4 * Kernel scheduler and related syscalls
6 * Copyright (C) 1991-2002 Linus Torvalds
8 * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and
9 * make semaphores SMP safe
10 * 1998-11-19 Implemented schedule_timeout() and related stuff
12 * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar:
13 * hybrid priority-list and round-robin design with
14 * an array-switch method of distributing timeslices
15 * and per-CPU runqueues. Cleanups and useful suggestions
16 * by Davide Libenzi, preemptible kernel bits by Robert Love.
17 * 2003-09-03 Interactivity tuning by Con Kolivas.
18 * 2004-04-02 Scheduler domains code by Nick Piggin
19 * 2007-04-15 Work begun on replacing all interactivity tuning with a
20 * fair scheduling design by Con Kolivas.
21 * 2007-05-05 Load balancing (smp-nice) and other improvements
23 * 2007-05-06 Interactivity improvements to CFS by Mike Galbraith
24 * 2007-07-01 Group scheduling enhancements by Srivatsa Vaddagiri
28 #include <linux/module.h>
29 #include <linux/nmi.h>
30 #include <linux/init.h>
31 #include <linux/uaccess.h>
32 #include <linux/highmem.h>
33 #include <linux/smp_lock.h>
34 #include <asm/mmu_context.h>
35 #include <linux/interrupt.h>
36 #include <linux/capability.h>
37 #include <linux/completion.h>
38 #include <linux/kernel_stat.h>
39 #include <linux/debug_locks.h>
40 #include <linux/security.h>
41 #include <linux/notifier.h>
42 #include <linux/profile.h>
43 #include <linux/freezer.h>
44 #include <linux/vmalloc.h>
45 #include <linux/blkdev.h>
46 #include <linux/delay.h>
47 #include <linux/smp.h>
48 #include <linux/threads.h>
49 #include <linux/timer.h>
50 #include <linux/rcupdate.h>
51 #include <linux/cpu.h>
52 #include <linux/cpuset.h>
53 #include <linux/percpu.h>
54 #include <linux/kthread.h>
55 #include <linux/seq_file.h>
56 #include <linux/sysctl.h>
57 #include <linux/syscalls.h>
58 #include <linux/times.h>
59 #include <linux/tsacct_kern.h>
60 #include <linux/kprobes.h>
61 #include <linux/delayacct.h>
62 #include <linux/reciprocal_div.h>
63 #include <linux/unistd.h>
64 #include <linux/pagemap.h>
69 * Scheduler clock - returns current time in nanosec units.
70 * This is default implementation.
71 * Architectures and sub-architectures can override this.
73 unsigned long long __attribute__((weak
)) sched_clock(void)
75 return (unsigned long long)jiffies
* (1000000000 / HZ
);
79 * Convert user-nice values [ -20 ... 0 ... 19 ]
80 * to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ],
83 #define NICE_TO_PRIO(nice) (MAX_RT_PRIO + (nice) + 20)
84 #define PRIO_TO_NICE(prio) ((prio) - MAX_RT_PRIO - 20)
85 #define TASK_NICE(p) PRIO_TO_NICE((p)->static_prio)
88 * 'User priority' is the nice value converted to something we
89 * can work with better when scaling various scheduler parameters,
90 * it's a [ 0 ... 39 ] range.
92 #define USER_PRIO(p) ((p)-MAX_RT_PRIO)
93 #define TASK_USER_PRIO(p) USER_PRIO((p)->static_prio)
94 #define MAX_USER_PRIO (USER_PRIO(MAX_PRIO))
97 * Some helpers for converting nanosecond timing to jiffy resolution
99 #define NS_TO_JIFFIES(TIME) ((unsigned long)(TIME) / (1000000000 / HZ))
100 #define JIFFIES_TO_NS(TIME) ((TIME) * (1000000000 / HZ))
102 #define NICE_0_LOAD SCHED_LOAD_SCALE
103 #define NICE_0_SHIFT SCHED_LOAD_SHIFT
106 * These are the 'tuning knobs' of the scheduler:
108 * default timeslice is 100 msecs (used only for SCHED_RR tasks).
109 * Timeslices get refilled after they expire.
111 #define DEF_TIMESLICE (100 * HZ / 1000)
115 * Divide a load by a sched group cpu_power : (load / sg->__cpu_power)
116 * Since cpu_power is a 'constant', we can use a reciprocal divide.
118 static inline u32
sg_div_cpu_power(const struct sched_group
*sg
, u32 load
)
120 return reciprocal_divide(load
, sg
->reciprocal_cpu_power
);
124 * Each time a sched group cpu_power is changed,
125 * we must compute its reciprocal value
127 static inline void sg_inc_cpu_power(struct sched_group
*sg
, u32 val
)
129 sg
->__cpu_power
+= val
;
130 sg
->reciprocal_cpu_power
= reciprocal_value(sg
->__cpu_power
);
134 static inline int rt_policy(int policy
)
136 if (unlikely(policy
== SCHED_FIFO
) || unlikely(policy
== SCHED_RR
))
141 static inline int task_has_rt_policy(struct task_struct
*p
)
143 return rt_policy(p
->policy
);
147 * This is the priority-queue data structure of the RT scheduling class:
149 struct rt_prio_array
{
150 DECLARE_BITMAP(bitmap
, MAX_RT_PRIO
+1); /* include 1 bit for delimiter */
151 struct list_head queue
[MAX_RT_PRIO
];
154 #ifdef CONFIG_FAIR_GROUP_SCHED
158 /* task group related information */
160 /* schedulable entities of this group on each cpu */
161 struct sched_entity
**se
;
162 /* runqueue "owned" by this group on each cpu */
163 struct cfs_rq
**cfs_rq
;
164 unsigned long shares
;
165 /* spinlock to serialize modification to shares */
169 /* Default task group's sched entity on each cpu */
170 static DEFINE_PER_CPU(struct sched_entity
, init_sched_entity
);
171 /* Default task group's cfs_rq on each cpu */
172 static DEFINE_PER_CPU(struct cfs_rq
, init_cfs_rq
) ____cacheline_aligned_in_smp
;
174 static struct sched_entity
*init_sched_entity_p
[NR_CPUS
];
175 static struct cfs_rq
*init_cfs_rq_p
[NR_CPUS
];
177 /* Default task group.
178 * Every task in system belong to this group at bootup.
180 struct task_group init_task_group
= {
181 .se
= init_sched_entity_p
,
182 .cfs_rq
= init_cfs_rq_p
,
185 #ifdef CONFIG_FAIR_USER_SCHED
186 # define INIT_TASK_GRP_LOAD 2*NICE_0_LOAD
188 # define INIT_TASK_GRP_LOAD NICE_0_LOAD
191 static int init_task_group_load
= INIT_TASK_GRP_LOAD
;
193 /* return group to which a task belongs */
194 static inline struct task_group
*task_group(struct task_struct
*p
)
196 struct task_group
*tg
;
198 #ifdef CONFIG_FAIR_USER_SCHED
201 tg
= &init_task_group
;
207 /* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */
208 static inline void set_task_cfs_rq(struct task_struct
*p
)
210 p
->se
.cfs_rq
= task_group(p
)->cfs_rq
[task_cpu(p
)];
211 p
->se
.parent
= task_group(p
)->se
[task_cpu(p
)];
216 static inline void set_task_cfs_rq(struct task_struct
*p
) { }
218 #endif /* CONFIG_FAIR_GROUP_SCHED */
220 /* CFS-related fields in a runqueue */
222 struct load_weight load
;
223 unsigned long nr_running
;
228 struct rb_root tasks_timeline
;
229 struct rb_node
*rb_leftmost
;
230 struct rb_node
*rb_load_balance_curr
;
231 /* 'curr' points to currently running entity on this cfs_rq.
232 * It is set to NULL otherwise (i.e when none are currently running).
234 struct sched_entity
*curr
;
236 unsigned long nr_spread_over
;
238 #ifdef CONFIG_FAIR_GROUP_SCHED
239 struct rq
*rq
; /* cpu runqueue to which this cfs_rq is attached */
241 /* leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
242 * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
243 * (like users, containers etc.)
245 * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a cpu. This
246 * list is used during load balance.
248 struct list_head leaf_cfs_rq_list
; /* Better name : task_cfs_rq_list? */
249 struct task_group
*tg
; /* group that "owns" this runqueue */
254 /* Real-Time classes' related field in a runqueue: */
256 struct rt_prio_array active
;
257 int rt_load_balance_idx
;
258 struct list_head
*rt_load_balance_head
, *rt_load_balance_curr
;
262 * This is the main, per-CPU runqueue data structure.
264 * Locking rule: those places that want to lock multiple runqueues
265 * (such as the load balancing or the thread migration code), lock
266 * acquire operations must be ordered by ascending &runqueue.
269 spinlock_t lock
; /* runqueue lock */
272 * nr_running and cpu_load should be in the same cacheline because
273 * remote CPUs use both these fields when doing load calculation.
275 unsigned long nr_running
;
276 #define CPU_LOAD_IDX_MAX 5
277 unsigned long cpu_load
[CPU_LOAD_IDX_MAX
];
278 unsigned char idle_at_tick
;
280 unsigned char in_nohz_recently
;
282 struct load_weight load
; /* capture load from *all* tasks on this cpu */
283 unsigned long nr_load_updates
;
287 #ifdef CONFIG_FAIR_GROUP_SCHED
288 struct list_head leaf_cfs_rq_list
; /* list of leaf cfs_rq on this cpu */
293 * This is part of a global counter where only the total sum
294 * over all CPUs matters. A task can increase this counter on
295 * one CPU and if it got migrated afterwards it may decrease
296 * it on another CPU. Always updated under the runqueue lock:
298 unsigned long nr_uninterruptible
;
300 struct task_struct
*curr
, *idle
;
301 unsigned long next_balance
;
302 struct mm_struct
*prev_mm
;
304 u64 clock
, prev_clock_raw
;
307 unsigned int clock_warps
, clock_overflows
;
309 unsigned int clock_deep_idle_events
;
315 struct sched_domain
*sd
;
317 /* For active balancing */
320 int cpu
; /* cpu of this runqueue */
322 struct task_struct
*migration_thread
;
323 struct list_head migration_queue
;
326 #ifdef CONFIG_SCHEDSTATS
328 struct sched_info rq_sched_info
;
330 /* sys_sched_yield() stats */
331 unsigned long yld_exp_empty
;
332 unsigned long yld_act_empty
;
333 unsigned long yld_both_empty
;
334 unsigned long yld_count
;
336 /* schedule() stats */
337 unsigned long sched_switch
;
338 unsigned long sched_count
;
339 unsigned long sched_goidle
;
341 /* try_to_wake_up() stats */
342 unsigned long ttwu_count
;
343 unsigned long ttwu_local
;
346 unsigned long bkl_count
;
348 struct lock_class_key rq_lock_key
;
351 static DEFINE_PER_CPU_SHARED_ALIGNED(struct rq
, runqueues
);
352 static DEFINE_MUTEX(sched_hotcpu_mutex
);
354 static inline void check_preempt_curr(struct rq
*rq
, struct task_struct
*p
)
356 rq
->curr
->sched_class
->check_preempt_curr(rq
, p
);
359 static inline int cpu_of(struct rq
*rq
)
369 * Update the per-runqueue clock, as finegrained as the platform can give
370 * us, but without assuming monotonicity, etc.:
372 static void __update_rq_clock(struct rq
*rq
)
374 u64 prev_raw
= rq
->prev_clock_raw
;
375 u64 now
= sched_clock();
376 s64 delta
= now
- prev_raw
;
377 u64 clock
= rq
->clock
;
379 #ifdef CONFIG_SCHED_DEBUG
380 WARN_ON_ONCE(cpu_of(rq
) != smp_processor_id());
383 * Protect against sched_clock() occasionally going backwards:
385 if (unlikely(delta
< 0)) {
390 * Catch too large forward jumps too:
392 if (unlikely(clock
+ delta
> rq
->tick_timestamp
+ TICK_NSEC
)) {
393 if (clock
< rq
->tick_timestamp
+ TICK_NSEC
)
394 clock
= rq
->tick_timestamp
+ TICK_NSEC
;
397 rq
->clock_overflows
++;
399 if (unlikely(delta
> rq
->clock_max_delta
))
400 rq
->clock_max_delta
= delta
;
405 rq
->prev_clock_raw
= now
;
409 static void update_rq_clock(struct rq
*rq
)
411 if (likely(smp_processor_id() == cpu_of(rq
)))
412 __update_rq_clock(rq
);
416 * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
417 * See detach_destroy_domains: synchronize_sched for details.
419 * The domain tree of any CPU may only be accessed from within
420 * preempt-disabled sections.
422 #define for_each_domain(cpu, __sd) \
423 for (__sd = rcu_dereference(cpu_rq(cpu)->sd); __sd; __sd = __sd->parent)
425 #define cpu_rq(cpu) (&per_cpu(runqueues, (cpu)))
426 #define this_rq() (&__get_cpu_var(runqueues))
427 #define task_rq(p) cpu_rq(task_cpu(p))
428 #define cpu_curr(cpu) (cpu_rq(cpu)->curr)
431 * Tunables that become constants when CONFIG_SCHED_DEBUG is off:
433 #ifdef CONFIG_SCHED_DEBUG
434 # define const_debug __read_mostly
436 # define const_debug static const
440 * Debugging: various feature bits
443 SCHED_FEAT_NEW_FAIR_SLEEPERS
= 1,
444 SCHED_FEAT_START_DEBIT
= 2,
445 SCHED_FEAT_TREE_AVG
= 4,
446 SCHED_FEAT_APPROX_AVG
= 8,
447 SCHED_FEAT_WAKEUP_PREEMPT
= 16,
448 SCHED_FEAT_PREEMPT_RESTRICT
= 32,
451 const_debug
unsigned int sysctl_sched_features
=
452 SCHED_FEAT_NEW_FAIR_SLEEPERS
*1 |
453 SCHED_FEAT_START_DEBIT
*1 |
454 SCHED_FEAT_TREE_AVG
*0 |
455 SCHED_FEAT_APPROX_AVG
*0 |
456 SCHED_FEAT_WAKEUP_PREEMPT
*1 |
457 SCHED_FEAT_PREEMPT_RESTRICT
*1;
459 #define sched_feat(x) (sysctl_sched_features & SCHED_FEAT_##x)
462 * For kernel-internal use: high-speed (but slightly incorrect) per-cpu
463 * clock constructed from sched_clock():
465 unsigned long long cpu_clock(int cpu
)
467 unsigned long long now
;
471 local_irq_save(flags
);
475 local_irq_restore(flags
);
479 EXPORT_SYMBOL_GPL(cpu_clock
);
481 #ifndef prepare_arch_switch
482 # define prepare_arch_switch(next) do { } while (0)
484 #ifndef finish_arch_switch
485 # define finish_arch_switch(prev) do { } while (0)
488 #ifndef __ARCH_WANT_UNLOCKED_CTXSW
489 static inline int task_running(struct rq
*rq
, struct task_struct
*p
)
491 return rq
->curr
== p
;
494 static inline void prepare_lock_switch(struct rq
*rq
, struct task_struct
*next
)
498 static inline void finish_lock_switch(struct rq
*rq
, struct task_struct
*prev
)
500 #ifdef CONFIG_DEBUG_SPINLOCK
501 /* this is a valid case when another task releases the spinlock */
502 rq
->lock
.owner
= current
;
505 * If we are tracking spinlock dependencies then we have to
506 * fix up the runqueue lock - which gets 'carried over' from
509 spin_acquire(&rq
->lock
.dep_map
, 0, 0, _THIS_IP_
);
511 spin_unlock_irq(&rq
->lock
);
514 #else /* __ARCH_WANT_UNLOCKED_CTXSW */
515 static inline int task_running(struct rq
*rq
, struct task_struct
*p
)
520 return rq
->curr
== p
;
524 static inline void prepare_lock_switch(struct rq
*rq
, struct task_struct
*next
)
528 * We can optimise this out completely for !SMP, because the
529 * SMP rebalancing from interrupt is the only thing that cares
534 #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
535 spin_unlock_irq(&rq
->lock
);
537 spin_unlock(&rq
->lock
);
541 static inline void finish_lock_switch(struct rq
*rq
, struct task_struct
*prev
)
545 * After ->oncpu is cleared, the task can be moved to a different CPU.
546 * We must ensure this doesn't happen until the switch is completely
552 #ifndef __ARCH_WANT_INTERRUPTS_ON_CTXSW
556 #endif /* __ARCH_WANT_UNLOCKED_CTXSW */
559 * __task_rq_lock - lock the runqueue a given task resides on.
560 * Must be called interrupts disabled.
562 static inline struct rq
*__task_rq_lock(struct task_struct
*p
)
566 struct rq
*rq
= task_rq(p
);
567 spin_lock(&rq
->lock
);
568 if (likely(rq
== task_rq(p
)))
570 spin_unlock(&rq
->lock
);
575 * task_rq_lock - lock the runqueue a given task resides on and disable
576 * interrupts. Note the ordering: we can safely lookup the task_rq without
577 * explicitly disabling preemption.
579 static struct rq
*task_rq_lock(struct task_struct
*p
, unsigned long *flags
)
585 local_irq_save(*flags
);
587 spin_lock(&rq
->lock
);
588 if (likely(rq
== task_rq(p
)))
590 spin_unlock_irqrestore(&rq
->lock
, *flags
);
594 static void __task_rq_unlock(struct rq
*rq
)
597 spin_unlock(&rq
->lock
);
600 static inline void task_rq_unlock(struct rq
*rq
, unsigned long *flags
)
603 spin_unlock_irqrestore(&rq
->lock
, *flags
);
607 * this_rq_lock - lock this runqueue and disable interrupts.
609 static struct rq
*this_rq_lock(void)
616 spin_lock(&rq
->lock
);
622 * We are going deep-idle (irqs are disabled):
624 void sched_clock_idle_sleep_event(void)
626 struct rq
*rq
= cpu_rq(smp_processor_id());
628 spin_lock(&rq
->lock
);
629 __update_rq_clock(rq
);
630 spin_unlock(&rq
->lock
);
631 rq
->clock_deep_idle_events
++;
633 EXPORT_SYMBOL_GPL(sched_clock_idle_sleep_event
);
636 * We just idled delta nanoseconds (called with irqs disabled):
638 void sched_clock_idle_wakeup_event(u64 delta_ns
)
640 struct rq
*rq
= cpu_rq(smp_processor_id());
641 u64 now
= sched_clock();
643 rq
->idle_clock
+= delta_ns
;
645 * Override the previous timestamp and ignore all
646 * sched_clock() deltas that occured while we idled,
647 * and use the PM-provided delta_ns to advance the
650 spin_lock(&rq
->lock
);
651 rq
->prev_clock_raw
= now
;
652 rq
->clock
+= delta_ns
;
653 spin_unlock(&rq
->lock
);
655 EXPORT_SYMBOL_GPL(sched_clock_idle_wakeup_event
);
658 * resched_task - mark a task 'to be rescheduled now'.
660 * On UP this means the setting of the need_resched flag, on SMP it
661 * might also involve a cross-CPU call to trigger the scheduler on
666 #ifndef tsk_is_polling
667 #define tsk_is_polling(t) test_tsk_thread_flag(t, TIF_POLLING_NRFLAG)
670 static void resched_task(struct task_struct
*p
)
674 assert_spin_locked(&task_rq(p
)->lock
);
676 if (unlikely(test_tsk_thread_flag(p
, TIF_NEED_RESCHED
)))
679 set_tsk_thread_flag(p
, TIF_NEED_RESCHED
);
682 if (cpu
== smp_processor_id())
685 /* NEED_RESCHED must be visible before we test polling */
687 if (!tsk_is_polling(p
))
688 smp_send_reschedule(cpu
);
691 static void resched_cpu(int cpu
)
693 struct rq
*rq
= cpu_rq(cpu
);
696 if (!spin_trylock_irqsave(&rq
->lock
, flags
))
698 resched_task(cpu_curr(cpu
));
699 spin_unlock_irqrestore(&rq
->lock
, flags
);
702 static inline void resched_task(struct task_struct
*p
)
704 assert_spin_locked(&task_rq(p
)->lock
);
705 set_tsk_need_resched(p
);
709 #if BITS_PER_LONG == 32
710 # define WMULT_CONST (~0UL)
712 # define WMULT_CONST (1UL << 32)
715 #define WMULT_SHIFT 32
718 * Shift right and round:
720 #define SRR(x, y) (((x) + (1UL << ((y) - 1))) >> (y))
723 calc_delta_mine(unsigned long delta_exec
, unsigned long weight
,
724 struct load_weight
*lw
)
728 if (unlikely(!lw
->inv_weight
))
729 lw
->inv_weight
= (WMULT_CONST
- lw
->weight
/2) / lw
->weight
+ 1;
731 tmp
= (u64
)delta_exec
* weight
;
733 * Check whether we'd overflow the 64-bit multiplication:
735 if (unlikely(tmp
> WMULT_CONST
))
736 tmp
= SRR(SRR(tmp
, WMULT_SHIFT
/2) * lw
->inv_weight
,
739 tmp
= SRR(tmp
* lw
->inv_weight
, WMULT_SHIFT
);
741 return (unsigned long)min(tmp
, (u64
)(unsigned long)LONG_MAX
);
744 static inline unsigned long
745 calc_delta_fair(unsigned long delta_exec
, struct load_weight
*lw
)
747 return calc_delta_mine(delta_exec
, NICE_0_LOAD
, lw
);
750 static inline void update_load_add(struct load_weight
*lw
, unsigned long inc
)
755 static inline void update_load_sub(struct load_weight
*lw
, unsigned long dec
)
761 * To aid in avoiding the subversion of "niceness" due to uneven distribution
762 * of tasks with abnormal "nice" values across CPUs the contribution that
763 * each task makes to its run queue's load is weighted according to its
764 * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
765 * scaled version of the new time slice allocation that they receive on time
769 #define WEIGHT_IDLEPRIO 2
770 #define WMULT_IDLEPRIO (1 << 31)
773 * Nice levels are multiplicative, with a gentle 10% change for every
774 * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
775 * nice 1, it will get ~10% less CPU time than another CPU-bound task
776 * that remained on nice 0.
778 * The "10% effect" is relative and cumulative: from _any_ nice level,
779 * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
780 * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
781 * If a task goes up by ~10% and another task goes down by ~10% then
782 * the relative distance between them is ~25%.)
784 static const int prio_to_weight
[40] = {
785 /* -20 */ 88761, 71755, 56483, 46273, 36291,
786 /* -15 */ 29154, 23254, 18705, 14949, 11916,
787 /* -10 */ 9548, 7620, 6100, 4904, 3906,
788 /* -5 */ 3121, 2501, 1991, 1586, 1277,
789 /* 0 */ 1024, 820, 655, 526, 423,
790 /* 5 */ 335, 272, 215, 172, 137,
791 /* 10 */ 110, 87, 70, 56, 45,
792 /* 15 */ 36, 29, 23, 18, 15,
796 * Inverse (2^32/x) values of the prio_to_weight[] array, precalculated.
798 * In cases where the weight does not change often, we can use the
799 * precalculated inverse to speed up arithmetics by turning divisions
800 * into multiplications:
802 static const u32 prio_to_wmult
[40] = {
803 /* -20 */ 48388, 59856, 76040, 92818, 118348,
804 /* -15 */ 147320, 184698, 229616, 287308, 360437,
805 /* -10 */ 449829, 563644, 704093, 875809, 1099582,
806 /* -5 */ 1376151, 1717300, 2157191, 2708050, 3363326,
807 /* 0 */ 4194304, 5237765, 6557202, 8165337, 10153587,
808 /* 5 */ 12820798, 15790321, 19976592, 24970740, 31350126,
809 /* 10 */ 39045157, 49367440, 61356676, 76695844, 95443717,
810 /* 15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
813 static void activate_task(struct rq
*rq
, struct task_struct
*p
, int wakeup
);
816 * runqueue iterator, to support SMP load-balancing between different
817 * scheduling classes, without having to expose their internal data
818 * structures to the load-balancing proper:
822 struct task_struct
*(*start
)(void *);
823 struct task_struct
*(*next
)(void *);
826 static int balance_tasks(struct rq
*this_rq
, int this_cpu
, struct rq
*busiest
,
827 unsigned long max_nr_move
, unsigned long max_load_move
,
828 struct sched_domain
*sd
, enum cpu_idle_type idle
,
829 int *all_pinned
, unsigned long *load_moved
,
830 int *this_best_prio
, struct rq_iterator
*iterator
);
832 #include "sched_stats.h"
833 #include "sched_idletask.c"
834 #include "sched_fair.c"
835 #include "sched_rt.c"
836 #ifdef CONFIG_SCHED_DEBUG
837 # include "sched_debug.c"
840 #define sched_class_highest (&rt_sched_class)
843 * Update delta_exec, delta_fair fields for rq.
845 * delta_fair clock advances at a rate inversely proportional to
846 * total load (rq->load.weight) on the runqueue, while
847 * delta_exec advances at the same rate as wall-clock (provided
850 * delta_exec / delta_fair is a measure of the (smoothened) load on this
851 * runqueue over any given interval. This (smoothened) load is used
852 * during load balance.
854 * This function is called /before/ updating rq->load
855 * and when switching tasks.
