2 * Copyright (C) 1991, 1992 Linus Torvalds
3 * Copyright (C) 1994, Karl Keyte: Added support for disk statistics
4 * Elevator latency, (C) 2000 Andrea Arcangeli <andrea@suse.de> SuSE
5 * Queue request tables / lock, selectable elevator, Jens Axboe <axboe@suse.de>
6 * kernel-doc documentation started by NeilBrown <neilb@cse.unsw.edu.au>
8 * bio rewrite, highmem i/o, etc, Jens Axboe <axboe@suse.de> - may 2001
12 * This handles all read/write requests to block devices
14 #include <linux/kernel.h>
15 #include <linux/module.h>
16 #include <linux/backing-dev.h>
17 #include <linux/bio.h>
18 #include <linux/blkdev.h>
19 #include <linux/highmem.h>
21 #include <linux/kernel_stat.h>
22 #include <linux/string.h>
23 #include <linux/init.h>
24 #include <linux/completion.h>
25 #include <linux/slab.h>
26 #include <linux/swap.h>
27 #include <linux/writeback.h>
28 #include <linux/task_io_accounting_ops.h>
29 #include <linux/interrupt.h>
30 #include <linux/cpu.h>
31 #include <linux/blktrace_api.h>
32 #include <linux/fault-inject.h>
36 static int __make_request(struct request_queue
*q
, struct bio
*bio
);
39 * For the allocated request tables
41 static struct kmem_cache
*request_cachep
;
44 * For queue allocation
46 struct kmem_cache
*blk_requestq_cachep
;
49 * Controlling structure to kblockd
51 static struct workqueue_struct
*kblockd_workqueue
;
53 static DEFINE_PER_CPU(struct list_head
, blk_cpu_done
);
55 static void drive_stat_acct(struct request
*rq
, int new_io
)
57 struct hd_struct
*part
;
58 int rw
= rq_data_dir(rq
);
60 if (!blk_fs_request(rq
) || !rq
->rq_disk
)
63 part
= get_part(rq
->rq_disk
, rq
->sector
);
65 __all_stat_inc(rq
->rq_disk
, part
, merges
[rw
], rq
->sector
);
67 disk_round_stats(rq
->rq_disk
);
68 rq
->rq_disk
->in_flight
++;
70 part_round_stats(part
);
76 void blk_queue_congestion_threshold(struct request_queue
*q
)
80 nr
= q
->nr_requests
- (q
->nr_requests
/ 8) + 1;
81 if (nr
> q
->nr_requests
)
83 q
->nr_congestion_on
= nr
;
85 nr
= q
->nr_requests
- (q
->nr_requests
/ 8) - (q
->nr_requests
/ 16) - 1;
88 q
->nr_congestion_off
= nr
;
92 * blk_get_backing_dev_info - get the address of a queue's backing_dev_info
95 * Locates the passed device's request queue and returns the address of its
98 * Will return NULL if the request queue cannot be located.
100 struct backing_dev_info
*blk_get_backing_dev_info(struct block_device
*bdev
)
102 struct backing_dev_info
*ret
= NULL
;
103 struct request_queue
*q
= bdev_get_queue(bdev
);
106 ret
= &q
->backing_dev_info
;
109 EXPORT_SYMBOL(blk_get_backing_dev_info
);
111 void blk_rq_init(struct request_queue
*q
, struct request
*rq
)
113 memset(rq
, 0, sizeof(*rq
));
115 INIT_LIST_HEAD(&rq
->queuelist
);
116 INIT_LIST_HEAD(&rq
->donelist
);
118 rq
->sector
= rq
->hard_sector
= (sector_t
) -1;
119 INIT_HLIST_NODE(&rq
->hash
);
120 RB_CLEAR_NODE(&rq
->rb_node
);
125 EXPORT_SYMBOL(blk_rq_init
);
127 static void req_bio_endio(struct request
*rq
, struct bio
*bio
,
128 unsigned int nbytes
, int error
)
130 struct request_queue
*q
= rq
->q
;
132 if (&q
->bar_rq
!= rq
) {
134 clear_bit(BIO_UPTODATE
, &bio
->bi_flags
);
135 else if (!test_bit(BIO_UPTODATE
, &bio
->bi_flags
))
138 if (unlikely(nbytes
> bio
->bi_size
)) {
139 printk(KERN_ERR
"%s: want %u bytes done, %u left\n",
140 __func__
, nbytes
, bio
->bi_size
);
141 nbytes
= bio
->bi_size
;
144 bio
->bi_size
-= nbytes
;
145 bio
->bi_sector
+= (nbytes
>> 9);
146 if (bio
->bi_size
== 0)
147 bio_endio(bio
, error
);
151 * Okay, this is the barrier request in progress, just
154 if (error
&& !q
->orderr
)
159 void blk_dump_rq_flags(struct request
*rq
, char *msg
)
163 printk(KERN_INFO
"%s: dev %s: type=%x, flags=%x\n", msg
,
164 rq
->rq_disk
? rq
->rq_disk
->disk_name
: "?", rq
->cmd_type
,
167 printk(KERN_INFO
" sector %llu, nr/cnr %lu/%u\n",
168 (unsigned long long)rq
->sector
,
170 rq
->current_nr_sectors
);
171 printk(KERN_INFO
" bio %p, biotail %p, buffer %p, data %p, len %u\n",
172 rq
->bio
, rq
->biotail
,
173 rq
->buffer
, rq
->data
,
176 if (blk_pc_request(rq
)) {
177 printk(KERN_INFO
" cdb: ");
178 for (bit
= 0; bit
< BLK_MAX_CDB
; bit
++)
179 printk("%02x ", rq
->cmd
[bit
]);
183 EXPORT_SYMBOL(blk_dump_rq_flags
);
186 * "plug" the device if there are no outstanding requests: this will
187 * force the transfer to start only after we have put all the requests
190 * This is called with interrupts off and no requests on the queue and
191 * with the queue lock held.
193 void blk_plug_device(struct request_queue
*q
)
195 WARN_ON(!irqs_disabled());
198 * don't plug a stopped queue, it must be paired with blk_start_queue()
199 * which will restart the queueing
201 if (blk_queue_stopped(q
))
204 if (!test_bit(QUEUE_FLAG_PLUGGED
, &q
->queue_flags
)) {
205 __set_bit(QUEUE_FLAG_PLUGGED
, &q
->queue_flags
);
206 mod_timer(&q
->unplug_timer
, jiffies
+ q
->unplug_delay
);
207 blk_add_trace_generic(q
, NULL
, 0, BLK_TA_PLUG
);
210 EXPORT_SYMBOL(blk_plug_device
);
213 * remove the queue from the plugged list, if present. called with
214 * queue lock held and interrupts disabled.
