NFS: Switch from intr mount option to TASK_KILLABLE
[linux-2.6/mini2440.git] / net / sunrpc / sched.c
blob4b22910b446106bff68781b94d380da0b479dfc5
1 /*
2 * linux/net/sunrpc/sched.c
4 * Scheduling for synchronous and asynchronous RPC requests.
6 * Copyright (C) 1996 Olaf Kirch, <okir@monad.swb.de>
8 * TCP NFS related read + write fixes
9 * (C) 1999 Dave Airlie, University of Limerick, Ireland <airlied@linux.ie>
12 #include <linux/module.h>
14 #include <linux/sched.h>
15 #include <linux/interrupt.h>
16 #include <linux/slab.h>
17 #include <linux/mempool.h>
18 #include <linux/smp.h>
19 #include <linux/smp_lock.h>
20 #include <linux/spinlock.h>
21 #include <linux/mutex.h>
23 #include <linux/sunrpc/clnt.h>
25 #ifdef RPC_DEBUG
26 #define RPCDBG_FACILITY RPCDBG_SCHED
27 #define RPC_TASK_MAGIC_ID 0xf00baa
28 #endif
31 * RPC slabs and memory pools
33 #define RPC_BUFFER_MAXSIZE (2048)
34 #define RPC_BUFFER_POOLSIZE (8)
35 #define RPC_TASK_POOLSIZE (8)
36 static struct kmem_cache *rpc_task_slabp __read_mostly;
37 static struct kmem_cache *rpc_buffer_slabp __read_mostly;
38 static mempool_t *rpc_task_mempool __read_mostly;
39 static mempool_t *rpc_buffer_mempool __read_mostly;
41 static void __rpc_default_timer(struct rpc_task *task);
42 static void rpc_async_schedule(struct work_struct *);
43 static void rpc_release_task(struct rpc_task *task);
46 * RPC tasks sit here while waiting for conditions to improve.
48 static RPC_WAITQ(delay_queue, "delayq");
51 * rpciod-related stuff
53 struct workqueue_struct *rpciod_workqueue;
56 * Disable the timer for a given RPC task. Should be called with
57 * queue->lock and bh_disabled in order to avoid races within
58 * rpc_run_timer().
60 static inline void
61 __rpc_disable_timer(struct rpc_task *task)
63 dprintk("RPC: %5u disabling timer\n", task->tk_pid);
64 task->tk_timeout_fn = NULL;
65 task->tk_timeout = 0;
69 * Run a timeout function.
70 * We use the callback in order to allow __rpc_wake_up_task()
71 * and friends to disable the timer synchronously on SMP systems
72 * without calling del_timer_sync(). The latter could cause a
73 * deadlock if called while we're holding spinlocks...
75 static void rpc_run_timer(struct rpc_task *task)
77 void (*callback)(struct rpc_task *);
79 callback = task->tk_timeout_fn;
80 task->tk_timeout_fn = NULL;
81 if (callback && RPC_IS_QUEUED(task)) {
82 dprintk("RPC: %5u running timer\n", task->tk_pid);
83 callback(task);
85 smp_mb__before_clear_bit();
86 clear_bit(RPC_TASK_HAS_TIMER, &task->tk_runstate);
87 smp_mb__after_clear_bit();
91 * Set up a timer for the current task.
93 static inline void
94 __rpc_add_timer(struct rpc_task *task, rpc_action timer)
96 if (!task->tk_timeout)
97 return;
99 dprintk("RPC: %5u setting alarm for %lu ms\n",
100 task->tk_pid, task->tk_timeout * 1000 / HZ);
102 if (timer)
103 task->tk_timeout_fn = timer;
104 else
105 task->tk_timeout_fn = __rpc_default_timer;
106 set_bit(RPC_TASK_HAS_TIMER, &task->tk_runstate);
107 mod_timer(&task->tk_timer, jiffies + task->tk_timeout);
111 * Delete any timer for the current task. Because we use del_timer_sync(),
112 * this function should never be called while holding queue->lock.
