplug functions when it's non-NULL, which in turn
159 * ignore it for all cases but swap, where only page_private(page) is
160 * of interest. When page_mapping() does go NULL, the entire
161 * call stack gracefully ignores the page and returns.
165 mapping
= page_mapping(page
);
166 if (mapping
&& mapping
->a_ops
&& mapping
->a_ops
->sync_page
)
167 mapping
->a_ops
->sync_page(page
);
173 * __filemap_fdatawrite_range - start writeback on mapping dirty pages in range
174 * @mapping: address space structure to write
175 * @start: offset in bytes where the range starts
176 * @end: offset in bytes where the range ends (inclusive)
177 * @sync_mode: enable synchronous operation
179 * Start writeback against all of a mapping's dirty pages that lie
180 * within the byte offsets <start, end> inclusive.
182 * If sync_mode is WB_SYNC_ALL then this is a "data integrity" operation, as
183 * opposed to a regular memory cleansing writeback. The difference between
184 * these two operations is that if a dirty page/buffer is encountered, it must
185 * be waited upon, and not just skipped over.
187 int __filemap_fdatawrite_range(struct address_space
*mapping
, loff_t start
,
188 loff_t end
, int sync_mode
)
191 struct writeback_control wbc
= {
192 .sync_mode
= sync_mode
,
193 .nr_to_write
= mapping
->nrpages
* 2,
194 .range_start
= start
,
198 if (!mapping_cap_writeback_dirty(mapping
))
201 ret
= do_writepages(mapping
, &wbc
);
205 static inline int __filemap_fdatawrite(struct address_space
*mapping
,
208 return __filemap_fdatawrite_range(mapping
, 0, LLONG_MAX
, sync_mode
);
211 int filemap_fdatawrite(struct address_space
*mapping
)
213 return __filemap_fdatawrite(mapping
, WB_SYNC_ALL
);
215 EXPORT_SYMBOL(filemap_fdatawrite
);
217 static int filemap_fdatawrite_range(struct address_space
*mapping
, loff_t start
,
220 return __filemap_fdatawrite_range(mapping
, start
, end
, WB_SYNC_ALL
);
224 * filemap_flush - mostly a non-blocking flush
225 * @mapping: target address_space
227 * This is a mostly non-blocking flush. Not suitable for data-integrity
228 * purposes - I/O may not be started against all dirty pages.
230 int filemap_flush(struct address_space
*mapping
)
232 return __filemap_fdatawrite(mapping
, WB_SYNC_NONE
);
234 EXPORT_SYMBOL(filemap_flush
);
237 * wait_on_page_writeback_range - wait for writeback to complete
238 * @mapping: target address_space
239 * @start: beginning page index
240 * @end: ending page index
242 * Wait for writeback to complete against pages indexed by start->end
245 int wait_on_page_writeback_range(struct address_space
*mapping
,
246 pgoff_t start
, pgoff_t end
)
256 pagevec_init(&pvec
, 0);
258 while ((index
<= end
) &&
259 (nr_pages
= pagevec_lookup_tag(&pvec
, mapping
, &index
,
260 PAGECACHE_TAG_WRITEBACK
,
261 min(end
- index
, (pgoff_t
)PAGEVEC_SIZE
-1) + 1)) != 0) {
264 for (i
= 0; i
< nr_pages
; i
++) {
265 struct page
*page
= pvec
.pages
[i
];
267 /* until radix tree lookup accepts end_index */
268 if (page
->index
> end
)
271 wait_on_page_writeback(page
);
275 pagevec_release(&pvec
);
279 /* Check for outstanding write errors */
280 if (test_and_clear_bit(AS_ENOSPC
, &mapping
->flags
))
282 if (test_and_clear_bit(AS_EIO
, &mapping
->flags
))
289 * sync_page_range - write and wait on all pages in the passed range
290 * @inode: target inode
291 * @mapping: target address_space
292 * @pos: beginning offset in pages to write
293 * @count: number of bytes to write
295 * Write and wait upon all the pages in the passed range. This is a "data
296 * integrity" operation. It waits upon in-flight writeout before starting and
297 * waiting upon new writeout. If there was an IO error, return it.
299 * We need to re-take i_mutex during the generic_osync_inode list walk because
300 * it is otherwise livelockable.
302 int sync_page_range(struct inode
*inode
, struct address_space
*mapping
,
303 loff_t pos
, loff_t count
)
305 pgoff_t start
= pos
>> PAGE_CACHE_SHIFT
;
306 pgoff_t end
= (pos
+ count
- 1) >> PAGE_CACHE_SHIFT
;
309 if (!mapping_cap_writeback_dirty(mapping
) || !count
)
311 ret
= filemap_fdatawrite_range(mapping
, pos
, pos
+ count
- 1);
313 mutex_lock(&inode
->i_mutex
);
314 ret
= generic_osync_inode(inode
, mapping
, OSYNC_METADATA
);
315 mutex_unlock(&inode
->i_mutex
);
318 ret
= wait_on_page_writeback_range(mapping
, start
, end
);
321 EXPORT_SYMBOL(sync_page_range
);
324 * sync_page_range_nolock
325 * @inode: target inode
326 * @mapping: target address_space
327 * @pos: beginning offset in pages to write
328 * @count: number of bytes to write
330 * Note: Holding i_mutex across sync_page_range_nolock is not a good idea
331 * as it forces O_SYNC writers to different parts of the same file
332 * to be serialised right until io completion.
334 int sync_page_range_nolock(struct inode
*inode
, struct address_space
*mapping
,
335 loff_t pos
, loff_t count
)
337 pgoff_t start
= pos
>> PAGE_CACHE_SHIFT
;
338 pgoff_t end
= (pos
+ count
- 1) >> PAGE_CACHE_SHIFT
;
341 if (!mapping_cap_writeback_dirty(mapping
) || !count
)
343 ret
= filemap_fdatawrite_range(mapping
, pos
, pos
+ count
- 1);
345 ret
= generic_osync_inode(inode
, mapping
, OSYNC_METADATA
);
347 ret
= wait_on_page_writeback_range(mapping
, start
, end
);
350 EXPORT_SYMBOL(sync_page_range_nolock
);
353 * filemap_fdatawait - wait for all under-writeback pages to complete
354 * @mapping: address space structure to wait for
356 * Walk the list of under-writeback pages of the given address space
357 * and wait for all of them.
359 int filemap_fdatawait(struct address_space
*mapping
)
361 loff_t i_size
= i_size_read(mapping
->host
);
366 return wait_on_page_writeback_range(mapping
, 0,
367 (i_size
- 1) >> PAGE_CACHE_SHIFT
);
369 EXPORT_SYMBOL(filemap_fdatawait
);
371 int filemap_write_and_wait(struct address_space
*mapping
)
375 if (mapping
->nrpages
) {
376 err
= filemap_fdatawrite(mapping
);
378 * Even if the above returned error, the pages may be
379 * written partially (e.g. -ENOSPC), so we wait for it.
380 * But the -EIO is special case, it may indicate the worst
381 * thing (e.g. bug) happened, so we avoid waiting for it.
384 int err2
= filemap_fdatawait(mapping
);
391 EXPORT_SYMBOL(filemap_write_and_wait
);
394 * filemap_write_and_wait_range - write out & wait on a file range
395 * @mapping: the address_space for the pages
396 * @lstart: offset in bytes where the range starts
397 * @lend: offset in bytes where the range ends (inclusive)
399 * Write out and wait upon file offsets lstart->lend, inclusive.
401 * Note that `lend' is inclusive (describes the last byte to be written) so
402 * that this function can be used to write to the very end-of-file (end = -1).
404 int filemap_write_and_wait_range(struct address_space
*mapping
,
405 loff_t lstart
, loff_t lend
)
409 if (mapping
->nrpages
) {
410 err
= __filemap_fdatawrite_range(mapping
, lstart
, lend
,
412 /* See comment of filemap_write_and_wait() */
414 int err2
= wait_on_page_writeback_range(mapping
,
415 lstart
>> PAGE_CACHE_SHIFT
,
416 lend
>> PAGE_CACHE_SHIFT
);
425 * add_to_page_cache - add newly allocated pagecache pages
427 * @mapping: the page's address_space
428 * @offset: page index
429 * @gfp_mask: page allocation mode
431 * This function is used to add newly allocated pagecache pages;
432 * the page is new, so we can just run SetPageLocked() against it.
