KVM: VMX: Force seg.base == (seg.sel << 4) in real mode
[linux-2.6/mini2440.git] / drivers / kvm / vmx.c
blobb4c0bdce7b34acf0fa33c74b0789dadd049f58b1
1 /*
2 * Kernel-based Virtual Machine driver for Linux
4 * This module enables machines with Intel VT-x extensions to run virtual
5 * machines without emulation or binary translation.
7 * Copyright (C) 2006 Qumranet, Inc.
9 * Authors:
10 * Avi Kivity <avi@qumranet.com>
11 * Yaniv Kamay <yaniv@qumranet.com>
13 * This work is licensed under the terms of the GNU GPL, version 2. See
14 * the COPYING file in the top-level directory.
18 #include "kvm.h"
19 #include "x86.h"
20 #include "x86_emulate.h"
21 #include "irq.h"
22 #include "vmx.h"
23 #include "segment_descriptor.h"
25 #include <linux/module.h>
26 #include <linux/kernel.h>
27 #include <linux/mm.h>
28 #include <linux/highmem.h>
29 #include <linux/sched.h>
30 #include <linux/moduleparam.h>
32 #include <asm/io.h>
33 #include <asm/desc.h>
35 MODULE_AUTHOR("Qumranet");
36 MODULE_LICENSE("GPL");
38 static int bypass_guest_pf = 1;
39 module_param(bypass_guest_pf, bool, 0);
41 struct vmcs {
42 u32 revision_id;
43 u32 abort;
44 char data[0];
47 struct vcpu_vmx {
48 struct kvm_vcpu vcpu;
49 int launched;
50 u8 fail;
51 u32 idt_vectoring_info;
52 struct kvm_msr_entry *guest_msrs;
53 struct kvm_msr_entry *host_msrs;
54 int nmsrs;
55 int save_nmsrs;
56 int msr_offset_efer;
57 #ifdef CONFIG_X86_64
58 int msr_offset_kernel_gs_base;
59 #endif
60 struct vmcs *vmcs;
61 struct {
62 int loaded;
63 u16 fs_sel, gs_sel, ldt_sel;
64 int gs_ldt_reload_needed;
65 int fs_reload_needed;
66 int guest_efer_loaded;
67 } host_state;
68 struct {
69 struct {
70 bool pending;
71 u8 vector;
72 unsigned rip;
73 } irq;
74 } rmode;
77 static inline struct vcpu_vmx *to_vmx(struct kvm_vcpu *vcpu)
79 return container_of(vcpu, struct vcpu_vmx, vcpu);
82 static int init_rmode_tss(struct kvm *kvm);
84 static DEFINE_PER_CPU(struct vmcs *, vmxarea);
85 static DEFINE_PER_CPU(struct vmcs *, current_vmcs);
87 static struct page *vmx_io_bitmap_a;
88 static struct page *vmx_io_bitmap_b;
90 static struct vmcs_config {
91 int size;
92 int order;
93 u32 revision_id;
94 u32 pin_based_exec_ctrl;
95 u32 cpu_based_exec_ctrl;
96 u32 cpu_based_2nd_exec_ctrl;
97 u32 vmexit_ctrl;
98 u32 vmentry_ctrl;
99 } vmcs_config;
101 #define VMX_SEGMENT_FIELD(seg) \
102 [VCPU_SREG_##seg] = { \
103 .selector = GUEST_##seg##_SELECTOR, \
104 .base = GUEST_##seg##_BASE, \
105 .limit = GUEST_##seg##_LIMIT, \
106 .ar_bytes = GUEST_##seg##_AR_BYTES, \
109 static struct kvm_vmx_segment_field {
110 unsigned selector;
111 unsigned base;
112 unsigned limit;
113 unsigned ar_bytes;
114 } kvm_vmx_segment_fields[] = {
115 VMX_SEGMENT_FIELD(CS),
116 VMX_SEGMENT_FIELD(DS),
117 VMX_SEGMENT_FIELD(ES),
118 VMX_SEGMENT_FIELD(FS),
119 VMX_SEGMENT_FIELD(GS),
120 VMX_SEGMENT_FIELD(SS),
121 VMX_SEGMENT_FIELD(TR),
122 VMX_SEGMENT_FIELD(LDTR),
126 * Keep MSR_K6_STAR at the end, as setup_msrs() will try to optimize it
127 * away by decrementing the array size.
129 static const u32 vmx_msr_index[] = {
130 #ifdef CONFIG_X86_64
131 MSR_SYSCALL_MASK, MSR_LSTAR, MSR_CSTAR, MSR_KERNEL_GS_BASE,
132 #endif
133 MSR_EFER, MSR_K6_STAR,
135 #define NR_VMX_MSR ARRAY_SIZE(vmx_msr_index)
137 static void load_msrs(struct kvm_msr_entry *e, int n)
139 int i;
141 for (i = 0; i < n; ++i)
142 wrmsrl(e[i].index, e[i].data);
145 static void save_msrs(struct kvm_msr_entry *e, int n)
147 int i;
149 for (i = 0; i < n; ++i)
150 rdmsrl(e[i].index, e[i].data);
153 static inline int is_page_fault(u32 intr_info)
155 return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK |
156 INTR_INFO_VALID_MASK)) ==
157 (INTR_TYPE_EXCEPTION | PF_VECTOR | INTR_INFO_VALID_MASK);
160 static inline int is_no_device(u32 intr_info)
162 return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK |
163 INTR_INFO_VALID_MASK)) ==
164 (INTR_TYPE_EXCEPTION | NM_VECTOR | INTR_INFO_VALID_MASK);
167 static inline int is_invalid_opcode(u32 intr_info)
169 return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK |
170 INTR_INFO_VALID_MASK)) ==
171 (INTR_TYPE_EXCEPTION | UD_VECTOR | INTR_INFO_VALID_MASK);
174 static inline int is_external_interrupt(u32 intr_info)
176 return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VALID_MASK))
177 == (INTR_TYPE_EXT_INTR | INTR_INFO_VALID_MASK);
180 static inline int cpu_has_vmx_tpr_shadow(void)
182 return (vmcs_config.cpu_based_exec_ctrl & CPU_BASED_TPR_SHADOW);
185 static inline int vm_need_tpr_shadow(struct kvm *kvm)
187 return ((cpu_has_vmx_tpr_shadow()) && (irqchip_in_kernel(kvm)));
190 static inline int cpu_has_secondary_exec_ctrls(void)
192 return (vmcs_config.cpu_based_exec_ctrl &
193 CPU_BASED_ACTIVATE_SECONDARY_CONTROLS);
196 static inline int vm_need_secondary_exec_ctrls(struct kvm *kvm)
198 return ((cpu_has_secondary_exec_ctrls()) && (irqchip_in_kernel(kvm)));
201 static inline int cpu_has_vmx_virtualize_apic_accesses(void)
203 return (vmcs_config.cpu_based_2nd_exec_ctrl &
204 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES);
207 static inline int vm_need_virtualize_apic_accesses(struct kvm *kvm)
209 return ((cpu_has_vmx_virtualize_apic_accesses()) &&
210 (irqchip_in_kernel(kvm)));
213 static int __find_msr_index(struct vcpu_vmx *vmx, u32 msr)
215 int i;
217 for (i = 0; i < vmx->nmsrs; ++i)
218 if (vmx->guest_msrs[i].index == msr)
219 return i;
220 return -1;
223 static struct kvm_msr_entry *find_msr_entry(struct vcpu_vmx *vmx, u32 msr)
225 int i;
227 i = __find_msr_index(vmx, msr);
228 if (i >= 0)
229 return &vmx->guest_msrs[i];
230 return NULL;
233 static void vmcs_clear(struct vmcs *vmcs)
235 u64 phys_addr = __pa(vmcs);
236 u8 error;
238 asm volatile (ASM_VMX_VMCLEAR_RAX "; setna %0"
239 : "=g"(error) : "a"(&phys_addr), "m"(phys_addr)
240 : "cc", "memory");
241 if (error)
242 printk(KERN_ERR "kvm: vmclear fail: %p/%llx\n",
243 vmcs, phys_addr);
246 static void __vcpu_clear(void *arg)
248 struct vcpu_vmx *vmx = arg;
249 int cpu = raw_smp_processor_id();
251 if (vmx->vcpu.cpu == cpu)
252 vmcs_clear(vmx->vmcs);
253 if (per_cpu(current_vmcs, cpu) == vmx->vmcs)
254 per_cpu(current_vmcs, cpu) = NULL;
255 rdtscll(vmx->vcpu.host_tsc);
258 static void vcpu_clear(struct vcpu_vmx *vmx)
260 if (vmx->vcpu.cpu == -1)
261 return;
262 smp_call_function_single(vmx->vcpu.cpu, __vcpu_clear, vmx, 0, 1);
263 vmx->launched = 0;
266 static unsigned long vmcs_readl(unsigned long field)
268 unsigned long value;
270 asm volatile (ASM_VMX_VMREAD_RDX_RAX
271 : "=a"(value) : "d"(field) : "cc");
272 return value;
275 static u16 vmcs_read16(unsigned long field)
277 return vmcs_readl(field);
280 static u32 vmcs_read32(unsigned long field)
282 return vmcs_readl(field);
285 static u64 vmcs_read64(unsigned long field)
287 #ifdef CONFIG_X86_64
288 return vmcs_readl(field);
289 #else
290 return vmcs_readl(field) | ((u64)vmcs_readl(field+1) << 32);
291 #endif
294 static noinline void vmwrite_error(unsigned long field, unsigned long value)
296 printk(KERN_ERR "vmwrite error: reg %lx value %lx (err %d)\n",
297 field, value, vmcs_read32(VM_INSTRUCTION_ERROR));
298 dump_stack();
301 static void vmcs_writel(unsigned long field, unsigned long value)
303 u8 error;
305 asm volatile (ASM_VMX_VMWRITE_RAX_RDX "; setna %0"
306 : "=q"(error) : "a"(value), "d"(field) : "cc");
307 if (unlikely(error))
308 vmwrite_error(field, value);
311 static void vmcs_write16(unsigned long field, u16 value)
313 vmcs_writel(field, value);
316 static void vmcs_write32(unsigned long field, u32 value)
318 vmcs_writel(field, value);
321 static void vmcs_write64(unsigned long field, u64 value)
323 #ifdef CONFIG_X86_64
324 vmcs_writel(field, value);
325 #else
326 vmcs_writel(field, value);
327 asm volatile ("");
328 vmcs_writel(field+1, value >> 32);
329 #endif
332 static void vmcs_clear_bits(unsigned long field, u32 mask)
334 vmcs_writel(field, vmcs_readl(field) & ~mask);
337 static void vmcs_set_bits(unsigned long field, u32 mask)
339 vmcs_writel(field, vmcs_readl(field) | mask);
342 static void update_exception_bitmap(struct kvm_vcpu *vcpu)
344 u32 eb;
346 eb = (1u << PF_VECTOR) | (1u << UD_VECTOR);
347 if (!vcpu->fpu_active)
348 eb |= 1u << NM_VECTOR;
349 if (vcpu->guest_debug.enabled)
350 eb |= 1u << 1;
351 if (vcpu->rmode.active)
352 eb = ~0;
353 vmcs_write32(EXCEPTION_BITMAP, eb);
356 static void reload_tss(void)
358 #ifndef CONFIG_X86_64
361 * VT restores TR but not its size. Useless.
363 struct descriptor_table gdt;
364 struct segment_descriptor *descs;
366 get_gdt(&gdt);
367 descs = (void *)gdt.base;
368 descs[GDT_ENTRY_TSS].type = 9; /* available TSS */
369 load_TR_desc();
370 #endif
373 static void load_transition_efer(struct vcpu_vmx *vmx)
375 int efer_offset = vmx->msr_offset_efer;
376 u64 host_efer = vmx->host_msrs[efer_offset].data;
377 u64 guest_efer = vmx->guest_msrs[efer_offset].data;
378 u64 ignore_bits;
380 if (efer_offset < 0)
381 return;
383 * NX is emulated; LMA and LME handled by hardware; SCE meaninless
384 * outside long mode
386 ignore_bits = EFER_NX | EFER_SCE;
387 #ifdef CONFIG_X86_64
388 ignore_bits |= EFER_LMA | EFER_LME;
389 /* SCE is meaningful only in long mode on Intel */
390 if (guest_efer & EFER_LMA)
391 ignore_bits &= ~(u64)EFER_SCE;
392 #endif
393 if ((guest_efer & ~ignore_bits) == (host_efer & ~ignore_bits))
394 return;
396 vmx->host_state.guest_efer_loaded = 1;
397 guest_efer &= ~ignore_bits;
398 guest_efer |= host_efer & ignore_bits;
399 wrmsrl(MSR_EFER, guest_efer);
400 vmx->vcpu.stat.efer_reload++;
403 static void reload_host_efer(struct vcpu_vmx *vmx)
405 if (vmx->host_state.guest_efer_loaded) {
406 vmx->host_state.guest_efer_loaded = 0;
407 load_msrs(vmx->host_msrs + vmx->msr_offset_efer, 1);
411 static void vmx_save_host_state(struct kvm_vcpu *vcpu)
413 struct vcpu_vmx *vmx = to_vmx(vcpu);
415 if (vmx->host_state.loaded)
416 return;
418 vmx->host_state.loaded = 1;
420 * Set host fs and gs selectors. Unfortunately, 22.2.3 does not
421 * allow segment selectors with cpl > 0 or ti == 1.