114 static void
115 rpc_delete_timer(struct rpc_task *task)
117 if (RPC_IS_QUEUED(task))
118 return;
119 if (test_and_clear_bit(RPC_TASK_HAS_TIMER, &task->tk_runstate)) {
120 del_singleshot_timer_sync(&task->tk_timer);
121 dprintk("RPC: %5u deleting timer\n", task->tk_pid);
126 * Add new request to a priority queue.
128 static void __rpc_add_wait_queue_priority(struct rpc_wait_queue *queue, struct rpc_task *task)
130 struct list_head *q;
131 struct rpc_task *t;
133 INIT_LIST_HEAD(&task->u.tk_wait.links);
134 q = &queue->tasks[task->tk_priority];
135 if (unlikely(task->tk_priority > queue->maxpriority))
136 q = &queue->tasks[queue->maxpriority];
137 list_for_each_entry(t, q, u.tk_wait.list) {
138 if (t->tk_cookie == task->tk_cookie) {
139 list_add_tail(&task->u.tk_wait.list, &t->u.tk_wait.links);
140 return;
143 list_add_tail(&task->u.tk_wait.list, q);
147 * Add new request to wait queue.
149 * Swapper tasks always get inserted at the head of the queue.
150 * This should avoid many nasty memory deadlocks and hopefully
151 * improve overall performance.
152 * Everyone else gets appended to the queue to ensure proper FIFO behavior.
154 static void __rpc_add_wait_queue(struct rpc_wait_queue *queue, struct rpc_task *task)
156 BUG_ON (RPC_IS_QUEUED(task));
158 if (RPC_IS_PRIORITY(queue))
159 __rpc_add_wait_queue_priority(queue, task);
160 else if (RPC_IS_SWAPPER(task))
161 list_add(&task->u.tk_wait.list, &queue->tasks[0]);
162 else
163 list_add_tail(&task->u.tk_wait.list, &queue->tasks[0]);
164 task->u.tk_wait.rpc_waitq = queue;
165 queue->qlen++;
166 rpc_set_queued(task);
168 dprintk("RPC: %5u added to queue %p \"%s\"\n",
169 task->tk_pid, queue, rpc_qname(queue));
173 * Remove request from a priority queue.
175 static void __rpc_remove_wait_queue_priority(struct rpc_task *task)
177 struct rpc_task *t;
179 if (!list_empty(&task->u.tk_wait.links)) {
180 t = list_entry(task->u.tk_wait.links.next, struct rpc_task, u.tk_wait.list);
181 list_move(&t->u.tk_wait.list, &task->u.tk_wait.list);
182 list_splice_init(&task->u.tk_wait.links, &t->u.tk_wait.links);
184 list_del(&task->u.tk_wait.list);
188 * Remove request from queue.
189 * Note: must be called with spin lock held.
191 static void __rpc_remove_wait_queue(struct rpc_task *task)
193 struct rpc_wait_queue *queue;
194 queue = task->u.tk_wait.rpc_waitq;
196 if (RPC_IS_PRIORITY(queue))
197 __rpc_remove_wait_queue_priority(task);
198 else
199 list_del(&task->u.tk_wait.list);
200 queue->qlen--;
201 dprintk("RPC: %5u removed from queue %p \"%s\"\n",
202 task->tk_pid, queue, rpc_qname(queue));
205 static inline void rpc_set_waitqueue_priority(struct rpc_wait_queue *queue, int priority)
207 queue->priority = priority;
208 queue->count = 1 << (priority * 2);
211 static inline void rpc_set_waitqueue_cookie(struct rpc_wait_queue *queue, unsigned long cookie)
213 queue->cookie = cookie;
214 queue->nr = RPC_BATCH_COUNT;
217 static inline void rpc_reset_waitqueue_priority(struct rpc_wait_queue *queue)
219 rpc_set_waitqueue_priority(queue, queue->maxpriority);
220 rpc_set_waitqueue_cookie(queue, 0);
223 static void __rpc_init_priority_wait_queue(struct rpc_wait_queue *queue, const char *qname, int maxprio)
225 int i;
227 spin_lock_init(&queue->lock);
228 for (i = 0; i < ARRAY_SIZE(queue->tasks); i++)
229 INIT_LIST_HEAD(&queue->tasks[i]);
230 queue->maxpriority = maxprio;
231 rpc_reset_waitqueue_priority(queue);
232 #ifdef RPC_DEBUG
233 queue->name = qname;
234 #endif
237 void rpc_init_priority_wait_queue(struct rpc_wait_queue *queue, const char *qname)