433 * The other page state flags were set by rmqueue().
435 * This function does not add the page to the LRU. The caller must do that.
437 int add_to_page_cache(struct page
*page
, struct address_space
*mapping
,
438 pgoff_t offset
, gfp_t gfp_mask
)
440 int error
= radix_tree_preload(gfp_mask
& ~__GFP_HIGHMEM
);
443 write_lock_irq(&mapping
->tree_lock
);
444 error
= radix_tree_insert(&mapping
->page_tree
, offset
, page
);
446 page_cache_get(page
);
448 page
->mapping
= mapping
;
449 page
->index
= offset
;
451 __inc_zone_page_state(page
, NR_FILE_PAGES
);
453 write_unlock_irq(&mapping
->tree_lock
);
454 radix_tree_preload_end();
458 EXPORT_SYMBOL(add_to_page_cache
);
460 int add_to_page_cache_lru(struct page
*page
, struct address_space
*mapping
,
461 pgoff_t offset
, gfp_t gfp_mask
)
463 int ret
= add_to_page_cache(page
, mapping
, offset
, gfp_mask
);
470 struct page
*page_cache_alloc(struct address_space
*x
)
472 if (cpuset_do_page_mem_spread()) {
473 int n
= cpuset_mem_spread_node();
474 return alloc_pages_node(n
, mapping_gfp_mask(x
), 0);
476 return alloc_pages(mapping_gfp_mask(x
), 0);
478 EXPORT_SYMBOL(page_cache_alloc
);
480 struct page
*page_cache_alloc_cold(struct address_space
*x
)
482 if (cpuset_do_page_mem_spread()) {
483 int n
= cpuset_mem_spread_node();
484 return alloc_pages_node(n
, mapping_gfp_mask(x
)|__GFP_COLD
, 0);
486 return alloc_pages(mapping_gfp_mask(x
)|__GFP_COLD
, 0);
488 EXPORT_SYMBOL(page_cache_alloc_cold
);
492 * In order to wait for pages to become available there must be
493 * waitqueues associated with pages. By using a hash table of
494 * waitqueues where the bucket discipline is to maintain all
495 * waiters on the same queue and wake all when any of the pages
496 * become available, and for the woken contexts to check to be
497 * sure the appropriate page became available, this saves space
498 * at a cost of "thundering herd" phenomena during rare hash
501 static wait_queue_head_t
*page_waitqueue(struct page
*page
)
503 const struct zone
*zone
= page_zone(page
);
505 return &zone
->wait_table
[hash_ptr(page
, zone
->wait_table_bits
)];
508 static inline void wake_up_page(struct page
*page
, int bit
)
510 __wake_up_bit(page_waitqueue(page
), &page
->flags
, bit
);
513 void fastcall
wait_on_page_bit(struct page
*page
, int bit_nr
)
515 DEFINE_WAIT_BIT(wait
, &page
->flags
, bit_nr
);
517 if (test_bit(bit_nr
, &page
->flags
))
518 __wait_on_bit(page_waitqueue(page
), &wait
, sync_page
,
519 TASK_UNINTERRUPTIBLE
);
521 EXPORT_SYMBOL(wait_on_page_bit
);
524 * unlock_page - unlock a locked page
527 * Unlocks the page and wakes up sleepers in ___wait_on_page_locked().
528 * Also wakes sleepers in wait_on_page_writeback() because the wakeup
529 * mechananism between PageLocked pages and PageWriteback pages is shared.
530 * But that's OK - sleepers in wait_on_page_writeback() just go back to sleep.
532 * The first mb is necessary to safely close the critical section opened by the
533 * TestSetPageLocked(), the second mb is necessary to enforce ordering between
534 * the clear_bit and the read of the waitqueue (to avoid SMP races with a
535 * parallel wait_on_page_locked()).
537 void fastcall
unlock_page(struct page
*page
)
539 smp_mb__before_clear_bit();
540 if (!TestClearPageLocked(page
))
542 smp_mb__after_clear_bit();
543 wake_up_page(page
, PG_locked
);
545 EXPORT_SYMBOL(unlock_page
);
548 * end_page_writeback - end writeback against a page
551 void end_page_writeback(struct page
*page
)
553 if (!TestClearPageReclaim(page
) || rotate_reclaimable_page(page
)) {
554 if (!test_clear_page_writeback(page
))
557 smp_mb__after_clear_bit();
558 wake_up_page(page
, PG_writeback
);
560 EXPORT_SYMBOL(end_page_writeback
);
563 * __lock_page - get a lock on the page, assuming we need to sleep to get it
564 * @page: the page to lock
566 * Ugly. Running sync_page() in state TASK_UNINTERRUPTIBLE is scary. If some
567 * random driver's requestfn sets TASK_RUNNING, we could busywait. However
568 * chances are that on the second loop, the block layer's plug list is empty,
569 * so sync_page() will then return in state TASK_UNINTERRUPTIBLE.
571 void fastcall
__lock_page(struct page
*page
)
573 DEFINE_WAIT_BIT(wait
, &page
->flags
, PG_locked
);
575 __wait_on_bit_lock(page_waitqueue(page
), &wait
, sync_page
,
576 TASK_UNINTERRUPTIBLE
);
578 EXPORT_SYMBOL(__lock_page
);
581 * find_get_page - find and get a page reference
582 * @mapping: the address_space to search
583 * @offset: the page index
585 * A rather lightweight function, finding and getting a reference to a
586 * hashed page atomically.
588 struct page
* find_get_page(struct address_space
*mapping
, unsigned long offset
)
592 read_lock_irq(&mapping
->tree_lock
);
593 page
= radix_tree_lookup(&mapping
->page_tree
, offset
);
595 page_cache_get(page
);
596 read_unlock_irq(&mapping
->tree_lock
);
599 EXPORT_SYMBOL(find_get_page
);
602 * find_trylock_page - find and lock a page
603 * @mapping: the address_space to search
604 * @offset: the page index
606 * Same as find_get_page(), but trylock it instead of incrementing the count.
608 struct page
*find_trylock_page(struct address_space
*mapping
, unsigned long offset
)
612 read_lock_irq(&mapping
->tree_lock
);
613 page
= radix_tree_lookup(&mapping
->page_tree
, offset
);
614 if (page
&& TestSetPageLocked(page
))
616 read_unlock_irq(&mapping
->tree_lock
);
619 EXPORT_SYMBOL(find_trylock_page
);
622 * find_lock_page - locate, pin and lock a pagecache page
623 * @mapping: the address_space to search
624 * @offset: the page index
626 * Locates the desired pagecache page, locks it, increments its reference
627 * count and returns its address.
629 * Returns zero if the page was not present. find_lock_page() may sleep.
631 struct page
*find_lock_page(struct address_space
*mapping
,
632 unsigned long offset
)
636 read_lock_irq(&mapping
->tree_lock
);
638 page
= radix_tree_lookup(&mapping
->page_tree
, offset
);
640 page_cache_get(page
);
641 if (TestSetPageLocked(page
)) {
642 read_unlock_irq(&mapping
->tree_lock
);
644 read_lock_irq(&mapping
->tree_lock
);
646 /* Has the page been truncated while we slept? */
647 if (unlikely(page
->mapping
!= mapping
||
648 page
->index
!= offset
)) {
650 page_cache_release(page
);
655 read_unlock_irq(&mapping
->tree_lock
);
658 EXPORT_SYMBOL(find_lock_page
);
661 * find_or_create_page - locate or add a pagecache page
662 * @mapping: the page's address_space
663 * @index: the page's index into the mapping
664 * @gfp_mask: page allocation mode
666 * Locates a page in the pagecache. If the page is not present, a new page
667 * is allocated using @gfp_mask and is added to the pagecache and to the VM's
668 * LRU list. The returned page is locked and has its reference count
671 * find_or_create_page() may sleep, even if @gfp_flags specifies an atomic
674 * find_or_create_page() returns the desired page's address, or zero on
677 struct page
*find_or_create_page(struct address_space
*mapping
,
678 unsigned long index
, gfp_t gfp_mask
)
680 struct page
*page
, *cached_page
= NULL
;
683 page
= find_lock_page(mapping
, index
);
686 cached_page
= alloc_page(gfp_mask
);
690 err
= add_to_page_cache_lru(cached_page
, mapping
,
695 } else if (err
== -EEXIST
)
699 page_cache_release(cached_page
);
702 EXPORT_SYMBOL(find_or_create_page
);
705 * find_get_pages - gang pagecache lookup
706 * @mapping: The address_space to search
707 * @start: The starting page index
708 * @nr_pages: The maximum number of pages
709 * @pages: Where the resulting pages are placed
711 * find_get_pages() will search for and return a group of up to
712 * @nr_pages pages in the mapping. The pages are placed at @pages.
