2 * Kernel-based Virtual Machine driver for Linux
4 * This module enables machines with Intel VT-x extensions to run virtual
5 * machines without emulation or binary translation.
7 * Copyright (C) 2006 Qumranet, Inc.
10 * Avi Kivity <avi@qumranet.com>
11 * Yaniv Kamay <yaniv@qumranet.com>
13 * This work is licensed under the terms of the GNU GPL, version 2. See
14 * the COPYING file in the top-level directory.
19 #include "x86_emulate.h"
21 #include "segment_descriptor.h"
23 #include <linux/module.h>
24 #include <linux/kernel.h>
26 #include <linux/highmem.h>
27 #include <linux/profile.h>
28 #include <linux/sched.h>
33 MODULE_AUTHOR("Qumranet");
34 MODULE_LICENSE("GPL");
45 struct kvm_msr_entry
*guest_msrs
;
46 struct kvm_msr_entry
*host_msrs
;
51 int msr_offset_kernel_gs_base
;
56 u16 fs_sel
, gs_sel
, ldt_sel
;
57 int gs_ldt_reload_needed
;
63 static inline struct vcpu_vmx
*to_vmx(struct kvm_vcpu
*vcpu
)
65 return container_of(vcpu
, struct vcpu_vmx
, vcpu
);
68 static int init_rmode_tss(struct kvm
*kvm
);
70 static DEFINE_PER_CPU(struct vmcs
*, vmxarea
);
71 static DEFINE_PER_CPU(struct vmcs
*, current_vmcs
);
73 static struct page
*vmx_io_bitmap_a
;
74 static struct page
*vmx_io_bitmap_b
;
76 #define EFER_SAVE_RESTORE_BITS ((u64)EFER_SCE)
78 static struct vmcs_config
{
82 u32 pin_based_exec_ctrl
;
83 u32 cpu_based_exec_ctrl
;
88 #define VMX_SEGMENT_FIELD(seg) \
89 [VCPU_SREG_##seg] = { \
90 .selector = GUEST_##seg##_SELECTOR, \
91 .base = GUEST_##seg##_BASE, \
92 .limit = GUEST_##seg##_LIMIT, \
93 .ar_bytes = GUEST_##seg##_AR_BYTES, \
96 static struct kvm_vmx_segment_field
{
101 } kvm_vmx_segment_fields
[] = {
102 VMX_SEGMENT_FIELD(CS
),
103 VMX_SEGMENT_FIELD(DS
),
104 VMX_SEGMENT_FIELD(ES
),
105 VMX_SEGMENT_FIELD(FS
),
106 VMX_SEGMENT_FIELD(GS
),
107 VMX_SEGMENT_FIELD(SS
),
108 VMX_SEGMENT_FIELD(TR
),
109 VMX_SEGMENT_FIELD(LDTR
),
113 * Keep MSR_K6_STAR at the end, as setup_msrs() will try to optimize it
114 * away by decrementing the array size.
116 static const u32 vmx_msr_index
[] = {
118 MSR_SYSCALL_MASK
, MSR_LSTAR
, MSR_CSTAR
, MSR_KERNEL_GS_BASE
,
120 MSR_EFER
, MSR_K6_STAR
,
122 #define NR_VMX_MSR ARRAY_SIZE(vmx_msr_index)
124 static void load_msrs(struct kvm_msr_entry
*e
, int n
)
128 for (i
= 0; i
< n
; ++i
)
129 wrmsrl(e
[i
].index
, e
[i
].data
);
132 static void save_msrs(struct kvm_msr_entry
*e
, int n
)
136 for (i
= 0; i
< n
; ++i
)
137 rdmsrl(e
[i
].index
, e
[i
].data
);
140 static inline u64
msr_efer_save_restore_bits(struct kvm_msr_entry msr
)
142 return (u64
)msr
.data
& EFER_SAVE_RESTORE_BITS
;
145 static inline int msr_efer_need_save_restore(struct vcpu_vmx
*vmx
)
147 int efer_offset
= vmx
->msr_offset_efer
;
148 return msr_efer_save_restore_bits(vmx
->host_msrs
[efer_offset
]) !=
149 msr_efer_save_restore_bits(vmx
->guest_msrs
[efer_offset
]);
152 static inline int is_page_fault(u32 intr_info
)
154 return (intr_info
& (INTR_INFO_INTR_TYPE_MASK
| INTR_INFO_VECTOR_MASK
|
155 INTR_INFO_VALID_MASK
)) ==
156 (INTR_TYPE_EXCEPTION
| PF_VECTOR
| INTR_INFO_VALID_MASK
);
159 static inline int is_no_device(u32 intr_info
)
161 return (intr_info
& (INTR_INFO_INTR_TYPE_MASK
| INTR_INFO_VECTOR_MASK
|
162 INTR_INFO_VALID_MASK
)) ==
163 (INTR_TYPE_EXCEPTION
| NM_VECTOR
| INTR_INFO_VALID_MASK
);
166 static inline int is_external_interrupt(u32 intr_info
)
168 return (intr_info
& (INTR_INFO_INTR_TYPE_MASK
| INTR_INFO_VALID_MASK
))
169 == (INTR_TYPE_EXT_INTR
| INTR_INFO_VALID_MASK
);
172 static int __find_msr_index(struct vcpu_vmx
*vmx
, u32 msr
)
176 for (i
= 0; i
< vmx
->nmsrs
; ++i
)
177 if (vmx
->guest_msrs
[i
].index
== msr
)
182 static struct kvm_msr_entry
*find_msr_entry(struct vcpu_vmx
*vmx
, u32 msr
)
186 i
= __find_msr_index(vmx
, msr
);
188 return &vmx
->guest_msrs
[i
];
192 static void vmcs_clear(struct vmcs
*vmcs
)
194 u64 phys_addr
= __pa(vmcs
);
197 asm volatile (ASM_VMX_VMCLEAR_RAX
"; setna %0"
198 : "=g"(error
) : "a"(&phys_addr
), "m"(phys_addr
)
201 printk(KERN_ERR
"kvm: vmclear fail: %p/%llx\n",
205 static void __vcpu_clear(void *arg
)
207 struct vcpu_vmx
*vmx
= arg
;
208 int cpu
= raw_smp_processor_id();
210 if (vmx
->vcpu
.cpu
== cpu
)
211 vmcs_clear(vmx
->vmcs
);
212 if (per_cpu(current_vmcs
, cpu
) == vmx
->vmcs
)
213 per_cpu(current_vmcs
, cpu
) = NULL
;
214 rdtscll(vmx
->vcpu
.host_tsc
);
217 static void vcpu_clear(struct vcpu_vmx
*vmx
)
219 if (vmx
->vcpu
.cpu
!= raw_smp_processor_id() && vmx
->vcpu
.cpu
!= -1)
220 smp_call_function_single(vmx
->vcpu
.cpu
, __vcpu_clear
,
227 static unsigned long vmcs_readl(unsigned long field
)
231 asm volatile (ASM_VMX_VMREAD_RDX_RAX
232 : "=a"(value
) : "d"(field
) : "cc");
236 static u16
vmcs_read16(unsigned long field
)
238 return vmcs_readl(field
);
241 static u32
vmcs_read32(unsigned long field
)
243 return vmcs_readl(field
);
246 static u64
vmcs_read64(unsigned long field
)
249 return vmcs_readl(field
);
251 return vmcs_readl(field
) | ((u64
)vmcs_readl(field
+1) << 32);
255 static noinline
void vmwrite_error(unsigned long field
, unsigned long value
)
257 printk(KERN_ERR
"vmwrite error: reg %lx value %lx (err %d)\n",
258 field
, value
, vmcs_read32(VM_INSTRUCTION_ERROR
));
262 static void vmcs_writel(unsigned long field
, unsigned long value
)
266 asm volatile (ASM_VMX_VMWRITE_RAX_RDX
"; setna %0"
267 : "=q"(error
) : "a"(value
), "d"(field
) : "cc" );
269 vmwrite_error(field
, value
);
272 static void vmcs_write16(unsigned long field
, u16 value
)
274 vmcs_writel(field
, value
);
277 static void vmcs_write32(unsigned long field
, u32 value
)
279 vmcs_writel(field
, value
);
282 static void vmcs_write64(unsigned long field
, u64 value
)
285 vmcs_writel(field
, value
);
287 vmcs_writel(field
, value
);
289 vmcs_writel(field
+1, value
>> 32);
293 static void vmcs_clear_bits(unsigned long field
, u32 mask
)
295 vmcs_writel(field
, vmcs_readl(field
) & ~mask
);
298 static void vmcs_set_bits(unsigned long field
, u32 mask
)
300 vmcs_writel(field
, vmcs_readl(field
) | mask
);
303 static void update_exception_bitmap(struct kvm_vcpu
*vcpu
)
307 eb
= 1u << PF_VECTOR
;
308 if (!vcpu
->fpu_active
)
309 eb
|= 1u << NM_VECTOR
;
310 if (vcpu
->guest_debug
.enabled
)
312 if (vcpu
->rmode
.active
)
314 vmcs_write32(EXCEPTION_BITMAP
, eb
);
317 static void reload_tss(void)
319 #ifndef CONFIG_X86_64
322 * VT restores TR but not its size. Useless.
324 struct descriptor_table gdt
;
325 struct segment_descriptor
*descs
;
328 descs
= (void *)gdt
.base
;
329 descs
[GDT_ENTRY_TSS
].type
= 9; /* available TSS */
334 static void load_transition_efer(struct vcpu_vmx
*vmx
)
337 int efer_offset
= vmx
->msr_offset_efer
;
339 trans_efer
= vmx
->host_msrs
[efer_offset
].data
;
340 trans_efer
&= ~EFER_SAVE_RESTORE_BITS
;
341 trans_efer
|= msr_efer_save_restore_bits(vmx
->guest_msrs
[efer_offset
]);
342 wrmsrl(MSR_EFER
, trans_efer
);
343 vmx
->vcpu
.stat
.efer_reload
++;
346 static void vmx_save_host_state(struct vcpu_vmx
*vmx
)
348 if (vmx
->host_state
.loaded
)
351 vmx
->host_state
.loaded
= 1;
353 * Set host fs and gs selectors. Unfortunately, 22.2.3 does not
354 * allow segment selectors with cpl > 0 or ti == 1.
356 vmx
->host_state
.ldt_sel
= read_ldt();
357 vmx
->host_state
.gs_ldt_reload_needed
= vmx
->host_state
.ldt_sel
;
358 vmx
->host_state
.fs_sel
= read_fs();
359 if (!(vmx
->host_state
.fs_sel
& 7)) {
360 vmcs_write16(HOST_FS_SELECTOR
, vmx
->host_state
.fs_sel
);
361 vmx
->host_state
.fs_reload_needed
= 0;
363 vmcs_write16(HOST_FS_SELECTOR
, 0);
364 vmx
->host_state
.fs_reload_needed
= 1;
366 vmx
->host_state
.gs_sel
= read_gs();
367 if (!(vmx
->host_state
.gs_sel
& 7))
368 vmcs_write16(HOST_GS_SELECTOR
, vmx
->host_state
.gs_sel
);
370 vmcs_write16(HOST_GS_SELECTOR
, 0);
371 vmx
->host_state
.gs_ldt_reload_needed
= 1;
375 vmcs_writel(HOST_FS_BASE
, read_msr(MSR_FS_BASE
));
376 vmcs_writel(HOST_GS_BASE
, read_msr(MSR_GS_BASE
));
378 vmcs_writel(HOST_FS_BASE
, segment_base(vmx
->host_state
.fs_sel
));
379 vmcs_writel(HOST_GS_BASE
, segment_base(vmx
->host_state
.gs_sel
));
383 if (is_long_mode(&vmx
->vcpu
)) {
384 save_msrs(vmx
->host_msrs
+
385 vmx
->msr_offset_kernel_gs_base
, 1);
388 load_msrs(vmx
->guest_msrs
, vmx
->save_nmsrs
);
389 if (msr_efer_need_save_restore(vmx
))
390 load_transition_efer(vmx
);
393 static void vmx_load_host_state(struct vcpu_vmx
*vmx
)
397 if (!vmx
->host_state
.loaded
)
400 vmx
->host_state
.loaded
= 0;
401 if (vmx
->host_state
.fs_reload_needed
)
402 load_fs(vmx
->host_state
.fs_sel
);
403 if (vmx
->host_state
.gs_ldt_reload_needed
) {
404 load_ldt(vmx
->host_state
.ldt_sel
);
406 * If we have to reload gs, we must take care to
407 * preserve our gs base.