239 __rpc_init_priority_wait_queue(queue, qname, RPC_PRIORITY_HIGH);
242 void rpc_init_wait_queue(struct rpc_wait_queue *queue, const char *qname)
244 __rpc_init_priority_wait_queue(queue, qname, 0);
246 EXPORT_SYMBOL(rpc_init_wait_queue);
248 static int rpc_wait_bit_killable(void *word)
250 if (fatal_signal_pending(current))
251 return -ERESTARTSYS;
252 schedule();
253 return 0;
256 #ifdef RPC_DEBUG
257 static void rpc_task_set_debuginfo(struct rpc_task *task)
259 static atomic_t rpc_pid;
261 task->tk_magic = RPC_TASK_MAGIC_ID;
262 task->tk_pid = atomic_inc_return(&rpc_pid);
264 #else
265 static inline void rpc_task_set_debuginfo(struct rpc_task *task)
268 #endif
270 static void rpc_set_active(struct rpc_task *task)
272 struct rpc_clnt *clnt;
273 if (test_and_set_bit(RPC_TASK_ACTIVE, &task->tk_runstate) != 0)
274 return;
275 rpc_task_set_debuginfo(task);
276 /* Add to global list of all tasks */
277 clnt = task->tk_client;
278 if (clnt != NULL) {
279 spin_lock(&clnt->cl_lock);
280 list_add_tail(&task->tk_task, &clnt->cl_tasks);
281 spin_unlock(&clnt->cl_lock);
286 * Mark an RPC call as having completed by clearing the 'active' bit
288 static void rpc_mark_complete_task(struct rpc_task *task)
290 smp_mb__before_clear_bit();
291 clear_bit(RPC_TASK_ACTIVE, &task->tk_runstate);
292 smp_mb__after_clear_bit();
293 wake_up_bit(&task->tk_runstate, RPC_TASK_ACTIVE);
297 * Allow callers to wait for completion of an RPC call
299 int __rpc_wait_for_completion_task(struct rpc_task *task, int (*action)(void *))
301 if (action == NULL)
302 action = rpc_wait_bit_killable;
303 return wait_on_bit(&task->tk_runstate, RPC_TASK_ACTIVE,
304 action, TASK_KILLABLE);
306 EXPORT_SYMBOL(__rpc_wait_for_completion_task);
309 * Make an RPC task runnable.
311 * Note: If the task is ASYNC, this must be called with
312 * the spinlock held to protect the wait queue operation.
314 static void rpc_make_runnable(struct rpc_task *task)
316 BUG_ON(task->tk_timeout_fn);
317 rpc_clear_queued(task);
318 if (rpc_test_and_set_running(task))
319 return;
320 /* We might have raced */
321 if (RPC_IS_QUEUED(task)) {
322 rpc_clear_running(task);
323 return;
325 if (RPC_IS_ASYNC(task)) {
326 int status;
328 INIT_WORK(&task->u.tk_work, rpc_async_schedule);
329 status = queue_work(task->tk_workqueue, &task->u.tk_work);
330 if (status < 0) {
331 printk(KERN_WARNING "RPC: failed to add task to queue: error: %d!\n", status);
332 task->tk_status = status;
333 return;
335 } else
336 wake_up_bit(&task->tk_runstate, RPC_TASK_QUEUED);
340 * Prepare for sleeping on a wait queue.
341 * By always appending tasks to the list we ensure FIFO behavior.
342 * NB: An RPC task will only receive interrupt-driven events as long
343 * as it's on a wait queue.
345 static void __rpc_sleep_on(struct rpc_wait_queue *q, struct rpc_task *task,
346 rpc_action action, rpc_action timer)
348 dprintk("RPC: %5u sleep_on(queue \"%s\" time %lu)\n",
349 task->tk_pid, rpc_qname(q), jiffies);
351 if (!RPC_IS_ASYNC(task) && !RPC_IS_ACTIVATED(task)) {
352 printk(KERN_ERR "RPC: Inactive synchronous task put to sleep!\n");
353 return;
356 __rpc_add_wait_queue(q, task);
358 BUG_ON(task->tk_callback != NULL);
359 task->tk_callback = action;
360 __rpc_add_timer(task, timer);
363 void rpc_sleep_on(struct rpc_wait_queue *q, struct rpc_task *task,
364 rpc_action action, rpc_action timer)
366 /* Mark the task as being activated if so needed */
367 rpc_set_active(task);
370 * Protect the queue operations.
