[SCSI] megaraid_sas: check max_sgl reported by FW for setting max_sectors_per_req
[linux-2.6/mini2440.git] / drivers / scsi / megaraid / megaraid_sas.c
blob7eefbe0681d6e7c7ecc95d7be11b3248f89774c1
1 /*
3 * Linux MegaRAID driver for SAS based RAID controllers
5 * Copyright (c) 2003-2005 LSI Logic Corporation.
7 * This program is free software; you can redistribute it and/or
8 * modify it under the terms of the GNU General Public License
9 * as published by the Free Software Foundation; either version
10 * 2 of the License, or (at your option) any later version.
12 * FILE : megaraid_sas.c
13 * Version : v00.00.03.10-rc5
15 * Authors:
16 * (email-id : megaraidlinux@lsi.com)
17 * Sreenivas Bagalkote
18 * Sumant Patro
19 * Bo Yang
21 * List of supported controllers
23 * OEM Product Name VID DID SSVID SSID
24 * --- ------------ --- --- ---- ----
27 #include <linux/kernel.h>
28 #include <linux/types.h>
29 #include <linux/pci.h>
30 #include <linux/list.h>
31 #include <linux/moduleparam.h>
32 #include <linux/module.h>
33 #include <linux/spinlock.h>
34 #include <linux/mutex.h>
35 #include <linux/interrupt.h>
36 #include <linux/delay.h>
37 #include <linux/uio.h>
38 #include <asm/uaccess.h>
39 #include <linux/fs.h>
40 #include <linux/compat.h>
41 #include <linux/blkdev.h>
42 #include <linux/mutex.h>
44 #include <scsi/scsi.h>
45 #include <scsi/scsi_cmnd.h>
46 #include <scsi/scsi_device.h>
47 #include <scsi/scsi_host.h>
48 #include "megaraid_sas.h"
50 MODULE_LICENSE("GPL");
51 MODULE_VERSION(MEGASAS_VERSION);
52 MODULE_AUTHOR("megaraidlinux@lsi.com");
53 MODULE_DESCRIPTION("LSI Logic MegaRAID SAS Driver");
56 * PCI ID table for all supported controllers
58 static struct pci_device_id megasas_pci_table[] = {
60 {PCI_DEVICE(PCI_VENDOR_ID_LSI_LOGIC, PCI_DEVICE_ID_LSI_SAS1064R)},
61 /* xscale IOP */
62 {PCI_DEVICE(PCI_VENDOR_ID_LSI_LOGIC, PCI_DEVICE_ID_LSI_SAS1078R)},
63 /* ppc IOP */
64 {PCI_DEVICE(PCI_VENDOR_ID_LSI_LOGIC, PCI_DEVICE_ID_LSI_VERDE_ZCR)},
65 /* xscale IOP, vega */
66 {PCI_DEVICE(PCI_VENDOR_ID_DELL, PCI_DEVICE_ID_DELL_PERC5)},
67 /* xscale IOP */
71 MODULE_DEVICE_TABLE(pci, megasas_pci_table);
73 static int megasas_mgmt_majorno;
74 static struct megasas_mgmt_info megasas_mgmt_info;
75 static struct fasync_struct *megasas_async_queue;
76 static DEFINE_MUTEX(megasas_async_queue_mutex);
78 static u32 megasas_dbg_lvl;
80 /**
81 * megasas_get_cmd - Get a command from the free pool
82 * @instance: Adapter soft state
84 * Returns a free command from the pool
86 static struct megasas_cmd *megasas_get_cmd(struct megasas_instance
87 *instance)
89 unsigned long flags;
90 struct megasas_cmd *cmd = NULL;
92 spin_lock_irqsave(&instance->cmd_pool_lock, flags);
94 if (!list_empty(&instance->cmd_pool)) {
95 cmd = list_entry((&instance->cmd_pool)->next,
96 struct megasas_cmd, list);
97 list_del_init(&cmd->list);
98 } else {
99 printk(KERN_ERR "megasas: Command pool empty!\n");
102 spin_unlock_irqrestore(&instance->cmd_pool_lock, flags);
103 return cmd;
107 * megasas_return_cmd - Return a cmd to free command pool
108 * @instance: Adapter soft state
109 * @cmd: Command packet to be returned to free command pool
111 static inline void
112 megasas_return_cmd(struct megasas_instance *instance, struct megasas_cmd *cmd)
114 unsigned long flags;
116 spin_lock_irqsave(&instance->cmd_pool_lock, flags);
118 cmd->scmd = NULL;
119 list_add_tail(&cmd->list, &instance->cmd_pool);
121 spin_unlock_irqrestore(&instance->cmd_pool_lock, flags);
126 * The following functions are defined for xscale
127 * (deviceid : 1064R, PERC5) controllers
131 * megasas_enable_intr_xscale - Enables interrupts
132 * @regs: MFI register set
134 static inline void
135 megasas_enable_intr_xscale(struct megasas_register_set __iomem * regs)
137 writel(1, &(regs)->outbound_intr_mask);
139 /* Dummy readl to force pci flush */
140 readl(&regs->outbound_intr_mask);
144 * megasas_disable_intr_xscale -Disables interrupt
145 * @regs: MFI register set
147 static inline void
148 megasas_disable_intr_xscale(struct megasas_register_set __iomem * regs)
150 u32 mask = 0x1f;
151 writel(mask, &regs->outbound_intr_mask);
152 /* Dummy readl to force pci flush */
153 readl(&regs->outbound_intr_mask);
157 * megasas_read_fw_status_reg_xscale - returns the current FW status value
158 * @regs: MFI register set
160 static u32
161 megasas_read_fw_status_reg_xscale(struct megasas_register_set __iomem * regs)
163 return readl(&(regs)->outbound_msg_0);
166 * megasas_clear_interrupt_xscale - Check & clear interrupt
167 * @regs: MFI register set
169 static int
170 megasas_clear_intr_xscale(struct megasas_register_set __iomem * regs)
172 u32 status;
174 * Check if it is our interrupt
176 status = readl(&regs->outbound_intr_status);
178 if (!(status & MFI_OB_INTR_STATUS_MASK)) {
179 return 1;
183 * Clear the interrupt by writing back the same value
185 writel(status, &regs->outbound_intr_status);
187 return 0;
191 * megasas_fire_cmd_xscale - Sends command to the FW
192 * @frame_phys_addr : Physical address of cmd
193 * @frame_count : Number of frames for the command
194 * @regs : MFI register set
196 static inline void
197 megasas_fire_cmd_xscale(dma_addr_t frame_phys_addr,u32 frame_count, struct megasas_register_set __iomem *regs)
199 writel((frame_phys_addr >> 3)|(frame_count),
200 &(regs)->inbound_queue_port);
203 static struct megasas_instance_template megasas_instance_template_xscale = {
205 .fire_cmd = megasas_fire_cmd_xscale,
206 .enable_intr = megasas_enable_intr_xscale,
207 .disable_intr = megasas_disable_intr_xscale,
208 .clear_intr = megasas_clear_intr_xscale,
209 .read_fw_status_reg = megasas_read_fw_status_reg_xscale,
213 * This is the end of set of functions & definitions specific
214 * to xscale (deviceid : 1064R, PERC5) controllers
218 * The following functions are defined for ppc (deviceid : 0x60)
219 * controllers
223 * megasas_enable_intr_ppc - Enables interrupts
224 * @regs: MFI register set
226 static inline void
227 megasas_enable_intr_ppc(struct megasas_register_set __iomem * regs)
229 writel(0xFFFFFFFF, &(regs)->outbound_doorbell_clear);
231 writel(~0x80000004, &(regs)->outbound_intr_mask);
233 /* Dummy readl to force pci flush */
234 readl(&regs->outbound_intr_mask);
238 * megasas_disable_intr_ppc - Disable interrupt
239 * @regs: MFI register set
241 static inline void
242 megasas_disable_intr_ppc(struct megasas_register_set __iomem * regs)
244 u32 mask = 0xFFFFFFFF;
245 writel(mask, &regs->outbound_intr_mask);
246 /* Dummy readl to force pci flush */
247 readl(&regs->outbound_intr_mask);
251 * megasas_read_fw_status_reg_ppc - returns the current FW status value
252 * @regs: MFI register set
254 static u32
255 megasas_read_fw_status_reg_ppc(struct megasas_register_set __iomem * regs)
257 return readl(&(regs)->outbound_scratch_pad);
261 * megasas_clear_interrupt_ppc - Check & clear interrupt
262 * @regs: MFI register set
264 static int
265 megasas_clear_intr_ppc(struct megasas_register_set __iomem * regs)
267 u32 status;
269 * Check if it is our interrupt
271 status = readl(&regs->outbound_intr_status);
273 if (!(status & MFI_REPLY_1078_MESSAGE_INTERRUPT)) {
274 return 1;
278 * Clear the interrupt by writing back the same value
280 writel(status, &regs->outbound_doorbell_clear);
282 return 0;
285 * megasas_fire_cmd_ppc - Sends command to the FW
286 * @frame_phys_addr : Physical address of cmd
287 * @frame_count : Number of frames for the command
288 * @regs : MFI register set
290 static inline void
291 megasas_fire_cmd_ppc(dma_addr_t frame_phys_addr, u32 frame_count, struct megasas_register_set __iomem *regs)
293 writel((frame_phys_addr | (frame_count<<1))|1,
294 &(regs)->inbound_queue_port);
297 static struct megasas_instance_template megasas_instance_template_ppc = {
299 .fire_cmd = megasas_fire_cmd_ppc,
300 .enable_intr = megasas_enable_intr_ppc,
301 .disable_intr = megasas_disable_intr_ppc,
302 .clear_intr = megasas_clear_intr_ppc,
303 .read_fw_status_reg = megasas_read_fw_status_reg_ppc,
307 * This is the end of set of functions & definitions
308 * specific to ppc (deviceid : 0x60) controllers
312 * megasas_issue_polled - Issues a polling command
313 * @instance: Adapter soft state
314 * @cmd: Command packet to be issued
316 * For polling, MFI requires the cmd_status to be set to 0xFF before posting.
318 static int
319 megasas_issue_polled(struct megasas_instance *instance, struct megasas_cmd *cmd)
321 int i;
322 u32 msecs = MFI_POLL_TIMEOUT_SECS * 1000;
324 struct megasas_header *frame_hdr = &cmd->frame->hdr;
326 frame_hdr->cmd_status = 0xFF;
327 frame_hdr->flags |= MFI_FRAME_DONT_POST_IN_REPLY_QUEUE;
330 * Issue the frame using inbound queue port
332 instance->instancet->fire_cmd(cmd->frame_phys_addr ,0,instance->reg_set);
335 * Wait for cmd_status to change
337 for (i = 0; (i < msecs) && (frame_hdr->cmd_status == 0xff); i++) {
338 rmb();
339 msleep(1);
342 if (frame_hdr->cmd_status == 0xff)
343 return -ETIME;
345 return 0;
349 * megasas_issue_blocked_cmd - Synchronous wrapper around regular FW cmds
350 * @instance: Adapter soft state
351 * @cmd: Command to be issued
353 * This function waits on an event for the command to be returned from ISR.
354 * Max wait time is MEGASAS_INTERNAL_CMD_WAIT_TIME secs
355 * Used to issue ioctl commands.
357 static int
358 megasas_issue_blocked_cmd(struct megasas_instance *instance,
359 struct megasas_cmd *cmd)
361 cmd->cmd_status = ENODATA;
363 instance->instancet->fire_cmd(cmd->frame_phys_addr ,0,instance->reg_set);
365 wait_event_timeout(instance->int_cmd_wait_q, (cmd->cmd_status != ENODATA),
366 MEGASAS_INTERNAL_CMD_WAIT_TIME*HZ);
368 return 0;
372 * megasas_issue_blocked_abort_cmd - Aborts previously issued cmd
373 * @instance: Adapter soft state
374 * @cmd_to_abort: Previously issued cmd to be aborted
376 * MFI firmware can abort previously issued AEN comamnd (automatic event
377 * notification). The megasas_issue_blocked_abort_cmd() issues such abort
378 * cmd and waits for return status.
379 * Max wait time is MEGASAS_INTERNAL_CMD_WAIT_TIME secs
381 static int
382 megasas_issue_blocked_abort_cmd(struct megasas_instance *instance,
383 struct megasas_cmd *cmd_to_abort)
385 struct megasas_cmd *cmd;
386 struct megasas_abort_frame *abort_fr;
388 cmd = megasas_get_cmd(instance);
390 if (!cmd)
391 return -1;
393 abort_fr = &cmd->frame->abort;
396 * Prepare and issue the abort frame
398 abort_fr->cmd = MFI_CMD_ABORT;
399 abort_fr->cmd_status = 0xFF;
400 abort_fr->flags = 0;
401 abort_fr->abort_context = cmd_to_abort->index;
402 abort_fr->abort_mfi_phys_addr_lo = cmd_to_abort->frame_phys_addr;
403 abort_fr->abort_mfi_phys_addr_hi = 0;
405 cmd->sync_cmd = 1;
406 cmd->cmd_status = 0xFF;
408 instance->instancet->fire_cmd(cmd->frame_phys_addr ,0,instance->reg_set);
411 * Wait for this cmd to complete
413 wait_event_timeout(instance->abort_cmd_wait_q, (cmd->cmd_status != 0xFF),
414 MEGASAS_INTERNAL_CMD_WAIT_TIME*HZ);
416 megasas_return_cmd(instance, cmd);
417 return 0;
421 * megasas_make_sgl32 - Prepares 32-bit SGL
422 * @instance: Adapter soft state
423 * @scp: SCSI command from the mid-layer
424 * @mfi_sgl: SGL to be filled in
426 * If successful, this function returns the number of SG elements. Otherwise,
427 * it returnes -1.