857 static inline void inc_load(struct rq
*rq
, const struct task_struct
*p
)
859 update_load_add(&rq
->load
, p
->se
.load
.weight
);
862 static inline void dec_load(struct rq
*rq
, const struct task_struct
*p
)
864 update_load_sub(&rq
->load
, p
->se
.load
.weight
);
867 static void inc_nr_running(struct task_struct
*p
, struct rq
*rq
)
873 static void dec_nr_running(struct task_struct
*p
, struct rq
*rq
)
879 static void set_load_weight(struct task_struct
*p
)
881 if (task_has_rt_policy(p
)) {
882 p
->se
.load
.weight
= prio_to_weight
[0] * 2;
883 p
->se
.load
.inv_weight
= prio_to_wmult
[0] >> 1;
888 * SCHED_IDLE tasks get minimal weight:
890 if (p
->policy
== SCHED_IDLE
) {
891 p
->se
.load
.weight
= WEIGHT_IDLEPRIO
;
892 p
->se
.load
.inv_weight
= WMULT_IDLEPRIO
;
896 p
->se
.load
.weight
= prio_to_weight
[p
->static_prio
- MAX_RT_PRIO
];
897 p
->se
.load
.inv_weight
= prio_to_wmult
[p
->static_prio
- MAX_RT_PRIO
];
900 static void enqueue_task(struct rq
*rq
, struct task_struct
*p
, int wakeup
)
902 sched_info_queued(p
);
903 p
->sched_class
->enqueue_task(rq
, p
, wakeup
);
907 static void dequeue_task(struct rq
*rq
, struct task_struct
*p
, int sleep
)
909 p
->sched_class
->dequeue_task(rq
, p
, sleep
);
914 * __normal_prio - return the priority that is based on the static prio
916 static inline int __normal_prio(struct task_struct
*p
)
918 return p
->static_prio
;
922 * Calculate the expected normal priority: i.e. priority
923 * without taking RT-inheritance into account. Might be
924 * boosted by interactivity modifiers. Changes upon fork,
925 * setprio syscalls, and whenever the interactivity
926 * estimator recalculates.
928 static inline int normal_prio(struct task_struct
*p
)
932 if (task_has_rt_policy(p
))
933 prio
= MAX_RT_PRIO
-1 - p
->rt_priority
;
935 prio
= __normal_prio(p
);
940 * Calculate the current priority, i.e. the priority
941 * taken into account by the scheduler. This value might
942 * be boosted by RT tasks, or might be boosted by
943 * interactivity modifiers. Will be RT if the task got
944 * RT-boosted. If not then it returns p->normal_prio.
946 static int effective_prio(struct task_struct
*p
)
948 p
->normal_prio
= normal_prio(p
);
950 * If we are RT tasks or we were boosted to RT priority,
951 * keep the priority unchanged. Otherwise, update priority
952 * to the normal priority:
954 if (!rt_prio(p
->prio
))
955 return p
->normal_prio
;
960 * activate_task - move a task to the runqueue.
962 static void activate_task(struct rq
*rq
, struct task_struct
*p
, int wakeup
)
964 if (p
->state
== TASK_UNINTERRUPTIBLE
)
965 rq
->nr_uninterruptible
--;
967 enqueue_task(rq
, p
, wakeup
);
968 inc_nr_running(p
, rq
);
972 * deactivate_task - remove a task from the runqueue.
974 static void deactivate_task(struct rq
*rq
, struct task_struct
*p
, int sleep
)
976 if (p
->state
== TASK_UNINTERRUPTIBLE
)
977 rq
->nr_uninterruptible
++;
979 dequeue_task(rq
, p
, sleep
);
980 dec_nr_running(p
, rq
);
984 * task_curr - is this task currently executing on a CPU?
985 * @p: the task in question.
987 inline int task_curr(const struct task_struct
*p
)
989 return cpu_curr(task_cpu(p
)) == p
;
992 /* Used instead of source_load when we know the type == 0 */
993 unsigned long weighted_cpuload(const int cpu
)
995 return cpu_rq(cpu
)->load
.weight
;
998 static inline void __set_task_cpu(struct task_struct
*p
, unsigned int cpu
)
1001 task_thread_info(p
)->cpu
= cpu
;
1009 * Is this task likely cache-hot:
1012 task_hot(struct task_struct
*p
, u64 now
, struct sched_domain
*sd
)
1016 if (p
->sched_class
!= &fair_sched_class
)
1019 if (sysctl_sched_migration_cost
== -1)
1021 if (sysctl_sched_migration_cost
== 0)
1024 delta
= now
- p
->se
.exec_start
;
1026 return delta
< (s64
)sysctl_sched_migration_cost
;
1030 void set_task_cpu(struct task_struct
*p
, unsigned int new_cpu
)
1032 int old_cpu
= task_cpu(p
);
1033 struct rq
*old_rq
= cpu_rq(old_cpu
), *new_rq
= cpu_rq(new_cpu
);
1034 struct cfs_rq
*old_cfsrq
= task_cfs_rq(p
),
1035 *new_cfsrq
= cpu_cfs_rq(old_cfsrq
, new_cpu
);
1038 clock_offset
= old_rq
->clock
- new_rq
->clock
;
1040 #ifdef CONFIG_SCHEDSTATS
1041 if (p
->se
.wait_start
)
1042 p
->se
.wait_start
-= clock_offset
;
1043 if (p
->se
.sleep_start
)
1044 p
->se
.sleep_start
-= clock_offset
;
1045 if (p
->se
.block_start
)
1046 p
->se
.block_start
-= clock_offset
;
1047 if (old_cpu
!= new_cpu
) {
1048 schedstat_inc(p
, se
.nr_migrations
);
1049 if (task_hot(p
, old_rq
->clock
, NULL
))
1050 schedstat_inc(p
, se
.nr_forced2_migrations
);
1053 p
->se
.vruntime
-= old_cfsrq
->min_vruntime
-
1054 new_cfsrq
->min_vruntime
;
1056 __set_task_cpu(p
, new_cpu
);
1059 struct migration_req
{
1060 struct list_head list
;
1062 struct task_struct
*task
;
1065 struct completion done
;
1069 * The task's runqueue lock must be held.
1070 * Returns true if you have to wait for migration thread.
1073 migrate_task(struct task_struct
*p
, int dest_cpu
, struct migration_req
*req
)
1075 struct rq
*rq
= task_rq(p
);
1078 * If the task is not on a runqueue (and not running), then
1079 * it is sufficient to simply update the task's cpu field.
1081 if (!p
->se
.on_rq
&& !task_running(rq
, p
)) {
1082 set_task_cpu(p
, dest_cpu
);
1086 init_completion(&req
->done
);
1088 req
->dest_cpu
= dest_cpu
;
1089 list_add(&req
->list
, &rq
->migration_queue
);
1095 * wait_task_inactive - wait for a thread to unschedule.
1097 * The caller must ensure that the task *will* unschedule sometime soon,
1098 * else this function might spin for a *long* time. This function can't
1099 * be called with interrupts off, or it may introduce deadlock with
1100 * smp_call_function() if an IPI is sent by the same process we are
1101 * waiting to become inactive.
1103 void wait_task_inactive(struct task_struct
*p
)
1105 unsigned long flags
;
1111 * We do the initial early heuristics without holding
1112 * any task-queue locks at all. We'll only try to get
1113 * the runqueue lock when things look like they will
1119 * If the task is actively running on another CPU
1120 * still, just relax and busy-wait without holding
1123 * NOTE! Since we don't hold any locks, it's not
1124 * even sure that "rq" stays as the right runqueue!
1125 * But we don't care, since "task_running()" will
1126 * return false if the runqueue has changed and p
1127 * is actually now running somewhere else!
1129 while (task_running(rq
, p
))
1133 * Ok, time to look more closely! We need the rq
1134 * lock now, to be *sure*. If we're wrong, we'll
1135 * just go back and repeat.
1137 rq
= task_rq_lock(p
, &flags
);
1138 running
= task_running(rq
, p
);
1139 on_rq
= p
->se
.on_rq
;
1140 task_rq_unlock(rq
, &flags
);
1143 * Was it really running after all now that we
1144 * checked with the proper locks actually held?
1146 * Oops. Go back and try again..
1148 if (unlikely(running
)) {
1154 * It's not enough that it's not actively running,
1155 * it must be off the runqueue _entirely_, and not
1158 * So if it wa still runnable (but just not actively
1159 * running right now), it's preempted, and we should
1160 * yield - it could be a while.
1162 if (unlikely(on_rq
)) {
1163 schedule_timeout_uninterruptible(1);
1168 * Ahh, all good. It wasn't running, and it wasn't
1169 * runnable, which means that it will never become
1170 * running in the future either. We're all done!
1177 * kick_process - kick a running thread to enter/exit the kernel
1178 * @p: the to-be-kicked thread
1180 * Cause a process which is running on another CPU to enter
1181 * kernel-mode, without any delay. (to get signals handled.)
1183 * NOTE: this function doesnt have to take the runqueue lock,
1184 * because all it wants to ensure is that the remote task enters
1185 * the kernel. If the IPI races and the task has been migrated
1186 * to another CPU then no harm is done and the purpose has been
1189 void kick_process(struct task_struct
*p
)
1195 if ((cpu
!= smp_processor_id()) && task_curr(p
))
1196 smp_send_reschedule(cpu
);
1201 * Return a low guess at the load of a migration-source cpu weighted
1202 * according to the scheduling class and "nice" value.
1204 * We want to under-estimate the load of migration sources, to
1205 * balance conservatively.
1207 static unsigned long source_load(int cpu
, int type
)
1209 struct rq
*rq
= cpu_rq(cpu
);
1210 unsigned long total
= weighted_cpuload(cpu
);
1215 return min(rq
->cpu_load
[type
-1], total
);
1219 * Return a high guess at the load of a migration-target cpu weighted
1220 * according to the scheduling class and "nice" value.
1222 static unsigned long target_load(int cpu
, int type
)
1224 struct rq
*rq
= cpu_rq(cpu
);
1225 unsigned long total
= weighted_cpuload(cpu
);
1230 return max(rq
->cpu_load
[type
-1], total
);
1234 * Return the average load per task on the cpu's run queue
1236 static inline unsigned long cpu_avg_load_per_task(int cpu
)
1238 struct rq
*rq
= cpu_rq(cpu
);
1239 unsigned long total
= weighted_cpuload(cpu
);
1240 unsigned long n
= rq
->nr_running
;
1242 return n
? total
/ n
: SCHED_LOAD_SCALE
;
1246 * find_idlest_group finds and returns the least busy CPU group within the
1249 static struct sched_group
*
1250 find_idlest_group(struct sched_domain
*sd
, struct task_struct
*p
, int this_cpu
)
1252 struct sched_group
*idlest
= NULL
, *this = NULL
, *group
= sd
->groups
;
1253 unsigned long min_load
= ULONG_MAX
, this_load
= 0;
1254 int load_idx
= sd
->forkexec_idx
;
1255 int imbalance
= 100 + (sd
->imbalance_pct
-100)/2;
1258 unsigned long load
, avg_load
;
1262 /* Skip over this group if it has no CPUs allowed */
1263 if (!cpus_intersects(group
->cpumask
, p
->cpus_allowed
))
1266 local_group
= cpu_isset(this_cpu
, group
->cpumask
);
1268 /* Tally up the load of all CPUs in the group */
1271 for_each_cpu_mask(i
, group
->cpumask
) {
1272 /* Bias balancing toward cpus of our domain */
1274 load
= source_load(i
, load_idx
);
1276 load
= target_load(i
, load_idx
);
1281 /* Adjust by relative CPU power of the group */
1282 avg_load
= sg_div_cpu_power(group
,
1283 avg_load
* SCHED_LOAD_SCALE
);
1286 this_load
= avg_load
;
1288 } else if (avg_load
< min_load
) {
1289 min_load
= avg_load
;
1292 } while (group
= group
->next
, group
!= sd
->groups
);
1294 if (!idlest
|| 100*this_load
< imbalance
*min_load
)
1300 * find_idlest_cpu - find the idlest cpu among the cpus in group.
1303 find_idlest_cpu(struct sched_group
*group
, struct task_struct
*p
, int this_cpu
)
1306 unsigned long load
, min_load
= ULONG_MAX
;
1310 /* Traverse only the allowed CPUs */
1311 cpus_and(tmp
, group
->cpumask
, p
->cpus_allowed
);
1313 for_each_cpu_mask(i
, tmp
) {
1314 load
= weighted_cpuload(i
);
1316 if (load
< min_load
|| (load
== min_load
&& i
== this_cpu
)) {
1326 * sched_balance_self: balance the current task (running on cpu) in domains
1327 * that have the 'flag' flag set. In practice, this is SD_BALANCE_FORK and
1330 * Balance, ie. select the least loaded group.
1332 * Returns the target CPU number, or the same CPU if no balancing is needed.
1334 * preempt must be disabled.
1336 static int sched_balance_self(int cpu
, int flag
)
1338 struct task_struct
*t
= current
;
1339 struct sched_domain
*tmp
, *sd
= NULL
;
1341 for_each_domain(cpu
, tmp
) {
1343 * If power savings logic is enabled for a domain, stop there.
1345 if (tmp
->flags
& SD_POWERSAVINGS_BALANCE
)
1347 if (tmp
->flags
& flag
)
1353 struct sched_group
*group
;
1354 int new_cpu
, weight
;
1356 if (!(sd
->flags
& flag
)) {
1362 group
= find_idlest_group(sd
, t
, cpu
);
1368 new_cpu
= find_idlest_cpu(group
, t
, cpu
);
1369 if (new_cpu
== -1 || new_cpu
== cpu
) {
1370 /* Now try balancing at a lower domain level of cpu */
1375 /* Now try balancing at a lower domain level of new_cpu */
1378 weight
= cpus_weight(span
);
1379 for_each_domain(cpu
, tmp
) {
1380 if (weight
<= cpus_weight(tmp
->span
))
1382 if (tmp
->flags
& flag
)
1385 /* while loop will break here if sd == NULL */
1391 #endif /* CONFIG_SMP */
1394 * wake_idle() will wake a task on an idle cpu if task->cpu is
1395 * not idle and an idle cpu is available. The span of cpus to
1396 * search starts with cpus closest then further out as needed,
1397 * so we always favor a closer, idle cpu.
1399 * Returns the CPU we should wake onto.
1401 #if defined(ARCH_HAS_SCHED_WAKE_IDLE)
1402 static int wake_idle(int cpu
, struct task_struct
*p
)
1405 struct sched_domain
*sd
;
1409 * If it is idle, then it is the best cpu to run this task.
1411 * This cpu is also the best, if it has more than one task already.
1412 * Siblings must be also busy(in most cases) as they didn't already
1413 * pickup the extra load from this cpu and hence we need not check
1414 * sibling runqueue info. This will avoid the checks and cache miss
1415 * penalities associated with that.
1417 if (idle_cpu(cpu
) || cpu_rq(cpu
)->nr_running
> 1)
1420 for_each_domain(cpu
, sd
) {
1421 if (sd
->flags
& SD_WAKE_IDLE
) {
1422 cpus_and(tmp
, sd
->span
, p
->cpus_allowed
);
1423 for_each_cpu_mask(i
, tmp
) {
1425 if (i
!= task_cpu(p
)) {
1427 se
.nr_wakeups_idle
);
1439 static inline int wake_idle(int cpu
, struct task_struct
*p
)
1446 * try_to_wake_up - wake up a thread
1447 * @p: the to-be-woken-up thread
1448 * @state: the mask of task states that can be woken
1449 * @sync: do a synchronous wakeup?
1451 * Put it on the run-queue if it's not already there. The "current"
1452 * thread is always on the run-queue (except when the actual
1453 * re-schedule is in progress), and as such you're allowed to do
1454 * the simpler "current->state = TASK_RUNNING" to mark yourself
1455 * runnable without the overhead of this.
1457 * returns failure only if the task is already active.
1459 static int try_to_wake_up(struct task_struct
*p
, unsigned int state
, int sync
)
1461 int cpu
, orig_cpu
, this_cpu
, success
= 0;
1462 unsigned long flags
;
1466 struct sched_domain
*sd
, *this_sd
= NULL
;
1467 unsigned long load
, this_load
;
1471 rq
= task_rq_lock(p
, &flags
);
1472 old_state
= p
->state
;
1473 if (!(old_state
& state
))
1481 this_cpu
= smp_processor_id();
1484 if (unlikely(task_running(rq
, p
)))
1489 schedstat_inc(rq
, ttwu_count
);
1490 if (cpu
== this_cpu
) {
1491 schedstat_inc(rq
, ttwu_local
);
1495 for_each_domain(this_cpu
, sd
) {
1496 if (cpu_isset(cpu
, sd
->span
)) {
1497 schedstat_inc(sd
, ttwu_wake_remote
);
1503 if (unlikely(!cpu_isset(this_cpu
, p
->cpus_allowed
)))
1507 * Check for affine wakeup and passive balancing possibilities.
1510 int idx
= this_sd
->wake_idx
;
1511 unsigned int imbalance
;
1513 imbalance
= 100 + (this_sd
->imbalance_pct
- 100) / 2;
1515 load
= source_load(cpu
, idx
);
1516 this_load
= target_load(this_cpu
, idx
);
1518 new_cpu
= this_cpu
; /* Wake to this CPU if we can */
1520 if (this_sd
->flags
& SD_WAKE_AFFINE
) {
1521 unsigned long tl
= this_load
;
1522 unsigned long tl_per_task
;
1525 * Attract cache-cold tasks on sync wakeups:
1527 if (sync
&& !task_hot(p
, rq
->clock
, this_sd
))
1530 schedstat_inc(p
, se
.nr_wakeups_affine_attempts
);
1531 tl_per_task
= cpu_avg_load_per_task(this_cpu
);
1534 * If sync wakeup then subtract the (maximum possible)
1535 * effect of the currently running task from the load
1536 * of the current CPU:
1539 tl
-= current
->se
.load
.weight
;
1542 tl
+ target_load(cpu
, idx
) <= tl_per_task
) ||
1543 100*(tl
+ p
->se
.load
.weight
) <= imbalance
*load
) {
1545 * This domain has SD_WAKE_AFFINE and
1546 * p is cache cold in this domain, and
1547 * there is no bad imbalance.
1549 schedstat_inc(this_sd
, ttwu_move_affine
);
1550 schedstat_inc(p
, se
.nr_wakeups_affine
);
1556 * Start passive balancing when half the imbalance_pct
1559 if (this_sd
->flags
& SD_WAKE_BALANCE
) {
1560 if (imbalance
*this_load
<= 100*load
) {
1561 schedstat_inc(this_sd
, ttwu_move_balance
);
1562 schedstat_inc(p
, se
.nr_wakeups_passive
);
1568 new_cpu
= cpu
; /* Could not wake to this_cpu. Wake to cpu instead */
1570 new_cpu
= wake_idle(new_cpu
, p
);
1571 if (new_cpu
!= cpu
) {
1572 set_task_cpu(p
, new_cpu
);
1573 task_rq_unlock(rq
, &flags
);
1574 /* might preempt at this point */
1575 rq
= task_rq_lock(p
, &flags
);
1576 old_state
= p
->state
;
1577 if (!(old_state
& state
))
1582 this_cpu
= smp_processor_id();
1587 #endif /* CONFIG_SMP */
1588 schedstat_inc(p
, se
.nr_wakeups
);
1590 schedstat_inc(p
, se
.nr_wakeups_sync
);
1591 if (orig_cpu
!= cpu
)
1592 schedstat_inc(p
, se
.nr_wakeups_migrate
);
1593 if (cpu
== this_cpu
)
1594 schedstat_inc(p
, se
.nr_wakeups_local
);
1596 schedstat_inc(p
, se
.nr_wakeups_remote
);
1597 update_rq_clock(rq
);
1598 activate_task(rq
, p
, 1);
1599 check_preempt_curr(rq
, p
);
1603 p
->state
= TASK_RUNNING
;
1605 task_rq_unlock(rq
, &flags
);
1610 int fastcall
wake_up_process(struct task_struct
*p
)
1612 return try_to_wake_up(p
, TASK_STOPPED
| TASK_TRACED
|
1613 TASK_INTERRUPTIBLE
| TASK_UNINTERRUPTIBLE
, 0);
1615 EXPORT_SYMBOL(wake_up_process
);
1617 int fastcall
wake_up_state(struct task_struct
*p
, unsigned int state
)
1619 return try_to_wake_up(p
, state
, 0);
1623 * Perform scheduler related setup for a newly forked process p.
1624 * p is forked by current.
1626 * __sched_fork() is basic setup used by init_idle() too:
1628 static void __sched_fork(struct task_struct
*p
)
1630 p
->se
.exec_start
= 0;
1631 p
->se
.sum_exec_runtime
= 0;
1632 p
->se
.prev_sum_exec_runtime
= 0;
1634 #ifdef CONFIG_SCHEDSTATS
1635 p
->se
.wait_start
= 0;
1636 p
->se
.sum_sleep_runtime
= 0;
1637 p
->se
.sleep_start
= 0;
1638 p
->se
.block_start
= 0;
1639 p
->se
.sleep_max
= 0;
1640 p
->se
.block_max
= 0;
1642 p
->se
.slice_max
= 0;
1646 INIT_LIST_HEAD(&p
->run_list
);
1649 #ifdef CONFIG_PREEMPT_NOTIFIERS
1650 INIT_HLIST_HEAD(&p
->preempt_notifiers
);
1654 * We mark the process as running here, but have not actually
1655 * inserted it onto the runqueue yet. This guarantees that
1656 * nobody will actually run it, and a signal or other external
1657 * event cannot wake it up and insert it on the runqueue either.
1659 p
->state
= TASK_RUNNING
;
1663 * fork()/clone()-time setup:
1665 void sched_fork(struct task_struct
*p
, int clone_flags
)
1667 int cpu
= get_cpu();
1672 cpu
= sched_balance_self(cpu
, SD_BALANCE_FORK
);
1674 set_task_cpu(p
, cpu
);
1677 * Make sure we do not leak PI boosting priority to the child:
1679 p
->prio
= current
->normal_prio
;
1680 if (!rt_prio(p
->prio
))
1681 p
->sched_class
= &fair_sched_class
;
1683 #if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
1684 if (likely(sched_info_on()))
1685 memset(&p
->sched_info
, 0, sizeof(p
->sched_info
));
1687 #if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
1690 #ifdef CONFIG_PREEMPT
1691 /* Want to start with kernel preemption disabled. */
1692 task_thread_info(p
)->preempt_count
= 1;
1698 * wake_up_new_task - wake up a newly created task for the first time.
1700 * This function will do some initial scheduler statistics housekeeping
1701 * that must be done for every newly created context, then puts the task
1702 * on the runqueue and wakes it.
1704 void fastcall
wake_up_new_task(struct task_struct
*p
, unsigned long clone_flags
)
1706 unsigned long flags
;
1709 rq
= task_rq_lock(p
, &flags
);
1710 BUG_ON(p
->state
!= TASK_RUNNING
);
1711 update_rq_clock(rq
);
1713 p
->prio
= effective_prio(p
);
1715 if (!p
->sched_class
->task_new
|| !current
->se
.on_rq
) {
1716 activate_task(rq
, p
, 0);
1719 * Let the scheduling class do new task startup
1720 * management (if any):
1722 p
->sched_class
->task_new(rq
, p
);
1723 inc_nr_running(p
, rq
);
1725 check_preempt_curr(rq
, p
);
1726 task_rq_unlock(rq
, &flags
);
1729 #ifdef CONFIG_PREEMPT_NOTIFIERS
1732 * preempt_notifier_register - tell me when current is being being preempted & rescheduled
1733 * @notifier: notifier struct to register
1735 void preempt_notifier_register(struct preempt_notifier
*notifier
)
1737 hlist_add_head(¬ifier
->link
, ¤t
->preempt_notifiers
);
1739 EXPORT_SYMBOL_GPL(preempt_notifier_register
);
1742 * preempt_notifier_unregister - no longer interested in preemption notifications
1743 * @notifier: notifier struct to unregister
1745 * This is safe to call from within a preemption notifier.
1747 void preempt_notifier_unregister(struct preempt_notifier
*notifier
)
1749 hlist_del(¬ifier
->link
);
1751 EXPORT_SYMBOL_GPL(preempt_notifier_unregister
);
1753 static void fire_sched_in_preempt_notifiers(struct task_struct
*curr
)
1755 struct preempt_notifier
*notifier
;
1756 struct hlist_node
*node
;
1758 hlist_for_each_entry(notifier
, node
, &curr
->preempt_notifiers
, link
)
1759 notifier
->ops
->sched_in(notifier
, raw_smp_processor_id());
1763 fire_sched_out_preempt_notifiers(struct task_struct
*curr
,
1764 struct task_struct
*next
)
1766 struct preempt_notifier
*notifier
;
1767 struct hlist_node
*node
;
1769 hlist_for_each_entry(notifier
, node
, &curr
->preempt_notifiers
, link
)
1770 notifier
->ops
->sched_out(notifier
, next
);
1775 static void fire_sched_in_preempt_notifiers(struct task_struct
*curr
)
1780 fire_sched_out_preempt_notifiers(struct task_struct
*curr
,
1781 struct task_struct
*next
)
1788 * prepare_task_switch - prepare to switch tasks
1789 * @rq: the runqueue preparing to switch
1790 * @prev: the current task that is being switched out
1791 * @next: the task we are going to switch to.
1793 * This is called with the rq lock held and interrupts off. It must
1794 * be paired with a subsequent finish_task_switch after the context
1797 * prepare_task_switch sets up locking and calls architecture specific
1801 prepare_task_switch(struct rq
*rq
, struct task_struct
*prev
,
1802 struct task_struct
*next
)
1804 fire_sched_out_preempt_notifiers(prev
, next
);
1805 prepare_lock_switch(rq
, next
);
1806 prepare_arch_switch(next
);
1810 * finish_task_switch - clean up after a task-switch
1811 * @rq: runqueue associated with task-switch
1812 * @prev: the thread we just switched away from.