423 vmx->host_state.ldt_sel = read_ldt();
424 vmx->host_state.gs_ldt_reload_needed = vmx->host_state.ldt_sel;
425 vmx->host_state.fs_sel = read_fs();
426 if (!(vmx->host_state.fs_sel & 7)) {
427 vmcs_write16(HOST_FS_SELECTOR, vmx->host_state.fs_sel);
428 vmx->host_state.fs_reload_needed = 0;
429 } else {
430 vmcs_write16(HOST_FS_SELECTOR, 0);
431 vmx->host_state.fs_reload_needed = 1;
433 vmx->host_state.gs_sel = read_gs();
434 if (!(vmx->host_state.gs_sel & 7))
435 vmcs_write16(HOST_GS_SELECTOR, vmx->host_state.gs_sel);
436 else {
437 vmcs_write16(HOST_GS_SELECTOR, 0);
438 vmx->host_state.gs_ldt_reload_needed = 1;
441 #ifdef CONFIG_X86_64
442 vmcs_writel(HOST_FS_BASE, read_msr(MSR_FS_BASE));
443 vmcs_writel(HOST_GS_BASE, read_msr(MSR_GS_BASE));
444 #else
445 vmcs_writel(HOST_FS_BASE, segment_base(vmx->host_state.fs_sel));
446 vmcs_writel(HOST_GS_BASE, segment_base(vmx->host_state.gs_sel));
447 #endif
449 #ifdef CONFIG_X86_64
450 if (is_long_mode(&vmx->vcpu))
451 save_msrs(vmx->host_msrs +
452 vmx->msr_offset_kernel_gs_base, 1);
454 #endif
455 load_msrs(vmx->guest_msrs, vmx->save_nmsrs);
456 load_transition_efer(vmx);
459 static void vmx_load_host_state(struct vcpu_vmx *vmx)
461 unsigned long flags;
463 if (!vmx->host_state.loaded)
464 return;
466 ++vmx->vcpu.stat.host_state_reload;
467 vmx->host_state.loaded = 0;
468 if (vmx->host_state.fs_reload_needed)
469 load_fs(vmx->host_state.fs_sel);
470 if (vmx->host_state.gs_ldt_reload_needed) {
471 load_ldt(vmx->host_state.ldt_sel);
473 * If we have to reload gs, we must take care to
474 * preserve our gs base.
476 local_irq_save(flags);
477 load_gs(vmx->host_state.gs_sel);
478 #ifdef CONFIG_X86_64
479 wrmsrl(MSR_GS_BASE, vmcs_readl(HOST_GS_BASE));
480 #endif
481 local_irq_restore(flags);
483 reload_tss();
484 save_msrs(vmx->guest_msrs, vmx->save_nmsrs);
485 load_msrs(vmx->host_msrs, vmx->save_nmsrs);
486 reload_host_efer(vmx);
490 * Switches to specified vcpu, until a matching vcpu_put(), but assumes
491 * vcpu mutex is already taken.
493 static void vmx_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
495 struct vcpu_vmx *vmx = to_vmx(vcpu);
496 u64 phys_addr = __pa(vmx->vmcs);
497 u64 tsc_this, delta;
499 if (vcpu->cpu != cpu) {
500 vcpu_clear(vmx);
501 kvm_migrate_apic_timer(vcpu);
504 if (per_cpu(current_vmcs, cpu) != vmx->vmcs) {
505 u8 error;
507 per_cpu(current_vmcs, cpu) = vmx->vmcs;
508 asm volatile (ASM_VMX_VMPTRLD_RAX "; setna %0"
509 : "=g"(error) : "a"(&phys_addr), "m"(phys_addr)
510 : "cc");
511 if (error)
512 printk(KERN_ERR "kvm: vmptrld %p/%llx fail\n",
513 vmx->vmcs, phys_addr);
516 if (vcpu->cpu != cpu) {
517 struct descriptor_table dt;
518 unsigned long sysenter_esp;
520 vcpu->cpu = cpu;
522 * Linux uses per-cpu TSS and GDT, so set these when switching
523 * processors.
525 vmcs_writel(HOST_TR_BASE, read_tr_base()); /* 22.2.4 */
526 get_gdt(&dt);
527 vmcs_writel(HOST_GDTR_BASE, dt.base); /* 22.2.4 */
529 rdmsrl(MSR_IA32_SYSENTER_ESP, sysenter_esp);
530 vmcs_writel(HOST_IA32_SYSENTER_ESP, sysenter_esp); /* 22.2.3 */
533 * Make sure the time stamp counter is monotonous.
535 rdtscll(tsc_this);
536 delta = vcpu->host_tsc - tsc_this;
537 vmcs_write64(TSC_OFFSET, vmcs_read64(TSC_OFFSET) + delta);
541 static void vmx_vcpu_put(struct kvm_vcpu *vcpu)
543 vmx_load_host_state(to_vmx(vcpu));
546 static void vmx_fpu_activate(struct kvm_vcpu *vcpu)
548 if (vcpu->fpu_active)
549 return;
550 vcpu->fpu_active = 1;
551 vmcs_clear_bits(GUEST_CR0, X86_CR0_TS);
552 if (vcpu->cr0 & X86_CR0_TS)
553 vmcs_set_bits(GUEST_CR0, X86_CR0_TS);
554 update_exception_bitmap(vcpu);
557 static void vmx_fpu_deactivate(struct kvm_vcpu *vcpu)
559 if (!vcpu->fpu_active)
560 return;
561 vcpu->fpu_active = 0;
562 vmcs_set_bits(GUEST_CR0, X86_CR0_TS);
563 update_exception_bitmap(vcpu);
566 static void vmx_vcpu_decache(struct kvm_vcpu *vcpu)
568 vcpu_clear(to_vmx(vcpu));
571 static unsigned long vmx_get_rflags(struct kvm_vcpu *vcpu)
573 return vmcs_readl(GUEST_RFLAGS);
576 static void vmx_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
578 if (vcpu->rmode.active)
579 rflags |= X86_EFLAGS_IOPL | X86_EFLAGS_VM;
580 vmcs_writel(GUEST_RFLAGS, rflags);
583 static void skip_emulated_instruction(struct kvm_vcpu *vcpu)
585 unsigned long rip;
586 u32 interruptibility;
588 rip = vmcs_readl(GUEST_RIP);
589 rip += vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
590 vmcs_writel(GUEST_RIP, rip);
593 * We emulated an instruction, so temporary interrupt blocking
594 * should be removed, if set.
596 interruptibility = vmcs_read32(GUEST_INTERRUPTIBILITY_INFO);
597 if (interruptibility & 3)
598 vmcs_write32(GUEST_INTERRUPTIBILITY_INFO,
599 interruptibility & ~3);
600 vcpu->interrupt_window_open = 1;
603 static void vmx_inject_gp(struct kvm_vcpu *vcpu, unsigned error_code)
605 printk(KERN_DEBUG "inject_general_protection: rip 0x%lx\n",
606 vmcs_readl(GUEST_RIP));
607 vmcs_write32(VM_ENTRY_EXCEPTION_ERROR_CODE, error_code);
608 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
609 GP_VECTOR |
610 INTR_TYPE_EXCEPTION |
611 INTR_INFO_DELIEVER_CODE_MASK |
612 INTR_INFO_VALID_MASK);
615 static void vmx_inject_ud(struct kvm_vcpu *vcpu)
617 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
618 UD_VECTOR |
619 INTR_TYPE_EXCEPTION |
620 INTR_INFO_VALID_MASK);
624 * Swap MSR entry in host/guest MSR entry array.
626 #ifdef CONFIG_X86_64
627 static void move_msr_up(struct vcpu_vmx *vmx, int from, int to)
629 struct kvm_msr_entry tmp;
631 tmp = vmx->guest_msrs[to];
632 vmx->guest_msrs[to] = vmx->guest_msrs[from];
633 vmx->guest_msrs[from] = tmp;
634 tmp = vmx->host_msrs[to];
635 vmx->host_msrs[to] = vmx->host_msrs[from];
636 vmx->host_msrs[from] = tmp;
638 #endif
641 * Set up the vmcs to automatically save and restore system
642 * msrs. Don't touch the 64-bit msrs if the guest is in legacy
643 * mode, as fiddling with msrs is very expensive.
645 static void setup_msrs(struct vcpu_vmx *vmx)
647 int save_nmsrs;
649 save_nmsrs = 0;
650 #ifdef CONFIG_X86_64
651 if (is_long_mode(&vmx->vcpu)) {
652 int index;
654 index = __find_msr_index(vmx, MSR_SYSCALL_MASK);
655 if (index >= 0)
656 move_msr_up(vmx, index, save_nmsrs++);
657 index = __find_msr_index(vmx, MSR_LSTAR);
658 if (index >= 0)
659 move_msr_up(vmx, index, save_nmsrs++);
660 index = __find_msr_index(vmx, MSR_CSTAR);
661 if (index >= 0)
662 move_msr_up(vmx, index, save_nmsrs++);
663 index = __find_msr_index(vmx, MSR_KERNEL_GS_BASE);
664 if (index >= 0)
665 move_msr_up(vmx, index, save_nmsrs++);
667 * MSR_K6_STAR is only needed on long mode guests, and only
668 * if efer.sce is enabled.
670 index = __find_msr_index(vmx, MSR_K6_STAR);
671 if ((index >= 0) && (vmx->vcpu.shadow_efer & EFER_SCE))
672 move_msr_up(vmx, index, save_nmsrs++);
674 #endif
675 vmx->save_nmsrs = save_nmsrs;
677 #ifdef CONFIG_X86_64
678 vmx->msr_offset_kernel_gs_base =
679 __find_msr_index(vmx, MSR_KERNEL_GS_BASE);
680 #endif
681 vmx->msr_offset_efer = __find_msr_index(vmx, MSR_EFER);
685 * reads and returns guest's timestamp counter "register"
686 * guest_tsc = host_tsc + tsc_offset -- 21.3
688 static u64 guest_read_tsc(void)
690 u64 host_tsc, tsc_offset;
692 rdtscll(host_tsc);
693 tsc_offset = vmcs_read64(TSC_OFFSET);
694 return host_tsc + tsc_offset;
698 * writes 'guest_tsc' into guest's timestamp counter "register"
699 * guest_tsc = host_tsc + tsc_offset ==> tsc_offset = guest_tsc - host_tsc
701 static void guest_write_tsc(u64 guest_tsc)
703 u64 host_tsc;
705 rdtscll(host_tsc);
706 vmcs_write64(TSC_OFFSET, guest_tsc - host_tsc);
710 * Reads an msr value (of 'msr_index') into 'pdata'.
711 * Returns 0 on success, non-0 otherwise.
712 * Assumes vcpu_load() was already called.
714 static int vmx_get_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 *pdata)
716 u64 data;
717 struct kvm_msr_entry *msr;
719 if (!pdata) {
720 printk(KERN_ERR "BUG: get_msr called with NULL pdata\n");
721 return -EINVAL;
724 switch (msr_index) {
725 #ifdef CONFIG_X86_64
726 case MSR_FS_BASE:
727 data = vmcs_readl(GUEST_FS_BASE);
728 break;
729 case MSR_GS_BASE:
730 data = vmcs_readl(GUEST_GS_BASE);
731 break;
732 case MSR_EFER:
733 return kvm_get_msr_common(vcpu, msr_index, pdata);
734 #endif
735 case MSR_IA32_TIME_STAMP_COUNTER:
736 data = guest_read_tsc();
737 break;
738 case MSR_IA32_SYSENTER_CS:
739 data = vmcs_read32(GUEST_SYSENTER_CS);
740 break;
741 case MSR_IA32_SYSENTER_EIP:
742 data = vmcs_readl(GUEST_SYSENTER_EIP);
743 break;
744 case MSR_IA32_SYSENTER_ESP:
745 data = vmcs_readl(GUEST_SYSENTER_ESP);
746 break;
747 default:
748 msr = find_msr_entry(to_vmx(vcpu), msr_index);
749 if (msr) {
750 data = msr->data;
751 break;
753 return kvm_get_msr_common(vcpu, msr_index, pdata);
756 *pdata = data;
757 return 0;
761 * Writes msr value into into the appropriate "register".
762 * Returns 0 on success, non-0 otherwise.
763 * Assumes vcpu_load() was already called.
765 static int vmx_set_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 data)
767 struct vcpu_vmx *vmx = to_vmx(vcpu);
768 struct kvm_msr_entry *msr;
769 int ret = 0;
771 switch (msr_index) {
772 #ifdef CONFIG_X86_64
773 case MSR_EFER:
774 ret = kvm_set_msr_common(vcpu, msr_index, data);
775 if (vmx->host_state.loaded) {
776 reload_host_efer(vmx);
777 load_transition_efer(vmx);
779 break;
780 case MSR_FS_BASE:
781 vmcs_writel(GUEST_FS_BASE, data);
782 break;
783 case MSR_GS_BASE:
784 vmcs_writel(GUEST_GS_BASE, data);
785 break;
786 #endif
787 case MSR_IA32_SYSENTER_CS:
788 vmcs_write32(GUEST_SYSENTER_CS, data);
789 break;
790 case MSR_IA32_SYSENTER_EIP:
791 vmcs_writel(GUEST_SYSENTER_EIP, data);
792 break;
793 case MSR_IA32_SYSENTER_ESP:
794 vmcs_writel(GUEST_SYSENTER_ESP, data);
795 break;
796 case MSR_IA32_TIME_STAMP_COUNTER:
797 guest_write_tsc(data);
798 break;
799 default:
800 msr = find_msr_entry(vmx, msr_index);
801 if (msr) {
802 msr->data = data;
803 if (vmx->host_state.loaded)
804 load_msrs(vmx->guest_msrs, vmx->save_nmsrs);
805 break;
807 ret = kvm_set_msr_common(vcpu, msr_index, data);
810 return ret;
814 * Sync the rsp and rip registers into the vcpu structure. This allows
815 * registers to be accessed by indexing vcpu->regs.