409 local_irq_save(flags
);
410 load_gs(vmx
->host_state
.gs_sel
);
412 wrmsrl(MSR_GS_BASE
, vmcs_readl(HOST_GS_BASE
));
414 local_irq_restore(flags
);
417 save_msrs(vmx
->guest_msrs
, vmx
->save_nmsrs
);
418 load_msrs(vmx
->host_msrs
, vmx
->save_nmsrs
);
419 if (msr_efer_need_save_restore(vmx
))
420 load_msrs(vmx
->host_msrs
+ vmx
->msr_offset_efer
, 1);
424 * Switches to specified vcpu, until a matching vcpu_put(), but assumes
425 * vcpu mutex is already taken.
427 static void vmx_vcpu_load(struct kvm_vcpu
*vcpu
, int cpu
)
429 struct vcpu_vmx
*vmx
= to_vmx(vcpu
);
430 u64 phys_addr
= __pa(vmx
->vmcs
);
433 if (vcpu
->cpu
!= cpu
)
436 if (per_cpu(current_vmcs
, cpu
) != vmx
->vmcs
) {
439 per_cpu(current_vmcs
, cpu
) = vmx
->vmcs
;
440 asm volatile (ASM_VMX_VMPTRLD_RAX
"; setna %0"
441 : "=g"(error
) : "a"(&phys_addr
), "m"(phys_addr
)
444 printk(KERN_ERR
"kvm: vmptrld %p/%llx fail\n",
445 vmx
->vmcs
, phys_addr
);
448 if (vcpu
->cpu
!= cpu
) {
449 struct descriptor_table dt
;
450 unsigned long sysenter_esp
;
454 * Linux uses per-cpu TSS and GDT, so set these when switching
457 vmcs_writel(HOST_TR_BASE
, read_tr_base()); /* 22.2.4 */
459 vmcs_writel(HOST_GDTR_BASE
, dt
.base
); /* 22.2.4 */
461 rdmsrl(MSR_IA32_SYSENTER_ESP
, sysenter_esp
);
462 vmcs_writel(HOST_IA32_SYSENTER_ESP
, sysenter_esp
); /* 22.2.3 */
465 * Make sure the time stamp counter is monotonous.
468 delta
= vcpu
->host_tsc
- tsc_this
;
469 vmcs_write64(TSC_OFFSET
, vmcs_read64(TSC_OFFSET
) + delta
);
473 static void vmx_vcpu_put(struct kvm_vcpu
*vcpu
)
475 vmx_load_host_state(to_vmx(vcpu
));
476 kvm_put_guest_fpu(vcpu
);
479 static void vmx_fpu_activate(struct kvm_vcpu
*vcpu
)
481 if (vcpu
->fpu_active
)
483 vcpu
->fpu_active
= 1;
484 vmcs_clear_bits(GUEST_CR0
, X86_CR0_TS
);
485 if (vcpu
->cr0
& X86_CR0_TS
)
486 vmcs_set_bits(GUEST_CR0
, X86_CR0_TS
);
487 update_exception_bitmap(vcpu
);
490 static void vmx_fpu_deactivate(struct kvm_vcpu
*vcpu
)
492 if (!vcpu
->fpu_active
)
494 vcpu
->fpu_active
= 0;
495 vmcs_set_bits(GUEST_CR0
, X86_CR0_TS
);
496 update_exception_bitmap(vcpu
);
499 static void vmx_vcpu_decache(struct kvm_vcpu
*vcpu
)
501 vcpu_clear(to_vmx(vcpu
));
504 static unsigned long vmx_get_rflags(struct kvm_vcpu
*vcpu
)
506 return vmcs_readl(GUEST_RFLAGS
);
509 static void vmx_set_rflags(struct kvm_vcpu
*vcpu
, unsigned long rflags
)
511 vmcs_writel(GUEST_RFLAGS
, rflags
);
514 static void skip_emulated_instruction(struct kvm_vcpu
*vcpu
)
517 u32 interruptibility
;
519 rip
= vmcs_readl(GUEST_RIP
);
520 rip
+= vmcs_read32(VM_EXIT_INSTRUCTION_LEN
);
521 vmcs_writel(GUEST_RIP
, rip
);
524 * We emulated an instruction, so temporary interrupt blocking
525 * should be removed, if set.
527 interruptibility
= vmcs_read32(GUEST_INTERRUPTIBILITY_INFO
);
528 if (interruptibility
& 3)
529 vmcs_write32(GUEST_INTERRUPTIBILITY_INFO
,
530 interruptibility
& ~3);
531 vcpu
->interrupt_window_open
= 1;
534 static void vmx_inject_gp(struct kvm_vcpu
*vcpu
, unsigned error_code
)
536 printk(KERN_DEBUG
"inject_general_protection: rip 0x%lx\n",
537 vmcs_readl(GUEST_RIP
));
538 vmcs_write32(VM_ENTRY_EXCEPTION_ERROR_CODE
, error_code
);
539 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD
,
541 INTR_TYPE_EXCEPTION
|
542 INTR_INFO_DELIEVER_CODE_MASK
|
543 INTR_INFO_VALID_MASK
);
547 * Swap MSR entry in host/guest MSR entry array.
550 static void move_msr_up(struct vcpu_vmx
*vmx
, int from
, int to
)
552 struct kvm_msr_entry tmp
;
554 tmp
= vmx
->guest_msrs
[to
];
555 vmx
->guest_msrs
[to
] = vmx
->guest_msrs
[from
];
556 vmx
->guest_msrs
[from
] = tmp
;
557 tmp
= vmx
->host_msrs
[to
];
558 vmx
->host_msrs
[to
] = vmx
->host_msrs
[from
];
559 vmx
->host_msrs
[from
] = tmp
;
564 * Set up the vmcs to automatically save and restore system
565 * msrs. Don't touch the 64-bit msrs if the guest is in legacy
566 * mode, as fiddling with msrs is very expensive.
568 static void setup_msrs(struct vcpu_vmx
*vmx
)
574 if (is_long_mode(&vmx
->vcpu
)) {
577 index
= __find_msr_index(vmx
, MSR_SYSCALL_MASK
);
579 move_msr_up(vmx
, index
, save_nmsrs
++);
580 index
= __find_msr_index(vmx
, MSR_LSTAR
);
582 move_msr_up(vmx
, index
, save_nmsrs
++);
583 index
= __find_msr_index(vmx
, MSR_CSTAR
);
585 move_msr_up(vmx
, index
, save_nmsrs
++);
586 index
= __find_msr_index(vmx
, MSR_KERNEL_GS_BASE
);
588 move_msr_up(vmx
, index
, save_nmsrs
++);
590 * MSR_K6_STAR is only needed on long mode guests, and only
591 * if efer.sce is enabled.
593 index
= __find_msr_index(vmx
, MSR_K6_STAR
);
594 if ((index
>= 0) && (vmx
->vcpu
.shadow_efer
& EFER_SCE
))
595 move_msr_up(vmx
, index
, save_nmsrs
++);
598 vmx
->save_nmsrs
= save_nmsrs
;
601 vmx
->msr_offset_kernel_gs_base
=
602 __find_msr_index(vmx
, MSR_KERNEL_GS_BASE
);
604 vmx
->msr_offset_efer
= __find_msr_index(vmx
, MSR_EFER
);
608 * reads and returns guest's timestamp counter "register"
609 * guest_tsc = host_tsc + tsc_offset -- 21.3
611 static u64
guest_read_tsc(void)
613 u64 host_tsc
, tsc_offset
;
616 tsc_offset
= vmcs_read64(TSC_OFFSET
);
617 return host_tsc
+ tsc_offset
;
621 * writes 'guest_tsc' into guest's timestamp counter "register"
622 * guest_tsc = host_tsc + tsc_offset ==> tsc_offset = guest_tsc - host_tsc
624 static void guest_write_tsc(u64 guest_tsc
)
629 vmcs_write64(TSC_OFFSET
, guest_tsc
- host_tsc
);
633 * Reads an msr value (of 'msr_index') into 'pdata'.
634 * Returns 0 on success, non-0 otherwise.
635 * Assumes vcpu_load() was already called.
637 static int vmx_get_msr(struct kvm_vcpu
*vcpu
, u32 msr_index
, u64
*pdata
)
640 struct kvm_msr_entry
*msr
;
643 printk(KERN_ERR
"BUG: get_msr called with NULL pdata\n");
650 data
= vmcs_readl(GUEST_FS_BASE
);
653 data
= vmcs_readl(GUEST_GS_BASE
);
656 return kvm_get_msr_common(vcpu
, msr_index
, pdata
);
658 case MSR_IA32_TIME_STAMP_COUNTER
:
659 data
= guest_read_tsc();
661 case MSR_IA32_SYSENTER_CS
:
662 data
= vmcs_read32(GUEST_SYSENTER_CS
);
664 case MSR_IA32_SYSENTER_EIP
:
665 data
= vmcs_readl(GUEST_SYSENTER_EIP
);
667 case MSR_IA32_SYSENTER_ESP
:
668 data
= vmcs_readl(GUEST_SYSENTER_ESP
);
671 msr
= find_msr_entry(to_vmx(vcpu
), msr_index
);
676 return kvm_get_msr_common(vcpu
, msr_index
, pdata
);
684 * Writes msr value into into the appropriate "register".
685 * Returns 0 on success, non-0 otherwise.
686 * Assumes vcpu_load() was already called.
688 static int vmx_set_msr(struct kvm_vcpu
*vcpu
, u32 msr_index
, u64 data
)
690 struct vcpu_vmx
*vmx
= to_vmx(vcpu
);
691 struct kvm_msr_entry
*msr
;
697 ret
= kvm_set_msr_common(vcpu
, msr_index
, data
);
698 if (vmx
->host_state
.loaded
)
699 load_transition_efer(vmx
);
702 vmcs_writel(GUEST_FS_BASE
, data
);
705 vmcs_writel(GUEST_GS_BASE
, data
);
708 case MSR_IA32_SYSENTER_CS
:
709 vmcs_write32(GUEST_SYSENTER_CS
, data
);
711 case MSR_IA32_SYSENTER_EIP
:
712 vmcs_writel(GUEST_SYSENTER_EIP
, data
);
714 case MSR_IA32_SYSENTER_ESP
:
715 vmcs_writel(GUEST_SYSENTER_ESP
, data
);
717 case MSR_IA32_TIME_STAMP_COUNTER
:
718 guest_write_tsc(data
);
721 msr
= find_msr_entry(vmx
, msr_index
);
724 if (vmx
->host_state
.loaded
)
725 load_msrs(vmx
->guest_msrs
, vmx
->save_nmsrs
);
728 ret
= kvm_set_msr_common(vcpu
, msr_index
, data
);
735 * Sync the rsp and rip registers into the vcpu structure. This allows
736 * registers to be accessed by indexing vcpu->regs.