1814 * finish_task_switch must be called after the context switch, paired
1815 * with a prepare_task_switch call before the context switch.
1816 * finish_task_switch will reconcile locking set up by prepare_task_switch,
1817 * and do any other architecture-specific cleanup actions.
1819 * Note that we may have delayed dropping an mm in context_switch(). If
1820 * so, we finish that here outside of the runqueue lock. (Doing it
1821 * with the lock held can cause deadlocks; see schedule() for
1824 static void finish_task_switch(struct rq
*rq
, struct task_struct
*prev
)
1825 __releases(rq
->lock
)
1827 struct mm_struct
*mm
= rq
->prev_mm
;
1833 * A task struct has one reference for the use as "current".
1834 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
1835 * schedule one last time. The schedule call will never return, and
1836 * the scheduled task must drop that reference.
1837 * The test for TASK_DEAD must occur while the runqueue locks are
1838 * still held, otherwise prev could be scheduled on another cpu, die
1839 * there before we look at prev->state, and then the reference would
1841 * Manfred Spraul <manfred@colorfullife.com>
1843 prev_state
= prev
->state
;
1844 finish_arch_switch(prev
);
1845 finish_lock_switch(rq
, prev
);
1846 fire_sched_in_preempt_notifiers(current
);
1849 if (unlikely(prev_state
== TASK_DEAD
)) {
1851 * Remove function-return probe instances associated with this
1852 * task and put them back on the free list.
1854 kprobe_flush_task(prev
);
1855 put_task_struct(prev
);
1860 * schedule_tail - first thing a freshly forked thread must call.
1861 * @prev: the thread we just switched away from.
1863 asmlinkage
void schedule_tail(struct task_struct
*prev
)
1864 __releases(rq
->lock
)
1866 struct rq
*rq
= this_rq();
1868 finish_task_switch(rq
, prev
);
1869 #ifdef __ARCH_WANT_UNLOCKED_CTXSW
1870 /* In this case, finish_task_switch does not reenable preemption */
1873 if (current
->set_child_tid
)
1874 put_user(current
->pid
, current
->set_child_tid
);
1878 * context_switch - switch to the new MM and the new
1879 * thread's register state.
1882 context_switch(struct rq
*rq
, struct task_struct
*prev
,
1883 struct task_struct
*next
)
1885 struct mm_struct
*mm
, *oldmm
;
1887 prepare_task_switch(rq
, prev
, next
);
1889 oldmm
= prev
->active_mm
;
1891 * For paravirt, this is coupled with an exit in switch_to to
1892 * combine the page table reload and the switch backend into
1895 arch_enter_lazy_cpu_mode();
1897 if (unlikely(!mm
)) {
1898 next
->active_mm
= oldmm
;
1899 atomic_inc(&oldmm
->mm_count
);
1900 enter_lazy_tlb(oldmm
, next
);
1902 switch_mm(oldmm
, mm
, next
);
1904 if (unlikely(!prev
->mm
)) {
1905 prev
->active_mm
= NULL
;
1906 rq
->prev_mm
= oldmm
;
1909 * Since the runqueue lock will be released by the next
1910 * task (which is an invalid locking op but in the case
1911 * of the scheduler it's an obvious special-case), so we
1912 * do an early lockdep release here:
1914 #ifndef __ARCH_WANT_UNLOCKED_CTXSW
1915 spin_release(&rq
->lock
.dep_map
, 1, _THIS_IP_
);
1918 /* Here we just switch the register state and the stack. */
1919 switch_to(prev
, next
, prev
);
1923 * this_rq must be evaluated again because prev may have moved
1924 * CPUs since it called schedule(), thus the 'rq' on its stack
1925 * frame will be invalid.
1927 finish_task_switch(this_rq(), prev
);
1931 * nr_running, nr_uninterruptible and nr_context_switches:
1933 * externally visible scheduler statistics: current number of runnable
1934 * threads, current number of uninterruptible-sleeping threads, total
1935 * number of context switches performed since bootup.
1937 unsigned long nr_running(void)
1939 unsigned long i
, sum
= 0;
1941 for_each_online_cpu(i
)
1942 sum
+= cpu_rq(i
)->nr_running
;
1947 unsigned long nr_uninterruptible(void)
1949 unsigned long i
, sum
= 0;
1951 for_each_possible_cpu(i
)
1952 sum
+= cpu_rq(i
)->nr_uninterruptible
;
1955 * Since we read the counters lockless, it might be slightly
1956 * inaccurate. Do not allow it to go below zero though:
1958 if (unlikely((long)sum
< 0))
1964 unsigned long long nr_context_switches(void)
1967 unsigned long long sum
= 0;
1969 for_each_possible_cpu(i
)
1970 sum
+= cpu_rq(i
)->nr_switches
;
1975 unsigned long nr_iowait(void)
1977 unsigned long i
, sum
= 0;
1979 for_each_possible_cpu(i
)
1980 sum
+= atomic_read(&cpu_rq(i
)->nr_iowait
);
1985 unsigned long nr_active(void)
1987 unsigned long i
, running
= 0, uninterruptible
= 0;
1989 for_each_online_cpu(i
) {
1990 running
+= cpu_rq(i
)->nr_running
;
1991 uninterruptible
+= cpu_rq(i
)->nr_uninterruptible
;
1994 if (unlikely((long)uninterruptible
< 0))
1995 uninterruptible
= 0;
1997 return running
+ uninterruptible
;
2001 * Update rq->cpu_load[] statistics. This function is usually called every
2002 * scheduler tick (TICK_NSEC).
2004 static void update_cpu_load(struct rq
*this_rq
)
2006 unsigned long this_load
= this_rq
->load
.weight
;
2009 this_rq
->nr_load_updates
++;
2011 /* Update our load: */
2012 for (i
= 0, scale
= 1; i
< CPU_LOAD_IDX_MAX
; i
++, scale
+= scale
) {
2013 unsigned long old_load
, new_load
;
2015 /* scale is effectively 1 << i now, and >> i divides by scale */
2017 old_load
= this_rq
->cpu_load
[i
];
2018 new_load
= this_load
;
2020 * Round up the averaging division if load is increasing. This
2021 * prevents us from getting stuck on 9 if the load is 10, for
2024 if (new_load
> old_load
)
2025 new_load
+= scale
-1;
2026 this_rq
->cpu_load
[i
] = (old_load
*(scale
-1) + new_load
) >> i
;
2033 * double_rq_lock - safely lock two runqueues
2035 * Note this does not disable interrupts like task_rq_lock,
2036 * you need to do so manually before calling.
2038 static void double_rq_lock(struct rq
*rq1
, struct rq
*rq2
)
2039 __acquires(rq1
->lock
)
2040 __acquires(rq2
->lock
)
2042 BUG_ON(!irqs_disabled());
2044 spin_lock(&rq1
->lock
);
2045 __acquire(rq2
->lock
); /* Fake it out ;) */
2048 spin_lock(&rq1
->lock
);
2049 spin_lock(&rq2
->lock
);
2051 spin_lock(&rq2
->lock
);
2052 spin_lock(&rq1
->lock
);
2055 update_rq_clock(rq1
);
2056 update_rq_clock(rq2
);
2060 * double_rq_unlock - safely unlock two runqueues
2062 * Note this does not restore interrupts like task_rq_unlock,
2063 * you need to do so manually after calling.
2065 static void double_rq_unlock(struct rq
*rq1
, struct rq
*rq2
)
2066 __releases(rq1
->lock
)
2067 __releases(rq2
->lock
)
2069 spin_unlock(&rq1
->lock
);
2071 spin_unlock(&rq2
->lock
);
2073 __release(rq2
->lock
);
2077 * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
2079 static void double_lock_balance(struct rq
*this_rq
, struct rq
*busiest
)
2080 __releases(this_rq
->lock
)
2081 __acquires(busiest
->lock
)
2082 __acquires(this_rq
->lock
)
2084 if (unlikely(!irqs_disabled())) {
2085 /* printk() doesn't work good under rq->lock */
2086 spin_unlock(&this_rq
->lock
);
2089 if (unlikely(!spin_trylock(&busiest
->lock
))) {
2090 if (busiest
< this_rq
) {
2091 spin_unlock(&this_rq
->lock
);
2092 spin_lock(&busiest
->lock
);
2093 spin_lock(&this_rq
->lock
);
2095 spin_lock(&busiest
->lock
);
2100 * If dest_cpu is allowed for this process, migrate the task to it.
2101 * This is accomplished by forcing the cpu_allowed mask to only
2102 * allow dest_cpu, which will force the cpu onto dest_cpu. Then
2103 * the cpu_allowed mask is restored.
2105 static void sched_migrate_task(struct task_struct
*p
, int dest_cpu
)
2107 struct migration_req req
;
2108 unsigned long flags
;
2111 rq
= task_rq_lock(p
, &flags
);
2112 if (!cpu_isset(dest_cpu
, p
->cpus_allowed
)
2113 || unlikely(cpu_is_offline(dest_cpu
)))
2116 /* force the process onto the specified CPU */
2117 if (migrate_task(p
, dest_cpu
, &req
)) {
2118 /* Need to wait for migration thread (might exit: take ref). */
2119 struct task_struct
*mt
= rq
->migration_thread
;
2121 get_task_struct(mt
);
2122 task_rq_unlock(rq
, &flags
);
2123 wake_up_process(mt
);
2124 put_task_struct(mt
);
2125 wait_for_completion(&req
.done
);
2130 task_rq_unlock(rq
, &flags
);
2134 * sched_exec - execve() is a valuable balancing opportunity, because at
2135 * this point the task has the smallest effective memory and cache footprint.
2137 void sched_exec(void)
2139 int new_cpu
, this_cpu
= get_cpu();
2140 new_cpu
= sched_balance_self(this_cpu
, SD_BALANCE_EXEC
);
2142 if (new_cpu
!= this_cpu
)
2143 sched_migrate_task(current
, new_cpu
);
2147 * pull_task - move a task from a remote runqueue to the local runqueue.
2148 * Both runqueues must be locked.
2150 static void pull_task(struct rq
*src_rq
, struct task_struct
*p
,
2151 struct rq
*this_rq
, int this_cpu
)
2153 deactivate_task(src_rq
, p
, 0);
2154 set_task_cpu(p
, this_cpu
);
2155 activate_task(this_rq
, p
, 0);
2157 * Note that idle threads have a prio of MAX_PRIO, for this test
2158 * to be always true for them.
2160 check_preempt_curr(this_rq
, p
);
2164 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
2167 int can_migrate_task(struct task_struct
*p
, struct rq
*rq
, int this_cpu
,
2168 struct sched_domain
*sd
, enum cpu_idle_type idle
,
2172 * We do not migrate tasks that are:
2173 * 1) running (obviously), or
2174 * 2) cannot be migrated to this CPU due to cpus_allowed, or
2175 * 3) are cache-hot on their current CPU.
2177 if (!cpu_isset(this_cpu
, p
->cpus_allowed
)) {
2178 schedstat_inc(p
, se
.nr_failed_migrations_affine
);
2183 if (task_running(rq
, p
)) {
2184 schedstat_inc(p
, se
.nr_failed_migrations_running
);
2189 * Aggressive migration if:
2190 * 1) task is cache cold, or
2191 * 2) too many balance attempts have failed.
2194 if (!task_hot(p
, rq
->clock
, sd
) ||
2195 sd
->nr_balance_failed
> sd
->cache_nice_tries
) {
2196 #ifdef CONFIG_SCHEDSTATS
2197 if (task_hot(p
, rq
->clock
, sd
)) {
2198 schedstat_inc(sd
, lb_hot_gained
[idle
]);
2199 schedstat_inc(p
, se
.nr_forced_migrations
);
2205 if (task_hot(p
, rq
->clock
, sd
)) {
2206 schedstat_inc(p
, se
.nr_failed_migrations_hot
);
2212 static int balance_tasks(struct rq
*this_rq
, int this_cpu
, struct rq
*busiest
,
2213 unsigned long max_nr_move
, unsigned long max_load_move
,
2214 struct sched_domain
*sd
, enum cpu_idle_type idle
,
2215 int *all_pinned
, unsigned long *load_moved
,
2216 int *this_best_prio
, struct rq_iterator
*iterator
)
2218 int pulled
= 0, pinned
= 0, skip_for_load
;
2219 struct task_struct
*p
;
2220 long rem_load_move
= max_load_move
;
2222 if (max_nr_move
== 0 || max_load_move
== 0)
2228 * Start the load-balancing iterator:
2230 p
= iterator
->start(iterator
->arg
);
2235 * To help distribute high priority tasks accross CPUs we don't
2236 * skip a task if it will be the highest priority task (i.e. smallest
2237 * prio value) on its new queue regardless of its load weight
2239 skip_for_load
= (p
->se
.load
.weight
>> 1) > rem_load_move
+
2240 SCHED_LOAD_SCALE_FUZZ
;
2241 if ((skip_for_load
&& p
->prio
>= *this_best_prio
) ||
2242 !can_migrate_task(p
, busiest
, this_cpu
, sd
, idle
, &pinned
)) {
2243 p
= iterator
->next(iterator
->arg
);
2247 pull_task(busiest
, p
, this_rq
, this_cpu
);
2249 rem_load_move
-= p
->se
.load
.weight
;
2252 * We only want to steal up to the prescribed number of tasks
2253 * and the prescribed amount of weighted load.
2255 if (pulled
< max_nr_move
&& rem_load_move
> 0) {
2256 if (p
->prio
< *this_best_prio
)
2257 *this_best_prio
= p
->prio
;
2258 p
= iterator
->next(iterator
->arg
);
2263 * Right now, this is the only place pull_task() is called,
2264 * so we can safely collect pull_task() stats here rather than
2265 * inside pull_task().
2267 schedstat_add(sd
, lb_gained
[idle
], pulled
);
2270 *all_pinned
= pinned
;
2271 *load_moved
= max_load_move
- rem_load_move
;
2276 * move_tasks tries to move up to max_load_move weighted load from busiest to
2277 * this_rq, as part of a balancing operation within domain "sd".
2278 * Returns 1 if successful and 0 otherwise.
2280 * Called with both runqueues locked.
2282 static int move_tasks(struct rq
*this_rq
, int this_cpu
, struct rq
*busiest
,
2283 unsigned long max_load_move
,
2284 struct sched_domain
*sd
, enum cpu_idle_type idle
,
2287 const struct sched_class
*class = sched_class_highest
;
2288 unsigned long total_load_moved
= 0;
2289 int this_best_prio
= this_rq
->curr
->prio
;
2293 class->load_balance(this_rq
, this_cpu
, busiest
,
2294 ULONG_MAX
, max_load_move
- total_load_moved
,
2295 sd
, idle
, all_pinned
, &this_best_prio
);
2296 class = class->next
;
2297 } while (class && max_load_move
> total_load_moved
);
2299 return total_load_moved
> 0;
2303 * move_one_task tries to move exactly one task from busiest to this_rq, as
2304 * part of active balancing operations within "domain".
2305 * Returns 1 if successful and 0 otherwise.
2307 * Called with both runqueues locked.
2309 static int move_one_task(struct rq
*this_rq
, int this_cpu
, struct rq
*busiest
,
2310 struct sched_domain
*sd
, enum cpu_idle_type idle
)
2312 const struct sched_class
*class;
2313 int this_best_prio
= MAX_PRIO
;
2315 for (class = sched_class_highest
; class; class = class->next
)
2316 if (class->load_balance(this_rq
, this_cpu
, busiest
,
2317 1, ULONG_MAX
, sd
, idle
, NULL
,
2325 * find_busiest_group finds and returns the busiest CPU group within the
2326 * domain. It calculates and returns the amount of weighted load which
2327 * should be moved to restore balance via the imbalance parameter.
2329 static struct sched_group
*
2330 find_busiest_group(struct sched_domain
*sd
, int this_cpu
,
2331 unsigned long *imbalance
, enum cpu_idle_type idle
,
2332 int *sd_idle
, cpumask_t
*cpus
, int *balance
)
2334 struct sched_group
*busiest
= NULL
, *this = NULL
, *group
= sd
->groups
;
2335 unsigned long max_load
, avg_load
, total_load
, this_load
, total_pwr
;
2336 unsigned long max_pull
;
2337 unsigned long busiest_load_per_task
, busiest_nr_running
;
2338 unsigned long this_load_per_task
, this_nr_running
;
2339 int load_idx
, group_imb
= 0;
2340 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
2341 int power_savings_balance
= 1;
2342 unsigned long leader_nr_running
= 0, min_load_per_task
= 0;
2343 unsigned long min_nr_running
= ULONG_MAX
;
2344 struct sched_group
*group_min
= NULL
, *group_leader
= NULL
;
2347 max_load
= this_load
= total_load
= total_pwr
= 0;
2348 busiest_load_per_task
= busiest_nr_running
= 0;
2349 this_load_per_task
= this_nr_running
= 0;
2350 if (idle
== CPU_NOT_IDLE
)
2351 load_idx
= sd
->busy_idx
;
2352 else if (idle
== CPU_NEWLY_IDLE
)
2353 load_idx
= sd
->newidle_idx
;
2355 load_idx
= sd
->idle_idx
;
2358 unsigned long load
, group_capacity
, max_cpu_load
, min_cpu_load
;
2361 int __group_imb
= 0;
2362 unsigned int balance_cpu
= -1, first_idle_cpu
= 0;
2363 unsigned long sum_nr_running
, sum_weighted_load
;
2365 local_group
= cpu_isset(this_cpu
, group
->cpumask
);
2368 balance_cpu
= first_cpu(group
->cpumask
);
2370 /* Tally up the load of all CPUs in the group */
2371 sum_weighted_load
= sum_nr_running
= avg_load
= 0;
2373 min_cpu_load
= ~0UL;
2375 for_each_cpu_mask(i
, group
->cpumask
) {
2378 if (!cpu_isset(i
, *cpus
))
2383 if (*sd_idle
&& rq
->nr_running
)
2386 /* Bias balancing toward cpus of our domain */
2388 if (idle_cpu(i
) && !first_idle_cpu
) {
2393 load
= target_load(i
, load_idx
);
2395 load
= source_load(i
, load_idx
);
2396 if (load
> max_cpu_load
)
2397 max_cpu_load
= load
;
2398 if (min_cpu_load
> load
)
2399 min_cpu_load
= load
;
2403 sum_nr_running
+= rq
->nr_running
;
2404 sum_weighted_load
+= weighted_cpuload(i
);
2408 * First idle cpu or the first cpu(busiest) in this sched group
2409 * is eligible for doing load balancing at this and above
2410 * domains. In the newly idle case, we will allow all the cpu's
2411 * to do the newly idle load balance.
2413 if (idle
!= CPU_NEWLY_IDLE
&& local_group
&&
2414 balance_cpu
!= this_cpu
&& balance
) {
2419 total_load
+= avg_load
;
2420 total_pwr
+= group
->__cpu_power
;
2422 /* Adjust by relative CPU power of the group */
2423 avg_load
= sg_div_cpu_power(group
,
2424 avg_load
* SCHED_LOAD_SCALE
);
2426 if ((max_cpu_load
- min_cpu_load
) > SCHED_LOAD_SCALE
)
2429 group_capacity
= group
->__cpu_power
/ SCHED_LOAD_SCALE
;
2432 this_load
= avg_load
;
2434 this_nr_running
= sum_nr_running
;
2435 this_load_per_task
= sum_weighted_load
;
2436 } else if (avg_load
> max_load
&&
2437 (sum_nr_running
> group_capacity
|| __group_imb
)) {
2438 max_load
= avg_load
;
2440 busiest_nr_running
= sum_nr_running
;
2441 busiest_load_per_task
= sum_weighted_load
;
2442 group_imb
= __group_imb
;
2445 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
2447 * Busy processors will not participate in power savings
2450 if (idle
== CPU_NOT_IDLE
||
2451 !(sd
->flags
& SD_POWERSAVINGS_BALANCE
))
2455 * If the local group is idle or completely loaded
2456 * no need to do power savings balance at this domain
2458 if (local_group
&& (this_nr_running
>= group_capacity
||
2460 power_savings_balance
= 0;
2463 * If a group is already running at full capacity or idle,
2464 * don't include that group in power savings calculations
2466 if (!power_savings_balance
|| sum_nr_running
>= group_capacity
2471 * Calculate the group which has the least non-idle load.
2472 * This is the group from where we need to pick up the load
2475 if ((sum_nr_running
< min_nr_running
) ||
2476 (sum_nr_running
== min_nr_running
&&
2477 first_cpu(group
->cpumask
) <
2478 first_cpu(group_min
->cpumask
))) {
2480 min_nr_running
= sum_nr_running
;
2481 min_load_per_task
= sum_weighted_load
/
2486 * Calculate the group which is almost near its
2487 * capacity but still has some space to pick up some load
2488 * from other group and save more power
2490 if (sum_nr_running
<= group_capacity
- 1) {
2491 if (sum_nr_running
> leader_nr_running
||
2492 (sum_nr_running
== leader_nr_running
&&
2493 first_cpu(group
->cpumask
) >
2494 first_cpu(group_leader
->cpumask
))) {
2495 group_leader
= group
;
2496 leader_nr_running
= sum_nr_running
;
2501 group
= group
->next
;
2502 } while (group
!= sd
->groups
);
2504 if (!busiest
|| this_load
>= max_load
|| busiest_nr_running
== 0)
2507 avg_load
= (SCHED_LOAD_SCALE
* total_load
) / total_pwr
;
2509 if (this_load
>= avg_load
||
2510 100*max_load
<= sd
->imbalance_pct
*this_load
)
2513 busiest_load_per_task
/= busiest_nr_running
;
2515 busiest_load_per_task
= min(busiest_load_per_task
, avg_load
);
2518 * We're trying to get all the cpus to the average_load, so we don't
2519 * want to push ourselves above the average load, nor do we wish to
2520 * reduce the max loaded cpu below the average load, as either of these
2521 * actions would just result in more rebalancing later, and ping-pong
2522 * tasks around. Thus we look for the minimum possible imbalance.
2523 * Negative imbalances (*we* are more loaded than anyone else) will
2524 * be counted as no imbalance for these purposes -- we can't fix that
2525 * by pulling tasks to us. Be careful of negative numbers as they'll
2526 * appear as very large values with unsigned longs.
2528 if (max_load
<= busiest_load_per_task
)
2532 * In the presence of smp nice balancing, certain scenarios can have
2533 * max load less than avg load(as we skip the groups at or below
2534 * its cpu_power, while calculating max_load..)
2536 if (max_load
< avg_load
) {
2538 goto small_imbalance
;
2541 /* Don't want to pull so many tasks that a group would go idle */
2542 max_pull
= min(max_load
- avg_load
, max_load
- busiest_load_per_task
);
2544 /* How much load to actually move to equalise the imbalance */
2545 *imbalance
= min(max_pull
* busiest
->__cpu_power
,
2546 (avg_load
- this_load
) * this->__cpu_power
)
2550 * if *imbalance is less than the average load per runnable task
2551 * there is no gaurantee that any tasks will be moved so we'll have
2552 * a think about bumping its value to force at least one task to be
2555 if (*imbalance
< busiest_load_per_task
) {
2556 unsigned long tmp
, pwr_now
, pwr_move
;
2560 pwr_move
= pwr_now
= 0;
2562 if (this_nr_running
) {
2563 this_load_per_task
/= this_nr_running
;
2564 if (busiest_load_per_task
> this_load_per_task
)
2567 this_load_per_task
= SCHED_LOAD_SCALE
;
2569 if (max_load
- this_load
+ SCHED_LOAD_SCALE_FUZZ
>=
2570 busiest_load_per_task
* imbn
) {
2571 *imbalance
= busiest_load_per_task
;
2576 * OK, we don't have enough imbalance to justify moving tasks,
2577 * however we may be able to increase total CPU power used by
2581 pwr_now
+= busiest
->__cpu_power
*
2582 min(busiest_load_per_task
, max_load
);
2583 pwr_now
+= this->__cpu_power
*
2584 min(this_load_per_task
, this_load
);
2585 pwr_now
/= SCHED_LOAD_SCALE
;
2587 /* Amount of load we'd subtract */
2588 tmp
= sg_div_cpu_power(busiest
,
2589 busiest_load_per_task
* SCHED_LOAD_SCALE
);
2591 pwr_move
+= busiest
->__cpu_power
*
2592 min(busiest_load_per_task
, max_load
- tmp
);
2594 /* Amount of load we'd add */
2595 if (max_load
* busiest
->__cpu_power
<
2596 busiest_load_per_task
* SCHED_LOAD_SCALE
)
2597 tmp
= sg_div_cpu_power(this,
2598 max_load
* busiest
->__cpu_power
);
2600 tmp
= sg_div_cpu_power(this,
2601 busiest_load_per_task
* SCHED_LOAD_SCALE
);
2602 pwr_move
+= this->__cpu_power
*
2603 min(this_load_per_task
, this_load
+ tmp
);
2604 pwr_move
/= SCHED_LOAD_SCALE
;
2606 /* Move if we gain throughput */
2607 if (pwr_move
> pwr_now
)
2608 *imbalance
= busiest_load_per_task
;
2614 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
2615 if (idle
== CPU_NOT_IDLE
|| !(sd
->flags
& SD_POWERSAVINGS_BALANCE
))
2618 if (this == group_leader
&& group_leader
!= group_min
) {
2619 *imbalance
= min_load_per_task
;
2629 * find_busiest_queue - find the busiest runqueue among the cpus in group.