429 static int
430 megasas_make_sgl32(struct megasas_instance *instance, struct scsi_cmnd *scp,
431 union megasas_sgl *mfi_sgl)
433 int i;
434 int sge_count;
435 struct scatterlist *os_sgl;
437 sge_count = scsi_dma_map(scp);
438 BUG_ON(sge_count < 0);
440 if (sge_count) {
441 scsi_for_each_sg(scp, os_sgl, sge_count, i) {
442 mfi_sgl->sge32[i].length = sg_dma_len(os_sgl);
443 mfi_sgl->sge32[i].phys_addr = sg_dma_address(os_sgl);
446 return sge_count;
450 * megasas_make_sgl64 - Prepares 64-bit SGL
451 * @instance: Adapter soft state
452 * @scp: SCSI command from the mid-layer
453 * @mfi_sgl: SGL to be filled in
455 * If successful, this function returns the number of SG elements. Otherwise,
456 * it returnes -1.
458 static int
459 megasas_make_sgl64(struct megasas_instance *instance, struct scsi_cmnd *scp,
460 union megasas_sgl *mfi_sgl)
462 int i;
463 int sge_count;
464 struct scatterlist *os_sgl;
466 sge_count = scsi_dma_map(scp);
467 BUG_ON(sge_count < 0);
469 if (sge_count) {
470 scsi_for_each_sg(scp, os_sgl, sge_count, i) {
471 mfi_sgl->sge64[i].length = sg_dma_len(os_sgl);
472 mfi_sgl->sge64[i].phys_addr = sg_dma_address(os_sgl);
475 return sge_count;
479 * megasas_get_frame_count - Computes the number of frames
480 * @sge_count : number of sg elements
482 * Returns the number of frames required for numnber of sge's (sge_count)
485 static u32 megasas_get_frame_count(u8 sge_count)
487 int num_cnt;
488 int sge_bytes;
489 u32 sge_sz;
490 u32 frame_count=0;
492 sge_sz = (IS_DMA64) ? sizeof(struct megasas_sge64) :
493 sizeof(struct megasas_sge32);
496 * Main frame can contain 2 SGEs for 64-bit SGLs and
497 * 3 SGEs for 32-bit SGLs
499 if (IS_DMA64)
500 num_cnt = sge_count - 2;
501 else
502 num_cnt = sge_count - 3;
504 if(num_cnt>0){
505 sge_bytes = sge_sz * num_cnt;
507 frame_count = (sge_bytes / MEGAMFI_FRAME_SIZE) +
508 ((sge_bytes % MEGAMFI_FRAME_SIZE) ? 1 : 0) ;
510 /* Main frame */
511 frame_count +=1;
513 if (frame_count > 7)
514 frame_count = 8;
515 return frame_count;
519 * megasas_build_dcdb - Prepares a direct cdb (DCDB) command
520 * @instance: Adapter soft state
521 * @scp: SCSI command
522 * @cmd: Command to be prepared in
524 * This function prepares CDB commands. These are typcially pass-through
525 * commands to the devices.
527 static int
528 megasas_build_dcdb(struct megasas_instance *instance, struct scsi_cmnd *scp,
529 struct megasas_cmd *cmd)
531 u32 is_logical;
532 u32 device_id;
533 u16 flags = 0;
534 struct megasas_pthru_frame *pthru;
536 is_logical = MEGASAS_IS_LOGICAL(scp);
537 device_id = MEGASAS_DEV_INDEX(instance, scp);
538 pthru = (struct megasas_pthru_frame *)cmd->frame;
540 if (scp->sc_data_direction == PCI_DMA_TODEVICE)
541 flags = MFI_FRAME_DIR_WRITE;
542 else if (scp->sc_data_direction == PCI_DMA_FROMDEVICE)
543 flags = MFI_FRAME_DIR_READ;
544 else if (scp->sc_data_direction == PCI_DMA_NONE)
545 flags = MFI_FRAME_DIR_NONE;
548 * Prepare the DCDB frame
550 pthru->cmd = (is_logical) ? MFI_CMD_LD_SCSI_IO : MFI_CMD_PD_SCSI_IO;
551 pthru->cmd_status = 0x0;
552 pthru->scsi_status = 0x0;
553 pthru->target_id = device_id;
554 pthru->lun = scp->device->lun;
555 pthru->cdb_len = scp->cmd_len;
556 pthru->timeout = 0;
557 pthru->flags = flags;
558 pthru->data_xfer_len = scsi_bufflen(scp);
560 memcpy(pthru->cdb, scp->cmnd, scp->cmd_len);
563 * Construct SGL
565 if (IS_DMA64) {
566 pthru->flags |= MFI_FRAME_SGL64;
567 pthru->sge_count = megasas_make_sgl64(instance, scp,
568 &pthru->sgl);
569 } else
570 pthru->sge_count = megasas_make_sgl32(instance, scp,
571 &pthru->sgl);
574 * Sense info specific
576 pthru->sense_len = SCSI_SENSE_BUFFERSIZE;
577 pthru->sense_buf_phys_addr_hi = 0;
578 pthru->sense_buf_phys_addr_lo = cmd->sense_phys_addr;
581 * Compute the total number of frames this command consumes. FW uses
582 * this number to pull sufficient number of frames from host memory.
584 cmd->frame_count = megasas_get_frame_count(pthru->sge_count);
586 return cmd->frame_count;
590 * megasas_build_ldio - Prepares IOs to logical devices
591 * @instance: Adapter soft state
592 * @scp: SCSI command
593 * @cmd: Command to to be prepared
595 * Frames (and accompanying SGLs) for regular SCSI IOs use this function.
597 static int
598 megasas_build_ldio(struct megasas_instance *instance, struct scsi_cmnd *scp,
599 struct megasas_cmd *cmd)
601 u32 device_id;
602 u8 sc = scp->cmnd[0];
603 u16 flags = 0;
604 struct megasas_io_frame *ldio;
606 device_id = MEGASAS_DEV_INDEX(instance, scp);
607 ldio = (struct megasas_io_frame *)cmd->frame;
609 if (scp->sc_data_direction == PCI_DMA_TODEVICE)
610 flags = MFI_FRAME_DIR_WRITE;
611 else if (scp->sc_data_direction == PCI_DMA_FROMDEVICE)
612 flags = MFI_FRAME_DIR_READ;
615 * Prepare the Logical IO frame: 2nd bit is zero for all read cmds
617 ldio->cmd = (sc & 0x02) ? MFI_CMD_LD_WRITE : MFI_CMD_LD_READ;
618 ldio->cmd_status = 0x0;
619 ldio->scsi_status = 0x0;
620 ldio->target_id = device_id;
621 ldio->timeout = 0;
622 ldio->reserved_0 = 0;
623 ldio->pad_0 = 0;
624 ldio->flags = flags;
625 ldio->start_lba_hi = 0;
626 ldio->access_byte = (scp->cmd_len != 6) ? scp->cmnd[1] : 0;
629 * 6-byte READ(0x08) or WRITE(0x0A) cdb
631 if (scp->cmd_len == 6) {
632 ldio->lba_count = (u32) scp->cmnd[4];
633 ldio->start_lba_lo = ((u32) scp->cmnd[1] << 16) |
634 ((u32) scp->cmnd[2] << 8) | (u32) scp->cmnd[3];
636 ldio->start_lba_lo &= 0x1FFFFF;
640 * 10-byte READ(0x28) or WRITE(0x2A) cdb
642 else if (scp->cmd_len == 10) {
643 ldio->lba_count = (u32) scp->cmnd[8] |
644 ((u32) scp->cmnd[7] << 8);
645 ldio->start_lba_lo = ((u32) scp->cmnd[2] << 24) |
646 ((u32) scp->cmnd[3] << 16) |
647 ((u32) scp->cmnd[4] << 8) | (u32) scp->cmnd[5];
651 * 12-byte READ(0xA8) or WRITE(0xAA) cdb
653 else if (scp->cmd_len == 12) {
654 ldio->lba_count = ((u32) scp->cmnd[6] << 24) |
655 ((u32) scp->cmnd[7] << 16) |
656 ((u32) scp->cmnd[8] << 8) | (u32) scp->cmnd[9];
658 ldio->start_lba_lo = ((u32) scp->cmnd[2] << 24) |
659 ((u32) scp->cmnd[3] << 16) |
660 ((u32) scp->cmnd[4] << 8) | (u32) scp->cmnd[5];
664 * 16-byte READ(0x88) or WRITE(0x8A) cdb
666 else if (scp->cmd_len == 16) {
667 ldio->lba_count = ((u32) scp->cmnd[10] << 24) |
668 ((u32) scp->cmnd[11] << 16) |
669 ((u32) scp->cmnd[12] << 8) | (u32) scp->cmnd[13];
671 ldio->start_lba_lo = ((u32) scp->cmnd[6] << 24) |
672 ((u32) scp->cmnd[7] << 16) |
673 ((u32) scp->cmnd[8] << 8) | (u32) scp->cmnd[9];
675 ldio->start_lba_hi = ((u32) scp->cmnd[2] << 24) |
676 ((u32) scp->cmnd[3] << 16) |
677 ((u32) scp->cmnd[4] << 8) | (u32) scp->cmnd[5];
682 * Construct SGL
684 if (IS_DMA64) {
685 ldio->flags |= MFI_FRAME_SGL64;
686 ldio->sge_count = megasas_make_sgl64(instance, scp, &ldio->sgl);
687 } else
688 ldio->sge_count = megasas_make_sgl32(instance, scp, &ldio->sgl);
691 * Sense info specific
693 ldio->sense_len = SCSI_SENSE_BUFFERSIZE;
694 ldio->sense_buf_phys_addr_hi = 0;
695 ldio->sense_buf_phys_addr_lo = cmd->sense_phys_addr;
698 * Compute the total number of frames this command consumes. FW uses
699 * this number to pull sufficient number of frames from host memory.