216 int blk_remove_plug(struct request_queue
*q
)
218 WARN_ON(!irqs_disabled());
220 if (!test_bit(QUEUE_FLAG_PLUGGED
, &q
->queue_flags
))
223 queue_flag_clear(QUEUE_FLAG_PLUGGED
, q
);
224 del_timer(&q
->unplug_timer
);
227 EXPORT_SYMBOL(blk_remove_plug
);
230 * remove the plug and let it rip..
232 void __generic_unplug_device(struct request_queue
*q
)
234 if (unlikely(blk_queue_stopped(q
)))
237 if (!blk_remove_plug(q
))
242 EXPORT_SYMBOL(__generic_unplug_device
);
245 * generic_unplug_device - fire a request queue
246 * @q: The &struct request_queue in question
249 * Linux uses plugging to build bigger requests queues before letting
250 * the device have at them. If a queue is plugged, the I/O scheduler
251 * is still adding and merging requests on the queue. Once the queue
252 * gets unplugged, the request_fn defined for the queue is invoked and
255 void generic_unplug_device(struct request_queue
*q
)
257 if (blk_queue_plugged(q
)) {
258 spin_lock_irq(q
->queue_lock
);
259 __generic_unplug_device(q
);
260 spin_unlock_irq(q
->queue_lock
);
263 EXPORT_SYMBOL(generic_unplug_device
);
265 static void blk_backing_dev_unplug(struct backing_dev_info
*bdi
,
268 struct request_queue
*q
= bdi
->unplug_io_data
;
273 void blk_unplug_work(struct work_struct
*work
)
275 struct request_queue
*q
=
276 container_of(work
, struct request_queue
, unplug_work
);
278 blk_add_trace_pdu_int(q
, BLK_TA_UNPLUG_IO
, NULL
,
279 q
->rq
.count
[READ
] + q
->rq
.count
[WRITE
]);
284 void blk_unplug_timeout(unsigned long data
)
286 struct request_queue
*q
= (struct request_queue
*)data
;
288 blk_add_trace_pdu_int(q
, BLK_TA_UNPLUG_TIMER
, NULL
,
289 q
->rq
.count
[READ
] + q
->rq
.count
[WRITE
]);
291 kblockd_schedule_work(&q
->unplug_work
);
294 void blk_unplug(struct request_queue
*q
)
297 * devices don't necessarily have an ->unplug_fn defined
300 blk_add_trace_pdu_int(q
, BLK_TA_UNPLUG_IO
, NULL
,
301 q
->rq
.count
[READ
] + q
->rq
.count
[WRITE
]);
306 EXPORT_SYMBOL(blk_unplug
);
309 * blk_start_queue - restart a previously stopped queue
310 * @q: The &struct request_queue in question
313 * blk_start_queue() will clear the stop flag on the queue, and call
314 * the request_fn for the queue if it was in a stopped state when
315 * entered. Also see blk_stop_queue(). Queue lock must be held.
317 void blk_start_queue(struct request_queue
*q
)
319 WARN_ON(!irqs_disabled());
321 queue_flag_clear(QUEUE_FLAG_STOPPED
, q
);
324 * one level of recursion is ok and is much faster than kicking
325 * the unplug handling
327 if (!test_bit(QUEUE_FLAG_REENTER
, &q
->queue_flags
)) {
328 queue_flag_set(QUEUE_FLAG_REENTER
, q
);
330 queue_flag_clear(QUEUE_FLAG_REENTER
, q
);
333 kblockd_schedule_work(&q
->unplug_work
);
336 EXPORT_SYMBOL(blk_start_queue
);
339 * blk_stop_queue - stop a queue
340 * @q: The &struct request_queue in question
343 * The Linux block layer assumes that a block driver will consume all
344 * entries on the request queue when the request_fn strategy is called.
345 * Often this will not happen, because of hardware limitations (queue
346 * depth settings). If a device driver gets a 'queue full' response,
347 * or if it simply chooses not to queue more I/O at one point, it can
348 * call this function to prevent the request_fn from being called until
349 * the driver has signalled it's ready to go again. This happens by calling
350 * blk_start_queue() to restart queue operations. Queue lock must be held.
352 void blk_stop_queue(struct request_queue
*q
)
355 queue_flag_set(QUEUE_FLAG_STOPPED
, q
);
357 EXPORT_SYMBOL(blk_stop_queue
);
360 * blk_sync_queue - cancel any pending callbacks on a queue
364 * The block layer may perform asynchronous callback activity
365 * on a queue, such as calling the unplug function after a timeout.
366 * A block device may call blk_sync_queue to ensure that any
367 * such activity is cancelled, thus allowing it to release resources
368 * that the callbacks might use. The caller must already have made sure
369 * that its ->make_request_fn will not re-add plugging prior to calling
373 void blk_sync_queue(struct request_queue
*q
)
375 del_timer_sync(&q
->unplug_timer
);
376 kblockd_flush_work(&q
->unplug_work
);
378 EXPORT_SYMBOL(blk_sync_queue
);
381 * blk_run_queue - run a single device queue
382 * @q: The queue to run
384 void __blk_run_queue(struct request_queue
*q
)
389 * Only recurse once to avoid overrunning the stack, let the unplug
390 * handling reinvoke the handler shortly if we already got there.