713 * find_get_pages() takes a reference against the returned pages.
715 * The search returns a group of mapping-contiguous pages with ascending
716 * indexes. There may be holes in the indices due to not-present pages.
718 * find_get_pages() returns the number of pages which were found.
720 unsigned find_get_pages(struct address_space
*mapping
, pgoff_t start
,
721 unsigned int nr_pages
, struct page
**pages
)
726 read_lock_irq(&mapping
->tree_lock
);
727 ret
= radix_tree_gang_lookup(&mapping
->page_tree
,
728 (void **)pages
, start
, nr_pages
);
729 for (i
= 0; i
< ret
; i
++)
730 page_cache_get(pages
[i
]);
731 read_unlock_irq(&mapping
->tree_lock
);
736 * find_get_pages_contig - gang contiguous pagecache lookup
737 * @mapping: The address_space to search
738 * @index: The starting page index
739 * @nr_pages: The maximum number of pages
740 * @pages: Where the resulting pages are placed
742 * find_get_pages_contig() works exactly like find_get_pages(), except
743 * that the returned number of pages are guaranteed to be contiguous.
745 * find_get_pages_contig() returns the number of pages which were found.
747 unsigned find_get_pages_contig(struct address_space
*mapping
, pgoff_t index
,
748 unsigned int nr_pages
, struct page
**pages
)
753 read_lock_irq(&mapping
->tree_lock
);
754 ret
= radix_tree_gang_lookup(&mapping
->page_tree
,
755 (void **)pages
, index
, nr_pages
);
756 for (i
= 0; i
< ret
; i
++) {
757 if (pages
[i
]->mapping
== NULL
|| pages
[i
]->index
!= index
)
760 page_cache_get(pages
[i
]);
763 read_unlock_irq(&mapping
->tree_lock
);
768 * find_get_pages_tag - find and return pages that match @tag
769 * @mapping: the address_space to search
770 * @index: the starting page index
771 * @tag: the tag index
772 * @nr_pages: the maximum number of pages
773 * @pages: where the resulting pages are placed
775 * Like find_get_pages, except we only return pages which are tagged with
776 * @tag. We update @index to index the next page for the traversal.
778 unsigned find_get_pages_tag(struct address_space
*mapping
, pgoff_t
*index
,
779 int tag
, unsigned int nr_pages
, struct page
**pages
)
784 read_lock_irq(&mapping
->tree_lock
);
785 ret
= radix_tree_gang_lookup_tag(&mapping
->page_tree
,
786 (void **)pages
, *index
, nr_pages
, tag
);
787 for (i
= 0; i
< ret
; i
++)
788 page_cache_get(pages
[i
]);
790 *index
= pages
[ret
- 1]->index
+ 1;
791 read_unlock_irq(&mapping
->tree_lock
);
796 * grab_cache_page_nowait - returns locked page at given index in given cache
797 * @mapping: target address_space
798 * @index: the page index
800 * Same as grab_cache_page, but do not wait if the page is unavailable.
801 * This is intended for speculative data generators, where the data can
802 * be regenerated if the page couldn't be grabbed. This routine should
803 * be safe to call while holding the lock for another page.
805 * Clear __GFP_FS when allocating the page to avoid recursion into the fs
806 * and deadlock against the caller's locked page.
809 grab_cache_page_nowait(struct address_space
*mapping
, unsigned long index
)
811 struct page
*page
= find_get_page(mapping
, index
);
815 if (!TestSetPageLocked(page
))
817 page_cache_release(page
);
820 gfp_mask
= mapping_gfp_mask(mapping
) & ~__GFP_FS
;
821 page
= alloc_pages(gfp_mask
, 0);
822 if (page
&& add_to_page_cache_lru(page
, mapping
, index
, gfp_mask
)) {
823 page_cache_release(page
);
828 EXPORT_SYMBOL(grab_cache_page_nowait
);
831 * CD/DVDs are error prone. When a medium error occurs, the driver may fail
832 * a _large_ part of the i/o request. Imagine the worst scenario:
834 * ---R__________________________________________B__________
835 * ^ reading here ^ bad block(assume 4k)
837 * read(R) => miss => readahead(R...B) => media error => frustrating retries
838 * => failing the whole request => read(R) => read(R+1) =>
839 * readahead(R+1...B+1) => bang => read(R+2) => read(R+3) =>
840 * readahead(R+3...B+2) => bang => read(R+3) => read(R+4) =>
841 * readahead(R+4...B+3) => bang => read(R+4) => read(R+5) => ......
843 * It is going insane. Fix it by quickly scaling down the readahead size.
845 static void shrink_readahead_size_eio(struct file
*filp
,
846 struct file_ra_state
*ra
)
852 printk(KERN_WARNING
"Reducing readahead size to %luK\n",
853 ra
->ra_pages
<< (PAGE_CACHE_SHIFT
- 10));
857 * do_generic_mapping_read - generic file read routine
858 * @mapping: address_space to be read
859 * @_ra: file's readahead state
860 * @filp: the file to read
861 * @ppos: current file position
862 * @desc: read_descriptor
863 * @actor: read method
865 * This is a generic file read routine, and uses the
866 * mapping->a_ops->readpage() function for the actual low-level stuff.
868 * This is really ugly. But the goto's actually try to clarify some
869 * of the logic when it comes to error handling etc.
871 * Note the struct file* is only passed for the use of readpage.
874 void do_generic_mapping_read(struct address_space
*mapping
,
875 struct file_ra_state
*_ra
,
878 read_descriptor_t
*desc
,
881 struct inode
*inode
= mapping
->host
;
883 unsigned long end_index
;
884 unsigned long offset
;
885 unsigned long last_index
;
886 unsigned long next_index
;
887 unsigned long prev_index
;
889 struct page
*cached_page
;
891 struct file_ra_state ra
= *_ra
;
894 index
= *ppos
>> PAGE_CACHE_SHIFT
;
896 prev_index
= ra
.prev_page
;
897 last_index
= (*ppos
+ desc
->count
+ PAGE_CACHE_SIZE
-1) >> PAGE_CACHE_SHIFT
;
898 offset
= *ppos
& ~PAGE_CACHE_MASK
;
900 isize
= i_size_read(inode
);
904 end_index
= (isize
- 1) >> PAGE_CACHE_SHIFT
;
907 unsigned long nr
, ret
;
909 /* nr is the maximum number of bytes to copy from this page */
910 nr
= PAGE_CACHE_SIZE
;
911 if (index
>= end_index
) {
912 if (index
> end_index
)
914 nr
= ((isize
- 1) & ~PAGE_CACHE_MASK
) + 1;
922 if (index
== next_index
)
923 next_index
= page_cache_readahead(mapping
, &ra
, filp
,
924 index
, last_index
- index
);
927 page
= find_get_page(mapping
, index
);
928 if (unlikely(page
== NULL
)) {
929 handle_ra_miss(mapping
, &ra
, index
);
932 if (!PageUptodate(page
))
933 goto page_not_up_to_date
;
936 /* If users can be writing to this page using arbitrary
937 * virtual addresses, take care about potential aliasing
938 * before reading the page on the kernel side.
940 if (mapping_writably_mapped(mapping
))
941 flush_dcache_page(page
);
944 * When (part of) the same page is read multiple times
945 * in succession, only mark it as accessed the first time.
947 if (prev_index
!= index
)
948 mark_page_accessed(page
);
952 * Ok, we have the page, and it's up-to-date, so
953 * now we can copy it to user space...
955 * The actor routine returns how many bytes were actually used..
