1 /* bnx2.c: Broadcom NX2 network driver.
3 * Copyright (c) 2004-2008 Broadcom Corporation
5 * This program is free software; you can redistribute it and/or modify
6 * it under the terms of the GNU General Public License as published by
7 * the Free Software Foundation.
9 * Written by: Michael Chan (mchan@broadcom.com)
13 #include <linux/module.h>
14 #include <linux/moduleparam.h>
16 #include <linux/kernel.h>
17 #include <linux/timer.h>
18 #include <linux/errno.h>
19 #include <linux/ioport.h>
20 #include <linux/slab.h>
21 #include <linux/vmalloc.h>
22 #include <linux/interrupt.h>
23 #include <linux/pci.h>
24 #include <linux/init.h>
25 #include <linux/netdevice.h>
26 #include <linux/etherdevice.h>
27 #include <linux/skbuff.h>
28 #include <linux/dma-mapping.h>
29 #include <linux/bitops.h>
32 #include <linux/delay.h>
33 #include <asm/byteorder.h>
35 #include <linux/time.h>
36 #include <linux/ethtool.h>
37 #include <linux/mii.h>
38 #include <linux/if_vlan.h>
39 #if defined(CONFIG_VLAN_8021Q) || defined(CONFIG_VLAN_8021Q_MODULE)
44 #include <net/checksum.h>
45 #include <linux/workqueue.h>
46 #include <linux/crc32.h>
47 #include <linux/prefetch.h>
48 #include <linux/cache.h>
49 #include <linux/zlib.h>
50 #include <linux/log2.h>
56 #define FW_BUF_SIZE 0x10000
58 #define DRV_MODULE_NAME "bnx2"
59 #define PFX DRV_MODULE_NAME ": "
60 #define DRV_MODULE_VERSION "1.8.1"
61 #define DRV_MODULE_RELDATE "Oct 7, 2008"
63 #define RUN_AT(x) (jiffies + (x))
65 /* Time in jiffies before concluding the transmitter is hung. */
66 #define TX_TIMEOUT (5*HZ)
68 static char version
[] __devinitdata
=
69 "Broadcom NetXtreme II Gigabit Ethernet Driver " DRV_MODULE_NAME
" v" DRV_MODULE_VERSION
" (" DRV_MODULE_RELDATE
")\n";
71 MODULE_AUTHOR("Michael Chan <mchan@broadcom.com>");
72 MODULE_DESCRIPTION("Broadcom NetXtreme II BCM5706/5708/5709/5716 Driver");
73 MODULE_LICENSE("GPL");
74 MODULE_VERSION(DRV_MODULE_VERSION
);
76 static int disable_msi
= 0;
78 module_param(disable_msi
, int, 0);
79 MODULE_PARM_DESC(disable_msi
, "Disable Message Signaled Interrupt (MSI)");
94 /* indexed by board_t, above */
97 } board_info
[] __devinitdata
= {
98 { "Broadcom NetXtreme II BCM5706 1000Base-T" },
99 { "HP NC370T Multifunction Gigabit Server Adapter" },
100 { "HP NC370i Multifunction Gigabit Server Adapter" },
101 { "Broadcom NetXtreme II BCM5706 1000Base-SX" },
102 { "HP NC370F Multifunction Gigabit Server Adapter" },
103 { "Broadcom NetXtreme II BCM5708 1000Base-T" },
104 { "Broadcom NetXtreme II BCM5708 1000Base-SX" },
105 { "Broadcom NetXtreme II BCM5709 1000Base-T" },
106 { "Broadcom NetXtreme II BCM5709 1000Base-SX" },
107 { "Broadcom NetXtreme II BCM5716 1000Base-T" },
110 static DEFINE_PCI_DEVICE_TABLE(bnx2_pci_tbl
) = {
111 { PCI_VENDOR_ID_BROADCOM
, PCI_DEVICE_ID_NX2_5706
,
112 PCI_VENDOR_ID_HP
, 0x3101, 0, 0, NC370T
},
113 { PCI_VENDOR_ID_BROADCOM
, PCI_DEVICE_ID_NX2_5706
,
114 PCI_VENDOR_ID_HP
, 0x3106, 0, 0, NC370I
},
115 { PCI_VENDOR_ID_BROADCOM
, PCI_DEVICE_ID_NX2_5706
,
116 PCI_ANY_ID
, PCI_ANY_ID
, 0, 0, BCM5706
},
117 { PCI_VENDOR_ID_BROADCOM
, PCI_DEVICE_ID_NX2_5708
,
118 PCI_ANY_ID
, PCI_ANY_ID
, 0, 0, BCM5708
},
119 { PCI_VENDOR_ID_BROADCOM
, PCI_DEVICE_ID_NX2_5706S
,
120 PCI_VENDOR_ID_HP
, 0x3102, 0, 0, NC370F
},
121 { PCI_VENDOR_ID_BROADCOM
, PCI_DEVICE_ID_NX2_5706S
,
122 PCI_ANY_ID
, PCI_ANY_ID
, 0, 0, BCM5706S
},
123 { PCI_VENDOR_ID_BROADCOM
, PCI_DEVICE_ID_NX2_5708S
,
124 PCI_ANY_ID
, PCI_ANY_ID
, 0, 0, BCM5708S
},
125 { PCI_VENDOR_ID_BROADCOM
, PCI_DEVICE_ID_NX2_5709
,
126 PCI_ANY_ID
, PCI_ANY_ID
, 0, 0, BCM5709
},
127 { PCI_VENDOR_ID_BROADCOM
, PCI_DEVICE_ID_NX2_5709S
,
128 PCI_ANY_ID
, PCI_ANY_ID
, 0, 0, BCM5709S
},
129 { PCI_VENDOR_ID_BROADCOM
, 0x163b,
130 PCI_ANY_ID
, PCI_ANY_ID
, 0, 0, BCM5716
},
134 static struct flash_spec flash_table
[] =
136 #define BUFFERED_FLAGS (BNX2_NV_BUFFERED | BNX2_NV_TRANSLATE)
137 #define NONBUFFERED_FLAGS (BNX2_NV_WREN)
139 {0x00000000, 0x40830380, 0x009f0081, 0xa184a053, 0xaf000400,
140 BUFFERED_FLAGS
, SEEPROM_PAGE_BITS
, SEEPROM_PAGE_SIZE
,
141 SEEPROM_BYTE_ADDR_MASK
, SEEPROM_TOTAL_SIZE
,
143 /* Expansion entry 0001 */
144 {0x08000002, 0x4b808201, 0x00050081, 0x03840253, 0xaf020406,
145 NONBUFFERED_FLAGS
, SAIFUN_FLASH_PAGE_BITS
, SAIFUN_FLASH_PAGE_SIZE
,
146 SAIFUN_FLASH_BYTE_ADDR_MASK
, 0,
148 /* Saifun SA25F010 (non-buffered flash) */
149 /* strap, cfg1, & write1 need updates */
150 {0x04000001, 0x47808201, 0x00050081, 0x03840253, 0xaf020406,
151 NONBUFFERED_FLAGS
, SAIFUN_FLASH_PAGE_BITS
, SAIFUN_FLASH_PAGE_SIZE
,
152 SAIFUN_FLASH_BYTE_ADDR_MASK
, SAIFUN_FLASH_BASE_TOTAL_SIZE
*2,
153 "Non-buffered flash (128kB)"},
154 /* Saifun SA25F020 (non-buffered flash) */
155 /* strap, cfg1, & write1 need updates */
156 {0x0c000003, 0x4f808201, 0x00050081, 0x03840253, 0xaf020406,
157 NONBUFFERED_FLAGS
, SAIFUN_FLASH_PAGE_BITS
, SAIFUN_FLASH_PAGE_SIZE
,
158 SAIFUN_FLASH_BYTE_ADDR_MASK
, SAIFUN_FLASH_BASE_TOTAL_SIZE
*4,
159 "Non-buffered flash (256kB)"},
160 /* Expansion entry 0100 */
161 {0x11000000, 0x53808201, 0x00050081, 0x03840253, 0xaf020406,
162 NONBUFFERED_FLAGS
, SAIFUN_FLASH_PAGE_BITS
, SAIFUN_FLASH_PAGE_SIZE
,
163 SAIFUN_FLASH_BYTE_ADDR_MASK
, 0,
165 /* Entry 0101: ST M45PE10 (non-buffered flash, TetonII B0) */
166 {0x19000002, 0x5b808201, 0x000500db, 0x03840253, 0xaf020406,
167 NONBUFFERED_FLAGS
, ST_MICRO_FLASH_PAGE_BITS
, ST_MICRO_FLASH_PAGE_SIZE
,
168 ST_MICRO_FLASH_BYTE_ADDR_MASK
, ST_MICRO_FLASH_BASE_TOTAL_SIZE
*2,
169 "Entry 0101: ST M45PE10 (128kB non-bufferred)"},
170 /* Entry 0110: ST M45PE20 (non-buffered flash)*/
171 {0x15000001, 0x57808201, 0x000500db, 0x03840253, 0xaf020406,
172 NONBUFFERED_FLAGS
, ST_MICRO_FLASH_PAGE_BITS
, ST_MICRO_FLASH_PAGE_SIZE
,
173 ST_MICRO_FLASH_BYTE_ADDR_MASK
, ST_MICRO_FLASH_BASE_TOTAL_SIZE
*4,
174 "Entry 0110: ST M45PE20 (256kB non-bufferred)"},
175 /* Saifun SA25F005 (non-buffered flash) */
176 /* strap, cfg1, & write1 need updates */
177 {0x1d000003, 0x5f808201, 0x00050081, 0x03840253, 0xaf020406,
178 NONBUFFERED_FLAGS
, SAIFUN_FLASH_PAGE_BITS
, SAIFUN_FLASH_PAGE_SIZE
,
179 SAIFUN_FLASH_BYTE_ADDR_MASK
, SAIFUN_FLASH_BASE_TOTAL_SIZE
,
180 "Non-buffered flash (64kB)"},
182 {0x22000000, 0x62808380, 0x009f0081, 0xa184a053, 0xaf000400,
183 BUFFERED_FLAGS
, SEEPROM_PAGE_BITS
, SEEPROM_PAGE_SIZE
,
184 SEEPROM_BYTE_ADDR_MASK
, SEEPROM_TOTAL_SIZE
,
186 /* Expansion entry 1001 */
187 {0x2a000002, 0x6b808201, 0x00050081, 0x03840253, 0xaf020406,
188 NONBUFFERED_FLAGS
, SAIFUN_FLASH_PAGE_BITS
, SAIFUN_FLASH_PAGE_SIZE
,
189 SAIFUN_FLASH_BYTE_ADDR_MASK
, 0,
191 /* Expansion entry 1010 */
192 {0x26000001, 0x67808201, 0x00050081, 0x03840253, 0xaf020406,
193 NONBUFFERED_FLAGS
, SAIFUN_FLASH_PAGE_BITS
, SAIFUN_FLASH_PAGE_SIZE
,
194 SAIFUN_FLASH_BYTE_ADDR_MASK
, 0,
196 /* ATMEL AT45DB011B (buffered flash) */
197 {0x2e000003, 0x6e808273, 0x00570081, 0x68848353, 0xaf000400,
198 BUFFERED_FLAGS
, BUFFERED_FLASH_PAGE_BITS
, BUFFERED_FLASH_PAGE_SIZE
,
199 BUFFERED_FLASH_BYTE_ADDR_MASK
, BUFFERED_FLASH_TOTAL_SIZE
,
200 "Buffered flash (128kB)"},
201 /* Expansion entry 1100 */
202 {0x33000000, 0x73808201, 0x00050081, 0x03840253, 0xaf020406,
203 NONBUFFERED_FLAGS
, SAIFUN_FLASH_PAGE_BITS
, SAIFUN_FLASH_PAGE_SIZE
,
204 SAIFUN_FLASH_BYTE_ADDR_MASK
, 0,
206 /* Expansion entry 1101 */
207 {0x3b000002, 0x7b808201, 0x00050081, 0x03840253, 0xaf020406,
208 NONBUFFERED_FLAGS
, SAIFUN_FLASH_PAGE_BITS
, SAIFUN_FLASH_PAGE_SIZE
,
209 SAIFUN_FLASH_BYTE_ADDR_MASK
, 0,
211 /* Ateml Expansion entry 1110 */
212 {0x37000001, 0x76808273, 0x00570081, 0x68848353, 0xaf000400,
213 BUFFERED_FLAGS
, BUFFERED_FLASH_PAGE_BITS
, BUFFERED_FLASH_PAGE_SIZE
,
214 BUFFERED_FLASH_BYTE_ADDR_MASK
, 0,
215 "Entry 1110 (Atmel)"},
216 /* ATMEL AT45DB021B (buffered flash) */
217 {0x3f000003, 0x7e808273, 0x00570081, 0x68848353, 0xaf000400,
218 BUFFERED_FLAGS
, BUFFERED_FLASH_PAGE_BITS
, BUFFERED_FLASH_PAGE_SIZE
,
219 BUFFERED_FLASH_BYTE_ADDR_MASK
, BUFFERED_FLASH_TOTAL_SIZE
*2,
220 "Buffered flash (256kB)"},
223 static struct flash_spec flash_5709
= {
224 .flags
= BNX2_NV_BUFFERED
,
225 .page_bits
= BCM5709_FLASH_PAGE_BITS
,
226 .page_size
= BCM5709_FLASH_PAGE_SIZE
,
227 .addr_mask
= BCM5709_FLASH_BYTE_ADDR_MASK
,
228 .total_size
= BUFFERED_FLASH_TOTAL_SIZE
*2,
229 .name
= "5709 Buffered flash (256kB)",
232 MODULE_DEVICE_TABLE(pci
, bnx2_pci_tbl
);
234 static inline u32
bnx2_tx_avail(struct bnx2
*bp
, struct bnx2_tx_ring_info
*txr
)
240 /* The ring uses 256 indices for 255 entries, one of them
241 * needs to be skipped.
243 diff
= txr
->tx_prod
- txr
->tx_cons
;
244 if (unlikely(diff
>= TX_DESC_CNT
)) {
246 if (diff
== TX_DESC_CNT
)
247 diff
= MAX_TX_DESC_CNT
;
249 return (bp
->tx_ring_size
- diff
);
253 bnx2_reg_rd_ind(struct bnx2
*bp
, u32 offset
)
257 spin_lock_bh(&bp
->indirect_lock
);
258 REG_WR(bp
, BNX2_PCICFG_REG_WINDOW_ADDRESS
, offset
);
259 val
= REG_RD(bp
, BNX2_PCICFG_REG_WINDOW
);
260 spin_unlock_bh(&bp
->indirect_lock
);
265 bnx2_reg_wr_ind(struct bnx2
*bp
, u32 offset
, u32 val
)
267 spin_lock_bh(&bp
->indirect_lock
);
268 REG_WR(bp
, BNX2_PCICFG_REG_WINDOW_ADDRESS
, offset
);
269 REG_WR(bp
, BNX2_PCICFG_REG_WINDOW
, val
);
270 spin_unlock_bh(&bp
->indirect_lock
);
274 bnx2_shmem_wr(struct bnx2
*bp
, u32 offset
, u32 val
)
276 bnx2_reg_wr_ind(bp
, bp
->shmem_base
+ offset
, val
);
280 bnx2_shmem_rd(struct bnx2
*bp
, u32 offset
)
282 return (bnx2_reg_rd_ind(bp
, bp
->shmem_base
+ offset
));
286 bnx2_ctx_wr(struct bnx2
*bp
, u32 cid_addr
, u32 offset
, u32 val
)
289 spin_lock_bh(&bp
->indirect_lock
);
290 if (CHIP_NUM(bp
) == CHIP_NUM_5709
) {
293 REG_WR(bp
, BNX2_CTX_CTX_DATA
, val
);
294 REG_WR(bp
, BNX2_CTX_CTX_CTRL
,
295 offset
| BNX2_CTX_CTX_CTRL_WRITE_REQ
);
296 for (i
= 0; i
< 5; i
++) {
297 val
= REG_RD(bp
, BNX2_CTX_CTX_CTRL
);
298 if ((val
& BNX2_CTX_CTX_CTRL_WRITE_REQ
) == 0)
303 REG_WR(bp
, BNX2_CTX_DATA_ADR
, offset
);
304 REG_WR(bp
, BNX2_CTX_DATA
, val
);
306 spin_unlock_bh(&bp
->indirect_lock
);
310 bnx2_read_phy(struct bnx2
*bp
, u32 reg
, u32
*val
)
315 if (bp
->phy_flags
& BNX2_PHY_FLAG_INT_MODE_AUTO_POLLING
) {
316 val1
= REG_RD(bp
, BNX2_EMAC_MDIO_MODE
);
317 val1
&= ~BNX2_EMAC_MDIO_MODE_AUTO_POLL
;
319 REG_WR(bp
, BNX2_EMAC_MDIO_MODE
, val1
);
320 REG_RD(bp
, BNX2_EMAC_MDIO_MODE
);
325 val1
= (bp
->phy_addr
<< 21) | (reg
<< 16) |
326 BNX2_EMAC_MDIO_COMM_COMMAND_READ
| BNX2_EMAC_MDIO_COMM_DISEXT
|
327 BNX2_EMAC_MDIO_COMM_START_BUSY
;
328 REG_WR(bp
, BNX2_EMAC_MDIO_COMM
, val1
);
330 for (i
= 0; i
< 50; i
++) {
333 val1
= REG_RD(bp
, BNX2_EMAC_MDIO_COMM
);
334 if (!(val1
& BNX2_EMAC_MDIO_COMM_START_BUSY
)) {
337 val1
= REG_RD(bp
, BNX2_EMAC_MDIO_COMM
);
338 val1
&= BNX2_EMAC_MDIO_COMM_DATA
;
344 if (val1
& BNX2_EMAC_MDIO_COMM_START_BUSY
) {
353 if (bp
->phy_flags
& BNX2_PHY_FLAG_INT_MODE_AUTO_POLLING
) {
354 val1
= REG_RD(bp
, BNX2_EMAC_MDIO_MODE
);
355 val1
|= BNX2_EMAC_MDIO_MODE_AUTO_POLL
;
357 REG_WR(bp
, BNX2_EMAC_MDIO_MODE
, val1
);
358 REG_RD(bp
, BNX2_EMAC_MDIO_MODE
);
367 bnx2_write_phy(struct bnx2
*bp
, u32 reg
, u32 val
)
372 if (bp
->phy_flags
& BNX2_PHY_FLAG_INT_MODE_AUTO_POLLING
) {
373 val1
= REG_RD(bp
, BNX2_EMAC_MDIO_MODE
);
374 val1
&= ~BNX2_EMAC_MDIO_MODE_AUTO_POLL
;
376 REG_WR(bp
, BNX2_EMAC_MDIO_MODE
, val1
);
377 REG_RD(bp
, BNX2_EMAC_MDIO_MODE
);
382 val1
= (bp
->phy_addr
<< 21) | (reg
<< 16) | val
|
383 BNX2_EMAC_MDIO_COMM_COMMAND_WRITE
|
384 BNX2_EMAC_MDIO_COMM_START_BUSY
| BNX2_EMAC_MDIO_COMM_DISEXT
;
385 REG_WR(bp
, BNX2_EMAC_MDIO_COMM
, val1
);
387 for (i
= 0; i
< 50; i
++) {
390 val1
= REG_RD(bp
, BNX2_EMAC_MDIO_COMM
);
391 if (!(val1
& BNX2_EMAC_MDIO_COMM_START_BUSY
)) {
397 if (val1
& BNX2_EMAC_MDIO_COMM_START_BUSY
)
402 if (bp
->phy_flags
& BNX2_PHY_FLAG_INT_MODE_AUTO_POLLING
) {
403 val1
= REG_RD(bp
, BNX2_EMAC_MDIO_MODE
);
404 val1
|= BNX2_EMAC_MDIO_MODE_AUTO_POLL
;
406 REG_WR(bp
, BNX2_EMAC_MDIO_MODE
, val1
);
407 REG_RD(bp
, BNX2_EMAC_MDIO_MODE
);
416 bnx2_disable_int(struct bnx2
*bp
)
419 struct bnx2_napi
*bnapi
;
421 for (i
= 0; i
< bp
->irq_nvecs
; i
++) {
422 bnapi
= &bp
->bnx2_napi
[i
];
423 REG_WR(bp
, BNX2_PCICFG_INT_ACK_CMD
, bnapi
->int_num
|
424 BNX2_PCICFG_INT_ACK_CMD_MASK_INT
);
426 REG_RD(bp
, BNX2_PCICFG_INT_ACK_CMD
);
430 bnx2_enable_int(struct bnx2
*bp
)
433 struct bnx2_napi
*bnapi
;
435 for (i
= 0; i
< bp
->irq_nvecs
; i
++) {
436 bnapi
= &bp
->bnx2_napi
[i
];
438 REG_WR(bp
, BNX2_PCICFG_INT_ACK_CMD
, bnapi
->int_num
|
439 BNX2_PCICFG_INT_ACK_CMD_INDEX_VALID
|
440 BNX2_PCICFG_INT_ACK_CMD_MASK_INT
|
441 bnapi
->last_status_idx
);
443 REG_WR(bp
, BNX2_PCICFG_INT_ACK_CMD
, bnapi
->int_num
|
444 BNX2_PCICFG_INT_ACK_CMD_INDEX_VALID
|
445 bnapi
->last_status_idx
);
447 REG_WR(bp
, BNX2_HC_COMMAND
, bp
->hc_cmd
| BNX2_HC_COMMAND_COAL_NOW
);
451 bnx2_disable_int_sync(struct bnx2
*bp
)
455 atomic_inc(&bp
->intr_sem
);
456 bnx2_disable_int(bp
);
457 for (i
= 0; i
< bp
->irq_nvecs
; i
++)
458 synchronize_irq(bp
->irq_tbl
[i
].vector
);
462 bnx2_napi_disable(struct bnx2
*bp
)
466 for (i
= 0; i
< bp
->irq_nvecs
; i
++)
467 napi_disable(&bp
->bnx2_napi
[i
].napi
);
471 bnx2_napi_enable(struct bnx2
*bp
)
475 for (i
= 0; i
< bp
->irq_nvecs
; i
++)
476 napi_enable(&bp
->bnx2_napi
[i
].napi
);
480 bnx2_netif_stop(struct bnx2
*bp
)
482 bnx2_disable_int_sync(bp
);
483 if (netif_running(bp
->dev
)) {
484 bnx2_napi_disable(bp
);
485 netif_tx_disable(bp
->dev
);
486 bp
->dev
->trans_start
= jiffies
; /* prevent tx timeout */
491 bnx2_netif_start(struct bnx2
*bp
)
493 if (atomic_dec_and_test(&bp
->intr_sem
)) {
494 if (netif_running(bp
->dev
)) {
495 netif_tx_wake_all_queues(bp
->dev
);
496 bnx2_napi_enable(bp
);
503 bnx2_free_tx_mem(struct bnx2
*bp
)
507 for (i
= 0; i
< bp
->num_tx_rings
; i
++) {
508 struct bnx2_napi
*bnapi
= &bp
->bnx2_napi
[i
];
509 struct bnx2_tx_ring_info
*txr
= &bnapi
->tx_ring
;
511 if (txr
->tx_desc_ring
) {
512 pci_free_consistent(bp
->pdev
, TXBD_RING_SIZE
,
514 txr
->tx_desc_mapping
);
515 txr
->tx_desc_ring
= NULL
;
517 kfree(txr
->tx_buf_ring
);
518 txr
->tx_buf_ring
= NULL
;
523 bnx2_free_rx_mem(struct bnx2
*bp
)
527 for (i
= 0; i
< bp
->num_rx_rings
; i
++) {
528 struct bnx2_napi
*bnapi
= &bp
->bnx2_napi
[i
];
529 struct bnx2_rx_ring_info
*rxr
= &bnapi
->rx_ring
;
532 for (j
= 0; j
< bp
->rx_max_ring
; j
++) {
533 if (rxr
->rx_desc_ring
[j
])
534 pci_free_consistent(bp
->pdev
, RXBD_RING_SIZE
,
535 rxr
->rx_desc_ring
[j
],
536 rxr
->rx_desc_mapping
[j
]);
537 rxr
->rx_desc_ring
[j
] = NULL
;
539 if (rxr
->rx_buf_ring
)
540 vfree(rxr
->rx_buf_ring
);
541 rxr
->rx_buf_ring
= NULL
;
543 for (j
= 0; j
< bp
->rx_max_pg_ring
; j
++) {
544 if (rxr
->rx_pg_desc_ring
[j
])
545 pci_free_consistent(bp
->pdev
, RXBD_RING_SIZE
,
546 rxr
->rx_pg_desc_ring
[i
],
547 rxr
->rx_pg_desc_mapping
[i
]);
548 rxr
->rx_pg_desc_ring
[i
] = NULL
;
551 vfree(rxr
->rx_pg_ring
);
552 rxr
->rx_pg_ring
= NULL
;
557 bnx2_alloc_tx_mem(struct bnx2
*bp
)
561 for (i
= 0; i
< bp
->num_tx_rings
; i
++) {
562 struct bnx2_napi
*bnapi
= &bp
->bnx2_napi
[i
];
563 struct bnx2_tx_ring_info
*txr
= &bnapi
->tx_ring
;
565 txr
->tx_buf_ring
= kzalloc(SW_TXBD_RING_SIZE
, GFP_KERNEL
);
566 if (txr
->tx_buf_ring
== NULL
)
570 pci_alloc_consistent(bp
->pdev
, TXBD_RING_SIZE
,
571 &txr
->tx_desc_mapping
);
572 if (txr
->tx_desc_ring
== NULL
)
579 bnx2_alloc_rx_mem(struct bnx2
*bp
)
583 for (i
= 0; i
< bp
->num_rx_rings
; i
++) {
584 struct bnx2_napi
*bnapi
= &bp
->bnx2_napi
[i
];
585 struct bnx2_rx_ring_info
*rxr
= &bnapi
->rx_ring
;
589 vmalloc(SW_RXBD_RING_SIZE
* bp
->rx_max_ring
);
590 if (rxr
->rx_buf_ring
== NULL
)
593 memset(rxr
->rx_buf_ring
, 0,
594 SW_RXBD_RING_SIZE
* bp
->rx_max_ring
);
596 for (j
= 0; j
< bp
->rx_max_ring
; j
++) {
597 rxr
->rx_desc_ring
[j
] =
598 pci_alloc_consistent(bp
->pdev
, RXBD_RING_SIZE
,
599 &rxr
->rx_desc_mapping
[j
]);
600 if (rxr
->rx_desc_ring
[j
] == NULL
)
605 if (bp
->rx_pg_ring_size
) {
606 rxr
->rx_pg_ring
= vmalloc(SW_RXPG_RING_SIZE
*
608 if (rxr
->rx_pg_ring
== NULL
)
611 memset(rxr
->rx_pg_ring
, 0, SW_RXPG_RING_SIZE
*
615 for (j
= 0; j
< bp
->rx_max_pg_ring
; j
++) {
616 rxr
->rx_pg_desc_ring
[j
] =
617 pci_alloc_consistent(bp
->pdev
, RXBD_RING_SIZE
,
618 &rxr
->rx_pg_desc_mapping
[j
]);
619 if (rxr
->rx_pg_desc_ring
[j
] == NULL
)
628 bnx2_free_mem(struct bnx2
*bp
)
631 struct bnx2_napi
*bnapi
= &bp
->bnx2_napi
[0];
633 bnx2_free_tx_mem(bp
);
634 bnx2_free_rx_mem(bp
);
636 for (i
= 0; i
< bp
->ctx_pages
; i
++) {
637 if (bp
->ctx_blk
[i
]) {
638 pci_free_consistent(bp
->pdev
, BCM_PAGE_SIZE
,
640 bp
->ctx_blk_mapping
[i
]);
641 bp
->ctx_blk
[i
] = NULL
;
644 if (bnapi
->status_blk
.msi
) {
645 pci_free_consistent(bp
->pdev
, bp
->status_stats_size
,
646 bnapi
->status_blk
.msi
,
647 bp
->status_blk_mapping
);
648 bnapi
->status_blk
.msi
= NULL
;
649 bp
->stats_blk
= NULL
;
654 bnx2_alloc_mem(struct bnx2
*bp
)
656 int i
, status_blk_size
, err
;
657 struct bnx2_napi
*bnapi
;
660 /* Combine status and statistics blocks into one allocation. */
661 status_blk_size
= L1_CACHE_ALIGN(sizeof(struct status_block
));
662 if (bp
->flags
& BNX2_FLAG_MSIX_CAP
)
663 status_blk_size
= L1_CACHE_ALIGN(BNX2_MAX_MSIX_HW_VEC
*
664 BNX2_SBLK_MSIX_ALIGN_SIZE
);
665 bp
->status_stats_size
= status_blk_size
+
666 sizeof(struct statistics_block
);
668 status_blk
= pci_alloc_consistent(bp
->pdev
, bp
->status_stats_size
,
669 &bp
->status_blk_mapping
);
670 if (status_blk
== NULL
)
673 memset(status_blk
, 0, bp
->status_stats_size
);
675 bnapi
= &bp
->bnx2_napi
[0];
676 bnapi
->status_blk
.msi
= status_blk
;
677 bnapi
->hw_tx_cons_ptr
=
678 &bnapi
->status_blk
.msi
->status_tx_quick_consumer_index0
;
679 bnapi
->hw_rx_cons_ptr
=
680 &bnapi
->status_blk
.msi
->status_rx_quick_consumer_index0
;
681 if (bp
->flags
& BNX2_FLAG_MSIX_CAP
) {
682 for (i
= 1; i
< BNX2_MAX_MSIX_VEC
; i
++) {
683 struct status_block_msix
*sblk
;
685 bnapi
= &bp
->bnx2_napi
[i
];
687 sblk
= (void *) (status_blk
+
688 BNX2_SBLK_MSIX_ALIGN_SIZE
* i
);
689 bnapi
->status_blk
.msix
= sblk
;
690 bnapi
->hw_tx_cons_ptr
=
691 &sblk
->status_tx_quick_consumer_index
;
692 bnapi
->hw_rx_cons_ptr
=
693 &sblk
->status_rx_quick_consumer_index
;
694 bnapi
->int_num
= i
<< 24;
698 bp
->stats_blk
= status_blk
+ status_blk_size
;
700 bp
->stats_blk_mapping
= bp
->status_blk_mapping
+ status_blk_size
;
702 if (CHIP_NUM(bp
) == CHIP_NUM_5709
) {
703 bp
->ctx_pages
= 0x2000 / BCM_PAGE_SIZE
;
704 if (bp
->ctx_pages
== 0)
706 for (i
= 0; i
< bp
->ctx_pages
; i
++) {
707 bp
->ctx_blk
[i
] = pci_alloc_consistent(bp
->pdev
,
709 &bp
->ctx_blk_mapping
[i
]);
710 if (bp
->ctx_blk
[i
] == NULL
)
715 err
= bnx2_alloc_rx_mem(bp
);
719 err
= bnx2_alloc_tx_mem(bp
);
731 bnx2_report_fw_link(struct bnx2
*bp
)
733 u32 fw_link_status
= 0;
735 if (bp
->phy_flags
& BNX2_PHY_FLAG_REMOTE_PHY_CAP
)
741 switch (bp
->line_speed
) {
743 if (bp
->duplex
== DUPLEX_HALF
)
744 fw_link_status
= BNX2_LINK_STATUS_10HALF
;
746 fw_link_status
= BNX2_LINK_STATUS_10FULL
;
749 if (bp
->duplex
== DUPLEX_HALF
)
750 fw_link_status
= BNX2_LINK_STATUS_100HALF
;
752 fw_link_status
= BNX2_LINK_STATUS_100FULL
;
755 if (bp
->duplex
== DUPLEX_HALF
)
756 fw_link_status
= BNX2_LINK_STATUS_1000HALF
;
758 fw_link_status
= BNX2_LINK_STATUS_1000FULL
;
761 if (bp
->duplex
== DUPLEX_HALF
)
762 fw_link_status
= BNX2_LINK_STATUS_2500HALF
;
764 fw_link_status
= BNX2_LINK_STATUS_2500FULL
;
768 fw_link_status
|= BNX2_LINK_STATUS_LINK_UP
;
771 fw_link_status
|= BNX2_LINK_STATUS_AN_ENABLED
;
773 bnx2_read_phy(bp
, bp
->mii_bmsr
, &bmsr
);
774 bnx2_read_phy(bp
, bp
->mii_bmsr
, &bmsr
);
776 if (!(bmsr
& BMSR_ANEGCOMPLETE
) ||
777 bp
->phy_flags
& BNX2_PHY_FLAG_PARALLEL_DETECT
)
778 fw_link_status
|= BNX2_LINK_STATUS_PARALLEL_DET
;
780 fw_link_status
|= BNX2_LINK_STATUS_AN_COMPLETE
;
784 fw_link_status
= BNX2_LINK_STATUS_LINK_DOWN
;
786 bnx2_shmem_wr(bp
, BNX2_LINK_STATUS
, fw_link_status
);
790 bnx2_xceiver_str(struct bnx2
*bp
)
792 return ((bp
->phy_port
== PORT_FIBRE
) ? "SerDes" :
793 ((bp
->phy_flags
& BNX2_PHY_FLAG_SERDES
) ? "Remote Copper" :
798 bnx2_report_link(struct bnx2
*bp
)
801 netif_carrier_on(bp
->dev
);
802 printk(KERN_INFO PFX
"%s NIC %s Link is Up, ", bp
->dev
->name
,
803 bnx2_xceiver_str(bp
));
805 printk("%d Mbps ", bp
->line_speed
);
807 if (bp
->duplex
== DUPLEX_FULL
)
808 printk("full duplex");
810 printk("half duplex");
813 if (bp
->flow_ctrl
& FLOW_CTRL_RX
) {
814 printk(", receive ");
815 if (bp
->flow_ctrl
& FLOW_CTRL_TX
)
816 printk("& transmit ");
819 printk(", transmit ");
821 printk("flow control ON");
826 netif_carrier_off(bp
->dev
);
827 printk(KERN_ERR PFX
"%s NIC %s Link is Down\n", bp
->dev
->name
,
828 bnx2_xceiver_str(bp
));
831 bnx2_report_fw_link(bp
);
835 bnx2_resolve_flow_ctrl(struct bnx2
*bp
)
837 u32 local_adv
, remote_adv
;
840 if ((bp
->autoneg
& (AUTONEG_SPEED
| AUTONEG_FLOW_CTRL
)) !=
841 (AUTONEG_SPEED
| AUTONEG_FLOW_CTRL
)) {
843 if (bp
->duplex
== DUPLEX_FULL
) {
844 bp
->flow_ctrl
= bp
->req_flow_ctrl
;
849 if (bp
->duplex
!= DUPLEX_FULL
) {
853 if ((bp
->phy_flags
& BNX2_PHY_FLAG_SERDES
) &&
854 (CHIP_NUM(bp
) == CHIP_NUM_5708
)) {
857 bnx2_read_phy(bp
, BCM5708S_1000X_STAT1
, &val
);
858 if (val
& BCM5708S_1000X_STAT1_TX_PAUSE
)
859 bp
->flow_ctrl
|= FLOW_CTRL_TX
;
860 if (val
& BCM5708S_1000X_STAT1_RX_PAUSE
)
861 bp
->flow_ctrl
|= FLOW_CTRL_RX
;
865 bnx2_read_phy(bp
, bp
->mii_adv
, &local_adv
);
866 bnx2_read_phy(bp
, bp
->mii_lpa
, &remote_adv
);
868 if (bp
->phy_flags
& BNX2_PHY_FLAG_SERDES
) {
869 u32 new_local_adv
= 0;
870 u32 new_remote_adv
= 0;
872 if (local_adv
& ADVERTISE_1000XPAUSE
)
873 new_local_adv
|= ADVERTISE_PAUSE_CAP
;
874 if (local_adv
& ADVERTISE_1000XPSE_ASYM
)
875 new_local_adv
|= ADVERTISE_PAUSE_ASYM
;
876 if (remote_adv
& ADVERTISE_1000XPAUSE
)
877 new_remote_adv
|= ADVERTISE_PAUSE_CAP
;
878 if (remote_adv
& ADVERTISE_1000XPSE_ASYM
)
879 new_remote_adv
|= ADVERTISE_PAUSE_ASYM
;
881 local_adv
= new_local_adv
;
882 remote_adv
= new_remote_adv
;
885 /* See Table 28B-3 of 802.3ab-1999 spec. */
886 if (local_adv
& ADVERTISE_PAUSE_CAP
) {
887 if(local_adv
& ADVERTISE_PAUSE_ASYM
) {
888 if (remote_adv
& ADVERTISE_PAUSE_CAP
) {
889 bp
->flow_ctrl
= FLOW_CTRL_TX
| FLOW_CTRL_RX
;
891 else if (remote_adv
& ADVERTISE_PAUSE_ASYM
) {
892 bp
->flow_ctrl
= FLOW_CTRL_RX
;
896 if (remote_adv
& ADVERTISE_PAUSE_CAP
) {
897 bp
->flow_ctrl
= FLOW_CTRL_TX
| FLOW_CTRL_RX
;
901 else if (local_adv
& ADVERTISE_PAUSE_ASYM
) {
902 if ((remote_adv
& ADVERTISE_PAUSE_CAP
) &&
903 (remote_adv
& ADVERTISE_PAUSE_ASYM
)) {
905 bp
->flow_ctrl
= FLOW_CTRL_TX
;
911 bnx2_5709s_linkup(struct bnx2
*bp
)
917 bnx2_write_phy(bp
, MII_BNX2_BLK_ADDR
, MII_BNX2_BLK_ADDR_GP_STATUS
);
918 bnx2_read_phy(bp
, MII_BNX2_GP_TOP_AN_STATUS1
, &val
);
919 bnx2_write_phy(bp
, MII_BNX2_BLK_ADDR
, MII_BNX2_BLK_ADDR_COMBO_IEEEB0
);
921 if ((bp
->autoneg
& AUTONEG_SPEED
) == 0) {
922 bp
->line_speed
= bp
->req_line_speed
;
923 bp
->duplex
= bp
->req_duplex
;
926 speed
= val
& MII_BNX2_GP_TOP_AN_SPEED_MSK
;
928 case MII_BNX2_GP_TOP_AN_SPEED_10
:
929 bp
->line_speed
= SPEED_10
;
931 case MII_BNX2_GP_TOP_AN_SPEED_100
:
932 bp
->line_speed
= SPEED_100
;
934 case MII_BNX2_GP_TOP_AN_SPEED_1G
:
935 case MII_BNX2_GP_TOP_AN_SPEED_1GKV
:
936 bp
->line_speed
= SPEED_1000
;
938 case MII_BNX2_GP_TOP_AN_SPEED_2_5G
:
939 bp
->line_speed
= SPEED_2500
;
942 if (val
& MII_BNX2_GP_TOP_AN_FD
)
943 bp
->duplex
= DUPLEX_FULL
;
945 bp
->duplex
= DUPLEX_HALF
;
950 bnx2_5708s_linkup(struct bnx2
*bp
)
955 bnx2_read_phy(bp
, BCM5708S_1000X_STAT1
, &val
);
956 switch (val
& BCM5708S_1000X_STAT1_SPEED_MASK
) {
957 case BCM5708S_1000X_STAT1_SPEED_10
:
958 bp
->line_speed
= SPEED_10
;
960 case BCM5708S_1000X_STAT1_SPEED_100
:
961 bp
->line_speed
= SPEED_100
;
963 case BCM5708S_1000X_STAT1_SPEED_1G
:
964 bp
->line_speed
= SPEED_1000
;
966 case BCM5708S_1000X_STAT1_SPEED_2G5
:
967 bp
->line_speed
= SPEED_2500
;
970 if (val