738 static void vcpu_load_rsp_rip(struct kvm_vcpu
*vcpu
)
740 vcpu
->regs
[VCPU_REGS_RSP
] = vmcs_readl(GUEST_RSP
);
741 vcpu
->rip
= vmcs_readl(GUEST_RIP
);
745 * Syncs rsp and rip back into the vmcs. Should be called after possible
748 static void vcpu_put_rsp_rip(struct kvm_vcpu
*vcpu
)
750 vmcs_writel(GUEST_RSP
, vcpu
->regs
[VCPU_REGS_RSP
]);
751 vmcs_writel(GUEST_RIP
, vcpu
->rip
);
754 static int set_guest_debug(struct kvm_vcpu
*vcpu
, struct kvm_debug_guest
*dbg
)
756 unsigned long dr7
= 0x400;
759 old_singlestep
= vcpu
->guest_debug
.singlestep
;
761 vcpu
->guest_debug
.enabled
= dbg
->enabled
;
762 if (vcpu
->guest_debug
.enabled
) {
765 dr7
|= 0x200; /* exact */
766 for (i
= 0; i
< 4; ++i
) {
767 if (!dbg
->breakpoints
[i
].enabled
)
769 vcpu
->guest_debug
.bp
[i
] = dbg
->breakpoints
[i
].address
;
770 dr7
|= 2 << (i
*2); /* global enable */
771 dr7
|= 0 << (i
*4+16); /* execution breakpoint */
774 vcpu
->guest_debug
.singlestep
= dbg
->singlestep
;
776 vcpu
->guest_debug
.singlestep
= 0;
778 if (old_singlestep
&& !vcpu
->guest_debug
.singlestep
) {
781 flags
= vmcs_readl(GUEST_RFLAGS
);
782 flags
&= ~(X86_EFLAGS_TF
| X86_EFLAGS_RF
);
783 vmcs_writel(GUEST_RFLAGS
, flags
);
786 update_exception_bitmap(vcpu
);
787 vmcs_writel(GUEST_DR7
, dr7
);
792 static __init
int cpu_has_kvm_support(void)
794 unsigned long ecx
= cpuid_ecx(1);
795 return test_bit(5, &ecx
); /* CPUID.1:ECX.VMX[bit 5] -> VT */
798 static __init
int vmx_disabled_by_bios(void)
802 rdmsrl(MSR_IA32_FEATURE_CONTROL
, msr
);
803 return (msr
& (MSR_IA32_FEATURE_CONTROL_LOCKED
|
804 MSR_IA32_FEATURE_CONTROL_VMXON_ENABLED
))
805 == MSR_IA32_FEATURE_CONTROL_LOCKED
;
806 /* locked but not enabled */
809 static void hardware_enable(void *garbage
)
811 int cpu
= raw_smp_processor_id();
812 u64 phys_addr
= __pa(per_cpu(vmxarea
, cpu
));
815 rdmsrl(MSR_IA32_FEATURE_CONTROL
, old
);
816 if ((old
& (MSR_IA32_FEATURE_CONTROL_LOCKED
|
817 MSR_IA32_FEATURE_CONTROL_VMXON_ENABLED
))
818 != (MSR_IA32_FEATURE_CONTROL_LOCKED
|
819 MSR_IA32_FEATURE_CONTROL_VMXON_ENABLED
))
820 /* enable and lock */
821 wrmsrl(MSR_IA32_FEATURE_CONTROL
, old
|
822 MSR_IA32_FEATURE_CONTROL_LOCKED
|
823 MSR_IA32_FEATURE_CONTROL_VMXON_ENABLED
);
824 write_cr4(read_cr4() | X86_CR4_VMXE
); /* FIXME: not cpu hotplug safe */
825 asm volatile (ASM_VMX_VMXON_RAX
: : "a"(&phys_addr
), "m"(phys_addr
)
829 static void hardware_disable(void *garbage
)
831 asm volatile (ASM_VMX_VMXOFF
: : : "cc");
834 static __init
int adjust_vmx_controls(u32 ctl_min
, u32 ctl_opt
,
835 u32 msr
, u32
* result
)
837 u32 vmx_msr_low
, vmx_msr_high
;
838 u32 ctl
= ctl_min
| ctl_opt
;
840 rdmsr(msr
, vmx_msr_low
, vmx_msr_high
);
842 ctl
&= vmx_msr_high
; /* bit == 0 in high word ==> must be zero */
843 ctl
|= vmx_msr_low
; /* bit == 1 in low word ==> must be one */
845 /* Ensure minimum (required) set of control bits are supported. */
853 static __init
int setup_vmcs_config(struct vmcs_config
*vmcs_conf
)
855 u32 vmx_msr_low
, vmx_msr_high
;
857 u32 _pin_based_exec_control
= 0;
858 u32 _cpu_based_exec_control
= 0;
859 u32 _vmexit_control
= 0;
860 u32 _vmentry_control
= 0;
862 min
= PIN_BASED_EXT_INTR_MASK
| PIN_BASED_NMI_EXITING
;
864 if (adjust_vmx_controls(min
, opt
, MSR_IA32_VMX_PINBASED_CTLS
,
865 &_pin_based_exec_control
) < 0)
868 min
= CPU_BASED_HLT_EXITING
|
870 CPU_BASED_CR8_LOAD_EXITING
|
871 CPU_BASED_CR8_STORE_EXITING
|
873 CPU_BASED_USE_IO_BITMAPS
|
874 CPU_BASED_MOV_DR_EXITING
|
875 CPU_BASED_USE_TSC_OFFSETING
;
877 if (adjust_vmx_controls(min
, opt
, MSR_IA32_VMX_PROCBASED_CTLS
,
878 &_cpu_based_exec_control
) < 0)
883 min
|= VM_EXIT_HOST_ADDR_SPACE_SIZE
;
886 if (adjust_vmx_controls(min
, opt
, MSR_IA32_VMX_EXIT_CTLS
,
887 &_vmexit_control
) < 0)
891 if (adjust_vmx_controls(min
, opt
, MSR_IA32_VMX_ENTRY_CTLS
,
892 &_vmentry_control
) < 0)
895 rdmsr(MSR_IA32_VMX_BASIC
, vmx_msr_low
, vmx_msr_high
);
897 /* IA-32 SDM Vol 3B: VMCS size is never greater than 4kB. */
898 if ((vmx_msr_high
& 0x1fff) > PAGE_SIZE
)
902 /* IA-32 SDM Vol 3B: 64-bit CPUs always have VMX_BASIC_MSR[48]==0. */
903 if (vmx_msr_high
& (1u<<16))
907 /* Require Write-Back (WB) memory type for VMCS accesses. */
908 if (((vmx_msr_high
>> 18) & 15) != 6)
911 vmcs_conf
->size
= vmx_msr_high
& 0x1fff;
912 vmcs_conf
->order
= get_order(vmcs_config
.size
);
913 vmcs_conf
->revision_id
= vmx_msr_low
;
915 vmcs_conf
->pin_based_exec_ctrl
= _pin_based_exec_control
;
916 vmcs_conf
->cpu_based_exec_ctrl
= _cpu_based_exec_control
;
917 vmcs_conf
->vmexit_ctrl
= _vmexit_control
;
918 vmcs_conf
->vmentry_ctrl
= _vmentry_control
;
923 static struct vmcs
*alloc_vmcs_cpu(int cpu
)
925 int node
= cpu_to_node(cpu
);
929 pages
= alloc_pages_node(node
, GFP_KERNEL
, vmcs_config
.order
);
932 vmcs
= page_address(pages
);
933 memset(vmcs
, 0, vmcs_config
.size
);
934 vmcs
->revision_id
= vmcs_config
.revision_id
; /* vmcs revision id */
938 static struct vmcs
*alloc_vmcs(void)
940 return alloc_vmcs_cpu(raw_smp_processor_id());
943 static void free_vmcs(struct vmcs
*vmcs
)
945 free_pages((unsigned long)vmcs
, vmcs_config
.order
);
948 static void free_kvm_area(void)
952 for_each_online_cpu(cpu
)
953 free_vmcs(per_cpu(vmxarea
, cpu
));
956 static __init
int alloc_kvm_area(void)
960 for_each_online_cpu(cpu
) {
963 vmcs
= alloc_vmcs_cpu(cpu
);
969 per_cpu(vmxarea
, cpu
) = vmcs
;
974 static __init
int hardware_setup(void)
976 if (setup_vmcs_config(&vmcs_config
) < 0)
978 return alloc_kvm_area();
981 static __exit
void hardware_unsetup(void)
986 static void fix_pmode_dataseg(int seg
, struct kvm_save_segment
*save
)
988 struct kvm_vmx_segment_field
*sf
= &kvm_vmx_segment_fields
[seg
];
990 if (vmcs_readl(sf
->base
) == save
->base
&& (save
->base
& AR_S_MASK
)) {
991 vmcs_write16(sf
->selector
, save
->selector
);
992 vmcs_writel(sf
->base
, save
->base
);
993 vmcs_write32(sf
->limit
, save
->limit
);
994 vmcs_write32(sf
->ar_bytes
, save
->ar
);
996 u32 dpl
= (vmcs_read16(sf
->selector
) & SELECTOR_RPL_MASK
)
998 vmcs_write32(sf
->ar_bytes
, 0x93 | dpl
);
1002 static void enter_pmode(struct kvm_vcpu
*vcpu
)
1004 unsigned long flags
;
1006 vcpu
->rmode
.active
= 0;
1008 vmcs_writel(GUEST_TR_BASE
, vcpu
->rmode
.tr
.base
);
1009 vmcs_write32(GUEST_TR_LIMIT
, vcpu
->rmode
.tr
.limit
);
1010 vmcs_write32(GUEST_TR_AR_BYTES
, vcpu
->rmode
.tr
.ar
);
1012 flags
= vmcs_readl(GUEST_RFLAGS
);
1013 flags
&= ~(IOPL_MASK
| X86_EFLAGS_VM
);
1014 flags
|= (vcpu
->rmode
.save_iopl
<< IOPL_SHIFT
);
1015 vmcs_writel(GUEST_RFLAGS
, flags
);
1017 vmcs_writel(GUEST_CR4
, (vmcs_readl(GUEST_CR4
) & ~X86_CR4_VME
) |
1018 (vmcs_readl(CR4_READ_SHADOW
) & X86_CR4_VME
));
1020 update_exception_bitmap(vcpu
);
1022 fix_pmode_dataseg(VCPU_SREG_ES
, &vcpu
->rmode
.es
);
1023 fix_pmode_dataseg(VCPU_SREG_DS
, &vcpu
->rmode
.ds
);
1024 fix_pmode_dataseg(VCPU_SREG_GS
, &vcpu
->rmode
.gs
);
1025 fix_pmode_dataseg(VCPU_SREG_FS
, &vcpu
->rmode
.fs
);
1027 vmcs_write16(GUEST_SS_SELECTOR
, 0);
1028 vmcs_write32(GUEST_SS_AR_BYTES
, 0x93);
1030 vmcs_write16(GUEST_CS_SELECTOR
,
1031 vmcs_read16(GUEST_CS_SELECTOR
) & ~SELECTOR_RPL_MASK
);
1032 vmcs_write32(GUEST_CS_AR_BYTES
, 0x9b);
1035 static gva_t
rmode_tss_base(struct kvm
* kvm
)
1037 gfn_t base_gfn
= kvm
->memslots
[0].base_gfn
+ kvm
->memslots
[0].npages
- 3;
1038 return base_gfn
<< PAGE_SHIFT
;
1041 static void fix_rmode_seg(int seg
, struct kvm_save_segment
*save
)
1043 struct kvm_vmx_segment_field
*sf
= &kvm_vmx_segment_fields
[seg
];
1045 save
->selector
= vmcs_read16(sf
->selector
);
1046 save
->base
= vmcs_readl(sf
->base
);
1047 save
->limit
= vmcs_read32(sf
->limit
);
1048 save
->ar
= vmcs_read32(sf
->ar_bytes
);
1049 vmcs_write16(sf
->selector
, vmcs_readl(sf
->base
) >> 4);
1050 vmcs_write32(sf
->limit
, 0xffff);
1051 vmcs_write32(sf
->ar_bytes
, 0xf3);
1054 static void enter_rmode(struct kvm_vcpu
*vcpu
)
1056 unsigned long flags