2632 find_busiest_queue(struct sched_group
*group
, enum cpu_idle_type idle
,
2633 unsigned long imbalance
, cpumask_t
*cpus
)
2635 struct rq
*busiest
= NULL
, *rq
;
2636 unsigned long max_load
= 0;
2639 for_each_cpu_mask(i
, group
->cpumask
) {
2642 if (!cpu_isset(i
, *cpus
))
2646 wl
= weighted_cpuload(i
);
2648 if (rq
->nr_running
== 1 && wl
> imbalance
)
2651 if (wl
> max_load
) {
2661 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
2662 * so long as it is large enough.
2664 #define MAX_PINNED_INTERVAL 512
2667 * Check this_cpu to ensure it is balanced within domain. Attempt to move
2668 * tasks if there is an imbalance.
2670 static int load_balance(int this_cpu
, struct rq
*this_rq
,
2671 struct sched_domain
*sd
, enum cpu_idle_type idle
,
2674 int ld_moved
, all_pinned
= 0, active_balance
= 0, sd_idle
= 0;
2675 struct sched_group
*group
;
2676 unsigned long imbalance
;
2678 cpumask_t cpus
= CPU_MASK_ALL
;
2679 unsigned long flags
;
2682 * When power savings policy is enabled for the parent domain, idle
2683 * sibling can pick up load irrespective of busy siblings. In this case,
2684 * let the state of idle sibling percolate up as CPU_IDLE, instead of
2685 * portraying it as CPU_NOT_IDLE.
2687 if (idle
!= CPU_NOT_IDLE
&& sd
->flags
& SD_SHARE_CPUPOWER
&&
2688 !test_sd_parent(sd
, SD_POWERSAVINGS_BALANCE
))
2691 schedstat_inc(sd
, lb_count
[idle
]);
2694 group
= find_busiest_group(sd
, this_cpu
, &imbalance
, idle
, &sd_idle
,
2701 schedstat_inc(sd
, lb_nobusyg
[idle
]);
2705 busiest
= find_busiest_queue(group
, idle
, imbalance
, &cpus
);
2707 schedstat_inc(sd
, lb_nobusyq
[idle
]);
2711 BUG_ON(busiest
== this_rq
);
2713 schedstat_add(sd
, lb_imbalance
[idle
], imbalance
);
2716 if (busiest
->nr_running
> 1) {
2718 * Attempt to move tasks. If find_busiest_group has found
2719 * an imbalance but busiest->nr_running <= 1, the group is
2720 * still unbalanced. ld_moved simply stays zero, so it is
2721 * correctly treated as an imbalance.
2723 local_irq_save(flags
);
2724 double_rq_lock(this_rq
, busiest
);
2725 ld_moved
= move_tasks(this_rq
, this_cpu
, busiest
,
2726 imbalance
, sd
, idle
, &all_pinned
);
2727 double_rq_unlock(this_rq
, busiest
);
2728 local_irq_restore(flags
);
2731 * some other cpu did the load balance for us.
2733 if (ld_moved
&& this_cpu
!= smp_processor_id())
2734 resched_cpu(this_cpu
);
2736 /* All tasks on this runqueue were pinned by CPU affinity */
2737 if (unlikely(all_pinned
)) {
2738 cpu_clear(cpu_of(busiest
), cpus
);
2739 if (!cpus_empty(cpus
))
2746 schedstat_inc(sd
, lb_failed
[idle
]);
2747 sd
->nr_balance_failed
++;
2749 if (unlikely(sd
->nr_balance_failed
> sd
->cache_nice_tries
+2)) {
2751 spin_lock_irqsave(&busiest
->lock
, flags
);
2753 /* don't kick the migration_thread, if the curr
2754 * task on busiest cpu can't be moved to this_cpu
2756 if (!cpu_isset(this_cpu
, busiest
->curr
->cpus_allowed
)) {
2757 spin_unlock_irqrestore(&busiest
->lock
, flags
);
2759 goto out_one_pinned
;
2762 if (!busiest
->active_balance
) {
2763 busiest
->active_balance
= 1;
2764 busiest
->push_cpu
= this_cpu
;
2767 spin_unlock_irqrestore(&busiest
->lock
, flags
);
2769 wake_up_process(busiest
->migration_thread
);
2772 * We've kicked active balancing, reset the failure
2775 sd
->nr_balance_failed
= sd
->cache_nice_tries
+1;
2778 sd
->nr_balance_failed
= 0;
2780 if (likely(!active_balance
)) {
2781 /* We were unbalanced, so reset the balancing interval */
2782 sd
->balance_interval
= sd
->min_interval
;
2785 * If we've begun active balancing, start to back off. This
2786 * case may not be covered by the all_pinned logic if there
2787 * is only 1 task on the busy runqueue (because we don't call
2790 if (sd
->balance_interval
< sd
->max_interval
)
2791 sd
->balance_interval
*= 2;
2794 if (!ld_moved
&& !sd_idle
&& sd
->flags
& SD_SHARE_CPUPOWER
&&
2795 !test_sd_parent(sd
, SD_POWERSAVINGS_BALANCE
))
2800 schedstat_inc(sd
, lb_balanced
[idle
]);
2802 sd
->nr_balance_failed
= 0;
2805 /* tune up the balancing interval */
2806 if ((all_pinned
&& sd
->balance_interval
< MAX_PINNED_INTERVAL
) ||
2807 (sd
->balance_interval
< sd
->max_interval
))
2808 sd
->balance_interval
*= 2;
2810 if (!sd_idle
&& sd
->flags
& SD_SHARE_CPUPOWER
&&
2811 !test_sd_parent(sd
, SD_POWERSAVINGS_BALANCE
))
2817 * Check this_cpu to ensure it is balanced within domain. Attempt to move
2818 * tasks if there is an imbalance.
2820 * Called from schedule when this_rq is about to become idle (CPU_NEWLY_IDLE).
2821 * this_rq is locked.
2824 load_balance_newidle(int this_cpu
, struct rq
*this_rq
, struct sched_domain
*sd
)
2826 struct sched_group
*group
;
2827 struct rq
*busiest
= NULL
;
2828 unsigned long imbalance
;
2832 cpumask_t cpus
= CPU_MASK_ALL
;
2835 * When power savings policy is enabled for the parent domain, idle
2836 * sibling can pick up load irrespective of busy siblings. In this case,
2837 * let the state of idle sibling percolate up as IDLE, instead of
2838 * portraying it as CPU_NOT_IDLE.
2840 if (sd
->flags
& SD_SHARE_CPUPOWER
&&
2841 !test_sd_parent(sd
, SD_POWERSAVINGS_BALANCE
))
2844 schedstat_inc(sd
, lb_count
[CPU_NEWLY_IDLE
]);
2846 group
= find_busiest_group(sd
, this_cpu
, &imbalance
, CPU_NEWLY_IDLE
,
2847 &sd_idle
, &cpus
, NULL
);
2849 schedstat_inc(sd
, lb_nobusyg
[CPU_NEWLY_IDLE
]);
2853 busiest
= find_busiest_queue(group
, CPU_NEWLY_IDLE
, imbalance
,
2856 schedstat_inc(sd
, lb_nobusyq
[CPU_NEWLY_IDLE
]);
2860 BUG_ON(busiest
== this_rq
);
2862 schedstat_add(sd
, lb_imbalance
[CPU_NEWLY_IDLE
], imbalance
);
2865 if (busiest
->nr_running
> 1) {
2866 /* Attempt to move tasks */
2867 double_lock_balance(this_rq
, busiest
);
2868 /* this_rq->clock is already updated */
2869 update_rq_clock(busiest
);
2870 ld_moved
= move_tasks(this_rq
, this_cpu
, busiest
,
2871 imbalance
, sd
, CPU_NEWLY_IDLE
,
2873 spin_unlock(&busiest
->lock
);
2875 if (unlikely(all_pinned
)) {
2876 cpu_clear(cpu_of(busiest
), cpus
);
2877 if (!cpus_empty(cpus
))
2883 schedstat_inc(sd
, lb_failed
[CPU_NEWLY_IDLE
]);
2884 if (!sd_idle
&& sd
->flags
& SD_SHARE_CPUPOWER
&&
2885 !test_sd_parent(sd
, SD_POWERSAVINGS_BALANCE
))
2888 sd
->nr_balance_failed
= 0;
2893 schedstat_inc(sd
, lb_balanced
[CPU_NEWLY_IDLE
]);
2894 if (!sd_idle
&& sd
->flags
& SD_SHARE_CPUPOWER
&&
2895 !test_sd_parent(sd
, SD_POWERSAVINGS_BALANCE
))
2897 sd
->nr_balance_failed
= 0;
2903 * idle_balance is called by schedule() if this_cpu is about to become
2904 * idle. Attempts to pull tasks from other CPUs.
2906 static void idle_balance(int this_cpu
, struct rq
*this_rq
)
2908 struct sched_domain
*sd
;
2909 int pulled_task
= -1;
2910 unsigned long next_balance
= jiffies
+ HZ
;
2912 for_each_domain(this_cpu
, sd
) {
2913 unsigned long interval
;
2915 if (!(sd
->flags
& SD_LOAD_BALANCE
))
2918 if (sd
->flags
& SD_BALANCE_NEWIDLE
)
2919 /* If we've pulled tasks over stop searching: */
2920 pulled_task
= load_balance_newidle(this_cpu
,
2923 interval
= msecs_to_jiffies(sd
->balance_interval
);
2924 if (time_after(next_balance
, sd
->last_balance
+ interval
))
2925 next_balance
= sd
->last_balance
+ interval
;
2929 if (pulled_task
|| time_after(jiffies
, this_rq
->next_balance
)) {
2931 * We are going idle. next_balance may be set based on
2932 * a busy processor. So reset next_balance.
2934 this_rq
->next_balance
= next_balance
;
2939 * active_load_balance is run by migration threads. It pushes running tasks
2940 * off the busiest CPU onto idle CPUs. It requires at least 1 task to be
2941 * running on each physical CPU where possible, and avoids physical /
2942 * logical imbalances.
2944 * Called with busiest_rq locked.
2946 static void active_load_balance(struct rq
*busiest_rq
, int busiest_cpu
)
2948 int target_cpu
= busiest_rq
->push_cpu
;
2949 struct sched_domain
*sd
;
2950 struct rq
*target_rq
;
2952 /* Is there any task to move? */
2953 if (busiest_rq
->nr_running
<= 1)
2956 target_rq
= cpu_rq(target_cpu
);
2959 * This condition is "impossible", if it occurs
2960 * we need to fix it. Originally reported by
2961 * Bjorn Helgaas on a 128-cpu setup.
2963 BUG_ON(busiest_rq
== target_rq
);
2965 /* move a task from busiest_rq to target_rq */
2966 double_lock_balance(busiest_rq
, target_rq
);
2967 update_rq_clock(busiest_rq
);
2968 update_rq_clock(target_rq
);
2970 /* Search for an sd spanning us and the target CPU. */
2971 for_each_domain(target_cpu
, sd
) {
2972 if ((sd
->flags
& SD_LOAD_BALANCE
) &&
2973 cpu_isset(busiest_cpu
, sd
->span
))
2978 schedstat_inc(sd
, alb_count
);
2980 if (move_one_task(target_rq
, target_cpu
, busiest_rq
,
2982 schedstat_inc(sd
, alb_pushed
);
2984 schedstat_inc(sd
, alb_failed
);
2986 spin_unlock(&target_rq
->lock
);
2991 atomic_t load_balancer
;
2993 } nohz ____cacheline_aligned
= {
2994 .load_balancer
= ATOMIC_INIT(-1),
2995 .cpu_mask
= CPU_MASK_NONE
,
2999 * This routine will try to nominate the ilb (idle load balancing)
3000 * owner among the cpus whose ticks are stopped. ilb owner will do the idle
3001 * load balancing on behalf of all those cpus. If all the cpus in the system
3002 * go into this tickless mode, then there will be no ilb owner (as there is
3003 * no need for one) and all the cpus will sleep till the next wakeup event
3006 * For the ilb owner, tick is not stopped. And this tick will be used
3007 * for idle load balancing. ilb owner will still be part of
3010 * While stopping the tick, this cpu will become the ilb owner if there
3011 * is no other owner. And will be the owner till that cpu becomes busy
3012 * or if all cpus in the system stop their ticks at which point
3013 * there is no need for ilb owner.
3015 * When the ilb owner becomes busy, it nominates another owner, during the
3016 * next busy scheduler_tick()
3018 int select_nohz_load_balancer(int stop_tick
)
3020 int cpu
= smp_processor_id();
3023 cpu_set(cpu
, nohz
.cpu_mask
);
3024 cpu_rq(cpu
)->in_nohz_recently
= 1;
3027 * If we are going offline and still the leader, give up!
3029 if (cpu_is_offline(cpu
) &&
3030 atomic_read(&nohz
.load_balancer
) == cpu
) {
3031 if (atomic_cmpxchg(&nohz
.load_balancer
, cpu
, -1) != cpu
)
3036 /* time for ilb owner also to sleep */
3037 if (cpus_weight(nohz
.cpu_mask
) == num_online_cpus()) {
3038 if (atomic_read(&nohz
.load_balancer
) == cpu
)
3039 atomic_set(&nohz
.load_balancer
, -1);
3043 if (atomic_read(&nohz
.load_balancer
) == -1) {
3044 /* make me the ilb owner */
3045 if (atomic_cmpxchg(&nohz
.load_balancer
, -1, cpu
) == -1)
3047 } else if (atomic_read(&nohz
.load_balancer
) == cpu
)
3050 if (!cpu_isset(cpu
, nohz
.cpu_mask
))
3053 cpu_clear(cpu
, nohz
.cpu_mask
);
3055 if (atomic_read(&nohz
.load_balancer
) == cpu
)
3056 if (atomic_cmpxchg(&nohz
.load_balancer
, cpu
, -1) != cpu
)
3063 static DEFINE_SPINLOCK(balancing
);
3066 * It checks each scheduling domain to see if it is due to be balanced,
3067 * and initiates a balancing operation if so.
3069 * Balancing parameters are set up in arch_init_sched_domains.
3071 static void rebalance_domains(int cpu
, enum cpu_idle_type idle
)
3074 struct rq
*rq
= cpu_rq(cpu
);
3075 unsigned long interval
;
3076 struct sched_domain
*sd
;
3077 /* Earliest time when we have to do rebalance again */
3078 unsigned long next_balance
= jiffies
+ 60*HZ
;
3079 int update_next_balance
= 0;
3081 for_each_domain(cpu
, sd
) {
3082 if (!(sd
->flags
& SD_LOAD_BALANCE
))
3085 interval
= sd
->balance_interval
;
3086 if (idle
!= CPU_IDLE
)
3087 interval
*= sd
->busy_factor
;
3089 /* scale ms to jiffies */
3090 interval
= msecs_to_jiffies(interval
);
3091 if (unlikely(!interval
))
3093 if (interval
> HZ
*NR_CPUS
/10)
3094 interval
= HZ
*NR_CPUS
/10;
3097 if (sd
->flags
& SD_SERIALIZE
) {
3098 if (!spin_trylock(&balancing
))
3102 if (time_after_eq(jiffies
, sd
->last_balance
+ interval
)) {
3103 if (load_balance(cpu
, rq
, sd
, idle
, &balance
)) {
3105 * We've pulled tasks over so either we're no
3106 * longer idle, or one of our SMT siblings is
3109 idle
= CPU_NOT_IDLE
;
3111 sd
->last_balance
= jiffies
;
3113 if (sd
->flags
& SD_SERIALIZE
)
3114 spin_unlock(&balancing
);
3116 if (time_after(next_balance
, sd
->last_balance
+ interval
)) {
3117 next_balance
= sd
->last_balance
+ interval
;
3118 update_next_balance
= 1;
3122 * Stop the load balance at this level. There is another
3123 * CPU in our sched group which is doing load balancing more
3131 * next_balance will be updated only when there is a need.
3132 * When the cpu is attached to null domain for ex, it will not be
3135 if (likely(update_next_balance
))
3136 rq
->next_balance
= next_balance
;
3140 * run_rebalance_domains is triggered when needed from the scheduler tick.
3141 * In CONFIG_NO_HZ case, the idle load balance owner will do the
3142 * rebalancing for all the cpus for whom scheduler ticks are stopped.
3144 static void run_rebalance_domains(struct softirq_action
*h
)
3146 int this_cpu
= smp_processor_id();
3147 struct rq
*this_rq
= cpu_rq(this_cpu
);
3148 enum cpu_idle_type idle
= this_rq
->idle_at_tick
?
3149 CPU_IDLE
: CPU_NOT_IDLE
;
3151 rebalance_domains(this_cpu
, idle
);
3155 * If this cpu is the owner for idle load balancing, then do the
3156 * balancing on behalf of the other idle cpus whose ticks are
3159 if (this_rq
->idle_at_tick
&&
3160 atomic_read(&nohz
.load_balancer
) == this_cpu
) {
3161 cpumask_t cpus
= nohz
.cpu_mask
;
3165 cpu_clear(this_cpu
, cpus
);
3166 for_each_cpu_mask(balance_cpu
, cpus
) {
3168 * If this cpu gets work to do, stop the load balancing
3169 * work being done for other cpus. Next load
3170 * balancing owner will pick it up.
3175 rebalance_domains(balance_cpu
, CPU_IDLE
);
3177 rq
= cpu_rq(balance_cpu
);
3178 if (time_after(this_rq
->next_balance
, rq
->next_balance
))
3179 this_rq
->next_balance
= rq
->next_balance
;
3186 * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
3188 * In case of CONFIG_NO_HZ, this is the place where we nominate a new
3189 * idle load balancing owner or decide to stop the periodic load balancing,
3190 * if the whole system is idle.
3192 static inline void trigger_load_balance(struct rq
*rq
, int cpu
)
3196 * If we were in the nohz mode recently and busy at the current
3197 * scheduler tick, then check if we need to nominate new idle
3200 if (rq
->in_nohz_recently
&& !rq
->idle_at_tick
) {
3201 rq
->in_nohz_recently
= 0;
3203 if (atomic_read(&nohz
.load_balancer
) == cpu
) {
3204 cpu_clear(cpu
, nohz
.cpu_mask
);
3205 atomic_set(&nohz
.load_balancer
, -1);
3208 if (atomic_read(&nohz
.load_balancer
) == -1) {
3210 * simple selection for now: Nominate the
3211 * first cpu in the nohz list to be the next
3214 * TBD: Traverse the sched domains and nominate
3215 * the nearest cpu in the nohz.cpu_mask.
3217 int ilb
= first_cpu(nohz
.cpu_mask
);
3225 * If this cpu is idle and doing idle load balancing for all the
3226 * cpus with ticks stopped, is it time for that to stop?
3228 if (rq
->idle_at_tick
&& atomic_read(&nohz
.load_balancer
) == cpu
&&
3229 cpus_weight(nohz
.cpu_mask
) == num_online_cpus()) {
3235 * If this cpu is idle and the idle load balancing is done by
3236 * someone else, then no need raise the SCHED_SOFTIRQ
3238 if (rq
->idle_at_tick
&& atomic_read(&nohz
.load_balancer
) != cpu
&&
3239 cpu_isset(cpu
, nohz
.cpu_mask
))
3242 if (time_after_eq(jiffies
, rq
->next_balance
))
3243 raise_softirq(SCHED_SOFTIRQ
);
3246 #else /* CONFIG_SMP */
3249 * on UP we do not need to balance between CPUs:
3251 static inline void idle_balance(int cpu
, struct rq
*rq
)
3255 /* Avoid "used but not defined" warning on UP */
3256 static int balance_tasks(struct rq
*this_rq
, int this_cpu
, struct rq
*busiest
,
3257 unsigned long max_nr_move
, unsigned long max_load_move
,
3258 struct sched_domain
*sd
, enum cpu_idle_type idle
,
3259 int *all_pinned
, unsigned long *load_moved
,
3260 int *this_best_prio
, struct rq_iterator
*iterator
)
3269 DEFINE_PER_CPU(struct kernel_stat
, kstat
);
3271 EXPORT_PER_CPU_SYMBOL(kstat
);
3274 * Return p->sum_exec_runtime plus any more ns on the sched_clock
3275 * that have not yet been banked in case the task is currently running.
3277 unsigned long long task_sched_runtime(struct task_struct
*p
)
3279 unsigned long flags
;
3283 rq
= task_rq_lock(p
, &flags
);
3284 ns
= p
->se
.sum_exec_runtime
;
3285 if (rq
->curr
== p
) {
3286 update_rq_clock(rq
);
3287 delta_exec
= rq
->clock
- p
->se
.exec_start
;
3288 if ((s64
)delta_exec
> 0)
3291 task_rq_unlock(rq
, &flags
);
3297 * Account user cpu time to a process.
3298 * @p: the process that the cpu time gets accounted to
3299 * @hardirq_offset: the offset to subtract from hardirq_count()
3300 * @cputime: the cpu time spent in user space since the last update
3302 void account_user_time(struct task_struct
*p
, cputime_t cputime
)
3304 struct cpu_usage_stat
*cpustat
= &kstat_this_cpu
.cpustat
;
3307 p
->utime
= cputime_add(p
->utime
, cputime
);
3309 /* Add user time to cpustat. */
3310 tmp
= cputime_to_cputime64(cputime
);
3311 if (TASK_NICE(p
) > 0)
3312 cpustat
->nice
= cputime64_add(cpustat
->nice
, tmp
);
3314 cpustat
->user
= cputime64_add(cpustat
->user
, tmp
);
3318 * Account guest cpu time to a process.
3319 * @p: the process that the cpu time gets accounted to
3320 * @cputime: the cpu time spent in virtual machine since the last update
3322 void account_guest_time(struct task_struct
*p
, cputime_t cputime
)
3325 struct cpu_usage_stat
*cpustat
= &kstat_this_cpu
.cpustat
;
3327 tmp
= cputime_to_cputime64(cputime
);
3329 p
->utime
= cputime_add(p
->utime
, cputime
);
3330 p
->gtime
= cputime_add(p
->gtime
, cputime
);
3332 cpustat
->user
= cputime64_add(cpustat
->user
, tmp
);
3333 cpustat
->guest
= cputime64_add(cpustat
->guest
, tmp
);
3337 * Account system cpu time to a process.
3338 * @p: the process that the cpu time gets accounted to
3339 * @hardirq_offset: the offset to subtract from hardirq_count()
3340 * @cputime: the cpu time spent in kernel space since the last update
3342 void account_system_time(struct task_struct
*p
, int hardirq_offset
,
3345 struct cpu_usage_stat
*cpustat
= &kstat_this_cpu
.cpustat
;
3346 struct rq
*rq
= this_rq();
3349 if (p
->flags
& PF_VCPU
) {
3350 account_guest_time(p
, cputime
);
3351 p
->flags
&= ~PF_VCPU
;
3355 p
->stime
= cputime_add(p
->stime
, cputime
);
3357 /* Add system time to cpustat. */
3358 tmp
= cputime_to_cputime64(cputime
);
3359 if (hardirq_count() - hardirq_offset
)
3360 cpustat
->irq
= cputime64_add(cpustat
->irq
, tmp
);
3361 else if (softirq_count())
3362 cpustat
->softirq
= cputime64_add(cpustat
->softirq
, tmp
);
3363 else if (p
!= rq
->idle
)
3364 cpustat
->system
= cputime64_add(cpustat
->system
, tmp
);
3365 else if (atomic_read(&rq
->nr_iowait
) > 0)
3366 cpustat
->iowait
= cputime64_add(cpustat
->iowait
, tmp
);
3368 cpustat
->idle
= cputime64_add(cpustat
->idle
, tmp
);
3369 /* Account for system time used */
3370 acct_update_integrals(p
);
3374 * Account for involuntary wait time.
3375 * @p: the process from which the cpu time has been stolen
3376 * @steal: the cpu time spent in involuntary wait
3378 void account_steal_time(struct task_struct
*p
, cputime_t steal
)
3380 struct cpu_usage_stat
*cpustat
= &kstat_this_cpu
.cpustat
;
3381 cputime64_t tmp
= cputime_to_cputime64(steal
);
3382 struct rq
*rq
= this_rq();
3384 if (p
== rq
->idle
) {
3385 p
->stime
= cputime_add(p
->stime
, steal
);
3386 if (atomic_read(&rq
->nr_iowait
) > 0)
3387 cpustat
->iowait
= cputime64_add(cpustat
->iowait
, tmp
);
3389 cpustat
->idle
= cputime64_add(cpustat
->idle
, tmp
);
3391 cpustat
->steal
= cputime64_add(cpustat
->steal
, tmp
);
3395 * This function gets called by the timer code, with HZ frequency.
3396 * We call it with interrupts disabled.
3398 * It also gets called by the fork code, when changing the parent's
3401 void scheduler_tick(void)
3403 int cpu
= smp_processor_id();
3404 struct rq
*rq
= cpu_rq(cpu
);
3405 struct task_struct
*curr
= rq
->curr
;
3406 u64 next_tick
= rq
->tick_timestamp
+ TICK_NSEC
;
3408 spin_lock(&rq
->lock
);
3409 __update_rq_clock(rq
);
3411 * Let rq->clock advance by at least TICK_NSEC:
3413 if (unlikely(rq
->clock
< next_tick
))
3414 rq
->clock
= next_tick
;
3415 rq
->tick_timestamp
= rq
->clock
;
3416 update_cpu_load(rq
);
3417 if (curr
!= rq
->idle
) /* FIXME: needed? */
3418 curr
->sched_class
->task_tick(rq
, curr
);
3419 spin_unlock(&rq
->lock
);
3422 rq
->idle_at_tick
= idle_cpu(cpu
);
3423 trigger_load_balance(rq
, cpu
);
3427 #if defined(CONFIG_PREEMPT) && defined(CONFIG_DEBUG_PREEMPT)
3429 void fastcall
add_preempt_count(int val
)
3434 if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
3436 preempt_count() += val
;
3438 * Spinlock count overflowing soon?