& BCM5708S_1000X_STAT1_FD
)
971 bp
->duplex
= DUPLEX_FULL
;
973 bp
->duplex
= DUPLEX_HALF
;
979 bnx2_5706s_linkup(struct bnx2
*bp
)
981 u32 bmcr
, local_adv
, remote_adv
, common
;
984 bp
->line_speed
= SPEED_1000
;
986 bnx2_read_phy(bp
, bp
->mii_bmcr
, &bmcr
);
987 if (bmcr
& BMCR_FULLDPLX
) {
988 bp
->duplex
= DUPLEX_FULL
;
991 bp
->duplex
= DUPLEX_HALF
;
994 if (!(bmcr
& BMCR_ANENABLE
)) {
998 bnx2_read_phy(bp
, bp
->mii_adv
, &local_adv
);
999 bnx2_read_phy(bp
, bp
->mii_lpa
, &remote_adv
);
1001 common
= local_adv
& remote_adv
;
1002 if (common
& (ADVERTISE_1000XHALF
| ADVERTISE_1000XFULL
)) {
1004 if (common
& ADVERTISE_1000XFULL
) {
1005 bp
->duplex
= DUPLEX_FULL
;
1008 bp
->duplex
= DUPLEX_HALF
;
1016 bnx2_copper_linkup(struct bnx2
*bp
)
1020 bnx2_read_phy(bp
, bp
->mii_bmcr
, &bmcr
);
1021 if (bmcr
& BMCR_ANENABLE
) {
1022 u32 local_adv
, remote_adv
, common
;
1024 bnx2_read_phy(bp
, MII_CTRL1000
, &local_adv
);
1025 bnx2_read_phy(bp
, MII_STAT1000
, &remote_adv
);
1027 common
= local_adv
& (remote_adv
>> 2);
1028 if (common
& ADVERTISE_1000FULL
) {
1029 bp
->line_speed
= SPEED_1000
;
1030 bp
->duplex
= DUPLEX_FULL
;
1032 else if (common
& ADVERTISE_1000HALF
) {
1033 bp
->line_speed
= SPEED_1000
;
1034 bp
->duplex
= DUPLEX_HALF
;
1037 bnx2_read_phy(bp
, bp
->mii_adv
, &local_adv
);
1038 bnx2_read_phy(bp
, bp
->mii_lpa
, &remote_adv
);
1040 common
= local_adv
& remote_adv
;
1041 if (common
& ADVERTISE_100FULL
) {
1042 bp
->line_speed
= SPEED_100
;
1043 bp
->duplex
= DUPLEX_FULL
;
1045 else if (common
& ADVERTISE_100HALF
) {
1046 bp
->line_speed
= SPEED_100
;
1047 bp
->duplex
= DUPLEX_HALF
;
1049 else if (common
& ADVERTISE_10FULL
) {
1050 bp
->line_speed
= SPEED_10
;
1051 bp
->duplex
= DUPLEX_FULL
;
1053 else if (common
& ADVERTISE_10HALF
) {
1054 bp
->line_speed
= SPEED_10
;
1055 bp
->duplex
= DUPLEX_HALF
;
1064 if (bmcr
& BMCR_SPEED100
) {
1065 bp
->line_speed
= SPEED_100
;
1068 bp
->line_speed
= SPEED_10
;
1070 if (bmcr
& BMCR_FULLDPLX
) {
1071 bp
->duplex
= DUPLEX_FULL
;
1074 bp
->duplex
= DUPLEX_HALF
;
1082 bnx2_init_rx_context(struct bnx2
*bp
, u32 cid
)
1084 u32 val
, rx_cid_addr
= GET_CID_ADDR(cid
);
1086 val
= BNX2_L2CTX_CTX_TYPE_CTX_BD_CHN_TYPE_VALUE
;
1087 val
|= BNX2_L2CTX_CTX_TYPE_SIZE_L2
;
1090 if (CHIP_NUM(bp
) == CHIP_NUM_5709
) {
1091 u32 lo_water
, hi_water
;
1093 if (bp
->flow_ctrl
& FLOW_CTRL_TX
)
1094 lo_water
= BNX2_L2CTX_LO_WATER_MARK_DEFAULT
;
1096 lo_water
= BNX2_L2CTX_LO_WATER_MARK_DIS
;
1097 if (lo_water
>= bp
->rx_ring_size
)
1100 hi_water
= bp
->rx_ring_size
/ 4;
1102 if (hi_water
<= lo_water
)
1105 hi_water
/= BNX2_L2CTX_HI_WATER_MARK_SCALE
;
1106 lo_water
/= BNX2_L2CTX_LO_WATER_MARK_SCALE
;
1110 else if (hi_water
== 0)
1112 val
|= lo_water
| (hi_water
<< BNX2_L2CTX_HI_WATER_MARK_SHIFT
);
1114 bnx2_ctx_wr(bp
, rx_cid_addr
, BNX2_L2CTX_CTX_TYPE
, val
);
1118 bnx2_init_all_rx_contexts(struct bnx2
*bp
)
1123 for (i
= 0, cid
= RX_CID
; i
< bp
->num_rx_rings
; i
++, cid
++) {
1126 bnx2_init_rx_context(bp
, cid
);
1131 bnx2_set_mac_link(struct bnx2
*bp
)
1135 REG_WR(bp
, BNX2_EMAC_TX_LENGTHS
, 0x2620);
1136 if (bp
->link_up
&& (bp
->line_speed
== SPEED_1000
) &&
1137 (bp
->duplex
== DUPLEX_HALF
)) {
1138 REG_WR(bp
, BNX2_EMAC_TX_LENGTHS
, 0x26ff);
1141 /* Configure the EMAC mode register. */
1142 val
= REG_RD(bp
, BNX2_EMAC_MODE
);
1144 val
&= ~(BNX2_EMAC_MODE_PORT
| BNX2_EMAC_MODE_HALF_DUPLEX
|
1145 BNX2_EMAC_MODE_MAC_LOOP
| BNX2_EMAC_MODE_FORCE_LINK
|
1146 BNX2_EMAC_MODE_25G_MODE
);
1149 switch (bp
->line_speed
) {
1151 if (CHIP_NUM(bp
) != CHIP_NUM_5706
) {
1152 val
|= BNX2_EMAC_MODE_PORT_MII_10M
;
1157 val
|= BNX2_EMAC_MODE_PORT_MII
;
1160 val
|= BNX2_EMAC_MODE_25G_MODE
;
1163 val
|= BNX2_EMAC_MODE_PORT_GMII
;
1168 val
|= BNX2_EMAC_MODE_PORT_GMII
;
1171 /* Set the MAC to operate in the appropriate duplex mode. */
1172 if (bp
->duplex
== DUPLEX_HALF
)
1173 val
|= BNX2_EMAC_MODE_HALF_DUPLEX
;
1174 REG_WR(bp
, BNX2_EMAC_MODE
, val
);
1176 /* Enable/disable rx PAUSE. */
1177 bp
->rx_mode
&= ~BNX2_EMAC_RX_MODE_FLOW_EN
;
1179 if (bp
->flow_ctrl
& FLOW_CTRL_RX
)
1180 bp
->rx_mode
|= BNX2_EMAC_RX_MODE_FLOW_EN
;
1181 REG_WR(bp
, BNX2_EMAC_RX_MODE
, bp
->rx_mode
);
1183 /* Enable/disable tx PAUSE. */
1184 val
= REG_RD(bp
, BNX2_EMAC_TX_MODE
);
1185 val
&= ~BNX2_EMAC_TX_MODE_FLOW_EN
;
1187 if (bp
->flow_ctrl
& FLOW_CTRL_TX
)
1188 val
|= BNX2_EMAC_TX_MODE_FLOW_EN
;
1189 REG_WR(bp
, BNX2_EMAC_TX_MODE
, val
);
1191 /* Acknowledge the interrupt. */
1192 REG_WR(bp
, BNX2_EMAC_STATUS
, BNX2_EMAC_STATUS_LINK_CHANGE
);
1194 if (CHIP_NUM(bp
) == CHIP_NUM_5709
)
1195 bnx2_init_all_rx_contexts(bp
);
1199 bnx2_enable_bmsr1(struct bnx2
*bp
)
1201 if ((bp
->phy_flags
& BNX2_PHY_FLAG_SERDES
) &&
1202 (CHIP_NUM(bp
) == CHIP_NUM_5709
))
1203 bnx2_write_phy(bp
, MII_BNX2_BLK_ADDR
,
1204 MII_BNX2_BLK_ADDR_GP_STATUS
);
1208 bnx2_disable_bmsr1(struct bnx2
*bp
)
1210 if ((bp
->phy_flags
& BNX2_PHY_FLAG_SERDES
) &&
1211 (CHIP_NUM(bp
) == CHIP_NUM_5709
))
1212 bnx2_write_phy(bp
, MII_BNX2_BLK_ADDR
,
1213 MII_BNX2_BLK_ADDR_COMBO_IEEEB0
);
1217 bnx2_test_and_enable_2g5(struct bnx2
*bp
)
1222 if (!(bp
->phy_flags
& BNX2_PHY_FLAG_2_5G_CAPABLE
))
1225 if (bp
->autoneg
& AUTONEG_SPEED
)
1226 bp
->advertising
|= ADVERTISED_2500baseX_Full
;
1228 if (CHIP_NUM(bp
) == CHIP_NUM_5709
)
1229 bnx2_write_phy(bp
, MII_BNX2_BLK_ADDR
, MII_BNX2_BLK_ADDR_OVER1G
);
1231 bnx2_read_phy(bp
, bp
->mii_up1
, &up1
);
1232 if (!(up1
& BCM5708S_UP1_2G5
)) {
1233 up1
|= BCM5708S_UP1_2G5
;
1234 bnx2_write_phy(bp
, bp
->mii_up1
, up1
);
1238 if (CHIP_NUM(bp
) == CHIP_NUM_5709
)
1239 bnx2_write_phy(bp
, MII_BNX2_BLK_ADDR
,
1240 MII_BNX2_BLK_ADDR_COMBO_IEEEB0
);
1246 bnx2_test_and_disable_2g5(struct bnx2
*bp
)
1251 if (!(bp
->phy_flags
& BNX2_PHY_FLAG_2_5G_CAPABLE
))
1254 if (CHIP_NUM(bp
) == CHIP_NUM_5709
)
1255 bnx2_write_phy(bp
, MII_BNX2_BLK_ADDR
, MII_BNX2_BLK_ADDR_OVER1G
);
1257 bnx2_read_phy(bp
, bp
->mii_up1
, &up1
);
1258 if (up1
& BCM5708S_UP1_2G5
) {
1259 up1
&= ~BCM5708S_UP1_2G5
;
1260 bnx2_write_phy(bp
, bp
->mii_up1
, up1
);
1264 if (CHIP_NUM(bp
) == CHIP_NUM_5709
)
1265 bnx2_write_phy(bp
, MII_BNX2_BLK_ADDR
,
1266 MII_BNX2_BLK_ADDR_COMBO_IEEEB0
);
1272 bnx2_enable_forced_2g5(struct bnx2
*bp
)
1276 if (!(bp
->phy_flags
& BNX2_PHY_FLAG_2_5G_CAPABLE
))
1279 if (CHIP_NUM(bp
) == CHIP_NUM_5709
) {
1282 bnx2_write_phy(bp
, MII_BNX2_BLK_ADDR
,
1283 MII_BNX2_BLK_ADDR_SERDES_DIG
);
1284 bnx2_read_phy(bp
, MII_BNX2_SERDES_DIG_MISC1
, &val
);
1285 val
&= ~MII_BNX2_SD_MISC1_FORCE_MSK
;
1286 val
|= MII_BNX2_SD_MISC1_FORCE
| MII_BNX2_SD_MISC1_FORCE_2_5G
;
1287 bnx2_write_phy(bp
, MII_BNX2_SERDES_DIG_MISC1
, val
);
1289 bnx2_write_phy(bp
, MII_BNX2_BLK_ADDR
,
1290 MII_BNX2_BLK_ADDR_COMBO_IEEEB0
);
1291 bnx2_read_phy(bp
, bp
->mii_bmcr
, &bmcr
);
1293 } else if (CHIP_NUM(bp
) == CHIP_NUM_5708
) {
1294 bnx2_read_phy(bp
, bp
->mii_bmcr
, &bmcr
);
1295 bmcr
|= BCM5708S_BMCR_FORCE_2500
;
1298 if (bp
->autoneg
& AUTONEG_SPEED
) {
1299 bmcr
&= ~BMCR_ANENABLE
;
1300 if (bp
->req_duplex
== DUPLEX_FULL
)
1301 bmcr
|= BMCR_FULLDPLX
;
1303 bnx2_write_phy(bp
, bp
->mii_bmcr
, bmcr
);
1307 bnx2_disable_forced_2g5(struct bnx2
*bp
)
1311 if (!(bp
->phy_flags
& BNX2_PHY_FLAG_2_5G_CAPABLE
))
1314 if (CHIP_NUM(bp
) == CHIP_NUM_5709
) {
1317 bnx2_write_phy(bp
, MII_BNX2_BLK_ADDR
,
1318 MII_BNX2_BLK_ADDR_SERDES_DIG
);
1319 bnx2_read_phy(bp
, MII_BNX2_SERDES_DIG_MISC1
, &val
);
1320 val
&= ~MII_BNX2_SD_MISC1_FORCE
;
1321 bnx2_write_phy(bp
, MII_BNX2_SERDES_DIG_MISC1
, val
);
1323 bnx2_write_phy(bp
, MII_BNX2_BLK_ADDR
,
1324 MII_BNX2_BLK_ADDR_COMBO_IEEEB0
);
1325 bnx2_read_phy(bp
, bp
->mii_bmcr
, &bmcr
);
1327 } else if (CHIP_NUM(bp
) == CHIP_NUM_5708
) {
1328 bnx2_read_phy(bp
, bp
->mii_bmcr
, &bmcr
);
1329 bmcr
&= ~BCM5708S_BMCR_FORCE_2500
;
1332 if (bp
->autoneg
& AUTONEG_SPEED
)
1333 bmcr
|= BMCR_SPEED1000
| BMCR_ANENABLE
| BMCR_ANRESTART
;
1334 bnx2_write_phy(bp
, bp
->mii_bmcr
, bmcr
);
1338 bnx2_5706s_force_link_dn(struct bnx2
*bp
, int start
)
1342 bnx2_write_phy(bp
, MII_BNX2_DSP_ADDRESS
, MII_EXPAND_SERDES_CTL
);
1343 bnx2_read_phy(bp
, MII_BNX2_DSP_RW_PORT
, &val
);
1345 bnx2_write_phy(bp
, MII_BNX2_DSP_RW_PORT
, val
& 0xff0f);
1347 bnx2_write_phy(bp
, MII_BNX2_DSP_RW_PORT
, val
| 0xc0);
1351 bnx2_set_link(struct bnx2
*bp
)
1356 if (bp
->loopback
== MAC_LOOPBACK
|| bp
->loopback
== PHY_LOOPBACK
) {
1361 if (bp
->phy_flags
& BNX2_PHY_FLAG_REMOTE_PHY_CAP
)
1364 link_up
= bp
->link_up
;
1366 bnx2_enable_bmsr1(bp
);
1367 bnx2_read_phy(bp
, bp
->mii_bmsr1
, &bmsr
);
1368 bnx2_read_phy(bp
, bp
->mii_bmsr1
, &bmsr
);
1369 bnx2_disable_bmsr1(bp
);
1371 if ((bp
->phy_flags
& BNX2_PHY_FLAG_SERDES
) &&
1372 (CHIP_NUM(bp
) == CHIP_NUM_5706
)) {
1375 if (bp
->phy_flags
& BNX2_PHY_FLAG_FORCED_DOWN
) {
1376 bnx2_5706s_force_link_dn(bp
, 0);
1377 bp
->phy_flags
&= ~BNX2_PHY_FLAG_FORCED_DOWN
;
1379 val
= REG_RD(bp
, BNX2_EMAC_STATUS
);
1381 bnx2_write_phy(bp
, MII_BNX2_MISC_SHADOW
, MISC_SHDW_AN_DBG
);
1382 bnx2_read_phy(bp
, MII_BNX2_MISC_SHADOW
, &an_dbg
);
1383 bnx2_read_phy(bp
, MII_BNX2_MISC_SHADOW
, &an_dbg
);
1385 if ((val
& BNX2_EMAC_STATUS_LINK
) &&
1386 !(an_dbg
& MISC_SHDW_AN_DBG_NOSYNC
))
1387 bmsr
|= BMSR_LSTATUS
;
1389 bmsr
&= ~BMSR_LSTATUS
;
1392 if (bmsr
& BMSR_LSTATUS
) {
1395 if (bp
->phy_flags
& BNX2_PHY_FLAG_SERDES
) {
1396 if (CHIP_NUM(bp
) == CHIP_NUM_5706
)
1397 bnx2_5706s_linkup(bp
);
1398 else if (CHIP_NUM(bp
) == CHIP_NUM_5708
)
1399 bnx2_5708s_linkup(bp
);
1400 else if (CHIP_NUM(bp
) == CHIP_NUM_5709
)
1401 bnx2_5709s_linkup(bp
);
1404 bnx2_copper_linkup(bp
);
1406 bnx2_resolve_flow_ctrl(bp
);
1409 if ((bp
->phy_flags
& BNX2_PHY_FLAG_SERDES
) &&
1410 (bp
->autoneg
& AUTONEG_SPEED
))
1411 bnx2_disable_forced_2g5(bp
);
1413 if (bp
->phy_flags
& BNX2_PHY_FLAG_PARALLEL_DETECT
) {
1416 bnx2_read_phy(bp
, bp
->mii_bmcr
, &bmcr
);
1417 bmcr
|= BMCR_ANENABLE
;
1418 bnx2_write_phy(bp
, bp
->mii_bmcr
, bmcr
);
1420 bp
->phy_flags
&= ~BNX2_PHY_FLAG_PARALLEL_DETECT
;
1425 if (bp
->link_up
!= link_up
) {
1426 bnx2_report_link(bp
);
1429 bnx2_set_mac_link(bp
);
1435 bnx2_reset_phy(struct bnx2
*bp
)
1440 bnx2_write_phy(bp
, bp
->mii_bmcr
, BMCR_RESET
);
1442 #define PHY_RESET_MAX_WAIT 100
1443 for (i
= 0; i
< PHY_RESET_MAX_WAIT
; i
++) {
1446 bnx2_read_phy(bp
, bp
->mii_bmcr
, ®
);
1447 if (!(reg
& BMCR_RESET
)) {
1452 if (i
== PHY_RESET_MAX_WAIT
) {
1459 bnx2_phy_get_pause_adv(struct bnx2
*bp
)
1463 if ((bp
->req_flow_ctrl
& (FLOW_CTRL_RX
| FLOW_CTRL_TX
)) ==
1464 (FLOW_CTRL_RX
| FLOW_CTRL_TX
)) {
1466 if (bp
->phy_flags
& BNX2_PHY_FLAG_SERDES
) {
1467 adv
= ADVERTISE_1000XPAUSE
;
1470 adv
= ADVERTISE_PAUSE_CAP
;
1473 else if (bp
->req_flow_ctrl
& FLOW_CTRL_TX
) {
1474 if (bp
->phy_flags
& BNX2_PHY_FLAG_SERDES
) {
1475 adv
= ADVERTISE_1000XPSE_ASYM
;
1478 adv
= ADVERTISE_PAUSE_ASYM
;
1481 else if (bp
->req_flow_ctrl
& FLOW_CTRL_RX
) {
1482 if (bp
->phy_flags
& BNX2_PHY_FLAG_SERDES
) {
1483 adv
= ADVERTISE_1000XPAUSE
| ADVERTISE_1000XPSE_ASYM
;
1486 adv
= ADVERTISE_PAUSE_CAP
| ADVERTISE_PAUSE_ASYM
;
1492 static int bnx2_fw_sync(struct bnx2
*, u32
, int, int);
1495 bnx2_setup_remote_phy(struct bnx2
*bp
, u8 port
)
1497 u32 speed_arg
= 0, pause_adv
;
1499 pause_adv
= bnx2_phy_get_pause_adv(bp
);
1501 if (bp
->autoneg
& AUTONEG_SPEED
) {
1502 speed_arg
|= BNX2_NETLINK_SET_LINK_ENABLE_AUTONEG
;
1503 if (bp
->advertising
& ADVERTISED_10baseT_Half
)
1504 speed_arg
|= BNX2_NETLINK_SET_LINK_SPEED_10HALF
;
1505 if (bp
->advertising
& ADVERTISED_10baseT_Full
)
1506 speed_arg
|= BNX2_NETLINK_SET_LINK_SPEED_10FULL
;
1507 if (bp
->advertising
& ADVERTISED_100baseT_Half
)
1508 speed_arg
|= BNX2_NETLINK_SET_LINK_SPEED_100HALF
;
1509 if (bp
->advertising
& ADVERTISED_100baseT_Full
)
1510 speed_arg
|= BNX2_NETLINK_SET_LINK_SPEED_100FULL
;
1511 if (bp
->advertising
& ADVERTISED_1000baseT_Full
)
1512 speed_arg
|= BNX2_NETLINK_SET_LINK_SPEED_1GFULL
;
1513 if (bp
->advertising
& ADVERTISED_2500baseX_Full
)
1514 speed_arg
|= BNX2_NETLINK_SET_LINK_SPEED_2G5FULL
;
1516 if (bp
->req_line_speed
== SPEED_2500
)
1517 speed_arg
= BNX2_NETLINK_SET_LINK_SPEED_2G5FULL
;
1518 else if (bp
->req_line_speed
== SPEED_1000
)
1519 speed_arg
= BNX2_NETLINK_SET_LINK_SPEED_1GFULL
;
1520 else if (bp
->req_line_speed
== SPEED_100
) {
1521 if (bp
->req_duplex
== DUPLEX_FULL
)
1522 speed_arg
= BNX2_NETLINK_SET_LINK_SPEED_100FULL
;
1524 speed_arg
= BNX2_NETLINK_SET_LINK_SPEED_100HALF
;
1525 } else if (bp
->req_line_speed
== SPEED_10
) {
1526 if (bp
->req_duplex
== DUPLEX_FULL
)
1527 speed_arg
= BNX2_NETLINK_SET_LINK_SPEED_10FULL
;
1529 speed_arg
= BNX2_NETLINK_SET_LINK_SPEED_10HALF
;
1533 if (pause_adv
& (ADVERTISE_1000XPAUSE
| ADVERTISE_PAUSE_CAP
))
1534 speed_arg
|= BNX2_NETLINK_SET_LINK_FC_SYM_PAUSE
;
1535 if (pause_adv
& (ADVERTISE_1000XPSE_ASYM
| ADVERTISE_PAUSE_ASYM
))
1536 speed_arg
|= BNX2_NETLINK_SET_LINK_FC_ASYM_PAUSE
;
1538 if (port
== PORT_TP
)
1539 speed_arg
|= BNX2_NETLINK_SET_LINK_PHY_APP_REMOTE
|
1540 BNX2_NETLINK_SET_LINK_ETH_AT_WIRESPEED
;
1542 bnx2_shmem_wr(bp
, BNX2_DRV_MB_ARG0
, speed_arg
);
1544 spin_unlock_bh(&bp
->phy_lock
);
1545 bnx2_fw_sync(bp
, BNX2_DRV_MSG_CODE_CMD_SET_LINK
, 1, 0);
1546 spin_lock_bh(&bp
->phy_lock
);
1552 bnx2_setup_serdes_phy(struct bnx2
*bp
, u8 port
)
1557 if (bp
->phy_flags
& BNX2_PHY_FLAG_REMOTE_PHY_CAP
)
1558 return (bnx2_setup_remote_phy(bp
, port
));
1560 if (!(bp
->autoneg
& AUTONEG_SPEED
)) {
1562 int force_link_down
= 0;
1564 if (bp
->req_line_speed
== SPEED_2500
) {
1565 if (!bnx2_test_and_enable_2g5(bp
))
1566 force_link_down
= 1;
1567 } else if (bp
->req_line_speed
== SPEED_1000
) {
1568 if (bnx2_test_and_disable_2g5(bp
))
1569 force_link_down
= 1;
1571 bnx2_read_phy(bp
, bp
->mii_adv
, &adv
);
1572 adv
&= ~(ADVERTISE_1000XFULL
| ADVERTISE_1000XHALF
);
1574 bnx2_read_phy(bp
, bp
->mii_bmcr
, &bmcr
);
1575 new_bmcr
= bmcr
& ~BMCR_ANENABLE
;
1576 new_bmcr
|= BMCR_SPEED1000
;
1578 if (CHIP_NUM(bp
) == CHIP_NUM_5709
) {
1579 if (bp
->req_line_speed
== SPEED_2500
)
1580 bnx2_enable_forced_2g5(bp
);
1581 else if (bp
->req_line_speed
== SPEED_1000
) {
1582 bnx2_disable_forced_2g5(bp
);
1583 new_bmcr
&= ~0x2000;
1586 } else if (CHIP_NUM(bp
) == CHIP_NUM_5708
) {
1587 if (bp
->req_line_speed
== SPEED_2500
)
1588 new_bmcr
|= BCM5708S_BMCR_FORCE_2500
;
1590 new_bmcr
= bmcr
& ~BCM5708S_BMCR_FORCE_2500
;
1593 if (bp
->req_duplex
== DUPLEX_FULL
) {
1594 adv
|= ADVERTISE_1000XFULL
;
1595 new_bmcr
|= BMCR_FULLDPLX
;
1598 adv
|= ADVERTISE_1000XHALF
;
1599 new_bmcr
&= ~BMCR_FULLDPLX
;
1601 if ((new_bmcr
!= bmcr
) || (force_link_down
)) {
1602 /* Force a link down visible on the other side */
1604 bnx2_write_phy(bp
, bp
->mii_adv
, adv
&
1605 ~(ADVERTISE_1000XFULL
|
1606 ADVERTISE_1000XHALF
));
1607 bnx2_write_phy(bp
, bp
->mii_bmcr
, bmcr
|
1608 BMCR_ANRESTART
| BMCR_ANENABLE
);
1611 netif_carrier_off(bp
->dev
);
1612 bnx2_write_phy(bp
, bp
->mii_bmcr
, new_bmcr
);
1613 bnx2_report_link(bp
);
1615 bnx2_write_phy(bp
, bp
->mii_adv
, adv
);
1616 bnx2_write_phy(bp
, bp
->mii_bmcr
, new_bmcr
);
1618 bnx2_resolve_flow_ctrl(bp
);
1619 bnx2_set_mac_link(bp
);
1624 bnx2_test_and_enable_2g5(bp
);
1626 if (bp
->advertising
& ADVERTISED_1000baseT_Full
)
1627 new_adv
|= ADVERTISE_1000XFULL
;
1629 new_adv
|= bnx2_phy_get_pause_adv(bp
);
1631 bnx2_read_phy(bp
, bp
->mii_adv
, &adv
);
1632 bnx2_read_phy(bp
, bp
->mii_bmcr
, &bmcr
);
1634 bp
->serdes_an_pending
= 0;
1635 if ((adv
!= new_adv
) || ((bmcr
& BMCR_ANENABLE
) == 0)) {
1636 /* Force a link down visible on the other side */
1638 bnx2_write_phy(bp
, bp
->mii_bmcr
, BMCR_LOOPBACK
);
1639 spin_unlock_bh(&bp
->phy_lock
);
1641 spin_lock_bh(&bp
->phy_lock
);
1644 bnx2_write_phy(bp
, bp
->mii_adv
, new_adv
);
1645 bnx2_write_phy(bp
, bp
->mii_bmcr
, bmcr
| BMCR_ANRESTART
|
1647 /* Speed up link-up time when the link partner
1648 * does not autonegotiate which is very common
1649 * in blade servers. Some blade servers use
1650 * IPMI for kerboard input and it's important
1651 * to minimize link disruptions. Autoneg. involves
1652 * exchanging base pages plus 3 next pages and
1653 * normally completes in about 120 msec.
1655 bp
->current_interval
= SERDES_AN_TIMEOUT
;
1656 bp
->serdes_an_pending
= 1;
1657 mod_timer(&bp
->timer
, jiffies
+ bp
->current_interval
);
1659 bnx2_resolve_flow_ctrl(bp
);
1660 bnx2_set_mac_link(bp
);
1666 #define ETHTOOL_ALL_FIBRE_SPEED \
1667 (bp->phy_flags & BNX2_PHY_FLAG_2_5G_CAPABLE) ? \
1668 (ADVERTISED_2500baseX_Full | ADVERTISED_1000baseT_Full) :\
1669 (ADVERTISED_1000baseT_Full)
1671 #define ETHTOOL_ALL_COPPER_SPEED \
1672 (ADVERTISED_10baseT_Half | ADVERTISED_10baseT_Full | \
1673 ADVERTISED_100baseT_Half | ADVERTISED_100baseT_Full | \
1674 ADVERTISED_1000baseT_Full)
1676 #define PHY_ALL_10_100_SPEED (ADVERTISE_10HALF | ADVERTISE_10FULL | \
1677 ADVERTISE_100HALF | ADVERTISE_100FULL | ADVERTISE_CSMA)
1679 #define PHY_ALL_1000_SPEED (ADVERTISE_1000HALF | ADVERTISE_1000FULL)
1682 bnx2_set_default_remote_link(struct bnx2
*bp
)
1686 if (bp
->phy_port
== PORT_TP
)
1687 link
= bnx2_shmem_rd(bp
, BNX2_RPHY_COPPER_LINK
);
1689 link
= bnx2_shmem_rd(bp
, BNX2_RPHY_SERDES_LINK
);
1691 if (link
& BNX2_NETLINK_SET_LINK_ENABLE_AUTONEG
) {
1692 bp
->req_line_speed
= 0;
1693 bp
->autoneg
|= AUTONEG_SPEED
;
1694 bp
->advertising
= ADVERTISED_Autoneg
;
1695 if (link
& BNX2_NETLINK_SET_LINK_SPEED_10HALF
)
1696 bp
->advertising
|= ADVERTISED_10baseT_Half
;
1697 if (link
& BNX2_NETLINK_SET_LINK_SPEED_10FULL
)
1698 bp
->advertising
|= ADVERTISED_10baseT_Full
;
1699 if (link
& BNX2_NETLINK_SET_LINK_SPEED_100HALF
)
1700 bp
->advertising
|= ADVERTISED_100baseT_Half
;
1701 if (link
& BNX2_NETLINK_SET_LINK_SPEED_100FULL
)
1702 bp
->advertising
|= ADVERTISED_100baseT_Full
;
1703 if (link
& BNX2_NETLINK_SET_LINK_SPEED_1GFULL
)
1704 bp
->advertising
|= ADVERTISED_1000baseT_Full
;
1705 if (link
& BNX2_NETLINK_SET_LINK_SPEED_2G5FULL
)
1706 bp
->advertising
|= ADVERTISED_2500baseX_Full
;
1709 bp
->advertising
= 0;
1710 bp
->req_duplex
= DUPLEX_FULL
;
1711 if (link
& BNX2_NETLINK_SET_LINK_SPEED_10
) {
1712 bp
->req_line_speed
= SPEED_10
;
1713 if (link
& BNX2_NETLINK_SET_LINK_SPEED_10HALF
)
1714 bp
->req_duplex
= DUPLEX_HALF
;
1716 if (link
& BNX2_NETLINK_SET_LINK_SPEED_100
) {
1717 bp
->req_line_speed
= SPEED_100
;
1718 if (link
& BNX2_NETLINK_SET_LINK_SPEED_100HALF
)
1719 bp
->req_duplex
= DUPLEX_HALF
;
1721 if (link
& BNX2_NETLINK_SET_LINK_SPEED_1GFULL
)
1722 bp
->req_line_speed
= SPEED_1000
;
1723 if (link
& BNX2_NETLINK_SET_LINK_SPEED_2G5FULL
)
1724 bp
->req_line_speed
= SPEED_2500
;
1729 bnx2_set_default_link(struct bnx2
*bp
)
1731 if (bp
->phy_flags
& BNX2_PHY_FLAG_REMOTE_PHY_CAP
) {
1732 bnx2_set_default_remote_link(bp
);
1736 bp
->autoneg
= AUTONEG_SPEED
| AUTONEG_FLOW_CTRL
;
1737 bp
->req_line_speed
= 0;
1738 if (bp
->phy_flags
& BNX2_PHY_FLAG_SERDES
) {
1741 bp
->advertising
= ETHTOOL_ALL_FIBRE_SPEED
| ADVERTISED_Autoneg
;
1743 reg
= bnx2_shmem_rd(bp
, BNX2_PORT_HW_CFG_CONFIG
);
1744 reg
&= BNX2_PORT_HW_CFG_CFG_DFLT_LINK_MASK
;
1745 if (reg
== BNX2_PORT_HW_CFG_CFG_DFLT_LINK_1G
) {
1747 bp
->req_line_speed
= bp
->line_speed
= SPEED_1000
;
1748 bp
->req_duplex
= DUPLEX_FULL
;
1751 bp
->advertising
= ETHTOOL_ALL_COPPER_SPEED
| ADVERTISED_Autoneg
;
1755 bnx2_send_heart_beat(struct bnx2
*bp
)
1760 spin_lock(&bp
->indirect_lock
);
1761 msg
= (u32
) (++bp
->fw_drv_pulse_wr_seq
& BNX2_DRV_PULSE_SEQ_MASK
);
1762 addr
= bp
->shmem_base
+ BNX2_DRV_PULSE_MB
;
1763 REG_WR(bp
, BNX2_PCICFG_REG_WINDOW_ADDRESS
, addr
);
1764 REG_WR(bp
, BNX2_PCICFG_REG_WINDOW
, msg
);
1765 spin_unlock(&bp
->indirect_lock
);
1769 bnx2_remote_phy_event(struct bnx2
*bp
)
1772 u8 link_up
= bp
->link_up
;
1775 msg
= bnx2_shmem_rd(bp
, BNX2_LINK_STATUS
);
1777 if (msg
& BNX2_LINK_STATUS_HEART_BEAT_EXPIRED
)
1778 bnx2_send_heart_beat(bp
);
1780 msg
&= ~BNX2_LINK_STATUS_HEART_BEAT_EXPIRED
;
1782 if ((msg
& BNX2_LINK_STATUS_LINK_UP
) == BNX2_LINK_STATUS_LINK_DOWN
)
1788 speed
= msg
& BNX2_LINK_STATUS_SPEED_MASK
;
1789 bp
->duplex
= DUPLEX_FULL
;
1791 case BNX2_LINK_STATUS_10HALF
:
1792 bp
->duplex
= DUPLEX_HALF
;
1793 case BNX2_LINK_STATUS_10FULL
:
1794 bp
->line_speed
= SPEED_10
;
1796 case BNX2_LINK_STATUS_100HALF
:
1797 bp
->duplex
= DUPLEX_HALF
;
1798 case BNX2_LINK_STATUS_100BASE_T4
:
1799 case BNX2_LINK_STATUS_100FULL
:
1800 bp
->line_speed
= SPEED_100
;
1802 case BNX2_LINK_STATUS_1000HALF
:
1803 bp
->duplex
= DUPLEX_HALF
;
1804 case BNX2_LINK_STATUS_1000FULL
:
1805 bp
->line_speed
= SPEED_1000
;
1807 case BNX2_LINK_STATUS_2500HALF
:
1808 bp
->duplex
= DUPLEX_HALF
;
1809 case BNX2_LINK_STATUS_2500FULL
:
1810 bp
->line_speed
= SPEED_2500
;
1818 if ((bp
->autoneg
& (AUTONEG_SPEED
| AUTONEG_FLOW_CTRL
)) !=
1819 (AUTONEG_SPEED
| AUTONEG_FLOW_CTRL
)) {
1820 if (bp
->duplex
== DUPLEX_FULL
)
1821 bp
->flow_ctrl
= bp
->req_flow_ctrl
;
1823 if (msg
& BNX2_LINK_STATUS_TX_FC_ENABLED
)
1824 bp
->flow_ctrl
|= FLOW_CTRL_TX
;
1825 if (msg
& BNX2_LINK_STATUS_RX_FC_ENABLED
)
1826 bp
->flow_ctrl
|= FLOW_CTRL_RX
;
1829 old_port
= bp
->phy_port
;
1830 if (msg
& BNX2_LINK_STATUS_SERDES_LINK
)
1831 bp
->phy_port
= PORT_FIBRE
;
1833 bp
->phy_port
= PORT_TP
;
1835 if (old_port
!= bp
->phy_port
)
1836 bnx2_set_default_link(bp
);
1839 if (bp
->link_up
!= link_up
)
1840 bnx2_report_link(bp
);
1842 bnx2_set_mac_link(bp
);
1846 bnx2_set_remote_link(struct bnx2
*bp
)
1850 evt_code
= bnx2_shmem_rd(bp
, BNX2_FW_EVT_CODE_MB
);
1852 case BNX2_FW_EVT_CODE_LINK_EVENT
:
1853 bnx2_remote_phy_event(bp
);
1855 case BNX2_FW_EVT_CODE_SW_TIMER_EXPIRATION_EVENT
:
1857 bnx2_send_heart_beat(bp
);
1864 bnx2_setup_copper_phy(struct bnx2
*bp
)
1869 bnx2_read_phy(bp
, bp
->mii_bmcr
, &bmcr
);
1871 if (bp
->autoneg
& AUTONEG_SPEED
) {
1872 u32 adv_reg
, adv1000_reg
;
1873 u32 new_adv_reg
= 0;
1874 u32 new_adv1000_reg
= 0;
1876 bnx2_read_phy(bp
, bp
->mii_adv
, &adv_reg
);
1877 adv_reg
&= (PHY_ALL_10_100_SPEED
| ADVERTISE_PAUSE_CAP
|
1878 ADVERTISE_PAUSE_ASYM
);
1880 bnx2_read_phy(bp
, MII_CTRL1000
, &adv1000_reg
);
1881 adv1000_reg
&= PHY_ALL_1000_SPEED
;
1883 if (bp
->advertising
& ADVERTISED_10baseT_Half
)
1884 new_adv_reg
|= ADVERTISE_10HALF
;
1885 if (bp
->advertising
& ADVERTISED_10baseT_Full
)
1886 new_adv_reg
|= ADVERTISE_10FULL
;
1887 if (bp
->advertising
& ADVERTISED_100baseT_Half
)
1888 new_adv_reg
|= ADVERTISE_100HALF
;
1889 if (bp
->advertising
& ADVERTISED_100baseT_Full
)
1890 new_adv_reg
|= ADVERTISE_100FULL
;
1891 if (bp
->advertising
& ADVERTISED_1000baseT_Full
)
1892 new_adv1000_reg
|= ADVERTISE_1000FULL
;
1894 new_adv_reg
|= ADVERTISE_CSMA
;
1896 new_adv_reg
|= bnx2_phy_get_pause_adv(bp
);
1898 if ((adv1000_reg
!= new_adv1000_reg
) ||
1899 (adv_reg
!= new_adv_reg
) ||
1900 ((bmcr
& BMCR_ANENABLE
) == 0)) {
1902 bnx2_write_phy(bp
, bp
->mii_adv
, new_adv_reg
);
1903 bnx2_write_phy(bp
, MII_CTRL1000
, new_adv1000_reg
);
1904 bnx2_write_phy(bp
, bp
->mii_bmcr
, BMCR_ANRESTART
|
1907 else if (bp
->link_up
) {
1908 /* Flow ctrl may have changed from auto to forced */
1909 /* or vice-versa. */
1911 bnx2_resolve_flow_ctrl(bp
);
1912 bnx2_set_mac_link(bp
);
1918 if (bp
->req_line_speed
== SPEED_100
) {
1919 new_bmcr
|= BMCR_SPEED100
;
1921 if (bp
->req_duplex
== DUPLEX_FULL
) {
1922 new_bmcr
|= BMCR_FULLDPLX
;
1924 if (new_bmcr
!= bmcr
) {
1927 bnx2_read_phy(bp
, bp
->mii_bmsr
, &bmsr
);
1928 bnx2_read_phy(bp
, bp
->mii_bmsr
, &bmsr
);
1930 if (bmsr
& BMSR_LSTATUS
) {
1931 /* Force link down */
1932 bnx2_write_phy(bp
, bp
->mii_bmcr
, BMCR_LOOPBACK
);
1933 spin_unlock_bh(&bp
->phy_lock
);
1935 spin_lock_bh(&bp
->phy_lock
);
1937 bnx2_read_phy(bp
, bp
->mii_bmsr
, &bmsr
);
1938 bnx2_read_phy(bp
, bp
->mii_bmsr
, &bmsr
);
1941 bnx2_write_phy(bp
, bp
->mii_bmcr
, new_bmcr
);
1943 /* Normally, the new speed is setup after the link has
1944 * gone down and up again. In some cases, link will not go
1945 * down so we need to set up the new speed here.