956 * NOTE! This may not be the same as how much of a user buffer
957 * we filled up (we may be padding etc), so we can only update
958 * "pos" here (the actor routine has to update the user buffer
959 * pointers and the remaining count).
961 ret
= actor(desc
, page
, offset
, nr
);
963 index
+= offset
>> PAGE_CACHE_SHIFT
;
964 offset
&= ~PAGE_CACHE_MASK
;
966 page_cache_release(page
);
967 if (ret
== nr
&& desc
->count
)
972 /* Get exclusive access to the page ... */
975 /* Did it get unhashed before we got the lock? */
976 if (!page
->mapping
) {
978 page_cache_release(page
);
982 /* Did somebody else fill it already? */
983 if (PageUptodate(page
)) {
989 /* Start the actual read. The read will unlock the page. */
990 error
= mapping
->a_ops
->readpage(filp
, page
);
992 if (unlikely(error
)) {
993 if (error
== AOP_TRUNCATED_PAGE
) {
994 page_cache_release(page
);
1000 if (!PageUptodate(page
)) {
1002 if (!PageUptodate(page
)) {
1003 if (page
->mapping
== NULL
) {
1005 * invalidate_inode_pages got it
1008 page_cache_release(page
);
1013 shrink_readahead_size_eio(filp
, &ra
);
1014 goto readpage_error
;
1020 * i_size must be checked after we have done ->readpage.
1022 * Checking i_size after the readpage allows us to calculate
1023 * the correct value for "nr", which means the zero-filled
1024 * part of the page is not copied back to userspace (unless
1025 * another truncate extends the file - this is desired though).
1027 isize
= i_size_read(inode
);
1028 end_index
= (isize
- 1) >> PAGE_CACHE_SHIFT
;
1029 if (unlikely(!isize
|| index
> end_index
)) {
1030 page_cache_release(page
);
1034 /* nr is the maximum number of bytes to copy from this page */
1035 nr
= PAGE_CACHE_SIZE
;
1036 if (index
== end_index
) {
1037 nr
= ((isize
- 1) & ~PAGE_CACHE_MASK
) + 1;
1039 page_cache_release(page
);
1047 /* UHHUH! A synchronous read error occurred. Report it */
1048 desc
->error
= error
;
1049 page_cache_release(page
);
1054 * Ok, it wasn't cached, so we need to create a new
1058 cached_page
= page_cache_alloc_cold(mapping
);
1060 desc
->error
= -ENOMEM
;
1064 error
= add_to_page_cache_lru(cached_page
, mapping
,
1067 if (error
== -EEXIST
)
1069 desc
->error
= error
;
1080 *ppos
= ((loff_t
) index
<< PAGE_CACHE_SHIFT
) + offset
;
1082 page_cache_release(cached_page
);
1084 file_accessed(filp
);
1086 EXPORT_SYMBOL(do_generic_mapping_read
);
1088 int file_read_actor(read_descriptor_t
*desc
, struct page
*page
,
1089 unsigned long offset
, unsigned long size
)
1092 unsigned long left
, count
= desc
->count
;
1098 * Faults on the destination of a read are common, so do it before
1101 if (!fault_in_pages_writeable(desc
->arg
.buf
, size
)) {
1102 kaddr
= kmap_atomic(page
, KM_USER0
);
1103 left
= __copy_to_user_inatomic(desc
->arg
.buf
,
1104 kaddr
+ offset
, size
);
1105 kunmap_atomic(kaddr
, KM_USER0
);
1110 /* Do it the slow way */
1112 left
= __copy_to_user(desc
->arg
.buf
, kaddr
+ offset
, size
);
1117 desc
->error
= -EFAULT
;
1120 desc
->count
= count
- size
;
1121 desc
->written
+= size
;
1122 desc
->arg
.buf
+= size
;
1127 * __generic_file_aio_read - generic filesystem read routine
1128 * @iocb: kernel I/O control block
1129 * @iov: io vector request
1130 * @nr_segs: number of segments in the iovec
1131 * @ppos: current file position
1133 * This is the "read()" routine for all filesystems
1134 * that can use the page cache directly.
1137 __generic_file_aio_read(struct kiocb
*iocb
, const struct iovec
*iov
,
1138 unsigned long nr_segs
, loff_t
*ppos
)
1140 struct file
*filp
= iocb
->ki_filp
;
1146 for (seg
= 0; seg
< nr_segs
; seg
++) {
1147 const struct iovec
*iv
= &iov
[seg
];
1150 * If any segment has a negative length, or the cumulative
1151 * length ever wraps negative then return -EINVAL.
1153 count
+= iv
->iov_len
;
1154 if (unlikely((ssize_t
)(count
|iv
->iov_len
) < 0))
1156 if (access_ok(VERIFY_WRITE
, iv
->iov_base
, iv
->iov_len
))
1161 count
-= iv
->iov_len
; /* This segment is no good */
1165 /* coalesce the iovecs and go direct-to-BIO for O_DIRECT */
1166 if (filp
->f_flags
& O_DIRECT
) {
1167 loff_t pos
= *ppos
, size
;
1168 struct address_space
*mapping
;
1169 struct inode
*inode
;
1171 mapping
= filp
->f_mapping
;
1172 inode
= mapping
->host
;
1175 goto out
; /* skip atime */
1176 size
= i_size_read(inode
);
1178 retval
= generic_file_direct_IO(READ
, iocb
,
1180 if (retval
> 0 && !is_sync_kiocb(iocb
))
1181 retval
= -EIOCBQUEUED
;
1183 *ppos
= pos
+ retval
;
1185 file_accessed(filp
);
1191 for (seg
= 0; seg
< nr_segs
; seg
++) {
1192 read_descriptor_t desc
;
1195 desc
.arg
.buf
= iov
[seg
].iov_base
;
1196 desc
.count
= iov
[seg
].iov_len
;
1197 if (desc
.count
== 0)
1200 do_generic_file_read(filp
,ppos
,&desc
,file_read_actor
);
1201 retval
+= desc
.written
;
1203 retval
= retval
?: desc
.error
;
1211 EXPORT_SYMBOL(__generic_file_aio_read
);
1214 generic_file_aio_read(struct kiocb
*iocb
, char __user
*buf
, size_t count
, loff_t pos
)
1216 struct iovec local_iov
= { .iov_base
= buf
, .iov_len
= count
};
1218 BUG_ON(iocb
->ki_pos
!= pos
);
1219 return __generic_file_aio_read(iocb
, &local_iov
, 1, &iocb
->ki_pos
);
1221 EXPORT_SYMBOL(generic_file_aio_read
);
1224 generic_file_read(struct file
*filp
, char __user
*buf
, size_t count
, loff_t
*ppos
)
1226 struct iovec local_iov
= { .iov_base
= buf
, .iov_len
= count
};
1230 init_sync_kiocb(&kiocb
, filp
);
1231 ret
= __generic_file_aio_read(&kiocb
, &local_iov
, 1, ppos
);
1232 if (-EIOCBQUEUED
== ret
)
1233 ret
= wait_on_sync_kiocb(&kiocb
);
1236 EXPORT_SYMBOL(generic_file_read
);
1238 int file_send_actor(read_descriptor_t
* desc
, struct page
*page
, unsigned long offset
, unsigned long size
)
1241 unsigned long count
= desc
->count
;
1242 struct file
*file
= desc
->arg
.data
;
1247 written
= file
->f_op
->sendpage(file
, page
, offset
,
1248 size
, &file
->f_pos
, size
<count
);
1250 desc
->error
= written
;
1253 desc
->count
= count
- written
;
1254 desc
->written
+= written
;
1258 ssize_t
generic_file_sendfile(struct file
*in_file
, loff_t
*ppos
,
1259 size_t count
, read_actor_t actor
, void *target
)
1261 read_descriptor_t desc
;
1268 desc
.arg
.data
= target
;
1271 do_generic_file_read(in_file
, ppos
, &desc
, actor
);
1273 return desc
.written
;
1276 EXPORT_SYMBOL(generic_file_sendfile
);
1279 do_readahead(struct address_space
*mapping
, struct file
*filp
,
1280 unsigned long index
, unsigned long nr
)
1282 if (!mapping
|| !mapping
->a_ops
|| !mapping
->a_ops
->readpage
)
1285 force_page_cache_readahead(mapping
, filp
, index
,
1286 max_sane_readahead(nr
));
1290 asmlinkage ssize_t
sys_readahead(int fd
, loff_t offset
, size_t count
)
1298 if (file
->f_mode
& FMODE_READ
) {
1299 struct address_space
*mapping
= file
->f_mapping
;
1300 unsigned long start
= offset
>> PAGE_CACHE_SHIFT
;
1301 unsigned long end
= (offset
+ count
- 1) >> PAGE_CACHE_SHIFT
;
1302 unsigned long len
= end
- start
+ 1;
1303 ret
= do_readahead(mapping
, file
, start
, len
);
1311 static int FASTCALL(page_cache_read(struct file
* file
, unsigned long offset
));
1313 * page_cache_read - adds requested page to the page cache if not already there
1314 * @file: file to read
1315 * @offset: page index
1317 * This adds the requested page to the page cache if it isn't already there,
1318 * and schedules an I/O to read in its contents from disk.