3440 DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK
) >=
3443 EXPORT_SYMBOL(add_preempt_count
);
3445 void fastcall
sub_preempt_count(int val
)
3450 if (DEBUG_LOCKS_WARN_ON(val
> preempt_count()))
3453 * Is the spinlock portion underflowing?
3455 if (DEBUG_LOCKS_WARN_ON((val
< PREEMPT_MASK
) &&
3456 !(preempt_count() & PREEMPT_MASK
)))
3459 preempt_count() -= val
;
3461 EXPORT_SYMBOL(sub_preempt_count
);
3466 * Print scheduling while atomic bug:
3468 static noinline
void __schedule_bug(struct task_struct
*prev
)
3470 printk(KERN_ERR
"BUG: scheduling while atomic: %s/0x%08x/%d\n",
3471 prev
->comm
, preempt_count(), prev
->pid
);
3472 debug_show_held_locks(prev
);
3473 if (irqs_disabled())
3474 print_irqtrace_events(prev
);
3479 * Various schedule()-time debugging checks and statistics:
3481 static inline void schedule_debug(struct task_struct
*prev
)
3484 * Test if we are atomic. Since do_exit() needs to call into
3485 * schedule() atomically, we ignore that path for now.
3486 * Otherwise, whine if we are scheduling when we should not be.
3488 if (unlikely(in_atomic_preempt_off()) && unlikely(!prev
->exit_state
))
3489 __schedule_bug(prev
);
3491 profile_hit(SCHED_PROFILING
, __builtin_return_address(0));
3493 schedstat_inc(this_rq(), sched_count
);
3494 #ifdef CONFIG_SCHEDSTATS
3495 if (unlikely(prev
->lock_depth
>= 0)) {
3496 schedstat_inc(this_rq(), bkl_count
);
3497 schedstat_inc(prev
, sched_info
.bkl_count
);
3503 * Pick up the highest-prio task:
3505 static inline struct task_struct
*
3506 pick_next_task(struct rq
*rq
, struct task_struct
*prev
)
3508 const struct sched_class
*class;
3509 struct task_struct
*p
;
3512 * Optimization: we know that if all tasks are in
3513 * the fair class we can call that function directly:
3515 if (likely(rq
->nr_running
== rq
->cfs
.nr_running
)) {
3516 p
= fair_sched_class
.pick_next_task(rq
);
3521 class = sched_class_highest
;
3523 p
= class->pick_next_task(rq
);
3527 * Will never be NULL as the idle class always
3528 * returns a non-NULL p:
3530 class = class->next
;
3535 * schedule() is the main scheduler function.
3537 asmlinkage
void __sched
schedule(void)
3539 struct task_struct
*prev
, *next
;
3546 cpu
= smp_processor_id();
3550 switch_count
= &prev
->nivcsw
;
3552 release_kernel_lock(prev
);
3553 need_resched_nonpreemptible
:
3555 schedule_debug(prev
);
3558 * Do the rq-clock update outside the rq lock:
3560 local_irq_disable();
3561 __update_rq_clock(rq
);
3562 spin_lock(&rq
->lock
);
3563 clear_tsk_need_resched(prev
);
3565 if (prev
->state
&& !(preempt_count() & PREEMPT_ACTIVE
)) {
3566 if (unlikely((prev
->state
& TASK_INTERRUPTIBLE
) &&
3567 unlikely(signal_pending(prev
)))) {
3568 prev
->state
= TASK_RUNNING
;
3570 deactivate_task(rq
, prev
, 1);
3572 switch_count
= &prev
->nvcsw
;
3575 if (unlikely(!rq
->nr_running
))
3576 idle_balance(cpu
, rq
);
3578 prev
->sched_class
->put_prev_task(rq
, prev
);
3579 next
= pick_next_task(rq
, prev
);
3581 sched_info_switch(prev
, next
);
3583 if (likely(prev
!= next
)) {
3588 context_switch(rq
, prev
, next
); /* unlocks the rq */
3590 spin_unlock_irq(&rq
->lock
);
3592 if (unlikely(reacquire_kernel_lock(current
) < 0)) {
3593 cpu
= smp_processor_id();
3595 goto need_resched_nonpreemptible
;
3597 preempt_enable_no_resched();
3598 if (unlikely(test_thread_flag(TIF_NEED_RESCHED
)))
3601 EXPORT_SYMBOL(schedule
);
3603 #ifdef CONFIG_PREEMPT
3605 * this is the entry point to schedule() from in-kernel preemption
3606 * off of preempt_enable. Kernel preemptions off return from interrupt
3607 * occur there and call schedule directly.
3609 asmlinkage
void __sched
preempt_schedule(void)
3611 struct thread_info
*ti
= current_thread_info();
3612 #ifdef CONFIG_PREEMPT_BKL
3613 struct task_struct
*task
= current
;
3614 int saved_lock_depth
;
3617 * If there is a non-zero preempt_count or interrupts are disabled,
3618 * we do not want to preempt the current task. Just return..
3620 if (likely(ti
->preempt_count
|| irqs_disabled()))
3624 add_preempt_count(PREEMPT_ACTIVE
);
3627 * We keep the big kernel semaphore locked, but we
3628 * clear ->lock_depth so that schedule() doesnt
3629 * auto-release the semaphore:
3631 #ifdef CONFIG_PREEMPT_BKL
3632 saved_lock_depth
= task
->lock_depth
;
3633 task
->lock_depth
= -1;
3636 #ifdef CONFIG_PREEMPT_BKL
3637 task
->lock_depth
= saved_lock_depth
;
3639 sub_preempt_count(PREEMPT_ACTIVE
);
3642 * Check again in case we missed a preemption opportunity
3643 * between schedule and now.
3646 } while (unlikely(test_thread_flag(TIF_NEED_RESCHED
)));
3648 EXPORT_SYMBOL(preempt_schedule
);
3651 * this is the entry point to schedule() from kernel preemption
3652 * off of irq context.
3653 * Note, that this is called and return with irqs disabled. This will
3654 * protect us against recursive calling from irq.
3656 asmlinkage
void __sched
preempt_schedule_irq(void)
3658 struct thread_info
*ti
= current_thread_info();
3659 #ifdef CONFIG_PREEMPT_BKL
3660 struct task_struct
*task
= current
;
3661 int saved_lock_depth
;
3663 /* Catch callers which need to be fixed */
3664 BUG_ON(ti
->preempt_count
|| !irqs_disabled());
3667 add_preempt_count(PREEMPT_ACTIVE
);
3670 * We keep the big kernel semaphore locked, but we
3671 * clear ->lock_depth so that schedule() doesnt
3672 * auto-release the semaphore:
3674 #ifdef CONFIG_PREEMPT_BKL
3675 saved_lock_depth
= task
->lock_depth
;
3676 task
->lock_depth
= -1;
3680 local_irq_disable();
3681 #ifdef CONFIG_PREEMPT_BKL
3682 task
->lock_depth
= saved_lock_depth
;
3684 sub_preempt_count(PREEMPT_ACTIVE
);
3687 * Check again in case we missed a preemption opportunity
3688 * between schedule and now.
3691 } while (unlikely(test_thread_flag(TIF_NEED_RESCHED
)));
3694 #endif /* CONFIG_PREEMPT */
3696 int default_wake_function(wait_queue_t
*curr
, unsigned mode
, int sync
,
3699 return try_to_wake_up(curr
->private, mode
, sync
);
3701 EXPORT_SYMBOL(default_wake_function
);
3704 * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
3705 * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
3706 * number) then we wake all the non-exclusive tasks and one exclusive task.
3708 * There are circumstances in which we can try to wake a task which has already
3709 * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
3710 * zero in this (rare) case, and we handle it by continuing to scan the queue.
3712 static void __wake_up_common(wait_queue_head_t
*q
, unsigned int mode
,
3713 int nr_exclusive
, int sync
, void *key
)
3715 wait_queue_t
*curr
, *next
;
3717 list_for_each_entry_safe(curr
, next
, &q
->task_list
, task_list
) {
3718 unsigned flags
= curr
->flags
;
3720 if (curr
->func(curr
, mode
, sync
, key
) &&
3721 (flags
& WQ_FLAG_EXCLUSIVE
) && !--nr_exclusive
)
3727 * __wake_up - wake up threads blocked on a waitqueue.
3729 * @mode: which threads
3730 * @nr_exclusive: how many wake-one or wake-many threads to wake up
3731 * @key: is directly passed to the wakeup function
3733 void fastcall
__wake_up(wait_queue_head_t
*q
, unsigned int mode
,
3734 int nr_exclusive
, void *key
)
3736 unsigned long flags
;
3738 spin_lock_irqsave(&q
->lock
, flags
);
3739 __wake_up_common(q
, mode
, nr_exclusive
, 0, key
);
3740 spin_unlock_irqrestore(&q
->lock
, flags
);
3742 EXPORT_SYMBOL(__wake_up
);
3745 * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
3747 void fastcall
__wake_up_locked(wait_queue_head_t
*q
, unsigned int mode
)
3749 __wake_up_common(q
, mode
, 1, 0, NULL
);
3753 * __wake_up_sync - wake up threads blocked on a waitqueue.
3755 * @mode: which threads
3756 * @nr_exclusive: how many wake-one or wake-many threads to wake up
3758 * The sync wakeup differs that the waker knows that it will schedule
3759 * away soon, so while the target thread will be woken up, it will not
3760 * be migrated to another CPU - ie. the two threads are 'synchronized'
3761 * with each other. This can prevent needless bouncing between CPUs.
3763 * On UP it can prevent extra preemption.
3766 __wake_up_sync(wait_queue_head_t
*q
, unsigned int mode
, int nr_exclusive
)
3768 unsigned long flags
;
3774 if (unlikely(!nr_exclusive
))
3777 spin_lock_irqsave(&q
->lock
, flags
);
3778 __wake_up_common(q
, mode
, nr_exclusive
, sync
, NULL
);
3779 spin_unlock_irqrestore(&q
->lock
, flags
);
3781 EXPORT_SYMBOL_GPL(__wake_up_sync
); /* For internal use only */
3783 void fastcall
complete(struct completion
*x
)
3785 unsigned long flags
;
3787 spin_lock_irqsave(&x
->wait
.lock
, flags
);
3789 __wake_up_common(&x
->wait
, TASK_UNINTERRUPTIBLE
| TASK_INTERRUPTIBLE
,
3791 spin_unlock_irqrestore(&x
->wait
.lock
, flags
);
3793 EXPORT_SYMBOL(complete
);
3795 void fastcall
complete_all(struct completion
*x
)
3797 unsigned long flags
;
3799 spin_lock_irqsave(&x
->wait
.lock
, flags
);
3800 x
->done
+= UINT_MAX
/2;
3801 __wake_up_common(&x
->wait
, TASK_UNINTERRUPTIBLE
| TASK_INTERRUPTIBLE
,
3803 spin_unlock_irqrestore(&x
->wait
.lock
, flags
);
3805 EXPORT_SYMBOL(complete_all
);
3807 static inline long __sched
3808 do_wait_for_common(struct completion
*x
, long timeout
, int state
)
3811 DECLARE_WAITQUEUE(wait
, current
);
3813 wait
.flags
|= WQ_FLAG_EXCLUSIVE
;
3814 __add_wait_queue_tail(&x
->wait
, &wait
);
3816 if (state
== TASK_INTERRUPTIBLE
&&
3817 signal_pending(current
)) {
3818 __remove_wait_queue(&x
->wait
, &wait
);
3819 return -ERESTARTSYS
;
3821 __set_current_state(state
);
3822 spin_unlock_irq(&x
->wait
.lock
);
3823 timeout
= schedule_timeout(timeout
);
3824 spin_lock_irq(&x
->wait
.lock
);
3826 __remove_wait_queue(&x
->wait
, &wait
);
3830 __remove_wait_queue(&x
->wait
, &wait
);
3837 wait_for_common(struct completion
*x
, long timeout
, int state
)
3841 spin_lock_irq(&x
->wait
.lock
);
3842 timeout
= do_wait_for_common(x
, timeout
, state
);
3843 spin_unlock_irq(&x
->wait
.lock
);
3847 void fastcall __sched
wait_for_completion(struct completion
*x
)
3849 wait_for_common(x
, MAX_SCHEDULE_TIMEOUT
, TASK_UNINTERRUPTIBLE
);
3851 EXPORT_SYMBOL(wait_for_completion
);
3853 unsigned long fastcall __sched
3854 wait_for_completion_timeout(struct completion
*x
, unsigned long timeout
)
3856 return wait_for_common(x
, timeout
, TASK_UNINTERRUPTIBLE
);
3858 EXPORT_SYMBOL(wait_for_completion_timeout
);
3860 int __sched
wait_for_completion_interruptible(struct completion
*x
)
3862 return wait_for_common(x
, MAX_SCHEDULE_TIMEOUT
, TASK_INTERRUPTIBLE
);
3864 EXPORT_SYMBOL(wait_for_completion_interruptible
);
3866 unsigned long fastcall __sched
3867 wait_for_completion_interruptible_timeout(struct completion
*x
,
3868 unsigned long timeout
)
3870 return wait_for_common(x
, timeout
, TASK_INTERRUPTIBLE
);
3872 EXPORT_SYMBOL(wait_for_completion_interruptible_timeout
);
3875 sleep_on_common(wait_queue_head_t
*q
, int state
, long timeout
)
3877 unsigned long flags
;
3880 init_waitqueue_entry(&wait
, current
);
3882 __set_current_state(state
);
3884 spin_lock_irqsave(&q
->lock
, flags
);
3885 __add_wait_queue(q
, &wait
);
3886 spin_unlock(&q
->lock
);
3887 timeout
= schedule_timeout(timeout
);
3888 spin_lock_irq(&q
->lock
);
3889 __remove_wait_queue(q
, &wait
);
3890 spin_unlock_irqrestore(&q
->lock
, flags
);
3895 void __sched
interruptible_sleep_on(wait_queue_head_t
*q
)
3897 sleep_on_common(q
, TASK_INTERRUPTIBLE
, MAX_SCHEDULE_TIMEOUT
);
3899 EXPORT_SYMBOL(interruptible_sleep_on
);
3902 interruptible_sleep_on_timeout(wait_queue_head_t
*q
, long timeout
)
3904 return sleep_on_common(q
, TASK_INTERRUPTIBLE
, timeout
);
3906 EXPORT_SYMBOL(interruptible_sleep_on_timeout
);
3908 void __sched
sleep_on(wait_queue_head_t
*q
)
3910 sleep_on_common(q
, TASK_UNINTERRUPTIBLE
, MAX_SCHEDULE_TIMEOUT
);
3912 EXPORT_SYMBOL(sleep_on
);
3914 long __sched
sleep_on_timeout(wait_queue_head_t
*q
, long timeout
)
3916 return sleep_on_common(q
, TASK_UNINTERRUPTIBLE
, timeout
);
3918 EXPORT_SYMBOL(sleep_on_timeout
);
3920 #ifdef CONFIG_RT_MUTEXES
3923 * rt_mutex_setprio - set the current priority of a task
3925 * @prio: prio value (kernel-internal form)
3927 * This function changes the 'effective' priority of a task. It does
3928 * not touch ->normal_prio like __setscheduler().
3930 * Used by the rt_mutex code to implement priority inheritance logic.
3932 void rt_mutex_setprio(struct task_struct
*p
, int prio
)
3934 unsigned long flags
;
3935 int oldprio
, on_rq
, running
;
3938 BUG_ON(prio
< 0 || prio
> MAX_PRIO
);
3940 rq
= task_rq_lock(p
, &flags
);
3941 update_rq_clock(rq
);
3944 on_rq
= p
->se
.on_rq
;
3945 running
= task_running(rq
, p
);
3947 dequeue_task(rq
, p
, 0);
3949 p
->sched_class
->put_prev_task(rq
, p
);
3953 p
->sched_class
= &rt_sched_class
;
3955 p
->sched_class
= &fair_sched_class
;
3961 p
->sched_class
->set_curr_task(rq
);
3962 enqueue_task(rq
, p
, 0);
3964 * Reschedule if we are currently running on this runqueue and
3965 * our priority decreased, or if we are not currently running on
3966 * this runqueue and our priority is higher than the current's
3969 if (p
->prio
> oldprio
)
3970 resched_task(rq
->curr
);
3972 check_preempt_curr(rq
, p
);
3975 task_rq_unlock(rq
, &flags
);
3980 void set_user_nice(struct task_struct
*p
, long nice
)
3982 int old_prio
, delta
, on_rq
;
3983 unsigned long flags
;
3986 if (TASK_NICE(p
) == nice
|| nice
< -20 || nice
> 19)
3989 * We have to be careful, if called from sys_setpriority(),
3990 * the task might be in the middle of scheduling on another CPU.
3992 rq
= task_rq_lock(p
, &flags
);
3993 update_rq_clock(rq
);
3995 * The RT priorities are set via sched_setscheduler(), but we still
3996 * allow the 'normal' nice value to be set - but as expected
3997 * it wont have any effect on scheduling until the task is
3998 * SCHED_FIFO/SCHED_RR:
4000 if (task_has_rt_policy(p
)) {
4001 p
->static_prio
= NICE_TO_PRIO(nice
);
4004 on_rq
= p
->se
.on_rq
;
4006 dequeue_task(rq
, p
, 0);
4010 p
->static_prio
= NICE_TO_PRIO(nice
);
4013 p
->prio
= effective_prio(p
);
4014 delta
= p
->prio
- old_prio
;
4017 enqueue_task(rq
, p
, 0);
4020 * If the task increased its priority or is running and
4021 * lowered its priority, then reschedule its CPU:
4023 if (delta
< 0 || (delta
> 0 && task_running(rq
, p
)))
4024 resched_task(rq
->curr
);
4027 task_rq_unlock(rq
, &flags
);
4029 EXPORT_SYMBOL(set_user_nice
);
4032 * can_nice - check if a task can reduce its nice value
4036 int can_nice(const struct task_struct
*p
, const int nice
)
4038 /* convert nice value [19,-20] to rlimit style value [1,40] */
4039 int nice_rlim
= 20 - nice
;
4041 return (nice_rlim
<= p
->signal
->rlim
[RLIMIT_NICE
].rlim_cur
||
4042 capable(CAP_SYS_NICE
));
4045 #ifdef __ARCH_WANT_SYS_NICE
4048 * sys_nice - change the priority of the current process.
4049 * @increment: priority increment
4051 * sys_setpriority is a more generic, but much slower function that
4052 * does similar things.
4054 asmlinkage
long sys_nice(int increment
)
4059 * Setpriority might change our priority at the same moment.
4060 * We don't have to worry. Conceptually one call occurs first
4061 * and we have a single winner.
4063 if (increment
< -40)
4068 nice
= PRIO_TO_NICE(current
->static_prio
) + increment
;
4074 if (increment
< 0 && !can_nice(current
, nice
))
4077 retval
= security_task_setnice(current
, nice
);
4081 set_user_nice(current
, nice
);
4088 * task_prio - return the priority value of a given task.
4089 * @p: the task in question.
4091 * This is the priority value as seen by users in /proc.
4092 * RT tasks are offset by -200. Normal tasks are centered
4093 * around 0, value goes from -16 to +15.
4095 int task_prio(const struct task_struct
*p
)
4097 return p
->prio
- MAX_RT_PRIO
;
4101 * task_nice - return the nice value of a given task.
4102 * @p: the task in question.
4104 int task_nice(const struct task_struct
*p
)
4106 return TASK_NICE(p
);
4108 EXPORT_SYMBOL_GPL(task_nice
);
4111 * idle_cpu - is a given cpu idle currently?
4112 * @cpu: the processor in question.
4114 int idle_cpu(int cpu
)
4116 return cpu_curr(cpu
) == cpu_rq(cpu
)->idle
;
4120 * idle_task - return the idle task for a given cpu.
4121 * @cpu: the processor in question.
4123 struct task_struct
*idle_task(int cpu
)
4125 return cpu_rq(cpu
)->idle
;
4129 * find_process_by_pid - find a process with a matching PID value.
4130 * @pid: the pid in question.
4132 static struct task_struct
*find_process_by_pid(pid_t pid
)
4134 return pid
? find_task_by_pid(pid
) : current
;
4137 /* Actually do priority change: must hold rq lock. */
4139 __setscheduler(struct rq
*rq
, struct task_struct
*p
, int policy
, int prio
)
4141 BUG_ON(p
->se
.on_rq
);
4144 switch (p
->policy
) {
4148 p
->sched_class
= &fair_sched_class
;
4152 p
->sched_class
= &rt_sched_class
;
4156 p
->rt_priority
= prio
;
4157 p
->normal_prio
= normal_prio(p
);
4158 /* we are holding p->pi_lock already */
4159 p
->prio
= rt_mutex_getprio(p
);
4164 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
4165 * @p: the task in question.
4166 * @policy: new policy.
4167 * @param: structure containing the new RT priority.
4169 * NOTE that the task may be already dead.
4171 int sched_setscheduler(struct task_struct
*p
, int policy
,
4172 struct sched_param
*param
)
4174 int retval
, oldprio
, oldpolicy
= -1, on_rq
, running
;
4175 unsigned long flags
;
4178 /* may grab non-irq protected spin_locks */
4179 BUG_ON(in_interrupt());
4181 /* double check policy once rq lock held */
4183 policy
= oldpolicy
= p
->policy
;
4184 else if (policy
!= SCHED_FIFO
&& policy
!= SCHED_RR
&&
4185 policy
!= SCHED_NORMAL
&& policy
!= SCHED_BATCH
&&
4186 policy
!= SCHED_IDLE
)
4189 * Valid priorities for SCHED_FIFO and SCHED_RR are
4190 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
4191 * SCHED_BATCH and SCHED_IDLE is 0.
4193 if (param
->sched_priority
< 0 ||
4194 (p
->mm
&& param
->sched_priority
> MAX_USER_RT_PRIO
-1) ||
4195 (!p
->mm
&& param
->sched_priority
> MAX_RT_PRIO
-1))
4197 if (rt_policy(policy
) != (param
->sched_priority
!= 0))
4201 * Allow unprivileged RT tasks to decrease priority:
4203 if (!capable(CAP_SYS_NICE
)) {
4204 if (rt_policy(policy
)) {
4205 unsigned long rlim_rtprio
;
4207 if (!lock_task_sighand(p
, &flags
))
4209 rlim_rtprio
= p
->signal
->rlim
[RLIMIT_RTPRIO
].rlim_cur
;
4210 unlock_task_sighand(p
, &flags
);
4212 /* can't set/change the rt policy */
4213 if (policy
!= p
->policy
&& !rlim_rtprio
)
4216 /* can't increase priority */
4217 if (param
->sched_priority
> p
->rt_priority
&&
4218 param
->sched_priority
> rlim_rtprio
)
4222 * Like positive nice levels, dont allow tasks to
4223 * move out of SCHED_IDLE either:
4225 if (p
->policy
== SCHED_IDLE
&& policy
!= SCHED_IDLE
)
4228 /* can't change other user's priorities */
4229 if ((current
->euid
!= p
->euid
) &&
4230 (current
->euid
!= p
->uid
))
4234 retval
= security_task_setscheduler(p
, policy
, param
);
4238 * make sure no PI-waiters arrive (or leave) while we are
4239 * changing the priority of the task:
4241 spin_lock_irqsave(&p
->pi_lock
, flags
);
4243 * To be able to change p->policy safely, the apropriate
4244 * runqueue lock must be held.
4246 rq
= __task_rq_lock(p
);
4247 /* recheck policy now with rq lock held */
4248 if (unlikely(oldpolicy
!= -1 && oldpolicy
!= p
->policy
)) {
4249 policy
= oldpolicy
= -1;
4250 __task_rq_unlock(rq
);
4251 spin_unlock_irqrestore(&p
->pi_lock
, flags
);
4254 update_rq_clock(rq
);
4255 on_rq
= p
->se
.on_rq
;
4256 running
= task_running(rq
, p
);
4258 deactivate_task(rq
, p
, 0);
4260 p
->sched_class
->put_prev_task(rq
, p
);
4264 __setscheduler(rq
, p
, policy
, param
->sched_priority
);
4268 p
->sched_class
->set_curr_task(rq
);
4269 activate_task(rq
, p
, 0);
4271 * Reschedule if we are currently running on this runqueue and
4272 * our priority decreased, or if we are not currently running on
4273 * this runqueue and our priority is higher than the current's
4276 if (p
->prio
> oldprio
)
4277 resched_task(rq
->curr
);
4279 check_preempt_curr(rq
, p
);
4282 __task_rq_unlock(rq
);
4283 spin_unlock_irqrestore(&p
->pi_lock
, flags
);
4285 rt_mutex_adjust_pi(p
);
4289 EXPORT_SYMBOL_GPL(sched_setscheduler
);
4292 do_sched_setscheduler(pid_t pid
, int policy
, struct sched_param __user
*param
)
4294 struct sched_param lparam
;
4295 struct task_struct
*p
;
4298 if (!param
|| pid
< 0)
4300 if (copy_from_user(&lparam
, param
, sizeof(struct sched_param
)))
4305 p
= find_process_by_pid(pid
);
4307 retval
= sched_setscheduler(p
, policy
, &lparam
);
4314 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
4315 * @pid: the pid in question.