392 if (!elv_queue_empty(q
)) {
393 if (!test_bit(QUEUE_FLAG_REENTER
, &q
->queue_flags
)) {
394 queue_flag_set(QUEUE_FLAG_REENTER
, q
);
396 queue_flag_clear(QUEUE_FLAG_REENTER
, q
);
399 kblockd_schedule_work(&q
->unplug_work
);
403 EXPORT_SYMBOL(__blk_run_queue
);
406 * blk_run_queue - run a single device queue
407 * @q: The queue to run
409 void blk_run_queue(struct request_queue
*q
)
413 spin_lock_irqsave(q
->queue_lock
, flags
);
415 spin_unlock_irqrestore(q
->queue_lock
, flags
);
417 EXPORT_SYMBOL(blk_run_queue
);
419 void blk_put_queue(struct request_queue
*q
)
421 kobject_put(&q
->kobj
);
424 void blk_cleanup_queue(struct request_queue
*q
)
426 mutex_lock(&q
->sysfs_lock
);
427 queue_flag_set_unlocked(QUEUE_FLAG_DEAD
, q
);
428 mutex_unlock(&q
->sysfs_lock
);
431 elevator_exit(q
->elevator
);
435 EXPORT_SYMBOL(blk_cleanup_queue
);
437 static int blk_init_free_list(struct request_queue
*q
)
439 struct request_list
*rl
= &q
->rq
;
441 rl
->count
[READ
] = rl
->count
[WRITE
] = 0;
442 rl
->starved
[READ
] = rl
->starved
[WRITE
] = 0;
444 init_waitqueue_head(&rl
->wait
[READ
]);
445 init_waitqueue_head(&rl
->wait
[WRITE
]);
447 rl
->rq_pool
= mempool_create_node(BLKDEV_MIN_RQ
, mempool_alloc_slab
,
448 mempool_free_slab
, request_cachep
, q
->node
);
456 struct request_queue
*blk_alloc_queue(gfp_t gfp_mask
)
458 return blk_alloc_queue_node(gfp_mask
, -1);
460 EXPORT_SYMBOL(blk_alloc_queue
);
462 struct request_queue
*blk_alloc_queue_node(gfp_t gfp_mask
, int node_id
)
464 struct request_queue
*q
;
467 q
= kmem_cache_alloc_node(blk_requestq_cachep
,
468 gfp_mask
| __GFP_ZERO
, node_id
);
472 q
->backing_dev_info
.unplug_io_fn
= blk_backing_dev_unplug
;
473 q
->backing_dev_info
.unplug_io_data
= q
;
474 err
= bdi_init(&q
->backing_dev_info
);
476 kmem_cache_free(blk_requestq_cachep
, q
);
480 init_timer(&q
->unplug_timer
);
482 kobject_init(&q
->kobj
, &blk_queue_ktype
);
484 mutex_init(&q
->sysfs_lock
);
485 spin_lock_init(&q
->__queue_lock
);
489 EXPORT_SYMBOL(blk_alloc_queue_node
);
492 * blk_init_queue - prepare a request queue for use with a block device
493 * @rfn: The function to be called to process requests that have been
494 * placed on the queue.
495 * @lock: Request queue spin lock
498 * If a block device wishes to use the standard request handling procedures,
499 * which sorts requests and coalesces adjacent requests, then it must
500 * call blk_init_queue(). The function @rfn will be called when there
501 * are requests on the queue that need to be processed. If the device
502 * supports plugging, then @rfn may not be called immediately when requests
503 * are available on the queue, but may be called at some time later instead.
504 * Plugged queues are generally unplugged when a buffer belonging to one
505 * of the requests on the queue is needed, or due to memory pressure.
507 * @rfn is not required, or even expected, to remove all requests off the
508 * queue, but only as many as it can handle at a time. If it does leave
509 * requests on the queue, it is responsible for arranging that the requests
510 * get dealt with eventually.
512 * The queue spin lock must be held while manipulating the requests on the
513 * request queue; this lock will be taken also from interrupt context, so irq
514 * disabling is needed for it.
516 * Function returns a pointer to the initialized request queue, or NULL if
520 * blk_init_queue() must be paired with a blk_cleanup_queue() call
521 * when the block device is deactivated (such as at module unload).
524 struct request_queue
*blk_init_queue(request_fn_proc
*rfn
, spinlock_t
*lock
)
526 return blk_init_queue_node(rfn
, lock
, -1);
528 EXPORT_SYMBOL(blk_init_queue
);
530 struct request_queue
*
531 blk_init_queue_node(request_fn_proc
*rfn
, spinlock_t
*lock
, int node_id
)
533 struct request_queue
*q
= blk_alloc_queue_node(GFP_KERNEL
, node_id
);
539 if (blk_init_free_list(q
)) {
540 kmem_cache_free(blk_requestq_cachep
, q
);
545 * if caller didn't supply a lock, they get per-queue locking with
549 lock
= &q
->__queue_lock
;
552 q
->prep_rq_fn
= NULL
;
553 q
->unplug_fn
= generic_unplug_device
;
554 q
->queue_flags
= (1 << QUEUE_FLAG_CLUSTER
);
555 q
->queue_lock
= lock
;
557 blk_queue_segment_boundary(q
, 0xffffffff);
559 blk_queue_make_request(q
, __make_request
);
560 blk_queue_max_segment_size(q
, MAX_SEGMENT_SIZE
);
562 blk_queue_max_hw_segments(q
, MAX_HW_SEGMENTS
);
563 blk_queue_max_phys_segments(q
, MAX_PHYS_SEGMENTS
);
565 q
->sg_reserved_size
= INT_MAX
;
570 if (!elevator_init(q
, NULL
)) {
571 blk_queue_congestion_threshold(q
);
578 EXPORT_SYMBOL(blk_init_queue_node
);
580 int blk_get_queue(struct request_queue
*q
)
582 if (likely(!test_bit(QUEUE_FLAG_DEAD
, &q
->queue_flags
))) {
583 kobject_get(&q
->kobj
);
590 static inline void blk_free_request(struct request_queue
*q
, struct request
*rq
)
592 if (rq
->cmd_flags
& REQ_ELVPRIV
)
593 elv_put_request(q
, rq
);
594 mempool_free(rq
, q
->rq
.rq_pool
);
597 static struct request
*
598 blk_alloc_request(struct request_queue
*q
, int rw
, int priv
, gfp_t gfp_mask
)
600 struct request
*rq
= mempool_alloc(q
->rq
.rq_pool
, gfp_mask
);
608 * first three bits are identical in rq->cmd_flags and bio->bi_rw,
609 * see bio.h and blkdev.h
611 rq
->cmd_flags
= rw
| REQ_ALLOCED
;
614 if (unlikely(elv_set_request(q
, rq
, gfp_mask
))) {
615 mempool_free(rq
, q
->rq
.rq_pool
);
618 rq
->cmd_flags
|= REQ_ELVPRIV
;
625 * ioc_batching returns true if the ioc is a valid batching request and
626 * should be given priority access to a request.
628 static inline int ioc_batching(struct request_queue
*q
, struct io_context
*ioc
)
634 * Make sure the process is able to allocate at least 1 request
635 * even if the batch times out, otherwise we could theoretically
638 return ioc
->nr_batch_requests
== q
->nr_batching
||
639 (ioc
->nr_batch_requests
> 0
640 && time_before(jiffies
, ioc
->last_waited
+ BLK_BATCH_TIME
));
644 * ioc_set_batching sets ioc to be a new "batcher" if it is not one. This
645 * will cause the process to be a "batcher" on all queues in the system. This
646 * is the behaviour we want though - once it gets a wakeup it should be given
649 static void ioc_set_batching(struct request_queue
*q
, struct io_context
*ioc
)
651 if (!ioc
|| ioc_batching(q
, ioc
))
654 ioc
->nr_batch_requests
= q
->nr_batching
;
655 ioc
->last_waited
= jiffies
;
658 static void __freed_request(struct request_queue
*q
, int rw
)
660 struct request_list
*rl
= &q
->rq
;
662 if (rl
->count
[rw
] < queue_congestion_off_threshold(q
))
663 blk_clear_queue_congested(q
, rw
);
665 if (rl
->count
[rw
] + 1 <= q
->nr_requests
) {
666 if (waitqueue_active(&rl
->wait
[rw
]))
667 wake_up(&rl
->wait
[rw
]);
669 blk_clear_queue_full(q
, rw
);
674 * A request has just been released. Account for it, update the full and
675 * congestion status, wake up any waiters. Called under q->queue_lock.