1320 static int fastcall
page_cache_read(struct file
* file
, unsigned long offset
)
1322 struct address_space
*mapping
= file
->f_mapping
;
1327 page
= page_cache_alloc_cold(mapping
);
1331 ret
= add_to_page_cache_lru(page
, mapping
, offset
, GFP_KERNEL
);
1333 ret
= mapping
->a_ops
->readpage(file
, page
);
1334 else if (ret
== -EEXIST
)
1335 ret
= 0; /* losing race to add is OK */
1337 page_cache_release(page
);
1339 } while (ret
== AOP_TRUNCATED_PAGE
);
1344 #define MMAP_LOTSAMISS (100)
1347 * filemap_nopage - read in file data for page fault handling
1348 * @area: the applicable vm_area
1349 * @address: target address to read in
1350 * @type: returned with VM_FAULT_{MINOR,MAJOR} if not %NULL
1352 * filemap_nopage() is invoked via the vma operations vector for a
1353 * mapped memory region to read in file data during a page fault.
1355 * The goto's are kind of ugly, but this streamlines the normal case of having
1356 * it in the page cache, and handles the special cases reasonably without
1357 * having a lot of duplicated code.
1359 struct page
*filemap_nopage(struct vm_area_struct
*area
,
1360 unsigned long address
, int *type
)
1363 struct file
*file
= area
->vm_file
;
1364 struct address_space
*mapping
= file
->f_mapping
;
1365 struct file_ra_state
*ra
= &file
->f_ra
;
1366 struct inode
*inode
= mapping
->host
;
1368 unsigned long size
, pgoff
;
1369 int did_readaround
= 0, majmin
= VM_FAULT_MINOR
;
1371 pgoff
= ((address
-area
->vm_start
) >> PAGE_CACHE_SHIFT
) + area
->vm_pgoff
;
1374 size
= (i_size_read(inode
) + PAGE_CACHE_SIZE
- 1) >> PAGE_CACHE_SHIFT
;
1376 goto outside_data_content
;
1378 /* If we don't want any read-ahead, don't bother */
1379 if (VM_RandomReadHint(area
))
1380 goto no_cached_page
;
1383 * The readahead code wants to be told about each and every page
1384 * so it can build and shrink its windows appropriately
1386 * For sequential accesses, we use the generic readahead logic.
1388 if (VM_SequentialReadHint(area
))
1389 page_cache_readahead(mapping
, ra
, file
, pgoff
, 1);
1392 * Do we have something in the page cache already?
1395 page
= find_get_page(mapping
, pgoff
);
1397 unsigned long ra_pages
;
1399 if (VM_SequentialReadHint(area
)) {
1400 handle_ra_miss(mapping
, ra
, pgoff
);
1401 goto no_cached_page
;
1406 * Do we miss much more than hit in this file? If so,
1407 * stop bothering with read-ahead. It will only hurt.
1409 if (ra
->mmap_miss
> ra
->mmap_hit
+ MMAP_LOTSAMISS
)
1410 goto no_cached_page
;
1413 * To keep the pgmajfault counter straight, we need to
1414 * check did_readaround, as this is an inner loop.
1416 if (!did_readaround
) {
1417 majmin
= VM_FAULT_MAJOR
;
1418 count_vm_event(PGMAJFAULT
);
1421 ra_pages
= max_sane_readahead(file
->f_ra
.ra_pages
);
1425 if (pgoff
> ra_pages
/ 2)
1426 start
= pgoff
- ra_pages
/ 2;
1427 do_page_cache_readahead(mapping
, file
, start
, ra_pages
);
1429 page
= find_get_page(mapping
, pgoff
);
1431 goto no_cached_page
;
1434 if (!did_readaround
)
1438 * Ok, found a page in the page cache, now we need to check
1439 * that it's up-to-date.
1441 if (!PageUptodate(page
))
1442 goto page_not_uptodate
;
1446 * Found the page and have a reference on it.
1448 mark_page_accessed(page
);
1453 outside_data_content
:
1455 * An external ptracer can access pages that normally aren't
1458 if (area
->vm_mm
== current
->mm
)
1460 /* Fall through to the non-read-ahead case */
1463 * We're only likely to ever get here if MADV_RANDOM is in
1466 error
= page_cache_read(file
, pgoff
);
1470 * The page we want has now been added to the page cache.
1471 * In the unlikely event that someone removed it in the
1472 * meantime, we'll just come back here and read it again.
1478 * An error return from page_cache_read can result if the
1479 * system is low on memory, or a problem occurs while trying
1482 if (error
== -ENOMEM
)
1487 if (!did_readaround
) {
1488 majmin
= VM_FAULT_MAJOR
;
1489 count_vm_event(PGMAJFAULT
);
1493 /* Did it get unhashed while we waited for it? */
1494 if (!page
->mapping
) {
1496 page_cache_release(page
);
1500 /* Did somebody else get it up-to-date? */
1501 if (PageUptodate(page
)) {
1506 error
= mapping
->a_ops
->readpage(file
, page
);
1508 wait_on_page_locked(page
);
1509 if (PageUptodate(page
))
1511 } else if (error
== AOP_TRUNCATED_PAGE
) {
1512 page_cache_release(page
);
1517 * Umm, take care of errors if the page isn't up-to-date.
1518 * Try to re-read it _once_. We do this synchronously,
1519 * because there really aren't any performance issues here
1520 * and we need to check for errors.
1524 /* Somebody truncated the page on us? */
1525 if (!page
->mapping
) {
1527 page_cache_release(page
);
1531 /* Somebody else successfully read it in? */
1532 if (PageUptodate(page
)) {
1536 ClearPageError(page
);
1537 error
= mapping
->a_ops
->readpage(file
, page
);
1539 wait_on_page_locked(page
);
1540 if (PageUptodate(page
))
1542 } else if (error
== AOP_TRUNCATED_PAGE
) {
1543 page_cache_release(page
);
1548 * Things didn't work out. Return zero to tell the
1549 * mm layer so, possibly freeing the page cache page first.
1551 shrink_readahead_size_eio(file
, ra
);
1552 page_cache_release(page
);
1555 EXPORT_SYMBOL(filemap_nopage
);
1557 static struct page
* filemap_getpage(struct file
*file
, unsigned long pgoff
,
1560 struct address_space
*mapping
= file
->f_mapping
;
1565 * Do we have something in the page cache already?
1568 page
= find_get_page(mapping
, pgoff
);
1572 goto no_cached_page
;
1576 * Ok, found a page in the page cache, now we need to check
1577 * that it's up-to-date.
1579 if (!PageUptodate(page
)) {
1581 page_cache_release(page
);
1584 goto page_not_uptodate
;
1589 * Found the page and have a reference on it.
1591 mark_page_accessed(page
);
1595 error
= page_cache_read(file
, pgoff
);
1598 * The page we want has now been added to the page cache.
1599 * In the unlikely event that someone removed it in the
1600 * meantime, we'll just come back here and read it again.