4316 * @policy: new policy.
4317 * @param: structure containing the new RT priority.
4319 asmlinkage
long sys_sched_setscheduler(pid_t pid
, int policy
,
4320 struct sched_param __user
*param
)
4322 /* negative values for policy are not valid */
4326 return do_sched_setscheduler(pid
, policy
, param
);
4330 * sys_sched_setparam - set/change the RT priority of a thread
4331 * @pid: the pid in question.
4332 * @param: structure containing the new RT priority.
4334 asmlinkage
long sys_sched_setparam(pid_t pid
, struct sched_param __user
*param
)
4336 return do_sched_setscheduler(pid
, -1, param
);
4340 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
4341 * @pid: the pid in question.
4343 asmlinkage
long sys_sched_getscheduler(pid_t pid
)
4345 struct task_struct
*p
;
4352 read_lock(&tasklist_lock
);
4353 p
= find_process_by_pid(pid
);
4355 retval
= security_task_getscheduler(p
);
4359 read_unlock(&tasklist_lock
);
4364 * sys_sched_getscheduler - get the RT priority of a thread
4365 * @pid: the pid in question.
4366 * @param: structure containing the RT priority.
4368 asmlinkage
long sys_sched_getparam(pid_t pid
, struct sched_param __user
*param
)
4370 struct sched_param lp
;
4371 struct task_struct
*p
;
4374 if (!param
|| pid
< 0)
4377 read_lock(&tasklist_lock
);
4378 p
= find_process_by_pid(pid
);
4383 retval
= security_task_getscheduler(p
);
4387 lp
.sched_priority
= p
->rt_priority
;
4388 read_unlock(&tasklist_lock
);
4391 * This one might sleep, we cannot do it with a spinlock held ...
4393 retval
= copy_to_user(param
, &lp
, sizeof(*param
)) ? -EFAULT
: 0;
4398 read_unlock(&tasklist_lock
);
4402 long sched_setaffinity(pid_t pid
, cpumask_t new_mask
)
4404 cpumask_t cpus_allowed
;
4405 struct task_struct
*p
;
4408 mutex_lock(&sched_hotcpu_mutex
);
4409 read_lock(&tasklist_lock
);
4411 p
= find_process_by_pid(pid
);
4413 read_unlock(&tasklist_lock
);
4414 mutex_unlock(&sched_hotcpu_mutex
);
4419 * It is not safe to call set_cpus_allowed with the
4420 * tasklist_lock held. We will bump the task_struct's
4421 * usage count and then drop tasklist_lock.
4424 read_unlock(&tasklist_lock
);
4427 if ((current
->euid
!= p
->euid
) && (current
->euid
!= p
->uid
) &&
4428 !capable(CAP_SYS_NICE
))
4431 retval
= security_task_setscheduler(p
, 0, NULL
);
4435 cpus_allowed
= cpuset_cpus_allowed(p
);
4436 cpus_and(new_mask
, new_mask
, cpus_allowed
);
4437 retval
= set_cpus_allowed(p
, new_mask
);
4441 mutex_unlock(&sched_hotcpu_mutex
);
4445 static int get_user_cpu_mask(unsigned long __user
*user_mask_ptr
, unsigned len
,
4446 cpumask_t
*new_mask
)
4448 if (len
< sizeof(cpumask_t
)) {
4449 memset(new_mask
, 0, sizeof(cpumask_t
));
4450 } else if (len
> sizeof(cpumask_t
)) {
4451 len
= sizeof(cpumask_t
);
4453 return copy_from_user(new_mask
, user_mask_ptr
, len
) ? -EFAULT
: 0;
4457 * sys_sched_setaffinity - set the cpu affinity of a process
4458 * @pid: pid of the process
4459 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4460 * @user_mask_ptr: user-space pointer to the new cpu mask
4462 asmlinkage
long sys_sched_setaffinity(pid_t pid
, unsigned int len
,
4463 unsigned long __user
*user_mask_ptr
)
4468 retval
= get_user_cpu_mask(user_mask_ptr
, len
, &new_mask
);
4472 return sched_setaffinity(pid
, new_mask
);
4476 * Represents all cpu's present in the system
4477 * In systems capable of hotplug, this map could dynamically grow
4478 * as new cpu's are detected in the system via any platform specific
4479 * method, such as ACPI for e.g.
4482 cpumask_t cpu_present_map __read_mostly
;
4483 EXPORT_SYMBOL(cpu_present_map
);
4486 cpumask_t cpu_online_map __read_mostly
= CPU_MASK_ALL
;
4487 EXPORT_SYMBOL(cpu_online_map
);
4489 cpumask_t cpu_possible_map __read_mostly
= CPU_MASK_ALL
;
4490 EXPORT_SYMBOL(cpu_possible_map
);
4493 long sched_getaffinity(pid_t pid
, cpumask_t
*mask
)
4495 struct task_struct
*p
;
4498 mutex_lock(&sched_hotcpu_mutex
);
4499 read_lock(&tasklist_lock
);
4502 p
= find_process_by_pid(pid
);
4506 retval
= security_task_getscheduler(p
);
4510 cpus_and(*mask
, p
->cpus_allowed
, cpu_online_map
);
4513 read_unlock(&tasklist_lock
);
4514 mutex_unlock(&sched_hotcpu_mutex
);
4520 * sys_sched_getaffinity - get the cpu affinity of a process
4521 * @pid: pid of the process
4522 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4523 * @user_mask_ptr: user-space pointer to hold the current cpu mask
4525 asmlinkage
long sys_sched_getaffinity(pid_t pid
, unsigned int len
,
4526 unsigned long __user
*user_mask_ptr
)
4531 if (len
< sizeof(cpumask_t
))
4534 ret
= sched_getaffinity(pid
, &mask
);
4538 if (copy_to_user(user_mask_ptr
, &mask
, sizeof(cpumask_t
)))
4541 return sizeof(cpumask_t
);
4545 * sys_sched_yield - yield the current processor to other threads.
4547 * This function yields the current CPU to other tasks. If there are no
4548 * other threads running on this CPU then this function will return.
4550 asmlinkage
long sys_sched_yield(void)
4552 struct rq
*rq
= this_rq_lock();
4554 schedstat_inc(rq
, yld_count
);
4555 current
->sched_class
->yield_task(rq
);
4558 * Since we are going to call schedule() anyway, there's
4559 * no need to preempt or enable interrupts:
4561 __release(rq
->lock
);
4562 spin_release(&rq
->lock
.dep_map
, 1, _THIS_IP_
);
4563 _raw_spin_unlock(&rq
->lock
);
4564 preempt_enable_no_resched();
4571 static void __cond_resched(void)
4573 #ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
4574 __might_sleep(__FILE__
, __LINE__
);
4577 * The BKS might be reacquired before we have dropped
4578 * PREEMPT_ACTIVE, which could trigger a second
4579 * cond_resched() call.
4582 add_preempt_count(PREEMPT_ACTIVE
);
4584 sub_preempt_count(PREEMPT_ACTIVE
);
4585 } while (need_resched());
4588 int __sched
cond_resched(void)
4590 if (need_resched() && !(preempt_count() & PREEMPT_ACTIVE
) &&
4591 system_state
== SYSTEM_RUNNING
) {
4597 EXPORT_SYMBOL(cond_resched
);
4600 * cond_resched_lock() - if a reschedule is pending, drop the given lock,
4601 * call schedule, and on return reacquire the lock.
4603 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
4604 * operations here to prevent schedule() from being called twice (once via
4605 * spin_unlock(), once by hand).
4607 int cond_resched_lock(spinlock_t
*lock
)
4611 if (need_lockbreak(lock
)) {
4617 if (need_resched() && system_state
== SYSTEM_RUNNING
) {
4618 spin_release(&lock
->dep_map
, 1, _THIS_IP_
);
4619 _raw_spin_unlock(lock
);
4620 preempt_enable_no_resched();
4627 EXPORT_SYMBOL(cond_resched_lock
);
4629 int __sched
cond_resched_softirq(void)
4631 BUG_ON(!in_softirq());
4633 if (need_resched() && system_state
== SYSTEM_RUNNING
) {
4641 EXPORT_SYMBOL(cond_resched_softirq
);
4644 * yield - yield the current processor to other threads.
4646 * This is a shortcut for kernel-space yielding - it marks the
4647 * thread runnable and calls sys_sched_yield().
4649 void __sched
yield(void)
4651 set_current_state(TASK_RUNNING
);
4654 EXPORT_SYMBOL(yield
);
4657 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
4658 * that process accounting knows that this is a task in IO wait state.
4660 * But don't do that if it is a deliberate, throttling IO wait (this task
4661 * has set its backing_dev_info: the queue against which it should throttle)
4663 void __sched
io_schedule(void)
4665 struct rq
*rq
= &__raw_get_cpu_var(runqueues
);
4667 delayacct_blkio_start();
4668 atomic_inc(&rq
->nr_iowait
);
4670 atomic_dec(&rq
->nr_iowait
);
4671 delayacct_blkio_end();
4673 EXPORT_SYMBOL(io_schedule
);
4675 long __sched
io_schedule_timeout(long timeout
)
4677 struct rq
*rq
= &__raw_get_cpu_var(runqueues
);
4680 delayacct_blkio_start();
4681 atomic_inc(&rq
->nr_iowait
);
4682 ret
= schedule_timeout(timeout
);
4683 atomic_dec(&rq
->nr_iowait
);
4684 delayacct_blkio_end();
4689 * sys_sched_get_priority_max - return maximum RT priority.
4690 * @policy: scheduling class.
4692 * this syscall returns the maximum rt_priority that can be used
4693 * by a given scheduling class.
4695 asmlinkage
long sys_sched_get_priority_max(int policy
)
4702 ret
= MAX_USER_RT_PRIO
-1;
4714 * sys_sched_get_priority_min - return minimum RT priority.
4715 * @policy: scheduling class.
4717 * this syscall returns the minimum rt_priority that can be used
4718 * by a given scheduling class.
4720 asmlinkage
long sys_sched_get_priority_min(int policy
)
4738 * sys_sched_rr_get_interval - return the default timeslice of a process.
4739 * @pid: pid of the process.
4740 * @interval: userspace pointer to the timeslice value.
4742 * this syscall writes the default timeslice value of a given process
4743 * into the user-space timespec buffer. A value of '0' means infinity.
4746 long sys_sched_rr_get_interval(pid_t pid
, struct timespec __user
*interval
)
4748 struct task_struct
*p
;
4749 unsigned int time_slice
;
4757 read_lock(&tasklist_lock
);
4758 p
= find_process_by_pid(pid
);
4762 retval
= security_task_getscheduler(p
);
4766 if (p
->policy
== SCHED_FIFO
)
4768 else if (p
->policy
== SCHED_RR
)
4769 time_slice
= DEF_TIMESLICE
;
4771 struct sched_entity
*se
= &p
->se
;
4772 unsigned long flags
;
4775 rq
= task_rq_lock(p
, &flags
);
4776 time_slice
= NS_TO_JIFFIES(sched_slice(cfs_rq_of(se
), se
));
4777 task_rq_unlock(rq
, &flags
);
4779 read_unlock(&tasklist_lock
);
4780 jiffies_to_timespec(time_slice
, &t
);
4781 retval
= copy_to_user(interval
, &t
, sizeof(t
)) ? -EFAULT
: 0;
4785 read_unlock(&tasklist_lock
);
4789 static const char stat_nam
[] = "RSDTtZX";
4791 static void show_task(struct task_struct
*p
)
4793 unsigned long free
= 0;
4796 state
= p
->state
? __ffs(p
->state
) + 1 : 0;
4797 printk("%-13.13s %c", p
->comm
,
4798 state
< sizeof(stat_nam
) - 1 ? stat_nam
[state
] : '?');
4799 #if BITS_PER_LONG == 32
4800 if (state
== TASK_RUNNING
)
4801 printk(" running ");
4803 printk(" %08lx ", thread_saved_pc(p
));
4805 if (state
== TASK_RUNNING
)
4806 printk(" running task ");
4808 printk(" %016lx ", thread_saved_pc(p
));
4810 #ifdef CONFIG_DEBUG_STACK_USAGE
4812 unsigned long *n
= end_of_stack(p
);
4815 free
= (unsigned long)n
- (unsigned long)end_of_stack(p
);
4818 printk("%5lu %5d %6d\n", free
, p
->pid
, p
->parent
->pid
);
4820 if (state
!= TASK_RUNNING
)
4821 show_stack(p
, NULL
);
4824 void show_state_filter(unsigned long state_filter
)
4826 struct task_struct
*g
, *p
;
4828 #if BITS_PER_LONG == 32
4830 " task PC stack pid father\n");
4833 " task PC stack pid father\n");
4835 read_lock(&tasklist_lock
);
4836 do_each_thread(g
, p
) {
4838 * reset the NMI-timeout, listing all files on a slow
4839 * console might take alot of time:
4841 touch_nmi_watchdog();
4842 if (!state_filter
|| (p
->state
& state_filter
))
4844 } while_each_thread(g
, p
);
4846 touch_all_softlockup_watchdogs();
4848 #ifdef CONFIG_SCHED_DEBUG
4849 sysrq_sched_debug_show();
4851 read_unlock(&tasklist_lock
);
4853 * Only show locks if all tasks are dumped:
4855 if (state_filter
== -1)
4856 debug_show_all_locks();
4859 void __cpuinit
init_idle_bootup_task(struct task_struct
*idle
)
4861 idle
->sched_class
= &idle_sched_class
;
4865 * init_idle - set up an idle thread for a given CPU
4866 * @idle: task in question
4867 * @cpu: cpu the idle task belongs to
4869 * NOTE: this function does not set the idle thread's NEED_RESCHED
4870 * flag, to make booting more robust.
4872 void __cpuinit
init_idle(struct task_struct
*idle
, int cpu
)
4874 struct rq
*rq
= cpu_rq(cpu
);
4875 unsigned long flags
;
4878 idle
->se
.exec_start
= sched_clock();
4880 idle
->prio
= idle
->normal_prio
= MAX_PRIO
;
4881 idle
->cpus_allowed
= cpumask_of_cpu(cpu
);
4882 __set_task_cpu(idle
, cpu
);
4884 spin_lock_irqsave(&rq
->lock
, flags
);
4885 rq
->curr
= rq
->idle
= idle
;
4886 #if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
4889 spin_unlock_irqrestore(&rq
->lock
, flags
);
4891 /* Set the preempt count _outside_ the spinlocks! */
4892 #if defined(CONFIG_PREEMPT) && !defined(CONFIG_PREEMPT_BKL)
4893 task_thread_info(idle
)->preempt_count
= (idle
->lock_depth
>= 0);
4895 task_thread_info(idle
)->preempt_count
= 0;
4898 * The idle tasks have their own, simple scheduling class:
4900 idle
->sched_class
= &idle_sched_class
;
4904 * In a system that switches off the HZ timer nohz_cpu_mask
4905 * indicates which cpus entered this state. This is used
4906 * in the rcu update to wait only for active cpus. For system
4907 * which do not switch off the HZ timer nohz_cpu_mask should
4908 * always be CPU_MASK_NONE.
4910 cpumask_t nohz_cpu_mask
= CPU_MASK_NONE
;
4914 * This is how migration works:
4916 * 1) we queue a struct migration_req structure in the source CPU's
4917 * runqueue and wake up that CPU's migration thread.
4918 * 2) we down() the locked semaphore => thread blocks.
4919 * 3) migration thread wakes up (implicitly it forces the migrated
4920 * thread off the CPU)
4921 * 4) it gets the migration request and checks whether the migrated
4922 * task is still in the wrong runqueue.
4923 * 5) if it's in the wrong runqueue then the migration thread removes
4924 * it and puts it into the right queue.
4925 * 6) migration thread up()s the semaphore.
4926 * 7) we wake up and the migration is done.
4930 * Change a given task's CPU affinity. Migrate the thread to a
4931 * proper CPU and schedule it away if the CPU it's executing on
4932 * is removed from the allowed bitmask.
4934 * NOTE: the caller must have a valid reference to the task, the
4935 * task must not exit() & deallocate itself prematurely. The
4936 * call is not atomic; no spinlocks may be held.
4938 int set_cpus_allowed(struct task_struct
*p
, cpumask_t new_mask
)
4940 struct migration_req req
;
4941 unsigned long flags
;
4945 rq
= task_rq_lock(p
, &flags
);
4946 if (!cpus_intersects(new_mask
, cpu_online_map
)) {
4951 p
->cpus_allowed
= new_mask
;
4952 /* Can the task run on the task's current CPU? If so, we're done */
4953 if (cpu_isset(task_cpu(p
), new_mask
))
4956 if (migrate_task(p
, any_online_cpu(new_mask
), &req
)) {
4957 /* Need help from migration thread: drop lock and wait. */
4958 task_rq_unlock(rq
, &flags
);
4959 wake_up_process(rq
->migration_thread
);
4960 wait_for_completion(&req
.done
);
4961 tlb_migrate_finish(p
->mm
);
4965 task_rq_unlock(rq
, &flags
);
4969 EXPORT_SYMBOL_GPL(set_cpus_allowed
);
4972 * Move (not current) task off this cpu, onto dest cpu. We're doing
4973 * this because either it can't run here any more (set_cpus_allowed()
4974 * away from this CPU, or CPU going down), or because we're
4975 * attempting to rebalance this task on exec (sched_exec).
4977 * So we race with normal scheduler movements, but that's OK, as long
4978 * as the task is no longer on this CPU.
4980 * Returns non-zero if task was successfully migrated.
4982 static int __migrate_task(struct task_struct
*p
, int src_cpu
, int dest_cpu
)
4984 struct rq
*rq_dest
, *rq_src
;
4987 if (unlikely(cpu_is_offline(dest_cpu
)))
4990 rq_src
= cpu_rq(src_cpu
);
4991 rq_dest
= cpu_rq(dest_cpu
);
4993 double_rq_lock(rq_src
, rq_dest
);
4994 /* Already moved. */
4995 if (task_cpu(p
) != src_cpu
)
4997 /* Affinity changed (again). */
4998 if (!cpu_isset(dest_cpu
, p
->cpus_allowed
))
5001 on_rq
= p
->se
.on_rq
;
5003 deactivate_task(rq_src
, p
, 0);
5005 set_task_cpu(p
, dest_cpu
);
5007 activate_task(rq_dest
, p
, 0);
5008 check_preempt_curr(rq_dest
, p
);
5012 double_rq_unlock(rq_src
, rq_dest
);
5017 * migration_thread - this is a highprio system thread that performs
5018 * thread migration by bumping thread off CPU then 'pushing' onto
5021 static int migration_thread(void *data
)
5023 int cpu
= (long)data
;
5027 BUG_ON(rq
->migration_thread
!= current
);
5029 set_current_state(TASK_INTERRUPTIBLE
);
5030 while (!kthread_should_stop()) {
5031 struct migration_req
*req
;
5032 struct list_head
*head
;
5034 spin_lock_irq(&rq
->lock
);
5036 if (cpu_is_offline(cpu
)) {
5037 spin_unlock_irq(&rq
->lock
);
5041 if (rq
->active_balance
) {
5042 active_load_balance(rq
, cpu
);
5043 rq
->active_balance
= 0;
5046 head
= &rq
->migration_queue
;
5048 if (list_empty(head
)) {
5049 spin_unlock_irq(&rq
->lock
);
5051 set_current_state(TASK_INTERRUPTIBLE
);
5054 req
= list_entry(head
->next
, struct migration_req
, list
);
5055 list_del_init(head
->next
);
5057 spin_unlock(&rq
->lock
);
5058 __migrate_task(req
->task
, cpu
, req
->dest_cpu
);
5061 complete(&req
->done
);
5063 __set_current_state(TASK_RUNNING
);
5067 /* Wait for kthread_stop */
5068 set_current_state(TASK_INTERRUPTIBLE
);
5069 while (!kthread_should_stop()) {
5071 set_current_state(TASK_INTERRUPTIBLE
);
5073 __set_current_state(TASK_RUNNING
);
5077 #ifdef CONFIG_HOTPLUG_CPU
5079 static int __migrate_task_irq(struct task_struct
*p
, int src_cpu
, int dest_cpu
)
5083 local_irq_disable();
5084 ret
= __migrate_task(p
, src_cpu
, dest_cpu
);
5090 * Figure out where task on dead CPU should go, use force if neccessary.
5091 * NOTE: interrupts should be disabled by the caller
5093 static void move_task_off_dead_cpu(int dead_cpu
, struct task_struct
*p
)
5095 unsigned long flags
;
5102 mask
= node_to_cpumask(cpu_to_node(dead_cpu
));
5103 cpus_and(mask
, mask
, p
->cpus_allowed
);
5104 dest_cpu
= any_online_cpu(mask
);
5106 /* On any allowed CPU? */
5107 if (dest_cpu
== NR_CPUS
)
5108 dest_cpu
= any_online_cpu(p
->cpus_allowed
);
5110 /* No more Mr. Nice Guy. */
5111 if (dest_cpu
== NR_CPUS
) {
5112 rq
= task_rq_lock(p
, &flags
);
5113 cpus_setall(p
->cpus_allowed
);
5114 dest_cpu
= any_online_cpu(p
->cpus_allowed
);
5115 task_rq_unlock(rq
, &flags
);
5118 * Don't tell them about moving exiting tasks or
5119 * kernel threads (both mm NULL), since they never
5122 if (p
->mm
&& printk_ratelimit())
5123 printk(KERN_INFO
"process %d (%s) no "
5124 "longer affine to cpu%d\n",
5125 p
->pid
, p
->comm
, dead_cpu
);
5127 } while (!__migrate_task_irq(p
, dead_cpu
, dest_cpu
));
5131 * While a dead CPU has no uninterruptible tasks queued at this point,
5132 * it might still have a nonzero ->nr_uninterruptible counter, because
5133 * for performance reasons the counter is not stricly tracking tasks to
5134 * their home CPUs. So we just add the counter to another CPU's counter,
5135 * to keep the global sum constant after CPU-down:
5137 static void migrate_nr_uninterruptible(struct rq
*rq_src
)
5139 struct rq
*rq_dest
= cpu_rq(any_online_cpu(CPU_MASK_ALL
));
5140 unsigned long flags
;
5142 local_irq_save(flags
);
5143 double_rq_lock(rq_src
, rq_dest
);
5144 rq_dest
->nr_uninterruptible
+= rq_src
->nr_uninterruptible
;
5145 rq_src
->nr_uninterruptible
= 0;
5146 double_rq_unlock(rq_src
, rq_dest
);
5147 local_irq_restore(flags
);
5150 /* Run through task list and migrate tasks from the dead cpu. */
5151 static void migrate_live_tasks(int src_cpu
)
5153 struct task_struct
*p
, *t
;
5155 read_lock(&tasklist_lock
);
5157 do_each_thread(t
, p
) {
5161 if (task_cpu(p
) == src_cpu
)
5162 move_task_off_dead_cpu(src_cpu
, p
);
5163 } while_each_thread(t
, p
);
5165 read_unlock(&tasklist_lock
);
5169 * activate_idle_task - move idle task to the _front_ of runqueue.
5171 static void activate_idle_task(struct task_struct
*p
, struct rq
*rq
)
5173 update_rq_clock(rq
);
5175 if (p
->state
== TASK_UNINTERRUPTIBLE
)
5176 rq
->nr_uninterruptible
--;
5178 enqueue_task(rq
, p
, 0);
5179 inc_nr_running(p
, rq
);
5183 * Schedules idle task to be the next runnable task on current CPU.
5184 * It does so by boosting its priority to highest possible and adding it to
5185 * the _front_ of the runqueue. Used by CPU offline code.
5187 void sched_idle_next(void)
5189 int this_cpu
= smp_processor_id();
5190 struct rq
*rq
= cpu_rq(this_cpu
);
5191 struct task_struct
*p
= rq
->idle
;
5192 unsigned long flags
;
5194 /* cpu has to be offline */
5195 BUG_ON(cpu_online(this_cpu
));
5198 * Strictly not necessary since rest of the CPUs are stopped by now
5199 * and interrupts disabled on the current cpu.