;
1058 vcpu
->rmode
.active
= 1;
1060 vcpu
->rmode
.tr
.base
= vmcs_readl(GUEST_TR_BASE
);
1061 vmcs_writel(GUEST_TR_BASE
, rmode_tss_base(vcpu
->kvm
));
1063 vcpu
->rmode
.tr
.limit
= vmcs_read32(GUEST_TR_LIMIT
);
1064 vmcs_write32(GUEST_TR_LIMIT
, RMODE_TSS_SIZE
- 1);
1066 vcpu
->rmode
.tr
.ar
= vmcs_read32(GUEST_TR_AR_BYTES
);
1067 vmcs_write32(GUEST_TR_AR_BYTES
, 0x008b);
1069 flags
= vmcs_readl(GUEST_RFLAGS
);
1070 vcpu
->rmode
.save_iopl
= (flags
& IOPL_MASK
) >> IOPL_SHIFT
;
1072 flags
|= IOPL_MASK
| X86_EFLAGS_VM
;
1074 vmcs_writel(GUEST_RFLAGS
, flags
);
1075 vmcs_writel(GUEST_CR4
, vmcs_readl(GUEST_CR4
) | X86_CR4_VME
);
1076 update_exception_bitmap(vcpu
);
1078 vmcs_write16(GUEST_SS_SELECTOR
, vmcs_readl(GUEST_SS_BASE
) >> 4);
1079 vmcs_write32(GUEST_SS_LIMIT
, 0xffff);
1080 vmcs_write32(GUEST_SS_AR_BYTES
, 0xf3);
1082 vmcs_write32(GUEST_CS_AR_BYTES
, 0xf3);
1083 vmcs_write32(GUEST_CS_LIMIT
, 0xffff);
1084 if (vmcs_readl(GUEST_CS_BASE
) == 0xffff0000)
1085 vmcs_writel(GUEST_CS_BASE
, 0xf0000);
1086 vmcs_write16(GUEST_CS_SELECTOR
, vmcs_readl(GUEST_CS_BASE
) >> 4);
1088 fix_rmode_seg(VCPU_SREG_ES
, &vcpu
->rmode
.es
);
1089 fix_rmode_seg(VCPU_SREG_DS
, &vcpu
->rmode
.ds
);
1090 fix_rmode_seg(VCPU_SREG_GS
, &vcpu
->rmode
.gs
);
1091 fix_rmode_seg(VCPU_SREG_FS
, &vcpu
->rmode
.fs
);
1093 init_rmode_tss(vcpu
->kvm
);
1096 #ifdef CONFIG_X86_64
1098 static void enter_lmode(struct kvm_vcpu
*vcpu
)
1102 guest_tr_ar
= vmcs_read32(GUEST_TR_AR_BYTES
);
1103 if ((guest_tr_ar
& AR_TYPE_MASK
) != AR_TYPE_BUSY_64_TSS
) {
1104 printk(KERN_DEBUG
"%s: tss fixup for long mode. \n",
1106 vmcs_write32(GUEST_TR_AR_BYTES
,
1107 (guest_tr_ar
& ~AR_TYPE_MASK
)
1108 | AR_TYPE_BUSY_64_TSS
);
1111 vcpu
->shadow_efer
|= EFER_LMA
;
1113 find_msr_entry(to_vmx(vcpu
), MSR_EFER
)->data
|= EFER_LMA
| EFER_LME
;
1114 vmcs_write32(VM_ENTRY_CONTROLS
,
1115 vmcs_read32(VM_ENTRY_CONTROLS
)
1116 | VM_ENTRY_IA32E_MODE
);
1119 static void exit_lmode(struct kvm_vcpu
*vcpu
)
1121 vcpu
->shadow_efer
&= ~EFER_LMA
;
1123 vmcs_write32(VM_ENTRY_CONTROLS
,
1124 vmcs_read32(VM_ENTRY_CONTROLS
)
1125 & ~VM_ENTRY_IA32E_MODE
);
1130 static void vmx_decache_cr4_guest_bits(struct kvm_vcpu
*vcpu
)
1132 vcpu
->cr4
&= KVM_GUEST_CR4_MASK
;
1133 vcpu
->cr4
|= vmcs_readl(GUEST_CR4
) & ~KVM_GUEST_CR4_MASK
;
1136 static void vmx_set_cr0(struct kvm_vcpu
*vcpu
, unsigned long cr0
)
1138 vmx_fpu_deactivate(vcpu
);
1140 if (vcpu
->rmode
.active
&& (cr0
& X86_CR0_PE
))
1143 if (!vcpu
->rmode
.active
&& !(cr0
& X86_CR0_PE
))
1146 #ifdef CONFIG_X86_64
1147 if (vcpu
->shadow_efer
& EFER_LME
) {
1148 if (!is_paging(vcpu
) && (cr0
& X86_CR0_PG
))
1150 if (is_paging(vcpu
) && !(cr0
& X86_CR0_PG
))
1155 vmcs_writel(CR0_READ_SHADOW
, cr0
);
1156 vmcs_writel(GUEST_CR0
,
1157 (cr0
& ~KVM_GUEST_CR0_MASK
) | KVM_VM_CR0_ALWAYS_ON
);
1160 if (!(cr0
& X86_CR0_TS
) || !(cr0
& X86_CR0_PE
))
1161 vmx_fpu_activate(vcpu
);
1164 static void vmx_set_cr3(struct kvm_vcpu
*vcpu
, unsigned long cr3
)
1166 vmcs_writel(GUEST_CR3
, cr3
);
1167 if (vcpu
->cr0
& X86_CR0_PE
)
1168 vmx_fpu_deactivate(vcpu
);
1171 static void vmx_set_cr4(struct kvm_vcpu
*vcpu
, unsigned long cr4
)
1173 vmcs_writel(CR4_READ_SHADOW
, cr4
);
1174 vmcs_writel(GUEST_CR4
, cr4
| (vcpu
->rmode
.active
?
1175 KVM_RMODE_VM_CR4_ALWAYS_ON
: KVM_PMODE_VM_CR4_ALWAYS_ON
));
1179 #ifdef CONFIG_X86_64
1181 static void vmx_set_efer(struct kvm_vcpu
*vcpu
, u64 efer
)
1183 struct vcpu_vmx
*vmx
= to_vmx(vcpu
);
1184 struct kvm_msr_entry
*msr
= find_msr_entry(vmx
, MSR_EFER
);
1186 vcpu
->shadow_efer
= efer
;
1187 if (efer
& EFER_LMA
) {
1188 vmcs_write32(VM_ENTRY_CONTROLS
,
1189 vmcs_read32(VM_ENTRY_CONTROLS
) |
1190 VM_ENTRY_IA32E_MODE
);
1194 vmcs_write32(VM_ENTRY_CONTROLS
,
1195 vmcs_read32(VM_ENTRY_CONTROLS
) &
1196 ~VM_ENTRY_IA32E_MODE
);
1198 msr
->data
= efer
& ~EFER_LME
;
1205 static u64
vmx_get_segment_base(struct kvm_vcpu
*vcpu
, int seg
)
1207 struct kvm_vmx_segment_field
*sf
= &kvm_vmx_segment_fields
[seg
];
1209 return vmcs_readl(sf
->base
);
1212 static void vmx_get_segment(struct kvm_vcpu
*vcpu
,
1213 struct kvm_segment
*var
, int seg
)
1215 struct kvm_vmx_segment_field
*sf
= &kvm_vmx_segment_fields
[seg
];
1218 var
->base
= vmcs_readl(sf
->base
);
1219 var
->limit
= vmcs_read32(sf
->limit
);
1220 var
->selector
= vmcs_read16(sf
->selector
);
1221 ar
= vmcs_read32(sf
->ar_bytes
);
1222 if (ar
& AR_UNUSABLE_MASK
)
1224 var
->type
= ar
& 15;
1225 var
->s
= (ar
>> 4) & 1;
1226 var
->dpl
= (ar
>> 5) & 3;
1227 var
->present
= (ar
>> 7) & 1;
1228 var
->avl
= (ar
>> 12) & 1;
1229 var
->l
= (ar
>> 13) & 1;
1230 var
->db
= (ar
>> 14) & 1;
1231 var
->g
= (ar
>> 15) & 1;
1232 var
->unusable
= (ar
>> 16) & 1;
1235 static u32
vmx_segment_access_rights(struct kvm_segment
*var
)
1242 ar
= var
->type
& 15;
1243 ar
|= (var
->s
& 1) << 4;
1244 ar
|= (var
->dpl
& 3) << 5;
1245 ar
|= (var
->present
& 1) << 7;
1246 ar
|= (var
->avl
& 1) << 12;
1247 ar
|= (var
->l
& 1) << 13;
1248 ar
|= (var
->db
& 1) << 14;
1249 ar
|= (var
->g
& 1) << 15;
1251 if (ar
== 0) /* a 0 value means unusable */
1252 ar
= AR_UNUSABLE_MASK
;
1257 static void vmx_set_segment(struct kvm_vcpu
*vcpu
,
1258 struct kvm_segment
*var
, int seg
)
1260 struct kvm_vmx_segment_field
*sf
= &kvm_vmx_segment_fields
[seg
];
1263 if (vcpu
->rmode
.active
&& seg
== VCPU_SREG_TR
) {
1264 vcpu
->rmode
.tr
.selector
= var
->selector
;
1265 vcpu
->rmode
.tr
.base
= var
->base
;
1266 vcpu
->rmode
.tr
.limit
= var
->limit
;
1267 vcpu
->rmode
.tr
.ar
= vmx_segment_access_rights(var
);
1270 vmcs_writel(sf
->base
, var
->base
);
1271 vmcs_write32(sf
->limit
, var
->limit
);
1272 vmcs_write16(sf
->selector
, var
->selector
);
1273 if (vcpu
->rmode
.active
&& var
->s
) {
1275 * Hack real-mode segments into vm86 compatibility.
1277 if (var
->base
== 0xffff0000 && var
->selector
== 0xf000)
1278 vmcs_writel(sf
->base
, 0xf0000);
1281 ar
= vmx_segment_access_rights(var
);
1282 vmcs_write32(sf
->ar_bytes
, ar
);
1285 static void vmx_get_cs_db_l_bits(struct kvm_vcpu
*vcpu
, int *db
, int *l
)
1287 u32 ar
= vmcs_read32(GUEST_CS_AR_BYTES
);
1289 *db
= (ar
>> 14) & 1;
1290 *l
= (ar
>> 13) & 1;
1293 static void vmx_get_idt(struct kvm_vcpu
*vcpu
, struct descriptor_table
*dt
)
1295 dt
->limit
= vmcs_read32(GUEST_IDTR_LIMIT
);
1296 dt
->base
= vmcs_readl(GUEST_IDTR_BASE
);
1299 static void vmx_set_idt(struct kvm_vcpu
*vcpu
, struct descriptor_table
*dt
)
1301 vmcs_write32(GUEST_IDTR_LIMIT
, dt
->limit
);
1302 vmcs_writel(GUEST_IDTR_BASE
, dt
->base
);
1305 static void vmx_get_gdt(struct kvm_vcpu
*vcpu
, struct descriptor_table
*dt
)
1307 dt
->limit
= vmcs_read32(GUEST_GDTR_LIMIT
);
1308 dt
->base
= vmcs_readl(GUEST_GDTR_BASE
);
1311 static void vmx_set_gdt(struct kvm_vcpu
*vcpu
, struct descriptor_table
*dt
)
1313 vmcs_write32(GUEST_GDTR_LIMIT
, dt
->limit
);
1314 vmcs_writel(GUEST_GDTR_BASE
, dt
->base
);
1317 static int init_rmode_tss(struct kvm
* kvm
)
1319 struct page
*p1
, *p2
, *p3
;
1320 gfn_t fn
= rmode_tss_base(kvm
) >> PAGE_SHIFT
;
1323 p1
= gfn_to_page(kvm
, fn
++);
1324 p2
= gfn_to_page(kvm
, fn
++);
1325 p3
= gfn_to_page(kvm
, fn
);
1327 if (!p1
|| !p2
|| !p3
) {
1328 kvm_printf(kvm
,"%s: gfn_to_page failed\n", __FUNCTION__
);
1332 page
= kmap_atomic(p1
, KM_USER0
);
1334 *(u16
*)(page
+ 0x66) = TSS_BASE_SIZE
+ TSS_REDIRECTION_SIZE
;
1335 kunmap_atomic(page
, KM_USER0
);
1337 page
= kmap_atomic(p2
, KM_USER0
);
1339 kunmap_atomic(page
, KM_USER0
);
1341 page
= kmap_atomic(p3
, KM_USER0
);
1343 *(page
+ RMODE_TSS_SIZE
- 2 * PAGE_SIZE
- 1) = ~0;
1344 kunmap_atomic(page
, KM_USER0
);
1349 static void seg_setup(int seg
)
1351 struct kvm_vmx_segment_field
*sf
= &kvm_vmx_segment_fields
[seg
];
1353 vmcs_write16(sf
->selector
, 0);
1354 vmcs_writel(sf
->base
, 0);
1355 vmcs_write32(sf
->limit
, 0xffff);
1356 vmcs_write32(sf
->ar_bytes
, 0x93);
1360 * Sets up the vmcs for emulated real mode.