1947 if (bmsr
& BMSR_LSTATUS
) {
1948 bp
->line_speed
= bp
->req_line_speed
;
1949 bp
->duplex
= bp
->req_duplex
;
1950 bnx2_resolve_flow_ctrl(bp
);
1951 bnx2_set_mac_link(bp
);
1954 bnx2_resolve_flow_ctrl(bp
);
1955 bnx2_set_mac_link(bp
);
1961 bnx2_setup_phy(struct bnx2
*bp
, u8 port
)
1963 if (bp
->loopback
== MAC_LOOPBACK
)
1966 if (bp
->phy_flags
& BNX2_PHY_FLAG_SERDES
) {
1967 return (bnx2_setup_serdes_phy(bp
, port
));
1970 return (bnx2_setup_copper_phy(bp
));
1975 bnx2_init_5709s_phy(struct bnx2
*bp
, int reset_phy
)
1979 bp
->mii_bmcr
= MII_BMCR
+ 0x10;
1980 bp
->mii_bmsr
= MII_BMSR
+ 0x10;
1981 bp
->mii_bmsr1
= MII_BNX2_GP_TOP_AN_STATUS1
;
1982 bp
->mii_adv
= MII_ADVERTISE
+ 0x10;
1983 bp
->mii_lpa
= MII_LPA
+ 0x10;
1984 bp
->mii_up1
= MII_BNX2_OVER1G_UP1
;
1986 bnx2_write_phy(bp
, MII_BNX2_BLK_ADDR
, MII_BNX2_BLK_ADDR_AER
);
1987 bnx2_write_phy(bp
, MII_BNX2_AER_AER
, MII_BNX2_AER_AER_AN_MMD
);
1989 bnx2_write_phy(bp
, MII_BNX2_BLK_ADDR
, MII_BNX2_BLK_ADDR_COMBO_IEEEB0
);
1993 bnx2_write_phy(bp
, MII_BNX2_BLK_ADDR
, MII_BNX2_BLK_ADDR_SERDES_DIG
);
1995 bnx2_read_phy(bp
, MII_BNX2_SERDES_DIG_1000XCTL1
, &val
);
1996 val
&= ~MII_BNX2_SD_1000XCTL1_AUTODET
;
1997 val
|= MII_BNX2_SD_1000XCTL1_FIBER
;
1998 bnx2_write_phy(bp
, MII_BNX2_SERDES_DIG_1000XCTL1
, val
);
2000 bnx2_write_phy(bp
, MII_BNX2_BLK_ADDR
, MII_BNX2_BLK_ADDR_OVER1G
);
2001 bnx2_read_phy(bp
, MII_BNX2_OVER1G_UP1
, &val
);
2002 if (bp
->phy_flags
& BNX2_PHY_FLAG_2_5G_CAPABLE
)
2003 val
|= BCM5708S_UP1_2G5
;
2005 val
&= ~BCM5708S_UP1_2G5
;
2006 bnx2_write_phy(bp
, MII_BNX2_OVER1G_UP1
, val
);
2008 bnx2_write_phy(bp
, MII_BNX2_BLK_ADDR
, MII_BNX2_BLK_ADDR_BAM_NXTPG
);
2009 bnx2_read_phy(bp
, MII_BNX2_BAM_NXTPG_CTL
, &val
);
2010 val
|= MII_BNX2_NXTPG_CTL_T2
| MII_BNX2_NXTPG_CTL_BAM
;
2011 bnx2_write_phy(bp
, MII_BNX2_BAM_NXTPG_CTL
, val
);
2013 bnx2_write_phy(bp
, MII_BNX2_BLK_ADDR
, MII_BNX2_BLK_ADDR_CL73_USERB0
);
2015 val
= MII_BNX2_CL73_BAM_EN
| MII_BNX2_CL73_BAM_STA_MGR_EN
|
2016 MII_BNX2_CL73_BAM_NP_AFT_BP_EN
;
2017 bnx2_write_phy(bp
, MII_BNX2_CL73_BAM_CTL1
, val
);
2019 bnx2_write_phy(bp
, MII_BNX2_BLK_ADDR
, MII_BNX2_BLK_ADDR_COMBO_IEEEB0
);
2025 bnx2_init_5708s_phy(struct bnx2
*bp
, int reset_phy
)
2032 bp
->mii_up1
= BCM5708S_UP1
;
2034 bnx2_write_phy(bp
, BCM5708S_BLK_ADDR
, BCM5708S_BLK_ADDR_DIG3
);
2035 bnx2_write_phy(bp
, BCM5708S_DIG_3_0
, BCM5708S_DIG_3_0_USE_IEEE
);
2036 bnx2_write_phy(bp
, BCM5708S_BLK_ADDR
, BCM5708S_BLK_ADDR_DIG
);
2038 bnx2_read_phy(bp
, BCM5708S_1000X_CTL1
, &val
);
2039 val
|= BCM5708S_1000X_CTL1_FIBER_MODE
| BCM5708S_1000X_CTL1_AUTODET_EN
;
2040 bnx2_write_phy(bp
, BCM5708S_1000X_CTL1
, val
);
2042 bnx2_read_phy(bp
, BCM5708S_1000X_CTL2
, &val
);
2043 val
|= BCM5708S_1000X_CTL2_PLLEL_DET_EN
;
2044 bnx2_write_phy(bp
, BCM5708S_1000X_CTL2
, val
);
2046 if (bp
->phy_flags
& BNX2_PHY_FLAG_2_5G_CAPABLE
) {
2047 bnx2_read_phy(bp
, BCM5708S_UP1
, &val
);
2048 val
|= BCM5708S_UP1_2G5
;
2049 bnx2_write_phy(bp
, BCM5708S_UP1
, val
);
2052 if ((CHIP_ID(bp
) == CHIP_ID_5708_A0
) ||
2053 (CHIP_ID(bp
) == CHIP_ID_5708_B0
) ||
2054 (CHIP_ID(bp
) == CHIP_ID_5708_B1
)) {
2055 /* increase tx signal amplitude */
2056 bnx2_write_phy(bp
, BCM5708S_BLK_ADDR
,
2057 BCM5708S_BLK_ADDR_TX_MISC
);
2058 bnx2_read_phy(bp
, BCM5708S_TX_ACTL1
, &val
);
2059 val
&= ~BCM5708S_TX_ACTL1_DRIVER_VCM
;
2060 bnx2_write_phy(bp
, BCM5708S_TX_ACTL1
, val
);
2061 bnx2_write_phy(bp
, BCM5708S_BLK_ADDR
, BCM5708S_BLK_ADDR_DIG
);
2064 val
= bnx2_shmem_rd(bp
, BNX2_PORT_HW_CFG_CONFIG
) &
2065 BNX2_PORT_HW_CFG_CFG_TXCTL3_MASK
;
2070 is_backplane
= bnx2_shmem_rd(bp
, BNX2_SHARED_HW_CFG_CONFIG
);
2071 if (is_backplane
& BNX2_SHARED_HW_CFG_PHY_BACKPLANE
) {
2072 bnx2_write_phy(bp
, BCM5708S_BLK_ADDR
,
2073 BCM5708S_BLK_ADDR_TX_MISC
);
2074 bnx2_write_phy(bp
, BCM5708S_TX_ACTL3
, val
);
2075 bnx2_write_phy(bp
, BCM5708S_BLK_ADDR
,
2076 BCM5708S_BLK_ADDR_DIG
);
2083 bnx2_init_5706s_phy(struct bnx2
*bp
, int reset_phy
)
2088 bp
->phy_flags
&= ~BNX2_PHY_FLAG_PARALLEL_DETECT
;
2090 if (CHIP_NUM(bp
) == CHIP_NUM_5706
)
2091 REG_WR(bp
, BNX2_MISC_GP_HW_CTL0
, 0x300);
2093 if (bp
->dev
->mtu
> 1500) {
2096 /* Set extended packet length bit */
2097 bnx2_write_phy(bp
, 0x18, 0x7);
2098 bnx2_read_phy(bp
, 0x18, &val
);
2099 bnx2_write_phy(bp
, 0x18, (val
& 0xfff8) | 0x4000);
2101 bnx2_write_phy(bp
, 0x1c, 0x6c00);
2102 bnx2_read_phy(bp
, 0x1c, &val
);
2103 bnx2_write_phy(bp
, 0x1c, (val
& 0x3ff) | 0xec02);
2108 bnx2_write_phy(bp
, 0x18, 0x7);
2109 bnx2_read_phy(bp
, 0x18, &val
);
2110 bnx2_write_phy(bp
, 0x18, val
& ~0x4007);
2112 bnx2_write_phy(bp
, 0x1c, 0x6c00);
2113 bnx2_read_phy(bp
, 0x1c, &val
);
2114 bnx2_write_phy(bp
, 0x1c, (val
& 0x3fd) | 0xec00);
2121 bnx2_init_copper_phy(struct bnx2
*bp
, int reset_phy
)
2128 if (bp
->phy_flags
& BNX2_PHY_FLAG_CRC_FIX
) {
2129 bnx2_write_phy(bp
, 0x18, 0x0c00);
2130 bnx2_write_phy(bp
, 0x17, 0x000a);
2131 bnx2_write_phy(bp
, 0x15, 0x310b);
2132 bnx2_write_phy(bp
, 0x17, 0x201f);
2133 bnx2_write_phy(bp
, 0x15, 0x9506);
2134 bnx2_write_phy(bp
, 0x17, 0x401f);
2135 bnx2_write_phy(bp
, 0x15, 0x14e2);
2136 bnx2_write_phy(bp
, 0x18, 0x0400);
2139 if (bp
->phy_flags
& BNX2_PHY_FLAG_DIS_EARLY_DAC
) {
2140 bnx2_write_phy(bp
, MII_BNX2_DSP_ADDRESS
,
2141 MII_BNX2_DSP_EXPAND_REG
| 0x8);
2142 bnx2_read_phy(bp
, MII_BNX2_DSP_RW_PORT
, &val
);
2144 bnx2_write_phy(bp
, MII_BNX2_DSP_RW_PORT
, val
);
2147 if (bp
->dev
->mtu
> 1500) {
2148 /* Set extended packet length bit */
2149 bnx2_write_phy(bp
, 0x18, 0x7);
2150 bnx2_read_phy(bp
, 0x18, &val
);
2151 bnx2_write_phy(bp
, 0x18, val
| 0x4000);
2153 bnx2_read_phy(bp
, 0x10, &val
);
2154 bnx2_write_phy(bp
, 0x10, val
| 0x1);
2157 bnx2_write_phy(bp
, 0x18, 0x7);
2158 bnx2_read_phy(bp
, 0x18, &val
);
2159 bnx2_write_phy(bp
, 0x18, val
& ~0x4007);
2161 bnx2_read_phy(bp
, 0x10, &val
);
2162 bnx2_write_phy(bp
, 0x10, val
& ~0x1);
2165 /* ethernet@wirespeed */
2166 bnx2_write_phy(bp
, 0x18, 0x7007);
2167 bnx2_read_phy(bp
, 0x18, &val
);
2168 bnx2_write_phy(bp
, 0x18, val
| (1 << 15) | (1 << 4));
2174 bnx2_init_phy(struct bnx2
*bp
, int reset_phy
)
2179 bp
->phy_flags
&= ~BNX2_PHY_FLAG_INT_MODE_MASK
;
2180 bp
->phy_flags
|= BNX2_PHY_FLAG_INT_MODE_LINK_READY
;
2182 bp
->mii_bmcr
= MII_BMCR
;
2183 bp
->mii_bmsr
= MII_BMSR
;
2184 bp
->mii_bmsr1
= MII_BMSR
;
2185 bp
->mii_adv
= MII_ADVERTISE
;
2186 bp
->mii_lpa
= MII_LPA
;
2188 REG_WR(bp
, BNX2_EMAC_ATTENTION_ENA
, BNX2_EMAC_ATTENTION_ENA_LINK
);
2190 if (bp
->phy_flags
& BNX2_PHY_FLAG_REMOTE_PHY_CAP
)
2193 bnx2_read_phy(bp
, MII_PHYSID1
, &val
);
2194 bp
->phy_id
= val
<< 16;
2195 bnx2_read_phy(bp
, MII_PHYSID2
, &val
);
2196 bp
->phy_id
|= val
& 0xffff;
2198 if (bp
->phy_flags
& BNX2_PHY_FLAG_SERDES
) {
2199 if (CHIP_NUM(bp
) == CHIP_NUM_5706
)
2200 rc
= bnx2_init_5706s_phy(bp
, reset_phy
);
2201 else if (CHIP_NUM(bp
) == CHIP_NUM_5708
)
2202 rc
= bnx2_init_5708s_phy(bp
, reset_phy
);
2203 else if (CHIP_NUM(bp
) == CHIP_NUM_5709
)
2204 rc
= bnx2_init_5709s_phy(bp
, reset_phy
);
2207 rc
= bnx2_init_copper_phy(bp
, reset_phy
);
2212 rc
= bnx2_setup_phy(bp
, bp
->phy_port
);
2218 bnx2_set_mac_loopback(struct bnx2
*bp
)
2222 mac_mode
= REG_RD(bp
, BNX2_EMAC_MODE
);
2223 mac_mode
&= ~BNX2_EMAC_MODE_PORT
;
2224 mac_mode
|= BNX2_EMAC_MODE_MAC_LOOP
| BNX2_EMAC_MODE_FORCE_LINK
;
2225 REG_WR(bp
, BNX2_EMAC_MODE
, mac_mode
);
2230 static int bnx2_test_link(struct bnx2
*);
2233 bnx2_set_phy_loopback(struct bnx2
*bp
)
2238 spin_lock_bh(&bp
->phy_lock
);
2239 rc
= bnx2_write_phy(bp
, bp
->mii_bmcr
, BMCR_LOOPBACK
| BMCR_FULLDPLX
|
2241 spin_unlock_bh(&bp
->phy_lock
);
2245 for (i
= 0; i
< 10; i
++) {
2246 if (bnx2_test_link(bp
) == 0)
2251 mac_mode
= REG_RD(bp
, BNX2_EMAC_MODE
);
2252 mac_mode
&= ~(BNX2_EMAC_MODE_PORT
| BNX2_EMAC_MODE_HALF_DUPLEX
|
2253 BNX2_EMAC_MODE_MAC_LOOP
| BNX2_EMAC_MODE_FORCE_LINK
|
2254 BNX2_EMAC_MODE_25G_MODE
);
2256 mac_mode
|= BNX2_EMAC_MODE_PORT_GMII
;
2257 REG_WR(bp
, BNX2_EMAC_MODE
, mac_mode
);
2263 bnx2_fw_sync(struct bnx2
*bp
, u32 msg_data
, int ack
, int silent
)
2269 msg_data
|= bp
->fw_wr_seq
;
2271 bnx2_shmem_wr(bp
, BNX2_DRV_MB
, msg_data
);
2276 /* wait for an acknowledgement. */
2277 for (i
= 0; i
< (FW_ACK_TIME_OUT_MS
/ 10); i
++) {
2280 val
= bnx2_shmem_rd(bp
, BNX2_FW_MB
);
2282 if ((val
& BNX2_FW_MSG_ACK
) == (msg_data
& BNX2_DRV_MSG_SEQ
))
2285 if ((msg_data
& BNX2_DRV_MSG_DATA
) == BNX2_DRV_MSG_DATA_WAIT0
)
2288 /* If we timed out, inform the firmware that this is the case. */
2289 if ((val
& BNX2_FW_MSG_ACK
) != (msg_data
& BNX2_DRV_MSG_SEQ
)) {
2291 printk(KERN_ERR PFX
"fw sync timeout, reset code = "
2294 msg_data
&= ~BNX2_DRV_MSG_CODE
;
2295 msg_data
|= BNX2_DRV_MSG_CODE_FW_TIMEOUT
;
2297 bnx2_shmem_wr(bp
, BNX2_DRV_MB
, msg_data
);
2302 if ((val
& BNX2_FW_MSG_STATUS_MASK
) != BNX2_FW_MSG_STATUS_OK
)
2309 bnx2_init_5709_context(struct bnx2
*bp
)
2314 val
= BNX2_CTX_COMMAND_ENABLED
| BNX2_CTX_COMMAND_MEM_INIT
| (1 << 12);
2315 val
|= (BCM_PAGE_BITS
- 8) << 16;
2316 REG_WR(bp
, BNX2_CTX_COMMAND
, val
);
2317 for (i
= 0; i
< 10; i
++) {
2318 val
= REG_RD(bp
, BNX2_CTX_COMMAND
);
2319 if (!(val
& BNX2_CTX_COMMAND_MEM_INIT
))
2323 if (val
& BNX2_CTX_COMMAND_MEM_INIT
)
2326 for (i
= 0; i
< bp
->ctx_pages
; i
++) {
2330 memset(bp
->ctx_blk
[i
], 0, BCM_PAGE_SIZE
);
2334 REG_WR(bp
, BNX2_CTX_HOST_PAGE_TBL_DATA0
,
2335 (bp
->ctx_blk_mapping
[i
] & 0xffffffff) |
2336 BNX2_CTX_HOST_PAGE_TBL_DATA0_VALID
);
2337 REG_WR(bp
, BNX2_CTX_HOST_PAGE_TBL_DATA1
,
2338 (u64
) bp
->ctx_blk_mapping
[i
] >> 32);
2339 REG_WR(bp
, BNX2_CTX_HOST_PAGE_TBL_CTRL
, i
|
2340 BNX2_CTX_HOST_PAGE_TBL_CTRL_WRITE_REQ
);
2341 for (j
= 0; j
< 10; j
++) {
2343 val
= REG_RD(bp
, BNX2_CTX_HOST_PAGE_TBL_CTRL
);
2344 if (!(val
& BNX2_CTX_HOST_PAGE_TBL_CTRL_WRITE_REQ
))
2348 if (val
& BNX2_CTX_HOST_PAGE_TBL_CTRL_WRITE_REQ
) {
2357 bnx2_init_context(struct bnx2
*bp
)
2363 u32 vcid_addr
, pcid_addr
, offset
;
2368 if (CHIP_ID(bp
) == CHIP_ID_5706_A0
) {
2371 vcid_addr
= GET_PCID_ADDR(vcid
);
2373 new_vcid
= 0x60 + (vcid
& 0xf0) + (vcid
& 0x7);
2378 pcid_addr
= GET_PCID_ADDR(new_vcid
);
2381 vcid_addr
= GET_CID_ADDR(vcid
);
2382 pcid_addr
= vcid_addr
;
2385 for (i
= 0; i
< (CTX_SIZE
/ PHY_CTX_SIZE
); i
++) {
2386 vcid_addr
+= (i
<< PHY_CTX_SHIFT
);
2387 pcid_addr
+= (i
<< PHY_CTX_SHIFT
);
2389 REG_WR(bp
, BNX2_CTX_VIRT_ADDR
, vcid_addr
);
2390 REG_WR(bp
, BNX2_CTX_PAGE_TBL
, pcid_addr
);
2392 /* Zero out the context. */
2393 for (offset
= 0; offset
< PHY_CTX_SIZE
; offset
+= 4)
2394 bnx2_ctx_wr(bp
, vcid_addr
, offset
, 0);
2400 bnx2_alloc_bad_rbuf(struct bnx2
*bp
)
2406 good_mbuf
= kmalloc(512 * sizeof(u16
), GFP_KERNEL
);
2407 if (good_mbuf
== NULL
) {
2408 printk(KERN_ERR PFX
"Failed to allocate memory in "
2409 "bnx2_alloc_bad_rbuf\n");
2413 REG_WR(bp
, BNX2_MISC_ENABLE_SET_BITS
,
2414 BNX2_MISC_ENABLE_SET_BITS_RX_MBUF_ENABLE
);
2418 /* Allocate a bunch of mbufs and save the good ones in an array. */
2419 val
= bnx2_reg_rd_ind(bp
, BNX2_RBUF_STATUS1
);
2420 while (val
& BNX2_RBUF_STATUS1_FREE_COUNT
) {
2421 bnx2_reg_wr_ind(bp
, BNX2_RBUF_COMMAND
,
2422 BNX2_RBUF_COMMAND_ALLOC_REQ
);
2424 val
= bnx2_reg_rd_ind(bp
, BNX2_RBUF_FW_BUF_ALLOC
);
2426 val
&= BNX2_RBUF_FW_BUF_ALLOC_VALUE
;
2428 /* The addresses with Bit 9 set are bad memory blocks. */
2429 if (!(val
& (1 << 9))) {
2430 good_mbuf
[good_mbuf_cnt
] = (u16
) val
;
2434 val
= bnx2_reg_rd_ind(bp
, BNX2_RBUF_STATUS1
);
2437 /* Free the good ones back to the mbuf pool thus discarding
2438 * all the bad ones. */
2439 while (good_mbuf_cnt
) {
2442 val
= good_mbuf
[good_mbuf_cnt
];
2443 val
= (val
<< 9) | val
| 1;
2445 bnx2_reg_wr_ind(bp
, BNX2_RBUF_FW_BUF_FREE
, val
);
2452 bnx2_set_mac_addr(struct bnx2
*bp
, u8
*mac_addr
, u32 pos
)
2456 val
= (mac_addr
[0] << 8) | mac_addr
[1];
2458 REG_WR(bp
, BNX2_EMAC_MAC_MATCH0
+ (pos
* 8), val
);
2460 val
= (mac_addr
[2] << 24) | (mac_addr
[3] << 16) |
2461 (mac_addr
[4] << 8) | mac_addr
[5];
2463 REG_WR(bp
, BNX2_EMAC_MAC_MATCH1
+ (pos
* 8), val
);
2467 bnx2_alloc_rx_page(struct bnx2
*bp
, struct bnx2_rx_ring_info
*rxr
, u16 index
)
2470 struct sw_pg
*rx_pg
= &rxr
->rx_pg_ring
[index
];
2471 struct rx_bd
*rxbd
=
2472 &rxr
->rx_pg_desc_ring
[RX_RING(index
)][RX_IDX(index
)];
2473 struct page
*page
= alloc_page(GFP_ATOMIC
);
2477 mapping
= pci_map_page(bp
->pdev
, page
, 0, PAGE_SIZE
,
2478 PCI_DMA_FROMDEVICE
);
2479 if (pci_dma_mapping_error(bp
->pdev
, mapping
)) {
2485 pci_unmap_addr_set(rx_pg
, mapping
, mapping
);
2486 rxbd
->rx_bd_haddr_hi
= (u64
) mapping
>> 32;
2487 rxbd
->rx_bd_haddr_lo
= (u64
) mapping
& 0xffffffff;
2492 bnx2_free_rx_page(struct bnx2
*bp
, struct bnx2_rx_ring_info
*rxr
, u16 index
)
2494 struct sw_pg
*rx_pg
= &rxr
->rx_pg_ring
[index
];
2495 struct page
*page
= rx_pg
->page
;
2500 pci_unmap_page(bp
->pdev
, pci_unmap_addr(rx_pg
, mapping
), PAGE_SIZE
,
2501 PCI_DMA_FROMDEVICE
);
2508 bnx2_alloc_rx_skb(struct bnx2
*bp
, struct bnx2_rx_ring_info
*rxr
, u16 index
)
2510 struct sk_buff
*skb
;
2511 struct sw_bd
*rx_buf
= &rxr
->rx_buf_ring
[index
];
2513 struct rx_bd
*rxbd
= &rxr
->rx_desc_ring
[RX_RING(index
)][RX_IDX(index
)];
2514 unsigned long align
;
2516 skb
= netdev_alloc_skb(bp
->dev
, bp
->rx_buf_size
);
2521 if (unlikely((align
= (unsigned long) skb
->data
& (BNX2_RX_ALIGN
- 1))))
2522 skb_reserve(skb
, BNX2_RX_ALIGN
- align
);
2524 mapping
= pci_map_single(bp
->pdev
, skb
->data
, bp
->rx_buf_use_size
,
2525 PCI_DMA_FROMDEVICE
);
2526 if (pci_dma_mapping_error(bp
->pdev
, mapping
)) {
2532 pci_unmap_addr_set(rx_buf
, mapping
, mapping
);
2534 rxbd
->rx_bd_haddr_hi
= (u64
) mapping
>> 32;
2535 rxbd
->rx_bd_haddr_lo
= (u64
) mapping
& 0xffffffff;
2537 rxr
->rx_prod_bseq
+= bp
->rx_buf_use_size
;
2543 bnx2_phy_event_is_set(struct bnx2
*bp
, struct bnx2_napi
*bnapi
, u32 event
)
2545 struct status_block
*sblk
= bnapi
->status_blk
.msi
;
2546 u32 new_link_state
, old_link_state
;
2549 new_link_state
= sblk
->status_attn_bits
& event
;
2550 old_link_state
= sblk
->status_attn_bits_ack
& event
;
2551 if (new_link_state
!= old_link_state
) {
2553 REG_WR(bp
, BNX2_PCICFG_STATUS_BIT_SET_CMD
, event
);
2555 REG_WR(bp
, BNX2_PCICFG_STATUS_BIT_CLEAR_CMD
, event
);
2563 bnx2_phy_int(struct bnx2
*bp
, struct bnx2_napi
*bnapi
)
2565 spin_lock(&bp
->phy_lock
);
2567 if (bnx2_phy_event_is_set(bp
, bnapi
, STATUS_ATTN_BITS_LINK_STATE
))
2569 if (bnx2_phy_event_is_set(bp
, bnapi
, STATUS_ATTN_BITS_TIMER_ABORT
))
2570 bnx2_set_remote_link(bp
);
2572 spin_unlock(&bp
->phy_lock
);
2577 bnx2_get_hw_tx_cons(struct bnx2_napi
*bnapi
)
2581 /* Tell compiler that status block fields can change. */
2583 cons
= *bnapi
->hw_tx_cons_ptr
;
2584 if (unlikely((cons
& MAX_TX_DESC_CNT
) == MAX_TX_DESC_CNT
))
2590 bnx2_tx_int(struct bnx2
*bp
, struct bnx2_napi
*bnapi
, int budget
)
2592 struct bnx2_tx_ring_info
*txr
= &bnapi
->tx_ring
;
2593 u16 hw_cons
, sw_cons
, sw_ring_cons
;
2594 int tx_pkt
= 0, index
;
2595 struct netdev_queue
*txq
;
2597 index
= (bnapi
- bp
->bnx2_napi
);
2598 txq
= netdev_get_tx_queue(bp
->dev
, index
);
2600 hw_cons
= bnx2_get_hw_tx_cons(bnapi
);
2601 sw_cons
= txr
->tx_cons
;
2603 while (sw_cons
!= hw_cons
) {
2604 struct sw_tx_bd
*tx_buf
;
2605 struct sk_buff
*skb
;
2608 sw_ring_cons
= TX_RING_IDX(sw_cons
);
2610 tx_buf
= &txr
->tx_buf_ring
[sw_ring_cons
];
2613 /* partial BD completions possible with TSO packets */
2614 if (skb_is_gso(skb
)) {
2615 u16 last_idx
, last_ring_idx
;
2617 last_idx
= sw_cons
+
2618 skb_shinfo(skb
)->nr_frags
+ 1;
2619 last_ring_idx
= sw_ring_cons
+
2620 skb_shinfo(skb
)->nr_frags
+ 1;
2621 if (unlikely(last_ring_idx
>= MAX_TX_DESC_CNT
)) {
2624 if (((s16
) ((s16
) last_idx
- (s16
) hw_cons
)) > 0) {
2629 skb_dma_unmap(&bp
->pdev
->dev
, skb
, DMA_TO_DEVICE
);
2632 last
= skb_shinfo(skb
)->nr_frags
;
2634 for (i
= 0; i
< last
; i
++) {
2635 sw_cons
= NEXT_TX_BD(sw_cons
);
2638 sw_cons
= NEXT_TX_BD(sw_cons
);
2642 if (tx_pkt
== budget
)
2645 hw_cons
= bnx2_get_hw_tx_cons(bnapi
);
2648 txr
->hw_tx_cons
= hw_cons
;
2649 txr
->tx_cons
= sw_cons
;
2651 /* Need to make the tx_cons update visible to bnx2_start_xmit()
2652 * before checking for netif_tx_queue_stopped(). Without the
2653 * memory barrier, there is a small possibility that bnx2_start_xmit()
2654 * will miss it and cause the queue to be stopped forever.
2658 if (unlikely(netif_tx_queue_stopped(txq
)) &&
2659 (bnx2_tx_avail(bp
, txr
) > bp
->tx_wake_thresh
)) {
2660 __netif_tx_lock(txq
, smp_processor_id());
2661 if ((netif_tx_queue_stopped(txq
)) &&
2662 (bnx2_tx_avail(bp
, txr
) > bp
->tx_wake_thresh
))
2663 netif_tx_wake_queue(txq
);
2664 __netif_tx_unlock(txq
);
2671 bnx2_reuse_rx_skb_pages(struct bnx2
*bp
, struct bnx2_rx_ring_info
*rxr
,
2672 struct sk_buff
*skb
, int count
)
2674 struct sw_pg
*cons_rx_pg
, *prod_rx_pg
;
2675 struct rx_bd
*cons_bd
, *prod_bd
;
2678 u16 cons
= rxr
->rx_pg_cons
;
2680 cons_rx_pg
= &rxr
->rx_pg_ring
[cons
];
2682 /* The caller was unable to allocate a new page to replace the
2683 * last one in the frags array, so we need to recycle that page
2684 * and then free the skb.
2688 struct skb_shared_info
*shinfo
;
2690 shinfo
= skb_shinfo(skb
);
2692 page
= shinfo
->frags
[shinfo
->nr_frags
].page
;
2693 shinfo
->frags
[shinfo
->nr_frags
].page
= NULL
;
2695 cons_rx_pg
->page
= page
;
2699 hw_prod
= rxr
->rx_pg_prod
;
2701 for (i
= 0; i
< count
; i
++) {
2702 prod
= RX_PG_RING_IDX(hw_prod
);
2704 prod_rx_pg
= &rxr
->rx_pg_ring
[prod
];
2705 cons_rx_pg
= &rxr
->rx_pg_ring
[cons
];
2706 cons_bd
= &rxr
->rx_pg_desc_ring
[RX_RING(cons
)][RX_IDX(cons
)];
2707 prod_bd
= &rxr
->rx_pg_desc_ring
[RX_RING(prod
)][RX_IDX(prod
)];
2710 prod_rx_pg
->page
= cons_rx_pg
->page
;
2711 cons_rx_pg
->page
= NULL
;
2712 pci_unmap_addr_set(prod_rx_pg
, mapping
,
2713 pci_unmap_addr(cons_rx_pg
, mapping
));
2715 prod_bd
->rx_bd_haddr_hi
= cons_bd
->rx_bd_haddr_hi
;
2716 prod_bd
->rx_bd_haddr_lo
= cons_bd
->rx_bd_haddr_lo
;
2719 cons
= RX_PG_RING_IDX(NEXT_RX_BD(cons
));
2720 hw_prod
= NEXT_RX_BD(hw_prod
);
2722 rxr
->rx_pg_prod
= hw_prod
;
2723 rxr
->rx_pg_cons
= cons
;
2727 bnx2_reuse_rx_skb(struct bnx2
*bp
, struct bnx2_rx_ring_info
*rxr
,
2728 struct sk_buff
*skb
, u16 cons
, u16 prod
)
2730 struct sw_bd
*cons_rx_buf
, *prod_rx_buf
;
2731 struct rx_bd
*cons_bd
, *prod_bd
;
2733 cons_rx_buf
= &rxr
->rx_buf_ring
[cons
];
2734 prod_rx_buf
= &rxr
->rx_buf_ring
[prod
];
2736 pci_dma_sync_single_for_device(bp
->pdev
,
2737 pci_unmap_addr(cons_rx_buf
, mapping
),
2738 BNX2_RX_OFFSET
+ BNX2_RX_COPY_THRESH
, PCI_DMA_FROMDEVICE
);
2740 rxr
->rx_prod_bseq
+= bp
->rx_buf_use_size
;
2742 prod_rx_buf
->skb
= skb
;
2747 pci_unmap_addr_set(prod_rx_buf
, mapping
,
2748 pci_unmap_addr(cons_rx_buf
, mapping
));
2750 cons_bd
= &rxr
->rx_desc_ring
[RX_RING(cons
)][RX_IDX(cons
)];
2751 prod_bd
= &rxr
->rx_desc_ring
[RX_RING(prod
)][RX_IDX(prod
)];
2752 prod_bd
->rx_bd_haddr_hi
= cons_bd
->rx_bd_haddr_hi
;
2753 prod_bd
->rx_bd_haddr_lo
= cons_bd
->rx_bd_haddr_lo
;
2757 bnx2_rx_skb(struct bnx2
*bp
, struct bnx2_rx_ring_info
*rxr
, struct sk_buff
*skb
,
2758 unsigned int len
, unsigned int hdr_len
, dma_addr_t dma_addr
,
2762 u16 prod
= ring_idx
& 0xffff;
2764 err
= bnx2_alloc_rx_skb(bp
, rxr
, prod
);
2765 if (unlikely(err
)) {
2766 bnx2_reuse_rx_skb(bp
, rxr
, skb
, (u16
) (ring_idx
>> 16), prod
);
2768 unsigned int raw_len
= len
+ 4;
2769 int pages
= PAGE_ALIGN(raw_len
- hdr_len
) >> PAGE_SHIFT
;
2771 bnx2_reuse_rx_skb_pages(bp
, rxr
, NULL
, pages
);
2776 skb_reserve(skb
, BNX2_RX_OFFSET
);
2777 pci_unmap_single(bp
->pdev
, dma_addr
, bp
->rx_buf_use_size
,
2778 PCI_DMA_FROMDEVICE
);
2784 unsigned int i
, frag_len
, frag_size
, pages
;
2785 struct sw_pg
*rx_pg
;
2786 u16 pg_cons
= rxr
->rx_pg_cons
;
2787 u16 pg_prod
= rxr
->rx_pg_prod
;
2789 frag_size
= len
+ 4 - hdr_len
;
2790 pages
= PAGE_ALIGN(frag_size
) >> PAGE_SHIFT
;
2791 skb_put(skb
, hdr_len
);
2793 for (i
= 0; i
< pages
; i
++) {
2794 dma_addr_t mapping_old
;
2796 frag_len
= min(frag_size
, (unsigned int) PAGE_SIZE
);
2797 if (unlikely(frag_len
<= 4)) {
2798 unsigned int tail
= 4 - frag_len
;
2800 rxr
->rx_pg_cons
= pg_cons
;
2801 rxr
->rx_pg_prod
= pg_prod
;
2802 bnx2_reuse_rx_skb_pages(bp
, rxr
, NULL
,
2809 &skb_shinfo(skb
)->frags
[i
- 1];
2811 skb
->data_len
-= tail
;
2812 skb
->truesize
-= tail
;
2816 rx_pg
= &rxr
->rx_pg_ring
[pg_cons
];
2818 /* Don't unmap yet. If we're unable to allocate a new
2819 * page, we need to recycle the page and the DMA addr.