5201 spin_lock_irqsave(&rq
->lock
, flags
);
5203 __setscheduler(rq
, p
, SCHED_FIFO
, MAX_RT_PRIO
-1);
5205 /* Add idle task to the _front_ of its priority queue: */
5206 activate_idle_task(p
, rq
);
5208 spin_unlock_irqrestore(&rq
->lock
, flags
);
5212 * Ensures that the idle task is using init_mm right before its cpu goes
5215 void idle_task_exit(void)
5217 struct mm_struct
*mm
= current
->active_mm
;
5219 BUG_ON(cpu_online(smp_processor_id()));
5222 switch_mm(mm
, &init_mm
, current
);
5226 /* called under rq->lock with disabled interrupts */
5227 static void migrate_dead(unsigned int dead_cpu
, struct task_struct
*p
)
5229 struct rq
*rq
= cpu_rq(dead_cpu
);
5231 /* Must be exiting, otherwise would be on tasklist. */
5232 BUG_ON(p
->exit_state
!= EXIT_ZOMBIE
&& p
->exit_state
!= EXIT_DEAD
);
5234 /* Cannot have done final schedule yet: would have vanished. */
5235 BUG_ON(p
->state
== TASK_DEAD
);
5240 * Drop lock around migration; if someone else moves it,
5241 * that's OK. No task can be added to this CPU, so iteration is
5244 spin_unlock_irq(&rq
->lock
);
5245 move_task_off_dead_cpu(dead_cpu
, p
);
5246 spin_lock_irq(&rq
->lock
);
5251 /* release_task() removes task from tasklist, so we won't find dead tasks. */
5252 static void migrate_dead_tasks(unsigned int dead_cpu
)
5254 struct rq
*rq
= cpu_rq(dead_cpu
);
5255 struct task_struct
*next
;
5258 if (!rq
->nr_running
)
5260 update_rq_clock(rq
);
5261 next
= pick_next_task(rq
, rq
->curr
);
5264 migrate_dead(dead_cpu
, next
);
5268 #endif /* CONFIG_HOTPLUG_CPU */
5270 #if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
5272 static struct ctl_table sd_ctl_dir
[] = {
5274 .procname
= "sched_domain",
5280 static struct ctl_table sd_ctl_root
[] = {
5282 .ctl_name
= CTL_KERN
,
5283 .procname
= "kernel",
5285 .child
= sd_ctl_dir
,
5290 static struct ctl_table
*sd_alloc_ctl_entry(int n
)
5292 struct ctl_table
*entry
=
5293 kcalloc(n
, sizeof(struct ctl_table
), GFP_KERNEL
);
5298 static void sd_free_ctl_entry(struct ctl_table
**tablep
)
5300 struct ctl_table
*entry
;
5303 * In the intermediate directories, both the child directory and
5304 * procname are dynamically allocated and could fail but the mode
5305 * will always be set. In the lowest directory the names are
5306 * static strings and all have proc handlers.
5308 for (entry
= *tablep
; entry
->mode
; entry
++) {
5310 sd_free_ctl_entry(&entry
->child
);
5311 if (entry
->proc_handler
== NULL
)
5312 kfree(entry
->procname
);
5320 set_table_entry(struct ctl_table
*entry
,
5321 const char *procname
, void *data
, int maxlen
,
5322 mode_t mode
, proc_handler
*proc_handler
)
5324 entry
->procname
= procname
;
5326 entry
->maxlen
= maxlen
;
5328 entry
->proc_handler
= proc_handler
;
5331 static struct ctl_table
*
5332 sd_alloc_ctl_domain_table(struct sched_domain
*sd
)
5334 struct ctl_table
*table
= sd_alloc_ctl_entry(12);
5339 set_table_entry(&table
[0], "min_interval", &sd
->min_interval
,
5340 sizeof(long), 0644, proc_doulongvec_minmax
);
5341 set_table_entry(&table
[1], "max_interval", &sd
->max_interval
,
5342 sizeof(long), 0644, proc_doulongvec_minmax
);
5343 set_table_entry(&table
[2], "busy_idx", &sd
->busy_idx
,
5344 sizeof(int), 0644, proc_dointvec_minmax
);
5345 set_table_entry(&table
[3], "idle_idx", &sd
->idle_idx
,
5346 sizeof(int), 0644, proc_dointvec_minmax
);
5347 set_table_entry(&table
[4], "newidle_idx", &sd
->newidle_idx
,
5348 sizeof(int), 0644, proc_dointvec_minmax
);
5349 set_table_entry(&table
[5], "wake_idx", &sd
->wake_idx
,
5350 sizeof(int), 0644, proc_dointvec_minmax
);
5351 set_table_entry(&table
[6], "forkexec_idx", &sd
->forkexec_idx
,
5352 sizeof(int), 0644, proc_dointvec_minmax
);
5353 set_table_entry(&table
[7], "busy_factor", &sd
->busy_factor
,
5354 sizeof(int), 0644, proc_dointvec_minmax
);
5355 set_table_entry(&table
[8], "imbalance_pct", &sd
->imbalance_pct
,
5356 sizeof(int), 0644, proc_dointvec_minmax
);
5357 set_table_entry(&table
[9], "cache_nice_tries",
5358 &sd
->cache_nice_tries
,
5359 sizeof(int), 0644, proc_dointvec_minmax
);
5360 set_table_entry(&table
[10], "flags", &sd
->flags
,
5361 sizeof(int), 0644, proc_dointvec_minmax
);
5362 /* &table[11] is terminator */
5367 static ctl_table
*sd_alloc_ctl_cpu_table(int cpu
)
5369 struct ctl_table
*entry
, *table
;
5370 struct sched_domain
*sd
;
5371 int domain_num
= 0, i
;
5374 for_each_domain(cpu
, sd
)
5376 entry
= table
= sd_alloc_ctl_entry(domain_num
+ 1);
5381 for_each_domain(cpu
, sd
) {
5382 snprintf(buf
, 32, "domain%d", i
);
5383 entry
->procname
= kstrdup(buf
, GFP_KERNEL
);
5385 entry
->child
= sd_alloc_ctl_domain_table(sd
);
5392 static struct ctl_table_header
*sd_sysctl_header
;
5393 static void register_sched_domain_sysctl(void)
5395 int i
, cpu_num
= num_online_cpus();
5396 struct ctl_table
*entry
= sd_alloc_ctl_entry(cpu_num
+ 1);
5402 sd_ctl_dir
[0].child
= entry
;
5404 for_each_online_cpu(i
) {
5405 snprintf(buf
, 32, "cpu%d", i
);
5406 entry
->procname
= kstrdup(buf
, GFP_KERNEL
);
5408 entry
->child
= sd_alloc_ctl_cpu_table(i
);
5411 sd_sysctl_header
= register_sysctl_table(sd_ctl_root
);
5414 static void unregister_sched_domain_sysctl(void)
5416 unregister_sysctl_table(sd_sysctl_header
);
5417 sd_sysctl_header
= NULL
;
5418 sd_free_ctl_entry(&sd_ctl_dir
[0].child
);
5421 static void register_sched_domain_sysctl(void)
5424 static void unregister_sched_domain_sysctl(void)
5430 * migration_call - callback that gets triggered when a CPU is added.
5431 * Here we can start up the necessary migration thread for the new CPU.
5433 static int __cpuinit
5434 migration_call(struct notifier_block
*nfb
, unsigned long action
, void *hcpu
)
5436 struct task_struct
*p
;
5437 int cpu
= (long)hcpu
;
5438 unsigned long flags
;
5442 case CPU_LOCK_ACQUIRE
:
5443 mutex_lock(&sched_hotcpu_mutex
);
5446 case CPU_UP_PREPARE
:
5447 case CPU_UP_PREPARE_FROZEN
:
5448 p
= kthread_create(migration_thread
, hcpu
, "migration/%d", cpu
);
5451 kthread_bind(p
, cpu
);
5452 /* Must be high prio: stop_machine expects to yield to it. */
5453 rq
= task_rq_lock(p
, &flags
);
5454 __setscheduler(rq
, p
, SCHED_FIFO
, MAX_RT_PRIO
-1);
5455 task_rq_unlock(rq
, &flags
);
5456 cpu_rq(cpu
)->migration_thread
= p
;
5460 case CPU_ONLINE_FROZEN
:
5461 /* Strictly unneccessary, as first user will wake it. */
5462 wake_up_process(cpu_rq(cpu
)->migration_thread
);
5465 #ifdef CONFIG_HOTPLUG_CPU
5466 case CPU_UP_CANCELED
:
5467 case CPU_UP_CANCELED_FROZEN
:
5468 if (!cpu_rq(cpu
)->migration_thread
)
5470 /* Unbind it from offline cpu so it can run. Fall thru. */
5471 kthread_bind(cpu_rq(cpu
)->migration_thread
,
5472 any_online_cpu(cpu_online_map
));
5473 kthread_stop(cpu_rq(cpu
)->migration_thread
);
5474 cpu_rq(cpu
)->migration_thread
= NULL
;
5478 case CPU_DEAD_FROZEN
:
5479 migrate_live_tasks(cpu
);
5481 kthread_stop(rq
->migration_thread
);
5482 rq
->migration_thread
= NULL
;
5483 /* Idle task back to normal (off runqueue, low prio) */
5484 spin_lock_irq(&rq
->lock
);
5485 update_rq_clock(rq
);
5486 deactivate_task(rq
, rq
->idle
, 0);
5487 rq
->idle
->static_prio
= MAX_PRIO
;
5488 __setscheduler(rq
, rq
->idle
, SCHED_NORMAL
, 0);
5489 rq
->idle
->sched_class
= &idle_sched_class
;
5490 migrate_dead_tasks(cpu
);
5491 spin_unlock_irq(&rq
->lock
);
5492 migrate_nr_uninterruptible(rq
);
5493 BUG_ON(rq
->nr_running
!= 0);
5495 /* No need to migrate the tasks: it was best-effort if
5496 * they didn't take sched_hotcpu_mutex. Just wake up
5497 * the requestors. */
5498 spin_lock_irq(&rq
->lock
);
5499 while (!list_empty(&rq
->migration_queue
)) {
5500 struct migration_req
*req
;
5502 req
= list_entry(rq
->migration_queue
.next
,
5503 struct migration_req
, list
);
5504 list_del_init(&req
->list
);
5505 complete(&req
->done
);
5507 spin_unlock_irq(&rq
->lock
);
5510 case CPU_LOCK_RELEASE
:
5511 mutex_unlock(&sched_hotcpu_mutex
);
5517 /* Register at highest priority so that task migration (migrate_all_tasks)
5518 * happens before everything else.
5520 static struct notifier_block __cpuinitdata migration_notifier
= {
5521 .notifier_call
= migration_call
,
5525 int __init
migration_init(void)
5527 void *cpu
= (void *)(long)smp_processor_id();
5530 /* Start one for the boot CPU: */
5531 err
= migration_call(&migration_notifier
, CPU_UP_PREPARE
, cpu
);
5532 BUG_ON(err
== NOTIFY_BAD
);
5533 migration_call(&migration_notifier
, CPU_ONLINE
, cpu
);
5534 register_cpu_notifier(&migration_notifier
);
5542 /* Number of possible processor ids */
5543 int nr_cpu_ids __read_mostly
= NR_CPUS
;
5544 EXPORT_SYMBOL(nr_cpu_ids
);
5546 #ifdef CONFIG_SCHED_DEBUG
5547 static void sched_domain_debug(struct sched_domain
*sd
, int cpu
)
5552 printk(KERN_DEBUG
"CPU%d attaching NULL sched-domain.\n", cpu
);
5556 printk(KERN_DEBUG
"CPU%d attaching sched-domain:\n", cpu
);
5561 struct sched_group
*group
= sd
->groups
;
5562 cpumask_t groupmask
;
5564 cpumask_scnprintf(str
, NR_CPUS
, sd
->span
);
5565 cpus_clear(groupmask
);
5568 for (i
= 0; i
< level
+ 1; i
++)
5570 printk("domain %d: ", level
);
5572 if (!(sd
->flags
& SD_LOAD_BALANCE
)) {
5573 printk("does not load-balance\n");
5575 printk(KERN_ERR
"ERROR: !SD_LOAD_BALANCE domain"
5580 printk("span %s\n", str
);
5582 if (!cpu_isset(cpu
, sd
->span
))
5583 printk(KERN_ERR
"ERROR: domain->span does not contain "
5585 if (!cpu_isset(cpu
, group
->cpumask
))
5586 printk(KERN_ERR
"ERROR: domain->groups does not contain"
5590 for (i
= 0; i
< level
+ 2; i
++)
5596 printk(KERN_ERR
"ERROR: group is NULL\n");
5600 if (!group
->__cpu_power
) {
5602 printk(KERN_ERR
"ERROR: domain->cpu_power not "
5607 if (!cpus_weight(group
->cpumask
)) {
5609 printk(KERN_ERR
"ERROR: empty group\n");
5613 if (cpus_intersects(groupmask
, group
->cpumask
)) {
5615 printk(KERN_ERR
"ERROR: repeated CPUs\n");
5619 cpus_or(groupmask
, groupmask
, group
->cpumask
);
5621 cpumask_scnprintf(str
, NR_CPUS
, group
->cpumask
);
5624 group
= group
->next
;
5625 } while (group
!= sd
->groups
);
5628 if (!cpus_equal(sd
->span
, groupmask
))
5629 printk(KERN_ERR
"ERROR: groups don't span "
5637 if (!cpus_subset(groupmask
, sd
->span
))
5638 printk(KERN_ERR
"ERROR: parent span is not a superset "
5639 "of domain->span\n");
5644 # define sched_domain_debug(sd, cpu) do { } while (0)
5647 static int sd_degenerate(struct sched_domain
*sd
)
5649 if (cpus_weight(sd
->span
) == 1)
5652 /* Following flags need at least 2 groups */
5653 if (sd
->flags
& (SD_LOAD_BALANCE
|
5654 SD_BALANCE_NEWIDLE
|
5658 SD_SHARE_PKG_RESOURCES
)) {
5659 if (sd
->groups
!= sd
->groups
->next
)
5663 /* Following flags don't use groups */
5664 if (sd
->flags
& (SD_WAKE_IDLE
|
5673 sd_parent_degenerate(struct sched_domain
*sd
, struct sched_domain
*parent
)
5675 unsigned long cflags
= sd
->flags
, pflags
= parent
->flags
;
5677 if (sd_degenerate(parent
))
5680 if (!cpus_equal(sd
->span
, parent
->span
))
5683 /* Does parent contain flags not in child? */
5684 /* WAKE_BALANCE is a subset of WAKE_AFFINE */
5685 if (cflags
& SD_WAKE_AFFINE
)
5686 pflags
&= ~SD_WAKE_BALANCE
;
5687 /* Flags needing groups don't count if only 1 group in parent */
5688 if (parent
->groups
== parent
->groups
->next
) {
5689 pflags
&= ~(SD_LOAD_BALANCE
|
5690 SD_BALANCE_NEWIDLE
|
5694 SD_SHARE_PKG_RESOURCES
);
5696 if (~cflags
& pflags
)
5703 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
5704 * hold the hotplug lock.
5706 static void cpu_attach_domain(struct sched_domain
*sd
, int cpu
)
5708 struct rq
*rq
= cpu_rq(cpu
);
5709 struct sched_domain
*tmp
;
5711 /* Remove the sched domains which do not contribute to scheduling. */
5712 for (tmp
= sd
; tmp
; tmp
= tmp
->parent
) {
5713 struct sched_domain
*parent
= tmp
->parent
;
5716 if (sd_parent_degenerate(tmp
, parent
)) {
5717 tmp
->parent
= parent
->parent
;
5719 parent
->parent
->child
= tmp
;
5723 if (sd
&& sd_degenerate(sd
)) {
5729 sched_domain_debug(sd
, cpu
);
5731 rcu_assign_pointer(rq
->sd
, sd
);
5734 /* cpus with isolated domains */
5735 static cpumask_t cpu_isolated_map
= CPU_MASK_NONE
;
5737 /* Setup the mask of cpus configured for isolated domains */
5738 static int __init
isolated_cpu_setup(char *str
)
5740 int ints
[NR_CPUS
], i
;
5742 str
= get_options(str
, ARRAY_SIZE(ints
), ints
);
5743 cpus_clear(cpu_isolated_map
);
5744 for (i
= 1; i
<= ints
[0]; i
++)
5745 if (ints
[i
] < NR_CPUS
)
5746 cpu_set(ints
[i
], cpu_isolated_map
);
5750 __setup("isolcpus=", isolated_cpu_setup
);
5753 * init_sched_build_groups takes the cpumask we wish to span, and a pointer
5754 * to a function which identifies what group(along with sched group) a CPU
5755 * belongs to. The return value of group_fn must be a >= 0 and < NR_CPUS
5756 * (due to the fact that we keep track of groups covered with a cpumask_t).
5758 * init_sched_build_groups will build a circular linked list of the groups
5759 * covered by the given span, and will set each group's ->cpumask correctly,
5760 * and ->cpu_power to 0.
5763 init_sched_build_groups(cpumask_t span
, const cpumask_t
*cpu_map
,
5764 int (*group_fn
)(int cpu
, const cpumask_t
*cpu_map
,
5765 struct sched_group
**sg
))
5767 struct sched_group
*first
= NULL
, *last
= NULL
;
5768 cpumask_t covered
= CPU_MASK_NONE
;
5771 for_each_cpu_mask(i
, span
) {
5772 struct sched_group
*sg
;
5773 int group
= group_fn(i
, cpu_map
, &sg
);
5776 if (cpu_isset(i
, covered
))
5779 sg
->cpumask
= CPU_MASK_NONE
;
5780 sg
->__cpu_power
= 0;
5782 for_each_cpu_mask(j
, span
) {
5783 if (group_fn(j
, cpu_map
, NULL
) != group
)
5786 cpu_set(j
, covered
);
5787 cpu_set(j
, sg
->cpumask
);
5798 #define SD_NODES_PER_DOMAIN 16
5803 * find_next_best_node - find the next node to include in a sched_domain
5804 * @node: node whose sched_domain we're building
5805 * @used_nodes: nodes already in the sched_domain
5807 * Find the next node to include in a given scheduling domain. Simply
5808 * finds the closest node not already in the @used_nodes map.
5810 * Should use nodemask_t.
5812 static int find_next_best_node(int node
, unsigned long *used_nodes
)
5814 int i
, n
, val
, min_val
, best_node
= 0;
5818 for (i
= 0; i
< MAX_NUMNODES
; i
++) {
5819 /* Start at @node */
5820 n
= (node
+ i
) % MAX_NUMNODES
;
5822 if (!nr_cpus_node(n
))
5825 /* Skip already used nodes */
5826 if (test_bit(n
, used_nodes
))
5829 /* Simple min distance search */
5830 val
= node_distance(node
, n
);
5832 if (val
< min_val
) {
5838 set_bit(best_node
, used_nodes
);
5843 * sched_domain_node_span - get a cpumask for a node's sched_domain
5844 * @node: node whose cpumask we're constructing
5845 * @size: number of nodes to include in this span
5847 * Given a node, construct a good cpumask for its sched_domain to span. It
5848 * should be one that prevents unnecessary balancing, but also spreads tasks
5851 static cpumask_t
sched_domain_node_span(int node
)
5853 DECLARE_BITMAP(used_nodes
, MAX_NUMNODES
);
5854 cpumask_t span
, nodemask
;
5858 bitmap_zero(used_nodes
, MAX_NUMNODES
);
5860 nodemask
= node_to_cpumask(node
);
5861 cpus_or(span
, span
, nodemask
);
5862 set_bit(node
, used_nodes
);
5864 for (i
= 1; i
< SD_NODES_PER_DOMAIN
; i
++) {
5865 int next_node
= find_next_best_node(node
, used_nodes
);
5867 nodemask
= node_to_cpumask(next_node
);
5868 cpus_or(span
, span
, nodemask
);
5875 int sched_smt_power_savings
= 0, sched_mc_power_savings
= 0;
5878 * SMT sched-domains:
5880 #ifdef CONFIG_SCHED_SMT
5881 static DEFINE_PER_CPU(struct sched_domain
, cpu_domains
);
5882 static DEFINE_PER_CPU(struct sched_group
, sched_group_cpus
);
5884 static int cpu_to_cpu_group(int cpu
, const cpumask_t
*cpu_map
,
5885 struct sched_group
**sg
)
5888 *sg
= &per_cpu(sched_group_cpus
, cpu
);
5894 * multi-core sched-domains:
5896 #ifdef CONFIG_SCHED_MC
5897 static DEFINE_PER_CPU(struct sched_domain
, core_domains
);
5898 static DEFINE_PER_CPU(struct sched_group
, sched_group_core
);
5901 #if defined(CONFIG_SCHED_MC) && defined(CONFIG_SCHED_SMT)
5902 static int cpu_to_core_group(int cpu
, const cpumask_t
*cpu_map
,
5903 struct sched_group
**sg
)
5906 cpumask_t mask
= per_cpu(cpu_sibling_map
, cpu
);
5907 cpus_and(mask
, mask
, *cpu_map
);
5908 group
= first_cpu(mask
);
5910 *sg
= &per_cpu(sched_group_core
, group
);
5913 #elif defined(CONFIG_SCHED_MC)
5914 static int cpu_to_core_group(int cpu
, const cpumask_t
*cpu_map
,
5915 struct sched_group
**sg
)
5918 *sg
= &per_cpu(sched_group_core
, cpu
);
5923 static DEFINE_PER_CPU(struct sched_domain
, phys_domains
);
5924 static DEFINE_PER_CPU(struct sched_group
, sched_group_phys
);
5926 static int cpu_to_phys_group(int cpu
, const cpumask_t
*cpu_map
,
5927 struct sched_group
**sg
)
5930 #ifdef CONFIG_SCHED_MC
5931 cpumask_t mask
= cpu_coregroup_map(cpu
);
5932 cpus_and(mask
, mask
, *cpu_map
);
5933 group
= first_cpu(mask
);
5934 #elif defined(CONFIG_SCHED_SMT)
5935 cpumask_t mask
= per_cpu(cpu_sibling_map
, cpu
);
5936 cpus_and(mask
, mask
, *cpu_map
);
5937 group
= first_cpu(mask
);
5942 *sg
= &per_cpu(sched_group_phys
, group
);
5948 * The init_sched_build_groups can't handle what we want to do with node
5949 * groups, so roll our own. Now each node has its own list of groups which
5950 * gets dynamically allocated.
5952 static DEFINE_PER_CPU(struct sched_domain
, node_domains
);
5953 static struct sched_group
**sched_group_nodes_bycpu
[NR_CPUS
];
5955 static DEFINE_PER_CPU(struct sched_domain
, allnodes_domains
);
5956 static DEFINE_PER_CPU(struct sched_group
, sched_group_allnodes
);
5958 static int cpu_to_allnodes_group(int cpu
, const cpumask_t
*cpu_map
,
5959 struct sched_group
**sg
)
5961 cpumask_t nodemask
= node_to_cpumask(cpu_to_node(cpu
));
5964 cpus_and(nodemask
, nodemask
, *cpu_map
);
5965 group
= first_cpu(nodemask
);
5968 *sg
= &per_cpu(sched_group_allnodes
, group
);
5972 static void init_numa_sched_groups_power(struct sched_group
*group_head
)
5974 struct sched_group
*sg
= group_head
;
5980 for_each_cpu_mask(j
, sg
->cpumask
) {
5981 struct sched_domain
*sd
;
5983 sd
= &per_cpu(phys_domains
, j
);
5984 if (j
!= first_cpu(sd
->groups
->cpumask
)) {
5986 * Only add "power" once for each
5992 sg_inc_cpu_power(sg
, sd
->groups
->__cpu_power
);
5995 } while (sg
!= group_head
);
6000 /* Free memory allocated for various sched_group structures */
6001 static void free_sched_groups(const cpumask_t
*cpu_map
)
6005 for_each_cpu_mask(cpu
, *cpu_map
) {
6006 struct sched_group
**sched_group_nodes
6007 = sched_group_nodes_bycpu
[cpu
];
6009 if (!sched_group_nodes
)
6012 for (i
= 0; i
< MAX_NUMNODES
; i
++) {
6013 cpumask_t nodemask
= node_to_cpumask(i
);
6014 struct sched_group
*oldsg
, *sg
= sched_group_nodes
[i
];
6016 cpus_and(nodemask
, nodemask
, *cpu_map
);
6017 if (cpus_empty(nodemask
))
6027 if (oldsg
!= sched_group_nodes
[i
])
6030 kfree(sched_group_nodes
);
6031 sched_group_nodes_bycpu
[cpu
] = NULL
;
6035 static void free_sched_groups(const cpumask_t
*cpu_map
)
6041 * Initialize sched groups cpu_power.
6043 * cpu_power indicates the capacity of sched group, which is used while
6044 * distributing the load between different sched groups in a sched domain.
6045 * Typically cpu_power for all the groups in a sched domain will be same unless
6046 * there are asymmetries in the topology. If there are asymmetries, group
6047 * having more cpu_power will pickup more load compared to the group having
6050 * cpu_power will be a multiple of SCHED_LOAD_SCALE. This multiple represents
6051 * the maximum number of tasks a group can handle in the presence of other idle
6052 * or lightly loaded groups in the same sched domain.
6054 static void init_sched_groups_power(int cpu
, struct sched_domain
*sd
)
6056 struct sched_domain
*child
;
6057 struct sched_group
*group
;
6059 WARN_ON(!sd
|| !sd
->groups
);
6061 if (cpu
!= first_cpu(sd
->groups
->cpumask
))
6066 sd
->groups
->__cpu_power
= 0;
6069 * For perf policy, if the groups in child domain share resources
6070 * (for example cores sharing some portions of the cache hierarchy
6071 * or SMT), then set this domain groups cpu_power such that each group
6072 * can handle only one task, when there are other idle groups in the
6073 * same sched domain.
6075 if (!child
|| (!(sd
->flags
& SD_POWERSAVINGS_BALANCE
) &&
6077 (SD_SHARE_CPUPOWER
| SD_SHARE_PKG_RESOURCES
)))) {
6078 sg_inc_cpu_power(sd
->groups
, SCHED_LOAD_SCALE
);
6083 * add cpu_power of each child group to this groups cpu_power
6085 group
= child
->groups
;
6087 sg_inc_cpu_power(sd
->groups
, group
->__cpu_power
);
6088 group
= group
->next
;
6089 } while (group
!= child
->groups
);
6093 * Build sched domains for a given set of cpus and attach the sched domains
6094 * to the individual cpus
6096 static int build_sched_domains(const cpumask_t
*cpu_map
)
6100 struct sched_group
**sched_group_nodes
= NULL
;
6101 int sd_allnodes
= 0;
6104 * Allocate the per-node list of sched groups
6106 sched_group_nodes
= kcalloc(MAX_NUMNODES
, sizeof(struct sched_group
*),
6108 if (!sched_group_nodes
) {
6109 printk(KERN_WARNING
"Can not alloc sched group node list\n");
6112 sched_group_nodes_bycpu
[first_cpu(*cpu_map
)] = sched_group_nodes
;
6116 * Set up domains for cpus specified by the cpu_map.