372 spin_lock_bh(&q->lock);
373 __rpc_sleep_on(q, task, action, timer);
374 spin_unlock_bh(&q->lock);
378 * __rpc_do_wake_up_task - wake up a single rpc_task
379 * @task: task to be woken up
381 * Caller must hold queue->lock, and have cleared the task queued flag.
383 static void __rpc_do_wake_up_task(struct rpc_task *task)
385 dprintk("RPC: %5u __rpc_wake_up_task (now %lu)\n",
386 task->tk_pid, jiffies);
388 #ifdef RPC_DEBUG
389 BUG_ON(task->tk_magic != RPC_TASK_MAGIC_ID);
390 #endif
391 /* Has the task been executed yet? If not, we cannot wake it up! */
392 if (!RPC_IS_ACTIVATED(task)) {
393 printk(KERN_ERR "RPC: Inactive task (%p) being woken up!\n", task);
394 return;
397 __rpc_disable_timer(task);
398 __rpc_remove_wait_queue(task);
400 rpc_make_runnable(task);
402 dprintk("RPC: __rpc_wake_up_task done\n");
406 * Wake up the specified task
408 static void __rpc_wake_up_task(struct rpc_task *task)
410 if (rpc_start_wakeup(task)) {
411 if (RPC_IS_QUEUED(task))
412 __rpc_do_wake_up_task(task);
413 rpc_finish_wakeup(task);
418 * Default timeout handler if none specified by user
420 static void
421 __rpc_default_timer(struct rpc_task *task)
423 dprintk("RPC: %5u timeout (default timer)\n", task->tk_pid);
424 task->tk_status = -ETIMEDOUT;
425 rpc_wake_up_task(task);
429 * Wake up the specified task
431 void rpc_wake_up_task(struct rpc_task *task)
433 rcu_read_lock_bh();
434 if (rpc_start_wakeup(task)) {
435 if (RPC_IS_QUEUED(task)) {
436 struct rpc_wait_queue *queue = task->u.tk_wait.rpc_waitq;
438 /* Note: we're already in a bh-safe context */
439 spin_lock(&queue->lock);
440 __rpc_do_wake_up_task(task);
441 spin_unlock(&queue->lock);
443 rpc_finish_wakeup(task);
445 rcu_read_unlock_bh();
449 * Wake up the next task on a priority queue.
451 static struct rpc_task * __rpc_wake_up_next_priority(struct rpc_wait_queue *queue)
453 struct list_head *q;
454 struct rpc_task *task;
457 * Service a batch of tasks from a single cookie.
459 q = &queue->tasks[queue->priority];
460 if (!list_empty(q)) {
461 task = list_entry(q->next, struct rpc_task, u.tk_wait.list);
462 if (queue->cookie == task->tk_cookie) {
463 if (--queue->nr)
464 goto out;
465 list_move_tail(&task->u.tk_wait.list, q);
468 * Check if we need to switch queues.
470 if (--queue->count)
471 goto new_cookie;
475 * Service the next queue.
477 do {
478 if (q == &queue->tasks[0])
479 q = &queue->tasks[queue->maxpriority];
480 else
481 q = q - 1;
482 if (!list_empty(q)) {
483 task = list_entry(q->next, struct rpc_task, u.tk_wait.list);
484 goto new_queue;
486 } while (q != &queue->tasks[queue->priority]);
488 rpc_reset_waitqueue_priority(queue);
489 return NULL;
491 new_queue:
492 rpc_set_waitqueue_priority(queue, (unsigned int)(q - &queue->tasks[0]));
493 new_cookie:
494 rpc_set_waitqueue_cookie(queue, task->tk_cookie);
495 out:
496 __rpc_wake_up_task(task);
497 return task;
501 * Wake up the next task on the wait queue.