2821 mapping_old
= pci_unmap_addr(rx_pg
, mapping
);
2825 skb_fill_page_desc(skb
, i
, rx_pg
->page
, 0, frag_len
);
2828 err
= bnx2_alloc_rx_page(bp
, rxr
,
2829 RX_PG_RING_IDX(pg_prod
));
2830 if (unlikely(err
)) {
2831 rxr
->rx_pg_cons
= pg_cons
;
2832 rxr
->rx_pg_prod
= pg_prod
;
2833 bnx2_reuse_rx_skb_pages(bp
, rxr
, skb
,
2838 pci_unmap_page(bp
->pdev
, mapping_old
,
2839 PAGE_SIZE
, PCI_DMA_FROMDEVICE
);
2841 frag_size
-= frag_len
;
2842 skb
->data_len
+= frag_len
;
2843 skb
->truesize
+= frag_len
;
2844 skb
->len
+= frag_len
;
2846 pg_prod
= NEXT_RX_BD(pg_prod
);
2847 pg_cons
= RX_PG_RING_IDX(NEXT_RX_BD(pg_cons
));
2849 rxr
->rx_pg_prod
= pg_prod
;
2850 rxr
->rx_pg_cons
= pg_cons
;
2856 bnx2_get_hw_rx_cons(struct bnx2_napi
*bnapi
)
2860 /* Tell compiler that status block fields can change. */
2862 cons
= *bnapi
->hw_rx_cons_ptr
;
2863 if (unlikely((cons
& MAX_RX_DESC_CNT
) == MAX_RX_DESC_CNT
))
2869 bnx2_rx_int(struct bnx2
*bp
, struct bnx2_napi
*bnapi
, int budget
)
2871 struct bnx2_rx_ring_info
*rxr
= &bnapi
->rx_ring
;
2872 u16 hw_cons
, sw_cons
, sw_ring_cons
, sw_prod
, sw_ring_prod
;
2873 struct l2_fhdr
*rx_hdr
;
2874 int rx_pkt
= 0, pg_ring_used
= 0;
2876 hw_cons
= bnx2_get_hw_rx_cons(bnapi
);
2877 sw_cons
= rxr
->rx_cons
;
2878 sw_prod
= rxr
->rx_prod
;
2880 /* Memory barrier necessary as speculative reads of the rx
2881 * buffer can be ahead of the index in the status block
2884 while (sw_cons
!= hw_cons
) {
2885 unsigned int len
, hdr_len
;
2887 struct sw_bd
*rx_buf
;
2888 struct sk_buff
*skb
;
2889 dma_addr_t dma_addr
;
2891 int hw_vlan __maybe_unused
= 0;
2893 sw_ring_cons
= RX_RING_IDX(sw_cons
);
2894 sw_ring_prod
= RX_RING_IDX(sw_prod
);
2896 rx_buf
= &rxr
->rx_buf_ring
[sw_ring_cons
];
2901 dma_addr
= pci_unmap_addr(rx_buf
, mapping
);
2903 pci_dma_sync_single_for_cpu(bp
->pdev
, dma_addr
,
2904 BNX2_RX_OFFSET
+ BNX2_RX_COPY_THRESH
,
2905 PCI_DMA_FROMDEVICE
);
2907 rx_hdr
= (struct l2_fhdr
*) skb
->data
;
2908 len
= rx_hdr
->l2_fhdr_pkt_len
;
2910 if ((status
= rx_hdr
->l2_fhdr_status
) &
2911 (L2_FHDR_ERRORS_BAD_CRC
|
2912 L2_FHDR_ERRORS_PHY_DECODE
|
2913 L2_FHDR_ERRORS_ALIGNMENT
|
2914 L2_FHDR_ERRORS_TOO_SHORT
|
2915 L2_FHDR_ERRORS_GIANT_FRAME
)) {
2917 bnx2_reuse_rx_skb(bp
, rxr
, skb
, sw_ring_cons
,
2922 if (status
& L2_FHDR_STATUS_SPLIT
) {
2923 hdr_len
= rx_hdr
->l2_fhdr_ip_xsum
;
2925 } else if (len
> bp
->rx_jumbo_thresh
) {
2926 hdr_len
= bp
->rx_jumbo_thresh
;
2932 if (len
<= bp
->rx_copy_thresh
) {
2933 struct sk_buff
*new_skb
;
2935 new_skb
= netdev_alloc_skb(bp
->dev
, len
+ 6);
2936 if (new_skb
== NULL
) {
2937 bnx2_reuse_rx_skb(bp
, rxr
, skb
, sw_ring_cons
,
2943 skb_copy_from_linear_data_offset(skb
,
2945 new_skb
->data
, len
+ 6);
2946 skb_reserve(new_skb
, 6);
2947 skb_put(new_skb
, len
);
2949 bnx2_reuse_rx_skb(bp
, rxr
, skb
,
2950 sw_ring_cons
, sw_ring_prod
);
2953 } else if (unlikely(bnx2_rx_skb(bp
, rxr
, skb
, len
, hdr_len
,
2954 dma_addr
, (sw_ring_cons
<< 16) | sw_ring_prod
)))
2957 if ((status
& L2_FHDR_STATUS_L2_VLAN_TAG
) &&
2958 !(bp
->rx_mode
& BNX2_EMAC_RX_MODE_KEEP_VLAN_TAG
)) {
2959 vtag
= rx_hdr
->l2_fhdr_vlan_tag
;
2966 struct vlan_ethhdr
*ve
= (struct vlan_ethhdr
*)
2969 memmove(ve
, skb
->data
+ 4, ETH_ALEN
* 2);
2970 ve
->h_vlan_proto
= htons(ETH_P_8021Q
);
2971 ve
->h_vlan_TCI
= htons(vtag
);
2976 skb
->protocol
= eth_type_trans(skb
, bp
->dev
);
2978 if ((len
> (bp
->dev
->mtu
+ ETH_HLEN
)) &&
2979 (ntohs(skb
->protocol
) != 0x8100)) {
2986 skb
->ip_summed
= CHECKSUM_NONE
;
2988 (status
& (L2_FHDR_STATUS_TCP_SEGMENT
|
2989 L2_FHDR_STATUS_UDP_DATAGRAM
))) {
2991 if (likely((status
& (L2_FHDR_ERRORS_TCP_XSUM
|
2992 L2_FHDR_ERRORS_UDP_XSUM
)) == 0))
2993 skb
->ip_summed
= CHECKSUM_UNNECESSARY
;
2998 vlan_hwaccel_receive_skb(skb
, bp
->vlgrp
, vtag
);
3001 netif_receive_skb(skb
);
3003 bp
->dev
->last_rx
= jiffies
;
3007 sw_cons
= NEXT_RX_BD(sw_cons
);
3008 sw_prod
= NEXT_RX_BD(sw_prod
);
3010 if ((rx_pkt
== budget
))
3013 /* Refresh hw_cons to see if there is new work */
3014 if (sw_cons
== hw_cons
) {
3015 hw_cons
= bnx2_get_hw_rx_cons(bnapi
);
3019 rxr
->rx_cons
= sw_cons
;
3020 rxr
->rx_prod
= sw_prod
;
3023 REG_WR16(bp
, rxr
->rx_pg_bidx_addr
, rxr
->rx_pg_prod
);
3025 REG_WR16(bp
, rxr
->rx_bidx_addr
, sw_prod
);
3027 REG_WR(bp
, rxr
->rx_bseq_addr
, rxr
->rx_prod_bseq
);
3035 /* MSI ISR - The only difference between this and the INTx ISR
3036 * is that the MSI interrupt is always serviced.
3039 bnx2_msi(int irq
, void *dev_instance
)
3041 struct bnx2_napi
*bnapi
= dev_instance
;
3042 struct bnx2
*bp
= bnapi
->bp
;
3043 struct net_device
*dev
= bp
->dev
;
3045 prefetch(bnapi
->status_blk
.msi
);
3046 REG_WR(bp
, BNX2_PCICFG_INT_ACK_CMD
,
3047 BNX2_PCICFG_INT_ACK_CMD_USE_INT_HC_PARAM
|
3048 BNX2_PCICFG_INT_ACK_CMD_MASK_INT
);
3050 /* Return here if interrupt is disabled. */
3051 if (unlikely(atomic_read(&bp
->intr_sem
) != 0))
3054 netif_rx_schedule(dev
, &bnapi
->napi
);
3060 bnx2_msi_1shot(int irq
, void *dev_instance
)
3062 struct bnx2_napi
*bnapi
= dev_instance
;
3063 struct bnx2
*bp
= bnapi
->bp
;
3064 struct net_device
*dev
= bp
->dev
;
3066 prefetch(bnapi
->status_blk
.msi
);
3068 /* Return here if interrupt is disabled. */
3069 if (unlikely(atomic_read(&bp
->intr_sem
) != 0))
3072 netif_rx_schedule(dev
, &bnapi
->napi
);
3078 bnx2_interrupt(int irq
, void *dev_instance
)
3080 struct bnx2_napi
*bnapi
= dev_instance
;
3081 struct bnx2
*bp
= bnapi
->bp
;
3082 struct net_device
*dev
= bp
->dev
;
3083 struct status_block
*sblk
= bnapi
->status_blk
.msi
;
3085 /* When using INTx, it is possible for the interrupt to arrive
3086 * at the CPU before the status block posted prior to the
3087 * interrupt. Reading a register will flush the status block.
3088 * When using MSI, the MSI message will always complete after
3089 * the status block write.
3091 if ((sblk
->status_idx
== bnapi
->last_status_idx
) &&
3092 (REG_RD(bp
, BNX2_PCICFG_MISC_STATUS
) &
3093 BNX2_PCICFG_MISC_STATUS_INTA_VALUE
))
3096 REG_WR(bp
, BNX2_PCICFG_INT_ACK_CMD
,
3097 BNX2_PCICFG_INT_ACK_CMD_USE_INT_HC_PARAM
|
3098 BNX2_PCICFG_INT_ACK_CMD_MASK_INT
);
3100 /* Read back to deassert IRQ immediately to avoid too many
3101 * spurious interrupts.
3103 REG_RD(bp
, BNX2_PCICFG_INT_ACK_CMD
);
3105 /* Return here if interrupt is shared and is disabled. */
3106 if (unlikely(atomic_read(&bp
->intr_sem
) != 0))
3109 if (netif_rx_schedule_prep(dev
, &bnapi
->napi
)) {
3110 bnapi
->last_status_idx
= sblk
->status_idx
;
3111 __netif_rx_schedule(dev
, &bnapi
->napi
);
3118 bnx2_has_fast_work(struct bnx2_napi
*bnapi
)
3120 struct bnx2_tx_ring_info
*txr
= &bnapi
->tx_ring
;
3121 struct bnx2_rx_ring_info
*rxr
= &bnapi
->rx_ring
;
3123 if ((bnx2_get_hw_rx_cons(bnapi
) != rxr
->rx_cons
) ||
3124 (bnx2_get_hw_tx_cons(bnapi
) != txr
->hw_tx_cons
))
3129 #define STATUS_ATTN_EVENTS (STATUS_ATTN_BITS_LINK_STATE | \
3130 STATUS_ATTN_BITS_TIMER_ABORT)
3133 bnx2_has_work(struct bnx2_napi
*bnapi
)
3135 struct status_block
*sblk
= bnapi
->status_blk
.msi
;
3137 if (bnx2_has_fast_work(bnapi
))
3140 if ((sblk
->status_attn_bits
& STATUS_ATTN_EVENTS
) !=
3141 (sblk
->status_attn_bits_ack
& STATUS_ATTN_EVENTS
))
3147 static void bnx2_poll_link(struct bnx2
*bp
, struct bnx2_napi
*bnapi
)
3149 struct status_block
*sblk
= bnapi
->status_blk
.msi
;
3150 u32 status_attn_bits
= sblk
->status_attn_bits
;
3151 u32 status_attn_bits_ack
= sblk
->status_attn_bits_ack
;
3153 if ((status_attn_bits
& STATUS_ATTN_EVENTS
) !=
3154 (status_attn_bits_ack
& STATUS_ATTN_EVENTS
)) {
3156 bnx2_phy_int(bp
, bnapi
);
3158 /* This is needed to take care of transient status
3159 * during link changes.
3161 REG_WR(bp
, BNX2_HC_COMMAND
,
3162 bp
->hc_cmd
| BNX2_HC_COMMAND_COAL_NOW_WO_INT
);
3163 REG_RD(bp
, BNX2_HC_COMMAND
);
3167 static int bnx2_poll_work(struct bnx2
*bp
, struct bnx2_napi
*bnapi
,
3168 int work_done
, int budget
)
3170 struct bnx2_tx_ring_info
*txr
= &bnapi
->tx_ring
;
3171 struct bnx2_rx_ring_info
*rxr
= &bnapi
->rx_ring
;
3173 if (bnx2_get_hw_tx_cons(bnapi
) != txr
->hw_tx_cons
)
3174 bnx2_tx_int(bp
, bnapi
, 0);
3176 if (bnx2_get_hw_rx_cons(bnapi
) != rxr
->rx_cons
)
3177 work_done
+= bnx2_rx_int(bp
, bnapi
, budget
- work_done
);
3182 static int bnx2_poll_msix(struct napi_struct
*napi
, int budget
)
3184 struct bnx2_napi
*bnapi
= container_of(napi
, struct bnx2_napi
, napi
);
3185 struct bnx2
*bp
= bnapi
->bp
;
3187 struct status_block_msix
*sblk
= bnapi
->status_blk
.msix
;
3190 work_done
= bnx2_poll_work(bp
, bnapi
, work_done
, budget
);
3191 if (unlikely(work_done
>= budget
))
3194 bnapi
->last_status_idx
= sblk
->status_idx
;
3195 /* status idx must be read before checking for more work. */
3197 if (likely(!bnx2_has_fast_work(bnapi
))) {
3199 netif_rx_complete(bp
->dev
, napi
);
3200 REG_WR(bp
, BNX2_PCICFG_INT_ACK_CMD
, bnapi
->int_num
|
3201 BNX2_PCICFG_INT_ACK_CMD_INDEX_VALID
|
3202 bnapi
->last_status_idx
);
3209 static int bnx2_poll(struct napi_struct
*napi
, int budget
)
3211 struct bnx2_napi
*bnapi
= container_of(napi
, struct bnx2_napi
, napi
);
3212 struct bnx2
*bp
= bnapi
->bp
;
3214 struct status_block
*sblk
= bnapi
->status_blk
.msi
;
3217 bnx2_poll_link(bp
, bnapi
);
3219 work_done
= bnx2_poll_work(bp
, bnapi
, work_done
, budget
);
3221 if (unlikely(work_done
>= budget
))
3224 /* bnapi->last_status_idx is used below to tell the hw how
3225 * much work has been processed, so we must read it before
3226 * checking for more work.
3228 bnapi
->last_status_idx
= sblk
->status_idx
;
3230 if (likely(!bnx2_has_work(bnapi
))) {
3231 netif_rx_complete(bp
->dev
, napi
);
3232 if (likely(bp
->flags
& BNX2_FLAG_USING_MSI_OR_MSIX
)) {
3233 REG_WR(bp
, BNX2_PCICFG_INT_ACK_CMD
,
3234 BNX2_PCICFG_INT_ACK_CMD_INDEX_VALID
|
3235 bnapi
->last_status_idx
);
3238 REG_WR(bp
, BNX2_PCICFG_INT_ACK_CMD
,
3239 BNX2_PCICFG_INT_ACK_CMD_INDEX_VALID
|
3240 BNX2_PCICFG_INT_ACK_CMD_MASK_INT
|
3241 bnapi
->last_status_idx
);
3243 REG_WR(bp
, BNX2_PCICFG_INT_ACK_CMD
,
3244 BNX2_PCICFG_INT_ACK_CMD_INDEX_VALID
|
3245 bnapi
->last_status_idx
);
3253 /* Called with rtnl_lock from vlan functions and also netif_tx_lock
3254 * from set_multicast.
3257 bnx2_set_rx_mode(struct net_device
*dev
)
3259 struct bnx2
*bp
= netdev_priv(dev
);
3260 u32 rx_mode
, sort_mode
;
3261 struct dev_addr_list
*uc_ptr
;
3264 if (!netif_running(dev
))
3267 spin_lock_bh(&bp
->phy_lock
);
3269 rx_mode
= bp
->rx_mode
& ~(BNX2_EMAC_RX_MODE_PROMISCUOUS
|
3270 BNX2_EMAC_RX_MODE_KEEP_VLAN_TAG
);
3271 sort_mode
= 1 | BNX2_RPM_SORT_USER0_BC_EN
;
3273 if (!bp
->vlgrp
&& (bp
->flags
& BNX2_FLAG_CAN_KEEP_VLAN
))
3274 rx_mode
|= BNX2_EMAC_RX_MODE_KEEP_VLAN_TAG
;
3276 if (bp
->flags
& BNX2_FLAG_CAN_KEEP_VLAN
)
3277 rx_mode
|= BNX2_EMAC_RX_MODE_KEEP_VLAN_TAG
;
3279 if (dev
->flags
& IFF_PROMISC
) {
3280 /* Promiscuous mode. */
3281 rx_mode
|= BNX2_EMAC_RX_MODE_PROMISCUOUS
;
3282 sort_mode
|= BNX2_RPM_SORT_USER0_PROM_EN
|
3283 BNX2_RPM_SORT_USER0_PROM_VLAN
;
3285 else if (dev
->flags
& IFF_ALLMULTI
) {
3286 for (i
= 0; i
< NUM_MC_HASH_REGISTERS
; i
++) {
3287 REG_WR(bp
, BNX2_EMAC_MULTICAST_HASH0
+ (i
* 4),
3290 sort_mode
|= BNX2_RPM_SORT_USER0_MC_EN
;
3293 /* Accept one or more multicast(s). */
3294 struct dev_mc_list
*mclist
;
3295 u32 mc_filter
[NUM_MC_HASH_REGISTERS
];
3300 memset(mc_filter
, 0, 4 * NUM_MC_HASH_REGISTERS
);
3302 for (i
= 0, mclist
= dev
->mc_list
; mclist
&& i
< dev
->mc_count
;
3303 i
++, mclist
= mclist
->next
) {
3305 crc
= ether_crc_le(ETH_ALEN
, mclist
->dmi_addr
);
3307 regidx
= (bit
& 0xe0) >> 5;
3309 mc_filter
[regidx
] |= (1 << bit
);
3312 for (i
= 0; i
< NUM_MC_HASH_REGISTERS
; i
++) {
3313 REG_WR(bp
, BNX2_EMAC_MULTICAST_HASH0
+ (i
* 4),
3317 sort_mode
|= BNX2_RPM_SORT_USER0_MC_HSH_EN
;
3321 if (dev
->uc_count
> BNX2_MAX_UNICAST_ADDRESSES
) {
3322 rx_mode
|= BNX2_EMAC_RX_MODE_PROMISCUOUS
;
3323 sort_mode
|= BNX2_RPM_SORT_USER0_PROM_EN
|
3324 BNX2_RPM_SORT_USER0_PROM_VLAN
;
3325 } else if (!(dev
->flags
& IFF_PROMISC
)) {
3326 uc_ptr
= dev
->uc_list
;
3328 /* Add all entries into to the match filter list */
3329 for (i
= 0; i
< dev
->uc_count
; i
++) {
3330 bnx2_set_mac_addr(bp
, uc_ptr
->da_addr
,
3331 i
+ BNX2_START_UNICAST_ADDRESS_INDEX
);
3333 (i
+ BNX2_START_UNICAST_ADDRESS_INDEX
));
3334 uc_ptr
= uc_ptr
->next
;
3339 if (rx_mode
!= bp
->rx_mode
) {
3340 bp
->rx_mode
= rx_mode
;
3341 REG_WR(bp
, BNX2_EMAC_RX_MODE
, rx_mode
);
3344 REG_WR(bp
, BNX2_RPM_SORT_USER0
, 0x0);
3345 REG_WR(bp
, BNX2_RPM_SORT_USER0
, sort_mode
);
3346 REG_WR(bp
, BNX2_RPM_SORT_USER0
, sort_mode
| BNX2_RPM_SORT_USER0_ENA
);
3348 spin_unlock_bh(&bp
->phy_lock
);
3352 load_rv2p_fw(struct bnx2
*bp
, __le32
*rv2p_code
, u32 rv2p_code_len
,
3358 if (rv2p_proc
== RV2P_PROC2
&& CHIP_NUM(bp
) == CHIP_NUM_5709
) {
3359 val
= le32_to_cpu(rv2p_code
[XI_RV2P_PROC2_MAX_BD_PAGE_LOC
]);
3360 val
&= ~XI_RV2P_PROC2_BD_PAGE_SIZE_MSK
;
3361 val
|= XI_RV2P_PROC2_BD_PAGE_SIZE
;
3362 rv2p_code
[XI_RV2P_PROC2_MAX_BD_PAGE_LOC
] = cpu_to_le32(val
);
3365 for (i
= 0; i
< rv2p_code_len
; i
+= 8) {
3366 REG_WR(bp
, BNX2_RV2P_INSTR_HIGH
, le32_to_cpu(*rv2p_code
));
3368 REG_WR(bp
, BNX2_RV2P_INSTR_LOW
, le32_to_cpu(*rv2p_code
));
3371 if (rv2p_proc
== RV2P_PROC1
) {
3372 val
= (i
/ 8) | BNX2_RV2P_PROC1_ADDR_CMD_RDWR
;
3373 REG_WR(bp
, BNX2_RV2P_PROC1_ADDR_CMD
, val
);
3376 val
= (i
/ 8) | BNX2_RV2P_PROC2_ADDR_CMD_RDWR
;
3377 REG_WR(bp
, BNX2_RV2P_PROC2_ADDR_CMD
, val
);
3381 /* Reset the processor, un-stall is done later. */
3382 if (rv2p_proc
== RV2P_PROC1
) {
3383 REG_WR(bp
, BNX2_RV2P_COMMAND
, BNX2_RV2P_COMMAND_PROC1_RESET
);
3386 REG_WR(bp
, BNX2_RV2P_COMMAND
, BNX2_RV2P_COMMAND_PROC2_RESET
);
3391 load_cpu_fw(struct bnx2
*bp
, const struct cpu_reg
*cpu_reg
, struct fw_info
*fw
)
3398 val
= bnx2_reg_rd_ind(bp
, cpu_reg
->mode
);
3399 val
|= cpu_reg
->mode_value_halt
;
3400 bnx2_reg_wr_ind(bp
, cpu_reg
->mode
, val
);
3401 bnx2_reg_wr_ind(bp
, cpu_reg
->state
, cpu_reg
->state_value_clear
);
3403 /* Load the Text area. */
3404 offset
= cpu_reg
->spad_base
+ (fw
->text_addr
- cpu_reg
->mips_view_base
);
3408 rc
= zlib_inflate_blob(fw
->text
, FW_BUF_SIZE
, fw
->gz_text
,
3413 for (j
= 0; j
< (fw
->text_len
/ 4); j
++, offset
+= 4) {
3414 bnx2_reg_wr_ind(bp
, offset
, le32_to_cpu(fw
->text
[j
]));
3418 /* Load the Data area. */
3419 offset
= cpu_reg
->spad_base
+ (fw
->data_addr
- cpu_reg
->mips_view_base
);
3423 for (j
= 0; j
< (fw
->data_len
/ 4); j
++, offset
+= 4) {
3424 bnx2_reg_wr_ind(bp
, offset
, fw
->data
[j
]);
3428 /* Load the SBSS area. */
3429 offset
= cpu_reg
->spad_base
+ (fw
->sbss_addr
- cpu_reg
->mips_view_base
);
3433 for (j
= 0; j
< (fw
->sbss_len
/ 4); j
++, offset
+= 4) {
3434 bnx2_reg_wr_ind(bp
, offset
, 0);
3438 /* Load the BSS area. */
3439 offset
= cpu_reg
->spad_base
+ (fw
->bss_addr
- cpu_reg
->mips_view_base
);
3443 for (j
= 0; j
< (fw
->bss_len
/4); j
++, offset
+= 4) {
3444 bnx2_reg_wr_ind(bp
, offset
, 0);
3448 /* Load the Read-Only area. */
3449 offset
= cpu_reg
->spad_base
+
3450 (fw
->rodata_addr
- cpu_reg
->mips_view_base
);
3454 for (j
= 0; j
< (fw
->rodata_len
/ 4); j
++, offset
+= 4) {
3455 bnx2_reg_wr_ind(bp
, offset
, fw
->rodata
[j
]);
3459 /* Clear the pre-fetch instruction. */
3460 bnx2_reg_wr_ind(bp
, cpu_reg
->inst
, 0);
3461 bnx2_reg_wr_ind(bp
, cpu_reg
->pc
, fw
->start_addr
);
3463 /* Start the CPU. */
3464 val
= bnx2_reg_rd_ind(bp
, cpu_reg
->mode
);
3465 val
&= ~cpu_reg
->mode_value_halt
;
3466 bnx2_reg_wr_ind(bp
, cpu_reg
->state
, cpu_reg
->state_value_clear
);
3467 bnx2_reg_wr_ind(bp
, cpu_reg
->mode
, val
);
3473 bnx2_init_cpus(struct bnx2
*bp
)
3479 /* Initialize the RV2P processor. */
3480 text
= vmalloc(FW_BUF_SIZE
);
3483 if (CHIP_NUM(bp
) == CHIP_NUM_5709
) {
3484 rv2p
= bnx2_xi_rv2p_proc1
;
3485 rv2p_len
= sizeof(bnx2_xi_rv2p_proc1
);
3487 rv2p
= bnx2_rv2p_proc1
;
3488 rv2p_len
= sizeof(bnx2_rv2p_proc1
);
3490 rc
= zlib_inflate_blob(text
, FW_BUF_SIZE
, rv2p
, rv2p_len
);
3494 load_rv2p_fw(bp
, text
, rc
/* == len */, RV2P_PROC1
);
3496 if (CHIP_NUM(bp
) == CHIP_NUM_5709
) {
3497 rv2p
= bnx2_xi_rv2p_proc2
;
3498 rv2p_len
= sizeof(bnx2_xi_rv2p_proc2
);
3500 rv2p
= bnx2_rv2p_proc2
;
3501 rv2p_len
= sizeof(bnx2_rv2p_proc2
);
3503 rc
= zlib_inflate_blob(text
, FW_BUF_SIZE
, rv2p
, rv2p_len
);
3507 load_rv2p_fw(bp
, text
, rc
/* == len */, RV2P_PROC2
);
3509 /* Initialize the RX Processor. */
3510 if (CHIP_NUM(bp
) == CHIP_NUM_5709
)
3511 fw
= &bnx2_rxp_fw_09
;
3513 fw
= &bnx2_rxp_fw_06
;
3516 rc
= load_cpu_fw(bp
, &cpu_reg_rxp
, fw
);
3520 /* Initialize the TX Processor. */
3521 if (CHIP_NUM(bp
) == CHIP_NUM_5709
)
3522 fw
= &bnx2_txp_fw_09
;
3524 fw
= &bnx2_txp_fw_06
;
3527 rc
= load_cpu_fw(bp
, &cpu_reg_txp
, fw
);
3531 /* Initialize the TX Patch-up Processor. */
3532 if (CHIP_NUM(bp
) == CHIP_NUM_5709
)
3533 fw
= &bnx2_tpat_fw_09
;
3535 fw
= &bnx2_tpat_fw_06
;
3538 rc
= load_cpu_fw(bp
, &cpu_reg_tpat
, fw
);
3542 /* Initialize the Completion Processor. */
3543 if (CHIP_NUM(bp
) == CHIP_NUM_5709
)
3544 fw
= &bnx2_com_fw_09
;
3546 fw
= &bnx2_com_fw_06
;
3549 rc
= load_cpu_fw(bp
, &cpu_reg_com
, fw
);
3553 /* Initialize the Command Processor. */
3554 if (CHIP_NUM(bp
) == CHIP_NUM_5709
)
3555 fw
= &bnx2_cp_fw_09
;
3557 fw
= &bnx2_cp_fw_06
;
3560 rc
= load_cpu_fw(bp
, &cpu_reg_cp
, fw
);
3568 bnx2_set_power_state(struct bnx2
*bp
, pci_power_t state
)
3572 pci_read_config_word(bp
->pdev
, bp
->pm_cap
+ PCI_PM_CTRL
, &pmcsr
);
3578 pci_write_config_word(bp
->pdev
, bp
->pm_cap
+ PCI_PM_CTRL
,
3579 (pmcsr
& ~PCI_PM_CTRL_STATE_MASK
) |
3580 PCI_PM_CTRL_PME_STATUS
);
3582 if (pmcsr
& PCI_PM_CTRL_STATE_MASK
)
3583 /* delay required during transition out of D3hot */
3586 val
= REG_RD(bp
, BNX2_EMAC_MODE
);
3587 val
|= BNX2_EMAC_MODE_MPKT_RCVD
| BNX2_EMAC_MODE_ACPI_RCVD
;
3588 val
&= ~BNX2_EMAC_MODE_MPKT
;
3589 REG_WR(bp
, BNX2_EMAC_MODE
, val
);
3591 val
= REG_RD(bp
, BNX2_RPM_CONFIG
);
3592 val
&= ~BNX2_RPM_CONFIG_ACPI_ENA
;
3593 REG_WR(bp
, BNX2_RPM_CONFIG
, val
);
3604 autoneg
= bp
->autoneg
;
3605 advertising
= bp
->advertising
;
3607 if (bp
->phy_port
== PORT_TP
) {
3608 bp
->autoneg
= AUTONEG_SPEED
;
3609 bp
->advertising
= ADVERTISED_10baseT_Half
|
3610 ADVERTISED_10baseT_Full
|
3611 ADVERTISED_100baseT_Half
|
3612 ADVERTISED_100baseT_Full
|
3616 spin_lock_bh(&bp
->phy_lock
);
3617 bnx2_setup_phy(bp
, bp
->phy_port
);
3618 spin_unlock_bh(&bp
->phy_lock
);
3620 bp
->autoneg
= autoneg
;
3621 bp
->advertising
= advertising
;
3623 bnx2_set_mac_addr(bp
, bp
->dev
->dev_addr
, 0);
3625 val
= REG_RD(bp
, BNX2_EMAC_MODE
);
3627 /* Enable port mode. */
3628 val
&= ~BNX2_EMAC_MODE_PORT
;
3629 val
|= BNX2_EMAC_MODE_MPKT_RCVD
|
3630 BNX2_EMAC_MODE_ACPI_RCVD
|
3631 BNX2_EMAC_MODE_MPKT
;
3632 if (bp
->phy_port
== PORT_TP
)
3633 val
|= BNX2_EMAC_MODE_PORT_MII
;
3635 val
|= BNX2_EMAC_MODE_PORT_GMII
;
3636 if (bp
->line_speed
== SPEED_2500
)
3637 val
|= BNX2_EMAC_MODE_25G_MODE
;
3640 REG_WR(bp
, BNX2_EMAC_MODE
, val
);
3642 /* receive all multicast */
3643 for (i
= 0; i
< NUM_MC_HASH_REGISTERS
; i
++) {
3644 REG_WR(bp
, BNX2_EMAC_MULTICAST_HASH0
+ (i
* 4),
3647 REG_WR(bp
, BNX2_EMAC_RX_MODE
,
3648 BNX2_EMAC_RX_MODE_SORT_MODE
);
3650 val
= 1 | BNX2_RPM_SORT_USER0_BC_EN
|
3651 BNX2_RPM_SORT_USER0_MC_EN
;
3652 REG_WR(bp
, BNX2_RPM_SORT_USER0
, 0x0);
3653 REG_WR(bp
, BNX2_RPM_SORT_USER0
, val
);
3654 REG_WR(bp
, BNX2_RPM_SORT_USER0
, val
|
3655 BNX2_RPM_SORT_USER0_ENA
);
3657 /* Need to enable EMAC and RPM for WOL. */
3658 REG_WR(bp
, BNX2_MISC_ENABLE_SET_BITS
,
3659 BNX2_MISC_ENABLE_SET_BITS_RX_PARSER_MAC_ENABLE
|
3660 BNX2_MISC_ENABLE_SET_BITS_TX_HEADER_Q_ENABLE
|
3661 BNX2_MISC_ENABLE_SET_BITS_EMAC_ENABLE
);
3663 val
= REG_RD(bp
, BNX2_RPM_CONFIG
);
3664 val
&= ~BNX2_RPM_CONFIG_ACPI_ENA
;
3665 REG_WR(bp
, BNX2_RPM_CONFIG
, val
);
3667 wol_msg
= BNX2_DRV_MSG_CODE_SUSPEND_WOL
;
3670 wol_msg
= BNX2_DRV_MSG_CODE_SUSPEND_NO_WOL
;
3673 if (!(bp
->flags
& BNX2_FLAG_NO_WOL
))
3674 bnx2_fw_sync(bp
, BNX2_DRV_MSG_DATA_WAIT3
| wol_msg
,
3677 pmcsr
&= ~PCI_PM_CTRL_STATE_MASK
;
3678 if ((CHIP_ID(bp
) == CHIP_ID_5706_A0
) ||
3679 (CHIP_ID(bp
) == CHIP_ID_5706_A1
)) {
3688 pmcsr
|= PCI_PM_CTRL_PME_ENABLE
;
3690 pci_write_config_word(bp
->pdev
, bp
->pm_cap
+ PCI_PM_CTRL
,
3693 /* No more memory access after this point until
3694 * device is brought back to D0.