1362 static int vmx_vcpu_setup(struct vcpu_vmx
*vmx
)
1364 u32 host_sysenter_cs
;
1367 struct descriptor_table dt
;
1370 unsigned long kvm_vmx_return
;
1372 if (!init_rmode_tss(vmx
->vcpu
.kvm
)) {
1377 vmx
->vcpu
.regs
[VCPU_REGS_RDX
] = get_rdx_init_val();
1379 vmx
->vcpu
.apic_base
= 0xfee00000 | MSR_IA32_APICBASE_ENABLE
;
1380 if (vmx
->vcpu
.vcpu_id
== 0)
1381 vmx
->vcpu
.apic_base
|= MSR_IA32_APICBASE_BSP
;
1383 fx_init(&vmx
->vcpu
);
1386 * GUEST_CS_BASE should really be 0xffff0000, but VT vm86 mode
1387 * insists on having GUEST_CS_BASE == GUEST_CS_SELECTOR << 4. Sigh.
1389 vmcs_write16(GUEST_CS_SELECTOR
, 0xf000);
1390 vmcs_writel(GUEST_CS_BASE
, 0x000f0000);
1391 vmcs_write32(GUEST_CS_LIMIT
, 0xffff);
1392 vmcs_write32(GUEST_CS_AR_BYTES
, 0x9b);
1394 seg_setup(VCPU_SREG_DS
);
1395 seg_setup(VCPU_SREG_ES
);
1396 seg_setup(VCPU_SREG_FS
);
1397 seg_setup(VCPU_SREG_GS
);
1398 seg_setup(VCPU_SREG_SS
);
1400 vmcs_write16(GUEST_TR_SELECTOR
, 0);
1401 vmcs_writel(GUEST_TR_BASE
, 0);
1402 vmcs_write32(GUEST_TR_LIMIT
, 0xffff);
1403 vmcs_write32(GUEST_TR_AR_BYTES
, 0x008b);
1405 vmcs_write16(GUEST_LDTR_SELECTOR
, 0);
1406 vmcs_writel(GUEST_LDTR_BASE
, 0);
1407 vmcs_write32(GUEST_LDTR_LIMIT
, 0xffff);
1408 vmcs_write32(GUEST_LDTR_AR_BYTES
, 0x00082);
1410 vmcs_write32(GUEST_SYSENTER_CS
, 0);
1411 vmcs_writel(GUEST_SYSENTER_ESP
, 0);
1412 vmcs_writel(GUEST_SYSENTER_EIP
, 0);
1414 vmcs_writel(GUEST_RFLAGS
, 0x02);
1415 vmcs_writel(GUEST_RIP
, 0xfff0);
1416 vmcs_writel(GUEST_RSP
, 0);
1418 //todo: dr0 = dr1 = dr2 = dr3 = 0; dr6 = 0xffff0ff0
1419 vmcs_writel(GUEST_DR7
, 0x400);
1421 vmcs_writel(GUEST_GDTR_BASE
, 0);
1422 vmcs_write32(GUEST_GDTR_LIMIT
, 0xffff);
1424 vmcs_writel(GUEST_IDTR_BASE
, 0);
1425 vmcs_write32(GUEST_IDTR_LIMIT
, 0xffff);
1427 vmcs_write32(GUEST_ACTIVITY_STATE
, 0);
1428 vmcs_write32(GUEST_INTERRUPTIBILITY_INFO
, 0);
1429 vmcs_write32(GUEST_PENDING_DBG_EXCEPTIONS
, 0);
1432 vmcs_write64(IO_BITMAP_A
, page_to_phys(vmx_io_bitmap_a
));
1433 vmcs_write64(IO_BITMAP_B
, page_to_phys(vmx_io_bitmap_b
));
1437 vmcs_write64(VMCS_LINK_POINTER
, -1ull); /* 22.3.1.5 */
1439 /* Special registers */
1440 vmcs_write64(GUEST_IA32_DEBUGCTL
, 0);
1443 vmcs_write32(PIN_BASED_VM_EXEC_CONTROL
,
1444 vmcs_config
.pin_based_exec_ctrl
);
1445 vmcs_write32(CPU_BASED_VM_EXEC_CONTROL
,
1446 vmcs_config
.cpu_based_exec_ctrl
);
1448 vmcs_write32(PAGE_FAULT_ERROR_CODE_MASK
, 0);
1449 vmcs_write32(PAGE_FAULT_ERROR_CODE_MATCH
, 0);
1450 vmcs_write32(CR3_TARGET_COUNT
, 0); /* 22.2.1 */
1452 vmcs_writel(HOST_CR0
, read_cr0()); /* 22.2.3 */
1453 vmcs_writel(HOST_CR4
, read_cr4()); /* 22.2.3, 22.2.5 */
1454 vmcs_writel(HOST_CR3
, read_cr3()); /* 22.2.3 FIXME: shadow tables */
1456 vmcs_write16(HOST_CS_SELECTOR
, __KERNEL_CS
); /* 22.2.4 */
1457 vmcs_write16(HOST_DS_SELECTOR
, __KERNEL_DS
); /* 22.2.4 */
1458 vmcs_write16(HOST_ES_SELECTOR
, __KERNEL_DS
); /* 22.2.4 */
1459 vmcs_write16(HOST_FS_SELECTOR
, read_fs()); /* 22.2.4 */
1460 vmcs_write16(HOST_GS_SELECTOR
, read_gs()); /* 22.2.4 */
1461 vmcs_write16(HOST_SS_SELECTOR
, __KERNEL_DS
); /* 22.2.4 */
1462 #ifdef CONFIG_X86_64
1463 rdmsrl(MSR_FS_BASE
, a
);
1464 vmcs_writel(HOST_FS_BASE
, a
); /* 22.2.4 */
1465 rdmsrl(MSR_GS_BASE
, a
);
1466 vmcs_writel(HOST_GS_BASE
, a
); /* 22.2.4 */
1468 vmcs_writel(HOST_FS_BASE
, 0); /* 22.2.4 */
1469 vmcs_writel(HOST_GS_BASE
, 0); /* 22.2.4 */
1472 vmcs_write16(HOST_TR_SELECTOR
, GDT_ENTRY_TSS
*8); /* 22.2.4 */
1475 vmcs_writel(HOST_IDTR_BASE
, dt
.base
); /* 22.2.4 */
1477 asm ("mov $.Lkvm_vmx_return, %0" : "=r"(kvm_vmx_return
));
1478 vmcs_writel(HOST_RIP
, kvm_vmx_return
); /* 22.2.5 */
1479 vmcs_write32(VM_EXIT_MSR_STORE_COUNT
, 0);
1480 vmcs_write32(VM_EXIT_MSR_LOAD_COUNT
, 0);
1481 vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT
, 0);
1483 rdmsr(MSR_IA32_SYSENTER_CS
, host_sysenter_cs
, junk
);
1484 vmcs_write32(HOST_IA32_SYSENTER_CS
, host_sysenter_cs
);
1485 rdmsrl(MSR_IA32_SYSENTER_ESP
, a
);
1486 vmcs_writel(HOST_IA32_SYSENTER_ESP
, a
); /* 22.2.3 */
1487 rdmsrl(MSR_IA32_SYSENTER_EIP
, a
);
1488 vmcs_writel(HOST_IA32_SYSENTER_EIP
, a
); /* 22.2.3 */
1490 for (i
= 0; i
< NR_VMX_MSR
; ++i
) {
1491 u32 index
= vmx_msr_index
[i
];
1492 u32 data_low
, data_high
;
1496 if (rdmsr_safe(index
, &data_low
, &data_high
) < 0)
1498 if (wrmsr_safe(index
, data_low
, data_high
) < 0)
1500 data
= data_low
| ((u64
)data_high
<< 32);
1501 vmx
->host_msrs
[j
].index
= index
;
1502 vmx
->host_msrs
[j
].reserved
= 0;
1503 vmx
->host_msrs
[j
].data
= data
;
1504 vmx
->guest_msrs
[j
] = vmx
->host_msrs
[j
];
1510 vmcs_write32(VM_EXIT_CONTROLS
, vmcs_config
.vmexit_ctrl
);
1512 /* 22.2.1, 20.8.1 */
1513 vmcs_write32(VM_ENTRY_CONTROLS
, vmcs_config
.vmentry_ctrl
);
1515 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD
, 0); /* 22.2.1 */
1517 #ifdef CONFIG_X86_64
1518 vmcs_writel(VIRTUAL_APIC_PAGE_ADDR
, 0);
1519 vmcs_writel(TPR_THRESHOLD
, 0);
1522 vmcs_writel(CR0_GUEST_HOST_MASK
, ~0UL);
1523 vmcs_writel(CR4_GUEST_HOST_MASK
, KVM_GUEST_CR4_MASK
);
1525 vmx
->vcpu
.cr0
= 0x60000010;
1526 vmx_set_cr0(&vmx
->vcpu
, vmx
->vcpu
.cr0
); // enter rmode
1527 vmx_set_cr4(&vmx
->vcpu
, 0);
1528 #ifdef CONFIG_X86_64
1529 vmx_set_efer(&vmx
->vcpu
, 0);
1531 vmx_fpu_activate(&vmx
->vcpu
);
1532 update_exception_bitmap(&vmx
->vcpu
);
1540 static void inject_rmode_irq(struct kvm_vcpu
*vcpu
, int irq
)
1545 unsigned long flags
;
1546 unsigned long ss_base
= vmcs_readl(GUEST_SS_BASE
);
1547 u16 sp
= vmcs_readl(GUEST_RSP
);
1548 u32 ss_limit
= vmcs_read32(GUEST_SS_LIMIT
);
1550 if (sp
> ss_limit
|| sp
< 6 ) {
1551 vcpu_printf(vcpu
, "%s: #SS, rsp 0x%lx ss 0x%lx limit 0x%x\n",
1553 vmcs_readl(GUEST_RSP
),
1554 vmcs_readl(GUEST_SS_BASE
),
1555 vmcs_read32(GUEST_SS_LIMIT
));
1559 if (emulator_read_std(irq
* sizeof(ent
), &ent
, sizeof(ent
), vcpu
) !=
1561 vcpu_printf(vcpu
, "%s: read guest err\n", __FUNCTION__
);
1565 flags
= vmcs_readl(GUEST_RFLAGS
);
1566 cs
= vmcs_readl(GUEST_CS_BASE
) >> 4;
1567 ip
= vmcs_readl(GUEST_RIP
);
1570 if (emulator_write_emulated(ss_base
+ sp
- 2, &flags
, 2, vcpu
) != X86EMUL_CONTINUE
||
1571 emulator_write_emulated(ss_base
+ sp
- 4, &cs
, 2, vcpu
) != X86EMUL_CONTINUE
||
1572 emulator_write_emulated(ss_base
+ sp
- 6, &ip
, 2, vcpu
) != X86EMUL_CONTINUE
) {
1573 vcpu_printf(vcpu
, "%s: write guest err\n", __FUNCTION__
);
1577 vmcs_writel(GUEST_RFLAGS
, flags
&
1578 ~( X86_EFLAGS_IF
| X86_EFLAGS_AC
| X86_EFLAGS_TF
));
1579 vmcs_write16(GUEST_CS_SELECTOR
, ent
[1]) ;
1580 vmcs_writel(GUEST_CS_BASE
, ent
[1] << 4);
1581 vmcs_writel(GUEST_RIP
, ent
[0]);
1582 vmcs_writel(GUEST_RSP
, (vmcs_readl(GUEST_RSP
) & ~0xffff) | (sp
- 6));
1585 static void kvm_do_inject_irq(struct kvm_vcpu
*vcpu
)
1587 int word_index
= __ffs(vcpu
->irq_summary
);
1588 int bit_index
= __ffs(vcpu
->irq_pending
[word_index
]);
1589 int irq
= word_index
* BITS_PER_LONG
+ bit_index
;
1591 clear_bit(bit_index
, &vcpu
->irq_pending
[word_index
]);
1592 if (!vcpu
->irq_pending
[word_index
])
1593 clear_bit(word_index
, &vcpu
->irq_summary
);
1595 if (vcpu
->rmode
.active
) {
1596 inject_rmode_irq(vcpu
, irq
);
1599 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD
,
1600 irq
| INTR_TYPE_EXT_INTR
| INTR_INFO_VALID_MASK
);
1604 static void do_interrupt_requests(struct kvm_vcpu
*vcpu
,
1605 struct kvm_run
*kvm_run
)
1607 u32 cpu_based_vm_exec_control
;
1609 vcpu
->interrupt_window_open
=
1610 ((vmcs_readl(GUEST_RFLAGS
) & X86_EFLAGS_IF
) &&
1611 (vmcs_read32(GUEST_INTERRUPTIBILITY_INFO
) & 3) == 0);
1613 if (vcpu
->interrupt_window_open
&&
1614 vcpu
->irq_summary
&&
1615 !(vmcs_read32(VM_ENTRY_INTR_INFO_FIELD
) & INTR_INFO_VALID_MASK
))
1617 * If interrupts enabled, and not blocked by sti or mov ss. Good.