701 cmd->frame_count = megasas_get_frame_count(ldio->sge_count);
703 return cmd->frame_count;
707 * megasas_is_ldio - Checks if the cmd is for logical drive
708 * @scmd: SCSI command
710 * Called by megasas_queue_command to find out if the command to be queued
711 * is a logical drive command
713 static inline int megasas_is_ldio(struct scsi_cmnd *cmd)
715 if (!MEGASAS_IS_LOGICAL(cmd))
716 return 0;
717 switch (cmd->cmnd[0]) {
718 case READ_10:
719 case WRITE_10:
720 case READ_12:
721 case WRITE_12:
722 case READ_6:
723 case WRITE_6:
724 case READ_16:
725 case WRITE_16:
726 return 1;
727 default:
728 return 0;
733 * megasas_dump_pending_frames - Dumps the frame address of all pending cmds
734 * in FW
735 * @instance: Adapter soft state
737 static inline void
738 megasas_dump_pending_frames(struct megasas_instance *instance)
740 struct megasas_cmd *cmd;
741 int i,n;
742 union megasas_sgl *mfi_sgl;
743 struct megasas_io_frame *ldio;
744 struct megasas_pthru_frame *pthru;
745 u32 sgcount;
746 u32 max_cmd = instance->max_fw_cmds;
748 printk(KERN_ERR "\nmegasas[%d]: Dumping Frame Phys Address of all pending cmds in FW\n",instance->host->host_no);
749 printk(KERN_ERR "megasas[%d]: Total OS Pending cmds : %d\n",instance->host->host_no,atomic_read(&instance->fw_outstanding));
750 if (IS_DMA64)
751 printk(KERN_ERR "\nmegasas[%d]: 64 bit SGLs were sent to FW\n",instance->host->host_no);
752 else
753 printk(KERN_ERR "\nmegasas[%d]: 32 bit SGLs were sent to FW\n",instance->host->host_no);
755 printk(KERN_ERR "megasas[%d]: Pending OS cmds in FW : \n",instance->host->host_no);
756 for (i = 0; i < max_cmd; i++) {
757 cmd = instance->cmd_list[i];
758 if(!cmd->scmd)
759 continue;
760 printk(KERN_ERR "megasas[%d]: Frame addr :0x%08lx : ",instance->host->host_no,(unsigned long)cmd->frame_phys_addr);
761 if (megasas_is_ldio(cmd->scmd)){
762 ldio = (struct megasas_io_frame *)cmd->frame;
763 mfi_sgl = &ldio->sgl;
764 sgcount = ldio->sge_count;
765 printk(KERN_ERR "megasas[%d]: frame count : 0x%x, Cmd : 0x%x, Tgt id : 0x%x, lba lo : 0x%x, lba_hi : 0x%x, sense_buf addr : 0x%x,sge count : 0x%x\n",instance->host->host_no, cmd->frame_count,ldio->cmd,ldio->target_id, ldio->start_lba_lo,ldio->start_lba_hi,ldio->sense_buf_phys_addr_lo,sgcount);
767 else {
768 pthru = (struct megasas_pthru_frame *) cmd->frame;
769 mfi_sgl = &pthru->sgl;
770 sgcount = pthru->sge_count;
771 printk(KERN_ERR "megasas[%d]: frame count : 0x%x, Cmd : 0x%x, Tgt id : 0x%x, lun : 0x%x, cdb_len : 0x%x, data xfer len : 0x%x, sense_buf addr : 0x%x,sge count : 0x%x\n",instance->host->host_no,cmd->frame_count,pthru->cmd,pthru->target_id,pthru->lun,pthru->cdb_len , pthru->data_xfer_len,pthru->sense_buf_phys_addr_lo,sgcount);
773 if(megasas_dbg_lvl & MEGASAS_DBG_LVL){
774 for (n = 0; n < sgcount; n++){
775 if (IS_DMA64)
776 printk(KERN_ERR "megasas: sgl len : 0x%x, sgl addr : 0x%08lx ",mfi_sgl->sge64[n].length , (unsigned long)mfi_sgl->sge64[n].phys_addr) ;
777 else
778 printk(KERN_ERR "megasas: sgl len : 0x%x, sgl addr : 0x%x ",mfi_sgl->sge32[n].length , mfi_sgl->sge32[n].phys_addr) ;
781 printk(KERN_ERR "\n");
782 } /*for max_cmd*/
783 printk(KERN_ERR "\nmegasas[%d]: Pending Internal cmds in FW : \n",instance->host->host_no);
784 for (i = 0; i < max_cmd; i++) {
786 cmd = instance->cmd_list[i];
788 if(cmd->sync_cmd == 1){
789 printk(KERN_ERR "0x%08lx : ", (unsigned long)cmd->frame_phys_addr);
792 printk(KERN_ERR "megasas[%d]: Dumping Done.\n\n",instance->host->host_no);
796 * megasas_queue_command - Queue entry point
797 * @scmd: SCSI command to be queued
798 * @done: Callback entry point
800 static int
801 megasas_queue_command(struct scsi_cmnd *scmd, void (*done) (struct scsi_cmnd *))
803 u32 frame_count;
804 struct megasas_cmd *cmd;
805 struct megasas_instance *instance;
807 instance = (struct megasas_instance *)
808 scmd->device->host->hostdata;
810 /* Don't process if we have already declared adapter dead */
811 if (instance->hw_crit_error)
812 return SCSI_MLQUEUE_HOST_BUSY;
814 scmd->scsi_done = done;
815 scmd->result = 0;
817 if (MEGASAS_IS_LOGICAL(scmd) &&
818 (scmd->device->id >= MEGASAS_MAX_LD || scmd->device->lun)) {
819 scmd->result = DID_BAD_TARGET << 16;
820 goto out_done;
823 switch (scmd->cmnd[0]) {
824 case SYNCHRONIZE_CACHE:
826 * FW takes care of flush cache on its own
827 * No need to send it down
829 scmd->result = DID_OK << 16;
830 goto out_done;
831 default:
832 break;
835 cmd = megasas_get_cmd(instance);
836 if (!cmd)
837 return SCSI_MLQUEUE_HOST_BUSY;
840 * Logical drive command
842 if (megasas_is_ldio(scmd))
843 frame_count = megasas_build_ldio(instance, scmd, cmd);
844 else
845 frame_count = megasas_build_dcdb(instance, scmd, cmd);
847 if (!frame_count)
848 goto out_return_cmd;
850 cmd->scmd = scmd;
851 scmd->SCp.ptr = (char *)cmd;
854 * Issue the command to the FW
856 atomic_inc(&instance->fw_outstanding);
858 instance->instancet->fire_cmd(cmd->frame_phys_addr ,cmd->frame_count-1,instance->reg_set);
860 return 0;
862 out_return_cmd:
863 megasas_return_cmd(instance, cmd);
864 out_done:
865 done(scmd);
866 return 0;
869 static int megasas_slave_configure(struct scsi_device *sdev)
872 * Don't export physical disk devices to the disk driver.
874 * FIXME: Currently we don't export them to the midlayer at all.
875 * That will be fixed once LSI engineers have audited the
876 * firmware for possible issues.
878 if (sdev->channel < MEGASAS_MAX_PD_CHANNELS && sdev->type == TYPE_DISK)
879 return -ENXIO;
882 * The RAID firmware may require extended timeouts.
884 if (sdev->channel >= MEGASAS_MAX_PD_CHANNELS)
885 sdev->timeout = MEGASAS_DEFAULT_CMD_TIMEOUT * HZ;
886 return 0;
890 * megasas_wait_for_outstanding - Wait for all outstanding cmds
891 * @instance: Adapter soft state
893 * This function waits for upto MEGASAS_RESET_WAIT_TIME seconds for FW to
894 * complete all its outstanding commands. Returns error if one or more IOs
895 * are pending after this time period. It also marks the controller dead.
897 static int megasas_wait_for_outstanding(struct megasas_instance *instance)
899 int i;
900 u32 wait_time = MEGASAS_RESET_WAIT_TIME;
902 for (i = 0; i < wait_time; i++) {
904 int outstanding = atomic_read(&instance->fw_outstanding);
906 if (!outstanding)
907 break;
909 if (!(i % MEGASAS_RESET_NOTICE_INTERVAL)) {
910 printk(KERN_NOTICE "megasas: [%2d]waiting for %d "
911 "commands to complete\n",i,outstanding);
914 msleep(1000);
917 if (atomic_read(&instance->fw_outstanding)) {
919 * Send signal to FW to stop processing any pending cmds.
920 * The controller will be taken offline by the OS now.
922 writel(MFI_STOP_ADP,
923 &instance->reg_set->inbound_doorbell);
924 megasas_dump_pending_frames(instance);
925 instance->hw_crit_error = 1;
926 return FAILED;
929 return SUCCESS;
933 * megasas_generic_reset - Generic reset routine
934 * @scmd: Mid-layer SCSI command
936 * This routine implements a generic reset handler for device, bus and host
937 * reset requests. Device, bus and host specific reset handlers can use this
938 * function after they do their specific tasks.
940 static int megasas_generic_reset(struct scsi_cmnd *scmd)
942 int ret_val;
943 struct megasas_instance *instance;
945 instance = (struct megasas_instance *)scmd->device->host->hostdata;
947 scmd_printk(KERN_NOTICE, scmd, "megasas: RESET -%ld cmd=%x retries=%x\n",
948 scmd->serial_number, scmd->cmnd[0], scmd->retries);
950 if (instance->hw_crit_error) {
951 printk(KERN_ERR "megasas: cannot recover from previous reset "
952 "failures\n");
953 return FAILED;
956 ret_val = megasas_wait_for_outstanding(instance);
957 if (ret_val == SUCCESS)
958 printk(KERN_NOTICE "megasas: reset successful \n");
959 else
960 printk(KERN_ERR "megasas: failed to do reset\n");
962 return ret_val;
966 * megasas_reset_timer - quiesce the adapter if required
967 * @scmd: scsi cmnd
969 * Sets the FW busy flag and reduces the host->can_queue if the
970 * cmd has not been completed within the timeout period.
972 static enum
973 scsi_eh_timer_return megasas_reset_timer(struct scsi_cmnd *scmd)
975 struct megasas_cmd *cmd = (struct megasas_cmd *)scmd->SCp.ptr;
976 struct megasas_instance *instance;
977 unsigned long flags;
979 if (time_after(jiffies, scmd->jiffies_at_alloc +
980 (MEGASAS_DEFAULT_CMD_TIMEOUT * 2) * HZ)) {
981 return EH_NOT_HANDLED;
984 instance = cmd->instance;
985 if (!(instance->flag & MEGASAS_FW_BUSY)) {
986 /* FW is busy, throttle IO */
987 spin_lock_irqsave(instance->host->host_lock, flags);
989 instance->host->can_queue = 16;
990 instance->last_time = jiffies;
991 instance->flag |= MEGASAS_FW_BUSY;
993 spin_unlock_irqrestore(instance->host->host_lock, flags);
995 return EH_RESET_TIMER;
999 * megasas_reset_device - Device reset handler entry point
1001 static int megasas_reset_device(struct scsi_cmnd *scmd)
1003 int ret;
1006 * First wait for all commands to complete
1008 ret = megasas_generic_reset(scmd);
1010 return ret;
1014 * megasas_reset_bus_host - Bus & host reset handler entry point
1016 static int megasas_reset_bus_host(struct scsi_cmnd *scmd)
1018 int ret;
1021 * First wait for all commands to complete
1023 ret = megasas_generic_reset(scmd);
1025 return ret;
1029 * megasas_bios_param - Returns disk geometry for a disk
1030 * @sdev: device handle
1031 * @bdev: block device
1032 * @capacity: drive capacity
1033 * @geom: geometry parameters
1035 static int
1036 megasas_bios_param(struct scsi_device *sdev, struct block_device *bdev,
1037 sector_t capacity, int geom[])
1039 int heads;
1040 int sectors;
1041 sector_t cylinders;
1042 unsigned long tmp;
1043 /* Default heads (64) & sectors (32) */
1044 heads = 64;
1045 sectors = 32;
1047 tmp = heads * sectors;
1048 cylinders = capacity;
1050 sector_div(cylinders, tmp);
1053 * Handle extended translation size for logical drives > 1Gb
1056 if (capacity >= 0x200000) {
1057 heads = 255;
1058 sectors = 63;
1059 tmp = heads*sectors;
1060 cylinders = capacity;
1061 sector_div(cylinders, tmp);
1064 geom[0] = heads;
1065 geom[1] = sectors;
1066 geom[2] = cylinders;
1068 return 0;
1072 * megasas_service_aen - Processes an event notification
1073 * @instance: Adapter soft state
1074 * @cmd: AEN command completed by the ISR
1076 * For AEN, driver sends a command down to FW that is held by the FW till an
1077 * event occurs. When an event of interest occurs, FW completes the command
1078 * that it was previously holding.
1080 * This routines sends SIGIO signal to processes that have registered with the
1081 * driver for AEN.
1083 static void
1084 megasas_service_aen(struct megasas_instance *instance, struct megasas_cmd *cmd)
1087 * Don't signal app if it is just an aborted previously registered aen
1089 if (!cmd->abort_aen)
1090 kill_fasync(&megasas_async_queue, SIGIO, POLL_IN);
1091 else
1092 cmd->abort_aen = 0;
1094 instance->aen_cmd = NULL;
1095 megasas_return_cmd(instance, cmd);
1099 * Scsi host template for megaraid_sas driver
1101 static struct scsi_host_template megasas_template = {
1103 .module = THIS_MODULE,
1104 .name = "LSI Logic SAS based MegaRAID driver",
1105 .proc_name = "megaraid_sas",
1106 .slave_configure = megasas_slave_configure,
1107 .queuecommand = megasas_queue_command,
1108 .eh_device_reset_handler = megasas_reset_device,
1109 .eh_bus_reset_handler = megasas_reset_bus_host,
1110 .eh_host_reset_handler = megasas_reset_bus_host,
1111 .eh_timed_out = megasas_reset_timer,
1112 .bios_param = megasas_bios_param,
1113 .use_clustering = ENABLE_CLUSTERING,
1114 .use_sg_chaining = ENABLE_SG_CHAINING,
1118 * megasas_complete_int_cmd - Completes an internal command
1119 * @instance: Adapter soft state
1120 * @cmd: Command to be completed
1122 * The megasas_issue_blocked_cmd() function waits for a command to complete
1123 * after it issues a command. This function wakes up that waiting routine by
1124 * calling wake_up() on the wait queue.
1126 static void
1127 megasas_complete_int_cmd(struct megasas_instance *instance,
1128 struct megasas_cmd *cmd)
1130 cmd->cmd_status = cmd->frame->io.cmd_status;
1132 if (cmd->cmd_status == ENODATA) {
1133 cmd->cmd_status = 0;
1135 wake_up(&instance->int_cmd_wait_q);
1139 * megasas_complete_abort - Completes aborting a command
1140 * @instance: Adapter soft state
1141 * @cmd: Cmd that was issued to abort another cmd
1143 * The megasas_issue_blocked_abort_cmd() function waits on abort_cmd_wait_q
1144 * after it issues an abort on a previously issued command. This function
1145 * wakes up all functions waiting on the same wait queue.
1147 static void
1148 megasas_complete_abort(struct megasas_instance *instance,
1149 struct megasas_cmd *cmd)
1151 if (cmd->sync_cmd) {
1152 cmd->sync_cmd = 0;
1153 cmd->cmd_status = 0;
1154 wake_up(&instance->abort_cmd_wait_q);
1157 return;
1161 * megasas_complete_cmd - Completes a command
1162 * @instance: Adapter soft state
1163 * @cmd: Command to be completed
1164 * @alt_status: If non-zero, use this value as status to
1165 * SCSI mid-layer instead of the value returned
1166 * by the FW. This should be used if caller wants
1167 * an alternate status (as in the case of aborted
1168 * commands)
1170 static void
1171 megasas_complete_cmd(struct megasas_instance *instance, struct megasas_cmd *cmd,
1172 u8 alt_status)
1174 int exception = 0;
1175 struct megasas_header *hdr = &cmd->frame->hdr;
1177 if (cmd->scmd)
1178 cmd->scmd->SCp.ptr = NULL;
1180 switch (hdr->cmd) {
1182 case MFI_CMD_PD_SCSI_IO:
1183 case MFI_CMD_LD_SCSI_IO:
1186 * MFI_CMD_PD_SCSI_IO and MFI_CMD_LD_SCSI_IO could have been
1187 * issued either through an IO path or an IOCTL path. If it
1188 * was via IOCTL, we will send it to internal completion.