3706 bnx2_acquire_nvram_lock(struct bnx2
*bp
)
3711 /* Request access to the flash interface. */
3712 REG_WR(bp
, BNX2_NVM_SW_ARB
, BNX2_NVM_SW_ARB_ARB_REQ_SET2
);
3713 for (j
= 0; j
< NVRAM_TIMEOUT_COUNT
; j
++) {
3714 val
= REG_RD(bp
, BNX2_NVM_SW_ARB
);
3715 if (val
& BNX2_NVM_SW_ARB_ARB_ARB2
)
3721 if (j
>= NVRAM_TIMEOUT_COUNT
)
3728 bnx2_release_nvram_lock(struct bnx2
*bp
)
3733 /* Relinquish nvram interface. */
3734 REG_WR(bp
, BNX2_NVM_SW_ARB
, BNX2_NVM_SW_ARB_ARB_REQ_CLR2
);
3736 for (j
= 0; j
< NVRAM_TIMEOUT_COUNT
; j
++) {
3737 val
= REG_RD(bp
, BNX2_NVM_SW_ARB
);
3738 if (!(val
& BNX2_NVM_SW_ARB_ARB_ARB2
))
3744 if (j
>= NVRAM_TIMEOUT_COUNT
)
3752 bnx2_enable_nvram_write(struct bnx2
*bp
)
3756 val
= REG_RD(bp
, BNX2_MISC_CFG
);
3757 REG_WR(bp
, BNX2_MISC_CFG
, val
| BNX2_MISC_CFG_NVM_WR_EN_PCI
);
3759 if (bp
->flash_info
->flags
& BNX2_NV_WREN
) {
3762 REG_WR(bp
, BNX2_NVM_COMMAND
, BNX2_NVM_COMMAND_DONE
);
3763 REG_WR(bp
, BNX2_NVM_COMMAND
,
3764 BNX2_NVM_COMMAND_WREN
| BNX2_NVM_COMMAND_DOIT
);
3766 for (j
= 0; j
< NVRAM_TIMEOUT_COUNT
; j
++) {
3769 val
= REG_RD(bp
, BNX2_NVM_COMMAND
);
3770 if (val
& BNX2_NVM_COMMAND_DONE
)
3774 if (j
>= NVRAM_TIMEOUT_COUNT
)
3781 bnx2_disable_nvram_write(struct bnx2
*bp
)
3785 val
= REG_RD(bp
, BNX2_MISC_CFG
);
3786 REG_WR(bp
, BNX2_MISC_CFG
, val
& ~BNX2_MISC_CFG_NVM_WR_EN
);
3791 bnx2_enable_nvram_access(struct bnx2
*bp
)
3795 val
= REG_RD(bp
, BNX2_NVM_ACCESS_ENABLE
);
3796 /* Enable both bits, even on read. */
3797 REG_WR(bp
, BNX2_NVM_ACCESS_ENABLE
,
3798 val
| BNX2_NVM_ACCESS_ENABLE_EN
| BNX2_NVM_ACCESS_ENABLE_WR_EN
);
3802 bnx2_disable_nvram_access(struct bnx2
*bp
)
3806 val
= REG_RD(bp
, BNX2_NVM_ACCESS_ENABLE
);
3807 /* Disable both bits, even after read. */
3808 REG_WR(bp
, BNX2_NVM_ACCESS_ENABLE
,
3809 val
& ~(BNX2_NVM_ACCESS_ENABLE_EN
|
3810 BNX2_NVM_ACCESS_ENABLE_WR_EN
));
3814 bnx2_nvram_erase_page(struct bnx2
*bp
, u32 offset
)
3819 if (bp
->flash_info
->flags
& BNX2_NV_BUFFERED
)
3820 /* Buffered flash, no erase needed */
3823 /* Build an erase command */
3824 cmd
= BNX2_NVM_COMMAND_ERASE
| BNX2_NVM_COMMAND_WR
|
3825 BNX2_NVM_COMMAND_DOIT
;
3827 /* Need to clear DONE bit separately. */
3828 REG_WR(bp
, BNX2_NVM_COMMAND
, BNX2_NVM_COMMAND_DONE
);
3830 /* Address of the NVRAM to read from. */
3831 REG_WR(bp
, BNX2_NVM_ADDR
, offset
& BNX2_NVM_ADDR_NVM_ADDR_VALUE
);
3833 /* Issue an erase command. */
3834 REG_WR(bp
, BNX2_NVM_COMMAND
, cmd
);
3836 /* Wait for completion. */
3837 for (j
= 0; j
< NVRAM_TIMEOUT_COUNT
; j
++) {
3842 val
= REG_RD(bp
, BNX2_NVM_COMMAND
);
3843 if (val
& BNX2_NVM_COMMAND_DONE
)
3847 if (j
>= NVRAM_TIMEOUT_COUNT
)
3854 bnx2_nvram_read_dword(struct bnx2
*bp
, u32 offset
, u8
*ret_val
, u32 cmd_flags
)
3859 /* Build the command word. */
3860 cmd
= BNX2_NVM_COMMAND_DOIT
| cmd_flags
;
3862 /* Calculate an offset of a buffered flash, not needed for 5709. */
3863 if (bp
->flash_info
->flags
& BNX2_NV_TRANSLATE
) {
3864 offset
= ((offset
/ bp
->flash_info
->page_size
) <<
3865 bp
->flash_info
->page_bits
) +
3866 (offset
% bp
->flash_info
->page_size
);
3869 /* Need to clear DONE bit separately. */
3870 REG_WR(bp
, BNX2_NVM_COMMAND
, BNX2_NVM_COMMAND_DONE
);
3872 /* Address of the NVRAM to read from. */
3873 REG_WR(bp
, BNX2_NVM_ADDR
, offset
& BNX2_NVM_ADDR_NVM_ADDR_VALUE
);
3875 /* Issue a read command. */
3876 REG_WR(bp
, BNX2_NVM_COMMAND
, cmd
);
3878 /* Wait for completion. */
3879 for (j
= 0; j
< NVRAM_TIMEOUT_COUNT
; j
++) {
3884 val
= REG_RD(bp
, BNX2_NVM_COMMAND
);
3885 if (val
& BNX2_NVM_COMMAND_DONE
) {
3886 __be32 v
= cpu_to_be32(REG_RD(bp
, BNX2_NVM_READ
));
3887 memcpy(ret_val
, &v
, 4);
3891 if (j
>= NVRAM_TIMEOUT_COUNT
)
3899 bnx2_nvram_write_dword(struct bnx2
*bp
, u32 offset
, u8
*val
, u32 cmd_flags
)
3905 /* Build the command word. */
3906 cmd
= BNX2_NVM_COMMAND_DOIT
| BNX2_NVM_COMMAND_WR
| cmd_flags
;
3908 /* Calculate an offset of a buffered flash, not needed for 5709. */
3909 if (bp
->flash_info
->flags
& BNX2_NV_TRANSLATE
) {
3910 offset
= ((offset
/ bp
->flash_info
->page_size
) <<
3911 bp
->flash_info
->page_bits
) +
3912 (offset
% bp
->flash_info
->page_size
);
3915 /* Need to clear DONE bit separately. */
3916 REG_WR(bp
, BNX2_NVM_COMMAND
, BNX2_NVM_COMMAND_DONE
);
3918 memcpy(&val32
, val
, 4);
3920 /* Write the data. */
3921 REG_WR(bp
, BNX2_NVM_WRITE
, be32_to_cpu(val32
));
3923 /* Address of the NVRAM to write to. */
3924 REG_WR(bp
, BNX2_NVM_ADDR
, offset
& BNX2_NVM_ADDR_NVM_ADDR_VALUE
);
3926 /* Issue the write command. */
3927 REG_WR(bp
, BNX2_NVM_COMMAND
, cmd
);
3929 /* Wait for completion. */
3930 for (j
= 0; j
< NVRAM_TIMEOUT_COUNT
; j
++) {
3933 if (REG_RD(bp
, BNX2_NVM_COMMAND
) & BNX2_NVM_COMMAND_DONE
)
3936 if (j
>= NVRAM_TIMEOUT_COUNT
)
3943 bnx2_init_nvram(struct bnx2
*bp
)
3946 int j
, entry_count
, rc
= 0;
3947 struct flash_spec
*flash
;
3949 if (CHIP_NUM(bp
) == CHIP_NUM_5709
) {
3950 bp
->flash_info
= &flash_5709
;
3951 goto get_flash_size
;
3954 /* Determine the selected interface. */
3955 val
= REG_RD(bp
, BNX2_NVM_CFG1
);
3957 entry_count
= ARRAY_SIZE(flash_table
);
3959 if (val
& 0x40000000) {
3961 /* Flash interface has been reconfigured */
3962 for (j
= 0, flash
= &flash_table
[0]; j
< entry_count
;
3964 if ((val
& FLASH_BACKUP_STRAP_MASK
) ==
3965 (flash
->config1
& FLASH_BACKUP_STRAP_MASK
)) {
3966 bp
->flash_info
= flash
;
3973 /* Not yet been reconfigured */
3975 if (val
& (1 << 23))
3976 mask
= FLASH_BACKUP_STRAP_MASK
;
3978 mask
= FLASH_STRAP_MASK
;
3980 for (j
= 0, flash
= &flash_table
[0]; j
< entry_count
;
3983 if ((val
& mask
) == (flash
->strapping
& mask
)) {
3984 bp
->flash_info
= flash
;
3986 /* Request access to the flash interface. */
3987 if ((rc
= bnx2_acquire_nvram_lock(bp
)) != 0)
3990 /* Enable access to flash interface */
3991 bnx2_enable_nvram_access(bp
);
3993 /* Reconfigure the flash interface */
3994 REG_WR(bp
, BNX2_NVM_CFG1
, flash
->config1
);
3995 REG_WR(bp
, BNX2_NVM_CFG2
, flash
->config2
);
3996 REG_WR(bp
, BNX2_NVM_CFG3
, flash
->config3
);
3997 REG_WR(bp
, BNX2_NVM_WRITE1
, flash
->write1
);
3999 /* Disable access to flash interface */
4000 bnx2_disable_nvram_access(bp
);
4001 bnx2_release_nvram_lock(bp
);
4006 } /* if (val & 0x40000000) */
4008 if (j
== entry_count
) {
4009 bp
->flash_info
= NULL
;
4010 printk(KERN_ALERT PFX
"Unknown flash/EEPROM type.\n");
4015 val
= bnx2_shmem_rd(bp
, BNX2_SHARED_HW_CFG_CONFIG2
);
4016 val
&= BNX2_SHARED_HW_CFG2_NVM_SIZE_MASK
;
4018 bp
->flash_size
= val
;
4020 bp
->flash_size
= bp
->flash_info
->total_size
;
4026 bnx2_nvram_read(struct bnx2
*bp
, u32 offset
, u8
*ret_buf
,
4030 u32 cmd_flags
, offset32
, len32
, extra
;
4035 /* Request access to the flash interface. */
4036 if ((rc
= bnx2_acquire_nvram_lock(bp
)) != 0)
4039 /* Enable access to flash interface */
4040 bnx2_enable_nvram_access(bp
);
4053 pre_len
= 4 - (offset
& 3);
4055 if (pre_len
>= len32
) {
4057 cmd_flags
= BNX2_NVM_COMMAND_FIRST
|
4058 BNX2_NVM_COMMAND_LAST
;
4061 cmd_flags
= BNX2_NVM_COMMAND_FIRST
;
4064 rc
= bnx2_nvram_read_dword(bp
, offset32
, buf
, cmd_flags
);
4069 memcpy(ret_buf
, buf
+ (offset
& 3), pre_len
);
4076 extra
= 4 - (len32
& 3);
4077 len32
= (len32
+ 4) & ~3;
4084 cmd_flags
= BNX2_NVM_COMMAND_LAST
;
4086 cmd_flags
= BNX2_NVM_COMMAND_FIRST
|
4087 BNX2_NVM_COMMAND_LAST
;
4089 rc
= bnx2_nvram_read_dword(bp
, offset32
, buf
, cmd_flags
);
4091 memcpy(ret_buf
, buf
, 4 - extra
);
4093 else if (len32
> 0) {
4096 /* Read the first word. */
4100 cmd_flags
= BNX2_NVM_COMMAND_FIRST
;
4102 rc
= bnx2_nvram_read_dword(bp
, offset32
, ret_buf
, cmd_flags
);
4104 /* Advance to the next dword. */
4109 while (len32
> 4 && rc
== 0) {
4110 rc
= bnx2_nvram_read_dword(bp
, offset32
, ret_buf
, 0);
4112 /* Advance to the next dword. */
4121 cmd_flags
= BNX2_NVM_COMMAND_LAST
;
4122 rc
= bnx2_nvram_read_dword(bp
, offset32
, buf
, cmd_flags
);
4124 memcpy(ret_buf
, buf
, 4 - extra
);
4127 /* Disable access to flash interface */
4128 bnx2_disable_nvram_access(bp
);
4130 bnx2_release_nvram_lock(bp
);
4136 bnx2_nvram_write(struct bnx2
*bp
, u32 offset
, u8
*data_buf
,
4139 u32 written
, offset32
, len32
;
4140 u8
*buf
, start
[4], end
[4], *align_buf
= NULL
, *flash_buffer
= NULL
;
4142 int align_start
, align_end
;
4147 align_start
= align_end
= 0;
4149 if ((align_start
= (offset32
& 3))) {
4151 len32
+= align_start
;
4154 if ((rc
= bnx2_nvram_read(bp
, offset32
, start
, 4)))
4159 align_end
= 4 - (len32
& 3);
4161 if ((rc
= bnx2_nvram_read(bp
, offset32
+ len32
- 4, end
, 4)))
4165 if (align_start
|| align_end
) {
4166 align_buf
= kmalloc(len32
, GFP_KERNEL
);
4167 if (align_buf
== NULL
)
4170 memcpy(align_buf
, start
, 4);
4173 memcpy(align_buf
+ len32
- 4, end
, 4);
4175 memcpy(align_buf
+ align_start
, data_buf
, buf_size
);
4179 if (!(bp
->flash_info
->flags
& BNX2_NV_BUFFERED
)) {
4180 flash_buffer
= kmalloc(264, GFP_KERNEL
);
4181 if (flash_buffer
== NULL
) {
4183 goto nvram_write_end
;
4188 while ((written
< len32
) && (rc
== 0)) {
4189 u32 page_start
, page_end
, data_start
, data_end
;
4190 u32 addr
, cmd_flags
;
4193 /* Find the page_start addr */
4194 page_start
= offset32
+ written
;
4195 page_start
-= (page_start
% bp
->flash_info
->page_size
);
4196 /* Find the page_end addr */
4197 page_end
= page_start
+ bp
->flash_info
->page_size
;
4198 /* Find the data_start addr */
4199 data_start
= (written
== 0) ? offset32
: page_start
;
4200 /* Find the data_end addr */
4201 data_end
= (page_end
> offset32
+ len32
) ?
4202 (offset32
+ len32
) : page_end
;
4204 /* Request access to the flash interface. */
4205 if ((rc
= bnx2_acquire_nvram_lock(bp
)) != 0)
4206 goto nvram_write_end
;
4208 /* Enable access to flash interface */
4209 bnx2_enable_nvram_access(bp
);
4211 cmd_flags
= BNX2_NVM_COMMAND_FIRST
;
4212 if (!(bp
->flash_info
->flags
& BNX2_NV_BUFFERED
)) {
4215 /* Read the whole page into the buffer
4216 * (non-buffer flash only) */
4217 for (j
= 0; j
< bp
->flash_info
->page_size
; j
+= 4) {
4218 if (j
== (bp
->flash_info
->page_size
- 4)) {
4219 cmd_flags
|= BNX2_NVM_COMMAND_LAST
;
4221 rc
= bnx2_nvram_read_dword(bp
,
4227 goto nvram_write_end
;
4233 /* Enable writes to flash interface (unlock write-protect) */
4234 if ((rc
= bnx2_enable_nvram_write(bp
)) != 0)
4235 goto nvram_write_end
;
4237 /* Loop to write back the buffer data from page_start to
4240 if (!(bp
->flash_info
->flags
& BNX2_NV_BUFFERED
)) {
4241 /* Erase the page */
4242 if ((rc
= bnx2_nvram_erase_page(bp
, page_start
)) != 0)
4243 goto nvram_write_end
;
4245 /* Re-enable the write again for the actual write */
4246 bnx2_enable_nvram_write(bp
);
4248 for (addr
= page_start
; addr
< data_start
;
4249 addr
+= 4, i
+= 4) {
4251 rc
= bnx2_nvram_write_dword(bp
, addr
,
4252 &flash_buffer
[i
], cmd_flags
);
4255 goto nvram_write_end
;
4261 /* Loop to write the new data from data_start to data_end */
4262 for (addr
= data_start
; addr
< data_end
; addr
+= 4, i
+= 4) {
4263 if ((addr
== page_end
- 4) ||
4264 ((bp
->flash_info
->flags
& BNX2_NV_BUFFERED
) &&
4265 (addr
== data_end
- 4))) {
4267 cmd_flags
|= BNX2_NVM_COMMAND_LAST
;
4269 rc
= bnx2_nvram_write_dword(bp
, addr
, buf
,
4273 goto nvram_write_end
;
4279 /* Loop to write back the buffer data from data_end
4281 if (!(bp
->flash_info
->flags
& BNX2_NV_BUFFERED
)) {
4282 for (addr
= data_end
; addr
< page_end
;
4283 addr
+= 4, i
+= 4) {
4285 if (addr
== page_end
-4) {
4286 cmd_flags
= BNX2_NVM_COMMAND_LAST
;
4288 rc
= bnx2_nvram_write_dword(bp
, addr
,
4289 &flash_buffer
[i
], cmd_flags
);
4292 goto nvram_write_end
;
4298 /* Disable writes to flash interface (lock write-protect) */
4299 bnx2_disable_nvram_write(bp
);
4301 /* Disable access to flash interface */
4302 bnx2_disable_nvram_access(bp
);
4303 bnx2_release_nvram_lock(bp
);
4305 /* Increment written */
4306 written
+= data_end
- data_start
;
4310 kfree(flash_buffer
);
4316 bnx2_init_fw_cap(struct bnx2
*bp
)
4320 bp
->phy_flags
&= ~BNX2_PHY_FLAG_REMOTE_PHY_CAP
;
4321 bp
->flags
&= ~BNX2_FLAG_CAN_KEEP_VLAN
;
4323 if (!(bp
->flags
& BNX2_FLAG_ASF_ENABLE
))
4324 bp
->flags
|= BNX2_FLAG_CAN_KEEP_VLAN
;
4326 val
= bnx2_shmem_rd(bp
, BNX2_FW_CAP_MB
);
4327 if ((val
& BNX2_FW_CAP_SIGNATURE_MASK
) != BNX2_FW_CAP_SIGNATURE
)
4330 if ((val
& BNX2_FW_CAP_CAN_KEEP_VLAN
) == BNX2_FW_CAP_CAN_KEEP_VLAN
) {
4331 bp
->flags
|= BNX2_FLAG_CAN_KEEP_VLAN
;
4332 sig
|= BNX2_DRV_ACK_CAP_SIGNATURE
| BNX2_FW_CAP_CAN_KEEP_VLAN
;
4335 if ((bp
->phy_flags
& BNX2_PHY_FLAG_SERDES
) &&
4336 (val
& BNX2_FW_CAP_REMOTE_PHY_CAPABLE
)) {
4339 bp
->phy_flags
|= BNX2_PHY_FLAG_REMOTE_PHY_CAP
;
4341 link
= bnx2_shmem_rd(bp
, BNX2_LINK_STATUS
);
4342 if (link
& BNX2_LINK_STATUS_SERDES_LINK
)
4343 bp
->phy_port
= PORT_FIBRE
;
4345 bp
->phy_port
= PORT_TP
;
4347 sig
|= BNX2_DRV_ACK_CAP_SIGNATURE
|
4348 BNX2_FW_CAP_REMOTE_PHY_CAPABLE
;
4351 if (netif_running(bp
->dev
) && sig
)
4352 bnx2_shmem_wr(bp
, BNX2_DRV_ACK_CAP_MB
, sig
);
4356 bnx2_setup_msix_tbl(struct bnx2
*bp
)
4358 REG_WR(bp
, BNX2_PCI_GRC_WINDOW_ADDR
, BNX2_PCI_GRC_WINDOW_ADDR_SEP_WIN
);
4360 REG_WR(bp
, BNX2_PCI_GRC_WINDOW2_ADDR
, BNX2_MSIX_TABLE_ADDR
);
4361 REG_WR(bp
, BNX2_PCI_GRC_WINDOW3_ADDR
, BNX2_MSIX_PBA_ADDR
);
4365 bnx2_reset_chip(struct bnx2
*bp
, u32 reset_code
)
4371 /* Wait for the current PCI transaction to complete before
4372 * issuing a reset. */
4373 REG_WR(bp
, BNX2_MISC_ENABLE_CLR_BITS
,
4374 BNX2_MISC_ENABLE_CLR_BITS_TX_DMA_ENABLE
|
4375 BNX2_MISC_ENABLE_CLR_BITS_DMA_ENGINE_ENABLE
|
4376 BNX2_MISC_ENABLE_CLR_BITS_RX_DMA_ENABLE
|
4377 BNX2_MISC_ENABLE_CLR_BITS_HOST_COALESCE_ENABLE
);
4378 val
= REG_RD(bp
, BNX2_MISC_ENABLE_CLR_BITS
);
4381 /* Wait for the firmware to tell us it is ok to issue a reset. */
4382 bnx2_fw_sync(bp
, BNX2_DRV_MSG_DATA_WAIT0
| reset_code
, 1, 1);
4384 /* Deposit a driver reset signature so the firmware knows that
4385 * this is a soft reset. */
4386 bnx2_shmem_wr(bp
, BNX2_DRV_RESET_SIGNATURE
,
4387 BNX2_DRV_RESET_SIGNATURE_MAGIC
);
4389 /* Do a dummy read to force the chip to complete all current transaction
4390 * before we issue a reset. */
4391 val
= REG_RD(bp
, BNX2_MISC_ID
);
4393 if (CHIP_NUM(bp
) == CHIP_NUM_5709
) {
4394 REG_WR(bp
, BNX2_MISC_COMMAND
, BNX2_MISC_COMMAND_SW_RESET
);
4395 REG_RD(bp
, BNX2_MISC_COMMAND
);
4398 val
= BNX2_PCICFG_MISC_CONFIG_REG_WINDOW_ENA
|
4399 BNX2_PCICFG_MISC_CONFIG_TARGET_MB_WORD_SWAP
;
4401 pci_write_config_dword(bp
->pdev
, BNX2_PCICFG_MISC_CONFIG
, val
);
4404 val
= BNX2_PCICFG_MISC_CONFIG_CORE_RST_REQ
|
4405 BNX2_PCICFG_MISC_CONFIG_REG_WINDOW_ENA
|
4406 BNX2_PCICFG_MISC_CONFIG_TARGET_MB_WORD_SWAP
;
4409 REG_WR(bp
, BNX2_PCICFG_MISC_CONFIG
, val
);
4411 /* Reading back any register after chip reset will hang the
4412 * bus on 5706 A0 and A1. The msleep below provides plenty
4413 * of margin for write posting.
4415 if ((CHIP_ID(bp
) == CHIP_ID_5706_A0
) ||
4416 (CHIP_ID(bp
) == CHIP_ID_5706_A1
))
4419 /* Reset takes approximate 30 usec */
4420 for (i
= 0; i
< 10; i
++) {
4421 val
= REG_RD(bp
, BNX2_PCICFG_MISC_CONFIG
);
4422 if ((val
& (BNX2_PCICFG_MISC_CONFIG_CORE_RST_REQ
|
4423 BNX2_PCICFG_MISC_CONFIG_CORE_RST_BSY
)) == 0)
4428 if (val
& (BNX2_PCICFG_MISC_CONFIG_CORE_RST_REQ
|
4429 BNX2_PCICFG_MISC_CONFIG_CORE_RST_BSY
)) {
4430 printk(KERN_ERR PFX
"Chip reset did not complete\n");
4435 /* Make sure byte swapping is properly configured. */
4436 val
= REG_RD(bp
, BNX2_PCI_SWAP_DIAG0
);
4437 if (val
!= 0x01020304) {
4438 printk(KERN_ERR PFX
"Chip not in correct endian mode\n");
4442 /* Wait for the firmware to finish its initialization. */
4443 rc
= bnx2_fw_sync(bp
, BNX2_DRV_MSG_DATA_WAIT1
| reset_code
, 1, 0);
4447 spin_lock_bh(&bp
->phy_lock
);
4448 old_port
= bp
->phy_port
;
4449 bnx2_init_fw_cap(bp
);
4450 if ((bp
->phy_flags
& BNX2_PHY_FLAG_REMOTE_PHY_CAP
) &&
4451 old_port
!= bp
->phy_port
)
4452 bnx2_set_default_remote_link(bp
);
4453 spin_unlock_bh(&bp
->phy_lock
);
4455 if (CHIP_ID(bp
) == CHIP_ID_5706_A0
) {
4456 /* Adjust the voltage regular to two steps lower. The default
4457 * of this register is 0x0000000e. */
4458 REG_WR(bp
, BNX2_MISC_VREG_CONTROL
, 0x000000fa);
4460 /* Remove bad rbuf memory from the free pool. */
4461 rc
= bnx2_alloc_bad_rbuf(bp
);
4464 if (bp
->flags
& BNX2_FLAG_USING_MSIX
)
4465 bnx2_setup_msix_tbl(bp
);
4471 bnx2_init_chip(struct bnx2
*bp
)
4476 /* Make sure the interrupt is not active. */
4477 REG_WR(bp
, BNX2_PCICFG_INT_ACK_CMD
, BNX2_PCICFG_INT_ACK_CMD_MASK_INT
);
4479 val
= BNX2_DMA_CONFIG_DATA_BYTE_SWAP
|
4480 BNX2_DMA_CONFIG_DATA_WORD_SWAP
|
4482 BNX2_DMA_CONFIG_CNTL_BYTE_SWAP
|
4484 BNX2_DMA_CONFIG_CNTL_WORD_SWAP
|
4485 DMA_READ_CHANS
<< 12 |
4486 DMA_WRITE_CHANS
<< 16;
4488 val
|= (0x2 << 20) | (1 << 11);
4490 if ((bp
->flags
& BNX2_FLAG_PCIX
) && (bp
->bus_speed_mhz
== 133))
4493 if ((CHIP_NUM(bp
) == CHIP_NUM_5706
) &&
4494 (CHIP_ID(bp
) != CHIP_ID_5706_A0
) && !(bp
->flags
& BNX2_FLAG_PCIX
))
4495 val
|= BNX2_DMA_CONFIG_CNTL_PING_PONG_DMA
;
4497 REG_WR(bp
, BNX2_DMA_CONFIG
, val
);
4499 if (CHIP_ID(bp
) == CHIP_ID_5706_A0
) {
4500 val
= REG_RD(bp
, BNX2_TDMA_CONFIG
);
4501 val
|= BNX2_TDMA_CONFIG_ONE_DMA
;
4502 REG_WR(bp
, BNX2_TDMA_CONFIG
, val
);
4505 if (bp
->flags
& BNX2_FLAG_PCIX
) {
4508 pci_read_config_word(bp
->pdev
, bp
->pcix_cap
+ PCI_X_CMD
,
4510 pci_write_config_word(bp
->pdev
, bp
->pcix_cap
+ PCI_X_CMD
,
4511 val16
& ~PCI_X_CMD_ERO
);
4514 REG_WR(bp
, BNX2_MISC_ENABLE_SET_BITS
,
4515 BNX2_MISC_ENABLE_SET_BITS_HOST_COALESCE_ENABLE
|
4516 BNX2_MISC_ENABLE_STATUS_BITS_RX_V2P_ENABLE
|
4517 BNX2_MISC_ENABLE_STATUS_BITS_CONTEXT_ENABLE
);
4519 /* Initialize context mapping and zero out the quick contexts. The
4520 * context block must have already been enabled. */
4521 if (CHIP_NUM(bp
) == CHIP_NUM_5709
) {
4522 rc
= bnx2_init_5709_context(bp
);
4526 bnx2_init_context(bp
);
4528 if ((rc
= bnx2_init_cpus(bp
)) != 0)
4531 bnx2_init_nvram(bp
);
4533 bnx2_set_mac_addr(bp
, bp
->dev
->dev_addr
, 0);
4535 val
= REG_RD(bp
, BNX2_MQ_CONFIG
);
4536 val
&= ~BNX2_MQ_CONFIG_KNL_BYP_BLK_SIZE
;
4537 val
|= BNX2_MQ_CONFIG_KNL_BYP_BLK_SIZE_256
;
4538 if (CHIP_ID(bp
) == CHIP_ID_5709_A0
|| CHIP_ID(bp
) == CHIP_ID_5709_A1
)
4539 val
|= BNX2_MQ_CONFIG_HALT_DIS
;
4541 REG_WR(bp
, BNX2_MQ_CONFIG
, val
);
4543 val
= 0x10000 + (MAX_CID_CNT
* MB_KERNEL_CTX_SIZE
);
4544 REG_WR(bp
, BNX2_MQ_KNL_BYP_WIND_START
, val
);
4545 REG_WR(bp
, BNX2_MQ_KNL_WIND_END
, val
);
4547 val
= (BCM_PAGE_BITS
- 8) << 24;
4548 REG_WR(bp
, BNX2_RV2P_CONFIG
, val
);
4550 /* Configure page size. */
4551 val
= REG_RD(bp
, BNX2_TBDR_CONFIG
);
4552 val
&= ~BNX2_TBDR_CONFIG_PAGE_SIZE
;
4553 val
|= (BCM_PAGE_BITS
- 8) << 24 | 0x40;
4554 REG_WR(bp
, BNX2_TBDR_CONFIG
, val
);
4556 val
= bp
->mac_addr
[0] +
4557 (bp
->mac_addr
[1] << 8) +
4558 (bp
->mac_addr
[2] << 16) +
4560 (bp
->mac_addr
[4] << 8) +
4561 (bp
->mac_addr
[5] << 16);
4562 REG_WR(bp
, BNX2_EMAC_BACKOFF_SEED
, val
);
4564 /* Program the MTU. Also include 4 bytes for CRC32. */
4565 val
= bp
->dev
->mtu
+ ETH_HLEN
+ 4;
4566 if (val
> (MAX_ETHERNET_PACKET_SIZE
+ 4))
4567 val
|= BNX2_EMAC_RX_MTU_SIZE_JUMBO_ENA
;
4568 REG_WR(bp
, BNX2_EMAC_RX_MTU_SIZE
, val
);
4570 for (i
= 0; i
< BNX2_MAX_MSIX_VEC
; i
++)
4571 bp
->bnx2_napi
[i
].last_status_idx
= 0;
4573 bp
->rx_mode
= BNX2_EMAC_RX_MODE_SORT_MODE
;
4575 /* Set up how to generate a link change interrupt. */
4576 REG_WR(bp
, BNX2_EMAC_ATTENTION_ENA
, BNX2_EMAC_ATTENTION_ENA_LINK
);
4578 REG_WR(bp
, BNX2_HC_STATUS_ADDR_L
,
4579 (u64
) bp
->status_blk_mapping
& 0xffffffff);
4580 REG_WR(bp
, BNX2_HC_STATUS_ADDR_H
, (u64
) bp
->status_blk_mapping
>> 32);
4582 REG_WR(bp
, BNX2_HC_STATISTICS_ADDR_L
,
4583 (u64
) bp
->stats_blk_mapping
& 0xffffffff);
4584 REG_WR(bp
, BNX2_HC_STATISTICS_ADDR_H
,
4585 (u64
) bp
->stats_blk_mapping
>> 32);
4587 REG_WR(bp
, BNX2_HC_TX_QUICK_CONS_TRIP
,
4588 (bp
->tx_quick_cons_trip_int
<< 16) | bp
->tx_quick_cons_trip
);
4590 REG_WR(bp
, BNX2_HC_RX_QUICK_CONS_TRIP
,
4591 (bp
->rx_quick_cons_trip_int
<< 16) | bp
->rx_quick_cons_trip
);
4593 REG_WR(bp
, BNX2_HC_COMP_PROD_TRIP
,
4594 (bp
->comp_prod_trip_int
<< 16) | bp
->comp_prod_trip
);
4596 REG_WR(bp
, BNX2_HC_TX_TICKS
, (bp
->tx_ticks_int
<< 16) | bp
->tx_ticks
);
4598 REG_WR(bp
, BNX2_HC_RX_TICKS
, (bp
->rx_ticks_int
<< 16) | bp
->rx_ticks
);
4600 REG_WR(bp
, BNX2_HC_COM_TICKS
,
4601 (bp
->com_ticks_int
<< 16) | bp
->com_ticks
);
4603 REG_WR(bp
, BNX2_HC_CMD_TICKS
,
4604 (bp
->cmd_ticks_int
<< 16) | bp
->cmd_ticks
);
4606 if (CHIP_NUM(bp
) == CHIP_NUM_5708
)
4607 REG_WR(bp
, BNX2_HC_STATS_TICKS
, 0);
4609 REG_WR(bp
, BNX2_HC_STATS_TICKS
, bp
->stats_ticks
);
4610 REG_WR(bp
, BNX2_HC_STAT_COLLECT_TICKS
, 0xbb8); /* 3ms */
4612 if (CHIP_ID(bp
) == CHIP_ID_5706_A1
)
4613 val
= BNX2_HC_CONFIG_COLLECT_STATS
;
4615 val
= BNX2_HC_CONFIG_RX_TMR_MODE
| BNX2_HC_CONFIG_TX_TMR_MODE
|
4616 BNX2_HC_CONFIG_COLLECT_STATS
;
4619 if (bp
->irq_nvecs
> 1) {
4620 REG_WR(bp
, BNX2_HC_MSIX_BIT_VECTOR
,
4621 BNX2_HC_MSIX_BIT_VECTOR_VAL
);
4623 val
|= BNX2_HC_CONFIG_SB_ADDR_INC_128B
;
4626 if (bp
->flags
& BNX2_FLAG_ONE_SHOT_MSI
)
4627 val
|= BNX2_HC_CONFIG_ONE_SHOT
;
4629 REG_WR(bp
, BNX2_HC_CONFIG
, val
);
4631 for (i
= 1; i
< bp
->irq_nvecs
; i
++) {
4632 u32 base
= ((i
- 1) * BNX2_HC_SB_CONFIG_SIZE
) +
4633 BNX2_HC_SB_CONFIG_1
;
4636 BNX2_HC_SB_CONFIG_1_TX_TMR_MODE
|
4637 BNX2_HC_SB_CONFIG_1_RX_TMR_MODE
|
4638 BNX2_HC_SB_CONFIG_1_ONE_SHOT
);
4640 REG_WR(bp
, base
+ BNX2_HC_TX_QUICK_CONS_TRIP_OFF
,
4641 (bp
->tx_quick_cons_trip_int
<< 16) |
4642 bp
->tx_quick_cons_trip
);
4644 REG_WR(bp
, base
+ BNX2_HC_TX_TICKS_OFF
,
4645 (bp
->tx_ticks_int
<< 16) | bp
->tx_ticks
);
4647 REG_WR(bp
, base
+ BNX2_HC_RX_QUICK_CONS_TRIP_OFF
,
4648 (bp
->rx_quick_cons_trip_int
<< 16) |
4649 bp
->rx_quick_cons_trip
);
4651 REG_WR(bp
, base
+ BNX2_HC_RX_TICKS_OFF
,
4652 (bp
->rx_ticks_int
<< 16) | bp
->rx_ticks
);
4655 /* Clear internal stats counters. */
4656 REG_WR(bp
, BNX2_HC_COMMAND
, BNX2_HC_COMMAND_CLR_STAT_NOW
);
4658 REG_WR(bp
, BNX2_HC_ATTN_BITS_ENABLE
, STATUS_ATTN_EVENTS
);
4660 /* Initialize the receive filter. */
4661 bnx2_set_rx_mode(bp
->dev
);
4663 if (CHIP_NUM(bp
) == CHIP_NUM_5709
) {
4664 val
= REG_RD(bp
, BNX2_MISC_NEW_CORE_CTL
);
4665 val
|= BNX2_MISC_NEW_CORE_CTL_DMA_ENABLE
;
4666 REG_WR(bp
, BNX2_MISC_NEW_CORE_CTL
, val
);
4668 rc
= bnx2_fw_sync(bp
, BNX2_DRV_MSG_DATA_WAIT2
| BNX2_DRV_MSG_CODE_RESET
,
4671 REG_WR(bp
, BNX2_MISC_ENABLE_SET_BITS
, BNX2_MISC_ENABLE_DEFAULT
);
4672 REG_RD(bp
, BNX2_MISC_ENABLE_SET_BITS
);
4676 bp
->hc_cmd
= REG_RD(bp
, BNX2_HC_COMMAND
);
4682 bnx2_clear_ring_states(struct bnx2
*bp
)
4684 struct bnx2_napi
*bnapi
;
4685 struct bnx2_tx_ring_info
*txr
;
4686 struct bnx2_rx_ring_info
*rxr
;
4689 for (i
= 0; i
< BNX2_MAX_MSIX_VEC
; i
++) {
4690 bnapi
= &bp
->bnx2_napi
[i
];
4691 txr
= &bnapi
->tx_ring
;
4692 rxr
= &bnapi
->rx_ring
;
4695 txr
->hw_tx_cons
= 0;
4696 rxr
->rx_prod_bseq
= 0;
4699 rxr
->rx_pg_prod
= 0;
4700 rxr
->rx_pg_cons
= 0;
4705 bnx2_init_tx_context(struct bnx2
*bp
, u32 cid
, struct bnx2_tx_ring_info
*txr
)
4707 u32 val
, offset0
, offset1
, offset2
, offset3
;
4708 u32 cid_addr
= GET_CID_ADDR(cid
);
4710 if (CHIP_NUM(bp
) == CHIP_NUM_5709
) {
4711 offset0
= BNX2_L2CTX_TYPE_XI
;
4712 offset1
= BNX2_L2CTX_CMD_TYPE_XI
;
4713 offset2
= BNX2_L2CTX_TBDR_BHADDR_HI_XI
;
4714 offset3
= BNX2_L2CTX_TBDR_BHADDR_LO_XI
;
4716 offset0
= BNX2_L2CTX_TYPE
;
4717 offset1
= BNX2_L2CTX_CMD_TYPE
;
4718 offset2
= BNX2_L2CTX_TBDR_BHADDR_HI
;
4719 offset3
= BNX2_L2CTX_TBDR_BHADDR_LO
;
4721 val
= BNX2_L2CTX_TYPE_TYPE_L2
| BNX2_L2CTX_TYPE_SIZE_L2
;
4722 bnx2_ctx_wr(bp
, cid_addr
, offset0
, val
);
4724 val
= BNX2_L2CTX_CMD_TYPE_TYPE_L2
| (8 << 16);
4725 bnx2_ctx_wr(bp
, cid_addr
, offset1
, val
);
4727 val
= (u64
) txr
->tx_desc_mapping
>> 32;
4728 bnx2_ctx_wr(bp
, cid_addr
, offset2
, val
);
4730 val
= (u64
) txr
->tx_desc_mapping
& 0xffffffff;
4731 bnx2_ctx_wr(bp
, cid_addr
, offset3
, val
);
4735 bnx2_init_tx_ring(struct bnx2
*bp
, int ring_num
)
4739 struct bnx2_napi
*bnapi
;
4740 struct bnx2_tx_ring_info
*txr
;
4742 bnapi
= &bp
->bnx2_napi
[ring_num
];
4743 txr
= &bnapi
->tx_ring
;
4748 cid
= TX_TSS_CID
+ ring_num
- 1;
4750 bp
->tx_wake_thresh
= bp
->tx_ring_size
/ 2;
4752 txbd
= &txr
->tx_desc_ring
[MAX_TX_DESC_CNT
];
4754 txbd
->tx_bd_haddr_hi
= (u64
) txr
->tx_desc_mapping
>> 32;
4755 txbd
->tx_bd_haddr_lo
= (u64
) txr
->tx_desc_mapping
& 0xffffffff;
4758 txr
->tx_prod_bseq
= 0;
4760 txr
->tx_bidx_addr
= MB_GET_CID_ADDR(cid
) + BNX2_L2CTX_TX_HOST_BIDX
;
4761 txr
->tx_bseq_addr
= MB_GET_CID_ADDR(cid
) + BNX2_L2CTX_TX_HOST_BSEQ
;
4763 bnx2_init_tx_context(bp
, cid
, txr
);
4767 bnx2_init_rxbd_rings(struct rx_bd
*rx_ring
[], dma_addr_t dma
[], u32 buf_size
,
4773 for (i
= 0; i
< num_rings
; i
++) {
4776 rxbd
= &rx_ring
[i
][0];
4777 for (j
= 0; j
< MAX_RX_DESC_CNT
; j
++, rxbd
++) {
4778 rxbd
->rx_bd_len
= buf_size
;
4779 rxbd
->rx_bd_flags
= RX_BD_FLAGS_START
| RX_BD_FLAGS_END
;
4781 if (i
== (num_rings
- 1))
4785 rxbd
->rx_bd_haddr_hi
= (u64
) dma
[j
] >> 32;
4786 rxbd
->rx_bd_haddr_lo
= (u64
) dma
[j
] & 0xffffffff;
4791 bnx2_init_rx_ring(struct bnx2
*bp
, int ring_num
)
4794 u16 prod
, ring_prod
;
4795 u32 cid
, rx_cid_addr
, val
;
4796 struct bnx2_napi
*bnapi
= &bp
->bnx2_napi
[ring_num
];
4797 struct bnx2_rx_ring_info
*rxr
= &bnapi
->rx_ring
;
4802 cid
= RX_RSS_CID
+ ring_num
- 1;
4804 rx_cid_addr
= GET_CID_ADDR(cid
);
4806 bnx2_init_rxbd_rings(rxr
->rx_desc_ring
, rxr
->rx_desc_mapping
,
4807 bp
->rx_buf_use_size
, bp
->rx_max_ring
);
4809 bnx2_init_rx_context(bp
, cid
);
4811 if (CHIP_NUM(bp
) == CHIP_NUM_5709
) {
4812 val
= REG_RD(bp
, BNX2_MQ_MAP_L2_5
);
4813 REG_WR(bp
, BNX2_MQ_MAP_L2_5
, val
| BNX2_MQ_MAP_L2_5_ARM
);
4816 bnx2_ctx_wr(bp
, rx_cid_addr
, BNX2_L2CTX_PG_BUF_SIZE
, 0);
4817 if (bp
->rx_pg_ring_size
) {
4818 bnx2_init_rxbd_rings(rxr
->rx_pg_desc_ring
,
4819 rxr
->rx_pg_desc_mapping
,
4820 PAGE_SIZE
, bp
->rx_max_pg_ring
);
4821 val
= (bp
->rx_buf_use_size
<< 16) | PAGE_SIZE
;
4822 bnx2_ctx_wr(bp
, rx_cid_addr
, BNX2_L2CTX_PG_BUF_SIZE
, val
);
4823 bnx2_ctx_wr(bp
, rx_cid_addr
, BNX2_L2CTX_RBDC_KEY
,
4824 BNX2_L2CTX_RBDC_JUMBO_KEY
- ring_num
);
4826 val
= (u64
) rxr
->rx_pg_desc_mapping
[0] >> 32;
4827 bnx2_ctx_wr(bp
, rx_cid_addr
, BNX2_L2CTX_NX_PG_BDHADDR_HI
, val
);
4829 val
= (u64
) rxr
->rx_pg_desc_mapping