817 static void vcpu_load_rsp_rip(struct kvm_vcpu *vcpu)
819 vcpu->regs[VCPU_REGS_RSP] = vmcs_readl(GUEST_RSP);
820 vcpu->rip = vmcs_readl(GUEST_RIP);
824 * Syncs rsp and rip back into the vmcs. Should be called after possible
825 * modification.
827 static void vcpu_put_rsp_rip(struct kvm_vcpu *vcpu)
829 vmcs_writel(GUEST_RSP, vcpu->regs[VCPU_REGS_RSP]);
830 vmcs_writel(GUEST_RIP, vcpu->rip);
833 static int set_guest_debug(struct kvm_vcpu *vcpu, struct kvm_debug_guest *dbg)
835 unsigned long dr7 = 0x400;
836 int old_singlestep;
838 old_singlestep = vcpu->guest_debug.singlestep;
840 vcpu->guest_debug.enabled = dbg->enabled;
841 if (vcpu->guest_debug.enabled) {
842 int i;
844 dr7 |= 0x200; /* exact */
845 for (i = 0; i < 4; ++i) {
846 if (!dbg->breakpoints[i].enabled)
847 continue;
848 vcpu->guest_debug.bp[i] = dbg->breakpoints[i].address;
849 dr7 |= 2 << (i*2); /* global enable */
850 dr7 |= 0 << (i*4+16); /* execution breakpoint */
853 vcpu->guest_debug.singlestep = dbg->singlestep;
854 } else
855 vcpu->guest_debug.singlestep = 0;
857 if (old_singlestep && !vcpu->guest_debug.singlestep) {
858 unsigned long flags;
860 flags = vmcs_readl(GUEST_RFLAGS);
861 flags &= ~(X86_EFLAGS_TF | X86_EFLAGS_RF);
862 vmcs_writel(GUEST_RFLAGS, flags);
865 update_exception_bitmap(vcpu);
866 vmcs_writel(GUEST_DR7, dr7);
868 return 0;
871 static int vmx_get_irq(struct kvm_vcpu *vcpu)
873 struct vcpu_vmx *vmx = to_vmx(vcpu);
874 u32 idtv_info_field;
876 idtv_info_field = vmx->idt_vectoring_info;
877 if (idtv_info_field & INTR_INFO_VALID_MASK) {
878 if (is_external_interrupt(idtv_info_field))
879 return idtv_info_field & VECTORING_INFO_VECTOR_MASK;
880 else
881 printk(KERN_DEBUG "pending exception: not handled yet\n");
883 return -1;
886 static __init int cpu_has_kvm_support(void)
888 unsigned long ecx = cpuid_ecx(1);
889 return test_bit(5, &ecx); /* CPUID.1:ECX.VMX[bit 5] -> VT */
892 static __init int vmx_disabled_by_bios(void)
894 u64 msr;
896 rdmsrl(MSR_IA32_FEATURE_CONTROL, msr);
897 return (msr & (MSR_IA32_FEATURE_CONTROL_LOCKED |
898 MSR_IA32_FEATURE_CONTROL_VMXON_ENABLED))
899 == MSR_IA32_FEATURE_CONTROL_LOCKED;
900 /* locked but not enabled */
903 static void hardware_enable(void *garbage)
905 int cpu = raw_smp_processor_id();
906 u64 phys_addr = __pa(per_cpu(vmxarea, cpu));
907 u64 old;
909 rdmsrl(MSR_IA32_FEATURE_CONTROL, old);
910 if ((old & (MSR_IA32_FEATURE_CONTROL_LOCKED |
911 MSR_IA32_FEATURE_CONTROL_VMXON_ENABLED))
912 != (MSR_IA32_FEATURE_CONTROL_LOCKED |
913 MSR_IA32_FEATURE_CONTROL_VMXON_ENABLED))
914 /* enable and lock */
915 wrmsrl(MSR_IA32_FEATURE_CONTROL, old |
916 MSR_IA32_FEATURE_CONTROL_LOCKED |
917 MSR_IA32_FEATURE_CONTROL_VMXON_ENABLED);
918 write_cr4(read_cr4() | X86_CR4_VMXE); /* FIXME: not cpu hotplug safe */
919 asm volatile (ASM_VMX_VMXON_RAX : : "a"(&phys_addr), "m"(phys_addr)
920 : "memory", "cc");
923 static void hardware_disable(void *garbage)
925 asm volatile (ASM_VMX_VMXOFF : : : "cc");
928 static __init int adjust_vmx_controls(u32 ctl_min, u32 ctl_opt,
929 u32 msr, u32 *result)
931 u32 vmx_msr_low, vmx_msr_high;
932 u32 ctl = ctl_min | ctl_opt;
934 rdmsr(msr, vmx_msr_low, vmx_msr_high);
936 ctl &= vmx_msr_high; /* bit == 0 in high word ==> must be zero */
937 ctl |= vmx_msr_low; /* bit == 1 in low word ==> must be one */
939 /* Ensure minimum (required) set of control bits are supported. */
940 if (ctl_min & ~ctl)
941 return -EIO;
943 *result = ctl;
944 return 0;
947 static __init int setup_vmcs_config(struct vmcs_config *vmcs_conf)
949 u32 vmx_msr_low, vmx_msr_high;
950 u32 min, opt;
951 u32 _pin_based_exec_control = 0;
952 u32 _cpu_based_exec_control = 0;
953 u32 _cpu_based_2nd_exec_control = 0;
954 u32 _vmexit_control = 0;
955 u32 _vmentry_control = 0;
957 min = PIN_BASED_EXT_INTR_MASK | PIN_BASED_NMI_EXITING;
958 opt = 0;
959 if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_PINBASED_CTLS,
960 &_pin_based_exec_control) < 0)
961 return -EIO;
963 min = CPU_BASED_HLT_EXITING |
964 #ifdef CONFIG_X86_64
965 CPU_BASED_CR8_LOAD_EXITING |
966 CPU_BASED_CR8_STORE_EXITING |
967 #endif
968 CPU_BASED_USE_IO_BITMAPS |
969 CPU_BASED_MOV_DR_EXITING |
970 CPU_BASED_USE_TSC_OFFSETING;
971 opt = CPU_BASED_TPR_SHADOW |
972 CPU_BASED_ACTIVATE_SECONDARY_CONTROLS;
973 if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_PROCBASED_CTLS,
974 &_cpu_based_exec_control) < 0)
975 return -EIO;
976 #ifdef CONFIG_X86_64
977 if ((_cpu_based_exec_control & CPU_BASED_TPR_SHADOW))
978 _cpu_based_exec_control &= ~CPU_BASED_CR8_LOAD_EXITING &
979 ~CPU_BASED_CR8_STORE_EXITING;
980 #endif
981 if (_cpu_based_exec_control & CPU_BASED_ACTIVATE_SECONDARY_CONTROLS) {
982 min = 0;
983 opt = SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES |
984 SECONDARY_EXEC_WBINVD_EXITING;
985 if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_PROCBASED_CTLS2,
986 &_cpu_based_2nd_exec_control) < 0)
987 return -EIO;
989 #ifndef CONFIG_X86_64
990 if (!(_cpu_based_2nd_exec_control &
991 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES))
992 _cpu_based_exec_control &= ~CPU_BASED_TPR_SHADOW;
993 #endif
995 min = 0;
996 #ifdef CONFIG_X86_64
997 min |= VM_EXIT_HOST_ADDR_SPACE_SIZE;
998 #endif
999 opt = 0;
1000 if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_EXIT_CTLS,
1001 &_vmexit_control) < 0)
1002 return -EIO;
1004 min = opt = 0;
1005 if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_ENTRY_CTLS,
1006 &_vmentry_control) < 0)
1007 return -EIO;
1009 rdmsr(MSR_IA32_VMX_BASIC, vmx_msr_low, vmx_msr_high);
1011 /* IA-32 SDM Vol 3B: VMCS size is never greater than 4kB. */
1012 if ((vmx_msr_high & 0x1fff) > PAGE_SIZE)
1013 return -EIO;
1015 #ifdef CONFIG_X86_64
1016 /* IA-32 SDM Vol 3B: 64-bit CPUs always have VMX_BASIC_MSR[48]==0. */
1017 if (vmx_msr_high & (1u<<16))
1018 return -EIO;
1019 #endif
1021 /* Require Write-Back (WB) memory type for VMCS accesses. */
1022 if (((vmx_msr_high >> 18) & 15) != 6)
1023 return -EIO;
1025 vmcs_conf->size = vmx_msr_high & 0x1fff;
1026 vmcs_conf->order = get_order(vmcs_config.size);
1027 vmcs_conf->revision_id = vmx_msr_low;
1029 vmcs_conf->pin_based_exec_ctrl = _pin_based_exec_control;
1030 vmcs_conf->cpu_based_exec_ctrl = _cpu_based_exec_control;
1031 vmcs_conf->cpu_based_2nd_exec_ctrl = _cpu_based_2nd_exec_control;
1032 vmcs_conf->vmexit_ctrl = _vmexit_control;
1033 vmcs_conf->vmentry_ctrl = _vmentry_control;
1035 return 0;
1038 static struct vmcs *alloc_vmcs_cpu(int cpu)
1040 int node = cpu_to_node(cpu);
1041 struct page *pages;
1042 struct vmcs *vmcs;
1044 pages = alloc_pages_node(node, GFP_KERNEL, vmcs_config.order);
1045 if (!pages)
1046 return NULL;
1047 vmcs = page_address(pages);
1048 memset(vmcs, 0, vmcs_config.size);
1049 vmcs->revision_id = vmcs_config.revision_id; /* vmcs revision id */
1050 return vmcs;
1053 static struct vmcs *alloc_vmcs(void)
1055 return alloc_vmcs_cpu(raw_smp_processor_id());
1058 static void free_vmcs(struct vmcs *vmcs)
1060 free_pages((unsigned long)vmcs, vmcs_config.order);
1063 static void free_kvm_area(void)
1065 int cpu;
1067 for_each_online_cpu(cpu)
1068 free_vmcs(per_cpu(vmxarea, cpu));
1071 static __init int alloc_kvm_area(void)
1073 int cpu;
1075 for_each_online_cpu(cpu) {
1076 struct vmcs *vmcs;
1078 vmcs = alloc_vmcs_cpu(cpu);
1079 if (!vmcs) {
1080 free_kvm_area();
1081 return -ENOMEM;
1084 per_cpu(vmxarea, cpu) = vmcs;
1086 return 0;
1089 static __init int hardware_setup(void)
1091 if (setup_vmcs_config(&vmcs_config) < 0)
1092 return -EIO;
1093 return alloc_kvm_area();
1096 static __exit void hardware_unsetup(void)
1098 free_kvm_area();
1101 static void fix_pmode_dataseg(int seg, struct kvm_save_segment *save)
1103 struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
1105 if (vmcs_readl(sf->base) == save->base && (save->base & AR_S_MASK)) {
1106 vmcs_write16(sf->selector, save->selector);
1107 vmcs_writel(sf->base, save->base);
1108 vmcs_write32(sf->limit, save->limit);
1109 vmcs_write32(sf->ar_bytes, save->ar);
1110 } else {
1111 u32 dpl = (vmcs_read16(sf->selector) & SELECTOR_RPL_MASK)
1112 << AR_DPL_SHIFT;
1113 vmcs_write32(sf->ar_bytes, 0x93 | dpl);
1117 static void enter_pmode(struct kvm_vcpu *vcpu)
1119 unsigned long flags;
1121 vcpu->rmode.active = 0;
1123 vmcs_writel(GUEST_TR_BASE, vcpu->rmode.tr.base);
1124 vmcs_write32(GUEST_TR_LIMIT, vcpu->rmode.tr.limit);
1125 vmcs_write32(GUEST_TR_AR_BYTES, vcpu->rmode.tr.ar);
1127 flags = vmcs_readl(GUEST_RFLAGS);
1128 flags &= ~(X86_EFLAGS_IOPL | X86_EFLAGS_VM);
1129 flags |= (vcpu->rmode.save_iopl << IOPL_SHIFT);
1130 vmcs_writel(GUEST_RFLAGS, flags);
1132 vmcs_writel(GUEST_CR4, (vmcs_readl(GUEST_CR4) & ~X86_CR4_VME) |
1133 (vmcs_readl(CR4_READ_SHADOW) & X86_CR4_VME));
1135 update_exception_bitmap(vcpu);
1137 fix_pmode_dataseg(VCPU_SREG_ES, &vcpu->rmode.es);
1138 fix_pmode_dataseg(VCPU_SREG_DS, &vcpu->rmode.ds);
1139 fix_pmode_dataseg(VCPU_SREG_GS, &vcpu->rmode.gs);
1140 fix_pmode_dataseg(VCPU_SREG_FS, &vcpu->rmode.fs);
1142 vmcs_write16(GUEST_SS_SELECTOR, 0);
1143 vmcs_write32(GUEST_SS_AR_BYTES, 0x93);
1145 vmcs_write16(GUEST_CS_SELECTOR,
1146 vmcs_read16(GUEST_CS_SELECTOR) & ~SELECTOR_RPL_MASK);
1147 vmcs_write32(GUEST_CS_AR_BYTES, 0x9b);
1150 static gva_t rmode_tss_base(struct kvm *kvm)
1152 if (!kvm->tss_addr) {
1153 gfn_t base_gfn = kvm->memslots[0].base_gfn +