1190 if (cmd->sync_cmd) {
1191 cmd->sync_cmd = 0;
1192 megasas_complete_int_cmd(instance, cmd);
1193 break;
1196 case MFI_CMD_LD_READ:
1197 case MFI_CMD_LD_WRITE:
1199 if (alt_status) {
1200 cmd->scmd->result = alt_status << 16;
1201 exception = 1;
1204 if (exception) {
1206 atomic_dec(&instance->fw_outstanding);
1208 scsi_dma_unmap(cmd->scmd);
1209 cmd->scmd->scsi_done(cmd->scmd);
1210 megasas_return_cmd(instance, cmd);
1212 break;
1215 switch (hdr->cmd_status) {
1217 case MFI_STAT_OK:
1218 cmd->scmd->result = DID_OK << 16;
1219 break;
1221 case MFI_STAT_SCSI_IO_FAILED:
1222 case MFI_STAT_LD_INIT_IN_PROGRESS:
1223 cmd->scmd->result =
1224 (DID_ERROR << 16) | hdr->scsi_status;
1225 break;
1227 case MFI_STAT_SCSI_DONE_WITH_ERROR:
1229 cmd->scmd->result = (DID_OK << 16) | hdr->scsi_status;
1231 if (hdr->scsi_status == SAM_STAT_CHECK_CONDITION) {
1232 memset(cmd->scmd->sense_buffer, 0,
1233 SCSI_SENSE_BUFFERSIZE);
1234 memcpy(cmd->scmd->sense_buffer, cmd->sense,
1235 hdr->sense_len);
1237 cmd->scmd->result |= DRIVER_SENSE << 24;
1240 break;
1242 case MFI_STAT_LD_OFFLINE:
1243 case MFI_STAT_DEVICE_NOT_FOUND:
1244 cmd->scmd->result = DID_BAD_TARGET << 16;
1245 break;
1247 default:
1248 printk(KERN_DEBUG "megasas: MFI FW status %#x\n",
1249 hdr->cmd_status);
1250 cmd->scmd->result = DID_ERROR << 16;
1251 break;
1254 atomic_dec(&instance->fw_outstanding);
1256 scsi_dma_unmap(cmd->scmd);
1257 cmd->scmd->scsi_done(cmd->scmd);
1258 megasas_return_cmd(instance, cmd);
1260 break;
1262 case MFI_CMD_SMP:
1263 case MFI_CMD_STP:
1264 case MFI_CMD_DCMD:
1267 * See if got an event notification
1269 if (cmd->frame->dcmd.opcode == MR_DCMD_CTRL_EVENT_WAIT)
1270 megasas_service_aen(instance, cmd);
1271 else
1272 megasas_complete_int_cmd(instance, cmd);
1274 break;
1276 case MFI_CMD_ABORT:
1278 * Cmd issued to abort another cmd returned
1280 megasas_complete_abort(instance, cmd);
1281 break;
1283 default:
1284 printk("megasas: Unknown command completed! [0x%X]\n",
1285 hdr->cmd);
1286 break;
1291 * megasas_deplete_reply_queue - Processes all completed commands
1292 * @instance: Adapter soft state
1293 * @alt_status: Alternate status to be returned to
1294 * SCSI mid-layer instead of the status
1295 * returned by the FW
1297 static int
1298 megasas_deplete_reply_queue(struct megasas_instance *instance, u8 alt_status)
1301 * Check if it is our interrupt
1302 * Clear the interrupt
1304 if(instance->instancet->clear_intr(instance->reg_set))
1305 return IRQ_NONE;
1307 if (instance->hw_crit_error)
1308 goto out_done;
1310 * Schedule the tasklet for cmd completion
1312 tasklet_schedule(&instance->isr_tasklet);
1313 out_done:
1314 return IRQ_HANDLED;
1318 * megasas_isr - isr entry point
1320 static irqreturn_t megasas_isr(int irq, void *devp)
1322 return megasas_deplete_reply_queue((struct megasas_instance *)devp,
1323 DID_OK);
1327 * megasas_transition_to_ready - Move the FW to READY state
1328 * @instance: Adapter soft state
1330 * During the initialization, FW passes can potentially be in any one of
1331 * several possible states. If the FW in operational, waiting-for-handshake
1332 * states, driver must take steps to bring it to ready state. Otherwise, it
1333 * has to wait for the ready state.
1335 static int
1336 megasas_transition_to_ready(struct megasas_instance* instance)
1338 int i;
1339 u8 max_wait;
1340 u32 fw_state;
1341 u32 cur_state;
1343 fw_state = instance->instancet->read_fw_status_reg(instance->reg_set) & MFI_STATE_MASK;
1345 if (fw_state != MFI_STATE_READY)
1346 printk(KERN_INFO "megasas: Waiting for FW to come to ready"
1347 " state\n");
1349 while (fw_state != MFI_STATE_READY) {
1351 switch (fw_state) {
1353 case MFI_STATE_FAULT:
1355 printk(KERN_DEBUG "megasas: FW in FAULT state!!\n");
1356 return -ENODEV;
1358 case MFI_STATE_WAIT_HANDSHAKE:
1360 * Set the CLR bit in inbound doorbell
1362 writel(MFI_INIT_CLEAR_HANDSHAKE|MFI_INIT_HOTPLUG,
1363 &instance->reg_set->inbound_doorbell);
1365 max_wait = 2;
1366 cur_state = MFI_STATE_WAIT_HANDSHAKE;
1367 break;
1369 case MFI_STATE_BOOT_MESSAGE_PENDING:
1370 writel(MFI_INIT_HOTPLUG,
1371 &instance->reg_set->inbound_doorbell);
1373 max_wait = 10;
1374 cur_state = MFI_STATE_BOOT_MESSAGE_PENDING;
1375 break;
1377 case MFI_STATE_OPERATIONAL:
1379 * Bring it to READY state; assuming max wait 10 secs
1381 instance->instancet->disable_intr(instance->reg_set);
1382 writel(MFI_RESET_FLAGS, &instance->reg_set->inbound_doorbell);
1384 max_wait = 10;
1385 cur_state = MFI_STATE_OPERATIONAL;
1386 break;
1388 case MFI_STATE_UNDEFINED:
1390 * This state should not last for more than 2 seconds
1392 max_wait = 2;
1393 cur_state = MFI_STATE_UNDEFINED;
1394 break;
1396 case MFI_STATE_BB_INIT:
1397 max_wait = 2;
1398 cur_state = MFI_STATE_BB_INIT;
1399 break;
1401 case MFI_STATE_FW_INIT:
1402 max_wait = 20;
1403 cur_state = MFI_STATE_FW_INIT;
1404 break;
1406 case MFI_STATE_FW_INIT_2:
1407 max_wait = 20;
1408 cur_state = MFI_STATE_FW_INIT_2;
1409 break;
1411 case MFI_STATE_DEVICE_SCAN:
1412 max_wait = 20;
1413 cur_state = MFI_STATE_DEVICE_SCAN;
1414 break;
1416 case MFI_STATE_FLUSH_CACHE:
1417 max_wait = 20;
1418 cur_state = MFI_STATE_FLUSH_CACHE;
1419 break;
1421 default:
1422 printk(KERN_DEBUG "megasas: Unknown state 0x%x\n",
1423 fw_state);
1424 return -ENODEV;
1428 * The cur_state should not last for more than max_wait secs
1430 for (i = 0; i < (max_wait * 1000); i++) {
1431 fw_state = instance->instancet->read_fw_status_reg(instance->reg_set) &
1432 MFI_STATE_MASK ;
1434 if (fw_state == cur_state) {
1435 msleep(1);
1436 } else
1437 break;
1441 * Return error if fw_state hasn't changed after max_wait
1443 if (fw_state == cur_state) {
1444 printk(KERN_DEBUG "FW state [%d] hasn't changed "
1445 "in %d secs\n", fw_state, max_wait);
1446 return -ENODEV;
1449 printk(KERN_INFO "megasas: FW now in Ready state\n");
1451 return 0;
1455 * megasas_teardown_frame_pool - Destroy the cmd frame DMA pool
1456 * @instance: Adapter soft state
1458 static void megasas_teardown_frame_pool(struct megasas_instance *instance)
1460 int i;
1461 u32 max_cmd = instance->max_fw_cmds;
1462 struct megasas_cmd *cmd;
1464 if (!instance->frame_dma_pool)
1465 return;
1468 * Return all frames to pool
1470 for (i = 0; i < max_cmd; i++) {
1472 cmd = instance->cmd_list[i];
1474 if (cmd->frame)
1475 pci_pool_free(instance->frame_dma_pool, cmd->frame,
1476 cmd->frame_phys_addr);
1478 if (cmd->sense)
1479 pci_pool_free(instance->sense_dma_pool, cmd->sense,
1480 cmd->sense_phys_addr);
1484 * Now destroy the pool itself
1486 pci_pool_destroy(instance->frame_dma_pool);
1487 pci_pool_destroy(instance->sense_dma_pool);
1489 instance->frame_dma_pool = NULL;
1490 instance->sense_dma_pool = NULL;
1494 * megasas_create_frame_pool - Creates DMA pool for cmd frames
1495 * @instance: Adapter soft state
1497 * Each command packet has an embedded DMA memory buffer that is used for
1498 * filling MFI frame and the SG list that immediately follows the frame. This
1499 * function creates those DMA memory buffers for each command packet by using
1500 * PCI pool facility.
1502 static int megasas_create_frame_pool(struct megasas_instance *instance)
1504 int i;
1505 u32 max_cmd;
1506 u32 sge_sz;
1507 u32 sgl_sz;
1508 u32 total_sz;
1509 u32 frame_count;
1510 struct megasas_cmd *cmd;
1512 max_cmd = instance->max_fw_cmds;
1515 * Size of our frame is 64 bytes for MFI frame, followed by max SG
1516 * elements and finally SCSI_SENSE_BUFFERSIZE bytes for sense buffer
1518 sge_sz = (IS_DMA64) ? sizeof(struct megasas_sge64) :
1519 sizeof(struct megasas_sge32);
1522 * Calculated the number of 64byte frames required for SGL
1524 sgl_sz = sge_sz * instance->max_num_sge;
1525 frame_count = (sgl_sz + MEGAMFI_FRAME_SIZE - 1) / MEGAMFI_FRAME_SIZE;
1528 * We need one extra frame for the MFI command
1530 frame_count++;
1532 total_sz = MEGAMFI_FRAME_SIZE * frame_count;
1534 * Use DMA pool facility provided by PCI layer
1536 instance->frame_dma_pool = pci_pool_create("megasas frame pool",
1537 instance->pdev, total_sz, 64,
1540 if (!instance->frame_dma_pool) {
1541 printk(KERN_DEBUG "megasas: failed to setup frame pool\n");
1542 return -ENOMEM;
1545 instance->sense_dma_pool = pci_pool_create("megasas sense pool",
1546 instance->pdev, 128, 4, 0);
1548 if (!instance->sense_dma_pool) {
1549 printk(KERN_DEBUG "megasas: failed to setup sense pool\n");
1551 pci_pool_destroy(instance->frame_dma_pool);
1552 instance->frame_dma_pool = NULL;
1554 return -ENOMEM;
1558 * Allocate and attach a frame to each of the commands in cmd_list.
1559 * By making cmd->index as the context instead of the &cmd, we can
1560 * always use 32bit context regardless of the architecture
1562 for (i = 0; i < max_cmd; i++) {
1564 cmd = instance->cmd_list[i];
1566 cmd->frame = pci_pool_alloc(instance->frame_dma_pool,
1567 GFP_KERNEL, &cmd->frame_phys_addr);
1569 cmd->sense = pci_pool_alloc(instance->sense_dma_pool,
1570 GFP_KERNEL, &cmd->sense_phys_addr);
1573 * megasas_teardown_frame_pool() takes care of freeing
1574 * whatever has been allocated
1576 if (!cmd->frame || !cmd->sense) {
1577 printk(KERN_DEBUG "megasas: pci_pool_alloc failed \n");
1578 megasas_teardown_frame_pool(instance);
1579 return -ENOMEM;
1582 cmd->frame->io.context = cmd->index;
1585 return 0;
1589 * megasas_free_cmds - Free all the cmds in the free cmd pool
1590 * @instance: Adapter soft state
1592 static void megasas_free_cmds(struct megasas_instance *instance)
1594 int i;
1595 /* First free the MFI frame pool */
1596 megasas_teardown_frame_pool(instance);
1598 /* Free all the commands in the cmd_list */
1599 for (i = 0; i < instance->max_fw_cmds; i++)
1600 kfree(instance->cmd_list[i]);
1602 /* Free the cmd_list buffer itself */
1603 kfree(instance->cmd_list);
1604 instance->cmd_list = NULL;
1606 INIT_LIST_HEAD(&instance->cmd_pool);
1610 * megasas_alloc_cmds - Allocates the command packets
1611 * @instance: Adapter soft state
1613 * Each command that is issued to the FW, whether IO commands from the OS or
1614 * internal commands like IOCTLs, are wrapped in local data structure called
1615 * megasas_cmd. The frame embedded in this megasas_cmd is actually issued to
1616 * the FW.
1618 * Each frame has a 32-bit field called context (tag). This context is used
1619 * to get back the megasas_cmd from the frame when a frame gets completed in
1620 * the ISR. Typically the address of the megasas_cmd itself would be used as
1621 * the context. But we wanted to keep the differences between 32 and 64 bit
1622 * systems to the mininum. We always use 32 bit integers for the context. In
1623 * this driver, the 32 bit values are the indices into an array cmd_list.