1606 * An error return from page_cache_read can result if the
1607 * system is low on memory, or a problem occurs while trying
1615 /* Did it get unhashed while we waited for it? */
1616 if (!page
->mapping
) {
1621 /* Did somebody else get it up-to-date? */
1622 if (PageUptodate(page
)) {
1627 error
= mapping
->a_ops
->readpage(file
, page
);
1629 wait_on_page_locked(page
);
1630 if (PageUptodate(page
))
1632 } else if (error
== AOP_TRUNCATED_PAGE
) {
1633 page_cache_release(page
);
1638 * Umm, take care of errors if the page isn't up-to-date.
1639 * Try to re-read it _once_. We do this synchronously,
1640 * because there really aren't any performance issues here
1641 * and we need to check for errors.
1645 /* Somebody truncated the page on us? */
1646 if (!page
->mapping
) {
1650 /* Somebody else successfully read it in? */
1651 if (PageUptodate(page
)) {
1656 ClearPageError(page
);
1657 error
= mapping
->a_ops
->readpage(file
, page
);
1659 wait_on_page_locked(page
);
1660 if (PageUptodate(page
))
1662 } else if (error
== AOP_TRUNCATED_PAGE
) {
1663 page_cache_release(page
);
1668 * Things didn't work out. Return zero to tell the
1669 * mm layer so, possibly freeing the page cache page first.
1672 page_cache_release(page
);
1677 int filemap_populate(struct vm_area_struct
*vma
, unsigned long addr
,
1678 unsigned long len
, pgprot_t prot
, unsigned long pgoff
,
1681 struct file
*file
= vma
->vm_file
;
1682 struct address_space
*mapping
= file
->f_mapping
;
1683 struct inode
*inode
= mapping
->host
;
1685 struct mm_struct
*mm
= vma
->vm_mm
;
1690 force_page_cache_readahead(mapping
, vma
->vm_file
,
1691 pgoff
, len
>> PAGE_CACHE_SHIFT
);
1694 size
= (i_size_read(inode
) + PAGE_CACHE_SIZE
- 1) >> PAGE_CACHE_SHIFT
;
1695 if (pgoff
+ (len
>> PAGE_CACHE_SHIFT
) > size
)
1698 page
= filemap_getpage(file
, pgoff
, nonblock
);
1700 /* XXX: This is wrong, a filesystem I/O error may have happened. Fix that as
1701 * done in shmem_populate calling shmem_getpage */
1702 if (!page
&& !nonblock
)
1706 err
= install_page(mm
, vma
, addr
, page
, prot
);
1708 page_cache_release(page
);
1711 } else if (vma
->vm_flags
& VM_NONLINEAR
) {
1712 /* No page was found just because we can't read it in now (being
1713 * here implies nonblock != 0), but the page may exist, so set
1714 * the PTE to fault it in later. */
1715 err
= install_file_pte(mm
, vma
, addr
, pgoff
, prot
);
1728 EXPORT_SYMBOL(filemap_populate
);
1730 struct vm_operations_struct generic_file_vm_ops
= {
1731 .nopage
= filemap_nopage
,
1732 .populate
= filemap_populate
,
1735 /* This is used for a general mmap of a disk file */
1737 int generic_file_mmap(struct file
* file
, struct vm_area_struct
* vma
)
1739 struct address_space
*mapping
= file
->f_mapping
;
1741 if (!mapping
->a_ops
->readpage
)
1743 file_accessed(file
);
1744 vma
->vm_ops
= &generic_file_vm_ops
;
1749 * This is for filesystems which do not implement ->writepage.
1751 int generic_file_readonly_mmap(struct file
*file
, struct vm_area_struct
*vma
)
1753 if ((vma
->vm_flags
& VM_SHARED
) && (vma
->vm_flags
& VM_MAYWRITE
))
1755 return generic_file_mmap(file
, vma
);
1758 int generic_file_mmap(struct file
* file
, struct vm_area_struct
* vma
)
1762 int generic_file_readonly_mmap(struct file
* file
, struct vm_area_struct
* vma
)
1766 #endif /* CONFIG_MMU */
1768 EXPORT_SYMBOL(generic_file_mmap
);
1769 EXPORT_SYMBOL(generic_file_readonly_mmap
);
1771 static inline struct page
*__read_cache_page(struct address_space
*mapping
,
1772 unsigned long index
,
1773 int (*filler
)(void *,struct page
*),
1776 struct page
*page
, *cached_page
= NULL
;
1779 page
= find_get_page(mapping
, index
);
1782 cached_page
= page_cache_alloc_cold(mapping
);
1784 return ERR_PTR(-ENOMEM
);
1786 err
= add_to_page_cache_lru(cached_page
, mapping
,
1791 /* Presumably ENOMEM for radix tree node */
1792 page_cache_release(cached_page
);
1793 return ERR_PTR(err
);
1797 err
= filler(data
, page
);
1799 page_cache_release(page
);
1800 page
= ERR_PTR(err
);
1804 page_cache_release(cached_page
);
1809 * read_cache_page - read into page cache, fill it if needed
1810 * @mapping: the page's address_space
1811 * @index: the page index
1812 * @filler: function to perform the read
1813 * @data: destination for read data
1815 * Read into the page cache. If a page already exists,
1816 * and PageUptodate() is not set, try to fill the page.
1818 struct page
*read_cache_page(struct address_space
*mapping
,
1819 unsigned long index
,
1820 int (*filler
)(void *,struct page
*),
1827 page
= __read_cache_page(mapping
, index
, filler
, data
);
1830 mark_page_accessed(page
);
1831 if (PageUptodate(page
))
1835 if (!page
->mapping
) {
1837 page_cache_release(page
);
1840 if (PageUptodate(page
)) {
1844 err
= filler(data
, page
);
1846 page_cache_release(page
);
1847 page
= ERR_PTR(err
);
1852 EXPORT_SYMBOL(read_cache_page
);
1855 * If the page was newly created, increment its refcount and add it to the
1856 * caller's lru-buffering pagevec. This function is specifically for
1857 * generic_file_write().
1859 static inline struct page
*
1860 __grab_cache_page(struct address_space
*mapping
, unsigned long index
,
1861 struct page
**cached_page
, struct pagevec
*lru_pvec
)
1866 page
= find_lock_page(mapping
, index
);
1868 if (!*cached_page
) {
1869 *cached_page
= page_cache_alloc(mapping
);
1873 err
= add_to_page_cache(*cached_page
, mapping
,
1878 page
= *cached_page
;
1879 page_cache_get(page
);
1880 if (!pagevec_add(lru_pvec
, page
))
1881 __pagevec_lru_add(lru_pvec
);
1882 *cached_page
= NULL
;
1889 * The logic we want is
1891 * if suid or (sgid and xgrp)
1894 int remove_suid(struct dentry
*dentry
)
1896 mode_t mode
= dentry
->d_inode
->i_mode
;
1900 /* suid always must be killed */
1901 if (unlikely(mode
& S_ISUID
))
1902 kill
= ATTR_KILL_SUID
;
1905 * sgid without any exec bits is just a mandatory locking mark; leave
1906 * it alone. If some exec bits are set, it's a real sgid; kill it.
1908 if (unlikely((mode
& S_ISGID
) && (mode
& S_IXGRP
)))
1909 kill
|= ATTR_KILL_SGID
;
1911 if (unlikely(kill
&& !capable(CAP_FSETID
))) {
1912 struct iattr newattrs
;
1914 newattrs
.ia_valid
= ATTR_FORCE
| kill
;
1915 result
= notify_change(dentry
, &newattrs
);
1919 EXPORT_SYMBOL(remove_suid
);
1922 __filemap_copy_from_user_iovec_inatomic(char *vaddr
,
1923 const struct iovec
*iov
, size_t base
, size_t bytes
)
1925 size_t copied
= 0, left
= 0;
1928 char __user
*buf
= iov
->iov_base
+ base
;
1929 int copy
= min(bytes
, iov
->iov_len
- base
);
1932 left
= __copy_from_user_inatomic_nocache(vaddr
, buf
, copy
);
1941 return copied
- left
;
1945 * Performs necessary checks before doing a write
1947 * Can adjust writing position or amount of bytes to write.
1948 * Returns appropriate error code that caller should return or
1949 * zero in case that write should be allowed.