677 static void freed_request(struct request_queue
*q
, int rw
, int priv
)
679 struct request_list
*rl
= &q
->rq
;
685 __freed_request(q
, rw
);
687 if (unlikely(rl
->starved
[rw
^ 1]))
688 __freed_request(q
, rw
^ 1);
691 #define blkdev_free_rq(list) list_entry((list)->next, struct request, queuelist)
693 * Get a free request, queue_lock must be held.
694 * Returns NULL on failure, with queue_lock held.
695 * Returns !NULL on success, with queue_lock *not held*.
697 static struct request
*get_request(struct request_queue
*q
, int rw_flags
,
698 struct bio
*bio
, gfp_t gfp_mask
)
700 struct request
*rq
= NULL
;
701 struct request_list
*rl
= &q
->rq
;
702 struct io_context
*ioc
= NULL
;
703 const int rw
= rw_flags
& 0x01;
706 may_queue
= elv_may_queue(q
, rw_flags
);
707 if (may_queue
== ELV_MQUEUE_NO
)
710 if (rl
->count
[rw
]+1 >= queue_congestion_on_threshold(q
)) {
711 if (rl
->count
[rw
]+1 >= q
->nr_requests
) {
712 ioc
= current_io_context(GFP_ATOMIC
, q
->node
);
714 * The queue will fill after this allocation, so set
715 * it as full, and mark this process as "batching".
716 * This process will be allowed to complete a batch of
717 * requests, others will be blocked.
719 if (!blk_queue_full(q
, rw
)) {
720 ioc_set_batching(q
, ioc
);
721 blk_set_queue_full(q
, rw
);
723 if (may_queue
!= ELV_MQUEUE_MUST
724 && !ioc_batching(q
, ioc
)) {
726 * The queue is full and the allocating
727 * process is not a "batcher", and not
728 * exempted by the IO scheduler
734 blk_set_queue_congested(q
, rw
);
738 * Only allow batching queuers to allocate up to 50% over the defined
739 * limit of requests, otherwise we could have thousands of requests
740 * allocated with any setting of ->nr_requests
742 if (rl
->count
[rw
] >= (3 * q
->nr_requests
/ 2))
748 priv
= !test_bit(QUEUE_FLAG_ELVSWITCH
, &q
->queue_flags
);
752 spin_unlock_irq(q
->queue_lock
);
754 rq
= blk_alloc_request(q
, rw_flags
, priv
, gfp_mask
);
757 * Allocation failed presumably due to memory. Undo anything
758 * we might have messed up.
760 * Allocating task should really be put onto the front of the
761 * wait queue, but this is pretty rare.
763 spin_lock_irq(q
->queue_lock
);
764 freed_request(q
, rw
, priv
);
767 * in the very unlikely event that allocation failed and no
768 * requests for this direction was pending, mark us starved
769 * so that freeing of a request in the other direction will
770 * notice us. another possible fix would be to split the
771 * rq mempool into READ and WRITE
774 if (unlikely(rl
->count
[rw
] == 0))
781 * ioc may be NULL here, and ioc_batching will be false. That's
782 * OK, if the queue is under the request limit then requests need
783 * not count toward the nr_batch_requests limit. There will always
784 * be some limit enforced by BLK_BATCH_TIME.
786 if (ioc_batching(q
, ioc
))
787 ioc
->nr_batch_requests
--;
789 blk_add_trace_generic(q
, bio
, rw
, BLK_TA_GETRQ
);
795 * No available requests for this queue, unplug the device and wait for some
796 * requests to become available.
798 * Called with q->queue_lock held, and returns with it unlocked.
800 static struct request
*get_request_wait(struct request_queue
*q
, int rw_flags
,
803 const int rw
= rw_flags
& 0x01;
806 rq
= get_request(q
, rw_flags
, bio
, GFP_NOIO
);
809 struct io_context
*ioc
;
810 struct request_list
*rl
= &q
->rq
;
812 prepare_to_wait_exclusive(&rl
->wait
[rw
], &wait
,
813 TASK_UNINTERRUPTIBLE
);
815 blk_add_trace_generic(q
, bio
, rw
, BLK_TA_SLEEPRQ
);
817 __generic_unplug_device(q
);
818 spin_unlock_irq(q
->queue_lock
);
822 * After sleeping, we become a "batching" process and
823 * will be able to allocate at least one request, and
824 * up to a big batch of them for a small period time.
825 * See ioc_batching, ioc_set_batching
827 ioc
= current_io_context(GFP_NOIO
, q
->node
);
828 ioc_set_batching(q
, ioc
);
830 spin_lock_irq(q
->queue_lock
);
831 finish_wait(&rl
->wait
[rw
], &wait
);
833 rq
= get_request(q
, rw_flags
, bio
, GFP_NOIO
);
839 struct request
*blk_get_request(struct request_queue
*q
, int rw
, gfp_t gfp_mask
)
843 BUG_ON(rw
!= READ
&& rw
!= WRITE
);
845 spin_lock_irq(q
->queue_lock
);
846 if (gfp_mask
& __GFP_WAIT
) {
847 rq
= get_request_wait(q
, rw
, NULL
);
849 rq
= get_request(q
, rw
, NULL
, gfp_mask
);
851 spin_unlock_irq(q
->queue_lock
);
853 /* q->queue_lock is unlocked at this point */
857 EXPORT_SYMBOL(blk_get_request
);
860 * blk_start_queueing - initiate dispatch of requests to device
861 * @q: request queue to kick into gear
863 * This is basically a helper to remove the need to know whether a queue
864 * is plugged or not if someone just wants to initiate dispatch of requests
867 * The queue lock must be held with interrupts disabled.
869 void blk_start_queueing(struct request_queue
*q
)
871 if (!blk_queue_plugged(q
))
874 __generic_unplug_device(q
);
876 EXPORT_SYMBOL(blk_start_queueing
);
879 * blk_requeue_request - put a request back on queue
880 * @q: request queue where request should be inserted
881 * @rq: request to be inserted
884 * Drivers often keep queueing requests until the hardware cannot accept
885 * more, when that condition happens we need to put the request back
886 * on the queue. Must be called with queue lock held.