[0] & 0xffffffff;
4830 bnx2_ctx_wr(bp
, rx_cid_addr
, BNX2_L2CTX_NX_PG_BDHADDR_LO
, val
);
4832 if (CHIP_NUM(bp
) == CHIP_NUM_5709
)
4833 REG_WR(bp
, BNX2_MQ_MAP_L2_3
, BNX2_MQ_MAP_L2_3_DEFAULT
);
4836 val
= (u64
) rxr
->rx_desc_mapping
[0] >> 32;
4837 bnx2_ctx_wr(bp
, rx_cid_addr
, BNX2_L2CTX_NX_BDHADDR_HI
, val
);
4839 val
= (u64
) rxr
->rx_desc_mapping
[0] & 0xffffffff;
4840 bnx2_ctx_wr(bp
, rx_cid_addr
, BNX2_L2CTX_NX_BDHADDR_LO
, val
);
4842 ring_prod
= prod
= rxr
->rx_pg_prod
;
4843 for (i
= 0; i
< bp
->rx_pg_ring_size
; i
++) {
4844 if (bnx2_alloc_rx_page(bp
, rxr
, ring_prod
) < 0)
4846 prod
= NEXT_RX_BD(prod
);
4847 ring_prod
= RX_PG_RING_IDX(prod
);
4849 rxr
->rx_pg_prod
= prod
;
4851 ring_prod
= prod
= rxr
->rx_prod
;
4852 for (i
= 0; i
< bp
->rx_ring_size
; i
++) {
4853 if (bnx2_alloc_rx_skb(bp
, rxr
, ring_prod
) < 0)
4855 prod
= NEXT_RX_BD(prod
);
4856 ring_prod
= RX_RING_IDX(prod
);
4858 rxr
->rx_prod
= prod
;
4860 rxr
->rx_bidx_addr
= MB_GET_CID_ADDR(cid
) + BNX2_L2CTX_HOST_BDIDX
;
4861 rxr
->rx_bseq_addr
= MB_GET_CID_ADDR(cid
) + BNX2_L2CTX_HOST_BSEQ
;
4862 rxr
->rx_pg_bidx_addr
= MB_GET_CID_ADDR(cid
) + BNX2_L2CTX_HOST_PG_BDIDX
;
4864 REG_WR16(bp
, rxr
->rx_pg_bidx_addr
, rxr
->rx_pg_prod
);
4865 REG_WR16(bp
, rxr
->rx_bidx_addr
, prod
);
4867 REG_WR(bp
, rxr
->rx_bseq_addr
, rxr
->rx_prod_bseq
);
4871 bnx2_init_all_rings(struct bnx2
*bp
)
4876 bnx2_clear_ring_states(bp
);
4878 REG_WR(bp
, BNX2_TSCH_TSS_CFG
, 0);
4879 for (i
= 0; i
< bp
->num_tx_rings
; i
++)
4880 bnx2_init_tx_ring(bp
, i
);
4882 if (bp
->num_tx_rings
> 1)
4883 REG_WR(bp
, BNX2_TSCH_TSS_CFG
, ((bp
->num_tx_rings
- 1) << 24) |
4886 REG_WR(bp
, BNX2_RLUP_RSS_CONFIG
, 0);
4887 bnx2_reg_wr_ind(bp
, BNX2_RXP_SCRATCH_RSS_TBL_SZ
, 0);
4889 for (i
= 0; i
< bp
->num_rx_rings
; i
++)
4890 bnx2_init_rx_ring(bp
, i
);
4892 if (bp
->num_rx_rings
> 1) {
4894 u8
*tbl
= (u8
*) &tbl_32
;
4896 bnx2_reg_wr_ind(bp
, BNX2_RXP_SCRATCH_RSS_TBL_SZ
,
4897 BNX2_RXP_SCRATCH_RSS_TBL_MAX_ENTRIES
);
4899 for (i
= 0; i
< BNX2_RXP_SCRATCH_RSS_TBL_MAX_ENTRIES
; i
++) {
4900 tbl
[i
% 4] = i
% (bp
->num_rx_rings
- 1);
4903 BNX2_RXP_SCRATCH_RSS_TBL
+ i
,
4904 cpu_to_be32(tbl_32
));
4907 val
= BNX2_RLUP_RSS_CONFIG_IPV4_RSS_TYPE_ALL_XI
|
4908 BNX2_RLUP_RSS_CONFIG_IPV6_RSS_TYPE_ALL_XI
;
4910 REG_WR(bp
, BNX2_RLUP_RSS_CONFIG
, val
);
4915 static u32
bnx2_find_max_ring(u32 ring_size
, u32 max_size
)
4917 u32 max
, num_rings
= 1;
4919 while (ring_size
> MAX_RX_DESC_CNT
) {
4920 ring_size
-= MAX_RX_DESC_CNT
;
4923 /* round to next power of 2 */
4925 while ((max
& num_rings
) == 0)
4928 if (num_rings
!= max
)
4935 bnx2_set_rx_ring_size(struct bnx2
*bp
, u32 size
)
4937 u32 rx_size
, rx_space
, jumbo_size
;
4939 /* 8 for CRC and VLAN */
4940 rx_size
= bp
->dev
->mtu
+ ETH_HLEN
+ BNX2_RX_OFFSET
+ 8;
4942 rx_space
= SKB_DATA_ALIGN(rx_size
+ BNX2_RX_ALIGN
) + NET_SKB_PAD
+
4943 sizeof(struct skb_shared_info
);
4945 bp
->rx_copy_thresh
= BNX2_RX_COPY_THRESH
;
4946 bp
->rx_pg_ring_size
= 0;
4947 bp
->rx_max_pg_ring
= 0;
4948 bp
->rx_max_pg_ring_idx
= 0;
4949 if ((rx_space
> PAGE_SIZE
) && !(bp
->flags
& BNX2_FLAG_JUMBO_BROKEN
)) {
4950 int pages
= PAGE_ALIGN(bp
->dev
->mtu
- 40) >> PAGE_SHIFT
;
4952 jumbo_size
= size
* pages
;
4953 if (jumbo_size
> MAX_TOTAL_RX_PG_DESC_CNT
)
4954 jumbo_size
= MAX_TOTAL_RX_PG_DESC_CNT
;
4956 bp
->rx_pg_ring_size
= jumbo_size
;
4957 bp
->rx_max_pg_ring
= bnx2_find_max_ring(jumbo_size
,
4959 bp
->rx_max_pg_ring_idx
= (bp
->rx_max_pg_ring
* RX_DESC_CNT
) - 1;
4960 rx_size
= BNX2_RX_COPY_THRESH
+ BNX2_RX_OFFSET
;
4961 bp
->rx_copy_thresh
= 0;
4964 bp
->rx_buf_use_size
= rx_size
;
4966 bp
->rx_buf_size
= bp
->rx_buf_use_size
+ BNX2_RX_ALIGN
;
4967 bp
->rx_jumbo_thresh
= rx_size
- BNX2_RX_OFFSET
;
4968 bp
->rx_ring_size
= size
;
4969 bp
->rx_max_ring
= bnx2_find_max_ring(size
, MAX_RX_RINGS
);
4970 bp
->rx_max_ring_idx
= (bp
->rx_max_ring
* RX_DESC_CNT
) - 1;
4974 bnx2_free_tx_skbs(struct bnx2
*bp
)
4978 for (i
= 0; i
< bp
->num_tx_rings
; i
++) {
4979 struct bnx2_napi
*bnapi
= &bp
->bnx2_napi
[i
];
4980 struct bnx2_tx_ring_info
*txr
= &bnapi
->tx_ring
;
4983 if (txr
->tx_buf_ring
== NULL
)
4986 for (j
= 0; j
< TX_DESC_CNT
; ) {
4987 struct sw_tx_bd
*tx_buf
= &txr
->tx_buf_ring
[j
];
4988 struct sk_buff
*skb
= tx_buf
->skb
;
4995 skb_dma_unmap(&bp
->pdev
->dev
, skb
, DMA_TO_DEVICE
);
4999 j
+= skb_shinfo(skb
)->nr_frags
+ 1;
5006 bnx2_free_rx_skbs(struct bnx2
*bp
)
5010 for (i
= 0; i
< bp
->num_rx_rings
; i
++) {
5011 struct bnx2_napi
*bnapi
= &bp
->bnx2_napi
[i
];
5012 struct bnx2_rx_ring_info
*rxr
= &bnapi
->rx_ring
;
5015 if (rxr
->rx_buf_ring
== NULL
)
5018 for (j
= 0; j
< bp
->rx_max_ring_idx
; j
++) {
5019 struct sw_bd
*rx_buf
= &rxr
->rx_buf_ring
[j
];
5020 struct sk_buff
*skb
= rx_buf
->skb
;
5025 pci_unmap_single(bp
->pdev
,
5026 pci_unmap_addr(rx_buf
, mapping
),
5027 bp
->rx_buf_use_size
,
5028 PCI_DMA_FROMDEVICE
);
5034 for (j
= 0; j
< bp
->rx_max_pg_ring_idx
; j
++)
5035 bnx2_free_rx_page(bp
, rxr
, j
);
5040 bnx2_free_skbs(struct bnx2
*bp
)
5042 bnx2_free_tx_skbs(bp
);
5043 bnx2_free_rx_skbs(bp
);
5047 bnx2_reset_nic(struct bnx2
*bp
, u32 reset_code
)
5051 rc
= bnx2_reset_chip(bp
, reset_code
);
5056 if ((rc
= bnx2_init_chip(bp
)) != 0)
5059 bnx2_init_all_rings(bp
);
5064 bnx2_init_nic(struct bnx2
*bp
, int reset_phy
)
5068 if ((rc
= bnx2_reset_nic(bp
, BNX2_DRV_MSG_CODE_RESET
)) != 0)
5071 spin_lock_bh(&bp
->phy_lock
);
5072 bnx2_init_phy(bp
, reset_phy
);
5074 if (bp
->phy_flags
& BNX2_PHY_FLAG_REMOTE_PHY_CAP
)
5075 bnx2_remote_phy_event(bp
);
5076 spin_unlock_bh(&bp
->phy_lock
);
5081 bnx2_shutdown_chip(struct bnx2
*bp
)
5085 if (bp
->flags
& BNX2_FLAG_NO_WOL
)
5086 reset_code
= BNX2_DRV_MSG_CODE_UNLOAD_LNK_DN
;
5088 reset_code
= BNX2_DRV_MSG_CODE_SUSPEND_WOL
;
5090 reset_code
= BNX2_DRV_MSG_CODE_SUSPEND_NO_WOL
;
5092 return bnx2_reset_chip(bp
, reset_code
);
5096 bnx2_test_registers(struct bnx2
*bp
)
5100 static const struct {
5103 #define BNX2_FL_NOT_5709 1
5107 { 0x006c, 0, 0x00000000, 0x0000003f },
5108 { 0x0090, 0, 0xffffffff, 0x00000000 },
5109 { 0x0094, 0, 0x00000000, 0x00000000 },
5111 { 0x0404, BNX2_FL_NOT_5709
, 0x00003f00, 0x00000000 },
5112 { 0x0418, BNX2_FL_NOT_5709
, 0x00000000, 0xffffffff },
5113 { 0x041c, BNX2_FL_NOT_5709
, 0x00000000, 0xffffffff },
5114 { 0x0420, BNX2_FL_NOT_5709
, 0x00000000, 0x80ffffff },
5115 { 0x0424, BNX2_FL_NOT_5709
, 0x00000000, 0x00000000 },
5116 { 0x0428, BNX2_FL_NOT_5709
, 0x00000000, 0x00000001 },
5117 { 0x0450, BNX2_FL_NOT_5709
, 0x00000000, 0x0000ffff },
5118 { 0x0454, BNX2_FL_NOT_5709
, 0x00000000, 0xffffffff },
5119 { 0x0458, BNX2_FL_NOT_5709
, 0x00000000, 0xffffffff },
5121 { 0x0808, BNX2_FL_NOT_5709
, 0x00000000, 0xffffffff },
5122 { 0x0854, BNX2_FL_NOT_5709
, 0x00000000, 0xffffffff },
5123 { 0x0868, BNX2_FL_NOT_5709
, 0x00000000, 0x77777777 },
5124 { 0x086c, BNX2_FL_NOT_5709
, 0x00000000, 0x77777777 },
5125 { 0x0870, BNX2_FL_NOT_5709
, 0x00000000, 0x77777777 },
5126 { 0x0874, BNX2_FL_NOT_5709
, 0x00000000, 0x77777777 },
5128 { 0x0c00, BNX2_FL_NOT_5709
, 0x00000000, 0x00000001 },
5129 { 0x0c04, BNX2_FL_NOT_5709
, 0x00000000, 0x03ff0001 },
5130 { 0x0c08, BNX2_FL_NOT_5709
, 0x0f0ff073, 0x00000000 },
5132 { 0x1000, 0, 0x00000000, 0x00000001 },
5133 { 0x1004, BNX2_FL_NOT_5709
, 0x00000000, 0x000f0001 },
5135 { 0x1408, 0, 0x01c00800, 0x00000000 },
5136 { 0x149c, 0, 0x8000ffff, 0x00000000 },
5137 { 0x14a8, 0, 0x00000000, 0x000001ff },
5138 { 0x14ac, 0, 0x0fffffff, 0x10000000 },
5139 { 0x14b0, 0, 0x00000002, 0x00000001 },
5140 { 0x14b8, 0, 0x00000000, 0x00000000 },
5141 { 0x14c0, 0, 0x00000000, 0x00000009 },
5142 { 0x14c4, 0, 0x00003fff, 0x00000000 },
5143 { 0x14cc, 0, 0x00000000, 0x00000001 },
5144 { 0x14d0, 0, 0xffffffff, 0x00000000 },
5146 { 0x1800, 0, 0x00000000, 0x00000001 },
5147 { 0x1804, 0, 0x00000000, 0x00000003 },
5149 { 0x2800, 0, 0x00000000, 0x00000001 },
5150 { 0x2804, 0, 0x00000000, 0x00003f01 },
5151 { 0x2808, 0, 0x0f3f3f03, 0x00000000 },
5152 { 0x2810, 0, 0xffff0000, 0x00000000 },
5153 { 0x2814, 0, 0xffff0000, 0x00000000 },
5154 { 0x2818, 0, 0xffff0000, 0x00000000 },
5155 { 0x281c, 0, 0xffff0000, 0x00000000 },
5156 { 0x2834, 0, 0xffffffff, 0x00000000 },
5157 { 0x2840, 0, 0x00000000, 0xffffffff },
5158 { 0x2844, 0, 0x00000000, 0xffffffff },
5159 { 0x2848, 0, 0xffffffff, 0x00000000 },
5160 { 0x284c, 0, 0xf800f800, 0x07ff07ff },
5162 { 0x2c00, 0, 0x00000000, 0x00000011 },
5163 { 0x2c04, 0, 0x00000000, 0x00030007 },
5165 { 0x3c00, 0, 0x00000000, 0x00000001 },
5166 { 0x3c04, 0, 0x00000000, 0x00070000 },
5167 { 0x3c08, 0, 0x00007f71, 0x07f00000 },
5168 { 0x3c0c, 0, 0x1f3ffffc, 0x00000000 },
5169 { 0x3c10, 0, 0xffffffff, 0x00000000 },
5170 { 0x3c14, 0, 0x00000000, 0xffffffff },
5171 { 0x3c18, 0, 0x00000000, 0xffffffff },
5172 { 0x3c1c, 0, 0xfffff000, 0x00000000 },
5173 { 0x3c20, 0, 0xffffff00, 0x00000000 },
5175 { 0x5004, 0, 0x00000000, 0x0000007f },
5176 { 0x5008, 0, 0x0f0007ff, 0x00000000 },
5178 { 0x5c00, 0, 0x00000000, 0x00000001 },
5179 { 0x5c04, 0, 0x00000000, 0x0003000f },
5180 { 0x5c08, 0, 0x00000003, 0x00000000 },
5181 { 0x5c0c, 0, 0x0000fff8, 0x00000000 },
5182 { 0x5c10, 0, 0x00000000, 0xffffffff },
5183 { 0x5c80, 0, 0x00000000, 0x0f7113f1 },
5184 { 0x5c84, 0, 0x00000000, 0x0000f333 },
5185 { 0x5c88, 0, 0x00000000, 0x00077373 },
5186 { 0x5c8c, 0, 0x00000000, 0x0007f737 },
5188 { 0x6808, 0, 0x0000ff7f, 0x00000000 },
5189 { 0x680c, 0, 0xffffffff, 0x00000000 },
5190 { 0x6810, 0, 0xffffffff, 0x00000000 },
5191 { 0x6814, 0, 0xffffffff, 0x00000000 },
5192 { 0x6818, 0, 0xffffffff, 0x00000000 },
5193 { 0x681c, 0, 0xffffffff, 0x00000000 },
5194 { 0x6820, 0, 0x00ff00ff, 0x00000000 },
5195 { 0x6824, 0, 0x00ff00ff, 0x00000000 },
5196 { 0x6828, 0, 0x00ff00ff, 0x00000000 },
5197 { 0x682c, 0, 0x03ff03ff, 0x00000000 },
5198 { 0x6830, 0, 0x03ff03ff, 0x00000000 },
5199 { 0x6834, 0, 0x03ff03ff, 0x00000000 },
5200 { 0x6838, 0, 0x03ff03ff, 0x00000000 },
5201 { 0x683c, 0, 0x0000ffff, 0x00000000 },
5202 { 0x6840, 0, 0x00000ff0, 0x00000000 },
5203 { 0x6844, 0, 0x00ffff00, 0x00000000 },
5204 { 0x684c, 0, 0xffffffff, 0x00000000 },
5205 { 0x6850, 0, 0x7f7f7f7f, 0x00000000 },
5206 { 0x6854, 0, 0x7f7f7f7f, 0x00000000 },
5207 { 0x6858, 0, 0x7f7f7f7f, 0x00000000 },
5208 { 0x685c, 0, 0x7f7f7f7f, 0x00000000 },
5209 { 0x6908, 0, 0x00000000, 0x0001ff0f },
5210 { 0x690c, 0, 0x00000000, 0x0ffe00f0 },
5212 { 0xffff, 0, 0x00000000, 0x00000000 },
5217 if (CHIP_NUM(bp
) == CHIP_NUM_5709
)
5220 for (i
= 0; reg_tbl
[i
].offset
!= 0xffff; i
++) {
5221 u32 offset
, rw_mask
, ro_mask
, save_val
, val
;
5222 u16 flags
= reg_tbl
[i
].flags
;
5224 if (is_5709
&& (flags
& BNX2_FL_NOT_5709
))
5227 offset
= (u32
) reg_tbl
[i
].offset
;
5228 rw_mask
= reg_tbl
[i
].rw_mask
;
5229 ro_mask
= reg_tbl
[i
].ro_mask
;
5231 save_val
= readl(bp
->regview
+ offset
);
5233 writel(0, bp
->regview
+ offset
);
5235 val
= readl(bp
->regview
+ offset
);
5236 if ((val
& rw_mask
) != 0) {
5240 if ((val
& ro_mask
) != (save_val
& ro_mask
)) {
5244 writel(0xffffffff, bp
->regview
+ offset
);
5246 val
= readl(bp
->regview
+ offset
);
5247 if ((val
& rw_mask
) != rw_mask
) {
5251 if ((val
& ro_mask
) != (save_val
& ro_mask
)) {
5255 writel(save_val
, bp
->regview
+ offset
);
5259 writel(save_val
, bp
->regview
+ offset
);
5267 bnx2_do_mem_test(struct bnx2
*bp
, u32 start
, u32 size
)
5269 static const u32 test_pattern
[] = { 0x00000000, 0xffffffff, 0x55555555,
5270 0xaaaaaaaa , 0xaa55aa55, 0x55aa55aa };
5273 for (i
= 0; i
< sizeof(test_pattern
) / 4; i
++) {
5276 for (offset
= 0; offset
< size
; offset
+= 4) {
5278 bnx2_reg_wr_ind(bp
, start
+ offset
, test_pattern
[i
]);
5280 if (bnx2_reg_rd_ind(bp
, start
+ offset
) !=
5290 bnx2_test_memory(struct bnx2
*bp
)
5294 static struct mem_entry
{
5297 } mem_tbl_5706
[] = {
5298 { 0x60000, 0x4000 },
5299 { 0xa0000, 0x3000 },
5300 { 0xe0000, 0x4000 },
5301 { 0x120000, 0x4000 },
5302 { 0x1a0000, 0x4000 },
5303 { 0x160000, 0x4000 },
5307 { 0x60000, 0x4000 },
5308 { 0xa0000, 0x3000 },
5309 { 0xe0000, 0x4000 },
5310 { 0x120000, 0x4000 },
5311 { 0x1a0000, 0x4000 },
5314 struct mem_entry
*mem_tbl
;
5316 if (CHIP_NUM(bp
) == CHIP_NUM_5709
)
5317 mem_tbl
= mem_tbl_5709
;
5319 mem_tbl
= mem_tbl_5706
;
5321 for (i
= 0; mem_tbl
[i
].offset
!= 0xffffffff; i
++) {
5322 if ((ret
= bnx2_do_mem_test(bp
, mem_tbl
[i
].offset
,
5323 mem_tbl
[i
].len
)) != 0) {
5331 #define BNX2_MAC_LOOPBACK 0
5332 #define BNX2_PHY_LOOPBACK 1
5335 bnx2_run_loopback(struct bnx2
*bp
, int loopback_mode
)
5337 unsigned int pkt_size
, num_pkts
, i
;
5338 struct sk_buff
*skb
, *rx_skb
;
5339 unsigned char *packet
;
5340 u16 rx_start_idx
, rx_idx
;
5343 struct sw_bd
*rx_buf
;
5344 struct l2_fhdr
*rx_hdr
;
5346 struct bnx2_napi
*bnapi
= &bp
->bnx2_napi
[0], *tx_napi
;
5347 struct bnx2_tx_ring_info
*txr
= &bnapi
->tx_ring
;
5348 struct bnx2_rx_ring_info
*rxr
= &bnapi
->rx_ring
;
5352 txr
= &tx_napi
->tx_ring
;
5353 rxr
= &bnapi
->rx_ring
;
5354 if (loopback_mode
== BNX2_MAC_LOOPBACK
) {
5355 bp
->loopback
= MAC_LOOPBACK
;
5356 bnx2_set_mac_loopback(bp
);
5358 else if (loopback_mode
== BNX2_PHY_LOOPBACK
) {
5359 if (bp
->phy_flags
& BNX2_PHY_FLAG_REMOTE_PHY_CAP
)
5362 bp
->loopback
= PHY_LOOPBACK
;
5363 bnx2_set_phy_loopback(bp
);
5368 pkt_size
= min(bp
->dev
->mtu
+ ETH_HLEN
, bp
->rx_jumbo_thresh
- 4);
5369 skb
= netdev_alloc_skb(bp
->dev
, pkt_size
);
5372 packet
= skb_put(skb
, pkt_size
);
5373 memcpy(packet
, bp
->dev
->dev_addr
, 6);
5374 memset(packet
+ 6, 0x0, 8);
5375 for (i
= 14; i
< pkt_size
; i
++)
5376 packet
[i
] = (unsigned char) (i
& 0xff);
5378 if (skb_dma_map(&bp
->pdev
->dev
, skb
, DMA_TO_DEVICE
)) {
5382 map
= skb_shinfo(skb
)->dma_maps
[0];
5384 REG_WR(bp
, BNX2_HC_COMMAND
,
5385 bp
->hc_cmd
| BNX2_HC_COMMAND_COAL_NOW_WO_INT
);
5387 REG_RD(bp
, BNX2_HC_COMMAND
);
5390 rx_start_idx
= bnx2_get_hw_rx_cons(bnapi
);
5394 txbd
= &txr
->tx_desc_ring
[TX_RING_IDX(txr
->tx_prod
)];
5396 txbd
->tx_bd_haddr_hi
= (u64
) map
>> 32;
5397 txbd
->tx_bd_haddr_lo
= (u64
) map
& 0xffffffff;
5398 txbd
->tx_bd_mss_nbytes
= pkt_size
;
5399 txbd
->tx_bd_vlan_tag_flags
= TX_BD_FLAGS_START
| TX_BD_FLAGS_END
;
5402 txr
->tx_prod
= NEXT_TX_BD(txr
->tx_prod
);
5403 txr
->tx_prod_bseq
+= pkt_size
;
5405 REG_WR16(bp
, txr
->tx_bidx_addr
, txr
->tx_prod
);
5406 REG_WR(bp
, txr
->tx_bseq_addr
, txr
->tx_prod_bseq
);
5410 REG_WR(bp
, BNX2_HC_COMMAND
,
5411 bp
->hc_cmd
| BNX2_HC_COMMAND_COAL_NOW_WO_INT
);
5413 REG_RD(bp
, BNX2_HC_COMMAND
);
5417 skb_dma_unmap(&bp
->pdev
->dev
, skb
, DMA_TO_DEVICE
);
5420 if (bnx2_get_hw_tx_cons(tx_napi
) != txr
->tx_prod
)
5421 goto loopback_test_done
;
5423 rx_idx
= bnx2_get_hw_rx_cons(bnapi
);
5424 if (rx_idx
!= rx_start_idx
+ num_pkts
) {
5425 goto loopback_test_done
;
5428 rx_buf
= &rxr
->rx_buf_ring
[rx_start_idx
];
5429 rx_skb
= rx_buf
->skb
;
5431 rx_hdr
= (struct l2_fhdr
*) rx_skb
->data
;
5432 skb_reserve(rx_skb
, BNX2_RX_OFFSET
);
5434 pci_dma_sync_single_for_cpu(bp
->pdev
,
5435 pci_unmap_addr(rx_buf
, mapping
),
5436 bp
->rx_buf_size
, PCI_DMA_FROMDEVICE
);
5438 if (rx_hdr
->l2_fhdr_status
&
5439 (L2_FHDR_ERRORS_BAD_CRC
|
5440 L2_FHDR_ERRORS_PHY_DECODE
|
5441 L2_FHDR_ERRORS_ALIGNMENT
|
5442 L2_FHDR_ERRORS_TOO_SHORT
|
5443 L2_FHDR_ERRORS_GIANT_FRAME
)) {
5445 goto loopback_test_done
;
5448 if ((rx_hdr
->l2_fhdr_pkt_len
- 4) != pkt_size
) {
5449 goto loopback_test_done
;
5452 for (i
= 14; i
< pkt_size
; i
++) {
5453 if (*(rx_skb
->data
+ i
) != (unsigned char) (i
& 0xff)) {
5454 goto loopback_test_done
;
5465 #define BNX2_MAC_LOOPBACK_FAILED 1
5466 #define BNX2_PHY_LOOPBACK_FAILED 2
5467 #define BNX2_LOOPBACK_FAILED (BNX2_MAC_LOOPBACK_FAILED | \
5468 BNX2_PHY_LOOPBACK_FAILED)
5471 bnx2_test_loopback(struct bnx2
*bp
)
5475 if (!netif_running(bp
->dev
))
5476 return BNX2_LOOPBACK_FAILED
;
5478 bnx2_reset_nic(bp
, BNX2_DRV_MSG_CODE_RESET
);
5479 spin_lock_bh(&bp
->phy_lock
);
5480 bnx2_init_phy(bp
, 1);
5481 spin_unlock_bh(&bp
->phy_lock
);
5482 if (bnx2_run_loopback(bp
, BNX2_MAC_LOOPBACK
))
5483 rc
|= BNX2_MAC_LOOPBACK_FAILED
;
5484 if (bnx2_run_loopback(bp
, BNX2_PHY_LOOPBACK
))
5485 rc
|= BNX2_PHY_LOOPBACK_FAILED
;
5489 #define NVRAM_SIZE 0x200
5490 #define CRC32_RESIDUAL 0xdebb20e3
5493 bnx2_test_nvram(struct bnx2
*bp
)
5495 __be32 buf
[NVRAM_SIZE
/ 4];
5496 u8
*data
= (u8
*) buf
;
5500 if ((rc
= bnx2_nvram_read(bp
, 0, data
, 4)) != 0)
5501 goto test_nvram_done
;
5503 magic
= be32_to_cpu(buf
[0]);
5504 if (magic
!= 0x669955aa) {
5506 goto test_nvram_done
;
5509 if ((rc
= bnx2_nvram_read(bp
, 0x100, data
, NVRAM_SIZE
)) != 0)
5510 goto test_nvram_done
;
5512 csum
= ether_crc_le(0x100, data
);
5513 if (csum
!= CRC32_RESIDUAL
) {
5515 goto test_nvram_done
;
5518 csum
= ether_crc_le(0x100, data
+ 0x100);
5519 if (csum
!= CRC32_RESIDUAL
) {
5528 bnx2_test_link(struct bnx2
*bp
)
5532 if (!netif_running(bp
->dev
))
5535 if (bp
->phy_flags
& BNX2_PHY_FLAG_REMOTE_PHY_CAP
) {
5540 spin_lock_bh(&bp
->phy_lock
);
5541 bnx2_enable_bmsr1(bp
);
5542 bnx2_read_phy(bp
, bp
->mii_bmsr1
, &bmsr
);
5543 bnx2_read_phy(bp
, bp
->mii_bmsr1
, &bmsr
);
5544 bnx2_disable_bmsr1(bp
);
5545 spin_unlock_bh(&bp
->phy_lock
);
5547 if (bmsr
& BMSR_LSTATUS
) {
5554 bnx2_test_intr(struct bnx2
*bp
)
5559 if (!netif_running(bp
->dev
))
5562 status_idx
= REG_RD(bp
, BNX2_PCICFG_INT_ACK_CMD
) & 0xffff;
5564 /* This register is not touched during run-time. */
5565 REG_WR(bp
, BNX2_HC_COMMAND
, bp
->hc_cmd
| BNX2_HC_COMMAND_COAL_NOW
);
5566 REG_RD(bp
, BNX2_HC_COMMAND
);
5568 for (i
= 0; i
< 10; i
++) {
5569 if ((REG_RD(bp
, BNX2_PCICFG_INT_ACK_CMD
) & 0xffff) !=
5575 msleep_interruptible(10);
5583 /* Determining link for parallel detection. */
5585 bnx2_5706_serdes_has_link(struct bnx2
*bp
)
5587 u32 mode_ctl
, an_dbg
, exp
;
5589 if (bp
->phy_flags
& BNX2_PHY_FLAG_NO_PARALLEL
)
5592 bnx2_write_phy(bp
, MII_BNX2_MISC_SHADOW
, MISC_SHDW_MODE_CTL
);
5593 bnx2_read_phy(bp
, MII_BNX2_MISC_SHADOW
, &mode_ctl
);
5595 if (!(mode_ctl
& MISC_SHDW_MODE_CTL_SIG_DET
))
5598 bnx2_write_phy(bp
, MII_BNX2_MISC_SHADOW
, MISC_SHDW_AN_DBG
);
5599 bnx2_read_phy(bp
, MII_BNX2_MISC_SHADOW
, &an_dbg
);
5600 bnx2_read_phy(bp
, MII_BNX2_MISC_SHADOW
, &an_dbg
);
5602 if (an_dbg
& (MISC_SHDW_AN_DBG_NOSYNC
| MISC_SHDW_AN_DBG_RUDI_INVALID
))
5605 bnx2_write_phy(bp
, MII_BNX2_DSP_ADDRESS
, MII_EXPAND_REG1
);
5606 bnx2_read_phy(bp
, MII_BNX2_DSP_RW_PORT
, &exp
);
5607 bnx2_read_phy(bp
, MII_BNX2_DSP_RW_PORT
, &exp
);
5609 if (exp
& MII_EXPAND_REG1_RUDI_C
) /* receiving CONFIG */
5616 bnx2_5706_serdes_timer(struct bnx2
*bp
)
5620 spin_lock(&bp
->phy_lock
);
5621 if (bp
->serdes_an_pending
) {
5622 bp
->serdes_an_pending
--;
5624 } else if ((bp
->link_up
== 0) && (bp
->autoneg
& AUTONEG_SPEED
)) {
5627 bp
->current_interval
= BNX2_TIMER_INTERVAL
;
5629 bnx2_read_phy(bp
, bp
->mii_bmcr
, &bmcr
);
5631 if (bmcr
& BMCR_ANENABLE
) {
5632 if (bnx2_5706_serdes_has_link(bp
)) {
5633 bmcr
&= ~BMCR_ANENABLE
;
5634 bmcr
|= BMCR_SPEED1000
| BMCR_FULLDPLX
;
5635 bnx2_write_phy(bp
, bp
->mii_bmcr
, bmcr
);
5636 bp
->phy_flags
|= BNX2_PHY_FLAG_PARALLEL_DETECT
;
5640 else if ((bp
->link_up
) && (bp
->autoneg
& AUTONEG_SPEED
) &&
5641 (bp
->phy_flags
& BNX2_PHY_FLAG_PARALLEL_DETECT
)) {
5644 bnx2_write_phy(bp
, 0x17, 0x0f01);
5645 bnx2_read_phy(bp
, 0x15, &phy2
);
5649 bnx2_read_phy(bp
, bp
->mii_bmcr
, &bmcr
);
5650 bmcr
|= BMCR_ANENABLE
;
5651 bnx2_write_phy(bp
, bp
->mii_bmcr
, bmcr
);
5653 bp
->phy_flags
&= ~BNX2_PHY_FLAG_PARALLEL_DETECT
;
5656 bp
->current_interval
= BNX2_TIMER_INTERVAL
;
5661 bnx2_write_phy(bp
, MII_BNX2_MISC_SHADOW
, MISC_SHDW_AN_DBG
);
5662 bnx2_read_phy(bp
, MII_BNX2_MISC_SHADOW
, &val
);
5663 bnx2_read_phy(bp
, MII_BNX2_MISC_SHADOW
, &val
);
5665 if (bp
->link_up
&& (val
& MISC_SHDW_AN_DBG_NOSYNC
)) {
5666 if (!(bp
->phy_flags
& BNX2_PHY_FLAG_FORCED_DOWN
)) {
5667 bnx2_5706s_force_link_dn(bp
, 1);
5668 bp
->phy_flags
|= BNX2_PHY_FLAG_FORCED_DOWN
;
5671 } else if (!bp
->link_up
&& !(val
& MISC_SHDW_AN_DBG_NOSYNC
))
5674 spin_unlock(&bp
->phy_lock
);
5678 bnx2_5708_serdes_timer(struct bnx2
*bp
)
5680 if (bp
->phy_flags
& BNX2_PHY_FLAG_REMOTE_PHY_CAP
)
5683 if ((bp
->phy_flags
& BNX2_PHY_FLAG_2_5G_CAPABLE
) == 0) {
5684 bp
->serdes_an_pending
= 0;
5688 spin_lock(&bp
->phy_lock
);
5689 if (bp
->serdes_an_pending
)
5690 bp
->serdes_an_pending
--;
5691 else if ((bp
->link_up
== 0) && (bp
->autoneg
& AUTONEG_SPEED
)) {
5694 bnx2_read_phy(bp
, bp
->mii_bmcr
, &bmcr
);
5695 if (bmcr
& BMCR_ANENABLE
) {
5696 bnx2_enable_forced_2g5(bp
);
5697 bp
->current_interval
= SERDES_FORCED_TIMEOUT
;
5699 bnx2_disable_forced_2g5(bp
);
5700 bp
->serdes_an_pending
= 2;
5701 bp
->current_interval
= BNX2_TIMER_INTERVAL
;
5705 bp
->current_interval
= BNX2_TIMER_INTERVAL
;
5707 spin_unlock(&bp
->phy_lock
);
5711 bnx2_timer(unsigned long data
)
5713 struct bnx2
*bp
= (struct bnx2
*) data
;
5715 if (!netif_running(bp
->dev
))
5718 if (atomic_read(&bp
->intr_sem
) != 0)
5719 goto bnx2_restart_timer
;
5721 bnx2_send_heart_beat(bp
);
5723 bp
->stats_blk
->stat_FwRxDrop
=
5724 bnx2_reg_rd_ind(bp
, BNX2_FW_RX_DROP_COUNT
);
5726 /* workaround occasional corrupted counters */
5727 if (CHIP_NUM(bp
) == CHIP_NUM_5708
&& bp
->stats_ticks
)
5728 REG_WR(bp
, BNX2_HC_COMMAND
, bp
->hc_cmd
|
5729 BNX2_HC_COMMAND_STATS_NOW
);
5731 if (bp
->phy_flags
& BNX2_PHY_FLAG_SERDES
) {
5732 if (CHIP_NUM(bp
) == CHIP_NUM_5706
)
5733 bnx2_5706_serdes_timer(bp
);
5735 bnx2_5708_serdes_timer(bp
);
5739 mod_timer(&bp
->timer
, jiffies
+ bp
->current_interval
);
5743 bnx2_request_irq(struct bnx2
*bp
)
5745 unsigned long flags
;
5746 struct bnx2_irq
*irq
;
5749 if (bp
->flags
& BNX2_FLAG_USING_MSI_OR_MSIX
)
5752 flags
= IRQF_SHARED
;
5754 for (i
= 0; i
< bp
->irq_nvecs
; i
++) {
5755 irq
= &bp
->irq_tbl
[i
];
5756 rc
= request_irq(irq
->vector
, irq
->handler
, flags
, irq
->name
,
5766 bnx2_free_irq(struct bnx2
*bp
)
5768 struct bnx2_irq
*irq
;
5771 for (i
= 0; i
< bp
->irq_nvecs
; i
++) {
5772 irq
= &bp
->irq_tbl
[i
];
5774 free_irq(irq
->vector
, &bp
->bnx2_napi
[i
]);
5777 if (bp
->flags
& BNX2_FLAG_USING_MSI
)
5778 pci_disable_msi(bp
->pdev
);
5779 else if (bp
->flags
& BNX2_FLAG_USING_MSIX
)
5780 pci_disable_msix(bp
->pdev
);
5782 bp
->flags
&= ~(BNX2_FLAG_USING_MSI_OR_MSIX
| BNX2_FLAG_ONE_SHOT_MSI
);
5786 bnx2_enable_msix(struct bnx2
*bp
, int msix_vecs
)
5789 struct msix_entry msix_ent
[BNX2_MAX_MSIX_VEC
];
5791 bnx2_setup_msix_tbl(bp
);
5792 REG_WR(bp
, BNX2_PCI_MSIX_CONTROL
, BNX2_MAX_MSIX_HW_VEC
- 1);
5793 REG_WR(bp
, BNX2_PCI_MSIX_TBL_OFF_BIR
, BNX2_PCI_GRC_WINDOW2_BASE
);
5794 REG_WR(bp
, BNX2_PCI_MSIX_PBA_OFF_BIT
, BNX2_PCI_GRC_WINDOW3_BASE
);
5796 for (i
= 0; i
< BNX2_MAX_MSIX_VEC
; i
++) {
5797 msix_ent
[i
].entry
= i
;
5798 msix_ent
[i
].vector
= 0;
5800 strcpy(bp
->irq_tbl
[i
].name
, bp
->dev
->name
);
5801 bp
->irq_tbl
[i
].handler
= bnx2_msi_1shot
;
5804 rc
= pci_enable_msix(bp
->pdev
, msix_ent
, BNX2_MAX_MSIX_VEC
);
5808 bp
->irq_nvecs
= msix_vecs
;
5809 bp
->flags
|= BNX2_FLAG_USING_MSIX
| BNX2_FLAG_ONE_SHOT_MSI
;
5810 for (i
= 0; i
< BNX2_MAX_MSIX_VEC
; i
++)
5811 bp
->irq_tbl
[i
].vector
= msix_ent
[i
].vector
;
5815 bnx2_setup_int_mode(struct bnx2
*bp
, int dis_msi
)
5817 int cpus
= num_online_cpus();
5818 int msix_vecs
= min(cpus
+ 1, RX_MAX_RINGS
);
5820 bp
->irq_tbl
[0].handler
= bnx2_interrupt
;
5821 strcpy(bp
->irq_tbl
[0].name
, bp
->dev
->name
);
5823 bp
->irq_tbl
[0].vector
= bp
->pdev
->irq
;
5825 if ((bp
->flags
& BNX2_FLAG_MSIX_CAP
) && !dis_msi
&& cpus
> 1)
5826 bnx2_enable_msix(bp
, msix_vecs
);
5828 if ((bp
->flags
& BNX2_FLAG_MSI_CAP
) && !dis_msi
&&
5829 !(bp
->flags
& BNX2_FLAG_USING_MSIX
)) {
5830 if (pci_enable_msi(bp
->pdev
) == 0) {
5831 bp
->flags
|= BNX2_FLAG_USING_MSI
;
5832 if (CHIP_NUM(bp
) == CHIP_NUM_5709
) {
5833 bp
->flags
|= BNX2_FLAG_ONE_SHOT_MSI
;
5834 bp
->irq_tbl
[0].handler
= bnx2_msi_1shot
;
5836 bp
->irq_tbl
[0].handler
= bnx2_msi
;
5838 bp
->irq_tbl
[0].vector
= bp
->pdev
->irq
;
5842 bp
->num_tx_rings
= rounddown_pow_of_two(bp
->irq_nvecs
);
5843 bp
->dev
->real_num_tx_queues
= bp
->num_tx_rings
;
5845 bp
->num_rx_rings
= bp
->irq_nvecs
;
5848 /* Called with rtnl_lock */
5850 bnx2_open(struct net_device
*dev
)
5852 struct bnx2
*bp
= netdev_priv(dev
);
5855 netif_carrier_off(dev
);
5857 bnx2_set_power_state(bp
, PCI_D0
);
5858 bnx2_disable_int(bp
);
5860 bnx2_setup_int_mode(bp
, disable_msi
);
5861 bnx2_napi_enable(bp
);
5862 rc
= bnx2_alloc_mem(bp
);
5866 rc
= bnx2_request_irq(bp
);
5870 rc
= bnx2_init_nic(bp
, 1);
5874 mod_timer(&bp
->timer
, jiffies
+ bp
->current_interval
);
5876 atomic_set(&bp
->intr_sem
, 0);
5878 bnx2_enable_int(bp
);
5880 if (bp
->flags
& BNX2_FLAG_USING_MSI
) {
5881 /* Test MSI to make sure it is working
5882 * If MSI test fails, go back to INTx mode
5884 if (bnx2_test_intr(bp
) != 0) {
5885 printk(KERN_WARNING PFX
"%s: No interrupt was generated"
5886 " using MSI, switching to INTx mode. Please"
5887 " report this failure to the PCI maintainer"
5888 " and include system chipset information.\n",
5891 bnx2_disable_int(bp
);
5894 bnx2_setup_int_mode(bp
, 1);
5896 rc
= bnx2_init_nic(bp
, 0);
5899 rc
= bnx2_request_irq(bp
);
5902 del_timer_sync(&bp
->timer
);
5905 bnx2_enable_int(bp
);
5908 if (bp
->flags
& BNX2_FLAG_USING_MSI
)
5909 printk(KERN_INFO PFX
"%s: using MSI\n", dev
->name
);
5910 else if (bp
->flags
& BNX2_FLAG_USING_MSIX
)
5911 printk(KERN_INFO PFX
"%s: using MSIX\n", dev
->name
);
5913 netif_tx_start_all_queues(dev
);
5918 bnx2_napi_disable(bp
);
5926 bnx2_reset_task(struct work_struct
*work
)
5928 struct bnx2
*bp
= container_of(work
, struct bnx2
, reset_task
);
5930 if (!netif_running(bp
->dev
))
5933 bnx2_netif_stop(bp
);
5935 bnx2_init_nic(bp
, 1);
5937 atomic_set(&bp
->intr_sem
, 1);
5938 bnx2_netif_start(bp
);
5942 bnx2_tx_timeout(struct net_device
*dev
)
5944 struct bnx2
*bp
= netdev_priv(dev
);
5946 /* This allows the netif to be shutdown gracefully before resetting */
5947 schedule_work(&bp
->reset_task
);
5951 /* Called with rtnl_lock */
5953 bnx2_vlan_rx_register(struct net_device
*dev
, struct vlan_group
*vlgrp
)
5955 struct bnx2
*bp
= netdev_priv(dev
);
5957 bnx2_netif_stop(bp
);
5960 bnx2_set_rx_mode(dev
);
5961 if (bp
->flags
& BNX2_FLAG_CAN_KEEP_VLAN
)
5962 bnx2_fw_sync(bp
, BNX2_DRV_MSG_CODE_KEEP_VLAN_UPDATE
, 0, 1);
5964 bnx2_netif_start(bp
);
5968 /* Called with netif_tx_lock.