503 struct rpc_task * rpc_wake_up_next(struct rpc_wait_queue *queue)
505 struct rpc_task *task = NULL;
507 dprintk("RPC: wake_up_next(%p \"%s\")\n",
508 queue, rpc_qname(queue));
509 rcu_read_lock_bh();
510 spin_lock(&queue->lock);
511 if (RPC_IS_PRIORITY(queue))
512 task = __rpc_wake_up_next_priority(queue);
513 else {
514 task_for_first(task, &queue->tasks[0])
515 __rpc_wake_up_task(task);
517 spin_unlock(&queue->lock);
518 rcu_read_unlock_bh();
520 return task;
524 * rpc_wake_up - wake up all rpc_tasks
525 * @queue: rpc_wait_queue on which the tasks are sleeping
527 * Grabs queue->lock
529 void rpc_wake_up(struct rpc_wait_queue *queue)
531 struct rpc_task *task, *next;
532 struct list_head *head;
534 rcu_read_lock_bh();
535 spin_lock(&queue->lock);
536 head = &queue->tasks[queue->maxpriority];
537 for (;;) {
538 list_for_each_entry_safe(task, next, head, u.tk_wait.list)
539 __rpc_wake_up_task(task);
540 if (head == &queue->tasks[0])
541 break;
542 head--;
544 spin_unlock(&queue->lock);
545 rcu_read_unlock_bh();
549 * rpc_wake_up_status - wake up all rpc_tasks and set their status value.
550 * @queue: rpc_wait_queue on which the tasks are sleeping
551 * @status: status value to set
553 * Grabs queue->lock
555 void rpc_wake_up_status(struct rpc_wait_queue *queue, int status)
557 struct rpc_task *task, *next;
558 struct list_head *head;
560 rcu_read_lock_bh();
561 spin_lock(&queue->lock);
562 head = &queue->tasks[queue->maxpriority];
563 for (;;) {
564 list_for_each_entry_safe(task, next, head, u.tk_wait.list) {
565 task->tk_status = status;
566 __rpc_wake_up_task(task);
568 if (head == &queue->tasks[0])
569 break;
570 head--;
572 spin_unlock(&queue->lock);
573 rcu_read_unlock_bh();
576 static void __rpc_atrun(struct rpc_task *task)
578 rpc_wake_up_task(task);
582 * Run a task at a later time
584 void rpc_delay(struct rpc_task *task, unsigned long delay)
586 task->tk_timeout = delay;
587 rpc_sleep_on(&delay_queue, task, NULL, __rpc_atrun);
591 * Helper to call task->tk_ops->rpc_call_prepare
593 static void rpc_prepare_task(struct rpc_task *task)
595 lock_kernel();
596 task->tk_ops->rpc_call_prepare(task, task->tk_calldata);
597 unlock_kernel();
601 * Helper that calls task->tk_ops->rpc_call_done if it exists
603 void rpc_exit_task(struct rpc_task *task)
605 task->tk_action = NULL;
606 if (task->tk_ops->rpc_call_done != NULL) {
607 lock_kernel();
608 task->tk_ops->rpc_call_done(task, task->tk_calldata);
609 unlock_kernel();
610 if (task->tk_action != NULL) {
611 WARN_ON(RPC_ASSASSINATED(task));
612 /* Always release the RPC slot and buffer memory */
613 xprt_release(task);
617 EXPORT_SYMBOL(rpc_exit_task);
619 void rpc_release_calldata(const struct rpc_call_ops *ops, void *calldata)
621 if (ops->rpc_release != NULL) {
622 lock_kernel();
623 ops->rpc_release(calldata);
624 unlock_kernel();
629 * This is the RPC `scheduler' (or rather, the finite state machine).
631 static void __rpc_execute(struct rpc_task *task)
633 int status = 0;
635 dprintk("RPC: %5u __rpc_execute flags=0x%x\n",
636 task->tk_pid, task->tk_flags);
638 BUG_ON(RPC_IS_QUEUED(task));
640 for (;;) {
642 * Garbage collection of pending timers...
644 rpc_delete_timer(task);
647 * Execute any pending callback.
649 if (RPC_DO_CALLBACK(task)) {
650 /* Define a callback save pointer */
651 void (*save_callback)(struct rpc_task *);
654 * If a callback exists, save it, reset it,
655 * call it.