888 void blk_requeue_request(struct request_queue
*q
, struct request
*rq
)
890 blk_add_trace_rq(q
, rq
, BLK_TA_REQUEUE
);
892 if (blk_rq_tagged(rq
))
893 blk_queue_end_tag(q
, rq
);
895 elv_requeue_request(q
, rq
);
897 EXPORT_SYMBOL(blk_requeue_request
);
900 * blk_insert_request - insert a special request in to a request queue
901 * @q: request queue where request should be inserted
902 * @rq: request to be inserted
903 * @at_head: insert request at head or tail of queue
904 * @data: private data
907 * Many block devices need to execute commands asynchronously, so they don't
908 * block the whole kernel from preemption during request execution. This is
909 * accomplished normally by inserting aritficial requests tagged as
910 * REQ_SPECIAL in to the corresponding request queue, and letting them be
911 * scheduled for actual execution by the request queue.
913 * We have the option of inserting the head or the tail of the queue.
914 * Typically we use the tail for new ioctls and so forth. We use the head
915 * of the queue for things like a QUEUE_FULL message from a device, or a
916 * host that is unable to accept a particular command.
918 void blk_insert_request(struct request_queue
*q
, struct request
*rq
,
919 int at_head
, void *data
)
921 int where
= at_head
? ELEVATOR_INSERT_FRONT
: ELEVATOR_INSERT_BACK
;
925 * tell I/O scheduler that this isn't a regular read/write (ie it
926 * must not attempt merges on this) and that it acts as a soft
929 rq
->cmd_type
= REQ_TYPE_SPECIAL
;
930 rq
->cmd_flags
|= REQ_SOFTBARRIER
;
934 spin_lock_irqsave(q
->queue_lock
, flags
);
937 * If command is tagged, release the tag
939 if (blk_rq_tagged(rq
))
940 blk_queue_end_tag(q
, rq
);
942 drive_stat_acct(rq
, 1);
943 __elv_add_request(q
, rq
, where
, 0);
944 blk_start_queueing(q
);
945 spin_unlock_irqrestore(q
->queue_lock
, flags
);
947 EXPORT_SYMBOL(blk_insert_request
);
950 * add-request adds a request to the linked list.
951 * queue lock is held and interrupts disabled, as we muck with the
952 * request queue list.
954 static inline void add_request(struct request_queue
*q
, struct request
*req
)
956 drive_stat_acct(req
, 1);
959 * elevator indicated where it wants this request to be
960 * inserted at elevator_merge time
962 __elv_add_request(q
, req
, ELEVATOR_INSERT_SORT
, 0);
966 * disk_round_stats() - Round off the performance stats on a struct
969 * The average IO queue length and utilisation statistics are maintained
970 * by observing the current state of the queue length and the amount of
971 * time it has been in this state for.
973 * Normally, that accounting is done on IO completion, but that can result
974 * in more than a second's worth of IO being accounted for within any one
975 * second, leading to >100% utilisation. To deal with that, we call this
976 * function to do a round-off before returning the results when reading
977 * /proc/diskstats. This accounts immediately for all queue usage up to
978 * the current jiffies and restarts the counters again.
980 void disk_round_stats(struct gendisk
*disk
)
982 unsigned long now
= jiffies
;
984 if (now
== disk
->stamp
)
987 if (disk
->in_flight
) {
988 __disk_stat_add(disk
, time_in_queue
,
989 disk
->in_flight
* (now
- disk
->stamp
));
990 __disk_stat_add(disk
, io_ticks
, (now
- disk
->stamp
));
994 EXPORT_SYMBOL_GPL(disk_round_stats
);
996 void part_round_stats(struct hd_struct
*part
)
998 unsigned long now
= jiffies
;
1000 if (now
== part
->stamp
)
1003 if (part
->in_flight
) {
1004 __part_stat_add(part
, time_in_queue
,
1005 part
->in_flight
* (now
- part
->stamp
));
1006 __part_stat_add(part
, io_ticks
, (now
- part
->stamp
));
1012 * queue lock must be held
1014 void __blk_put_request(struct request_queue
*q
, struct request
*req
)
1018 if (unlikely(--req
->ref_count
))
1021 elv_completed_request(q
, req
);
1024 * Request may not have originated from ll_rw_blk. if not,
1025 * it didn't come out of our reserved rq pools
1027 if (req
->cmd_flags
& REQ_ALLOCED
) {
1028 int rw
= rq_data_dir(req
);
1029 int priv
= req
->cmd_flags
& REQ_ELVPRIV
;
1031 BUG_ON(!list_empty(&req
->queuelist
));
1032 BUG_ON(!hlist_unhashed(&req
->hash
));
1034 blk_free_request(q
, req
);
1035 freed_request(q
, rw
, priv
);
1038 EXPORT_SYMBOL_GPL(__blk_put_request
);
1040 void blk_put_request(struct request
*req
)
1042 unsigned long flags
;
1043 struct request_queue
*q
= req
->q
;
1046 * Gee, IDE calls in w/ NULL q. Fix IDE and remove the
1047 * following if (q) test.