1951 inline int generic_write_checks(struct file
*file
, loff_t
*pos
, size_t *count
, int isblk
)
1953 struct inode
*inode
= file
->f_mapping
->host
;
1954 unsigned long limit
= current
->signal
->rlim
[RLIMIT_FSIZE
].rlim_cur
;
1956 if (unlikely(*pos
< 0))
1960 /* FIXME: this is for backwards compatibility with 2.4 */
1961 if (file
->f_flags
& O_APPEND
)
1962 *pos
= i_size_read(inode
);
1964 if (limit
!= RLIM_INFINITY
) {
1965 if (*pos
>= limit
) {
1966 send_sig(SIGXFSZ
, current
, 0);
1969 if (*count
> limit
- (typeof(limit
))*pos
) {
1970 *count
= limit
- (typeof(limit
))*pos
;
1978 if (unlikely(*pos
+ *count
> MAX_NON_LFS
&&
1979 !(file
->f_flags
& O_LARGEFILE
))) {
1980 if (*pos
>= MAX_NON_LFS
) {
1981 send_sig(SIGXFSZ
, current
, 0);
1984 if (*count
> MAX_NON_LFS
- (unsigned long)*pos
) {
1985 *count
= MAX_NON_LFS
- (unsigned long)*pos
;
1990 * Are we about to exceed the fs block limit ?
1992 * If we have written data it becomes a short write. If we have
1993 * exceeded without writing data we send a signal and return EFBIG.
1994 * Linus frestrict idea will clean these up nicely..
1996 if (likely(!isblk
)) {
1997 if (unlikely(*pos
>= inode
->i_sb
->s_maxbytes
)) {
1998 if (*count
|| *pos
> inode
->i_sb
->s_maxbytes
) {
1999 send_sig(SIGXFSZ
, current
, 0);
2002 /* zero-length writes at ->s_maxbytes are OK */
2005 if (unlikely(*pos
+ *count
> inode
->i_sb
->s_maxbytes
))
2006 *count
= inode
->i_sb
->s_maxbytes
- *pos
;
2009 if (bdev_read_only(I_BDEV(inode
)))
2011 isize
= i_size_read(inode
);
2012 if (*pos
>= isize
) {
2013 if (*count
|| *pos
> isize
)
2017 if (*pos
+ *count
> isize
)
2018 *count
= isize
- *pos
;
2022 EXPORT_SYMBOL(generic_write_checks
);
2025 generic_file_direct_write(struct kiocb
*iocb
, const struct iovec
*iov
,
2026 unsigned long *nr_segs
, loff_t pos
, loff_t
*ppos
,
2027 size_t count
, size_t ocount
)
2029 struct file
*file
= iocb
->ki_filp
;
2030 struct address_space
*mapping
= file
->f_mapping
;
2031 struct inode
*inode
= mapping
->host
;
2034 if (count
!= ocount
)
2035 *nr_segs
= iov_shorten((struct iovec
*)iov
, *nr_segs
, count
);
2037 written
= generic_file_direct_IO(WRITE
, iocb
, iov
, pos
, *nr_segs
);
2039 loff_t end
= pos
+ written
;
2040 if (end
> i_size_read(inode
) && !S_ISBLK(inode
->i_mode
)) {
2041 i_size_write(inode
, end
);
2042 mark_inode_dirty(inode
);
2048 * Sync the fs metadata but not the minor inode changes and
2049 * of course not the data as we did direct DMA for the IO.
2050 * i_mutex is held, which protects generic_osync_inode() from
2053 if (written
>= 0 && ((file
->f_flags
& O_SYNC
) || IS_SYNC(inode
))) {
2054 int err
= generic_osync_inode(inode
, mapping
, OSYNC_METADATA
);
2058 if (written
== count
&& !is_sync_kiocb(iocb
))
2059 written
= -EIOCBQUEUED
;
2062 EXPORT_SYMBOL(generic_file_direct_write
);
2065 generic_file_buffered_write(struct kiocb
*iocb
, const struct iovec
*iov
,
2066 unsigned long nr_segs
, loff_t pos
, loff_t
*ppos
,
2067 size_t count
, ssize_t written
)
2069 struct file
*file
= iocb
->ki_filp
;
2070 struct address_space
* mapping
= file
->f_mapping
;
2071 const struct address_space_operations
*a_ops
= mapping
->a_ops
;
2072 struct inode
*inode
= mapping
->host
;
2075 struct page
*cached_page
= NULL
;
2077 struct pagevec lru_pvec
;
2078 const struct iovec
*cur_iov
= iov
; /* current iovec */
2079 size_t iov_base
= 0; /* offset in the current iovec */
2082 pagevec_init(&lru_pvec
, 0);
2085 * handle partial DIO write. Adjust cur_iov if needed.
2087 if (likely(nr_segs
== 1))
2088 buf
= iov
->iov_base
+ written
;
2090 filemap_set_next_iovec(&cur_iov
, &iov_base
, written
);
2091 buf
= cur_iov
->iov_base
+ iov_base
;
2095 unsigned long index
;
2096 unsigned long offset
;
2099 offset
= (pos
& (PAGE_CACHE_SIZE
-1)); /* Within page */
2100 index
= pos
>> PAGE_CACHE_SHIFT
;
2101 bytes
= PAGE_CACHE_SIZE
- offset
;
2103 /* Limit the size of the copy to the caller's write size */
2104 bytes
= min(bytes
, count
);
2107 * Limit the size of the copy to that of the current segment,
2108 * because fault_in_pages_readable() doesn't know how to walk
2111 bytes
= min(bytes
, cur_iov
->iov_len
- iov_base
);
2114 * Bring in the user page that we will copy from _first_.
2115 * Otherwise there's a nasty deadlock on copying from the
2116 * same page as we're writing to, without it being marked
2119 fault_in_pages_readable(buf
, bytes
);
2121 page
= __grab_cache_page(mapping
,index
,&cached_page
,&lru_pvec
);
2127 if (unlikely(bytes
== 0)) {
2130 goto zero_length_segment
;
2133 status
= a_ops
->prepare_write(file
, page
, offset
, offset
+bytes
);
2134 if (unlikely(status
)) {
2135 loff_t isize
= i_size_read(inode
);
2137 if (status
!= AOP_TRUNCATED_PAGE
)
2139 page_cache_release(page
);
2140 if (status
== AOP_TRUNCATED_PAGE
)
2143 * prepare_write() may have instantiated a few blocks
2144 * outside i_size. Trim these off again.
2146 if (pos
+ bytes
> isize
)
2147 vmtruncate(inode
, isize
);
2150 if (likely(nr_segs
== 1))
2151 copied
= filemap_copy_from_user(page
, offset
,
2154 copied
= filemap_copy_from_user_iovec(page
, offset
,
2155 cur_iov
, iov_base
, bytes
);
2156 flush_dcache_page(page
);
2157 status
= a_ops
->commit_write(file
, page
, offset
, offset
+bytes
);
2158 if (status
== AOP_TRUNCATED_PAGE
) {
2159 page_cache_release(page
);
2162 zero_length_segment
:
2163 if (likely(copied
>= 0)) {
2172 if (unlikely(nr_segs
> 1)) {
2173 filemap_set_next_iovec(&cur_iov
,
2176 buf
= cur_iov
->iov_base
+
2183 if (unlikely(copied
!= bytes
))
2187 mark_page_accessed(page
);
2188 page_cache_release(page
);
2191 balance_dirty_pages_ratelimited(mapping
);
2197 page_cache_release(cached_page
);
2200 * For now, when the user asks for O_SYNC, we'll actually give O_DSYNC
2202 if (likely(status
>= 0)) {
2203 if (unlikely((file
->f_flags
& O_SYNC
) || IS_SYNC(inode
))) {
2204 if (!a_ops
->writepage
|| !is_sync_kiocb(iocb
))
2205 status
= generic_osync_inode(inode
, mapping
,
2206 OSYNC_METADATA
|OSYNC_DATA
);
2211 * If we get here for O_DIRECT writes then we must have fallen through
2212 * to buffered writes (block instantiation inside i_size). So we sync
2213 * the file data here, to try to honour O_DIRECT expectations.