1624 * This array is used only to look up the megasas_cmd given the context. The
1625 * free commands themselves are maintained in a linked list called cmd_pool.
1627 static int megasas_alloc_cmds(struct megasas_instance *instance)
1629 int i;
1630 int j;
1631 u32 max_cmd;
1632 struct megasas_cmd *cmd;
1634 max_cmd = instance->max_fw_cmds;
1637 * instance->cmd_list is an array of struct megasas_cmd pointers.
1638 * Allocate the dynamic array first and then allocate individual
1639 * commands.
1641 instance->cmd_list = kcalloc(max_cmd, sizeof(struct megasas_cmd*), GFP_KERNEL);
1643 if (!instance->cmd_list) {
1644 printk(KERN_DEBUG "megasas: out of memory\n");
1645 return -ENOMEM;
1649 for (i = 0; i < max_cmd; i++) {
1650 instance->cmd_list[i] = kmalloc(sizeof(struct megasas_cmd),
1651 GFP_KERNEL);
1653 if (!instance->cmd_list[i]) {
1655 for (j = 0; j < i; j++)
1656 kfree(instance->cmd_list[j]);
1658 kfree(instance->cmd_list);
1659 instance->cmd_list = NULL;
1661 return -ENOMEM;
1666 * Add all the commands to command pool (instance->cmd_pool)
1668 for (i = 0; i < max_cmd; i++) {
1669 cmd = instance->cmd_list[i];
1670 memset(cmd, 0, sizeof(struct megasas_cmd));
1671 cmd->index = i;
1672 cmd->instance = instance;
1674 list_add_tail(&cmd->list, &instance->cmd_pool);
1678 * Create a frame pool and assign one frame to each cmd
1680 if (megasas_create_frame_pool(instance)) {
1681 printk(KERN_DEBUG "megasas: Error creating frame DMA pool\n");
1682 megasas_free_cmds(instance);
1685 return 0;
1689 * megasas_get_controller_info - Returns FW's controller structure
1690 * @instance: Adapter soft state
1691 * @ctrl_info: Controller information structure
1693 * Issues an internal command (DCMD) to get the FW's controller structure.
1694 * This information is mainly used to find out the maximum IO transfer per
1695 * command supported by the FW.
1697 static int
1698 megasas_get_ctrl_info(struct megasas_instance *instance,
1699 struct megasas_ctrl_info *ctrl_info)
1701 int ret = 0;
1702 struct megasas_cmd *cmd;
1703 struct megasas_dcmd_frame *dcmd;
1704 struct megasas_ctrl_info *ci;
1705 dma_addr_t ci_h = 0;
1707 cmd = megasas_get_cmd(instance);
1709 if (!cmd) {
1710 printk(KERN_DEBUG "megasas: Failed to get a free cmd\n");
1711 return -ENOMEM;
1714 dcmd = &cmd->frame->dcmd;
1716 ci = pci_alloc_consistent(instance->pdev,
1717 sizeof(struct megasas_ctrl_info), &ci_h);
1719 if (!ci) {
1720 printk(KERN_DEBUG "Failed to alloc mem for ctrl info\n");
1721 megasas_return_cmd(instance, cmd);
1722 return -ENOMEM;
1725 memset(ci, 0, sizeof(*ci));
1726 memset(dcmd->mbox.b, 0, MFI_MBOX_SIZE);
1728 dcmd->cmd = MFI_CMD_DCMD;
1729 dcmd->cmd_status = 0xFF;
1730 dcmd->sge_count = 1;
1731 dcmd->flags = MFI_FRAME_DIR_READ;
1732 dcmd->timeout = 0;
1733 dcmd->data_xfer_len = sizeof(struct megasas_ctrl_info);
1734 dcmd->opcode = MR_DCMD_CTRL_GET_INFO;
1735 dcmd->sgl.sge32[0].phys_addr = ci_h;
1736 dcmd->sgl.sge32[0].length = sizeof(struct megasas_ctrl_info);
1738 if (!megasas_issue_polled(instance, cmd)) {
1739 ret = 0;
1740 memcpy(ctrl_info, ci, sizeof(struct megasas_ctrl_info));
1741 } else {
1742 ret = -1;
1745 pci_free_consistent(instance->pdev, sizeof(struct megasas_ctrl_info),
1746 ci, ci_h);
1748 megasas_return_cmd(instance, cmd);
1749 return ret;
1753 * megasas_complete_cmd_dpc - Returns FW's controller structure
1754 * @instance_addr: Address of adapter soft state
1756 * Tasklet to complete cmds
1758 static void megasas_complete_cmd_dpc(unsigned long instance_addr)
1760 u32 producer;
1761 u32 consumer;
1762 u32 context;
1763 struct megasas_cmd *cmd;
1764 struct megasas_instance *instance = (struct megasas_instance *)instance_addr;
1765 unsigned long flags;
1767 /* If we have already declared adapter dead, donot complete cmds */
1768 if (instance->hw_crit_error)
1769 return;
1771 producer = *instance->producer;
1772 consumer = *instance->consumer;
1774 while (consumer != producer) {
1775 context = instance->reply_queue[consumer];
1777 cmd = instance->cmd_list[context];
1779 megasas_complete_cmd(instance, cmd, DID_OK);
1781 consumer++;
1782 if (consumer == (instance->max_fw_cmds + 1)) {
1783 consumer = 0;
1787 *instance->consumer = producer;
1790 * Check if we can restore can_queue
1792 if (instance->flag & MEGASAS_FW_BUSY
1793 && time_after(jiffies, instance->last_time + 5 * HZ)
1794 && atomic_read(&instance->fw_outstanding) < 17) {
1796 spin_lock_irqsave(instance->host->host_lock, flags);
1797 instance->flag &= ~MEGASAS_FW_BUSY;
1798 instance->host->can_queue =
1799 instance->max_fw_cmds - MEGASAS_INT_CMDS;
1801 spin_unlock_irqrestore(instance->host->host_lock, flags);
1807 * megasas_issue_init_mfi - Initializes the FW
1808 * @instance: Adapter soft state
1810 * Issues the INIT MFI cmd
1812 static int
1813 megasas_issue_init_mfi(struct megasas_instance *instance)
1815 u32 context;
1817 struct megasas_cmd *cmd;
1819 struct megasas_init_frame *init_frame;
1820 struct megasas_init_queue_info *initq_info;
1821 dma_addr_t init_frame_h;
1822 dma_addr_t initq_info_h;
1825 * Prepare a init frame. Note the init frame points to queue info
1826 * structure. Each frame has SGL allocated after first 64 bytes. For
1827 * this frame - since we don't need any SGL - we use SGL's space as
1828 * queue info structure
1830 * We will not get a NULL command below. We just created the pool.
1832 cmd = megasas_get_cmd(instance);
1834 init_frame = (struct megasas_init_frame *)cmd->frame;
1835 initq_info = (struct megasas_init_queue_info *)
1836 ((unsigned long)init_frame + 64);
1838 init_frame_h = cmd->frame_phys_addr;
1839 initq_info_h = init_frame_h + 64;
1841 context = init_frame->context;
1842 memset(init_frame, 0, MEGAMFI_FRAME_SIZE);
1843 memset(initq_info, 0, sizeof(struct megasas_init_queue_info));
1844 init_frame->context = context;
1846 initq_info->reply_queue_entries = instance->max_fw_cmds + 1;
1847 initq_info->reply_queue_start_phys_addr_lo = instance->reply_queue_h;
1849 initq_info->producer_index_phys_addr_lo = instance->producer_h;
1850 initq_info->consumer_index_phys_addr_lo = instance->consumer_h;
1852 init_frame->cmd = MFI_CMD_INIT;
1853 init_frame->cmd_status = 0xFF;
1854 init_frame->queue_info_new_phys_addr_lo = initq_info_h;
1856 init_frame->data_xfer_len = sizeof(struct megasas_init_queue_info);
1859 * disable the intr before firing the init frame to FW
1861 instance->instancet->disable_intr(instance->reg_set);
1864 * Issue the init frame in polled mode
1867 if (megasas_issue_polled(instance, cmd)) {
1868 printk(KERN_ERR "megasas: Failed to init firmware\n");
1869 megasas_return_cmd(instance, cmd);
1870 goto fail_fw_init;
1873 megasas_return_cmd(instance, cmd);
1875 return 0;
1877 fail_fw_init:
1878 return -EINVAL;
1882 * megasas_init_mfi - Initializes the FW
1883 * @instance: Adapter soft state
1885 * This is the main function for initializing MFI firmware.
1887 static int megasas_init_mfi(struct megasas_instance *instance)
1889 u32 context_sz;
1890 u32 reply_q_sz;
1891 u32 max_sectors_1;
1892 u32 max_sectors_2;
1893 u32 tmp_sectors;
1894 struct megasas_register_set __iomem *reg_set;
1895 struct megasas_ctrl_info *ctrl_info;
1897 * Map the message registers
1899 instance->base_addr = pci_resource_start(instance->pdev, 0);
1901 if (pci_request_regions(instance->pdev, "megasas: LSI Logic")) {
1902 printk(KERN_DEBUG "megasas: IO memory region busy!\n");
1903 return -EBUSY;
1906 instance->reg_set = ioremap_nocache(instance->base_addr, 8192);
1908 if (!instance->reg_set) {
1909 printk(KERN_DEBUG "megasas: Failed to map IO mem\n");
1910 goto fail_ioremap;
1913 reg_set = instance->reg_set;
1915 switch(instance->pdev->device)
1917 case PCI_DEVICE_ID_LSI_SAS1078R:
1918 instance->instancet = &megasas_instance_template_ppc;
1919 break;
1920 case PCI_DEVICE_ID_LSI_SAS1064R:
1921 case PCI_DEVICE_ID_DELL_PERC5:
1922 default:
1923 instance->instancet = &megasas_instance_template_xscale;
1924 break;
1928 * We expect the FW state to be READY
1930 if (megasas_transition_to_ready(instance))
1931 goto fail_ready_state;
1934 * Get various operational parameters from status register
1936 instance->max_fw_cmds = instance->instancet->read_fw_status_reg(reg_set) & 0x00FFFF;
1938 * Reduce the max supported cmds by 1. This is to ensure that the
1939 * reply_q_sz (1 more than the max cmd that driver may send)
1940 * does not exceed max cmds that the FW can support
1942 instance->max_fw_cmds = instance->max_fw_cmds-1;
1943 instance->max_num_sge = (instance->instancet->read_fw_status_reg(reg_set) & 0xFF0000) >>
1944 0x10;
1946 * Create a pool of commands
1948 if (megasas_alloc_cmds(instance))
1949 goto fail_alloc_cmds;
1952 * Allocate memory for reply queue. Length of reply queue should
1953 * be _one_ more than the maximum commands handled by the firmware.
1955 * Note: When FW completes commands, it places corresponding contex
1956 * values in this circular reply queue. This circular queue is a fairly
1957 * typical producer-consumer queue. FW is the producer (of completed
1958 * commands) and the driver is the consumer.
1960 context_sz = sizeof(u32);
1961 reply_q_sz = context_sz * (instance->max_fw_cmds + 1);
1963 instance->reply_queue = pci_alloc_consistent(instance->pdev,
1964 reply_q_sz,
1965 &instance->reply_queue_h);
1967 if (!instance->reply_queue) {
1968 printk(KERN_DEBUG "megasas: Out of DMA mem for reply queue\n");
1969 goto fail_reply_queue;
1972 if (megasas_issue_init_mfi(instance))
1973 goto fail_fw_init;
1975 ctrl_info = kmalloc(sizeof(struct megasas_ctrl_info), GFP_KERNEL);
1978 * Compute the max allowed sectors per IO: The controller info has two
1979 * limits on max sectors. Driver should use the minimum of these two.
1981 * 1 << stripe_sz_ops.min = max sectors per strip
1983 * Note that older firmwares ( < FW ver 30) didn't report information
1984 * to calculate max_sectors_1. So the number ended up as zero always.
1986 tmp_sectors = 0;
1987 if (ctrl_info && !megasas_get_ctrl_info(instance, ctrl_info)) {
1989 max_sectors_1 = (1 << ctrl_info->stripe_sz_ops.min) *
1990 ctrl_info->max_strips_per_io;
1991 max_sectors_2 = ctrl_info->max_request_size;
1993 tmp_sectors = min_t(u32, max_sectors_1 , max_sectors_2);
1996 instance->max_sectors_per_req = instance->max_num_sge *
1997 PAGE_SIZE / 512;
1998 if (tmp_sectors && (instance->max_sectors_per_req > tmp_sectors))
1999 instance->max_sectors_per_req = tmp_sectors;
2001 kfree(ctrl_info);
2004 * Setup tasklet for cmd completion
2007 tasklet_init(&instance->isr_tasklet, megasas_complete_cmd_dpc,
2008 (unsigned long)instance);
2009 return 0;
2011 fail_fw_init:
2013 pci_free_consistent(instance->pdev, reply_q_sz,
2014 instance->reply_queue, instance->reply_queue_h);
2015 fail_reply_queue:
2016 megasas_free_cmds(instance);
2018 fail_alloc_cmds:
2019 fail_ready_state:
2020 iounmap(instance->reg_set);
2022 fail_ioremap:
2023 pci_release_regions(instance->pdev);
2025 return -EINVAL;
2029 * megasas_release_mfi - Reverses the FW initialization
2030 * @intance: Adapter soft state
2032 static void megasas_release_mfi(struct megasas_instance *instance)
2034 u32 reply_q_sz = sizeof(u32) * (instance->max_fw_cmds + 1);
2036 pci_free_consistent(instance->pdev, reply_q_sz,
2037 instance->reply_queue, instance->reply_queue_h);
2039 megasas_free_cmds(instance);
2041 iounmap(instance->reg_set);
2043 pci_release_regions(instance->pdev);
2047 * megasas_get_seq_num - Gets latest event sequence numbers
2048 * @instance: Adapter soft state
2049 * @eli: FW event log sequence numbers information
2051 * FW maintains a log of all events in a non-volatile area. Upper layers would
2052 * usually find out the latest sequence number of the events, the seq number at
2053 * the boot etc. They would "read" all the events below the latest seq number
2054 * by issuing a direct fw cmd (DCMD). For the future events (beyond latest seq
2055 * number), they would subsribe to AEN (asynchronous event notification) and
2056 * wait for the events to happen.