1050 spin_lock_irqsave(q
->queue_lock
, flags
);
1051 __blk_put_request(q
, req
);
1052 spin_unlock_irqrestore(q
->queue_lock
, flags
);
1055 EXPORT_SYMBOL(blk_put_request
);
1057 void init_request_from_bio(struct request
*req
, struct bio
*bio
)
1059 req
->cmd_type
= REQ_TYPE_FS
;
1062 * inherit FAILFAST from bio (for read-ahead, and explicit FAILFAST)
1064 if (bio_rw_ahead(bio
) || bio_failfast(bio
))
1065 req
->cmd_flags
|= REQ_FAILFAST
;
1068 * REQ_BARRIER implies no merging, but lets make it explicit
1070 if (unlikely(bio_barrier(bio
)))
1071 req
->cmd_flags
|= (REQ_HARDBARRIER
| REQ_NOMERGE
);
1074 req
->cmd_flags
|= REQ_RW_SYNC
;
1075 if (bio_rw_meta(bio
))
1076 req
->cmd_flags
|= REQ_RW_META
;
1079 req
->hard_sector
= req
->sector
= bio
->bi_sector
;
1080 req
->ioprio
= bio_prio(bio
);
1081 req
->start_time
= jiffies
;
1082 blk_rq_bio_prep(req
->q
, req
, bio
);
1085 static int __make_request(struct request_queue
*q
, struct bio
*bio
)
1087 struct request
*req
;
1088 int el_ret
, nr_sectors
, barrier
, err
;
1089 const unsigned short prio
= bio_prio(bio
);
1090 const int sync
= bio_sync(bio
);
1093 nr_sectors
= bio_sectors(bio
);
1096 * low level driver can indicate that it wants pages above a
1097 * certain limit bounced to low memory (ie for highmem, or even
1098 * ISA dma in theory)
1100 blk_queue_bounce(q
, &bio
);
1102 barrier
= bio_barrier(bio
);
1103 if (unlikely(barrier
) && (q
->next_ordered
== QUEUE_ORDERED_NONE
)) {
1108 spin_lock_irq(q
->queue_lock
);
1110 if (unlikely(barrier
) || elv_queue_empty(q
))
1113 el_ret
= elv_merge(q
, &req
, bio
);
1115 case ELEVATOR_BACK_MERGE
:
1116 BUG_ON(!rq_mergeable(req
));
1118 if (!ll_back_merge_fn(q
, req
, bio
))
1121 blk_add_trace_bio(q
, bio
, BLK_TA_BACKMERGE
);
1123 req
->biotail
->bi_next
= bio
;
1125 req
->nr_sectors
= req
->hard_nr_sectors
+= nr_sectors
;
1126 req
->ioprio
= ioprio_best(req
->ioprio
, prio
);
1127 drive_stat_acct(req
, 0);
1128 if (!attempt_back_merge(q
, req
))
1129 elv_merged_request(q
, req
, el_ret
);
1132 case ELEVATOR_FRONT_MERGE
:
1133 BUG_ON(!rq_mergeable(req
));
1135 if (!ll_front_merge_fn(q
, req
, bio
))
1138 blk_add_trace_bio(q
, bio
, BLK_TA_FRONTMERGE
);
1140 bio
->bi_next
= req
->bio
;
1144 * may not be valid. if the low level driver said
1145 * it didn't need a bounce buffer then it better
1146 * not touch req->buffer either...
1148 req
->buffer
= bio_data(bio
);
1149 req
->current_nr_sectors
= bio_cur_sectors(bio
);
1150 req
->hard_cur_sectors
= req
->current_nr_sectors
;
1151 req
->sector
= req
->hard_sector
= bio
->bi_sector
;
1152 req
->nr_sectors
= req
->hard_nr_sectors
+= nr_sectors
;
1153 req
->ioprio
= ioprio_best(req
->ioprio
, prio
);
1154 drive_stat_acct(req
, 0);
1155 if (!attempt_front_merge(q
, req
))
1156 elv_merged_request(q
, req
, el_ret
);
1159 /* ELV_NO_MERGE: elevator says don't/can't merge. */
1166 * This sync check and mask will be re-done in init_request_from_bio(),
1167 * but we need to set it earlier to expose the sync flag to the
1168 * rq allocator and io schedulers.
1170 rw_flags
= bio_data_dir(bio
);
1172 rw_flags
|= REQ_RW_SYNC
;
1175 * Grab a free request. This is might sleep but can not fail.
1176 * Returns with the queue unlocked.
1178 req
= get_request_wait(q
, rw_flags
, bio
);
1181 * After dropping the lock and possibly sleeping here, our request
1182 * may now be mergeable after it had proven unmergeable (above).
1183 * We don't worry about that case for efficiency. It won't happen
1184 * often, and the elevators are able to handle it.
1186 init_request_from_bio(req
, bio
);
1188 spin_lock_irq(q
->queue_lock
);
1189 if (elv_queue_empty(q
))
1191 add_request(q
, req
);
1194 __generic_unplug_device(q
);
1196 spin_unlock_irq(q
->queue_lock
);
1200 bio_endio(bio
, err
);
1205 * If bio->bi_dev is a partition, remap the location
1207 static inline void blk_partition_remap(struct bio
*bio
)
1209 struct block_device
*bdev
= bio
->bi_bdev
;
1211 if (bio_sectors(bio
) && bdev
!= bdev
->bd_contains
) {
1212 struct hd_struct
*p
= bdev
->bd_part
;
1214 bio
->bi_sector
+= p
->start_sect
;
1215 bio
->bi_bdev
= bdev
->bd_contains
;
1217 blk_add_trace_remap(bdev_get_queue(bio
->bi_bdev
), bio
,
1218 bdev
->bd_dev
, bio
->bi_sector
,
1219 bio
->bi_sector
- p
->start_sect
);
1223 static void handle_bad_sector(struct bio
*bio
)
1225 char b
[BDEVNAME_SIZE
];
1227 printk(KERN_INFO
"attempt to access beyond end of device\n");
1228 printk(KERN_INFO
"%s: rw=%ld, want=%Lu, limit=%Lu\n",
1229 bdevname(bio
->bi_bdev
, b
),
1231 (unsigned long long)bio
->bi_sector
+ bio_sectors(bio
),
1232 (long long)(bio
->bi_bdev
->bd_inode
->i_size
>> 9));
1234 set_bit(BIO_EOF
, &bio
->bi_flags
);
1237 #ifdef CONFIG_FAIL_MAKE_REQUEST
1239 static DECLARE_FAULT_ATTR(fail_make_request
);
1241 static int __init
setup_fail_make_request(char *str
)
1243 return setup_fault_attr(&fail_make_request
, str
);
1245 __setup("fail_make_request=", setup_fail_make_request
);
1247 static int should_fail_request(struct bio
*bio
)
1249 if ((bio
->bi_bdev
->bd_disk
->flags
& GENHD_FL_FAIL
) ||
1250 (bio
->bi_bdev
->bd_part
&& bio
->bi_bdev
->bd_part
->make_it_fail
))
1251 return should_fail(&fail_make_request
, bio
->bi_size
);
1256 static int __init
fail_make_request_debugfs(void)
1258 return init_fault_attr_dentries(&fail_make_request
,
1259 "fail_make_request");
1262 late_initcall(fail_make_request_debugfs
);
1264 #else /* CONFIG_FAIL_MAKE_REQUEST */
1266 static inline int should_fail_request(struct bio
*bio
)
1271 #endif /* CONFIG_FAIL_MAKE_REQUEST */
1274 * Check whether this bio extends beyond the end of the device.
1276 static inline int bio_check_eod(struct bio
*bio
, unsigned int nr_sectors
)
1283 /* Test device or partition size, when known. */
1284 maxsector
= bio
->bi_bdev
->bd_inode
->i_size
>> 9;
1286 sector_t sector
= bio
->bi_sector
;
1288 if (maxsector
< nr_sectors
|| maxsector
- nr_sectors
< sector
) {
1290 * This may well happen - the kernel calls bread()
1291 * without checking the size of the device, e.g., when
1292 * mounting a device.
1294 handle_bad_sector(bio
);
1303 * generic_make_request: hand a buffer to its device driver for I/O
1304 * @bio: The bio describing the location in memory and on the device.