656 * The save is needed to stop from resetting
657 * another callback set within the callback handler
658 * - Dave
660 save_callback=task->tk_callback;
661 task->tk_callback=NULL;
662 save_callback(task);
666 * Perform the next FSM step.
667 * tk_action may be NULL when the task has been killed
668 * by someone else.
670 if (!RPC_IS_QUEUED(task)) {
671 if (task->tk_action == NULL)
672 break;
673 task->tk_action(task);
677 * Lockless check for whether task is sleeping or not.
679 if (!RPC_IS_QUEUED(task))
680 continue;
681 rpc_clear_running(task);
682 if (RPC_IS_ASYNC(task)) {
683 /* Careful! we may have raced... */
684 if (RPC_IS_QUEUED(task))
685 return;
686 if (rpc_test_and_set_running(task))
687 return;
688 continue;
691 /* sync task: sleep here */
692 dprintk("RPC: %5u sync task going to sleep\n", task->tk_pid);
693 status = out_of_line_wait_on_bit(&task->tk_runstate,
694 RPC_TASK_QUEUED, rpc_wait_bit_killable,
695 TASK_KILLABLE);
696 if (status == -ERESTARTSYS) {
698 * When a sync task receives a signal, it exits with
699 * -ERESTARTSYS. In order to catch any callbacks that
700 * clean up after sleeping on some queue, we don't
701 * break the loop here, but go around once more.
703 dprintk("RPC: %5u got signal\n", task->tk_pid);
704 task->tk_flags |= RPC_TASK_KILLED;
705 rpc_exit(task, -ERESTARTSYS);
706 rpc_wake_up_task(task);
708 rpc_set_running(task);
709 dprintk("RPC: %5u sync task resuming\n", task->tk_pid);
712 dprintk("RPC: %5u return %d, status %d\n", task->tk_pid, status,
713 task->tk_status);
714 /* Release all resources associated with the task */
715 rpc_release_task(task);
719 * User-visible entry point to the scheduler.
721 * This may be called recursively if e.g. an async NFS task updates
722 * the attributes and finds that dirty pages must be flushed.
723 * NOTE: Upon exit of this function the task is guaranteed to be
724 * released. In particular note that tk_release() will have
725 * been called, so your task memory may have been freed.
727 void rpc_execute(struct rpc_task *task)
729 rpc_set_active(task);
730 rpc_set_running(task);
731 __rpc_execute(task);
734 static void rpc_async_schedule(struct work_struct *work)
736 __rpc_execute(container_of(work, struct rpc_task, u.tk_work));
739 struct rpc_buffer {
740 size_t len;
741 char data[];
745 * rpc_malloc - allocate an RPC buffer
746 * @task: RPC task that will use this buffer
747 * @size: requested byte size
749 * To prevent rpciod from hanging, this allocator never sleeps,
750 * returning NULL if the request cannot be serviced immediately.
751 * The caller can arrange to sleep in a way that is safe for rpciod.
753 * Most requests are 'small' (under 2KiB) and can be serviced from a
754 * mempool, ensuring that NFS reads and writes can always proceed,
755 * and that there is good locality of reference for these buffers.
757 * In order to avoid memory starvation triggering more writebacks of
758 * NFS requests, we avoid using GFP_KERNEL.