2058 static int
2059 megasas_get_seq_num(struct megasas_instance *instance,
2060 struct megasas_evt_log_info *eli)
2062 struct megasas_cmd *cmd;
2063 struct megasas_dcmd_frame *dcmd;
2064 struct megasas_evt_log_info *el_info;
2065 dma_addr_t el_info_h = 0;
2067 cmd = megasas_get_cmd(instance);
2069 if (!cmd) {
2070 return -ENOMEM;
2073 dcmd = &cmd->frame->dcmd;
2074 el_info = pci_alloc_consistent(instance->pdev,
2075 sizeof(struct megasas_evt_log_info),
2076 &el_info_h);
2078 if (!el_info) {
2079 megasas_return_cmd(instance, cmd);
2080 return -ENOMEM;
2083 memset(el_info, 0, sizeof(*el_info));
2084 memset(dcmd->mbox.b, 0, MFI_MBOX_SIZE);
2086 dcmd->cmd = MFI_CMD_DCMD;
2087 dcmd->cmd_status = 0x0;
2088 dcmd->sge_count = 1;
2089 dcmd->flags = MFI_FRAME_DIR_READ;
2090 dcmd->timeout = 0;
2091 dcmd->data_xfer_len = sizeof(struct megasas_evt_log_info);
2092 dcmd->opcode = MR_DCMD_CTRL_EVENT_GET_INFO;
2093 dcmd->sgl.sge32[0].phys_addr = el_info_h;
2094 dcmd->sgl.sge32[0].length = sizeof(struct megasas_evt_log_info);
2096 megasas_issue_blocked_cmd(instance, cmd);
2099 * Copy the data back into callers buffer
2101 memcpy(eli, el_info, sizeof(struct megasas_evt_log_info));
2103 pci_free_consistent(instance->pdev, sizeof(struct megasas_evt_log_info),
2104 el_info, el_info_h);
2106 megasas_return_cmd(instance, cmd);
2108 return 0;
2112 * megasas_register_aen - Registers for asynchronous event notification
2113 * @instance: Adapter soft state
2114 * @seq_num: The starting sequence number
2115 * @class_locale: Class of the event
2117 * This function subscribes for AEN for events beyond the @seq_num. It requests
2118 * to be notified if and only if the event is of type @class_locale
2120 static int
2121 megasas_register_aen(struct megasas_instance *instance, u32 seq_num,
2122 u32 class_locale_word)
2124 int ret_val;
2125 struct megasas_cmd *cmd;
2126 struct megasas_dcmd_frame *dcmd;
2127 union megasas_evt_class_locale curr_aen;
2128 union megasas_evt_class_locale prev_aen;
2131 * If there an AEN pending already (aen_cmd), check if the
2132 * class_locale of that pending AEN is inclusive of the new
2133 * AEN request we currently have. If it is, then we don't have
2134 * to do anything. In other words, whichever events the current
2135 * AEN request is subscribing to, have already been subscribed
2136 * to.
2138 * If the old_cmd is _not_ inclusive, then we have to abort
2139 * that command, form a class_locale that is superset of both
2140 * old and current and re-issue to the FW
2143 curr_aen.word = class_locale_word;
2145 if (instance->aen_cmd) {
2147 prev_aen.word = instance->aen_cmd->frame->dcmd.mbox.w[1];
2150 * A class whose enum value is smaller is inclusive of all
2151 * higher values. If a PROGRESS (= -1) was previously
2152 * registered, then a new registration requests for higher
2153 * classes need not be sent to FW. They are automatically
2154 * included.
2156 * Locale numbers don't have such hierarchy. They are bitmap
2157 * values
2159 if ((prev_aen.members.class <= curr_aen.members.class) &&
2160 !((prev_aen.members.locale & curr_aen.members.locale) ^
2161 curr_aen.members.locale)) {
2163 * Previously issued event registration includes
2164 * current request. Nothing to do.
2166 return 0;
2167 } else {
2168 curr_aen.members.locale |= prev_aen.members.locale;
2170 if (prev_aen.members.class < curr_aen.members.class)
2171 curr_aen.members.class = prev_aen.members.class;
2173 instance->aen_cmd->abort_aen = 1;
2174 ret_val = megasas_issue_blocked_abort_cmd(instance,
2175 instance->
2176 aen_cmd);
2178 if (ret_val) {
2179 printk(KERN_DEBUG "megasas: Failed to abort "
2180 "previous AEN command\n");
2181 return ret_val;
2186 cmd = megasas_get_cmd(instance);
2188 if (!cmd)
2189 return -ENOMEM;
2191 dcmd = &cmd->frame->dcmd;
2193 memset(instance->evt_detail, 0, sizeof(struct megasas_evt_detail));
2196 * Prepare DCMD for aen registration
2198 memset(dcmd->mbox.b, 0, MFI_MBOX_SIZE);
2200 dcmd->cmd = MFI_CMD_DCMD;
2201 dcmd->cmd_status = 0x0;
2202 dcmd->sge_count = 1;
2203 dcmd->flags = MFI_FRAME_DIR_READ;
2204 dcmd->timeout = 0;
2205 dcmd->data_xfer_len = sizeof(struct megasas_evt_detail);
2206 dcmd->opcode = MR_DCMD_CTRL_EVENT_WAIT;
2207 dcmd->mbox.w[0] = seq_num;
2208 dcmd->mbox.w[1] = curr_aen.word;
2209 dcmd->sgl.sge32[0].phys_addr = (u32) instance->evt_detail_h;
2210 dcmd->sgl.sge32[0].length = sizeof(struct megasas_evt_detail);
2213 * Store reference to the cmd used to register for AEN. When an
2214 * application wants us to register for AEN, we have to abort this
2215 * cmd and re-register with a new EVENT LOCALE supplied by that app
2217 instance->aen_cmd = cmd;
2220 * Issue the aen registration frame
2222 instance->instancet->fire_cmd(cmd->frame_phys_addr ,0,instance->reg_set);
2224 return 0;
2228 * megasas_start_aen - Subscribes to AEN during driver load time
2229 * @instance: Adapter soft state
2231 static int megasas_start_aen(struct megasas_instance *instance)
2233 struct megasas_evt_log_info eli;
2234 union megasas_evt_class_locale class_locale;
2237 * Get the latest sequence number from FW
2239 memset(&eli, 0, sizeof(eli));
2241 if (megasas_get_seq_num(instance, &eli))
2242 return -1;
2245 * Register AEN with FW for latest sequence number plus 1
2247 class_locale.members.reserved = 0;
2248 class_locale.members.locale = MR_EVT_LOCALE_ALL;
2249 class_locale.members.class = MR_EVT_CLASS_DEBUG;
2251 return megasas_register_aen(instance, eli.newest_seq_num + 1,
2252 class_locale.word);
2256 * megasas_io_attach - Attaches this driver to SCSI mid-layer
2257 * @instance: Adapter soft state
2259 static int megasas_io_attach(struct megasas_instance *instance)
2261 struct Scsi_Host *host = instance->host;
2264 * Export parameters required by SCSI mid-layer
2266 host->irq = instance->pdev->irq;
2267 host->unique_id = instance->unique_id;
2268 host->can_queue = instance->max_fw_cmds - MEGASAS_INT_CMDS;
2269 host->this_id = instance->init_id;
2270 host->sg_tablesize = instance->max_num_sge;
2271 host->max_sectors = instance->max_sectors_per_req;
2272 host->cmd_per_lun = 128;
2273 host->max_channel = MEGASAS_MAX_CHANNELS - 1;
2274 host->max_id = MEGASAS_MAX_DEV_PER_CHANNEL;
2275 host->max_lun = MEGASAS_MAX_LUN;
2276 host->max_cmd_len = 16;
2279 * Notify the mid-layer about the new controller
2281 if (scsi_add_host(host, &instance->pdev->dev)) {
2282 printk(KERN_DEBUG "megasas: scsi_add_host failed\n");
2283 return -ENODEV;
2287 * Trigger SCSI to scan our drives
2289 scsi_scan_host(host);
2290 return 0;
2293 static int
2294 megasas_set_dma_mask(struct pci_dev *pdev)
2297 * All our contollers are capable of performing 64-bit DMA
2299 if (IS_DMA64) {
2300 if (pci_set_dma_mask(pdev, DMA_64BIT_MASK) != 0) {
2302 if (pci_set_dma_mask(pdev, DMA_32BIT_MASK) != 0)
2303 goto fail_set_dma_mask;
2305 } else {
2306 if (pci_set_dma_mask(pdev, DMA_32BIT_MASK) != 0)
2307 goto fail_set_dma_mask;
2309 return 0;
2311 fail_set_dma_mask:
2312 return 1;
2316 * megasas_probe_one - PCI hotplug entry point
2317 * @pdev: PCI device structure
2318 * @id: PCI ids of supported hotplugged adapter
2320 static int __devinit
2321 megasas_probe_one(struct pci_dev *pdev, const struct pci_device_id *id)
2323 int rval;
2324 struct Scsi_Host *host;
2325 struct megasas_instance *instance;
2328 * Announce PCI information
2330 printk(KERN_INFO "megasas: %#4.04x:%#4.04x:%#4.04x:%#4.04x: ",
2331 pdev->vendor, pdev->device, pdev->subsystem_vendor,
2332 pdev->subsystem_device);
2334 printk("bus %d:slot %d:func %d\n",
2335 pdev->bus->number, PCI_SLOT(pdev->devfn), PCI_FUNC(pdev->devfn));
2338 * PCI prepping: enable device set bus mastering and dma mask
2340 rval = pci_enable_device(pdev);
2342 if (rval) {
2343 return rval;
2346 pci_set_master(pdev);
2348 if (megasas_set_dma_mask(pdev))
2349 goto fail_set_dma_mask;
2351 host = scsi_host_alloc(&megasas_template,
2352 sizeof(struct megasas_instance));
2354 if (!host) {
2355 printk(KERN_DEBUG "megasas: scsi_host_alloc failed\n");
2356 goto fail_alloc_instance;
2359 instance = (struct megasas_instance *)host->hostdata;
2360 memset(instance, 0, sizeof(*instance));
2362 instance->producer = pci_alloc_consistent(pdev, sizeof(u32),
2363 &instance->producer_h);
2364 instance->consumer = pci_alloc_consistent(pdev, sizeof(u32),
2365 &instance->consumer_h);
2367 if (!instance->producer || !instance->consumer) {
2368 printk(KERN_DEBUG "megasas: Failed to allocate memory for "
2369 "producer, consumer\n");
2370 goto fail_alloc_dma_buf;
2373 *instance->producer = 0;
2374 *instance->consumer = 0;
2376 instance->evt_detail = pci_alloc_consistent(pdev,
2377 sizeof(struct
2378 megasas_evt_detail),
2379 &instance->evt_detail_h);
2381 if (!instance->evt_detail) {
2382 printk(KERN_DEBUG "megasas: Failed to allocate memory for "
2383 "event detail structure\n");
2384 goto fail_alloc_dma_buf;
2388 * Initialize locks and queues
2390 INIT_LIST_HEAD(&instance->cmd_pool);
2392 atomic_set(&instance->fw_outstanding,0);
2394 init_waitqueue_head(&instance->int_cmd_wait_q);
2395 init_waitqueue_head(&instance->abort_cmd_wait_q);
2397 spin_lock_init(&instance->cmd_pool_lock);
2399 mutex_init(&instance->aen_mutex);
2400 sema_init(&instance->ioctl_sem, MEGASAS_INT_CMDS);
2403 * Initialize PCI related and misc parameters
2405 instance->pdev = pdev;
2406 instance->host = host;
2407 instance->unique_id = pdev->bus->number << 8 | pdev->devfn;
2408 instance->init_id = MEGASAS_DEFAULT_INIT_ID;
2410 megasas_dbg_lvl = 0;
2411 instance->flag = 0;
2412 instance->last_time = 0;
2415 * Initialize MFI Firmware
2417 if (megasas_init_mfi(instance))
2418 goto fail_init_mfi;
2421 * Register IRQ
2423 if (request_irq(pdev->irq, megasas_isr, IRQF_SHARED, "megasas", instance)) {
2424 printk(KERN_DEBUG "megasas: Failed to register IRQ\n");
2425 goto fail_irq;
2428 instance->instancet->enable_intr(instance->reg_set);
2431 * Store instance in PCI softstate
2433 pci_set_drvdata(pdev, instance);
2436 * Add this controller to megasas_mgmt_info structure so that it
2437 * can be exported to management applications
2439 megasas_mgmt_info.count++;
2440 megasas_mgmt_info.instance[megasas_mgmt_info.max_index] = instance;
2441 megasas_mgmt_info.max_index++;