5969 * bnx2_tx_int() runs without netif_tx_lock unless it needs to call
5970 * netif_wake_queue().
5973 bnx2_start_xmit(struct sk_buff
*skb
, struct net_device
*dev
)
5975 struct bnx2
*bp
= netdev_priv(dev
);
5978 struct sw_tx_bd
*tx_buf
;
5979 u32 len
, vlan_tag_flags
, last_frag
, mss
;
5980 u16 prod
, ring_prod
;
5982 struct bnx2_napi
*bnapi
;
5983 struct bnx2_tx_ring_info
*txr
;
5984 struct netdev_queue
*txq
;
5985 struct skb_shared_info
*sp
;
5987 /* Determine which tx ring we will be placed on */
5988 i
= skb_get_queue_mapping(skb
);
5989 bnapi
= &bp
->bnx2_napi
[i
];
5990 txr
= &bnapi
->tx_ring
;
5991 txq
= netdev_get_tx_queue(dev
, i
);
5993 if (unlikely(bnx2_tx_avail(bp
, txr
) <
5994 (skb_shinfo(skb
)->nr_frags
+ 1))) {
5995 netif_tx_stop_queue(txq
);
5996 printk(KERN_ERR PFX
"%s: BUG! Tx ring full when queue awake!\n",
5999 return NETDEV_TX_BUSY
;
6001 len
= skb_headlen(skb
);
6002 prod
= txr
->tx_prod
;
6003 ring_prod
= TX_RING_IDX(prod
);
6006 if (skb
->ip_summed
== CHECKSUM_PARTIAL
) {
6007 vlan_tag_flags
|= TX_BD_FLAGS_TCP_UDP_CKSUM
;
6011 if (bp
->vlgrp
&& vlan_tx_tag_present(skb
)) {
6013 (TX_BD_FLAGS_VLAN_TAG
| (vlan_tx_tag_get(skb
) << 16));
6016 if ((mss
= skb_shinfo(skb
)->gso_size
)) {
6020 vlan_tag_flags
|= TX_BD_FLAGS_SW_LSO
;
6022 tcp_opt_len
= tcp_optlen(skb
);
6024 if (skb_shinfo(skb
)->gso_type
& SKB_GSO_TCPV6
) {
6025 u32 tcp_off
= skb_transport_offset(skb
) -
6026 sizeof(struct ipv6hdr
) - ETH_HLEN
;
6028 vlan_tag_flags
|= ((tcp_opt_len
>> 2) << 8) |
6029 TX_BD_FLAGS_SW_FLAGS
;
6030 if (likely(tcp_off
== 0))
6031 vlan_tag_flags
&= ~TX_BD_FLAGS_TCP6_OFF0_MSK
;
6034 vlan_tag_flags
|= ((tcp_off
& 0x3) <<
6035 TX_BD_FLAGS_TCP6_OFF0_SHL
) |
6036 ((tcp_off
& 0x10) <<
6037 TX_BD_FLAGS_TCP6_OFF4_SHL
);
6038 mss
|= (tcp_off
& 0xc) << TX_BD_TCP6_OFF2_SHL
;
6042 if (tcp_opt_len
|| (iph
->ihl
> 5)) {
6043 vlan_tag_flags
|= ((iph
->ihl
- 5) +
6044 (tcp_opt_len
>> 2)) << 8;
6050 if (skb_dma_map(&bp
->pdev
->dev
, skb
, DMA_TO_DEVICE
)) {
6052 return NETDEV_TX_OK
;
6055 sp
= skb_shinfo(skb
);
6056 mapping
= sp
->dma_maps
[0];
6058 tx_buf
= &txr
->tx_buf_ring
[ring_prod
];
6061 txbd
= &txr
->tx_desc_ring
[ring_prod
];
6063 txbd
->tx_bd_haddr_hi
= (u64
) mapping
>> 32;
6064 txbd
->tx_bd_haddr_lo
= (u64
) mapping
& 0xffffffff;
6065 txbd
->tx_bd_mss_nbytes
= len
| (mss
<< 16);
6066 txbd
->tx_bd_vlan_tag_flags
= vlan_tag_flags
| TX_BD_FLAGS_START
;
6068 last_frag
= skb_shinfo(skb
)->nr_frags
;
6070 for (i
= 0; i
< last_frag
; i
++) {
6071 skb_frag_t
*frag
= &skb_shinfo(skb
)->frags
[i
];
6073 prod
= NEXT_TX_BD(prod
);
6074 ring_prod
= TX_RING_IDX(prod
);
6075 txbd
= &txr
->tx_desc_ring
[ring_prod
];
6078 mapping
= sp
->dma_maps
[i
+ 1];
6080 txbd
->tx_bd_haddr_hi
= (u64
) mapping
>> 32;
6081 txbd
->tx_bd_haddr_lo
= (u64
) mapping
& 0xffffffff;
6082 txbd
->tx_bd_mss_nbytes
= len
| (mss
<< 16);
6083 txbd
->tx_bd_vlan_tag_flags
= vlan_tag_flags
;
6086 txbd
->tx_bd_vlan_tag_flags
|= TX_BD_FLAGS_END
;
6088 prod
= NEXT_TX_BD(prod
);
6089 txr
->tx_prod_bseq
+= skb
->len
;
6091 REG_WR16(bp
, txr
->tx_bidx_addr
, prod
);
6092 REG_WR(bp
, txr
->tx_bseq_addr
, txr
->tx_prod_bseq
);
6096 txr
->tx_prod
= prod
;
6097 dev
->trans_start
= jiffies
;
6099 if (unlikely(bnx2_tx_avail(bp
, txr
) <= MAX_SKB_FRAGS
)) {
6100 netif_tx_stop_queue(txq
);
6101 if (bnx2_tx_avail(bp
, txr
) > bp
->tx_wake_thresh
)
6102 netif_tx_wake_queue(txq
);
6105 return NETDEV_TX_OK
;
6108 /* Called with rtnl_lock */
6110 bnx2_close(struct net_device
*dev
)
6112 struct bnx2
*bp
= netdev_priv(dev
);
6114 cancel_work_sync(&bp
->reset_task
);
6116 bnx2_disable_int_sync(bp
);
6117 bnx2_napi_disable(bp
);
6118 del_timer_sync(&bp
->timer
);
6119 bnx2_shutdown_chip(bp
);
6124 netif_carrier_off(bp
->dev
);
6125 bnx2_set_power_state(bp
, PCI_D3hot
);
6129 #define GET_NET_STATS64(ctr) \
6130 (unsigned long) ((unsigned long) (ctr##_hi) << 32) + \
6131 (unsigned long) (ctr##_lo)
6133 #define GET_NET_STATS32(ctr) \
6136 #if (BITS_PER_LONG == 64)
6137 #define GET_NET_STATS GET_NET_STATS64
6139 #define GET_NET_STATS GET_NET_STATS32
6142 static struct net_device_stats
*
6143 bnx2_get_stats(struct net_device
*dev
)
6145 struct bnx2
*bp
= netdev_priv(dev
);
6146 struct statistics_block
*stats_blk
= bp
->stats_blk
;
6147 struct net_device_stats
*net_stats
= &bp
->net_stats
;
6149 if (bp
->stats_blk
== NULL
) {
6152 net_stats
->rx_packets
=
6153 GET_NET_STATS(stats_blk
->stat_IfHCInUcastPkts
) +
6154 GET_NET_STATS(stats_blk
->stat_IfHCInMulticastPkts
) +
6155 GET_NET_STATS(stats_blk
->stat_IfHCInBroadcastPkts
);
6157 net_stats
->tx_packets
=
6158 GET_NET_STATS(stats_blk
->stat_IfHCOutUcastPkts
) +
6159 GET_NET_STATS(stats_blk
->stat_IfHCOutMulticastPkts
) +
6160 GET_NET_STATS(stats_blk
->stat_IfHCOutBroadcastPkts
);
6162 net_stats
->rx_bytes
=
6163 GET_NET_STATS(stats_blk
->stat_IfHCInOctets
);
6165 net_stats
->tx_bytes
=
6166 GET_NET_STATS(stats_blk
->stat_IfHCOutOctets
);
6168 net_stats
->multicast
=
6169 GET_NET_STATS(stats_blk
->stat_IfHCOutMulticastPkts
);
6171 net_stats
->collisions
=
6172 (unsigned long) stats_blk
->stat_EtherStatsCollisions
;
6174 net_stats
->rx_length_errors
=
6175 (unsigned long) (stats_blk
->stat_EtherStatsUndersizePkts
+
6176 stats_blk
->stat_EtherStatsOverrsizePkts
);
6178 net_stats
->rx_over_errors
=
6179 (unsigned long) stats_blk
->stat_IfInMBUFDiscards
;
6181 net_stats
->rx_frame_errors
=
6182 (unsigned long) stats_blk
->stat_Dot3StatsAlignmentErrors
;
6184 net_stats
->rx_crc_errors
=
6185 (unsigned long) stats_blk
->stat_Dot3StatsFCSErrors
;
6187 net_stats
->rx_errors
= net_stats
->rx_length_errors
+
6188 net_stats
->rx_over_errors
+ net_stats
->rx_frame_errors
+
6189 net_stats
->rx_crc_errors
;
6191 net_stats
->tx_aborted_errors
=
6192 (unsigned long) (stats_blk
->stat_Dot3StatsExcessiveCollisions
+
6193 stats_blk
->stat_Dot3StatsLateCollisions
);
6195 if ((CHIP_NUM(bp
) == CHIP_NUM_5706
) ||
6196 (CHIP_ID(bp
) == CHIP_ID_5708_A0
))
6197 net_stats
->tx_carrier_errors
= 0;
6199 net_stats
->tx_carrier_errors
=
6201 stats_blk
->stat_Dot3StatsCarrierSenseErrors
;
6204 net_stats
->tx_errors
=
6206 stats_blk
->stat_emac_tx_stat_dot3statsinternalmactransmiterrors
6208 net_stats
->tx_aborted_errors
+
6209 net_stats
->tx_carrier_errors
;
6211 net_stats
->rx_missed_errors
=
6212 (unsigned long) (stats_blk
->stat_IfInMBUFDiscards
+
6213 stats_blk
->stat_FwRxDrop
);
6218 /* All ethtool functions called with rtnl_lock */
6221 bnx2_get_settings(struct net_device
*dev
, struct ethtool_cmd
*cmd
)
6223 struct bnx2
*bp
= netdev_priv(dev
);
6224 int support_serdes
= 0, support_copper
= 0;
6226 cmd
->supported
= SUPPORTED_Autoneg
;
6227 if (bp
->phy_flags
& BNX2_PHY_FLAG_REMOTE_PHY_CAP
) {
6230 } else if (bp
->phy_port
== PORT_FIBRE
)
6235 if (support_serdes
) {
6236 cmd
->supported
|= SUPPORTED_1000baseT_Full
|
6238 if (bp
->phy_flags
& BNX2_PHY_FLAG_2_5G_CAPABLE
)
6239 cmd
->supported
|= SUPPORTED_2500baseX_Full
;
6242 if (support_copper
) {
6243 cmd
->supported
|= SUPPORTED_10baseT_Half
|
6244 SUPPORTED_10baseT_Full
|
6245 SUPPORTED_100baseT_Half
|
6246 SUPPORTED_100baseT_Full
|
6247 SUPPORTED_1000baseT_Full
|
6252 spin_lock_bh(&bp
->phy_lock
);
6253 cmd
->port
= bp
->phy_port
;
6254 cmd
->advertising
= bp
->advertising
;
6256 if (bp
->autoneg
& AUTONEG_SPEED
) {
6257 cmd
->autoneg
= AUTONEG_ENABLE
;
6260 cmd
->autoneg
= AUTONEG_DISABLE
;
6263 if (netif_carrier_ok(dev
)) {
6264 cmd
->speed
= bp
->line_speed
;
6265 cmd
->duplex
= bp
->duplex
;
6271 spin_unlock_bh(&bp
->phy_lock
);
6273 cmd
->transceiver
= XCVR_INTERNAL
;
6274 cmd
->phy_address
= bp
->phy_addr
;
6280 bnx2_set_settings(struct net_device
*dev
, struct ethtool_cmd
*cmd
)
6282 struct bnx2
*bp
= netdev_priv(dev
);
6283 u8 autoneg
= bp
->autoneg
;
6284 u8 req_duplex
= bp
->req_duplex
;
6285 u16 req_line_speed
= bp
->req_line_speed
;
6286 u32 advertising
= bp
->advertising
;
6289 spin_lock_bh(&bp
->phy_lock
);
6291 if (cmd
->port
!= PORT_TP
&& cmd
->port
!= PORT_FIBRE
)
6292 goto err_out_unlock
;
6294 if (cmd
->port
!= bp
->phy_port
&&
6295 !(bp
->phy_flags
& BNX2_PHY_FLAG_REMOTE_PHY_CAP
))
6296 goto err_out_unlock
;
6298 /* If device is down, we can store the settings only if the user
6299 * is setting the currently active port.
6301 if (!netif_running(dev
) && cmd
->port
!= bp
->phy_port
)
6302 goto err_out_unlock
;
6304 if (cmd
->autoneg
== AUTONEG_ENABLE
) {
6305 autoneg
|= AUTONEG_SPEED
;
6307 cmd
->advertising
&= ETHTOOL_ALL_COPPER_SPEED
;
6309 /* allow advertising 1 speed */
6310 if ((cmd
->advertising
== ADVERTISED_10baseT_Half
) ||
6311 (cmd
->advertising
== ADVERTISED_10baseT_Full
) ||
6312 (cmd
->advertising
== ADVERTISED_100baseT_Half
) ||
6313 (cmd
->advertising
== ADVERTISED_100baseT_Full
)) {
6315 if (cmd
->port
== PORT_FIBRE
)
6316 goto err_out_unlock
;
6318 advertising
= cmd
->advertising
;
6320 } else if (cmd
->advertising
== ADVERTISED_2500baseX_Full
) {
6321 if (!(bp
->phy_flags
& BNX2_PHY_FLAG_2_5G_CAPABLE
) ||
6322 (cmd
->port
== PORT_TP
))
6323 goto err_out_unlock
;
6324 } else if (cmd
->advertising
== ADVERTISED_1000baseT_Full
)
6325 advertising
= cmd
->advertising
;
6326 else if (cmd
->advertising
== ADVERTISED_1000baseT_Half
)
6327 goto err_out_unlock
;
6329 if (cmd
->port
== PORT_FIBRE
)
6330 advertising
= ETHTOOL_ALL_FIBRE_SPEED
;
6332 advertising
= ETHTOOL_ALL_COPPER_SPEED
;
6334 advertising
|= ADVERTISED_Autoneg
;
6337 if (cmd
->port
== PORT_FIBRE
) {
6338 if ((cmd
->speed
!= SPEED_1000
&&
6339 cmd
->speed
!= SPEED_2500
) ||
6340 (cmd
->duplex
!= DUPLEX_FULL
))
6341 goto err_out_unlock
;
6343 if (cmd
->speed
== SPEED_2500
&&
6344 !(bp
->phy_flags
& BNX2_PHY_FLAG_2_5G_CAPABLE
))
6345 goto err_out_unlock
;
6347 else if (cmd
->speed
== SPEED_1000
|| cmd
->speed
== SPEED_2500
)
6348 goto err_out_unlock
;
6350 autoneg
&= ~AUTONEG_SPEED
;
6351 req_line_speed
= cmd
->speed
;
6352 req_duplex
= cmd
->duplex
;
6356 bp
->autoneg
= autoneg
;
6357 bp
->advertising
= advertising
;
6358 bp
->req_line_speed
= req_line_speed
;
6359 bp
->req_duplex
= req_duplex
;
6362 /* If device is down, the new settings will be picked up when it is
6365 if (netif_running(dev
))
6366 err
= bnx2_setup_phy(bp
, cmd
->port
);
6369 spin_unlock_bh(&bp
->phy_lock
);
6375 bnx2_get_drvinfo(struct net_device
*dev
, struct ethtool_drvinfo
*info
)
6377 struct bnx2
*bp
= netdev_priv(dev
);
6379 strcpy(info
->driver
, DRV_MODULE_NAME
);
6380 strcpy(info
->version
, DRV_MODULE_VERSION
);
6381 strcpy(info
->bus_info
, pci_name(bp
->pdev
));
6382 strcpy(info
->fw_version
, bp
->fw_version
);
6385 #define BNX2_REGDUMP_LEN (32 * 1024)
6388 bnx2_get_regs_len(struct net_device
*dev
)
6390 return BNX2_REGDUMP_LEN
;
6394 bnx2_get_regs(struct net_device
*dev
, struct ethtool_regs
*regs
, void *_p
)
6396 u32
*p
= _p
, i
, offset
;
6398 struct bnx2
*bp
= netdev_priv(dev
);
6399 u32 reg_boundaries
[] = { 0x0000, 0x0098, 0x0400, 0x045c,
6400 0x0800, 0x0880, 0x0c00, 0x0c10,
6401 0x0c30, 0x0d08, 0x1000, 0x101c,
6402 0x1040, 0x1048, 0x1080, 0x10a4,
6403 0x1400, 0x1490, 0x1498, 0x14f0,
6404 0x1500, 0x155c, 0x1580, 0x15dc,
6405 0x1600, 0x1658, 0x1680, 0x16d8,
6406 0x1800, 0x1820, 0x1840, 0x1854,
6407 0x1880, 0x1894, 0x1900, 0x1984,
6408 0x1c00, 0x1c0c, 0x1c40, 0x1c54,
6409 0x1c80, 0x1c94, 0x1d00, 0x1d84,
6410 0x2000, 0x2030, 0x23c0, 0x2400,
6411 0x2800, 0x2820, 0x2830, 0x2850,
6412 0x2b40, 0x2c10, 0x2fc0, 0x3058,
6413 0x3c00, 0x3c94, 0x4000, 0x4010,
6414 0x4080, 0x4090, 0x43c0, 0x4458,
6415 0x4c00, 0x4c18, 0x4c40, 0x4c54,
6416 0x4fc0, 0x5010, 0x53c0, 0x5444,
6417 0x5c00, 0x5c18, 0x5c80, 0x5c90,
6418 0x5fc0, 0x6000, 0x6400, 0x6428,
6419 0x6800, 0x6848, 0x684c, 0x6860,
6420 0x6888, 0x6910, 0x8000 };
6424 memset(p
, 0, BNX2_REGDUMP_LEN
);
6426 if (!netif_running(bp
->dev
))
6430 offset
= reg_boundaries
[0];
6432 while (offset
< BNX2_REGDUMP_LEN
) {
6433 *p
++ = REG_RD(bp
, offset
);
6435 if (offset
== reg_boundaries
[i
+ 1]) {
6436 offset
= reg_boundaries
[i
+ 2];
6437 p
= (u32
*) (orig_p
+ offset
);
6444 bnx2_get_wol(struct net_device
*dev
, struct ethtool_wolinfo
*wol
)
6446 struct bnx2
*bp
= netdev_priv(dev
);
6448 if (bp
->flags
& BNX2_FLAG_NO_WOL
) {
6453 wol
->supported
= WAKE_MAGIC
;
6455 wol
->wolopts
= WAKE_MAGIC
;
6459 memset(&wol
->sopass
, 0, sizeof(wol
->sopass
));
6463 bnx2_set_wol(struct net_device
*dev
, struct ethtool_wolinfo
*wol
)
6465 struct bnx2
*bp
= netdev_priv(dev
);
6467 if (wol
->wolopts
& ~WAKE_MAGIC
)
6470 if (wol
->wolopts
& WAKE_MAGIC
) {
6471 if (bp
->flags
& BNX2_FLAG_NO_WOL
)
6483 bnx2_nway_reset(struct net_device
*dev
)
6485 struct bnx2
*bp
= netdev_priv(dev
);
6488 if (!netif_running(dev
))
6491 if (!(bp
->autoneg
& AUTONEG_SPEED
)) {
6495 spin_lock_bh(&bp
->phy_lock
);
6497 if (bp
->phy_flags
& BNX2_PHY_FLAG_REMOTE_PHY_CAP
) {
6500 rc
= bnx2_setup_remote_phy(bp
, bp
->phy_port
);
6501 spin_unlock_bh(&bp
->phy_lock
);
6505 /* Force a link down visible on the other side */
6506 if (bp
->phy_flags
& BNX2_PHY_FLAG_SERDES
) {
6507 bnx2_write_phy(bp
, bp
->mii_bmcr
, BMCR_LOOPBACK
);
6508 spin_unlock_bh(&bp
->phy_lock
);
6512 spin_lock_bh(&bp
->phy_lock
);
6514 bp
->current_interval
= SERDES_AN_TIMEOUT
;
6515 bp
->serdes_an_pending
= 1;
6516 mod_timer(&bp
->timer
, jiffies
+ bp
->current_interval
);
6519 bnx2_read_phy(bp
, bp
->mii_bmcr
, &bmcr
);
6520 bmcr
&= ~BMCR_LOOPBACK
;
6521 bnx2_write_phy(bp
, bp
->mii_bmcr
, bmcr
| BMCR_ANRESTART
| BMCR_ANENABLE
);
6523 spin_unlock_bh(&bp
->phy_lock
);
6529 bnx2_get_eeprom_len(struct net_device
*dev
)
6531 struct bnx2
*bp
= netdev_priv(dev
);
6533 if (bp
->flash_info
== NULL
)
6536 return (int) bp
->flash_size
;
6540 bnx2_get_eeprom(struct net_device
*dev
, struct ethtool_eeprom
*eeprom
,
6543 struct bnx2
*bp
= netdev_priv(dev
);
6546 if (!netif_running(dev
))
6549 /* parameters already validated in ethtool_get_eeprom */
6551 rc
= bnx2_nvram_read(bp
, eeprom
->offset
, eebuf
, eeprom
->len
);
6557 bnx2_set_eeprom(struct net_device
*dev
, struct ethtool_eeprom
*eeprom
,
6560 struct bnx2
*bp
= netdev_priv(dev
);
6563 if (!netif_running(dev
))
6566 /* parameters already validated in ethtool_set_eeprom */
6568 rc
= bnx2_nvram_write(bp
, eeprom
->offset
, eebuf
, eeprom
->len
);
6574 bnx2_get_coalesce(struct net_device
*dev
, struct ethtool_coalesce
*coal
)
6576 struct bnx2
*bp
= netdev_priv(dev
);
6578 memset(coal
, 0, sizeof(struct ethtool_coalesce
));
6580 coal
->rx_coalesce_usecs
= bp
->rx_ticks
;
6581 coal
->rx_max_coalesced_frames
= bp
->rx_quick_cons_trip
;
6582 coal
->rx_coalesce_usecs_irq
= bp
->rx_ticks_int
;
6583 coal
->rx_max_coalesced_frames_irq
= bp
->rx_quick_cons_trip_int
;
6585 coal
->tx_coalesce_usecs
= bp
->tx_ticks
;
6586 coal
->tx_max_coalesced_frames
= bp
->tx_quick_cons_trip
;
6587 coal
->tx_coalesce_usecs_irq
= bp
->tx_ticks_int
;
6588 coal
->tx_max_coalesced_frames_irq
= bp
->tx_quick_cons_trip_int
;
6590 coal
->stats_block_coalesce_usecs
= bp
->stats_ticks
;
6596 bnx2_set_coalesce(struct net_device
*dev
, struct ethtool_coalesce
*coal
)
6598 struct bnx2
*bp
= netdev_priv(dev
);
6600 bp
->rx_ticks
= (u16
) coal
->rx_coalesce_usecs
;
6601 if (bp
->rx_ticks
> 0x3ff) bp
->rx_ticks
= 0x3ff;
6603 bp
->rx_quick_cons_trip
= (u16
) coal
->rx_max_coalesced_frames
;
6604 if (bp
->rx_quick_cons_trip
> 0xff) bp
->rx_quick_cons_trip
= 0xff;
6606 bp
->rx_ticks_int
= (u16
) coal
->rx_coalesce_usecs_irq
;
6607 if (bp
->rx_ticks_int
> 0x3ff) bp
->rx_ticks_int
= 0x3ff;
6609 bp
->rx_quick_cons_trip_int
= (u16
) coal
->rx_max_coalesced_frames_irq
;
6610 if (bp
->rx_quick_cons_trip_int
> 0xff)
6611 bp
->rx_quick_cons_trip_int
= 0xff;
6613 bp
->tx_ticks
= (u16
) coal
->tx_coalesce_usecs
;
6614 if (bp
->tx_ticks
> 0x3ff) bp
->tx_ticks
= 0x3ff;
6616 bp
->tx_quick_cons_trip
= (u16
) coal
->tx_max_coalesced_frames
;
6617 if (bp
->tx_quick_cons_trip
> 0xff) bp
->tx_quick_cons_trip
= 0xff;
6619 bp
->tx_ticks_int
= (u16
) coal
->tx_coalesce_usecs_irq
;
6620 if (bp
->tx_ticks_int
> 0x3ff) bp
->tx_ticks_int
= 0x3ff;
6622 bp
->tx_quick_cons_trip_int
= (u16
) coal
->tx_max_coalesced_frames_irq
;
6623 if (bp
->tx_quick_cons_trip_int
> 0xff) bp
->tx_quick_cons_trip_int
=
6626 bp
->stats_ticks
= coal
->stats_block_coalesce_usecs
;
6627 if (CHIP_NUM(bp
) == CHIP_NUM_5708
) {
6628 if (bp
->stats_ticks
!= 0 && bp
->stats_ticks
!= USEC_PER_SEC
)
6629 bp
->stats_ticks
= USEC_PER_SEC
;
6631 if (bp
->stats_ticks
> BNX2_HC_STATS_TICKS_HC_STAT_TICKS
)
6632 bp
->stats_ticks
= BNX2_HC_STATS_TICKS_HC_STAT_TICKS
;
6633 bp
->stats_ticks
&= BNX2_HC_STATS_TICKS_HC_STAT_TICKS
;
6635 if (netif_running(bp
->dev
)) {
6636 bnx2_netif_stop(bp
);
6637 bnx2_init_nic(bp
, 0);
6638 bnx2_netif_start(bp
);
6645 bnx2_get_ringparam(struct net_device
*dev
, struct ethtool_ringparam
*ering
)
6647 struct bnx2
*bp
= netdev_priv(dev
);
6649 ering
->rx_max_pending
= MAX_TOTAL_RX_DESC_CNT
;
6650 ering
->rx_mini_max_pending
= 0;
6651 ering
->rx_jumbo_max_pending
= MAX_TOTAL_RX_PG_DESC_CNT
;
6653 ering
->rx_pending
= bp
->rx_ring_size
;
6654 ering
->rx_mini_pending
= 0;
6655 ering
->rx_jumbo_pending
= bp
->rx_pg_ring_size
;
6657 ering
->tx_max_pending
= MAX_TX_DESC_CNT
;
6658 ering
->tx_pending
= bp
->tx_ring_size
;
6662 bnx2_change_ring_size(struct bnx2
*bp
, u32 rx
, u32 tx
)
6664 if (netif_running(bp
->dev
)) {
6665 bnx2_netif_stop(bp
);
6666 bnx2_reset_chip(bp
, BNX2_DRV_MSG_CODE_RESET
);
6671 bnx2_set_rx_ring_size(bp
, rx
);
6672 bp
->tx_ring_size
= tx
;
6674 if (netif_running(bp
->dev
)) {
6677 rc
= bnx2_alloc_mem(bp
);
6680 bnx2_init_nic(bp
, 0);
6681 bnx2_netif_start(bp
);
6687 bnx2_set_ringparam(struct net_device
*dev
, struct ethtool_ringparam
*ering
)
6689 struct bnx2
*bp
= netdev_priv(dev
);
6692 if ((ering
->rx_pending
> MAX_TOTAL_RX_DESC_CNT
) ||
6693 (ering
->tx_pending
> MAX_TX_DESC_CNT
) ||
6694 (ering
->tx_pending
<= MAX_SKB_FRAGS
)) {
6698 rc
= bnx2_change_ring_size(bp
, ering
->rx_pending
, ering
->tx_pending
);
6703 bnx2_get_pauseparam(struct net_device
*dev
, struct ethtool_pauseparam
*epause
)
6705 struct bnx2
*bp
= netdev_priv(dev
);
6707 epause
->autoneg
= ((bp
->autoneg
& AUTONEG_FLOW_CTRL
) != 0);
6708 epause
->rx_pause
= ((bp
->flow_ctrl
& FLOW_CTRL_RX
) != 0);
6709 epause
->tx_pause
= ((bp
->flow_ctrl
& FLOW_CTRL_TX
) != 0);
6713 bnx2_set_pauseparam(struct net_device
*dev
, struct ethtool_pauseparam
*epause
)
6715 struct bnx2
*bp
= netdev_priv(dev
);
6717 bp
->req_flow_ctrl
= 0;
6718 if (epause
->rx_pause
)
6719 bp
->req_flow_ctrl
|= FLOW_CTRL_RX
;
6720 if (epause
->tx_pause
)
6721 bp
->req_flow_ctrl
|= FLOW_CTRL_TX
;
6723 if (epause
->autoneg
) {
6724 bp
->autoneg
|= AUTONEG_FLOW_CTRL
;
6727 bp
->autoneg
&= ~AUTONEG_FLOW_CTRL
;
6730 if (netif_running(dev
)) {
6731 spin_lock_bh(&bp
->phy_lock
);
6732 bnx2_setup_phy(bp
, bp
->phy_port
);
6733 spin_unlock_bh(&bp
->phy_lock
);
6740 bnx2_get_rx_csum(struct net_device
*dev
)
6742 struct bnx2
*bp
= netdev_priv(dev
);
6748 bnx2_set_rx_csum(struct net_device
*dev
, u32 data
)
6750 struct bnx2
*bp
= netdev_priv(dev
);
6757 bnx2_set_tso(struct net_device
*dev
, u32 data
)
6759 struct bnx2
*bp
= netdev_priv(dev
);
6762 dev
->features
|= NETIF_F_TSO
| NETIF_F_TSO_ECN
;
6763 if (CHIP_NUM(bp
) == CHIP_NUM_5709
)
6764 dev
->features
|= NETIF_F_TSO6
;
6766 dev
->features
&= ~(NETIF_F_TSO
| NETIF_F_TSO6
|
6771 #define BNX2_NUM_STATS 46
6774 char string
[ETH_GSTRING_LEN
];
6775 } bnx2_stats_str_arr
[BNX2_NUM_STATS
] = {
6777 { "rx_error_bytes" },
6779 { "tx_error_bytes" },
6780 { "rx_ucast_packets" },
6781 { "rx_mcast_packets" },
6782 { "rx_bcast_packets" },
6783 { "tx_ucast_packets" },
6784 { "tx_mcast_packets" },
6785 { "tx_bcast_packets" },
6786 { "tx_mac_errors" },
6787 { "tx_carrier_errors" },
6788 { "rx_crc_errors" },
6789 { "rx_align_errors" },
6790 { "tx_single_collisions" },
6791 { "tx_multi_collisions" },
6793 { "tx_excess_collisions" },
6794 { "tx_late_collisions" },
6795 { "tx_total_collisions" },
6798 { "rx_undersize_packets" },
6799 { "rx_oversize_packets" },
6800 { "rx_64_byte_packets" },
6801 { "rx_65_to_127_byte_packets" },
6802 { "rx_128_to_255_byte_packets" },
6803 { "rx_256_to_511_byte_packets" },
6804 { "rx_512_to_1023_byte_packets" },
6805 { "rx_1024_to_1522_byte_packets" },
6806 { "rx_1523_to_9022_byte_packets" },
6807 { "tx_64_byte_packets" },
6808 { "tx_65_to_127_byte_packets" },
6809 { "tx_128_to_255_byte_packets" },
6810 { "tx_256_to_511_byte_packets" },
6811 { "tx_512_to_1023_byte_packets" },
6812 { "tx_1024_to_1522_byte_packets" },
6813 { "tx_1523_to_9022_byte_packets" },
6814 { "rx_xon_frames" },
6815 { "rx_xoff_frames" },
6816 { "tx_xon_frames" },
6817 { "tx_xoff_frames" },
6818 { "rx_mac_ctrl_frames" },
6819 { "rx_filtered_packets" },
6821 { "rx_fw_discards" },
6824 #define STATS_OFFSET32(offset_name) (offsetof(struct statistics_block, offset_name) / 4)
6826 static const unsigned long bnx2_stats_offset_arr
[BNX2_NUM_STATS
] = {
6827 STATS_OFFSET32(stat_IfHCInOctets_hi
),
6828 STATS_OFFSET32(stat_IfHCInBadOctets_hi
),
6829 STATS_OFFSET32(stat_IfHCOutOctets_hi
),
6830 STATS_OFFSET32(stat_IfHCOutBadOctets_hi
),
6831 STATS_OFFSET32(stat_IfHCInUcastPkts_hi
),
6832 STATS_OFFSET32(stat_IfHCInMulticastPkts_hi
),
6833 STATS_OFFSET32(stat_IfHCInBroadcastPkts_hi
),
6834 STATS_OFFSET32(stat_IfHCOutUcastPkts_hi
),
6835 STATS_OFFSET32(stat_IfHCOutMulticastPkts_hi
),
6836 STATS_OFFSET32(stat_IfHCOutBroadcastPkts_hi
),
6837 STATS_OFFSET32(stat_emac_tx_stat_dot3statsinternalmactransmiterrors
),
6838 STATS_OFFSET32(stat_Dot3StatsCarrierSenseErrors
),
6839 STATS_OFFSET32(stat_Dot3StatsFCSErrors
),
6840 STATS_OFFSET32(stat_Dot3StatsAlignmentErrors
),
6841 STATS_OFFSET32(stat_Dot3StatsSingleCollisionFrames
),
6842 STATS_OFFSET32(stat_Dot3StatsMultipleCollisionFrames
),
6843 STATS_OFFSET32(stat_Dot3StatsDeferredTransmissions
),
6844 STATS_OFFSET32(stat_Dot3StatsExcessiveCollisions
),
6845 STATS_OFFSET32(stat_Dot3StatsLateCollisions
),
6846 STATS_OFFSET32(stat_EtherStatsCollisions
),
6847 STATS_OFFSET32(stat_EtherStatsFragments
),
6848 STATS_OFFSET32(stat_EtherStatsJabbers
),
6849 STATS_OFFSET32(stat_EtherStatsUndersizePkts
),
6850 STATS_OFFSET32(stat_EtherStatsOverrsizePkts
),
6851 STATS_OFFSET32(stat_EtherStatsPktsRx64Octets
),
6852 STATS_OFFSET32(stat_EtherStatsPktsRx65Octetsto127Octets
),
6853 STATS_OFFSET32(stat_EtherStatsPktsRx128Octetsto255Octets
),
6854 STATS_OFFSET32(stat_EtherStatsPktsRx256Octetsto511Octets
),
6855 STATS_OFFSET32(stat_EtherStatsPktsRx512Octetsto1023Octets
),
6856 STATS_OFFSET32(stat_EtherStatsPktsRx1024Octetsto1522Octets
),
6857 STATS_OFFSET32(stat_EtherStatsPktsRx1523Octetsto9022Octets
),
6858 STATS_OFFSET32(stat_EtherStatsPktsTx64Octets
),
6859 STATS_OFFSET32(stat_EtherStatsPktsTx65Octetsto127Octets
),
6860 STATS_OFFSET32(stat_EtherStatsPktsTx128Octetsto255Octets
),
6861 STATS_OFFSET32(stat_EtherStatsPktsTx256Octetsto511Octets
),
6862 STATS_OFFSET32(stat_EtherStatsPktsTx512Octetsto1023Octets
),
6863 STATS_OFFSET32(stat_EtherStatsPktsTx1024Octetsto1522Octets
),
6864 STATS_OFFSET32(stat_EtherStatsPktsTx1523Octetsto9022Octets
),
6865 STATS_OFFSET32(stat_XonPauseFramesReceived
),
6866 STATS_OFFSET32(stat_XoffPauseFramesReceived
),
6867 STATS_OFFSET32(stat_OutXonSent
),
6868 STATS_OFFSET32(stat_OutXoffSent
),
6869 STATS_OFFSET32(stat_MacControlFramesReceived
),
6870 STATS_OFFSET32(stat_IfInFramesL2FilterDiscards
),
6871 STATS_OFFSET32(stat_IfInMBUFDiscards
),
6872 STATS_OFFSET32(stat_FwRxDrop
),
6875 /* stat_IfHCInBadOctets and stat_Dot3StatsCarrierSenseErrors are
6876 * skipped because of errata.