1154 kvm->memslots[0].npages - 3;
1155 return base_gfn << PAGE_SHIFT;
1157 return kvm->tss_addr;
1160 static void fix_rmode_seg(int seg, struct kvm_save_segment *save)
1162 struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
1164 save->selector = vmcs_read16(sf->selector);
1165 save->base = vmcs_readl(sf->base);
1166 save->limit = vmcs_read32(sf->limit);
1167 save->ar = vmcs_read32(sf->ar_bytes);
1168 vmcs_write16(sf->selector, save->base >> 4);
1169 vmcs_write32(sf->base, save->base & 0xfffff);
1170 vmcs_write32(sf->limit, 0xffff);
1171 vmcs_write32(sf->ar_bytes, 0xf3);
1174 static void enter_rmode(struct kvm_vcpu *vcpu)
1176 unsigned long flags;
1178 vcpu->rmode.active = 1;
1180 vcpu->rmode.tr.base = vmcs_readl(GUEST_TR_BASE);
1181 vmcs_writel(GUEST_TR_BASE, rmode_tss_base(vcpu->kvm));
1183 vcpu->rmode.tr.limit = vmcs_read32(GUEST_TR_LIMIT);
1184 vmcs_write32(GUEST_TR_LIMIT, RMODE_TSS_SIZE - 1);
1186 vcpu->rmode.tr.ar = vmcs_read32(GUEST_TR_AR_BYTES);
1187 vmcs_write32(GUEST_TR_AR_BYTES, 0x008b);
1189 flags = vmcs_readl(GUEST_RFLAGS);
1190 vcpu->rmode.save_iopl = (flags & X86_EFLAGS_IOPL) >> IOPL_SHIFT;
1192 flags |= X86_EFLAGS_IOPL | X86_EFLAGS_VM;
1194 vmcs_writel(GUEST_RFLAGS, flags);
1195 vmcs_writel(GUEST_CR4, vmcs_readl(GUEST_CR4) | X86_CR4_VME);
1196 update_exception_bitmap(vcpu);
1198 vmcs_write16(GUEST_SS_SELECTOR, vmcs_readl(GUEST_SS_BASE) >> 4);
1199 vmcs_write32(GUEST_SS_LIMIT, 0xffff);
1200 vmcs_write32(GUEST_SS_AR_BYTES, 0xf3);
1202 vmcs_write32(GUEST_CS_AR_BYTES, 0xf3);
1203 vmcs_write32(GUEST_CS_LIMIT, 0xffff);
1204 if (vmcs_readl(GUEST_CS_BASE) == 0xffff0000)
1205 vmcs_writel(GUEST_CS_BASE, 0xf0000);
1206 vmcs_write16(GUEST_CS_SELECTOR, vmcs_readl(GUEST_CS_BASE) >> 4);
1208 fix_rmode_seg(VCPU_SREG_ES, &vcpu->rmode.es);
1209 fix_rmode_seg(VCPU_SREG_DS, &vcpu->rmode.ds);
1210 fix_rmode_seg(VCPU_SREG_GS, &vcpu->rmode.gs);
1211 fix_rmode_seg(VCPU_SREG_FS, &vcpu->rmode.fs);
1213 kvm_mmu_reset_context(vcpu);
1214 init_rmode_tss(vcpu->kvm);
1217 #ifdef CONFIG_X86_64
1219 static void enter_lmode(struct kvm_vcpu *vcpu)
1221 u32 guest_tr_ar;
1223 guest_tr_ar = vmcs_read32(GUEST_TR_AR_BYTES);
1224 if ((guest_tr_ar & AR_TYPE_MASK) != AR_TYPE_BUSY_64_TSS) {
1225 printk(KERN_DEBUG "%s: tss fixup for long mode. \n",
1226 __FUNCTION__);
1227 vmcs_write32(GUEST_TR_AR_BYTES,
1228 (guest_tr_ar & ~AR_TYPE_MASK)
1229 | AR_TYPE_BUSY_64_TSS);
1232 vcpu->shadow_efer |= EFER_LMA;
1234 find_msr_entry(to_vmx(vcpu), MSR_EFER)->data |= EFER_LMA | EFER_LME;
1235 vmcs_write32(VM_ENTRY_CONTROLS,
1236 vmcs_read32(VM_ENTRY_CONTROLS)
1237 | VM_ENTRY_IA32E_MODE);
1240 static void exit_lmode(struct kvm_vcpu *vcpu)
1242 vcpu->shadow_efer &= ~EFER_LMA;
1244 vmcs_write32(VM_ENTRY_CONTROLS,
1245 vmcs_read32(VM_ENTRY_CONTROLS)
1246 & ~VM_ENTRY_IA32E_MODE);
1249 #endif
1251 static void vmx_decache_cr4_guest_bits(struct kvm_vcpu *vcpu)
1253 vcpu->cr4 &= KVM_GUEST_CR4_MASK;
1254 vcpu->cr4 |= vmcs_readl(GUEST_CR4) & ~KVM_GUEST_CR4_MASK;
1257 static void vmx_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
1259 vmx_fpu_deactivate(vcpu);
1261 if (vcpu->rmode.active && (cr0 & X86_CR0_PE))
1262 enter_pmode(vcpu);
1264 if (!vcpu->rmode.active && !(cr0 & X86_CR0_PE))
1265 enter_rmode(vcpu);
1267 #ifdef CONFIG_X86_64
1268 if (vcpu->shadow_efer & EFER_LME) {
1269 if (!is_paging(vcpu) && (cr0 & X86_CR0_PG))
1270 enter_lmode(vcpu);
1271 if (is_paging(vcpu) && !(cr0 & X86_CR0_PG))
1272 exit_lmode(vcpu);
1274 #endif
1276 vmcs_writel(CR0_READ_SHADOW, cr0);
1277 vmcs_writel(GUEST_CR0,
1278 (cr0 & ~KVM_GUEST_CR0_MASK) | KVM_VM_CR0_ALWAYS_ON);
1279 vcpu->cr0 = cr0;
1281 if (!(cr0 & X86_CR0_TS) || !(cr0 & X86_CR0_PE))
1282 vmx_fpu_activate(vcpu);
1285 static void vmx_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3)
1287 vmcs_writel(GUEST_CR3, cr3);
1288 if (vcpu->cr0 & X86_CR0_PE)
1289 vmx_fpu_deactivate(vcpu);
1292 static void vmx_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
1294 vmcs_writel(CR4_READ_SHADOW, cr4);
1295 vmcs_writel(GUEST_CR4, cr4 | (vcpu->rmode.active ?
1296 KVM_RMODE_VM_CR4_ALWAYS_ON : KVM_PMODE_VM_CR4_ALWAYS_ON));
1297 vcpu->cr4 = cr4;
1300 #ifdef CONFIG_X86_64
1302 static void vmx_set_efer(struct kvm_vcpu *vcpu, u64 efer)
1304 struct vcpu_vmx *vmx = to_vmx(vcpu);
1305 struct kvm_msr_entry *msr = find_msr_entry(vmx, MSR_EFER);
1307 vcpu->shadow_efer = efer;
1308 if (efer & EFER_LMA) {
1309 vmcs_write32(VM_ENTRY_CONTROLS,
1310 vmcs_read32(VM_ENTRY_CONTROLS) |
1311 VM_ENTRY_IA32E_MODE);
1312 msr->data = efer;
1314 } else {
1315 vmcs_write32(VM_ENTRY_CONTROLS,
1316 vmcs_read32(VM_ENTRY_CONTROLS) &
1317 ~VM_ENTRY_IA32E_MODE);
1319 msr->data = efer & ~EFER_LME;
1321 setup_msrs(vmx);
1324 #endif
1326 static u64 vmx_get_segment_base(struct kvm_vcpu *vcpu, int seg)
1328 struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
1330 return vmcs_readl(sf->base);
1333 static void vmx_get_segment(struct kvm_vcpu *vcpu,
1334 struct kvm_segment *var, int seg)
1336 struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
1337 u32 ar;
1339 var->base = vmcs_readl(sf->base);
1340 var->limit = vmcs_read32(sf->limit);
1341 var->selector = vmcs_read16(sf->selector);
1342 ar = vmcs_read32(sf->ar_bytes);
1343 if (ar & AR_UNUSABLE_MASK)
1344 ar = 0;
1345 var->type = ar & 15;
1346 var->s = (ar >> 4) & 1;
1347 var->dpl = (ar >> 5) & 3;
1348 var->present = (ar >> 7) & 1;
1349 var->avl = (ar >> 12) & 1;
1350 var->l = (ar >> 13) & 1;
1351 var->db = (ar >> 14) & 1;
1352 var->g = (ar >> 15) & 1;
1353 var->unusable = (ar >> 16) & 1;
1356 static u32 vmx_segment_access_rights(struct kvm_segment *var)
1358 u32 ar;
1360 if (var->unusable)
1361 ar = 1 << 16;
1362 else {
1363 ar = var->type & 15;
1364 ar |= (var->s & 1) << 4;
1365 ar |= (var->dpl & 3) << 5;
1366 ar |= (var->present & 1) << 7;
1367 ar |= (var->avl & 1) << 12;
1368 ar |= (var->l & 1) << 13;
1369 ar |= (var->db & 1) << 14;
1370 ar |= (var->g & 1) << 15;
1372 if (ar == 0) /* a 0 value means unusable */
1373 ar = AR_UNUSABLE_MASK;
1375 return ar;
1378 static void vmx_set_segment(struct kvm_vcpu *vcpu,
1379 struct kvm_segment *var, int seg)
1381 struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
1382 u32 ar;
1384 if (vcpu->rmode.active && seg == VCPU_SREG_TR) {
1385 vcpu->rmode.tr.selector = var->selector;
1386 vcpu->rmode.tr.base = var->base;
1387 vcpu->rmode.tr.limit = var->limit;
1388 vcpu->rmode.tr.ar = vmx_segment_access_rights(var);
1389 return;
1391 vmcs_writel(sf->base, var->base);
1392 vmcs_write32(sf->limit, var->limit);
1393 vmcs_write16(sf->selector, var->selector);
1394 if (vcpu->rmode.active && var->s) {
1396 * Hack real-mode segments into vm86 compatibility.
1398 if (var->base == 0xffff0000 && var->selector == 0xf000)
1399 vmcs_writel(sf->base, 0xf0000);
1400 ar = 0xf3;
1401 } else
1402 ar = vmx_segment_access_rights(var);
1403 vmcs_write32(sf->ar_bytes, ar);
1406 static void vmx_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l)
1408 u32 ar = vmcs_read32(GUEST_CS_AR_BYTES);
1410 *db = (ar >> 14) & 1;
1411 *l = (ar >> 13) & 1;
1414 static void vmx_get_idt(struct kvm_vcpu *vcpu, struct descriptor_table *dt)
1416 dt->limit = vmcs_read32(GUEST_IDTR_LIMIT);
1417 dt->base = vmcs_readl(GUEST_IDTR_BASE);
1420 static void vmx_set_idt(struct kvm_vcpu *vcpu, struct descriptor_table *dt)
1422 vmcs_write32(GUEST_IDTR_LIMIT, dt->limit);
1423 vmcs_writel(GUEST_IDTR_BASE, dt->base);
1426 static void vmx_get_gdt(struct kvm_vcpu *vcpu, struct descriptor_table *dt)
1428 dt->limit = vmcs_read32(GUEST_GDTR_LIMIT);
1429 dt->base = vmcs_readl(GUEST_GDTR_BASE);
1432 static void vmx_set_gdt(struct kvm_vcpu *vcpu, struct descriptor_table *dt)
1434 vmcs_write32(GUEST_GDTR_LIMIT, dt->limit);
1435 vmcs_writel(GUEST_GDTR_BASE, dt->base);
1438 static int init_rmode_tss(struct kvm *kvm)
1440 gfn_t fn = rmode_tss_base(kvm) >> PAGE_SHIFT;
1441 u16 data = 0;
1442 int r;
1444 r = kvm_clear_guest_page(kvm, fn, 0, PAGE_SIZE);
1445 if (r < 0)
1446 return 0;
1447 data = TSS_BASE_SIZE + TSS_REDIRECTION_SIZE;
1448 r = kvm_write_guest_page(kvm, fn++, &data, 0x66, sizeof(u16));
1449 if (r < 0)
1450 return 0;
1451 r = kvm_clear_guest_page(kvm, fn++, 0, PAGE_SIZE);
1452 if (r < 0)
1453 return 0;
1454 r = kvm_clear_guest_page(kvm, fn, 0, PAGE_SIZE);
1455 if (r < 0)
1456 return 0;
1457 data = ~0;
1458 r = kvm_write_guest_page(kvm, fn, &data, RMODE_TSS_SIZE - 2 * PAGE_SIZE - 1,
1459 sizeof(u8));
1460 if (r < 0)
1461 return 0;
1462 return 1;
1465 static void seg_setup(int seg)
1467 struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
1469 vmcs_write16(sf->selector, 0);
1470 vmcs_writel(sf->base, 0);
1471 vmcs_write32(sf->limit, 0xffff);
1472 vmcs_write32(sf->ar_bytes, 0x93);
1475 static int alloc_apic_access_page(struct kvm *kvm)
1477 struct kvm_userspace_memory_region kvm_userspace_mem;
1478 int r = 0;
1480 mutex_lock(&kvm->lock);
1481 if (kvm->apic_access_page)
1482 goto out;
1483 kvm_userspace_mem.slot = APIC_ACCESS_PAGE_PRIVATE_MEMSLOT;
1484 kvm_userspace_mem.flags = 0;
1485 kvm_userspace_mem.guest_phys_addr = 0xfee00000ULL;
1486 kvm_userspace_mem.memory_size = PAGE_SIZE;
1487 r = __kvm_set_memory_region(kvm, &kvm_userspace_mem, 0);
1488 if (r)
1489 goto out;
1490 kvm->apic_access_page = gfn_to_page(kvm, 0xfee00);
1491 out:
1492 mutex_unlock(&kvm->lock);
1493 return r;
1497 * Sets up the vmcs for emulated real mode.