1306 * generic_make_request() is used to make I/O requests of block
1307 * devices. It is passed a &struct bio, which describes the I/O that needs
1310 * generic_make_request() does not return any status. The
1311 * success/failure status of the request, along with notification of
1312 * completion, is delivered asynchronously through the bio->bi_end_io
1313 * function described (one day) else where.
1315 * The caller of generic_make_request must make sure that bi_io_vec
1316 * are set to describe the memory buffer, and that bi_dev and bi_sector are
1317 * set to describe the device address, and the
1318 * bi_end_io and optionally bi_private are set to describe how
1319 * completion notification should be signaled.
1321 * generic_make_request and the drivers it calls may use bi_next if this
1322 * bio happens to be merged with someone else, and may change bi_dev and
1323 * bi_sector for remaps as it sees fit. So the values of these fields
1324 * should NOT be depended on after the call to generic_make_request.
1326 static inline void __generic_make_request(struct bio
*bio
)
1328 struct request_queue
*q
;
1329 sector_t old_sector
;
1330 int ret
, nr_sectors
= bio_sectors(bio
);
1336 if (bio_check_eod(bio
, nr_sectors
))
1340 * Resolve the mapping until finished. (drivers are
1341 * still free to implement/resolve their own stacking
1342 * by explicitly returning 0)
1344 * NOTE: we don't repeat the blk_size check for each new device.
1345 * Stacking drivers are expected to know what they are doing.
1350 char b
[BDEVNAME_SIZE
];
1352 q
= bdev_get_queue(bio
->bi_bdev
);
1355 "generic_make_request: Trying to access "
1356 "nonexistent block-device %s (%Lu)\n",
1357 bdevname(bio
->bi_bdev
, b
),
1358 (long long) bio
->bi_sector
);
1360 bio_endio(bio
, err
);
1364 if (unlikely(nr_sectors
> q
->max_hw_sectors
)) {
1365 printk(KERN_ERR
"bio too big device %s (%u > %u)\n",
1366 bdevname(bio
->bi_bdev
, b
),
1372 if (unlikely(test_bit(QUEUE_FLAG_DEAD
, &q
->queue_flags
)))
1375 if (should_fail_request(bio
))
1379 * If this device has partitions, remap block n
1380 * of partition p to block n+start(p) of the disk.
1382 blk_partition_remap(bio
);
1384 if (old_sector
!= -1)
1385 blk_add_trace_remap(q
, bio
, old_dev
, bio
->bi_sector
,
1388 blk_add_trace_bio(q
, bio
, BLK_TA_QUEUE
);
1390 old_sector
= bio
->bi_sector
;
1391 old_dev
= bio
->bi_bdev
->bd_dev
;
1393 if (bio_check_eod(bio
, nr_sectors
))
1395 if (bio_empty_barrier(bio
) && !q
->prepare_flush_fn
) {
1400 ret
= q
->make_request_fn(q
, bio
);
1405 * We only want one ->make_request_fn to be active at a time,
1406 * else stack usage with stacked devices could be a problem.
1407 * So use current->bio_{list,tail} to keep a list of requests
1408 * submited by a make_request_fn function.
1409 * current->bio_tail is also used as a flag to say if
1410 * generic_make_request is currently active in this task or not.
1411 * If it is NULL, then no make_request is active. If it is non-NULL,
1412 * then a make_request is active, and new requests should be added
1415 void generic_make_request(struct bio
*bio
)
1417 if (current
->bio_tail
) {
1418 /* make_request is active */
1419 *(current
->bio_tail
) = bio
;
1420 bio
->bi_next
= NULL
;
1421 current
->bio_tail
= &bio
->bi_next
;
1424 /* following loop may be a bit non-obvious, and so deserves some
1426 * Before entering the loop, bio->bi_next is NULL (as all callers
1427 * ensure that) so we have a list with a single bio.
1428 * We pretend that we have just taken it off a longer list, so
1429 * we assign bio_list to the next (which is NULL) and bio_tail
1430 * to &bio_list, thus initialising the bio_list of new bios to be
1431 * added. __generic_make_request may indeed add some more bios
1432 * through a recursive call to generic_make_request. If it
1433 * did, we find a non-NULL value in bio_list and re-enter the loop
1434 * from the top. In this case we really did just take the bio
1435 * of the top of the list (no pretending) and so fixup bio_list and
1436 * bio_tail or bi_next, and call into __generic_make_request again.
1438 * The loop was structured like this to make only one call to
1439 * __generic_make_request (which is important as it is large and
1440 * inlined) and to keep the structure simple.
1442 BUG_ON(bio
->bi_next
);
1444 current
->bio_list
= bio
->bi_next
;
1445 if (bio
->bi_next
== NULL
)
1446 current
->bio_tail
= ¤t
->bio_list
;
1448 bio
->bi_next
= NULL
;
1449 __generic_make_request(bio
);
1450 bio
= current
->bio_list
;
1452 current
->bio_tail
= NULL
; /* deactivate */
1454 EXPORT_SYMBOL(generic_make_request
);
1457 * submit_bio: submit a bio to the block device layer for I/O
1458 * @rw: whether to %READ or %WRITE, or maybe to %READA (read ahead)
1459 * @bio: The &struct bio which describes the I/O
1461 * submit_bio() is very similar in purpose to generic_make_request(), and
1462 * uses that function to do most of the work. Both are fairly rough
1463 * interfaces, @bio must be presetup and ready for I/O.
1466 void submit_bio(int rw
, struct bio
*bio
)
1468 int count
= bio_sectors(bio
);
1473 * If it's a regular read/write or a barrier with data attached,
1474 * go through the normal accounting stuff before submission.
1476 if (!bio_empty_barrier(bio
)) {
1478 BIO_BUG_ON(!bio
->bi_size
);
1479 BIO_BUG_ON(!bio
->bi_io_vec
);
1482 count_vm_events(PGPGOUT
, count
);
1484 task_io_account_read(bio
->bi_size
);
1485 count_vm_events(PGPGIN
, count
);
1488 if (unlikely(block_dump
)) {
1489 char b
[BDEVNAME_SIZE
];
1490 printk(KERN_DEBUG
"%s(%d): %s block %Lu on %s\n",
1491 current
->comm
, task_pid_nr(current
),
1492 (rw
& WRITE
) ? "WRITE" : "READ",
1493 (unsigned long long)bio
->bi_sector
,
1494 bdevname(bio
->bi_bdev
, b
));
1498 generic_make_request(bio
);
1500 EXPORT_SYMBOL(submit_bio
);
1503 * __end_that_request_first - end I/O on a request
1504 * @req: the request being processed
1505 * @error: 0 for success, < 0 for error
1506 * @nr_bytes: number of bytes to complete
1509 * Ends I/O on a number of bytes attached to @req, and sets it up
1510 * for the next range of segments (if any) in the cluster.