6878 static u8 bnx2_5706_stats_len_arr
[BNX2_NUM_STATS
] = {
6879 8,0,8,8,8,8,8,8,8,8,
6880 4,0,4,4,4,4,4,4,4,4,
6881 4,4,4,4,4,4,4,4,4,4,
6882 4,4,4,4,4,4,4,4,4,4,
6886 static u8 bnx2_5708_stats_len_arr
[BNX2_NUM_STATS
] = {
6887 8,0,8,8,8,8,8,8,8,8,
6888 4,4,4,4,4,4,4,4,4,4,
6889 4,4,4,4,4,4,4,4,4,4,
6890 4,4,4,4,4,4,4,4,4,4,
6894 #define BNX2_NUM_TESTS 6
6897 char string
[ETH_GSTRING_LEN
];
6898 } bnx2_tests_str_arr
[BNX2_NUM_TESTS
] = {
6899 { "register_test (offline)" },
6900 { "memory_test (offline)" },
6901 { "loopback_test (offline)" },
6902 { "nvram_test (online)" },
6903 { "interrupt_test (online)" },
6904 { "link_test (online)" },
6908 bnx2_get_sset_count(struct net_device
*dev
, int sset
)
6912 return BNX2_NUM_TESTS
;
6914 return BNX2_NUM_STATS
;
6921 bnx2_self_test(struct net_device
*dev
, struct ethtool_test
*etest
, u64
*buf
)
6923 struct bnx2
*bp
= netdev_priv(dev
);
6925 bnx2_set_power_state(bp
, PCI_D0
);
6927 memset(buf
, 0, sizeof(u64
) * BNX2_NUM_TESTS
);
6928 if (etest
->flags
& ETH_TEST_FL_OFFLINE
) {
6931 bnx2_netif_stop(bp
);
6932 bnx2_reset_chip(bp
, BNX2_DRV_MSG_CODE_DIAG
);
6935 if (bnx2_test_registers(bp
) != 0) {
6937 etest
->flags
|= ETH_TEST_FL_FAILED
;
6939 if (bnx2_test_memory(bp
) != 0) {
6941 etest
->flags
|= ETH_TEST_FL_FAILED
;
6943 if ((buf
[2] = bnx2_test_loopback(bp
)) != 0)
6944 etest
->flags
|= ETH_TEST_FL_FAILED
;
6946 if (!netif_running(bp
->dev
))
6947 bnx2_shutdown_chip(bp
);
6949 bnx2_init_nic(bp
, 1);
6950 bnx2_netif_start(bp
);
6953 /* wait for link up */
6954 for (i
= 0; i
< 7; i
++) {
6957 msleep_interruptible(1000);
6961 if (bnx2_test_nvram(bp
) != 0) {
6963 etest
->flags
|= ETH_TEST_FL_FAILED
;
6965 if (bnx2_test_intr(bp
) != 0) {
6967 etest
->flags
|= ETH_TEST_FL_FAILED
;
6970 if (bnx2_test_link(bp
) != 0) {
6972 etest
->flags
|= ETH_TEST_FL_FAILED
;
6975 if (!netif_running(bp
->dev
))
6976 bnx2_set_power_state(bp
, PCI_D3hot
);
6980 bnx2_get_strings(struct net_device
*dev
, u32 stringset
, u8
*buf
)
6982 switch (stringset
) {
6984 memcpy(buf
, bnx2_stats_str_arr
,
6985 sizeof(bnx2_stats_str_arr
));
6988 memcpy(buf
, bnx2_tests_str_arr
,
6989 sizeof(bnx2_tests_str_arr
));
6995 bnx2_get_ethtool_stats(struct net_device
*dev
,
6996 struct ethtool_stats
*stats
, u64
*buf
)
6998 struct bnx2
*bp
= netdev_priv(dev
);
7000 u32
*hw_stats
= (u32
*) bp
->stats_blk
;
7001 u8
*stats_len_arr
= NULL
;
7003 if (hw_stats
== NULL
) {
7004 memset(buf
, 0, sizeof(u64
) * BNX2_NUM_STATS
);
7008 if ((CHIP_ID(bp
) == CHIP_ID_5706_A0
) ||
7009 (CHIP_ID(bp
) == CHIP_ID_5706_A1
) ||
7010 (CHIP_ID(bp
) == CHIP_ID_5706_A2
) ||
7011 (CHIP_ID(bp
) == CHIP_ID_5708_A0
))
7012 stats_len_arr
= bnx2_5706_stats_len_arr
;
7014 stats_len_arr
= bnx2_5708_stats_len_arr
;
7016 for (i
= 0; i
< BNX2_NUM_STATS
; i
++) {
7017 if (stats_len_arr
[i
] == 0) {
7018 /* skip this counter */
7022 if (stats_len_arr
[i
] == 4) {
7023 /* 4-byte counter */
7025 *(hw_stats
+ bnx2_stats_offset_arr
[i
]);
7028 /* 8-byte counter */
7029 buf
[i
] = (((u64
) *(hw_stats
+
7030 bnx2_stats_offset_arr
[i
])) << 32) +
7031 *(hw_stats
+ bnx2_stats_offset_arr
[i
] + 1);
7036 bnx2_phys_id(struct net_device
*dev
, u32 data
)
7038 struct bnx2
*bp
= netdev_priv(dev
);
7042 bnx2_set_power_state(bp
, PCI_D0
);
7047 save
= REG_RD(bp
, BNX2_MISC_CFG
);
7048 REG_WR(bp
, BNX2_MISC_CFG
, BNX2_MISC_CFG_LEDMODE_MAC
);
7050 for (i
= 0; i
< (data
* 2); i
++) {
7052 REG_WR(bp
, BNX2_EMAC_LED
, BNX2_EMAC_LED_OVERRIDE
);
7055 REG_WR(bp
, BNX2_EMAC_LED
, BNX2_EMAC_LED_OVERRIDE
|
7056 BNX2_EMAC_LED_1000MB_OVERRIDE
|
7057 BNX2_EMAC_LED_100MB_OVERRIDE
|
7058 BNX2_EMAC_LED_10MB_OVERRIDE
|
7059 BNX2_EMAC_LED_TRAFFIC_OVERRIDE
|
7060 BNX2_EMAC_LED_TRAFFIC
);
7062 msleep_interruptible(500);
7063 if (signal_pending(current
))
7066 REG_WR(bp
, BNX2_EMAC_LED
, 0);
7067 REG_WR(bp
, BNX2_MISC_CFG
, save
);
7069 if (!netif_running(dev
))
7070 bnx2_set_power_state(bp
, PCI_D3hot
);
7076 bnx2_set_tx_csum(struct net_device
*dev
, u32 data
)
7078 struct bnx2
*bp
= netdev_priv(dev
);
7080 if (CHIP_NUM(bp
) == CHIP_NUM_5709
)
7081 return (ethtool_op_set_tx_ipv6_csum(dev
, data
));
7083 return (ethtool_op_set_tx_csum(dev
, data
));
7086 static const struct ethtool_ops bnx2_ethtool_ops
= {
7087 .get_settings
= bnx2_get_settings
,
7088 .set_settings
= bnx2_set_settings
,
7089 .get_drvinfo
= bnx2_get_drvinfo
,
7090 .get_regs_len
= bnx2_get_regs_len
,
7091 .get_regs
= bnx2_get_regs
,
7092 .get_wol
= bnx2_get_wol
,
7093 .set_wol
= bnx2_set_wol
,
7094 .nway_reset
= bnx2_nway_reset
,
7095 .get_link
= ethtool_op_get_link
,
7096 .get_eeprom_len
= bnx2_get_eeprom_len
,
7097 .get_eeprom
= bnx2_get_eeprom
,
7098 .set_eeprom
= bnx2_set_eeprom
,
7099 .get_coalesce
= bnx2_get_coalesce
,
7100 .set_coalesce
= bnx2_set_coalesce
,
7101 .get_ringparam
= bnx2_get_ringparam
,
7102 .set_ringparam
= bnx2_set_ringparam
,
7103 .get_pauseparam
= bnx2_get_pauseparam
,
7104 .set_pauseparam
= bnx2_set_pauseparam
,
7105 .get_rx_csum
= bnx2_get_rx_csum
,
7106 .set_rx_csum
= bnx2_set_rx_csum
,
7107 .set_tx_csum
= bnx2_set_tx_csum
,
7108 .set_sg
= ethtool_op_set_sg
,
7109 .set_tso
= bnx2_set_tso
,
7110 .self_test
= bnx2_self_test
,
7111 .get_strings
= bnx2_get_strings
,
7112 .phys_id
= bnx2_phys_id
,
7113 .get_ethtool_stats
= bnx2_get_ethtool_stats
,
7114 .get_sset_count
= bnx2_get_sset_count
,
7117 /* Called with rtnl_lock */
7119 bnx2_ioctl(struct net_device
*dev
, struct ifreq
*ifr
, int cmd
)
7121 struct mii_ioctl_data
*data
= if_mii(ifr
);
7122 struct bnx2
*bp
= netdev_priv(dev
);
7127 data
->phy_id
= bp
->phy_addr
;
7133 if (bp
->phy_flags
& BNX2_PHY_FLAG_REMOTE_PHY_CAP
)
7136 if (!netif_running(dev
))
7139 spin_lock_bh(&bp
->phy_lock
);
7140 err
= bnx2_read_phy(bp
, data
->reg_num
& 0x1f, &mii_regval
);
7141 spin_unlock_bh(&bp
->phy_lock
);
7143 data
->val_out
= mii_regval
;
7149 if (!capable(CAP_NET_ADMIN
))
7152 if (bp
->phy_flags
& BNX2_PHY_FLAG_REMOTE_PHY_CAP
)
7155 if (!netif_running(dev
))
7158 spin_lock_bh(&bp
->phy_lock
);
7159 err
= bnx2_write_phy(bp
, data
->reg_num
& 0x1f, data
->val_in
);
7160 spin_unlock_bh(&bp
->phy_lock
);
7171 /* Called with rtnl_lock */
7173 bnx2_change_mac_addr(struct net_device
*dev
, void *p
)
7175 struct sockaddr
*addr
= p
;
7176 struct bnx2
*bp
= netdev_priv(dev
);
7178 if (!is_valid_ether_addr(addr
->sa_data
))
7181 memcpy(dev
->dev_addr
, addr
->sa_data
, dev
->addr_len
);
7182 if (netif_running(dev
))
7183 bnx2_set_mac_addr(bp
, bp
->dev
->dev_addr
, 0);
7188 /* Called with rtnl_lock */
7190 bnx2_change_mtu(struct net_device
*dev
, int new_mtu
)
7192 struct bnx2
*bp
= netdev_priv(dev
);
7194 if (((new_mtu
+ ETH_HLEN
) > MAX_ETHERNET_JUMBO_PACKET_SIZE
) ||
7195 ((new_mtu
+ ETH_HLEN
) < MIN_ETHERNET_PACKET_SIZE
))
7199 return (bnx2_change_ring_size(bp
, bp
->rx_ring_size
, bp
->tx_ring_size
));
7202 #if defined(HAVE_POLL_CONTROLLER) || defined(CONFIG_NET_POLL_CONTROLLER)
7204 poll_bnx2(struct net_device
*dev
)
7206 struct bnx2
*bp
= netdev_priv(dev
);
7208 disable_irq(bp
->pdev
->irq
);
7209 bnx2_interrupt(bp
->pdev
->irq
, dev
);
7210 enable_irq(bp
->pdev
->irq
);
7214 static void __devinit
7215 bnx2_get_5709_media(struct bnx2
*bp
)
7217 u32 val
= REG_RD(bp
, BNX2_MISC_DUAL_MEDIA_CTRL
);
7218 u32 bond_id
= val
& BNX2_MISC_DUAL_MEDIA_CTRL_BOND_ID
;
7221 if (bond_id
== BNX2_MISC_DUAL_MEDIA_CTRL_BOND_ID_C
)
7223 else if (bond_id
== BNX2_MISC_DUAL_MEDIA_CTRL_BOND_ID_S
) {
7224 bp
->phy_flags
|= BNX2_PHY_FLAG_SERDES
;
7228 if (val
& BNX2_MISC_DUAL_MEDIA_CTRL_STRAP_OVERRIDE
)
7229 strap
= (val
& BNX2_MISC_DUAL_MEDIA_CTRL_PHY_CTRL
) >> 21;
7231 strap
= (val
& BNX2_MISC_DUAL_MEDIA_CTRL_PHY_CTRL_STRAP
) >> 8;
7233 if (PCI_FUNC(bp
->pdev
->devfn
) == 0) {
7238 bp
->phy_flags
|= BNX2_PHY_FLAG_SERDES
;
7246 bp
->phy_flags
|= BNX2_PHY_FLAG_SERDES
;
7252 static void __devinit
7253 bnx2_get_pci_speed(struct bnx2
*bp
)
7257 reg
= REG_RD(bp
, BNX2_PCICFG_MISC_STATUS
);
7258 if (reg
& BNX2_PCICFG_MISC_STATUS_PCIX_DET
) {
7261 bp
->flags
|= BNX2_FLAG_PCIX
;
7263 clkreg
= REG_RD(bp
, BNX2_PCICFG_PCI_CLOCK_CONTROL_BITS
);
7265 clkreg
&= BNX2_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET
;
7267 case BNX2_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_133MHZ
:
7268 bp
->bus_speed_mhz
= 133;
7271 case BNX2_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_95MHZ
:
7272 bp
->bus_speed_mhz
= 100;
7275 case BNX2_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_66MHZ
:
7276 case BNX2_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_80MHZ
:
7277 bp
->bus_speed_mhz
= 66;
7280 case BNX2_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_48MHZ
:
7281 case BNX2_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_55MHZ
:
7282 bp
->bus_speed_mhz
= 50;
7285 case BNX2_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_LOW
:
7286 case BNX2_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_32MHZ
:
7287 case BNX2_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_38MHZ
:
7288 bp
->bus_speed_mhz
= 33;
7293 if (reg
& BNX2_PCICFG_MISC_STATUS_M66EN
)
7294 bp
->bus_speed_mhz
= 66;
7296 bp
->bus_speed_mhz
= 33;
7299 if (reg
& BNX2_PCICFG_MISC_STATUS_32BIT_DET
)
7300 bp
->flags
|= BNX2_FLAG_PCI_32BIT
;
7304 static int __devinit
7305 bnx2_init_board(struct pci_dev
*pdev
, struct net_device
*dev
)
7308 unsigned long mem_len
;
7311 u64 dma_mask
, persist_dma_mask
;
7313 SET_NETDEV_DEV(dev
, &pdev
->dev
);
7314 bp
= netdev_priv(dev
);
7319 /* enable device (incl. PCI PM wakeup), and bus-mastering */
7320 rc
= pci_enable_device(pdev
);
7322 dev_err(&pdev
->dev
, "Cannot enable PCI device, aborting.\n");
7326 if (!(pci_resource_flags(pdev
, 0) & IORESOURCE_MEM
)) {
7328 "Cannot find PCI device base address, aborting.\n");
7330 goto err_out_disable
;
7333 rc
= pci_request_regions(pdev
, DRV_MODULE_NAME
);
7335 dev_err(&pdev
->dev
, "Cannot obtain PCI resources, aborting.\n");
7336 goto err_out_disable
;
7339 pci_set_master(pdev
);
7340 pci_save_state(pdev
);
7342 bp
->pm_cap
= pci_find_capability(pdev
, PCI_CAP_ID_PM
);
7343 if (bp
->pm_cap
== 0) {
7345 "Cannot find power management capability, aborting.\n");
7347 goto err_out_release
;
7353 spin_lock_init(&bp
->phy_lock
);
7354 spin_lock_init(&bp
->indirect_lock
);
7355 INIT_WORK(&bp
->reset_task
, bnx2_reset_task
);
7357 dev
->base_addr
= dev
->mem_start
= pci_resource_start(pdev
, 0);
7358 mem_len
= MB_GET_CID_ADDR(TX_TSS_CID
+ TX_MAX_TSS_RINGS
);
7359 dev
->mem_end
= dev
->mem_start
+ mem_len
;
7360 dev
->irq
= pdev
->irq
;
7362 bp
->regview
= ioremap_nocache(dev
->base_addr
, mem_len
);
7365 dev_err(&pdev
->dev
, "Cannot map register space, aborting.\n");
7367 goto err_out_release
;
7370 /* Configure byte swap and enable write to the reg_window registers.
7371 * Rely on CPU to do target byte swapping on big endian systems
7372 * The chip's target access swapping will not swap all accesses
7374 pci_write_config_dword(bp
->pdev
, BNX2_PCICFG_MISC_CONFIG
,
7375 BNX2_PCICFG_MISC_CONFIG_REG_WINDOW_ENA
|
7376 BNX2_PCICFG_MISC_CONFIG_TARGET_MB_WORD_SWAP
);
7378 bnx2_set_power_state(bp
, PCI_D0
);
7380 bp
->chip_id
= REG_RD(bp
, BNX2_MISC_ID
);
7382 if (CHIP_NUM(bp
) == CHIP_NUM_5709
) {
7383 if (pci_find_capability(pdev
, PCI_CAP_ID_EXP
) == 0) {
7385 "Cannot find PCIE capability, aborting.\n");
7389 bp
->flags
|= BNX2_FLAG_PCIE
;
7390 if (CHIP_REV(bp
) == CHIP_REV_Ax
)
7391 bp
->flags
|= BNX2_FLAG_JUMBO_BROKEN
;
7393 bp
->pcix_cap
= pci_find_capability(pdev
, PCI_CAP_ID_PCIX
);
7394 if (bp
->pcix_cap
== 0) {
7396 "Cannot find PCIX capability, aborting.\n");
7402 if (CHIP_NUM(bp
) == CHIP_NUM_5709
&& CHIP_REV(bp
) != CHIP_REV_Ax
) {
7403 if (pci_find_capability(pdev
, PCI_CAP_ID_MSIX
))
7404 bp
->flags
|= BNX2_FLAG_MSIX_CAP
;
7407 if (CHIP_ID(bp
) != CHIP_ID_5706_A0
&& CHIP_ID(bp
) != CHIP_ID_5706_A1
) {
7408 if (pci_find_capability(pdev
, PCI_CAP_ID_MSI
))
7409 bp
->flags
|= BNX2_FLAG_MSI_CAP
;
7412 /* 5708 cannot support DMA addresses > 40-bit. */
7413 if (CHIP_NUM(bp
) == CHIP_NUM_5708
)
7414 persist_dma_mask
= dma_mask
= DMA_40BIT_MASK
;
7416 persist_dma_mask
= dma_mask
= DMA_64BIT_MASK
;
7418 /* Configure DMA attributes. */
7419 if (pci_set_dma_mask(pdev
, dma_mask
) == 0) {
7420 dev
->features
|= NETIF_F_HIGHDMA
;
7421 rc
= pci_set_consistent_dma_mask(pdev
, persist_dma_mask
);
7424 "pci_set_consistent_dma_mask failed, aborting.\n");
7427 } else if ((rc
= pci_set_dma_mask(pdev
, DMA_32BIT_MASK
)) != 0) {
7428 dev_err(&pdev
->dev
, "System does not support DMA, aborting.\n");
7432 if (!(bp
->flags
& BNX2_FLAG_PCIE
))
7433 bnx2_get_pci_speed(bp
);
7435 /* 5706A0 may falsely detect SERR and PERR. */
7436 if (CHIP_ID(bp
) == CHIP_ID_5706_A0
) {
7437 reg
= REG_RD(bp
, PCI_COMMAND
);
7438 reg
&= ~(PCI_COMMAND_SERR
| PCI_COMMAND_PARITY
);
7439 REG_WR(bp
, PCI_COMMAND
, reg
);
7441 else if ((CHIP_ID(bp
) == CHIP_ID_5706_A1
) &&
7442 !(bp
->flags
& BNX2_FLAG_PCIX
)) {
7445 "5706 A1 can only be used in a PCIX bus, aborting.\n");
7449 bnx2_init_nvram(bp
);
7451 reg
= bnx2_reg_rd_ind(bp
, BNX2_SHM_HDR_SIGNATURE
);
7453 if ((reg
& BNX2_SHM_HDR_SIGNATURE_SIG_MASK
) ==
7454 BNX2_SHM_HDR_SIGNATURE_SIG
) {
7455 u32 off
= PCI_FUNC(pdev
->devfn
) << 2;
7457 bp
->shmem_base
= bnx2_reg_rd_ind(bp
, BNX2_SHM_HDR_ADDR_0
+ off
);
7459 bp
->shmem_base
= HOST_VIEW_SHMEM_BASE
;
7461 /* Get the permanent MAC address. First we need to make sure the
7462 * firmware is actually running.
7464 reg
= bnx2_shmem_rd(bp
, BNX2_DEV_INFO_SIGNATURE
);
7466 if ((reg
& BNX2_DEV_INFO_SIGNATURE_MAGIC_MASK
) !=
7467 BNX2_DEV_INFO_SIGNATURE_MAGIC
) {
7468 dev_err(&pdev
->dev
, "Firmware not running, aborting.\n");
7473 reg
= bnx2_shmem_rd(bp
, BNX2_DEV_INFO_BC_REV
);
7474 for (i
= 0, j
= 0; i
< 3; i
++) {
7477 num
= (u8
) (reg
>> (24 - (i
* 8)));
7478 for (k
= 100, skip0
= 1; k
>= 1; num
%= k
, k
/= 10) {
7479 if (num
>= k
|| !skip0
|| k
== 1) {
7480 bp
->fw_version
[j
++] = (num
/ k
) + '0';
7485 bp
->fw_version
[j
++] = '.';
7487 reg
= bnx2_shmem_rd(bp
, BNX2_PORT_FEATURE
);
7488 if (reg
& BNX2_PORT_FEATURE_WOL_ENABLED
)
7491 if (reg
& BNX2_PORT_FEATURE_ASF_ENABLED
) {
7492 bp
->flags
|= BNX2_FLAG_ASF_ENABLE
;
7494 for (i
= 0; i
< 30; i
++) {
7495 reg
= bnx2_shmem_rd(bp
, BNX2_BC_STATE_CONDITION
);
7496 if (reg
& BNX2_CONDITION_MFW_RUN_MASK
)
7501 reg
= bnx2_shmem_rd(bp
, BNX2_BC_STATE_CONDITION
);
7502 reg
&= BNX2_CONDITION_MFW_RUN_MASK
;
7503 if (reg
!= BNX2_CONDITION_MFW_RUN_UNKNOWN
&&
7504 reg
!= BNX2_CONDITION_MFW_RUN_NONE
) {
7505 u32 addr
= bnx2_shmem_rd(bp
, BNX2_MFW_VER_PTR
);
7507 bp
->fw_version
[j
++] = ' ';
7508 for (i
= 0; i
< 3; i
++) {
7509 reg
= bnx2_reg_rd_ind(bp
, addr
+ i
* 4);
7511 memcpy(&bp
->fw_version
[j
], ®
, 4);
7516 reg
= bnx2_shmem_rd(bp
, BNX2_PORT_HW_CFG_MAC_UPPER
);
7517 bp
->mac_addr
[0] = (u8
) (reg
>> 8);
7518 bp
->mac_addr
[1] = (u8
) reg
;
7520 reg
= bnx2_shmem_rd(bp
, BNX2_PORT_HW_CFG_MAC_LOWER
);
7521 bp
->mac_addr
[2] = (u8
) (reg
>> 24);
7522 bp
->mac_addr
[3] = (u8
) (reg
>> 16);
7523 bp
->mac_addr
[4] = (u8
) (reg
>> 8);
7524 bp
->mac_addr
[5] = (u8
) reg
;
7526 bp
->tx_ring_size
= MAX_TX_DESC_CNT
;
7527 bnx2_set_rx_ring_size(bp
, 255);
7531 bp
->tx_quick_cons_trip_int
= 20;
7532 bp
->tx_quick_cons_trip
= 20;
7533 bp
->tx_ticks_int
= 80;
7536 bp
->rx_quick_cons_trip_int
= 6;
7537 bp
->rx_quick_cons_trip
= 6;
7538 bp
->rx_ticks_int
= 18;
7541 bp
->stats_ticks
= USEC_PER_SEC
& BNX2_HC_STATS_TICKS_HC_STAT_TICKS
;
7543 bp
->current_interval
= BNX2_TIMER_INTERVAL
;
7547 /* Disable WOL support if we are running on a SERDES chip. */
7548 if (CHIP_NUM(bp
) == CHIP_NUM_5709
)
7549 bnx2_get_5709_media(bp
);
7550 else if (CHIP_BOND_ID(bp
) & CHIP_BOND_ID_SERDES_BIT
)
7551 bp
->phy_flags
|= BNX2_PHY_FLAG_SERDES
;
7553 bp
->phy_port
= PORT_TP
;
7554 if (bp
->phy_flags
& BNX2_PHY_FLAG_SERDES
) {
7555 bp
->phy_port
= PORT_FIBRE
;
7556 reg
= bnx2_shmem_rd(bp
, BNX2_SHARED_HW_CFG_CONFIG
);
7557 if (!(reg
& BNX2_SHARED_HW_CFG_GIG_LINK_ON_VAUX
)) {
7558 bp
->flags
|= BNX2_FLAG_NO_WOL
;
7561 if (CHIP_NUM(bp
) == CHIP_NUM_5706
) {
7562 /* Don't do parallel detect on this board because of
7563 * some board problems. The link will not go down
7564 * if we do parallel detect.
7566 if (pdev
->subsystem_vendor
== PCI_VENDOR_ID_HP
&&
7567 pdev
->subsystem_device
== 0x310c)
7568 bp
->phy_flags
|= BNX2_PHY_FLAG_NO_PARALLEL
;
7571 if (reg
& BNX2_SHARED_HW_CFG_PHY_2_5G
)
7572 bp
->phy_flags
|= BNX2_PHY_FLAG_2_5G_CAPABLE
;
7574 } else if (CHIP_NUM(bp
) == CHIP_NUM_5706
||
7575 CHIP_NUM(bp
) == CHIP_NUM_5708
)
7576 bp
->phy_flags
|= BNX2_PHY_FLAG_CRC_FIX
;
7577 else if (CHIP_NUM(bp
) == CHIP_NUM_5709
&&
7578 (CHIP_REV(bp
) == CHIP_REV_Ax
||
7579 CHIP_REV(bp
) == CHIP_REV_Bx
))
7580 bp
->phy_flags
|= BNX2_PHY_FLAG_DIS_EARLY_DAC
;
7582 bnx2_init_fw_cap(bp
);
7584 if ((CHIP_ID(bp
) == CHIP_ID_5708_A0
) ||
7585 (CHIP_ID(bp
) == CHIP_ID_5708_B0
) ||
7586 (CHIP_ID(bp
) == CHIP_ID_5708_B1
)) {
7587 bp
->flags
|= BNX2_FLAG_NO_WOL
;
7591 if (CHIP_ID(bp
) == CHIP_ID_5706_A0
) {
7592 bp
->tx_quick_cons_trip_int
=
7593 bp
->tx_quick_cons_trip
;
7594 bp
->tx_ticks_int
= bp
->tx_ticks
;
7595 bp
->rx_quick_cons_trip_int
=
7596 bp
->rx_quick_cons_trip
;
7597 bp
->rx_ticks_int
= bp
->rx_ticks
;
7598 bp
->comp_prod_trip_int
= bp
->comp_prod_trip
;
7599 bp
->com_ticks_int
= bp
->com_ticks
;
7600 bp
->cmd_ticks_int
= bp
->cmd_ticks
;
7603 /* Disable MSI on 5706 if AMD 8132 bridge is found.
7605 * MSI is defined to be 32-bit write. The 5706 does 64-bit MSI writes
7606 * with byte enables disabled on the unused 32-bit word. This is legal
7607 * but causes problems on the AMD 8132 which will eventually stop
7608 * responding after a while.
7610 * AMD believes this incompatibility is unique to the 5706, and
7611 * prefers to locally disable MSI rather than globally disabling it.
7613 if (CHIP_NUM(bp
) == CHIP_NUM_5706
&& disable_msi
== 0) {
7614 struct pci_dev
*amd_8132
= NULL
;
7616 while ((amd_8132
= pci_get_device(PCI_VENDOR_ID_AMD
,
7617 PCI_DEVICE_ID_AMD_8132_BRIDGE
,
7620 if (amd_8132
->revision
>= 0x10 &&
7621 amd_8132
->revision
<= 0x13) {
7623 pci_dev_put(amd_8132
);
7629 bnx2_set_default_link(bp
);
7630 bp
->req_flow_ctrl
= FLOW_CTRL_RX
| FLOW_CTRL_TX
;
7632 init_timer(&bp
->timer
);
7633 bp
->timer
.expires
= RUN_AT(BNX2_TIMER_INTERVAL
);
7634 bp
->timer
.data
= (unsigned long) bp
;
7635 bp
->timer
.function
= bnx2_timer
;
7641 iounmap(bp
->regview
);
7646 pci_release_regions(pdev
);
7649 pci_disable_device(pdev
);
7650 pci_set_drvdata(pdev
, NULL
);
7656 static char * __devinit
7657 bnx2_bus_string(struct bnx2
*bp
, char *str
)
7661 if (bp
->flags
& BNX2_FLAG_PCIE
) {
7662 s
+= sprintf(s
, "PCI Express");
7664 s
+= sprintf(s
, "PCI");
7665 if (bp
->flags
& BNX2_FLAG_PCIX
)
7666 s
+= sprintf(s
, "-X");
7667 if (bp
->flags
& BNX2_FLAG_PCI_32BIT
)
7668 s
+= sprintf(s
, " 32-bit");
7670 s
+= sprintf(s
, " 64-bit");
7671 s
+= sprintf(s
, " %dMHz", bp
->bus_speed_mhz
);
7676 static void __devinit
7677 bnx2_init_napi(struct bnx2
*bp
)
7681 for (i
= 0; i
< BNX2_MAX_MSIX_VEC
; i
++) {
7682 struct bnx2_napi
*bnapi
= &bp
->bnx2_napi
[i
];
7683 int (*poll
)(struct napi_struct
*, int);
7688 poll
= bnx2_poll_msix
;
7690 netif_napi_add(bp
->dev
, &bp
->bnx2_napi
[i
].napi
, poll
, 64);
7695 static int __devinit
7696 bnx2_init_one(struct pci_dev
*pdev
, const struct pci_device_id
*ent
)
7698 static int version_printed
= 0;
7699 struct net_device
*dev
= NULL
;
7703 DECLARE_MAC_BUF(mac
);
7705 if (version_printed
++ == 0)
7706 printk(KERN_INFO
"%s", version
);
7708 /* dev zeroed in init_etherdev */
7709 dev
= alloc_etherdev_mq(sizeof(*bp
), TX_MAX_RINGS
);
7714 rc
= bnx2_init_board(pdev
, dev
);
7720 dev
->open
= bnx2_open
;
7721 dev
->hard_start_xmit
= bnx2_start_xmit
;
7722 dev
->stop
= bnx2_close
;
7723 dev
->get_stats
= bnx2_get_stats
;
7724 dev
->set_rx_mode
= bnx2_set_rx_mode
;
7725 dev
->do_ioctl
= bnx2_ioctl
;
7726 dev
->set_mac_address
= bnx2_change_mac_addr
;
7727 dev
->change_mtu
= bnx2_change_mtu
;
7728 dev
->tx_timeout
= bnx2_tx_timeout
;
7729 dev
->watchdog_timeo
= TX_TIMEOUT
;
7731 dev
->vlan_rx_register
= bnx2_vlan_rx_register
;
7733 dev
->ethtool_ops
= &bnx2_ethtool_ops
;
7735 bp
= netdev_priv(dev
);
7738 #if defined(HAVE_POLL_CONTROLLER) || defined(CONFIG_NET_POLL_CONTROLLER)
7739 dev
->poll_controller
= poll_bnx2
;
7742 pci_set_drvdata(pdev
, dev
);
7744 memcpy(dev
->dev_addr
, bp
->mac_addr
, 6);
7745 memcpy(dev
->perm_addr
, bp
->mac_addr
, 6);
7747 dev
->features
|= NETIF_F_IP_CSUM
| NETIF_F_SG
;
7748 if (CHIP_NUM(bp
) == CHIP_NUM_5709
)
7749 dev
->features
|= NETIF_F_IPV6_CSUM
;
7752 dev
->features
|= NETIF_F_HW_VLAN_TX
| NETIF_F_HW_VLAN_RX
;
7754 dev
->features
|= NETIF_F_TSO
| NETIF_F_TSO_ECN
;
7755 if (CHIP_NUM(bp
) == CHIP_NUM_5709
)
7756 dev
->features
|= NETIF_F_TSO6
;
7758 if ((rc
= register_netdev(dev
))) {
7759 dev_err(&pdev
->dev
, "Cannot register net device\n");
7761 iounmap(bp
->regview
);
7762 pci_release_regions(pdev
);
7763 pci_disable_device(pdev
);
7764 pci_set_drvdata(pdev
, NULL
);
7769 printk(KERN_INFO
"%s: %s (%c%d) %s found at mem %lx, "
7770 "IRQ %d, node addr %s\n",
7772 board_info
[ent
->driver_data
].name
,
7773 ((CHIP_ID(bp
) & 0xf000) >> 12) + 'A',
7774 ((CHIP_ID(bp
) & 0x0ff0) >> 4),
7775 bnx2_bus_string(bp
, str
),
7777 bp
->pdev
->irq
, print_mac(mac
, dev
->dev_addr
));
7782 static void __devexit
7783 bnx2_remove_one(struct pci_dev
*pdev
)
7785 struct net_device
*dev
= pci_get_drvdata(pdev
);
7786 struct bnx2
*bp
= netdev_priv(dev
);
7788 flush_scheduled_work();
7790 unregister_netdev(dev
);
7793 iounmap(bp
->regview
);
7796 pci_release_regions(pdev
);
7797 pci_disable_device(pdev
);
7798 pci_set_drvdata(pdev
, NULL
);
7802 bnx2_suspend(struct pci_dev
*pdev
, pm_message_t state
)
7804 struct net_device
*dev
= pci_get_drvdata(pdev
);
7805 struct bnx2
*bp
= netdev_priv(dev
);
7807 /* PCI register 4 needs to be saved whether netif_running() or not.
7808 * MSI address and data need to be saved if using MSI and
7811 pci_save_state(pdev
);
7812 if (!netif_running(dev
))
7815 flush_scheduled_work();
7816 bnx2_netif_stop(bp
);
7817 netif_device_detach(dev
);
7818 del_timer_sync(&bp
->timer
);
7819 bnx2_shutdown_chip(bp
);
7821 bnx2_set_power_state(bp
, pci_choose_state(pdev
, state
));
7826 bnx2_resume(struct pci_dev
*pdev
)
7828 struct net_device
*dev
= pci_get_drvdata(pdev
);
7829 struct bnx2
*bp
= netdev_priv(dev
);
7831 pci_restore_state(pdev
);
7832 if (!netif_running(dev
))
7835 bnx2_set_power_state(bp
, PCI_D0
);
7836 netif_device_attach(dev
);
7837 bnx2_init_nic(bp
, 1);
7838 bnx2_netif_start(bp
);
7843 * bnx2_io_error_detected - called when PCI error is detected
7844 * @pdev: Pointer to PCI device
7845 * @state: The current pci connection state
7847 * This function is called after a PCI bus error affecting
7848 * this device has been detected.
7850 static pci_ers_result_t
bnx2_io_error_detected(struct pci_dev
*pdev
,
7851 pci_channel_state_t state
)
7853 struct net_device
*dev
= pci_get_drvdata(pdev
);
7854 struct bnx2
*bp
= netdev_priv(dev
);
7857 netif_device_detach(dev
);
7859 if (netif_running(dev
)) {
7860 bnx2_netif_stop(bp
);
7861 del_timer_sync(&bp
->timer
);
7862 bnx2_reset_nic(bp
, BNX2_DRV_MSG_CODE_RESET
);
7865 pci_disable_device(pdev
);
7868 /* Request a slot slot reset. */
7869 return PCI_ERS_RESULT_NEED_RESET
;
7873 * bnx2_io_slot_reset - called after the pci bus has been reset.
7874 * @pdev: Pointer to PCI device
7876 * Restart the card from scratch, as if from a cold-boot.
7878 static pci_ers_result_t
bnx2_io_slot_reset(struct pci_dev
*pdev
)
7880 struct net_device
*dev
= pci_get_drvdata(pdev
);
7881 struct bnx2
*bp
= netdev_priv(dev
);
7884 if (pci_enable_device(pdev
)) {
7886 "Cannot re-enable PCI device after reset.\n");
7888 return PCI_ERS_RESULT_DISCONNECT
;
7890 pci_set_master(pdev
);
7891 pci_restore_state(pdev
);
7893 if (netif_running(dev
)) {
7894 bnx2_set_power_state(bp
, PCI_D0
);
7895 bnx2_init_nic(bp
, 1);
7899 return PCI_ERS_RESULT_RECOVERED
;
7903 * bnx2_io_resume - called when traffic can start flowing again.
7904 * @pdev: Pointer to PCI device
7906 * This callback is called when the error recovery driver tells us that
7907 * its OK to resume normal operation.
7909 static void bnx2_io_resume(struct pci_dev
*pdev
)
7911 struct net_device
*dev
= pci_get_drvdata(pdev
);
7912 struct bnx2
*bp
= netdev_priv(dev
);
7915 if (netif_running(dev
))
7916 bnx2_netif_start(bp
);
7918 netif_device_attach(dev
);
7922 static struct pci_error_handlers bnx2_err_handler
= {
7923 .error_detected
= bnx2_io_error_detected
,
7924 .slot_reset
= bnx2_io_slot_reset
,
7925 .resume
= bnx2_io_resume
,
7928 static struct pci_driver bnx2_pci_driver
= {
7929 .name
= DRV_MODULE_NAME
,
7930 .id_table
= bnx2_pci_tbl
,
7931 .probe
= bnx2_init_one
,
7932 .remove
= __devexit_p(bnx2_remove_one
),
7933 .suspend
= bnx2_suspend
,
7934 .resume
= bnx2_resume
,
7935 .err_handler
= &bnx2_err_handler
,
7938 static int __init
bnx2_init(void)
7940 return pci_register_driver(&bnx2_pci_driver
);
7943 static void __exit
bnx2_cleanup(void)
7945 pci_unregister_driver(&bnx2_pci_driver
);
7948 module_init(bnx2_init
);
7949 module_exit(bnx2_cleanup
);