1499 static int vmx_vcpu_setup(struct vcpu_vmx *vmx)
1501 u32 host_sysenter_cs;
1502 u32 junk;
1503 unsigned long a;
1504 struct descriptor_table dt;
1505 int i;
1506 unsigned long kvm_vmx_return;
1507 u32 exec_control;
1509 /* I/O */
1510 vmcs_write64(IO_BITMAP_A, page_to_phys(vmx_io_bitmap_a));
1511 vmcs_write64(IO_BITMAP_B, page_to_phys(vmx_io_bitmap_b));
1513 vmcs_write64(VMCS_LINK_POINTER, -1ull); /* 22.3.1.5 */
1515 /* Control */
1516 vmcs_write32(PIN_BASED_VM_EXEC_CONTROL,
1517 vmcs_config.pin_based_exec_ctrl);
1519 exec_control = vmcs_config.cpu_based_exec_ctrl;
1520 if (!vm_need_tpr_shadow(vmx->vcpu.kvm)) {
1521 exec_control &= ~CPU_BASED_TPR_SHADOW;
1522 #ifdef CONFIG_X86_64
1523 exec_control |= CPU_BASED_CR8_STORE_EXITING |
1524 CPU_BASED_CR8_LOAD_EXITING;
1525 #endif
1527 if (!vm_need_secondary_exec_ctrls(vmx->vcpu.kvm))
1528 exec_control &= ~CPU_BASED_ACTIVATE_SECONDARY_CONTROLS;
1529 vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, exec_control);
1531 if (vm_need_secondary_exec_ctrls(vmx->vcpu.kvm))
1532 vmcs_write32(SECONDARY_VM_EXEC_CONTROL,
1533 vmcs_config.cpu_based_2nd_exec_ctrl);
1535 vmcs_write32(PAGE_FAULT_ERROR_CODE_MASK, !!bypass_guest_pf);
1536 vmcs_write32(PAGE_FAULT_ERROR_CODE_MATCH, !!bypass_guest_pf);
1537 vmcs_write32(CR3_TARGET_COUNT, 0); /* 22.2.1 */
1539 vmcs_writel(HOST_CR0, read_cr0()); /* 22.2.3 */
1540 vmcs_writel(HOST_CR4, read_cr4()); /* 22.2.3, 22.2.5 */
1541 vmcs_writel(HOST_CR3, read_cr3()); /* 22.2.3 FIXME: shadow tables */
1543 vmcs_write16(HOST_CS_SELECTOR, __KERNEL_CS); /* 22.2.4 */
1544 vmcs_write16(HOST_DS_SELECTOR, __KERNEL_DS); /* 22.2.4 */
1545 vmcs_write16(HOST_ES_SELECTOR, __KERNEL_DS); /* 22.2.4 */
1546 vmcs_write16(HOST_FS_SELECTOR, read_fs()); /* 22.2.4 */
1547 vmcs_write16(HOST_GS_SELECTOR, read_gs()); /* 22.2.4 */
1548 vmcs_write16(HOST_SS_SELECTOR, __KERNEL_DS); /* 22.2.4 */
1549 #ifdef CONFIG_X86_64
1550 rdmsrl(MSR_FS_BASE, a);
1551 vmcs_writel(HOST_FS_BASE, a); /* 22.2.4 */
1552 rdmsrl(MSR_GS_BASE, a);
1553 vmcs_writel(HOST_GS_BASE, a); /* 22.2.4 */
1554 #else
1555 vmcs_writel(HOST_FS_BASE, 0); /* 22.2.4 */
1556 vmcs_writel(HOST_GS_BASE, 0); /* 22.2.4 */
1557 #endif
1559 vmcs_write16(HOST_TR_SELECTOR, GDT_ENTRY_TSS*8); /* 22.2.4 */
1561 get_idt(&dt);
1562 vmcs_writel(HOST_IDTR_BASE, dt.base); /* 22.2.4 */
1564 asm("mov $.Lkvm_vmx_return, %0" : "=r"(kvm_vmx_return));
1565 vmcs_writel(HOST_RIP, kvm_vmx_return); /* 22.2.5 */
1566 vmcs_write32(VM_EXIT_MSR_STORE_COUNT, 0);
1567 vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, 0);
1568 vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, 0);
1570 rdmsr(MSR_IA32_SYSENTER_CS, host_sysenter_cs, junk);
1571 vmcs_write32(HOST_IA32_SYSENTER_CS, host_sysenter_cs);
1572 rdmsrl(MSR_IA32_SYSENTER_ESP, a);
1573 vmcs_writel(HOST_IA32_SYSENTER_ESP, a); /* 22.2.3 */
1574 rdmsrl(MSR_IA32_SYSENTER_EIP, a);
1575 vmcs_writel(HOST_IA32_SYSENTER_EIP, a); /* 22.2.3 */
1577 for (i = 0; i < NR_VMX_MSR; ++i) {
1578 u32 index = vmx_msr_index[i];
1579 u32 data_low, data_high;
1580 u64 data;
1581 int j = vmx->nmsrs;
1583 if (rdmsr_safe(index, &data_low, &data_high) < 0)
1584 continue;
1585 if (wrmsr_safe(index, data_low, data_high) < 0)
1586 continue;
1587 data = data_low | ((u64)data_high << 32);
1588 vmx->host_msrs[j].index = index;
1589 vmx->host_msrs[j].reserved = 0;
1590 vmx->host_msrs[j].data = data;
1591 vmx->guest_msrs[j] = vmx->host_msrs[j];
1592 ++vmx->nmsrs;
1595 vmcs_write32(VM_EXIT_CONTROLS, vmcs_config.vmexit_ctrl);
1597 /* 22.2.1, 20.8.1 */
1598 vmcs_write32(VM_ENTRY_CONTROLS, vmcs_config.vmentry_ctrl);
1600 vmcs_writel(CR0_GUEST_HOST_MASK, ~0UL);
1601 vmcs_writel(CR4_GUEST_HOST_MASK, KVM_GUEST_CR4_MASK);
1603 if (vm_need_virtualize_apic_accesses(vmx->vcpu.kvm))
1604 if (alloc_apic_access_page(vmx->vcpu.kvm) != 0)
1605 return -ENOMEM;
1607 return 0;
1610 static int vmx_vcpu_reset(struct kvm_vcpu *vcpu)
1612 struct vcpu_vmx *vmx = to_vmx(vcpu);
1613 u64 msr;
1614 int ret;
1616 if (!init_rmode_tss(vmx->vcpu.kvm)) {
1617 ret = -ENOMEM;
1618 goto out;
1621 vmx->vcpu.rmode.active = 0;
1623 vmx->vcpu.regs[VCPU_REGS_RDX] = get_rdx_init_val();
1624 set_cr8(&vmx->vcpu, 0);
1625 msr = 0xfee00000 | MSR_IA32_APICBASE_ENABLE;
1626 if (vmx->vcpu.vcpu_id == 0)
1627 msr |= MSR_IA32_APICBASE_BSP;
1628 kvm_set_apic_base(&vmx->vcpu, msr);
1630 fx_init(&vmx->vcpu);
1633 * GUEST_CS_BASE should really be 0xffff0000, but VT vm86 mode
1634 * insists on having GUEST_CS_BASE == GUEST_CS_SELECTOR << 4. Sigh.
1636 if (vmx->vcpu.vcpu_id == 0) {
1637 vmcs_write16(GUEST_CS_SELECTOR, 0xf000);
1638 vmcs_writel(GUEST_CS_BASE, 0x000f0000);
1639 } else {
1640 vmcs_write16(GUEST_CS_SELECTOR, vmx->vcpu.sipi_vector << 8);
1641 vmcs_writel(GUEST_CS_BASE, vmx->vcpu.sipi_vector << 12);
1643 vmcs_write32(GUEST_CS_LIMIT, 0xffff);
1644 vmcs_write32(GUEST_CS_AR_BYTES, 0x9b);
1646 seg_setup(VCPU_SREG_DS);
1647 seg_setup(VCPU_SREG_ES);
1648 seg_setup(VCPU_SREG_FS);
1649 seg_setup(VCPU_SREG_GS);
1650 seg_setup(VCPU_SREG_SS);
1652 vmcs_write16(GUEST_TR_SELECTOR, 0);
1653 vmcs_writel(GUEST_TR_BASE, 0);
1654 vmcs_write32(GUEST_TR_LIMIT, 0xffff);
1655 vmcs_write32(GUEST_TR_AR_BYTES, 0x008b);
1657 vmcs_write16(GUEST_LDTR_SELECTOR, 0);
1658 vmcs_writel(GUEST_LDTR_BASE, 0);
1659 vmcs_write32(GUEST_LDTR_LIMIT, 0xffff);
1660 vmcs_write32(GUEST_LDTR_AR_BYTES, 0x00082);
1662 vmcs_write32(GUEST_SYSENTER_CS, 0);
1663 vmcs_writel(GUEST_SYSENTER_ESP, 0);
1664 vmcs_writel(GUEST_SYSENTER_EIP, 0);
1666 vmcs_writel(GUEST_RFLAGS, 0x02);
1667 if (vmx->vcpu.vcpu_id == 0)
1668 vmcs_writel(GUEST_RIP, 0xfff0);
1669 else
1670 vmcs_writel(GUEST_RIP, 0);
1671 vmcs_writel(GUEST_RSP, 0);
1673 /* todo: dr0 = dr1 = dr2 = dr3 = 0; dr6 = 0xffff0ff0 */
1674 vmcs_writel(GUEST_DR7, 0x400);
1676 vmcs_writel(GUEST_GDTR_BASE, 0);
1677 vmcs_write32(GUEST_GDTR_LIMIT, 0xffff);
1679 vmcs_writel(GUEST_IDTR_BASE, 0);
1680 vmcs_write32(GUEST_IDTR_LIMIT, 0xffff);
1682 vmcs_write32(GUEST_ACTIVITY_STATE, 0);
1683 vmcs_write32(GUEST_INTERRUPTIBILITY_INFO, 0);
1684 vmcs_write32(GUEST_PENDING_DBG_EXCEPTIONS, 0);
1686 guest_write_tsc(0);
1688 /* Special registers */
1689 vmcs_write64(GUEST_IA32_DEBUGCTL, 0);
1691 setup_msrs(vmx);
1693 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, 0); /* 22.2.1 */
1695 if (cpu_has_vmx_tpr_shadow()) {
1696 vmcs_write64(VIRTUAL_APIC_PAGE_ADDR, 0);
1697 if (vm_need_tpr_shadow(vmx->vcpu.kvm))
1698 vmcs_write64(VIRTUAL_APIC_PAGE_ADDR,
1699 page_to_phys(vmx->vcpu.apic->regs_page));
1700 vmcs_write32(TPR_THRESHOLD, 0);
1703 if (vm_need_virtualize_apic_accesses(vmx->vcpu.kvm))
1704 vmcs_write64(APIC_ACCESS_ADDR,
1705 page_to_phys(vmx->vcpu.kvm->apic_access_page));
1707 vmx->vcpu.cr0 = 0x60000010;
1708 vmx_set_cr0(&vmx->vcpu, vmx->vcpu.cr0); /* enter rmode */
1709 vmx_set_cr4(&vmx->vcpu, 0);
1710 #ifdef CONFIG_X86_64
1711 vmx_set_efer(&vmx->vcpu, 0);
1712 #endif
1713 vmx_fpu_activate(&vmx->vcpu);
1714 update_exception_bitmap(&vmx->vcpu);
1716 return 0;
1718 out:
1719 return ret;
1722 static void vmx_inject_irq(struct kvm_vcpu *vcpu, int irq)
1724 struct vcpu_vmx *vmx = to_vmx(vcpu);
1726 if (vcpu->rmode.active) {
1727 vmx->rmode.irq.pending = true;
1728 vmx->rmode.irq.vector = irq;
1729 vmx->rmode.irq.rip = vmcs_readl(GUEST_RIP);
1730 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
1731 irq | INTR_TYPE_SOFT_INTR | INTR_INFO_VALID_MASK);
1732 vmcs_write32(VM_ENTRY_INSTRUCTION_LEN, 1);
1733 vmcs_writel(GUEST_RIP, vmx->rmode.irq.rip - 1);
1734 return;
1736 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
1737 irq | INTR_TYPE_EXT_INTR | INTR_INFO_VALID_MASK);
1740 static void kvm_do_inject_irq(struct kvm_vcpu *vcpu)
1742 int word_index = __ffs(vcpu->irq_summary);
1743 int bit_index = __ffs(vcpu->irq_pending[word_index]);
1744 int irq = word_index * BITS_PER_LONG + bit_index;
1746 clear_bit(bit_index, &vcpu->irq_pending[word_index]);
1747 if (!vcpu->irq_pending[word_index])
1748 clear_bit(word_index, &vcpu->irq_summary);
1749 vmx_inject_irq(vcpu, irq);
1753 static void do_interrupt_requests(struct kvm_vcpu *vcpu,
1754 struct kvm_run *kvm_run)
1756 u32 cpu_based_vm_exec_control;
1758 vcpu->interrupt_window_open =
1759 ((vmcs_readl(GUEST_RFLAGS) & X86_EFLAGS_IF) &&
1760 (vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) & 3) == 0);
1762 if (vcpu->interrupt_window_open &&
1763 vcpu->irq_summary &&
1764 !(vmcs_read32(VM_ENTRY_INTR_INFO_FIELD) & INTR_INFO_VALID_MASK))
1766 * If interrupts enabled, and not blocked by sti or mov ss. Good.