1619 kvm_do_inject_irq(vcpu
);
1621 cpu_based_vm_exec_control
= vmcs_read32(CPU_BASED_VM_EXEC_CONTROL
);
1622 if (!vcpu
->interrupt_window_open
&&
1623 (vcpu
->irq_summary
|| kvm_run
->request_interrupt_window
))
1625 * Interrupts blocked. Wait for unblock.
1627 cpu_based_vm_exec_control
|= CPU_BASED_VIRTUAL_INTR_PENDING
;
1629 cpu_based_vm_exec_control
&= ~CPU_BASED_VIRTUAL_INTR_PENDING
;
1630 vmcs_write32(CPU_BASED_VM_EXEC_CONTROL
, cpu_based_vm_exec_control
);
1633 static void kvm_guest_debug_pre(struct kvm_vcpu
*vcpu
)
1635 struct kvm_guest_debug
*dbg
= &vcpu
->guest_debug
;
1637 set_debugreg(dbg
->bp
[0], 0);
1638 set_debugreg(dbg
->bp
[1], 1);
1639 set_debugreg(dbg
->bp
[2], 2);
1640 set_debugreg(dbg
->bp
[3], 3);
1642 if (dbg
->singlestep
) {
1643 unsigned long flags
;
1645 flags
= vmcs_readl(GUEST_RFLAGS
);
1646 flags
|= X86_EFLAGS_TF
| X86_EFLAGS_RF
;
1647 vmcs_writel(GUEST_RFLAGS
, flags
);
1651 static int handle_rmode_exception(struct kvm_vcpu
*vcpu
,
1652 int vec
, u32 err_code
)
1654 if (!vcpu
->rmode
.active
)
1658 * Instruction with address size override prefix opcode 0x67
1659 * Cause the #SS fault with 0 error code in VM86 mode.
1661 if (((vec
== GP_VECTOR
) || (vec
== SS_VECTOR
)) && err_code
== 0)
1662 if (emulate_instruction(vcpu
, NULL
, 0, 0) == EMULATE_DONE
)
1667 static int handle_exception(struct kvm_vcpu
*vcpu
, struct kvm_run
*kvm_run
)
1669 u32 intr_info
, error_code
;
1670 unsigned long cr2
, rip
;
1672 enum emulation_result er
;
1675 vect_info
= vmcs_read32(IDT_VECTORING_INFO_FIELD
);
1676 intr_info
= vmcs_read32(VM_EXIT_INTR_INFO
);
1678 if ((vect_info
& VECTORING_INFO_VALID_MASK
) &&
1679 !is_page_fault(intr_info
)) {
1680 printk(KERN_ERR
"%s: unexpected, vectoring info 0x%x "
1681 "intr info 0x%x\n", __FUNCTION__
, vect_info
, intr_info
);
1684 if (is_external_interrupt(vect_info
)) {
1685 int irq
= vect_info
& VECTORING_INFO_VECTOR_MASK
;
1686 set_bit(irq
, vcpu
->irq_pending
);
1687 set_bit(irq
/ BITS_PER_LONG
, &vcpu
->irq_summary
);
1690 if ((intr_info
& INTR_INFO_INTR_TYPE_MASK
) == 0x200) { /* nmi */
1695 if (is_no_device(intr_info
)) {
1696 vmx_fpu_activate(vcpu
);
1701 rip
= vmcs_readl(GUEST_RIP
);
1702 if (intr_info
& INTR_INFO_DELIEVER_CODE_MASK
)
1703 error_code
= vmcs_read32(VM_EXIT_INTR_ERROR_CODE
);
1704 if (is_page_fault(intr_info
)) {
1705 cr2
= vmcs_readl(EXIT_QUALIFICATION
);
1707 mutex_lock(&vcpu
->kvm
->lock
);
1708 r
= kvm_mmu_page_fault(vcpu
, cr2
, error_code
);
1710 mutex_unlock(&vcpu
->kvm
->lock
);
1714 mutex_unlock(&vcpu
->kvm
->lock
);
1718 er
= emulate_instruction(vcpu
, kvm_run
, cr2
, error_code
);
1719 mutex_unlock(&vcpu
->kvm
->lock
);
1724 case EMULATE_DO_MMIO
:
1725 ++vcpu
->stat
.mmio_exits
;
1728 vcpu_printf(vcpu
, "%s: emulate fail\n", __FUNCTION__
);
1735 if (vcpu
->rmode
.active
&&
1736 handle_rmode_exception(vcpu
, intr_info
& INTR_INFO_VECTOR_MASK
,
1738 if (vcpu
->halt_request
) {
1739 vcpu
->halt_request
= 0;
1740 return kvm_emulate_halt(vcpu
);
1745 if ((intr_info
& (INTR_INFO_INTR_TYPE_MASK
| INTR_INFO_VECTOR_MASK
)) == (INTR_TYPE_EXCEPTION
| 1)) {
1746 kvm_run
->exit_reason
= KVM_EXIT_DEBUG
;
1749 kvm_run
->exit_reason
= KVM_EXIT_EXCEPTION
;
1750 kvm_run
->ex
.exception
= intr_info
& INTR_INFO_VECTOR_MASK
;
1751 kvm_run
->ex
.error_code
= error_code
;
1755 static int handle_external_interrupt(struct kvm_vcpu
*vcpu
,
1756 struct kvm_run
*kvm_run
)
1758 ++vcpu
->stat
.irq_exits
;
1762 static int handle_triple_fault(struct kvm_vcpu
*vcpu
, struct kvm_run
*kvm_run
)
1764 kvm_run
->exit_reason
= KVM_EXIT_SHUTDOWN
;
1768 static int handle_io(struct kvm_vcpu
*vcpu
, struct kvm_run
*kvm_run
)
1770 u64 exit_qualification
;
1771 int size
, down
, in
, string
, rep
;
1774 ++vcpu
->stat
.io_exits
;
1775 exit_qualification
= vmcs_read64(EXIT_QUALIFICATION
);
1776 string
= (exit_qualification
& 16) != 0;
1779 if (emulate_instruction(vcpu
, kvm_run
, 0, 0) == EMULATE_DO_MMIO
)
1784 size
= (exit_qualification
& 7) + 1;
1785 in
= (exit_qualification
& 8) != 0;
1786 down
= (vmcs_readl(GUEST_RFLAGS
) & X86_EFLAGS_DF
) != 0;
1787 rep
= (exit_qualification
& 32) != 0;
1788 port
= exit_qualification
>> 16;
1790 return kvm_emulate_pio(vcpu
, kvm_run
, in
, size
, port
);
1794 vmx_patch_hypercall(struct kvm_vcpu
*vcpu
, unsigned char *hypercall
)
1797 * Patch in the VMCALL instruction:
1799 hypercall
[0] = 0x0f;
1800 hypercall
[1] = 0x01;
1801 hypercall
[2] = 0xc1;
1802 hypercall
[3] = 0xc3;
1805 static int handle_cr(struct kvm_vcpu
*vcpu
, struct kvm_run
*kvm_run
)
1807 u64 exit_qualification
;
1811 exit_qualification
= vmcs_read64(EXIT_QUALIFICATION
);
1812 cr
= exit_qualification
& 15;
1813 reg
= (exit_qualification
>> 8) & 15;
1814 switch ((exit_qualification
>> 4) & 3) {
1815 case 0: /* mov to cr */
1818 vcpu_load_rsp_rip(vcpu
);
1819 set_cr0(vcpu
, vcpu
->regs
[reg
]);
1820 skip_emulated_instruction(vcpu
);
1823 vcpu_load_rsp_rip(vcpu
);
1824 set_cr3(vcpu
, vcpu
->regs
[reg
]);
1825 skip_emulated_instruction(vcpu
);
1828 vcpu_load_rsp_rip(vcpu
);
1829 set_cr4(vcpu
, vcpu
->regs
[reg
]);
1830 skip_emulated_instruction(vcpu
);
1833 vcpu_load_rsp_rip(vcpu
);
1834 set_cr8(vcpu
, vcpu
->regs
[reg
]);
1835 skip_emulated_instruction(vcpu
);
1836 kvm_run
->exit_reason
= KVM_EXIT_SET_TPR
;
1841 vcpu_load_rsp_rip(vcpu
);
1842 vmx_fpu_deactivate(vcpu
);
1843 vcpu
->cr0
&= ~X86_CR0_TS
;
1844 vmcs_writel(CR0_READ_SHADOW
, vcpu
->cr0
);
1845 vmx_fpu_activate(vcpu
);
1846 skip_emulated_instruction(vcpu
);
1848 case 1: /*mov from cr*/
1851 vcpu_load_rsp_rip(vcpu
);
1852 vcpu
->regs
[reg
] = vcpu
->cr3
;
1853 vcpu_put_rsp_rip(vcpu
);
1854 skip_emulated_instruction(vcpu
);
1857 vcpu_load_rsp_rip(vcpu
);
1858 vcpu
->regs
[reg
] = vcpu
->cr8
;
1859 vcpu_put_rsp_rip(vcpu
);
1860 skip_emulated_instruction(vcpu
);
1865 lmsw(vcpu
, (exit_qualification
>> LMSW_SOURCE_DATA_SHIFT
) & 0x0f);
1867 skip_emulated_instruction(vcpu
);
1872 kvm_run
->exit_reason
= 0;
1873 pr_unimpl(vcpu
, "unhandled control register: op %d cr %d\n",
1874 (int)(exit_qualification
>> 4) & 3, cr
);
1878 static int handle_dr(struct kvm_vcpu
*vcpu
, struct kvm_run
*kvm_run
)
1880 u64 exit_qualification
;
1885 * FIXME: this code assumes the host is debugging the guest.