2444 * Initiate AEN (Asynchronous Event Notification)
2446 if (megasas_start_aen(instance)) {
2447 printk(KERN_DEBUG "megasas: start aen failed\n");
2448 goto fail_start_aen;
2452 * Register with SCSI mid-layer
2454 if (megasas_io_attach(instance))
2455 goto fail_io_attach;
2457 return 0;
2459 fail_start_aen:
2460 fail_io_attach:
2461 megasas_mgmt_info.count--;
2462 megasas_mgmt_info.instance[megasas_mgmt_info.max_index] = NULL;
2463 megasas_mgmt_info.max_index--;
2465 pci_set_drvdata(pdev, NULL);
2466 instance->instancet->disable_intr(instance->reg_set);
2467 free_irq(instance->pdev->irq, instance);
2469 megasas_release_mfi(instance);
2471 fail_irq:
2472 fail_init_mfi:
2473 fail_alloc_dma_buf:
2474 if (instance->evt_detail)
2475 pci_free_consistent(pdev, sizeof(struct megasas_evt_detail),
2476 instance->evt_detail,
2477 instance->evt_detail_h);
2479 if (instance->producer)
2480 pci_free_consistent(pdev, sizeof(u32), instance->producer,
2481 instance->producer_h);
2482 if (instance->consumer)
2483 pci_free_consistent(pdev, sizeof(u32), instance->consumer,
2484 instance->consumer_h);
2485 scsi_host_put(host);
2487 fail_alloc_instance:
2488 fail_set_dma_mask:
2489 pci_disable_device(pdev);
2491 return -ENODEV;
2495 * megasas_flush_cache - Requests FW to flush all its caches
2496 * @instance: Adapter soft state
2498 static void megasas_flush_cache(struct megasas_instance *instance)
2500 struct megasas_cmd *cmd;
2501 struct megasas_dcmd_frame *dcmd;
2503 cmd = megasas_get_cmd(instance);
2505 if (!cmd)
2506 return;
2508 dcmd = &cmd->frame->dcmd;
2510 memset(dcmd->mbox.b, 0, MFI_MBOX_SIZE);
2512 dcmd->cmd = MFI_CMD_DCMD;
2513 dcmd->cmd_status = 0x0;
2514 dcmd->sge_count = 0;
2515 dcmd->flags = MFI_FRAME_DIR_NONE;
2516 dcmd->timeout = 0;
2517 dcmd->data_xfer_len = 0;
2518 dcmd->opcode = MR_DCMD_CTRL_CACHE_FLUSH;
2519 dcmd->mbox.b[0] = MR_FLUSH_CTRL_CACHE | MR_FLUSH_DISK_CACHE;
2521 megasas_issue_blocked_cmd(instance, cmd);
2523 megasas_return_cmd(instance, cmd);
2525 return;
2529 * megasas_shutdown_controller - Instructs FW to shutdown the controller
2530 * @instance: Adapter soft state
2531 * @opcode: Shutdown/Hibernate
2533 static void megasas_shutdown_controller(struct megasas_instance *instance,
2534 u32 opcode)
2536 struct megasas_cmd *cmd;
2537 struct megasas_dcmd_frame *dcmd;
2539 cmd = megasas_get_cmd(instance);
2541 if (!cmd)
2542 return;
2544 if (instance->aen_cmd)
2545 megasas_issue_blocked_abort_cmd(instance, instance->aen_cmd);
2547 dcmd = &cmd->frame->dcmd;
2549 memset(dcmd->mbox.b, 0, MFI_MBOX_SIZE);
2551 dcmd->cmd = MFI_CMD_DCMD;
2552 dcmd->cmd_status = 0x0;
2553 dcmd->sge_count = 0;
2554 dcmd->flags = MFI_FRAME_DIR_NONE;
2555 dcmd->timeout = 0;
2556 dcmd->data_xfer_len = 0;
2557 dcmd->opcode = opcode;
2559 megasas_issue_blocked_cmd(instance, cmd);
2561 megasas_return_cmd(instance, cmd);
2563 return;
2567 * megasas_suspend - driver suspend entry point
2568 * @pdev: PCI device structure
2569 * @state: PCI power state to suspend routine
2571 static int __devinit
2572 megasas_suspend(struct pci_dev *pdev, pm_message_t state)
2574 struct Scsi_Host *host;
2575 struct megasas_instance *instance;
2577 instance = pci_get_drvdata(pdev);
2578 host = instance->host;
2580 megasas_flush_cache(instance);
2581 megasas_shutdown_controller(instance, MR_DCMD_HIBERNATE_SHUTDOWN);
2582 tasklet_kill(&instance->isr_tasklet);
2584 pci_set_drvdata(instance->pdev, instance);
2585 instance->instancet->disable_intr(instance->reg_set);
2586 free_irq(instance->pdev->irq, instance);
2588 pci_save_state(pdev);
2589 pci_disable_device(pdev);
2591 pci_set_power_state(pdev, pci_choose_state(pdev, state));
2593 return 0;
2597 * megasas_resume- driver resume entry point
2598 * @pdev: PCI device structure
2600 static int __devinit
2601 megasas_resume(struct pci_dev *pdev)
2603 int rval;
2604 struct Scsi_Host *host;
2605 struct megasas_instance *instance;
2607 instance = pci_get_drvdata(pdev);
2608 host = instance->host;
2609 pci_set_power_state(pdev, PCI_D0);
2610 pci_enable_wake(pdev, PCI_D0, 0);
2611 pci_restore_state(pdev);
2614 * PCI prepping: enable device set bus mastering and dma mask
2616 rval = pci_enable_device(pdev);
2618 if (rval) {
2619 printk(KERN_ERR "megasas: Enable device failed\n");
2620 return rval;
2623 pci_set_master(pdev);
2625 if (megasas_set_dma_mask(pdev))
2626 goto fail_set_dma_mask;
2629 * Initialize MFI Firmware
2632 *instance->producer = 0;
2633 *instance->consumer = 0;
2635 atomic_set(&instance->fw_outstanding, 0);
2638 * We expect the FW state to be READY
2640 if (megasas_transition_to_ready(instance))
2641 goto fail_ready_state;
2643 if (megasas_issue_init_mfi(instance))
2644 goto fail_init_mfi;
2646 tasklet_init(&instance->isr_tasklet, megasas_complete_cmd_dpc,
2647 (unsigned long)instance);
2650 * Register IRQ
2652 if (request_irq(pdev->irq, megasas_isr, IRQF_SHARED,
2653 "megasas", instance)) {
2654 printk(KERN_ERR "megasas: Failed to register IRQ\n");
2655 goto fail_irq;
2658 instance->instancet->enable_intr(instance->reg_set);
2661 * Initiate AEN (Asynchronous Event Notification)
2663 if (megasas_start_aen(instance))
2664 printk(KERN_ERR "megasas: Start AEN failed\n");
2666 return 0;
2668 fail_irq:
2669 fail_init_mfi:
2670 if (instance->evt_detail)
2671 pci_free_consistent(pdev, sizeof(struct megasas_evt_detail),
2672 instance->evt_detail,
2673 instance->evt_detail_h);
2675 if (instance->producer)
2676 pci_free_consistent(pdev, sizeof(u32), instance->producer,
2677 instance->producer_h);
2678 if (instance->consumer)
2679 pci_free_consistent(pdev, sizeof(u32), instance->consumer,
2680 instance->consumer_h);
2681 scsi_host_put(host);
2683 fail_set_dma_mask:
2684 fail_ready_state:
2686 pci_disable_device(pdev);
2688 return -ENODEV;
2692 * megasas_detach_one - PCI hot"un"plug entry point
2693 * @pdev: PCI device structure
2695 static void megasas_detach_one(struct pci_dev *pdev)
2697 int i;
2698 struct Scsi_Host *host;
2699 struct megasas_instance *instance;
2701 instance = pci_get_drvdata(pdev);
2702 host = instance->host;
2704 scsi_remove_host(instance->host);
2705 megasas_flush_cache(instance);
2706 megasas_shutdown_controller(instance, MR_DCMD_CTRL_SHUTDOWN);
2707 tasklet_kill(&instance->isr_tasklet);
2710 * Take the instance off the instance array. Note that we will not
2711 * decrement the max_index. We let this array be sparse array
2713 for (i = 0; i < megasas_mgmt_info.max_index; i++) {
2714 if (megasas_mgmt_info.instance[i] == instance) {
2715 megasas_mgmt_info.count--;
2716 megasas_mgmt_info.instance[i] = NULL;
2718 break;
2722 pci_set_drvdata(instance->pdev, NULL);
2724 instance->instancet->disable_intr(instance->reg_set);
2726 free_irq(instance->pdev->irq, instance);
2728 megasas_release_mfi(instance);
2730 pci_free_consistent(pdev, sizeof(struct megasas_evt_detail),
2731 instance->evt_detail, instance->evt_detail_h);
2733 pci_free_consistent(pdev, sizeof(u32), instance->producer,
2734 instance->producer_h);
2736 pci_free_consistent(pdev, sizeof(u32), instance->consumer,
2737 instance->consumer_h);
2739 scsi_host_put(host);
2741 pci_set_drvdata(pdev, NULL);
2743 pci_disable_device(pdev);
2745 return;
2749 * megasas_shutdown - Shutdown entry point
2750 * @device: Generic device structure
2752 static void megasas_shutdown(struct pci_dev *pdev)
2754 struct megasas_instance *instance = pci_get_drvdata(pdev);
2755 megasas_flush_cache(instance);
2759 * megasas_mgmt_open - char node "open" entry point
2761 static int megasas_mgmt_open(struct inode *inode, struct file *filep)
2764 * Allow only those users with admin rights
2766 if (!capable(CAP_SYS_ADMIN))
2767 return -EACCES;
2769 return 0;
2773 * megasas_mgmt_release - char node "release" entry point
2775 static int megasas_mgmt_release(struct inode *inode, struct file *filep)
2777 filep->private_data = NULL;
2778 fasync_helper(-1, filep, 0, &megasas_async_queue);
2780 return 0;
2784 * megasas_mgmt_fasync - Async notifier registration from applications
2786 * This function adds the calling process to a driver global queue. When an
2787 * event occurs, SIGIO will be sent to all processes in this queue.
2789 static int megasas_mgmt_fasync(int fd, struct file *filep, int mode)
2791 int rc;
2793 mutex_lock(&megasas_async_queue_mutex);
2795 rc = fasync_helper(fd, filep, mode, &megasas_async_queue);
2797 mutex_unlock(&megasas_async_queue_mutex);
2799 if (rc >= 0) {
2800 /* For sanity check when we get ioctl */
2801 filep->private_data = filep;
2802 return 0;
2805 printk(KERN_DEBUG "megasas: fasync_helper failed [%d]\n", rc);
2807 return rc;
2811 * megasas_mgmt_fw_ioctl - Issues management ioctls to FW
2812 * @instance: Adapter soft state
2813 * @argp: User's ioctl packet
2815 static int
2816 megasas_mgmt_fw_ioctl(struct megasas_instance *instance,
2817 struct megasas_iocpacket __user * user_ioc,
2818 struct megasas_iocpacket *ioc)
2820 struct megasas_sge32 *kern_sge32;
2821 struct megasas_cmd *cmd;
2822 void *kbuff_arr[MAX_IOCTL_SGE];
2823 dma_addr_t buf_handle = 0;
2824 int error = 0, i;
2825 void *sense = NULL;
2826 dma_addr_t sense_handle;
2827 u32 *sense_ptr;
2829 memset(kbuff_arr, 0, sizeof(kbuff_arr));
2831 if (ioc->sge_count > MAX_IOCTL_SGE) {
2832 printk(KERN_DEBUG "megasas: SGE count [%d] > max limit [%d]\n",
2833 ioc->sge_count, MAX_IOCTL_SGE);
2834 return -EINVAL;
2837 cmd = megasas_get_cmd(instance);
2838 if (!cmd) {
2839 printk(KERN_DEBUG "megasas: Failed to get a cmd packet\n");
2840 return -ENOMEM;
2844 * User's IOCTL packet has 2 frames (maximum). Copy those two
2845 * frames into our cmd's frames. cmd->frame's context will get
2846 * overwritten when we copy from user's frames. So set that value
2847 * alone separately
2849 memcpy(cmd->frame, ioc->frame.raw, 2 * MEGAMFI_FRAME_SIZE);
2850 cmd->frame->hdr.context = cmd->index;
2853 * The management interface between applications and the fw uses
2854 * MFI frames. E.g, RAID configuration changes, LD property changes
2855 * etc are accomplishes through different kinds of MFI frames. The
2856 * driver needs to care only about substituting user buffers with
2857 * kernel buffers in SGLs. The location of SGL is embedded in the
2858 * struct iocpacket itself.