1768 kvm_do_inject_irq(vcpu);
1770 cpu_based_vm_exec_control = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
1771 if (!vcpu->interrupt_window_open &&
1772 (vcpu->irq_summary || kvm_run->request_interrupt_window))
1774 * Interrupts blocked. Wait for unblock.
1776 cpu_based_vm_exec_control |= CPU_BASED_VIRTUAL_INTR_PENDING;
1777 else
1778 cpu_based_vm_exec_control &= ~CPU_BASED_VIRTUAL_INTR_PENDING;
1779 vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control);
1782 static int vmx_set_tss_addr(struct kvm *kvm, unsigned int addr)
1784 int ret;
1785 struct kvm_userspace_memory_region tss_mem = {
1786 .slot = 8,
1787 .guest_phys_addr = addr,
1788 .memory_size = PAGE_SIZE * 3,
1789 .flags = 0,
1792 ret = kvm_set_memory_region(kvm, &tss_mem, 0);
1793 if (ret)
1794 return ret;
1795 kvm->tss_addr = addr;
1796 return 0;
1799 static void kvm_guest_debug_pre(struct kvm_vcpu *vcpu)
1801 struct kvm_guest_debug *dbg = &vcpu->guest_debug;
1803 set_debugreg(dbg->bp[0], 0);
1804 set_debugreg(dbg->bp[1], 1);
1805 set_debugreg(dbg->bp[2], 2);
1806 set_debugreg(dbg->bp[3], 3);
1808 if (dbg->singlestep) {
1809 unsigned long flags;
1811 flags = vmcs_readl(GUEST_RFLAGS);
1812 flags |= X86_EFLAGS_TF | X86_EFLAGS_RF;
1813 vmcs_writel(GUEST_RFLAGS, flags);
1817 static int handle_rmode_exception(struct kvm_vcpu *vcpu,
1818 int vec, u32 err_code)
1820 if (!vcpu->rmode.active)
1821 return 0;
1824 * Instruction with address size override prefix opcode 0x67
1825 * Cause the #SS fault with 0 error code in VM86 mode.
1827 if (((vec == GP_VECTOR) || (vec == SS_VECTOR)) && err_code == 0)
1828 if (emulate_instruction(vcpu, NULL, 0, 0, 0) == EMULATE_DONE)
1829 return 1;
1830 return 0;
1833 static int handle_exception(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
1835 struct vcpu_vmx *vmx = to_vmx(vcpu);
1836 u32 intr_info, error_code;
1837 unsigned long cr2, rip;
1838 u32 vect_info;
1839 enum emulation_result er;
1841 vect_info = vmx->idt_vectoring_info;
1842 intr_info = vmcs_read32(VM_EXIT_INTR_INFO);
1844 if ((vect_info & VECTORING_INFO_VALID_MASK) &&
1845 !is_page_fault(intr_info))
1846 printk(KERN_ERR "%s: unexpected, vectoring info 0x%x "
1847 "intr info 0x%x\n", __FUNCTION__, vect_info, intr_info);
1849 if (!irqchip_in_kernel(vcpu->kvm) && is_external_interrupt(vect_info)) {
1850 int irq = vect_info & VECTORING_INFO_VECTOR_MASK;
1851 set_bit(irq, vcpu->irq_pending);
1852 set_bit(irq / BITS_PER_LONG, &vcpu->irq_summary);
1855 if ((intr_info & INTR_INFO_INTR_TYPE_MASK) == 0x200) /* nmi */
1856 return 1; /* already handled by vmx_vcpu_run() */
1858 if (is_no_device(intr_info)) {
1859 vmx_fpu_activate(vcpu);
1860 return 1;
1863 if (is_invalid_opcode(intr_info)) {
1864 er = emulate_instruction(vcpu, kvm_run, 0, 0, 0);
1865 if (er != EMULATE_DONE)
1866 vmx_inject_ud(vcpu);
1868 return 1;
1871 error_code = 0;
1872 rip = vmcs_readl(GUEST_RIP);
1873 if (intr_info & INTR_INFO_DELIEVER_CODE_MASK)
1874 error_code = vmcs_read32(VM_EXIT_INTR_ERROR_CODE);
1875 if (is_page_fault(intr_info)) {
1876 cr2 = vmcs_readl(EXIT_QUALIFICATION);
1877 return kvm_mmu_page_fault(vcpu, cr2, error_code);
1880 if (vcpu->rmode.active &&
1881 handle_rmode_exception(vcpu, intr_info & INTR_INFO_VECTOR_MASK,
1882 error_code)) {
1883 if (vcpu->halt_request) {
1884 vcpu->halt_request = 0;
1885 return kvm_emulate_halt(vcpu);
1887 return 1;
1890 if ((intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK)) ==
1891 (INTR_TYPE_EXCEPTION | 1)) {
1892 kvm_run->exit_reason = KVM_EXIT_DEBUG;
1893 return 0;
1895 kvm_run->exit_reason = KVM_EXIT_EXCEPTION;
1896 kvm_run->ex.exception = intr_info & INTR_INFO_VECTOR_MASK;
1897 kvm_run->ex.error_code = error_code;
1898 return 0;
1901 static int handle_external_interrupt(struct kvm_vcpu *vcpu,
1902 struct kvm_run *kvm_run)
1904 ++vcpu->stat.irq_exits;
1905 return 1;
1908 static int handle_triple_fault(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
1910 kvm_run->exit_reason = KVM_EXIT_SHUTDOWN;
1911 return 0;
1914 static int handle_io(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
1916 unsigned long exit_qualification;
1917 int size, down, in, string, rep;
1918 unsigned port;
1920 ++vcpu->stat.io_exits;
1921 exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
1922 string = (exit_qualification & 16) != 0;
1924 if (string) {
1925 if (emulate_instruction(vcpu,
1926 kvm_run, 0, 0, 0) == EMULATE_DO_MMIO)
1927 return 0;
1928 return 1;
1931 size = (exit_qualification & 7) + 1;
1932 in = (exit_qualification & 8) != 0;
1933 down = (vmcs_readl(GUEST_RFLAGS) & X86_EFLAGS_DF) != 0;
1934 rep = (exit_qualification & 32) != 0;
1935 port = exit_qualification >> 16;
1937 return kvm_emulate_pio(vcpu, kvm_run, in, size, port);
1940 static void
1941 vmx_patch_hypercall(struct kvm_vcpu *vcpu, unsigned char *hypercall)
1944 * Patch in the VMCALL instruction:
1946 hypercall[0] = 0x0f;
1947 hypercall[1] = 0x01;
1948 hypercall[2] = 0xc1;
1951 static int handle_cr(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
1953 unsigned long exit_qualification;
1954 int cr;
1955 int reg;
1957 exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
1958 cr = exit_qualification & 15;
1959 reg = (exit_qualification >> 8) & 15;
1960 switch ((exit_qualification >> 4) & 3) {
1961 case 0: /* mov to cr */
1962 switch (cr) {
1963 case 0:
1964 vcpu_load_rsp_rip(vcpu);
1965 set_cr0(vcpu, vcpu->regs[reg]);
1966 skip_emulated_instruction(vcpu);
1967 return 1;
1968 case 3:
1969 vcpu_load_rsp_rip(vcpu);
1970 set_cr3(vcpu, vcpu->regs[reg]);
1971 skip_emulated_instruction(vcpu);
1972 return 1;
1973 case 4:
1974 vcpu_load_rsp_rip(vcpu);
1975 set_cr4(vcpu, vcpu->regs[reg]);
1976 skip_emulated_instruction(vcpu);
1977 return 1;
1978 case 8:
1979 vcpu_load_rsp_rip(vcpu);
1980 set_cr8(vcpu, vcpu->regs[reg]);
1981 skip_emulated_instruction(vcpu);
1982 kvm_run->exit_reason = KVM_EXIT_SET_TPR;
1983 return 0;
1985 break;
1986 case 2: /* clts */
1987 vcpu_load_rsp_rip(vcpu);
1988 vmx_fpu_deactivate(vcpu);
1989 vcpu->cr0 &= ~X86_CR0_TS;
1990 vmcs_writel(CR0_READ_SHADOW, vcpu->cr0);
1991 vmx_fpu_activate(vcpu);
1992 skip_emulated_instruction(vcpu);
1993 return 1;
1994 case 1: /*mov from cr*/
1995 switch (cr) {
1996 case 3:
1997 vcpu_load_rsp_rip(vcpu);
1998 vcpu->regs[reg] = vcpu->cr3;
1999 vcpu_put_rsp_rip(vcpu);
2000 skip_emulated_instruction(vcpu);
2001 return 1;
2002 case 8:
2003 vcpu_load_rsp_rip(vcpu);
2004 vcpu->regs[reg] = get_cr8(vcpu);
2005 vcpu_put_rsp_rip(vcpu);
2006 skip_emulated_instruction(vcpu);
2007 return 1;
2009 break;
2010 case 3: /* lmsw */
2011 lmsw(vcpu, (exit_qualification >> LMSW_SOURCE_DATA_SHIFT) & 0x0f);
2013 skip_emulated_instruction(vcpu);
2014 return 1;
2015 default:
2016 break;
2018 kvm_run->exit_reason = 0;
2019 pr_unimpl(vcpu, "unhandled control register: op %d cr %d\n",
2020 (int)(exit_qualification >> 4) & 3, cr);
2021 return 0;
2024 static int handle_dr(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
2026 unsigned long exit_qualification;
2027 unsigned long val;
2028 int dr, reg;
2031 * FIXME: this code assumes the host is debugging the guest.
2032 * need to deal with guest debugging itself too.
2034 exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
2035 dr = exit_qualification & 7;
2036 reg = (exit_qualification >> 8) & 15;
2037 vcpu_load_rsp_rip(vcpu);
2038 if (exit_qualification & 16) {
2039 /* mov from dr */
2040 switch (dr) {
2041 case 6:
2042 val = 0xffff0ff0;
2043 break;
2044 case 7:
2045 val = 0x400;
2046 break;
2047 default:
2048 val = 0;
2050 vcpu->regs[reg] = val;
2051 } else {
2052 /* mov to dr */
2054 vcpu_put_rsp_rip(vcpu);
2055 skip_emulated_instruction(vcpu);
2056 return 1;
2059 static int handle_cpuid(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
2061 kvm_emulate_cpuid(vcpu);
2062 return 1;
2065 static int handle_rdmsr(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
2067 u32 ecx = vcpu->regs[VCPU_REGS_RCX];
2068 u64 data;
2070 if (vmx_get_msr(vcpu, ecx, &data)) {
2071 vmx_inject_gp(vcpu, 0);
2072 return 1;
2075 /* FIXME: handling of bits 32:63 of rax, rdx */
2076 vcpu->regs[VCPU_REGS_RAX] = data & -1u;
2077 vcpu->regs[VCPU_REGS_RDX] = (data >> 32) & -1u;
2078 skip_emulated_instruction(vcpu);
2079 return 1;
2082 static int handle_wrmsr(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
2084 u32 ecx = vcpu->regs[VCPU_REGS_RCX];
2085 u64 data = (vcpu->regs[VCPU_REGS_RAX] & -1u)
2086 | ((u64)(vcpu->regs[VCPU_REGS_RDX] & -1u) << 32);
2088 if (vmx_set_msr(vcpu, ecx, data) != 0) {
2089 vmx_inject_gp(vcpu, 0);
2090 return 1;
2093 skip_emulated_instruction(vcpu);
2094 return 1;
2097 static int handle_tpr_below_threshold(struct kvm_vcpu *vcpu,
2098 struct kvm_run *kvm_run)
2100 return 1;
2103 static int handle_interrupt_window(struct kvm_vcpu *vcpu,
2104 struct kvm_run *kvm_run)
2106 u32 cpu_based_vm_exec_control;
2108 /* clear pending irq */
2109 cpu_based_vm_exec_control = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
2110 cpu_based_vm_exec_control &= ~CPU_BASED_VIRTUAL_INTR_PENDING;
2111 vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control);
2113 * If the user space waits to inject interrupts, exit as soon as
2114 * possible
2116 if (kvm_run->request_interrupt_window &&
2117 !vcpu->irq_summary) {
2118 kvm_run->exit_reason = KVM_EXIT_IRQ_WINDOW_OPEN;
2119 ++vcpu->stat.irq_window_exits;
2120 return 0;
2122 return 1;
2125 static int handle_halt(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
2127 skip_emulated_instruction(vcpu);
2128 return kvm_emulate_halt(vcpu);
2131 static int handle_vmcall(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
2133 skip_emulated_instruction(vcpu);
2134 kvm_emulate_hypercall(vcpu);
2135 return 1;
2138 static int handle_wbinvd(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
2140 skip_emulated_instruction(vcpu);
2141 /* TODO: Add support for VT-d/pass-through device */
2142 return 1;
2145 static int handle_apic_access(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
2147 u64 exit_qualification;
2148 enum emulation_result er;
2149 unsigned long offset;
2151 exit_qualification = vmcs_read64(EXIT_QUALIFICATION);
2152 offset = exit_qualification & 0xffful;
2154 er = emulate_instruction(vcpu, kvm_run, 0, 0, 0);
2156 if (er != EMULATE_DONE) {
2157 printk(KERN_ERR
2158 "Fail to handle apic access vmexit! Offset is 0x%lx\n",
2159 offset);
2160 return -ENOTSUPP;
2162 return 1;
2166 * The exit handlers return 1 if the exit was handled fully and guest execution
2167 * may resume. Otherwise they set the kvm_run parameter to indicate what needs
2168 * to be done to userspace and return 0.