1886 * need to deal with guest debugging itself too.
1888 exit_qualification
= vmcs_read64(EXIT_QUALIFICATION
);
1889 dr
= exit_qualification
& 7;
1890 reg
= (exit_qualification
>> 8) & 15;
1891 vcpu_load_rsp_rip(vcpu
);
1892 if (exit_qualification
& 16) {
1904 vcpu
->regs
[reg
] = val
;
1908 vcpu_put_rsp_rip(vcpu
);
1909 skip_emulated_instruction(vcpu
);
1913 static int handle_cpuid(struct kvm_vcpu
*vcpu
, struct kvm_run
*kvm_run
)
1915 kvm_emulate_cpuid(vcpu
);
1919 static int handle_rdmsr(struct kvm_vcpu
*vcpu
, struct kvm_run
*kvm_run
)
1921 u32 ecx
= vcpu
->regs
[VCPU_REGS_RCX
];
1924 if (vmx_get_msr(vcpu
, ecx
, &data
)) {
1925 vmx_inject_gp(vcpu
, 0);
1929 /* FIXME: handling of bits 32:63 of rax, rdx */
1930 vcpu
->regs
[VCPU_REGS_RAX
] = data
& -1u;
1931 vcpu
->regs
[VCPU_REGS_RDX
] = (data
>> 32) & -1u;
1932 skip_emulated_instruction(vcpu
);
1936 static int handle_wrmsr(struct kvm_vcpu
*vcpu
, struct kvm_run
*kvm_run
)
1938 u32 ecx
= vcpu
->regs
[VCPU_REGS_RCX
];
1939 u64 data
= (vcpu
->regs
[VCPU_REGS_RAX
] & -1u)
1940 | ((u64
)(vcpu
->regs
[VCPU_REGS_RDX
] & -1u) << 32);
1942 if (vmx_set_msr(vcpu
, ecx
, data
) != 0) {
1943 vmx_inject_gp(vcpu
, 0);
1947 skip_emulated_instruction(vcpu
);
1951 static void post_kvm_run_save(struct kvm_vcpu
*vcpu
,
1952 struct kvm_run
*kvm_run
)
1954 kvm_run
->if_flag
= (vmcs_readl(GUEST_RFLAGS
) & X86_EFLAGS_IF
) != 0;
1955 kvm_run
->cr8
= vcpu
->cr8
;
1956 kvm_run
->apic_base
= vcpu
->apic_base
;
1957 kvm_run
->ready_for_interrupt_injection
= (vcpu
->interrupt_window_open
&&
1958 vcpu
->irq_summary
== 0);
1961 static int handle_interrupt_window(struct kvm_vcpu
*vcpu
,
1962 struct kvm_run
*kvm_run
)
1965 * If the user space waits to inject interrupts, exit as soon as
1968 if (kvm_run
->request_interrupt_window
&&
1969 !vcpu
->irq_summary
) {
1970 kvm_run
->exit_reason
= KVM_EXIT_IRQ_WINDOW_OPEN
;
1971 ++vcpu
->stat
.irq_window_exits
;
1977 static int handle_halt(struct kvm_vcpu
*vcpu
, struct kvm_run
*kvm_run
)
1979 skip_emulated_instruction(vcpu
);
1980 return kvm_emulate_halt(vcpu
);
1983 static int handle_vmcall(struct kvm_vcpu
*vcpu
, struct kvm_run
*kvm_run
)
1985 skip_emulated_instruction(vcpu
);
1986 return kvm_hypercall(vcpu
, kvm_run
);
1990 * The exit handlers return 1 if the exit was handled fully and guest execution
1991 * may resume. Otherwise they set the kvm_run parameter to indicate what needs
1992 * to be done to userspace and return 0.
1994 static int (*kvm_vmx_exit_handlers
[])(struct kvm_vcpu
*vcpu
,
1995 struct kvm_run
*kvm_run
) = {
1996 [EXIT_REASON_EXCEPTION_NMI
] = handle_exception
,
1997 [EXIT_REASON_EXTERNAL_INTERRUPT
] = handle_external_interrupt
,
1998 [EXIT_REASON_TRIPLE_FAULT
] = handle_triple_fault
,
1999 [EXIT_REASON_IO_INSTRUCTION
] = handle_io
,
2000 [EXIT_REASON_CR_ACCESS
] = handle_cr
,
2001 [EXIT_REASON_DR_ACCESS
] = handle_dr
,
2002 [EXIT_REASON_CPUID
] = handle_cpuid
,
2003 [EXIT_REASON_MSR_READ
] = handle_rdmsr
,
2004 [EXIT_REASON_MSR_WRITE
] = handle_wrmsr
,
2005 [EXIT_REASON_PENDING_INTERRUPT
] = handle_interrupt_window
,
2006 [EXIT_REASON_HLT
] = handle_halt
,
2007 [EXIT_REASON_VMCALL
] = handle_vmcall
,
2010 static const int kvm_vmx_max_exit_handlers
=
2011 ARRAY_SIZE(kvm_vmx_exit_handlers
);
2014 * The guest has exited. See if we can fix it or if we need userspace
2017 static int kvm_handle_exit(struct kvm_run
*kvm_run
, struct kvm_vcpu
*vcpu
)
2019 u32 vectoring_info
= vmcs_read32(IDT_VECTORING_INFO_FIELD
);
2020 u32 exit_reason
= vmcs_read32(VM_EXIT_REASON
);
2022 if ( (vectoring_info
& VECTORING_INFO_VALID_MASK
) &&
2023 exit_reason
!= EXIT_REASON_EXCEPTION_NMI
)
2024 printk(KERN_WARNING
"%s: unexpected, valid vectoring info and "
2025 "exit reason is 0x%x\n", __FUNCTION__
, exit_reason
);
2026 if (exit_reason
< kvm_vmx_max_exit_handlers
2027 && kvm_vmx_exit_handlers
[exit_reason
])
2028 return kvm_vmx_exit_handlers
[exit_reason
](vcpu
, kvm_run
);
2030 kvm_run
->exit_reason
= KVM_EXIT_UNKNOWN
;
2031 kvm_run
->hw
.hardware_exit_reason
= exit_reason
;
2037 * Check if userspace requested an interrupt window, and that the
2038 * interrupt window is open.
2040 * No need to exit to userspace if we already have an interrupt queued.
2042 static int dm_request_for_irq_injection(struct kvm_vcpu
*vcpu
,
2043 struct kvm_run
*kvm_run
)
2045 return (!vcpu
->irq_summary
&&
2046 kvm_run
->request_interrupt_window
&&
2047 vcpu
->interrupt_window_open
&&
2048 (vmcs_readl(GUEST_RFLAGS
) & X86_EFLAGS_IF
));
2051 static void vmx_flush_tlb(struct kvm_vcpu
*vcpu
)
2055 static int vmx_vcpu_run(struct kvm_vcpu
*vcpu
, struct kvm_run
*kvm_run
)
2057 struct vcpu_vmx
*vmx
= to_vmx(vcpu
);
2062 if (vcpu
->guest_debug
.enabled
)
2063 kvm_guest_debug_pre(vcpu
);
2066 r
= kvm_mmu_reload(vcpu
);
2072 vmx_save_host_state(vmx
);
2073 kvm_load_guest_fpu(vcpu
);
2076 * Loading guest fpu may have cleared host cr0.ts
2078 vmcs_writel(HOST_CR0
, read_cr0());
2080 local_irq_disable();
2082 if (signal_pending(current
)) {
2086 kvm_run
->exit_reason
= KVM_EXIT_INTR
;
2087 ++vcpu
->stat
.signal_exits
;
2091 if (!vcpu
->mmio_read_completed
)
2092 do_interrupt_requests(vcpu
, kvm_run
);
2094 vcpu
->guest_mode
= 1;
2096 if (test_and_clear_bit(KVM_TLB_FLUSH
, &vcpu
->requests
))
2097 vmx_flush_tlb(vcpu
);
2100 /* Store host registers */
2101 #ifdef CONFIG_X86_64
2102 "push %%rax; push %%rbx; push %%rdx;"
2103 "push %%rsi; push %%rdi; push %%rbp;"
2104 "push %%r8; push %%r9; push %%r10; push %%r11;"
2105 "push %%r12; push %%r13; push %%r14; push %%r15;"
2107 ASM_VMX_VMWRITE_RSP_RDX
"\n\t"
2109 "pusha; push %%ecx \n\t"
2110 ASM_VMX_VMWRITE_RSP_RDX
"\n\t"
2112 /* Check if vmlaunch of vmresume is needed */
2114 /* Load guest registers. Don't clobber flags. */
2115 #ifdef CONFIG_X86_64
2116 "mov %c[cr2](%3), %%rax \n\t"
2117 "mov %%rax, %%cr2 \n\t"
2118 "mov %c[rax](%3), %%rax \n\t"
2119 "mov %c[rbx](%3), %%rbx \n\t"
2120 "mov %c[rdx](%3), %%rdx \n\t"
2121 "mov %c[rsi](%3), %%rsi \n\t"
2122 "mov %c[rdi](%3), %%rdi \n\t"
2123 "mov %c[rbp](%3), %%rbp \n\t"
2124 "mov %c[r8](%3), %%r8 \n\t"
2125 "mov %c[r9](%3), %%r9 \n\t"
2126 "mov %c[r10](%3), %%r10 \n\t"
2127 "mov %c[r11](%3), %%r11 \n\t"
2128 "mov %c[r12](%3), %%r12 \n\t"
2129 "mov %c[r13](%3), %%r13 \n\t"
2130 "mov %c[r14](%3), %%r14 \n\t"
2131 "mov %c[r15](%3), %%r15 \n\t"
2132 "mov %c[rcx](%3), %%rcx \n\t" /* kills %3 (rcx) */
2134 "mov %c[cr2](%3), %%eax \n\t"
2135 "mov %%eax, %%cr2 \n\t"
2136 "mov %c[rax](%3), %%eax \n\t"
2137 "mov %c[rbx](%3), %%ebx \n\t"
2138 "mov %c[rdx](%3), %%edx \n\t"
2139 "mov %c[rsi](%3), %%esi \n\t"
2140 "mov %c[rdi](%3), %%edi \n\t"
2141 "mov %c[rbp](%3), %%ebp \n\t"
2142 "mov %c[rcx](%3), %%ecx \n\t" /* kills %3 (ecx) */
2144 /* Enter guest mode */
2145 "jne .Llaunched \n\t"
2146 ASM_VMX_VMLAUNCH
"\n\t"
2147 "jmp .Lkvm_vmx_return \n\t"
2148 ".Llaunched: " ASM_VMX_VMRESUME
"\n\t"
2149 ".Lkvm_vmx_return: "
2150 /* Save guest registers, load host registers, keep flags */
2151 #ifdef CONFIG_X86_64
2152 "xchg %3, (%%rsp) \n\t"
2153 "mov %%rax, %c[rax](%3) \n\t"
2154 "mov %%rbx, %c[rbx](%3) \n\t"
2155 "pushq (%%rsp); popq %c[rcx](%3) \n\t"
2156 "mov %%rdx, %c[rdx](%3) \n\t"
2157 "mov %%rsi, %c[rsi](%3) \n\t"
2158 "mov %%rdi, %c[rdi](%3) \n\t"
2159 "mov %%rbp, %c[rbp](%3) \n\t"
2160 "mov %%r8, %c[r8](%3) \n\t"
2161 "mov %%r9, %c[r9](%3) \n\t"
2162 "mov %%r10, %c[r10](%3) \n\t"
2163 "mov %%r11, %c[r11](%3) \n\t"
2164 "mov %%r12, %c[r12](%3) \n\t"
2165 "mov %%r13, %c[r13](%3) \n\t"