2860 kern_sge32 = (struct megasas_sge32 *)
2861 ((unsigned long)cmd->frame + ioc->sgl_off);
2864 * For each user buffer, create a mirror buffer and copy in
2866 for (i = 0; i < ioc->sge_count; i++) {
2867 kbuff_arr[i] = dma_alloc_coherent(&instance->pdev->dev,
2868 ioc->sgl[i].iov_len,
2869 &buf_handle, GFP_KERNEL);
2870 if (!kbuff_arr[i]) {
2871 printk(KERN_DEBUG "megasas: Failed to alloc "
2872 "kernel SGL buffer for IOCTL \n");
2873 error = -ENOMEM;
2874 goto out;
2878 * We don't change the dma_coherent_mask, so
2879 * pci_alloc_consistent only returns 32bit addresses
2881 kern_sge32[i].phys_addr = (u32) buf_handle;
2882 kern_sge32[i].length = ioc->sgl[i].iov_len;
2885 * We created a kernel buffer corresponding to the
2886 * user buffer. Now copy in from the user buffer
2888 if (copy_from_user(kbuff_arr[i], ioc->sgl[i].iov_base,
2889 (u32) (ioc->sgl[i].iov_len))) {
2890 error = -EFAULT;
2891 goto out;
2895 if (ioc->sense_len) {
2896 sense = dma_alloc_coherent(&instance->pdev->dev, ioc->sense_len,
2897 &sense_handle, GFP_KERNEL);
2898 if (!sense) {
2899 error = -ENOMEM;
2900 goto out;
2903 sense_ptr =
2904 (u32 *) ((unsigned long)cmd->frame + ioc->sense_off);
2905 *sense_ptr = sense_handle;
2909 * Set the sync_cmd flag so that the ISR knows not to complete this
2910 * cmd to the SCSI mid-layer
2912 cmd->sync_cmd = 1;
2913 megasas_issue_blocked_cmd(instance, cmd);
2914 cmd->sync_cmd = 0;
2917 * copy out the kernel buffers to user buffers
2919 for (i = 0; i < ioc->sge_count; i++) {
2920 if (copy_to_user(ioc->sgl[i].iov_base, kbuff_arr[i],
2921 ioc->sgl[i].iov_len)) {
2922 error = -EFAULT;
2923 goto out;
2928 * copy out the sense
2930 if (ioc->sense_len) {
2932 * sense_ptr points to the location that has the user
2933 * sense buffer address
2935 sense_ptr = (u32 *) ((unsigned long)ioc->frame.raw +
2936 ioc->sense_off);
2938 if (copy_to_user((void __user *)((unsigned long)(*sense_ptr)),
2939 sense, ioc->sense_len)) {
2940 error = -EFAULT;
2941 goto out;
2946 * copy the status codes returned by the fw
2948 if (copy_to_user(&user_ioc->frame.hdr.cmd_status,
2949 &cmd->frame->hdr.cmd_status, sizeof(u8))) {
2950 printk(KERN_DEBUG "megasas: Error copying out cmd_status\n");
2951 error = -EFAULT;
2954 out:
2955 if (sense) {
2956 dma_free_coherent(&instance->pdev->dev, ioc->sense_len,
2957 sense, sense_handle);
2960 for (i = 0; i < ioc->sge_count && kbuff_arr[i]; i++) {
2961 dma_free_coherent(&instance->pdev->dev,
2962 kern_sge32[i].length,
2963 kbuff_arr[i], kern_sge32[i].phys_addr);
2966 megasas_return_cmd(instance, cmd);
2967 return error;
2970 static struct megasas_instance *megasas_lookup_instance(u16 host_no)
2972 int i;
2974 for (i = 0; i < megasas_mgmt_info.max_index; i++) {
2976 if ((megasas_mgmt_info.instance[i]) &&
2977 (megasas_mgmt_info.instance[i]->host->host_no == host_no))
2978 return megasas_mgmt_info.instance[i];
2981 return NULL;
2984 static int megasas_mgmt_ioctl_fw(struct file *file, unsigned long arg)
2986 struct megasas_iocpacket __user *user_ioc =
2987 (struct megasas_iocpacket __user *)arg;
2988 struct megasas_iocpacket *ioc;
2989 struct megasas_instance *instance;
2990 int error;
2992 ioc = kmalloc(sizeof(*ioc), GFP_KERNEL);
2993 if (!ioc)
2994 return -ENOMEM;
2996 if (copy_from_user(ioc, user_ioc, sizeof(*ioc))) {
2997 error = -EFAULT;
2998 goto out_kfree_ioc;
3001 instance = megasas_lookup_instance(ioc->host_no);
3002 if (!instance) {
3003 error = -ENODEV;
3004 goto out_kfree_ioc;
3008 * We will allow only MEGASAS_INT_CMDS number of parallel ioctl cmds
3010 if (down_interruptible(&instance->ioctl_sem)) {
3011 error = -ERESTARTSYS;
3012 goto out_kfree_ioc;
3014 error = megasas_mgmt_fw_ioctl(instance, user_ioc, ioc);
3015 up(&instance->ioctl_sem);
3017 out_kfree_ioc:
3018 kfree(ioc);
3019 return error;
3022 static int megasas_mgmt_ioctl_aen(struct file *file, unsigned long arg)
3024 struct megasas_instance *instance;
3025 struct megasas_aen aen;
3026 int error;
3028 if (file->private_data != file) {
3029 printk(KERN_DEBUG "megasas: fasync_helper was not "
3030 "called first\n");
3031 return -EINVAL;
3034 if (copy_from_user(&aen, (void __user *)arg, sizeof(aen)))
3035 return -EFAULT;
3037 instance = megasas_lookup_instance(aen.host_no);
3039 if (!instance)
3040 return -ENODEV;
3042 mutex_lock(&instance->aen_mutex);
3043 error = megasas_register_aen(instance, aen.seq_num,
3044 aen.class_locale_word);
3045 mutex_unlock(&instance->aen_mutex);
3046 return error;
3050 * megasas_mgmt_ioctl - char node ioctl entry point
3052 static long
3053 megasas_mgmt_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
3055 switch (cmd) {
3056 case MEGASAS_IOC_FIRMWARE:
3057 return megasas_mgmt_ioctl_fw(file, arg);
3059 case MEGASAS_IOC_GET_AEN:
3060 return megasas_mgmt_ioctl_aen(file, arg);
3063 return -ENOTTY;
3066 #ifdef CONFIG_COMPAT
3067 static int megasas_mgmt_compat_ioctl_fw(struct file *file, unsigned long arg)
3069 struct compat_megasas_iocpacket __user *cioc =
3070 (struct compat_megasas_iocpacket __user *)arg;
3071 struct megasas_iocpacket __user *ioc =
3072 compat_alloc_user_space(sizeof(struct megasas_iocpacket));
3073 int i;
3074 int error = 0;
3076 if (clear_user(ioc, sizeof(*ioc)))
3077 return -EFAULT;
3079 if (copy_in_user(&ioc->host_no, &cioc->host_no, sizeof(u16)) ||
3080 copy_in_user(&ioc->sgl_off, &cioc->sgl_off, sizeof(u32)) ||
3081 copy_in_user(&ioc->sense_off, &cioc->sense_off, sizeof(u32)) ||
3082 copy_in_user(&ioc->sense_len, &cioc->sense_len, sizeof(u32)) ||
3083 copy_in_user(ioc->frame.raw, cioc->frame.raw, 128) ||
3084 copy_in_user(&ioc->sge_count, &cioc->sge_count, sizeof(u32)))
3085 return -EFAULT;
3087 for (i = 0; i < MAX_IOCTL_SGE; i++) {
3088 compat_uptr_t ptr;
3090 if (get_user(ptr, &cioc->sgl[i].iov_base) ||
3091 put_user(compat_ptr(ptr), &ioc->sgl[i].iov_base) ||
3092 copy_in_user(&ioc->sgl[i].iov_len,
3093 &cioc->sgl[i].iov_len, sizeof(compat_size_t)))
3094 return -EFAULT;
3097 error = megasas_mgmt_ioctl_fw(file, (unsigned long)ioc);
3099 if (copy_in_user(&cioc->frame.hdr.cmd_status,
3100 &ioc->frame.hdr.cmd_status, sizeof(u8))) {
3101 printk(KERN_DEBUG "megasas: error copy_in_user cmd_status\n");
3102 return -EFAULT;
3104 return error;
3107 static long
3108 megasas_mgmt_compat_ioctl(struct file *file, unsigned int cmd,
3109 unsigned long arg)
3111 switch (cmd) {
3112 case MEGASAS_IOC_FIRMWARE32:
3113 return megasas_mgmt_compat_ioctl_fw(file, arg);
3114 case MEGASAS_IOC_GET_AEN:
3115 return megasas_mgmt_ioctl_aen(file, arg);
3118 return -ENOTTY;
3120 #endif
3123 * File operations structure for management interface
3125 static const struct file_operations megasas_mgmt_fops = {
3126 .owner = THIS_MODULE,
3127 .open = megasas_mgmt_open,
3128 .release = megasas_mgmt_release,
3129 .fasync = megasas_mgmt_fasync,
3130 .unlocked_ioctl = megasas_mgmt_ioctl,
3131 #ifdef CONFIG_COMPAT
3132 .compat_ioctl = megasas_mgmt_compat_ioctl,
3133 #endif
3137 * PCI hotplug support registration structure
3139 static struct pci_driver megasas_pci_driver = {
3141 .name = "megaraid_sas",
3142 .id_table = megasas_pci_table,
3143 .probe = megasas_probe_one,
3144 .remove = __devexit_p(megasas_detach_one),
3145 .suspend = megasas_suspend,
3146 .resume = megasas_resume,
3147 .shutdown = megasas_shutdown,
3151 * Sysfs driver attributes
3153 static ssize_t megasas_sysfs_show_version(struct device_driver *dd, char *buf)
3155 return snprintf(buf, strlen(MEGASAS_VERSION) + 2, "%s\n",
3156 MEGASAS_VERSION);
3159 static DRIVER_ATTR(version, S_IRUGO, megasas_sysfs_show_version, NULL);
3161 static ssize_t
3162 megasas_sysfs_show_release_date(struct device_driver *dd, char *buf)
3164 return snprintf(buf, strlen(MEGASAS_RELDATE) + 2, "%s\n",
3165 MEGASAS_RELDATE);
3168 static DRIVER_ATTR(release_date, S_IRUGO, megasas_sysfs_show_release_date,
3169 NULL);
3171 static ssize_t
3172 megasas_sysfs_show_dbg_lvl(struct device_driver *dd, char *buf)
3174 return sprintf(buf,"%u",megasas_dbg_lvl);
3177 static ssize_t
3178 megasas_sysfs_set_dbg_lvl(struct device_driver *dd, const char *buf, size_t count)
3180 int retval = count;
3181 if(sscanf(buf,"%u",&megasas_dbg_lvl)<1){
3182 printk(KERN_ERR "megasas: could not set dbg_lvl\n");
3183 retval = -EINVAL;
3185 return retval;
3188 static DRIVER_ATTR(dbg_lvl, S_IRUGO|S_IWUGO, megasas_sysfs_show_dbg_lvl,
3189 megasas_sysfs_set_dbg_lvl);
3192 * megasas_init - Driver load entry point
3194 static int __init megasas_init(void)
3196 int rval;
3199 * Announce driver version and other information
3201 printk(KERN_INFO "megasas: %s %s\n", MEGASAS_VERSION,
3202 MEGASAS_EXT_VERSION);
3204 memset(&megasas_mgmt_info, 0, sizeof(megasas_mgmt_info));
3207 * Register character device node
3209 rval = register_chrdev(0, "megaraid_sas_ioctl", &megasas_mgmt_fops);
3211 if (rval < 0) {
3212 printk(KERN_DEBUG "megasas: failed to open device node\n");
3213 return rval;
3216 megasas_mgmt_majorno = rval;
3219 * Register ourselves as PCI hotplug module
3221 rval = pci_register_driver(&megasas_pci_driver);
3223 if (rval) {
3224 printk(KERN_DEBUG "megasas: PCI hotplug regisration failed \n");
3225 goto err_pcidrv;
3228 rval = driver_create_file(&megasas_pci_driver.driver,
3229 &driver_attr_version);
3230 if (rval)
3231 goto err_dcf_attr_ver;
3232 rval = driver_create_file(&megasas_pci_driver.driver,
3233 &driver_attr_release_date);
3234 if (rval)
3235 goto err_dcf_rel_date;
3236 rval = driver_create_file(&megasas_pci_driver.driver,
3237 &driver_attr_dbg_lvl);
3238 if (rval)
3239 goto err_dcf_dbg_lvl;
3241 return rval;
3242 err_dcf_dbg_lvl:
3243 driver_remove_file(&megasas_pci_driver.driver,
3244 &driver_attr_release_date);
3245 err_dcf_rel_date:
3246 driver_remove_file(&megasas_pci_driver.driver, &driver_attr_version);
3247 err_dcf_attr_ver:
3248 pci_unregister_driver(&megasas_pci_driver);
3249 err_pcidrv:
3250 unregister_chrdev(megasas_mgmt_majorno, "megaraid_sas_ioctl");
3251 return rval;
3255 * megasas_exit - Driver unload entry point
3257 static void __exit megasas_exit(void)
3259 driver_remove_file(&megasas_pci_driver.driver,
3260 &driver_attr_dbg_lvl);
3261 driver_remove_file(&megasas_pci_driver.driver,
3262 &driver_attr_release_date);
3263 driver_remove_file(&megasas_pci_driver.driver, &driver_attr_version);
3265 pci_unregister_driver(&megasas_pci_driver);
3266 unregister_chrdev(megasas_mgmt_majorno, "megaraid_sas_ioctl");
3269 module_init(megasas_init);
3270 module_exit(megasas_exit);