2170 static int (*kvm_vmx_exit_handlers[])(struct kvm_vcpu *vcpu,
2171 struct kvm_run *kvm_run) = {
2172 [EXIT_REASON_EXCEPTION_NMI] = handle_exception,
2173 [EXIT_REASON_EXTERNAL_INTERRUPT] = handle_external_interrupt,
2174 [EXIT_REASON_TRIPLE_FAULT] = handle_triple_fault,
2175 [EXIT_REASON_IO_INSTRUCTION] = handle_io,
2176 [EXIT_REASON_CR_ACCESS] = handle_cr,
2177 [EXIT_REASON_DR_ACCESS] = handle_dr,
2178 [EXIT_REASON_CPUID] = handle_cpuid,
2179 [EXIT_REASON_MSR_READ] = handle_rdmsr,
2180 [EXIT_REASON_MSR_WRITE] = handle_wrmsr,
2181 [EXIT_REASON_PENDING_INTERRUPT] = handle_interrupt_window,
2182 [EXIT_REASON_HLT] = handle_halt,
2183 [EXIT_REASON_VMCALL] = handle_vmcall,
2184 [EXIT_REASON_TPR_BELOW_THRESHOLD] = handle_tpr_below_threshold,
2185 [EXIT_REASON_APIC_ACCESS] = handle_apic_access,
2186 [EXIT_REASON_WBINVD] = handle_wbinvd,
2189 static const int kvm_vmx_max_exit_handlers =
2190 ARRAY_SIZE(kvm_vmx_exit_handlers);
2193 * The guest has exited. See if we can fix it or if we need userspace
2194 * assistance.
2196 static int kvm_handle_exit(struct kvm_run *kvm_run, struct kvm_vcpu *vcpu)
2198 u32 exit_reason = vmcs_read32(VM_EXIT_REASON);
2199 struct vcpu_vmx *vmx = to_vmx(vcpu);
2200 u32 vectoring_info = vmx->idt_vectoring_info;
2202 if (unlikely(vmx->fail)) {
2203 kvm_run->exit_reason = KVM_EXIT_FAIL_ENTRY;
2204 kvm_run->fail_entry.hardware_entry_failure_reason
2205 = vmcs_read32(VM_INSTRUCTION_ERROR);
2206 return 0;
2209 if ((vectoring_info & VECTORING_INFO_VALID_MASK) &&
2210 exit_reason != EXIT_REASON_EXCEPTION_NMI)
2211 printk(KERN_WARNING "%s: unexpected, valid vectoring info and "
2212 "exit reason is 0x%x\n", __FUNCTION__, exit_reason);
2213 if (exit_reason < kvm_vmx_max_exit_handlers
2214 && kvm_vmx_exit_handlers[exit_reason])
2215 return kvm_vmx_exit_handlers[exit_reason](vcpu, kvm_run);
2216 else {
2217 kvm_run->exit_reason = KVM_EXIT_UNKNOWN;
2218 kvm_run->hw.hardware_exit_reason = exit_reason;
2220 return 0;
2223 static void vmx_flush_tlb(struct kvm_vcpu *vcpu)
2227 static void update_tpr_threshold(struct kvm_vcpu *vcpu)
2229 int max_irr, tpr;
2231 if (!vm_need_tpr_shadow(vcpu->kvm))
2232 return;
2234 if (!kvm_lapic_enabled(vcpu) ||
2235 ((max_irr = kvm_lapic_find_highest_irr(vcpu)) == -1)) {
2236 vmcs_write32(TPR_THRESHOLD, 0);
2237 return;
2240 tpr = (kvm_lapic_get_cr8(vcpu) & 0x0f) << 4;
2241 vmcs_write32(TPR_THRESHOLD, (max_irr > tpr) ? tpr >> 4 : max_irr >> 4);
2244 static void enable_irq_window(struct kvm_vcpu *vcpu)
2246 u32 cpu_based_vm_exec_control;
2248 cpu_based_vm_exec_control = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
2249 cpu_based_vm_exec_control |= CPU_BASED_VIRTUAL_INTR_PENDING;
2250 vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control);
2253 static void vmx_intr_assist(struct kvm_vcpu *vcpu)
2255 struct vcpu_vmx *vmx = to_vmx(vcpu);
2256 u32 idtv_info_field, intr_info_field;
2257 int has_ext_irq, interrupt_window_open;
2258 int vector;
2260 update_tpr_threshold(vcpu);
2262 has_ext_irq = kvm_cpu_has_interrupt(vcpu);
2263 intr_info_field = vmcs_read32(VM_ENTRY_INTR_INFO_FIELD);
2264 idtv_info_field = vmx->idt_vectoring_info;
2265 if (intr_info_field & INTR_INFO_VALID_MASK) {
2266 if (idtv_info_field & INTR_INFO_VALID_MASK) {
2267 /* TODO: fault when IDT_Vectoring */
2268 printk(KERN_ERR "Fault when IDT_Vectoring\n");
2270 if (has_ext_irq)
2271 enable_irq_window(vcpu);
2272 return;
2274 if (unlikely(idtv_info_field & INTR_INFO_VALID_MASK)) {
2275 if ((idtv_info_field & VECTORING_INFO_TYPE_MASK)
2276 == INTR_TYPE_EXT_INTR
2277 && vcpu->rmode.active) {
2278 u8 vect = idtv_info_field & VECTORING_INFO_VECTOR_MASK;
2280 vmx_inject_irq(vcpu, vect);
2281 if (unlikely(has_ext_irq))
2282 enable_irq_window(vcpu);
2283 return;
2286 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, idtv_info_field);
2287 vmcs_write32(VM_ENTRY_INSTRUCTION_LEN,
2288 vmcs_read32(VM_EXIT_INSTRUCTION_LEN));
2290 if (unlikely(idtv_info_field & INTR_INFO_DELIEVER_CODE_MASK))
2291 vmcs_write32(VM_ENTRY_EXCEPTION_ERROR_CODE,
2292 vmcs_read32(IDT_VECTORING_ERROR_CODE));
2293 if (unlikely(has_ext_irq))
2294 enable_irq_window(vcpu);
2295 return;
2297 if (!has_ext_irq)
2298 return;
2299 interrupt_window_open =
2300 ((vmcs_readl(GUEST_RFLAGS) & X86_EFLAGS_IF) &&
2301 (vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) & 3) == 0);
2302 if (interrupt_window_open) {
2303 vector = kvm_cpu_get_interrupt(vcpu);
2304 vmx_inject_irq(vcpu, vector);
2305 kvm_timer_intr_post(vcpu, vector);
2306 } else
2307 enable_irq_window(vcpu);
2311 * Failure to inject an interrupt should give us the information
2312 * in IDT_VECTORING_INFO_FIELD. However, if the failure occurs
2313 * when fetching the interrupt redirection bitmap in the real-mode
2314 * tss, this doesn't happen. So we do it ourselves.
2316 static void fixup_rmode_irq(struct vcpu_vmx *vmx)
2318 vmx->rmode.irq.pending = 0;
2319 if (vmcs_readl(GUEST_RIP) + 1 != vmx->rmode.irq.rip)
2320 return;
2321 vmcs_writel(GUEST_RIP, vmx->rmode.irq.rip);
2322 if (vmx->idt_vectoring_info & VECTORING_INFO_VALID_MASK) {
2323 vmx->idt_vectoring_info &= ~VECTORING_INFO_TYPE_MASK;
2324 vmx->idt_vectoring_info |= INTR_TYPE_EXT_INTR;
2325 return;
2327 vmx->idt_vectoring_info =
2328 VECTORING_INFO_VALID_MASK
2329 | INTR_TYPE_EXT_INTR
2330 | vmx->rmode.irq.vector;
2333 static void vmx_vcpu_run(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
2335 struct vcpu_vmx *vmx = to_vmx(vcpu);
2336 u32 intr_info;
2339 * Loading guest fpu may have cleared host cr0.ts
2341 vmcs_writel(HOST_CR0, read_cr0());
2343 asm(
2344 /* Store host registers */
2345 #ifdef CONFIG_X86_64
2346 "push %%rdx; push %%rbp;"
2347 "push %%rcx \n\t"
2348 #else
2349 "push %%edx; push %%ebp;"
2350 "push %%ecx \n\t"
2351 #endif
2352 ASM_VMX_VMWRITE_RSP_RDX "\n\t"
2353 /* Check if vmlaunch of vmresume is needed */
2354 "cmpl $0, %c[launched](%0) \n\t"
2355 /* Load guest registers. Don't clobber flags. */
2356 #ifdef CONFIG_X86_64
2357 "mov %c[cr2](%0), %%rax \n\t"
2358 "mov %%rax, %%cr2 \n\t"
2359 "mov %c[rax](%0), %%rax \n\t"
2360 "mov %c[rbx](%0), %%rbx \n\t"
2361 "mov %c[rdx](%0), %%rdx \n\t"
2362 "mov %c[rsi](%0), %%rsi \n\t"
2363 "mov %c[rdi](%0), %%rdi \n\t"
2364 "mov %c[rbp](%0), %%rbp \n\t"
2365 "mov %c[r8](%0), %%r8 \n\t"
2366 "mov %c[r9](%0), %%r9 \n\t"
2367 "mov %c[r10](%0), %%r10 \n\t"
2368 "mov %c[r11](%0), %%r11 \n\t"
2369 "mov %c[r12](%0), %%r12 \n\t"
2370 "mov %c[r13](%0), %%r13 \n\t"
2371 "mov %c[r14](%0), %%r14 \n\t"
2372 "mov %c[r15](%0), %%r15 \n\t"
2373 "mov %c[rcx](%0), %%rcx \n\t" /* kills %0 (rcx) */
2374 #else
2375 "mov %c[cr2](%0), %%eax \n\t"
2376 "mov %%eax, %%cr2 \n\t"
2377 "mov %c[rax](%0), %%eax \n\t"
2378 "mov %c[rbx](%0), %%ebx \n\t"
2379 "mov %c[rdx](%0), %%edx \n\t"
2380 "mov %c[rsi](%0), %%esi \n\t"
2381 "mov %c[rdi](%0), %%edi \n\t"
2382 "mov %c[rbp](%0), %%ebp \n\t"
2383 "mov %c[rcx](%0), %%ecx \n\t" /* kills %0 (ecx) */
2384 #endif
2385 /* Enter guest mode */
2386 "jne .Llaunched \n\t"
2387 ASM_VMX_VMLAUNCH "\n\t"
2388 "jmp .Lkvm_vmx_return \n\t"
2389 ".Llaunched: " ASM_VMX_VMRESUME "\n\t"
2390 ".Lkvm_vmx_return: "
2391 /* Save guest registers, load host registers, keep flags */
2392 #ifdef CONFIG_X86_64
2393 "xchg %0, (%%rsp) \n\t"
2394 "mov %%rax, %c[rax](%0) \n\t"
2395 "mov %%rbx, %c[rbx](%0) \n\t"
2396 "pushq (%%rsp); popq %c[rcx](%0) \n\t"
2397 "mov %%rdx, %c[rdx](%0) \n\t"
2398 "mov %%rsi, %c[rsi](%0) \n\t"
2399 "mov %%rdi, %c[rdi](%0) \n\t"
2400 "mov %%rbp, %c[rbp](%0) \n\t"
2401 "mov %%r8, %c[r8](%0) \n\t"
2402 "mov %%r9, %c[r9](%0) \n\t"
2403 "mov %%r10, %c[r10](%0) \n\t"
2404 "mov %%r11, %c[r11](%0) \n\t"
2405 "mov %%r12, %c[r12](%0) \n\t"
2406 "mov %%r13, %c[r13](%0) \n\t"
2407 "mov %%r14, %c[r14](%0) \n\t"
2408 "mov %%r15, %c[r15](%0) \n\t"
2409 "mov %%cr2, %%rax \n\t"
2410 "mov %%rax, %c[cr2](%0) \n\t"
2412 "pop %%rbp; pop %%rbp; pop %%rdx \n\t"
2413 #else
2414 "xchg %0, (%%esp) \n\t"
2415 "mov %%eax, %c[rax](%0) \n\t"
2416 "mov %%ebx, %c[rbx](%0) \n\t"
2417 "pushl (%%esp); popl %c[rcx](%0) \n\t"
2418 "mov %%edx, %c[rdx](%0) \n\t"
2419 "mov %%esi, %c[rsi](%0) \n\t"