2166 "mov %%r14, %c[r14](%3) \n\t"
2167 "mov %%r15, %c[r15](%3) \n\t"
2168 "mov %%cr2, %%rax \n\t"
2169 "mov %%rax, %c[cr2](%3) \n\t"
2170 "mov (%%rsp), %3 \n\t"
2172 "pop %%rcx; pop %%r15; pop %%r14; pop %%r13; pop %%r12;"
2173 "pop %%r11; pop %%r10; pop %%r9; pop %%r8;"
2174 "pop %%rbp; pop %%rdi; pop %%rsi;"
2175 "pop %%rdx; pop %%rbx; pop %%rax \n\t"
2177 "xchg %3, (%%esp) \n\t"
2178 "mov %%eax, %c[rax](%3) \n\t"
2179 "mov %%ebx, %c[rbx](%3) \n\t"
2180 "pushl (%%esp); popl %c[rcx](%3) \n\t"
2181 "mov %%edx, %c[rdx](%3) \n\t"
2182 "mov %%esi, %c[rsi](%3) \n\t"
2183 "mov %%edi, %c[rdi](%3) \n\t"
2184 "mov %%ebp, %c[rbp](%3) \n\t"
2185 "mov %%cr2, %%eax \n\t"
2186 "mov %%eax, %c[cr2](%3) \n\t"
2187 "mov (%%esp), %3 \n\t"
2189 "pop %%ecx; popa \n\t"
2193 : "r"(vmx
->launched
), "d"((unsigned long)HOST_RSP
),
2195 [rax
]"i"(offsetof(struct kvm_vcpu
, regs
[VCPU_REGS_RAX
])),
2196 [rbx
]"i"(offsetof(struct kvm_vcpu
, regs
[VCPU_REGS_RBX
])),
2197 [rcx
]"i"(offsetof(struct kvm_vcpu
, regs
[VCPU_REGS_RCX
])),
2198 [rdx
]"i"(offsetof(struct kvm_vcpu
, regs
[VCPU_REGS_RDX
])),
2199 [rsi
]"i"(offsetof(struct kvm_vcpu
, regs
[VCPU_REGS_RSI
])),
2200 [rdi
]"i"(offsetof(struct kvm_vcpu
, regs
[VCPU_REGS_RDI
])),
2201 [rbp
]"i"(offsetof(struct kvm_vcpu
, regs
[VCPU_REGS_RBP
])),
2202 #ifdef CONFIG_X86_64
2203 [r8
]"i"(offsetof(struct kvm_vcpu
, regs
[VCPU_REGS_R8
])),
2204 [r9
]"i"(offsetof(struct kvm_vcpu
, regs
[VCPU_REGS_R9
])),
2205 [r10
]"i"(offsetof(struct kvm_vcpu
, regs
[VCPU_REGS_R10
])),
2206 [r11
]"i"(offsetof(struct kvm_vcpu
, regs
[VCPU_REGS_R11
])),
2207 [r12
]"i"(offsetof(struct kvm_vcpu
, regs
[VCPU_REGS_R12
])),
2208 [r13
]"i"(offsetof(struct kvm_vcpu
, regs
[VCPU_REGS_R13
])),
2209 [r14
]"i"(offsetof(struct kvm_vcpu
, regs
[VCPU_REGS_R14
])),
2210 [r15
]"i"(offsetof(struct kvm_vcpu
, regs
[VCPU_REGS_R15
])),
2212 [cr2
]"i"(offsetof(struct kvm_vcpu
, cr2
))
2215 vcpu
->guest_mode
= 0;
2220 vcpu
->interrupt_window_open
= (vmcs_read32(GUEST_INTERRUPTIBILITY_INFO
) & 3) == 0;
2222 asm ("mov %0, %%ds; mov %0, %%es" : : "r"(__USER_DS
));
2227 if (unlikely(fail
)) {
2228 kvm_run
->exit_reason
= KVM_EXIT_FAIL_ENTRY
;
2229 kvm_run
->fail_entry
.hardware_entry_failure_reason
2230 = vmcs_read32(VM_INSTRUCTION_ERROR
);
2235 * Profile KVM exit RIPs:
2237 if (unlikely(prof_on
== KVM_PROFILING
))
2238 profile_hit(KVM_PROFILING
, (void *)vmcs_readl(GUEST_RIP
));
2240 r
= kvm_handle_exit(kvm_run
, vcpu
);
2242 if (dm_request_for_irq_injection(vcpu
, kvm_run
)) {
2244 kvm_run
->exit_reason
= KVM_EXIT_INTR
;
2245 ++vcpu
->stat
.request_irq_exits
;
2248 if (!need_resched()) {
2249 ++vcpu
->stat
.light_exits
;
2260 post_kvm_run_save(vcpu
, kvm_run
);
2264 static void vmx_inject_page_fault(struct kvm_vcpu
*vcpu
,
2268 u32 vect_info
= vmcs_read32(IDT_VECTORING_INFO_FIELD
);
2270 ++vcpu
->stat
.pf_guest
;
2272 if (is_page_fault(vect_info
)) {
2273 printk(KERN_DEBUG
"inject_page_fault: "
2274 "double fault 0x%lx @ 0x%lx\n",
2275 addr
, vmcs_readl(GUEST_RIP
));
2276 vmcs_write32(VM_ENTRY_EXCEPTION_ERROR_CODE
, 0);
2277 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD
,
2279 INTR_TYPE_EXCEPTION
|
2280 INTR_INFO_DELIEVER_CODE_MASK
|
2281 INTR_INFO_VALID_MASK
);
2285 vmcs_write32(VM_ENTRY_EXCEPTION_ERROR_CODE
, err_code
);
2286 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD
,
2288 INTR_TYPE_EXCEPTION
|
2289 INTR_INFO_DELIEVER_CODE_MASK
|
2290 INTR_INFO_VALID_MASK
);
2294 static void vmx_free_vmcs(struct kvm_vcpu
*vcpu
)
2296 struct vcpu_vmx
*vmx
= to_vmx(vcpu
);
2299 on_each_cpu(__vcpu_clear
, vmx
, 0, 1);
2300 free_vmcs(vmx
->vmcs
);
2305 static void vmx_free_vcpu(struct kvm_vcpu
*vcpu
)
2307 struct vcpu_vmx
*vmx
= to_vmx(vcpu
);
2309 vmx_free_vmcs(vcpu
);
2310 kfree(vmx
->host_msrs
);
2311 kfree(vmx
->guest_msrs
);
2312 kvm_vcpu_uninit(vcpu
);
2313 kmem_cache_free(kvm_vcpu_cache
, vmx
);
2316 static struct kvm_vcpu
*vmx_create_vcpu(struct kvm
*kvm
, unsigned int id
)
2319 struct vcpu_vmx
*vmx
= kmem_cache_zalloc(kvm_vcpu_cache
, GFP_KERNEL
);
2323 return ERR_PTR(-ENOMEM
);
2325 err
= kvm_vcpu_init(&vmx
->vcpu
, kvm
, id
);
2329 vmx
->guest_msrs
= kmalloc(PAGE_SIZE
, GFP_KERNEL
);
2330 if (!vmx
->guest_msrs
) {
2335 vmx
->host_msrs
= kmalloc(PAGE_SIZE
, GFP_KERNEL
);
2336 if (!vmx
->host_msrs
)
2337 goto free_guest_msrs
;
2339 vmx
->vmcs
= alloc_vmcs();
2343 vmcs_clear(vmx
->vmcs
);
2346 vmx_vcpu_load(&vmx
->vcpu
, cpu
);
2347 err
= vmx_vcpu_setup(vmx
);
2348 vmx_vcpu_put(&vmx
->vcpu
);
2356 free_vmcs(vmx
->vmcs
);
2358 kfree(vmx
->host_msrs
);
2360 kfree(vmx
->guest_msrs
);
2362 kvm_vcpu_uninit(&vmx
->vcpu
);
2364 kmem_cache_free(kvm_vcpu_cache
, vmx
);
2365 return ERR_PTR(err
);
2368 static void __init
vmx_check_processor_compat(void *rtn
)
2370 struct vmcs_config vmcs_conf
;
2373 if (setup_vmcs_config(&vmcs_conf
) < 0)
2375 if (memcmp(&vmcs_config
, &vmcs_conf
, sizeof(struct vmcs_config
)) != 0) {
2376 printk(KERN_ERR
"kvm: CPU %d feature inconsistency!\n",
2377 smp_processor_id());
2382 static struct kvm_arch_ops vmx_arch_ops
= {
2383 .cpu_has_kvm_support
= cpu_has_kvm_support
,
2384 .disabled_by_bios
= vmx_disabled_by_bios
,
2385 .hardware_setup
= hardware_setup
,
2386 .hardware_unsetup
= hardware_unsetup
,
2387 .check_processor_compatibility
= vmx_check_processor_compat
,
2388 .hardware_enable
= hardware_enable
,
2389 .hardware_disable
= hardware_disable
,
2391 .vcpu_create
= vmx_create_vcpu
,
2392 .vcpu_free
= vmx_free_vcpu
,
2394 .vcpu_load
= vmx_vcpu_load
,
2395 .vcpu_put
= vmx_vcpu_put
,
2396 .vcpu_decache
= vmx_vcpu_decache
,
2398 .set_guest_debug
= set_guest_debug
,
2399 .get_msr
= vmx_get_msr
,
2400 .set_msr
= vmx_set_msr
,
2401 .get_segment_base
= vmx_get_segment_base
,
2402 .get_segment
= vmx_get_segment
,
2403 .set_segment
= vmx_set_segment
,
2404 .get_cs_db_l_bits
= vmx_get_cs_db_l_bits
,
2405 .decache_cr4_guest_bits
= vmx_decache_cr4_guest_bits
,
2406 .set_cr0
= vmx_set_cr0
,
2407 .set_cr3
= vmx_set_cr3
,
2408 .set_cr4
= vmx_set_cr4
,
2409 #ifdef CONFIG_X86_64
2410 .set_efer
= vmx_set_efer
,
2412 .get_idt
= vmx_get_idt
,
2413 .set_idt
= vmx_set_idt
,
2414 .get_gdt
= vmx_get_gdt
,
2415 .set_gdt
= vmx_set_gdt
,
2416 .cache_regs
= vcpu_load_rsp_rip
,
2417 .decache_regs
= vcpu_put_rsp_rip
,
2418 .get_rflags
= vmx_get_rflags
,
2419 .set_rflags
= vmx_set_rflags
,
2421 .tlb_flush
= vmx_flush_tlb
,
2422 .inject_page_fault
= vmx_inject_page_fault
,
2424 .inject_gp
= vmx_inject_gp
,
2426 .run
= vmx_vcpu_run
,
2427 .skip_emulated_instruction
= skip_emulated_instruction
,
2428 .patch_hypercall
= vmx_patch_hypercall
,
2431 static int __init
vmx_init(void)
2436 vmx_io_bitmap_a
= alloc_page(GFP_KERNEL
| __GFP_HIGHMEM
);
2437 if (!vmx_io_bitmap_a
)
2440 vmx_io_bitmap_b
= alloc_page(GFP_KERNEL
| __GFP_HIGHMEM
);
2441 if (!vmx_io_bitmap_b
) {
2447 * Allow direct access to the PC debug port (it is often used for I/O
2448 * delays, but the vmexits simply slow things down).
2450 iova
= kmap(vmx_io_bitmap_a
);
2451 memset(iova
, 0xff, PAGE_SIZE
);
2452 clear_bit(0x80, iova
);
2453 kunmap(vmx_io_bitmap_a
);
2455 iova
= kmap(vmx_io_bitmap_b
);
2456 memset(iova
, 0xff, PAGE_SIZE
);
2457 kunmap(vmx_io_bitmap_b
);
2459 r
= kvm_init_arch(&vmx_arch_ops
, sizeof(struct vcpu_vmx
), THIS_MODULE
);
2466 __free_page(vmx_io_bitmap_b
);
2468 __free_page(vmx_io_bitmap_a
);
2472 static void __exit
vmx_exit(void)
2474 __free_page(vmx_io_bitmap_b
);
2475 __free_page(vmx_io_bitmap_a
);
2480 module_init(vmx_init
)
2481 module_exit(vmx_exit
)