760 void *rpc_malloc(struct rpc_task *task, size_t size)
762 struct rpc_buffer *buf;
763 gfp_t gfp = RPC_IS_SWAPPER(task) ? GFP_ATOMIC : GFP_NOWAIT;
765 size += sizeof(struct rpc_buffer);
766 if (size <= RPC_BUFFER_MAXSIZE)
767 buf = mempool_alloc(rpc_buffer_mempool, gfp);
768 else
769 buf = kmalloc(size, gfp);
771 if (!buf)
772 return NULL;
774 buf->len = size;
775 dprintk("RPC: %5u allocated buffer of size %zu at %p\n",
776 task->tk_pid, size, buf);
777 return &buf->data;
779 EXPORT_SYMBOL_GPL(rpc_malloc);
782 * rpc_free - free buffer allocated via rpc_malloc
783 * @buffer: buffer to free
786 void rpc_free(void *buffer)
788 size_t size;
789 struct rpc_buffer *buf;
791 if (!buffer)
792 return;
794 buf = container_of(buffer, struct rpc_buffer, data);
795 size = buf->len;
797 dprintk("RPC: freeing buffer of size %zu at %p\n",
798 size, buf);
800 if (size <= RPC_BUFFER_MAXSIZE)
801 mempool_free(buf, rpc_buffer_mempool);
802 else
803 kfree(buf);
805 EXPORT_SYMBOL_GPL(rpc_free);
808 * Creation and deletion of RPC task structures
810 void rpc_init_task(struct rpc_task *task, struct rpc_clnt *clnt, int flags, const struct rpc_call_ops *tk_ops, void *calldata)
812 memset(task, 0, sizeof(*task));
813 init_timer(&task->tk_timer);
814 task->tk_timer.data = (unsigned long) task;
815 task->tk_timer.function = (void (*)(unsigned long)) rpc_run_timer;
816 atomic_set(&task->tk_count, 1);
817 task->tk_client = clnt;
818 task->tk_flags = flags;
819 task->tk_ops = tk_ops;
820 if (tk_ops->rpc_call_prepare != NULL)
821 task->tk_action = rpc_prepare_task;
822 task->tk_calldata = calldata;
823 INIT_LIST_HEAD(&task->tk_task);
825 /* Initialize retry counters */
826 task->tk_garb_retry = 2;
827 task->tk_cred_retry = 2;
829 task->tk_priority = RPC_PRIORITY_NORMAL;
830 task->tk_cookie = (unsigned long)current;
832 /* Initialize workqueue for async tasks */
833 task->tk_workqueue = rpciod_workqueue;
835 if (clnt) {
836 kref_get(&clnt->cl_kref);
837 if (clnt->cl_softrtry)
838 task->tk_flags |= RPC_TASK_SOFT;
841 BUG_ON(task->tk_ops == NULL);
843 /* starting timestamp */
844 task->tk_start = jiffies;
846 dprintk("RPC: new task initialized, procpid %u\n",
847 task_pid_nr(current));
850 static struct rpc_task *
851 rpc_alloc_task(void)
853 return (struct rpc_task *)mempool_alloc(rpc_task_mempool, GFP_NOFS);
856 static void rpc_free_task(struct rcu_head *rcu)
858 struct rpc_task *task = container_of(rcu, struct rpc_task, u.tk_rcu);
859 dprintk("RPC: %5u freeing task\n", task->tk_pid);
860 mempool_free(task, rpc_task_mempool);
864 * Create a new task for the specified client.
866 struct rpc_task *rpc_new_task(struct rpc_clnt *clnt, int flags, const struct rpc_call_ops *tk_ops, void *calldata)
868 struct rpc_task *task;
870 task = rpc_alloc_task();
871 if (!task)
872 goto out;
874 rpc_init_task(task, clnt, flags, tk_ops, calldata);
876 dprintk("RPC: allocated task %p\n", task);
877 task->tk_flags |= RPC_TASK_DYNAMIC;
878 out:
879 return task;
883 void rpc_put_task(struct rpc_task *task)
885 const struct rpc_call_ops *tk_ops = task->tk_ops;
886 void *calldata = task->tk_calldata;
888 if (!atomic_dec_and_test(&task->tk_count))
889 return;
890 /* Release resources */
891 if (task->tk_rqstp)
892 xprt_release(task);
893 if (task->tk_msg.rpc_cred)
894 rpcauth_unbindcred(task);
895 if (task->tk_client) {
896 rpc_release_client(task->tk_client);
897 task->tk_client = NULL;
899 if (task->tk_flags & RPC_TASK_DYNAMIC)
900 call_rcu_bh(&task->u.tk_rcu, rpc_free_task);
901 rpc_release_calldata(tk_ops, calldata);
903 EXPORT_SYMBOL(rpc_put_task);
905 static void rpc_release_task(struct rpc_task *task)
907 #ifdef RPC_DEBUG
908 BUG_ON(task->tk_magic != RPC_TASK_MAGIC_ID);
909 #endif
910 dprintk("RPC: %5u release task\n", task->tk_pid);
912 if (!list_empty(&task->tk_task)) {
913 struct rpc_clnt *clnt = task->tk_client;
914 /* Remove from client task list */
915 spin_lock(&clnt->cl_lock);
916 list_del(&task->tk_task);
917 spin_unlock(&clnt->cl_lock);
919 BUG_ON (RPC_IS_QUEUED(task));
921 /* Synchronously delete any running timer */
922 rpc_delete_timer(task);
924 #ifdef RPC_DEBUG
925 task->tk_magic = 0;
926 #endif
927 /* Wake up anyone who is waiting for task completion */
928 rpc_mark_complete_task(task);
930 rpc_put_task(task);
934 * Kill all tasks for the given client.