2420 "mov %%edi, %c[rdi](%0) \n\t"
2421 "mov %%ebp, %c[rbp](%0) \n\t"
2422 "mov %%cr2, %%eax \n\t"
2423 "mov %%eax, %c[cr2](%0) \n\t"
2425 "pop %%ebp; pop %%ebp; pop %%edx \n\t"
2426 #endif
2427 "setbe %c[fail](%0) \n\t"
2428 : : "c"(vmx), "d"((unsigned long)HOST_RSP),
2429 [launched]"i"(offsetof(struct vcpu_vmx, launched)),
2430 [fail]"i"(offsetof(struct vcpu_vmx, fail)),
2431 [rax]"i"(offsetof(struct vcpu_vmx, vcpu.regs[VCPU_REGS_RAX])),
2432 [rbx]"i"(offsetof(struct vcpu_vmx, vcpu.regs[VCPU_REGS_RBX])),
2433 [rcx]"i"(offsetof(struct vcpu_vmx, vcpu.regs[VCPU_REGS_RCX])),
2434 [rdx]"i"(offsetof(struct vcpu_vmx, vcpu.regs[VCPU_REGS_RDX])),
2435 [rsi]"i"(offsetof(struct vcpu_vmx, vcpu.regs[VCPU_REGS_RSI])),
2436 [rdi]"i"(offsetof(struct vcpu_vmx, vcpu.regs[VCPU_REGS_RDI])),
2437 [rbp]"i"(offsetof(struct vcpu_vmx, vcpu.regs[VCPU_REGS_RBP])),
2438 #ifdef CONFIG_X86_64
2439 [r8]"i"(offsetof(struct vcpu_vmx, vcpu.regs[VCPU_REGS_R8])),
2440 [r9]"i"(offsetof(struct vcpu_vmx, vcpu.regs[VCPU_REGS_R9])),
2441 [r10]"i"(offsetof(struct vcpu_vmx, vcpu.regs[VCPU_REGS_R10])),
2442 [r11]"i"(offsetof(struct vcpu_vmx, vcpu.regs[VCPU_REGS_R11])),
2443 [r12]"i"(offsetof(struct vcpu_vmx, vcpu.regs[VCPU_REGS_R12])),
2444 [r13]"i"(offsetof(struct vcpu_vmx, vcpu.regs[VCPU_REGS_R13])),
2445 [r14]"i"(offsetof(struct vcpu_vmx, vcpu.regs[VCPU_REGS_R14])),
2446 [r15]"i"(offsetof(struct vcpu_vmx, vcpu.regs[VCPU_REGS_R15])),
2447 #endif
2448 [cr2]"i"(offsetof(struct vcpu_vmx, vcpu.cr2))
2449 : "cc", "memory"
2450 #ifdef CONFIG_X86_64
2451 , "rbx", "rdi", "rsi"
2452 , "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15"
2453 #else
2454 , "ebx", "edi", "rsi"
2455 #endif
2458 vmx->idt_vectoring_info = vmcs_read32(IDT_VECTORING_INFO_FIELD);
2459 if (vmx->rmode.irq.pending)
2460 fixup_rmode_irq(vmx);
2462 vcpu->interrupt_window_open =
2463 (vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) & 3) == 0;
2465 asm("mov %0, %%ds; mov %0, %%es" : : "r"(__USER_DS));
2466 vmx->launched = 1;
2468 intr_info = vmcs_read32(VM_EXIT_INTR_INFO);
2470 /* We need to handle NMIs before interrupts are enabled */
2471 if ((intr_info & INTR_INFO_INTR_TYPE_MASK) == 0x200) /* nmi */
2472 asm("int $2");
2475 static void vmx_inject_page_fault(struct kvm_vcpu *vcpu,
2476 unsigned long addr,
2477 u32 err_code)
2479 struct vcpu_vmx *vmx = to_vmx(vcpu);
2480 u32 vect_info = vmx->idt_vectoring_info;
2482 ++vcpu->stat.pf_guest;
2484 if (is_page_fault(vect_info)) {
2485 printk(KERN_DEBUG "inject_page_fault: "
2486 "double fault 0x%lx @ 0x%lx\n",
2487 addr, vmcs_readl(GUEST_RIP));
2488 vmcs_write32(VM_ENTRY_EXCEPTION_ERROR_CODE, 0);
2489 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
2490 DF_VECTOR |
2491 INTR_TYPE_EXCEPTION |
2492 INTR_INFO_DELIEVER_CODE_MASK |
2493 INTR_INFO_VALID_MASK);
2494 return;
2496 vcpu->cr2 = addr;
2497 vmcs_write32(VM_ENTRY_EXCEPTION_ERROR_CODE, err_code);
2498 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
2499 PF_VECTOR |
2500 INTR_TYPE_EXCEPTION |
2501 INTR_INFO_DELIEVER_CODE_MASK |
2502 INTR_INFO_VALID_MASK);
2506 static void vmx_free_vmcs(struct kvm_vcpu *vcpu)
2508 struct vcpu_vmx *vmx = to_vmx(vcpu);
2510 if (vmx->vmcs) {
2511 on_each_cpu(__vcpu_clear, vmx, 0, 1);
2512 free_vmcs(vmx->vmcs);
2513 vmx->vmcs = NULL;
2517 static void vmx_free_vcpu(struct kvm_vcpu *vcpu)
2519 struct vcpu_vmx *vmx = to_vmx(vcpu);
2521 vmx_free_vmcs(vcpu);
2522 kfree(vmx->host_msrs);
2523 kfree(vmx->guest_msrs);
2524 kvm_vcpu_uninit(vcpu);
2525 kmem_cache_free(kvm_vcpu_cache, vmx);
2528 static struct kvm_vcpu *vmx_create_vcpu(struct kvm *kvm, unsigned int id)
2530 int err;
2531 struct vcpu_vmx *vmx = kmem_cache_zalloc(kvm_vcpu_cache, GFP_KERNEL);
2532 int cpu;
2534 if (!vmx)
2535 return ERR_PTR(-ENOMEM);
2537 err = kvm_vcpu_init(&vmx->vcpu, kvm, id);
2538 if (err)
2539 goto free_vcpu;
2541 vmx->guest_msrs = kmalloc(PAGE_SIZE, GFP_KERNEL);
2542 if (!vmx->guest_msrs) {
2543 err = -ENOMEM;
2544 goto uninit_vcpu;
2547 vmx->host_msrs = kmalloc(PAGE_SIZE, GFP_KERNEL);
2548 if (!vmx->host_msrs)
2549 goto free_guest_msrs;
2551 vmx->vmcs = alloc_vmcs();
2552 if (!vmx->vmcs)
2553 goto free_msrs;
2555 vmcs_clear(vmx->vmcs);
2557 cpu = get_cpu();
2558 vmx_vcpu_load(&vmx->vcpu, cpu);
2559 err = vmx_vcpu_setup(vmx);
2560 vmx_vcpu_put(&vmx->vcpu);
2561 put_cpu();
2562 if (err)
2563 goto free_vmcs;
2565 return &vmx->vcpu;
2567 free_vmcs:
2568 free_vmcs(vmx->vmcs);
2569 free_msrs:
2570 kfree(vmx->host_msrs);
2571 free_guest_msrs:
2572 kfree(vmx->guest_msrs);
2573 uninit_vcpu:
2574 kvm_vcpu_uninit(&vmx->vcpu);
2575 free_vcpu:
2576 kmem_cache_free(kvm_vcpu_cache, vmx);
2577 return ERR_PTR(err);
2580 static void __init vmx_check_processor_compat(void *rtn)
2582 struct vmcs_config vmcs_conf;
2584 *(int *)rtn = 0;
2585 if (setup_vmcs_config(&vmcs_conf) < 0)
2586 *(int *)rtn = -EIO;
2587 if (memcmp(&vmcs_config, &vmcs_conf, sizeof(struct vmcs_config)) != 0) {
2588 printk(KERN_ERR "kvm: CPU %d feature inconsistency!\n",
2589 smp_processor_id());
2590 *(int *)rtn = -EIO;
2594 static struct kvm_x86_ops vmx_x86_ops = {
2595 .cpu_has_kvm_support = cpu_has_kvm_support,
2596 .disabled_by_bios = vmx_disabled_by_bios,
2597 .hardware_setup = hardware_setup,
2598 .hardware_unsetup = hardware_unsetup,
2599 .check_processor_compatibility = vmx_check_processor_compat,
2600 .hardware_enable = hardware_enable,
2601 .hardware_disable = hardware_disable,
2603 .vcpu_create = vmx_create_vcpu,
2604 .vcpu_free = vmx_free_vcpu,
2605 .vcpu_reset = vmx_vcpu_reset,
2607 .prepare_guest_switch = vmx_save_host_state,
2608 .vcpu_load = vmx_vcpu_load,
2609 .vcpu_put = vmx_vcpu_put,
2610 .vcpu_decache = vmx_vcpu_decache,
2612 .set_guest_debug = set_guest_debug,
2613 .guest_debug_pre = kvm_guest_debug_pre,
2614 .get_msr = vmx_get_msr,
2615 .set_msr = vmx_set_msr,
2616 .get_segment_base = vmx_get_segment_base,
2617 .get_segment = vmx_get_segment,
2618 .set_segment = vmx_set_segment,
2619 .get_cs_db_l_bits = vmx_get_cs_db_l_bits,
2620 .decache_cr4_guest_bits = vmx_decache_cr4_guest_bits,
2621 .set_cr0 = vmx_set_cr0,
2622 .set_cr3 = vmx_set_cr3,
2623 .set_cr4 = vmx_set_cr4,
2624 #ifdef CONFIG_X86_64
2625 .set_efer = vmx_set_efer,
2626 #endif
2627 .get_idt = vmx_get_idt,
2628 .set_idt = vmx_set_idt,
2629 .get_gdt = vmx_get_gdt,
2630 .set_gdt = vmx_set_gdt,
2631 .cache_regs = vcpu_load_rsp_rip,
2632 .decache_regs = vcpu_put_rsp_rip,
2633 .get_rflags = vmx_get_rflags,
2634 .set_rflags = vmx_set_rflags,
2636 .tlb_flush = vmx_flush_tlb,
2637 .inject_page_fault = vmx_inject_page_fault,
2639 .inject_gp = vmx_inject_gp,
2641 .run = vmx_vcpu_run,
2642 .handle_exit = kvm_handle_exit,
2643 .skip_emulated_instruction = skip_emulated_instruction,
2644 .patch_hypercall = vmx_patch_hypercall,
2645 .get_irq = vmx_get_irq,
2646 .set_irq = vmx_inject_irq,
2647 .inject_pending_irq = vmx_intr_assist,
2648 .inject_pending_vectors = do_interrupt_requests,
2650 .set_tss_addr = vmx_set_tss_addr,
2653 static int __init vmx_init(void)
2655 void *iova;
2656 int r;
2658 vmx_io_bitmap_a = alloc_page(GFP_KERNEL | __GFP_HIGHMEM);
2659 if (!vmx_io_bitmap_a)
2660 return -ENOMEM;
2662 vmx_io_bitmap_b = alloc_page(GFP_KERNEL | __GFP_HIGHMEM);
2663 if (!vmx_io_bitmap_b) {
2664 r = -ENOMEM;
2665 goto out;
2669 * Allow direct access to the PC debug port (it is often used for I/O
2670 * delays, but the vmexits simply slow things down).
2672 iova = kmap(vmx_io_bitmap_a);
2673 memset(iova, 0xff, PAGE_SIZE);
2674 clear_bit(0x80, iova);
2675 kunmap(vmx_io_bitmap_a);
2677 iova = kmap(vmx_io_bitmap_b);
2678 memset(iova, 0xff, PAGE_SIZE);
2679 kunmap(vmx_io_bitmap_b);
2681 r = kvm_init(&vmx_x86_ops, sizeof(struct vcpu_vmx), THIS_MODULE);
2682 if (r)
2683 goto out1;
2685 if (bypass_guest_pf)
2686 kvm_mmu_set_nonpresent_ptes(~0xffeull, 0ull);
2688 return 0;
2690 out1:
2691 __free_page(vmx_io_bitmap_b);
2692 out:
2693 __free_page(vmx_io_bitmap_a);
2694 return r;
2697 static void __exit vmx_exit(void)
2699 __free_page(vmx_io_bitmap_b);
2700 __free_page(vmx_io_bitmap_a);
2702 kvm_exit();
2705 module_init(vmx_init)
2706 module_exit(vmx_exit)