2215 if (unlikely(file
->f_flags
& O_DIRECT
) && written
)
2216 status
= filemap_write_and_wait(mapping
);
2218 pagevec_lru_add(&lru_pvec
);
2219 return written
? written
: status
;
2221 EXPORT_SYMBOL(generic_file_buffered_write
);
2224 __generic_file_aio_write_nolock(struct kiocb
*iocb
, const struct iovec
*iov
,
2225 unsigned long nr_segs
, loff_t
*ppos
)
2227 struct file
*file
= iocb
->ki_filp
;
2228 const struct address_space
* mapping
= file
->f_mapping
;
2229 size_t ocount
; /* original count */
2230 size_t count
; /* after file limit checks */
2231 struct inode
*inode
= mapping
->host
;
2238 for (seg
= 0; seg
< nr_segs
; seg
++) {
2239 const struct iovec
*iv
= &iov
[seg
];
2242 * If any segment has a negative length, or the cumulative
2243 * length ever wraps negative then return -EINVAL.
2245 ocount
+= iv
->iov_len
;
2246 if (unlikely((ssize_t
)(ocount
|iv
->iov_len
) < 0))
2248 if (access_ok(VERIFY_READ
, iv
->iov_base
, iv
->iov_len
))
2253 ocount
-= iv
->iov_len
; /* This segment is no good */
2260 vfs_check_frozen(inode
->i_sb
, SB_FREEZE_WRITE
);
2262 /* We can write back this queue in page reclaim */
2263 current
->backing_dev_info
= mapping
->backing_dev_info
;
2266 err
= generic_write_checks(file
, &pos
, &count
, S_ISBLK(inode
->i_mode
));
2273 err
= remove_suid(file
->f_dentry
);
2277 file_update_time(file
);
2279 /* coalesce the iovecs and go direct-to-BIO for O_DIRECT */
2280 if (unlikely(file
->f_flags
& O_DIRECT
)) {
2281 written
= generic_file_direct_write(iocb
, iov
,
2282 &nr_segs
, pos
, ppos
, count
, ocount
);
2283 if (written
< 0 || written
== count
)
2286 * direct-io write to a hole: fall through to buffered I/O
2287 * for completing the rest of the request.
2293 written
= generic_file_buffered_write(iocb
, iov
, nr_segs
,
2294 pos
, ppos
, count
, written
);
2296 current
->backing_dev_info
= NULL
;
2297 return written
? written
: err
;
2299 EXPORT_SYMBOL(generic_file_aio_write_nolock
);
2302 generic_file_aio_write_nolock(struct kiocb
*iocb
, const struct iovec
*iov
,
2303 unsigned long nr_segs
, loff_t
*ppos
)
2305 struct file
*file
= iocb
->ki_filp
;
2306 struct address_space
*mapping
= file
->f_mapping
;
2307 struct inode
*inode
= mapping
->host
;
2311 ret
= __generic_file_aio_write_nolock(iocb
, iov
, nr_segs
, ppos
);
2313 if (ret
> 0 && ((file
->f_flags
& O_SYNC
) || IS_SYNC(inode
))) {
2316 err
= sync_page_range_nolock(inode
, mapping
, pos
, ret
);
2324 __generic_file_write_nolock(struct file
*file
, const struct iovec
*iov
,
2325 unsigned long nr_segs
, loff_t
*ppos
)
2330 init_sync_kiocb(&kiocb
, file
);
2331 ret
= __generic_file_aio_write_nolock(&kiocb
, iov
, nr_segs
, ppos
);
2332 if (ret
== -EIOCBQUEUED
)
2333 ret
= wait_on_sync_kiocb(&kiocb
);
2338 generic_file_write_nolock(struct file
*file
, const struct iovec
*iov
,
2339 unsigned long nr_segs
, loff_t
*ppos
)
2344 init_sync_kiocb(&kiocb
, file
);
2345 ret
= generic_file_aio_write_nolock(&kiocb
, iov
, nr_segs
, ppos
);
2346 if (-EIOCBQUEUED
== ret
)
2347 ret
= wait_on_sync_kiocb(&kiocb
);
2350 EXPORT_SYMBOL(generic_file_write_nolock
);
2352 ssize_t
generic_file_aio_write(struct kiocb
*iocb
, const char __user
*buf
,
2353 size_t count
, loff_t pos
)
2355 struct file
*file
= iocb
->ki_filp
;
2356 struct address_space
*mapping
= file
->f_mapping
;
2357 struct inode
*inode
= mapping
->host
;
2359 struct iovec local_iov
= { .iov_base
= (void __user
*)buf
,
2362 BUG_ON(iocb
->ki_pos
!= pos
);
2364 mutex_lock(&inode
->i_mutex
);
2365 ret
= __generic_file_aio_write_nolock(iocb
, &local_iov
, 1,
2367 mutex_unlock(&inode
->i_mutex
);
2369 if (ret
> 0 && ((file
->f_flags
& O_SYNC
) || IS_SYNC(inode
))) {
2372 err
= sync_page_range(inode
, mapping
, pos
, ret
);
2378 EXPORT_SYMBOL(generic_file_aio_write
);
2380 ssize_t
generic_file_write(struct file
*file
, const char __user
*buf
,
2381 size_t count
, loff_t
*ppos
)
2383 struct address_space
*mapping
= file
->f_mapping
;
2384 struct inode
*inode
= mapping
->host
;
2386 struct iovec local_iov
= { .iov_base
= (void __user
*)buf
,
2389 mutex_lock(&inode
->i_mutex
);
2390 ret
= __generic_file_write_nolock(file
, &local_iov
, 1, ppos
);
2391 mutex_unlock(&inode
->i_mutex
);
2393 if (ret
> 0 && ((file
->f_flags
& O_SYNC
) || IS_SYNC(inode
))) {
2396 err
= sync_page_range(inode
, mapping
, *ppos
- ret
, ret
);
2402 EXPORT_SYMBOL(generic_file_write
);
2404 ssize_t
generic_file_readv(struct file
*filp
, const struct iovec
*iov
,
2405 unsigned long nr_segs
, loff_t
*ppos
)
2410 init_sync_kiocb(&kiocb
, filp
);
2411 ret
= __generic_file_aio_read(&kiocb
, iov
, nr_segs
, ppos
);
2412 if (-EIOCBQUEUED
== ret
)
2413 ret
= wait_on_sync_kiocb(&kiocb
);
2416 EXPORT_SYMBOL(generic_file_readv
);
2418 ssize_t
generic_file_writev(struct file
*file
, const struct iovec
*iov
,
2419 unsigned long nr_segs
, loff_t
*ppos
)
2421 struct address_space
*mapping
= file
->f_mapping
;
2422 struct inode
*inode
= mapping
->host
;
2425 mutex_lock(&inode
->i_mutex
);
2426 ret
= __generic_file_write_nolock(file
, iov
, nr_segs
, ppos
);
2427 mutex_unlock(&inode
->i_mutex
);
2429 if (ret
> 0 && ((file
->f_flags
& O_SYNC
) || IS_SYNC(inode
))) {
2432 err
= sync_page_range(inode
, mapping
, *ppos
- ret
, ret
);
2438 EXPORT_SYMBOL(generic_file_writev
);
2441 * Called under i_mutex for writes to S_ISREG files. Returns -EIO if something
2442 * went wrong during pagecache shootdown.
2445 generic_file_direct_IO(int rw
, struct kiocb
*iocb
, const struct iovec
*iov
,
2446 loff_t offset
, unsigned long nr_segs
)
2448 struct file
*file
= iocb
->ki_filp
;
2449 struct address_space
*mapping
= file
->f_mapping
;
2451 size_t write_len
= 0;
2454 * If it's a write, unmap all mmappings of the file up-front. This
2455 * will cause any pte dirty bits to be propagated into the pageframes
2456 * for the subsequent filemap_write_and_wait().
2459 write_len
= iov_length(iov
, nr_segs
);
2460 if (mapping_mapped(mapping
))
2461 unmap_mapping_range(mapping
, offset
, write_len
, 0);
2464 retval
= filemap_write_and_wait(mapping
);
2466 retval
= mapping
->a_ops
->direct_IO(rw
, iocb
, iov
,
2468 if (rw
== WRITE
&& mapping
->nrpages
) {
2469 pgoff_t end
= (offset
+ write_len
- 1)
2470 >> PAGE_CACHE_SHIFT
;
2471 int err
= invalidate_inode_pages2_range(mapping
,
2472 offset
>> PAGE_CACHE_SHIFT
, end
);