935 * XXX: kill their descendants as well?
937 void rpc_killall_tasks(struct rpc_clnt *clnt)
939 struct rpc_task *rovr;
942 if (list_empty(&clnt->cl_tasks))
943 return;
944 dprintk("RPC: killing all tasks for client %p\n", clnt);
946 * Spin lock all_tasks to prevent changes...
948 spin_lock(&clnt->cl_lock);
949 list_for_each_entry(rovr, &clnt->cl_tasks, tk_task) {
950 if (! RPC_IS_ACTIVATED(rovr))
951 continue;
952 if (!(rovr->tk_flags & RPC_TASK_KILLED)) {
953 rovr->tk_flags |= RPC_TASK_KILLED;
954 rpc_exit(rovr, -EIO);
955 rpc_wake_up_task(rovr);
958 spin_unlock(&clnt->cl_lock);
961 int rpciod_up(void)
963 return try_module_get(THIS_MODULE) ? 0 : -EINVAL;
966 void rpciod_down(void)
968 module_put(THIS_MODULE);
972 * Start up the rpciod workqueue.
974 static int rpciod_start(void)
976 struct workqueue_struct *wq;
979 * Create the rpciod thread and wait for it to start.
981 dprintk("RPC: creating workqueue rpciod\n");
982 wq = create_workqueue("rpciod");
983 rpciod_workqueue = wq;
984 return rpciod_workqueue != NULL;
987 static void rpciod_stop(void)
989 struct workqueue_struct *wq = NULL;
991 if (rpciod_workqueue == NULL)
992 return;
993 dprintk("RPC: destroying workqueue rpciod\n");
995 wq = rpciod_workqueue;
996 rpciod_workqueue = NULL;
997 destroy_workqueue(wq);
1000 void
1001 rpc_destroy_mempool(void)
1003 rpciod_stop();
1004 if (rpc_buffer_mempool)
1005 mempool_destroy(rpc_buffer_mempool);
1006 if (rpc_task_mempool)
1007 mempool_destroy(rpc_task_mempool);
1008 if (rpc_task_slabp)
1009 kmem_cache_destroy(rpc_task_slabp);
1010 if (rpc_buffer_slabp)
1011 kmem_cache_destroy(rpc_buffer_slabp);
1015 rpc_init_mempool(void)
1017 rpc_task_slabp = kmem_cache_create("rpc_tasks",
1018 sizeof(struct rpc_task),
1019 0, SLAB_HWCACHE_ALIGN,
1020 NULL);
1021 if (!rpc_task_slabp)
1022 goto err_nomem;
1023 rpc_buffer_slabp = kmem_cache_create("rpc_buffers",
1024 RPC_BUFFER_MAXSIZE,
1025 0, SLAB_HWCACHE_ALIGN,
1026 NULL);
1027 if (!rpc_buffer_slabp)
1028 goto err_nomem;
1029 rpc_task_mempool = mempool_create_slab_pool(RPC_TASK_POOLSIZE,
1030 rpc_task_slabp);
1031 if (!rpc_task_mempool)
1032 goto err_nomem;
1033 rpc_buffer_mempool = mempool_create_slab_pool(RPC_BUFFER_POOLSIZE,
1034 rpc_buffer_slabp);
1035 if (!rpc_buffer_mempool)
1036 goto err_nomem;
1037 if (!rpciod_start())
1038 goto err_nomem;
1039 return 0;
1040 err_nomem:
1041 rpc_destroy_mempool();
1042 return -ENOMEM;