6118 for_each_cpu_mask(i
, *cpu_map
) {
6119 struct sched_domain
*sd
= NULL
, *p
;
6120 cpumask_t nodemask
= node_to_cpumask(cpu_to_node(i
));
6122 cpus_and(nodemask
, nodemask
, *cpu_map
);
6125 if (cpus_weight(*cpu_map
) >
6126 SD_NODES_PER_DOMAIN
*cpus_weight(nodemask
)) {
6127 sd
= &per_cpu(allnodes_domains
, i
);
6128 *sd
= SD_ALLNODES_INIT
;
6129 sd
->span
= *cpu_map
;
6130 cpu_to_allnodes_group(i
, cpu_map
, &sd
->groups
);
6136 sd
= &per_cpu(node_domains
, i
);
6138 sd
->span
= sched_domain_node_span(cpu_to_node(i
));
6142 cpus_and(sd
->span
, sd
->span
, *cpu_map
);
6146 sd
= &per_cpu(phys_domains
, i
);
6148 sd
->span
= nodemask
;
6152 cpu_to_phys_group(i
, cpu_map
, &sd
->groups
);
6154 #ifdef CONFIG_SCHED_MC
6156 sd
= &per_cpu(core_domains
, i
);
6158 sd
->span
= cpu_coregroup_map(i
);
6159 cpus_and(sd
->span
, sd
->span
, *cpu_map
);
6162 cpu_to_core_group(i
, cpu_map
, &sd
->groups
);
6165 #ifdef CONFIG_SCHED_SMT
6167 sd
= &per_cpu(cpu_domains
, i
);
6168 *sd
= SD_SIBLING_INIT
;
6169 sd
->span
= per_cpu(cpu_sibling_map
, i
);
6170 cpus_and(sd
->span
, sd
->span
, *cpu_map
);
6173 cpu_to_cpu_group(i
, cpu_map
, &sd
->groups
);
6177 #ifdef CONFIG_SCHED_SMT
6178 /* Set up CPU (sibling) groups */
6179 for_each_cpu_mask(i
, *cpu_map
) {
6180 cpumask_t this_sibling_map
= per_cpu(cpu_sibling_map
, i
);
6181 cpus_and(this_sibling_map
, this_sibling_map
, *cpu_map
);
6182 if (i
!= first_cpu(this_sibling_map
))
6185 init_sched_build_groups(this_sibling_map
, cpu_map
,
6190 #ifdef CONFIG_SCHED_MC
6191 /* Set up multi-core groups */
6192 for_each_cpu_mask(i
, *cpu_map
) {
6193 cpumask_t this_core_map
= cpu_coregroup_map(i
);
6194 cpus_and(this_core_map
, this_core_map
, *cpu_map
);
6195 if (i
!= first_cpu(this_core_map
))
6197 init_sched_build_groups(this_core_map
, cpu_map
,
6198 &cpu_to_core_group
);
6202 /* Set up physical groups */
6203 for (i
= 0; i
< MAX_NUMNODES
; i
++) {
6204 cpumask_t nodemask
= node_to_cpumask(i
);
6206 cpus_and(nodemask
, nodemask
, *cpu_map
);
6207 if (cpus_empty(nodemask
))
6210 init_sched_build_groups(nodemask
, cpu_map
, &cpu_to_phys_group
);
6214 /* Set up node groups */
6216 init_sched_build_groups(*cpu_map
, cpu_map
,
6217 &cpu_to_allnodes_group
);
6219 for (i
= 0; i
< MAX_NUMNODES
; i
++) {
6220 /* Set up node groups */
6221 struct sched_group
*sg
, *prev
;
6222 cpumask_t nodemask
= node_to_cpumask(i
);
6223 cpumask_t domainspan
;
6224 cpumask_t covered
= CPU_MASK_NONE
;
6227 cpus_and(nodemask
, nodemask
, *cpu_map
);
6228 if (cpus_empty(nodemask
)) {
6229 sched_group_nodes
[i
] = NULL
;
6233 domainspan
= sched_domain_node_span(i
);
6234 cpus_and(domainspan
, domainspan
, *cpu_map
);
6236 sg
= kmalloc_node(sizeof(struct sched_group
), GFP_KERNEL
, i
);
6238 printk(KERN_WARNING
"Can not alloc domain group for "
6242 sched_group_nodes
[i
] = sg
;
6243 for_each_cpu_mask(j
, nodemask
) {
6244 struct sched_domain
*sd
;
6246 sd
= &per_cpu(node_domains
, j
);
6249 sg
->__cpu_power
= 0;
6250 sg
->cpumask
= nodemask
;
6252 cpus_or(covered
, covered
, nodemask
);
6255 for (j
= 0; j
< MAX_NUMNODES
; j
++) {
6256 cpumask_t tmp
, notcovered
;
6257 int n
= (i
+ j
) % MAX_NUMNODES
;
6259 cpus_complement(notcovered
, covered
);
6260 cpus_and(tmp
, notcovered
, *cpu_map
);
6261 cpus_and(tmp
, tmp
, domainspan
);
6262 if (cpus_empty(tmp
))
6265 nodemask
= node_to_cpumask(n
);
6266 cpus_and(tmp
, tmp
, nodemask
);
6267 if (cpus_empty(tmp
))
6270 sg
= kmalloc_node(sizeof(struct sched_group
),
6274 "Can not alloc domain group for node %d\n", j
);
6277 sg
->__cpu_power
= 0;
6279 sg
->next
= prev
->next
;
6280 cpus_or(covered
, covered
, tmp
);
6287 /* Calculate CPU power for physical packages and nodes */
6288 #ifdef CONFIG_SCHED_SMT
6289 for_each_cpu_mask(i
, *cpu_map
) {
6290 struct sched_domain
*sd
= &per_cpu(cpu_domains
, i
);
6292 init_sched_groups_power(i
, sd
);
6295 #ifdef CONFIG_SCHED_MC
6296 for_each_cpu_mask(i
, *cpu_map
) {
6297 struct sched_domain
*sd
= &per_cpu(core_domains
, i
);
6299 init_sched_groups_power(i
, sd
);
6303 for_each_cpu_mask(i
, *cpu_map
) {
6304 struct sched_domain
*sd
= &per_cpu(phys_domains
, i
);
6306 init_sched_groups_power(i
, sd
);
6310 for (i
= 0; i
< MAX_NUMNODES
; i
++)
6311 init_numa_sched_groups_power(sched_group_nodes
[i
]);
6314 struct sched_group
*sg
;
6316 cpu_to_allnodes_group(first_cpu(*cpu_map
), cpu_map
, &sg
);
6317 init_numa_sched_groups_power(sg
);
6321 /* Attach the domains */
6322 for_each_cpu_mask(i
, *cpu_map
) {
6323 struct sched_domain
*sd
;
6324 #ifdef CONFIG_SCHED_SMT
6325 sd
= &per_cpu(cpu_domains
, i
);
6326 #elif defined(CONFIG_SCHED_MC)
6327 sd
= &per_cpu(core_domains
, i
);
6329 sd
= &per_cpu(phys_domains
, i
);
6331 cpu_attach_domain(sd
, i
);
6338 free_sched_groups(cpu_map
);
6343 * Set up scheduler domains and groups. Callers must hold the hotplug lock.
6345 static int arch_init_sched_domains(const cpumask_t
*cpu_map
)
6347 cpumask_t cpu_default_map
;
6351 * Setup mask for cpus without special case scheduling requirements.
6352 * For now this just excludes isolated cpus, but could be used to
6353 * exclude other special cases in the future.
6355 cpus_andnot(cpu_default_map
, *cpu_map
, cpu_isolated_map
);
6357 err
= build_sched_domains(&cpu_default_map
);
6359 register_sched_domain_sysctl();
6364 static void arch_destroy_sched_domains(const cpumask_t
*cpu_map
)
6366 free_sched_groups(cpu_map
);
6370 * Detach sched domains from a group of cpus specified in cpu_map
6371 * These cpus will now be attached to the NULL domain
6373 static void detach_destroy_domains(const cpumask_t
*cpu_map
)
6377 unregister_sched_domain_sysctl();
6379 for_each_cpu_mask(i
, *cpu_map
)
6380 cpu_attach_domain(NULL
, i
);
6381 synchronize_sched();
6382 arch_destroy_sched_domains(cpu_map
);
6385 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
6386 static int arch_reinit_sched_domains(void)
6390 mutex_lock(&sched_hotcpu_mutex
);
6391 detach_destroy_domains(&cpu_online_map
);
6392 err
= arch_init_sched_domains(&cpu_online_map
);
6393 mutex_unlock(&sched_hotcpu_mutex
);
6398 static ssize_t
sched_power_savings_store(const char *buf
, size_t count
, int smt
)
6402 if (buf
[0] != '0' && buf
[0] != '1')
6406 sched_smt_power_savings
= (buf
[0] == '1');
6408 sched_mc_power_savings
= (buf
[0] == '1');
6410 ret
= arch_reinit_sched_domains();
6412 return ret
? ret
: count
;
6415 #ifdef CONFIG_SCHED_MC
6416 static ssize_t
sched_mc_power_savings_show(struct sys_device
*dev
, char *page
)
6418 return sprintf(page
, "%u\n", sched_mc_power_savings
);
6420 static ssize_t
sched_mc_power_savings_store(struct sys_device
*dev
,
6421 const char *buf
, size_t count
)
6423 return sched_power_savings_store(buf
, count
, 0);
6425 static SYSDEV_ATTR(sched_mc_power_savings
, 0644, sched_mc_power_savings_show
,
6426 sched_mc_power_savings_store
);
6429 #ifdef CONFIG_SCHED_SMT
6430 static ssize_t
sched_smt_power_savings_show(struct sys_device
*dev
, char *page
)
6432 return sprintf(page
, "%u\n", sched_smt_power_savings
);
6434 static ssize_t
sched_smt_power_savings_store(struct sys_device
*dev
,
6435 const char *buf
, size_t count
)
6437 return sched_power_savings_store(buf
, count
, 1);
6439 static SYSDEV_ATTR(sched_smt_power_savings
, 0644, sched_smt_power_savings_show
,
6440 sched_smt_power_savings_store
);
6443 int sched_create_sysfs_power_savings_entries(struct sysdev_class
*cls
)
6447 #ifdef CONFIG_SCHED_SMT
6449 err
= sysfs_create_file(&cls
->kset
.kobj
,
6450 &attr_sched_smt_power_savings
.attr
);
6452 #ifdef CONFIG_SCHED_MC
6453 if (!err
&& mc_capable())
6454 err
= sysfs_create_file(&cls
->kset
.kobj
,
6455 &attr_sched_mc_power_savings
.attr
);
6462 * Force a reinitialization of the sched domains hierarchy. The domains
6463 * and groups cannot be updated in place without racing with the balancing
6464 * code, so we temporarily attach all running cpus to the NULL domain
6465 * which will prevent rebalancing while the sched domains are recalculated.
6467 static int update_sched_domains(struct notifier_block
*nfb
,
6468 unsigned long action
, void *hcpu
)
6471 case CPU_UP_PREPARE
:
6472 case CPU_UP_PREPARE_FROZEN
:
6473 case CPU_DOWN_PREPARE
:
6474 case CPU_DOWN_PREPARE_FROZEN
:
6475 detach_destroy_domains(&cpu_online_map
);
6478 case CPU_UP_CANCELED
:
6479 case CPU_UP_CANCELED_FROZEN
:
6480 case CPU_DOWN_FAILED
:
6481 case CPU_DOWN_FAILED_FROZEN
:
6483 case CPU_ONLINE_FROZEN
:
6485 case CPU_DEAD_FROZEN
:
6487 * Fall through and re-initialise the domains.
6494 /* The hotplug lock is already held by cpu_up/cpu_down */
6495 arch_init_sched_domains(&cpu_online_map
);
6500 void __init
sched_init_smp(void)
6502 cpumask_t non_isolated_cpus
;
6504 mutex_lock(&sched_hotcpu_mutex
);
6505 arch_init_sched_domains(&cpu_online_map
);
6506 cpus_andnot(non_isolated_cpus
, cpu_possible_map
, cpu_isolated_map
);
6507 if (cpus_empty(non_isolated_cpus
))
6508 cpu_set(smp_processor_id(), non_isolated_cpus
);
6509 mutex_unlock(&sched_hotcpu_mutex
);
6510 /* XXX: Theoretical race here - CPU may be hotplugged now */
6511 hotcpu_notifier(update_sched_domains
, 0);
6513 /* Move init over to a non-isolated CPU */
6514 if (set_cpus_allowed(current
, non_isolated_cpus
) < 0)
6518 void __init
sched_init_smp(void)
6521 #endif /* CONFIG_SMP */
6523 int in_sched_functions(unsigned long addr
)
6525 /* Linker adds these: start and end of __sched functions */
6526 extern char __sched_text_start
[], __sched_text_end
[];
6528 return in_lock_functions(addr
) ||
6529 (addr
>= (unsigned long)__sched_text_start
6530 && addr
< (unsigned long)__sched_text_end
);
6533 static void init_cfs_rq(struct cfs_rq
*cfs_rq
, struct rq
*rq
)
6535 cfs_rq
->tasks_timeline
= RB_ROOT
;
6536 #ifdef CONFIG_FAIR_GROUP_SCHED
6539 cfs_rq
->min_vruntime
= (u64
)(-(1LL << 20));
6542 void __init
sched_init(void)
6544 int highest_cpu
= 0;
6547 for_each_possible_cpu(i
) {
6548 struct rt_prio_array
*array
;
6552 spin_lock_init(&rq
->lock
);
6553 lockdep_set_class(&rq
->lock
, &rq
->rq_lock_key
);
6556 init_cfs_rq(&rq
->cfs
, rq
);
6557 #ifdef CONFIG_FAIR_GROUP_SCHED
6558 INIT_LIST_HEAD(&rq
->leaf_cfs_rq_list
);
6560 struct cfs_rq
*cfs_rq
= &per_cpu(init_cfs_rq
, i
);
6561 struct sched_entity
*se
=
6562 &per_cpu(init_sched_entity
, i
);
6564 init_cfs_rq_p
[i
] = cfs_rq
;
6565 init_cfs_rq(cfs_rq
, rq
);
6566 cfs_rq
->tg
= &init_task_group
;
6567 list_add(&cfs_rq
->leaf_cfs_rq_list
,
6568 &rq
->leaf_cfs_rq_list
);
6570 init_sched_entity_p
[i
] = se
;
6571 se
->cfs_rq
= &rq
->cfs
;
6573 se
->load
.weight
= init_task_group_load
;
6574 se
->load
.inv_weight
=
6575 div64_64(1ULL<<32, init_task_group_load
);
6578 init_task_group
.shares
= init_task_group_load
;
6579 spin_lock_init(&init_task_group
.lock
);
6582 for (j
= 0; j
< CPU_LOAD_IDX_MAX
; j
++)
6583 rq
->cpu_load
[j
] = 0;
6586 rq
->active_balance
= 0;
6587 rq
->next_balance
= jiffies
;
6590 rq
->migration_thread
= NULL
;
6591 INIT_LIST_HEAD(&rq
->migration_queue
);
6593 atomic_set(&rq
->nr_iowait
, 0);
6595 array
= &rq
->rt
.active
;
6596 for (j
= 0; j
< MAX_RT_PRIO
; j
++) {
6597 INIT_LIST_HEAD(array
->queue
+ j
);
6598 __clear_bit(j
, array
->bitmap
);
6601 /* delimiter for bitsearch: */
6602 __set_bit(MAX_RT_PRIO
, array
->bitmap
);
6605 set_load_weight(&init_task
);
6607 #ifdef CONFIG_PREEMPT_NOTIFIERS
6608 INIT_HLIST_HEAD(&init_task
.preempt_notifiers
);
6612 nr_cpu_ids
= highest_cpu
+ 1;
6613 open_softirq(SCHED_SOFTIRQ
, run_rebalance_domains
, NULL
);
6616 #ifdef CONFIG_RT_MUTEXES
6617 plist_head_init(&init_task
.pi_waiters
, &init_task
.pi_lock
);
6621 * The boot idle thread does lazy MMU switching as well:
6623 atomic_inc(&init_mm
.mm_count
);
6624 enter_lazy_tlb(&init_mm
, current
);
6627 * Make us the idle thread. Technically, schedule() should not be
6628 * called from this thread, however somewhere below it might be,
6629 * but because we are the idle thread, we just pick up running again
6630 * when this runqueue becomes "idle".
6632 init_idle(current
, smp_processor_id());
6634 * During early bootup we pretend to be a normal task:
6636 current
->sched_class
= &fair_sched_class
;
6639 #ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
6640 void __might_sleep(char *file
, int line
)
6643 static unsigned long prev_jiffy
; /* ratelimiting */
6645 if ((in_atomic() || irqs_disabled()) &&
6646 system_state
== SYSTEM_RUNNING
&& !oops_in_progress
) {
6647 if (time_before(jiffies
, prev_jiffy
+ HZ
) && prev_jiffy
)
6649 prev_jiffy
= jiffies
;
6650 printk(KERN_ERR
"BUG: sleeping function called from invalid"
6651 " context at %s:%d\n", file
, line
);
6652 printk("in_atomic():%d, irqs_disabled():%d\n",
6653 in_atomic(), irqs_disabled());
6654 debug_show_held_locks(current
);
6655 if (irqs_disabled())
6656 print_irqtrace_events(current
);
6661 EXPORT_SYMBOL(__might_sleep
);
6664 #ifdef CONFIG_MAGIC_SYSRQ
6665 static void normalize_task(struct rq
*rq
, struct task_struct
*p
)
6668 update_rq_clock(rq
);
6669 on_rq
= p
->se
.on_rq
;
6671 deactivate_task(rq
, p
, 0);
6672 __setscheduler(rq
, p
, SCHED_NORMAL
, 0);
6674 activate_task(rq
, p
, 0);
6675 resched_task(rq
->curr
);
6679 void normalize_rt_tasks(void)
6681 struct task_struct
*g
, *p
;
6682 unsigned long flags
;
6685 read_lock_irq(&tasklist_lock
);
6686 do_each_thread(g
, p
) {
6688 * Only normalize user tasks:
6693 p
->se
.exec_start
= 0;
6694 #ifdef CONFIG_SCHEDSTATS
6695 p
->se
.wait_start
= 0;
6696 p
->se
.sleep_start
= 0;
6697 p
->se
.block_start
= 0;
6699 task_rq(p
)->clock
= 0;
6703 * Renice negative nice level userspace
6706 if (TASK_NICE(p
) < 0 && p
->mm
)
6707 set_user_nice(p
, 0);
6711 spin_lock_irqsave(&p
->pi_lock
, flags
);
6712 rq
= __task_rq_lock(p
);
6714 normalize_task(rq
, p
);
6716 __task_rq_unlock(rq
);
6717 spin_unlock_irqrestore(&p
->pi_lock
, flags
);
6718 } while_each_thread(g
, p
);
6720 read_unlock_irq(&tasklist_lock
);
6723 #endif /* CONFIG_MAGIC_SYSRQ */
6727 * These functions are only useful for the IA64 MCA handling.
6729 * They can only be called when the whole system has been
6730 * stopped - every CPU needs to be quiescent, and no scheduling
6731 * activity can take place. Using them for anything else would
6732 * be a serious bug, and as a result, they aren't even visible
6733 * under any other configuration.
6737 * curr_task - return the current task for a given cpu.
6738 * @cpu: the processor in question.
6740 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
6742 struct task_struct
*curr_task(int cpu
)
6744 return cpu_curr(cpu
);
6748 * set_curr_task - set the current task for a given cpu.
6749 * @cpu: the processor in question.
6750 * @p: the task pointer to set.
6752 * Description: This function must only be used when non-maskable interrupts
6753 * are serviced on a separate stack. It allows the architecture to switch the
6754 * notion of the current task on a cpu in a non-blocking manner. This function
6755 * must be called with all CPU's synchronized, and interrupts disabled, the
6756 * and caller must save the original value of the current task (see
6757 * curr_task() above) and restore that value before reenabling interrupts and
6758 * re-starting the system.
6760 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
6762 void set_curr_task(int cpu
, struct task_struct
*p
)
6769 #ifdef CONFIG_FAIR_GROUP_SCHED
6771 /* allocate runqueue etc for a new task group */
6772 struct task_group
*sched_create_group(void)
6774 struct task_group
*tg
;
6775 struct cfs_rq
*cfs_rq
;
6776 struct sched_entity
*se
;
6780 tg
= kzalloc(sizeof(*tg
), GFP_KERNEL
);
6782 return ERR_PTR(-ENOMEM
);
6784 tg
->cfs_rq
= kzalloc(sizeof(cfs_rq
) * NR_CPUS
, GFP_KERNEL
);
6787 tg
->se
= kzalloc(sizeof(se
) * NR_CPUS
, GFP_KERNEL
);
6791 for_each_possible_cpu(i
) {
6794 cfs_rq
= kmalloc_node(sizeof(struct cfs_rq
), GFP_KERNEL
,
6799 se
= kmalloc_node(sizeof(struct sched_entity
), GFP_KERNEL
,
6804 memset(cfs_rq
, 0, sizeof(struct cfs_rq
));
6805 memset(se
, 0, sizeof(struct sched_entity
));
6807 tg
->cfs_rq
[i
] = cfs_rq
;
6808 init_cfs_rq(cfs_rq
, rq
);
6812 se
->cfs_rq
= &rq
->cfs
;
6814 se
->load
.weight
= NICE_0_LOAD
;
6815 se
->load
.inv_weight
= div64_64(1ULL<<32, NICE_0_LOAD
);
6819 for_each_possible_cpu(i
) {
6821 cfs_rq
= tg
->cfs_rq
[i
];
6822 list_add_rcu(&cfs_rq
->leaf_cfs_rq_list
, &rq
->leaf_cfs_rq_list
);
6825 tg
->shares
= NICE_0_LOAD
;
6826 spin_lock_init(&tg
->lock
);
6831 for_each_possible_cpu(i
) {
6833 kfree(tg
->cfs_rq
[i
]);
6841 return ERR_PTR(-ENOMEM
);
6844 /* rcu callback to free various structures associated with a task group */
6845 static void free_sched_group(struct rcu_head
*rhp
)
6847 struct cfs_rq
*cfs_rq
= container_of(rhp
, struct cfs_rq
, rcu
);
6848 struct task_group
*tg
= cfs_rq
->tg
;
6849 struct sched_entity
*se
;
6852 /* now it should be safe to free those cfs_rqs */
6853 for_each_possible_cpu(i
) {
6854 cfs_rq
= tg
->cfs_rq
[i
];
6866 /* Destroy runqueue etc associated with a task group */
6867 void sched_destroy_group(struct task_group
*tg
)
6869 struct cfs_rq
*cfs_rq
;
6872 for_each_possible_cpu(i
) {
6873 cfs_rq
= tg
->cfs_rq
[i
];
6874 list_del_rcu(&cfs_rq
->leaf_cfs_rq_list
);
6877 cfs_rq
= tg
->cfs_rq
[0];
6879 /* wait for possible concurrent references to cfs_rqs complete */
6880 call_rcu(&cfs_rq
->rcu
, free_sched_group
);
6883 /* change task's runqueue when it moves between groups.
6884 * The caller of this function should have put the task in its new group
6885 * by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
6886 * reflect its new group.
6888 void sched_move_task(struct task_struct
*tsk
)
6891 unsigned long flags
;
6894 rq
= task_rq_lock(tsk
, &flags
);
6896 if (tsk
->sched_class
!= &fair_sched_class
)
6899 update_rq_clock(rq
);
6901 running
= task_running(rq
, tsk
);
6902 on_rq
= tsk
->se
.on_rq
;
6905 dequeue_task(rq
, tsk
, 0);
6906 if (unlikely(running
))
6907 tsk
->sched_class
->put_prev_task(rq
, tsk
);
6910 set_task_cfs_rq(tsk
);
6913 if (unlikely(running
))
6914 tsk
->sched_class
->set_curr_task(rq
);
6915 enqueue_task(rq
, tsk
, 0);
6919 task_rq_unlock(rq
, &flags
);
6922 static void set_se_shares(struct sched_entity
*se
, unsigned long shares
)
6924 struct cfs_rq
*cfs_rq
= se
->cfs_rq
;
6925 struct rq
*rq
= cfs_rq
->rq
;
6928 spin_lock_irq(&rq
->lock
);
6932 dequeue_entity(cfs_rq
, se
, 0);
6934 se
->load
.weight
= shares
;
6935 se
->load
.inv_weight
= div64_64((1ULL<<32), shares
);
6938 enqueue_entity(cfs_rq
, se
, 0);
6940 spin_unlock_irq(&rq
->lock
);
6943 int sched_group_set_shares(struct task_group
*tg
, unsigned long shares
)
6947 spin_lock(&tg
->lock
);
6948 if (tg
->shares
== shares
)
6951 tg
->shares
= shares
;
6952 for_each_possible_cpu(i
)
6953 set_se_shares(tg
->se
[i
], shares
);
6956 spin_unlock(&tg
->lock
);
6960 unsigned long sched_group_shares(struct task_group
*tg
)
6965 #endif /* CONFIG_FAIR_GROUP_SCHED */