1513 * 0 - we are done with this request, call end_that_request_last()
1514 * 1 - still buffers pending for this request
1516 static int __end_that_request_first(struct request
*req
, int error
,
1519 int total_bytes
, bio_nbytes
, next_idx
= 0;
1522 blk_add_trace_rq(req
->q
, req
, BLK_TA_COMPLETE
);
1525 * for a REQ_BLOCK_PC request, we want to carry any eventual
1526 * sense key with us all the way through
1528 if (!blk_pc_request(req
))
1531 if (error
&& (blk_fs_request(req
) && !(req
->cmd_flags
& REQ_QUIET
))) {
1532 printk(KERN_ERR
"end_request: I/O error, dev %s, sector %llu\n",
1533 req
->rq_disk
? req
->rq_disk
->disk_name
: "?",
1534 (unsigned long long)req
->sector
);
1537 if (blk_fs_request(req
) && req
->rq_disk
) {
1538 struct hd_struct
*part
= get_part(req
->rq_disk
, req
->sector
);
1539 const int rw
= rq_data_dir(req
);
1541 all_stat_add(req
->rq_disk
, part
, sectors
[rw
],
1542 nr_bytes
>> 9, req
->sector
);
1545 total_bytes
= bio_nbytes
= 0;
1546 while ((bio
= req
->bio
) != NULL
) {
1550 * For an empty barrier request, the low level driver must
1551 * store a potential error location in ->sector. We pass
1552 * that back up in ->bi_sector.
1554 if (blk_empty_barrier(req
))
1555 bio
->bi_sector
= req
->sector
;
1557 if (nr_bytes
>= bio
->bi_size
) {
1558 req
->bio
= bio
->bi_next
;
1559 nbytes
= bio
->bi_size
;
1560 req_bio_endio(req
, bio
, nbytes
, error
);
1564 int idx
= bio
->bi_idx
+ next_idx
;
1566 if (unlikely(bio
->bi_idx
>= bio
->bi_vcnt
)) {
1567 blk_dump_rq_flags(req
, "__end_that");
1568 printk(KERN_ERR
"%s: bio idx %d >= vcnt %d\n",
1569 __func__
, bio
->bi_idx
, bio
->bi_vcnt
);
1573 nbytes
= bio_iovec_idx(bio
, idx
)->bv_len
;
1574 BIO_BUG_ON(nbytes
> bio
->bi_size
);
1577 * not a complete bvec done
1579 if (unlikely(nbytes
> nr_bytes
)) {
1580 bio_nbytes
+= nr_bytes
;
1581 total_bytes
+= nr_bytes
;
1586 * advance to the next vector
1589 bio_nbytes
+= nbytes
;
1592 total_bytes
+= nbytes
;
1598 * end more in this run, or just return 'not-done'
1600 if (unlikely(nr_bytes
<= 0))
1612 * if the request wasn't completed, update state
1615 req_bio_endio(req
, bio
, bio_nbytes
, error
);
1616 bio
->bi_idx
+= next_idx
;
1617 bio_iovec(bio
)->bv_offset
+= nr_bytes
;
1618 bio_iovec(bio
)->bv_len
-= nr_bytes
;
1621 blk_recalc_rq_sectors(req
, total_bytes
>> 9);
1622 blk_recalc_rq_segments(req
);
1627 * splice the completion data to a local structure and hand off to
1628 * process_completion_queue() to complete the requests
1630 static void blk_done_softirq(struct softirq_action
*h
)
1632 struct list_head
*cpu_list
, local_list
;
1634 local_irq_disable();
1635 cpu_list
= &__get_cpu_var(blk_cpu_done
);
1636 list_replace_init(cpu_list
, &local_list
);
1639 while (!list_empty(&local_list
)) {
1642 rq
= list_entry(local_list
.next
, struct request
, donelist
);
1643 list_del_init(&rq
->donelist
);
1644 rq
->q
->softirq_done_fn(rq
);
1648 static int __cpuinit
blk_cpu_notify(struct notifier_block
*self
,
1649 unsigned long action
, void *hcpu
)
1652 * If a CPU goes away, splice its entries to the current CPU
1653 * and trigger a run of the softirq
1655 if (action
== CPU_DEAD
|| action
== CPU_DEAD_FROZEN
) {
1656 int cpu
= (unsigned long) hcpu
;
1658 local_irq_disable();
1659 list_splice_init(&per_cpu(blk_cpu_done
, cpu
),
1660 &__get_cpu_var(blk_cpu_done
));
1661 raise_softirq_irqoff(BLOCK_SOFTIRQ
);
1669 static struct notifier_block blk_cpu_notifier __cpuinitdata
= {
1670 .notifier_call
= blk_cpu_notify
,
1674 * blk_complete_request - end I/O on a request
1675 * @req: the request being processed
1678 * Ends all I/O on a request. It does not handle partial completions,
1679 * unless the driver actually implements this in its completion callback
1680 * through requeueing. The actual completion happens out-of-order,
1681 * through a softirq handler. The user must have registered a completion
1682 * callback through blk_queue_softirq_done().
1685 void blk_complete_request(struct request
*req
)
1687 struct list_head
*cpu_list
;
1688 unsigned long flags
;
1690 BUG_ON(!req
->q
->softirq_done_fn
);
1692 local_irq_save(flags
);
1694 cpu_list
= &__get_cpu_var(blk_cpu_done
);
1695 list_add_tail(&req
->donelist
, cpu_list
);
1696 raise_softirq_irqoff(BLOCK_SOFTIRQ
);
1698 local_irq_restore(flags
);
1700 EXPORT_SYMBOL(blk_complete_request
);
1703 * queue lock must be held
1705 static void end_that_request_last(struct request
*req
, int error
)
1707 struct gendisk
*disk
= req
->rq_disk
;
1709 if (blk_rq_tagged(req
))
1710 blk_queue_end_tag(req
->q
, req
);
1712 if (blk_queued_rq(req
))
1713 blkdev_dequeue_request(req
);
1715 if (unlikely(laptop_mode
) && blk_fs_request(req
))
1716 laptop_io_completion();
1719 * Account IO completion. bar_rq isn't accounted as a normal
1720 * IO on queueing nor completion. Accounting the containing
1721 * request is enough.
1723 if (disk
&& blk_fs_request(req
) && req
!= &req
->q
->bar_rq
) {
1724 unsigned long duration
= jiffies
- req
->start_time
;
1725 const int rw
= rq_data_dir(req
);
1726 struct hd_struct
*part
= get_part(disk
, req
->sector
);
1728 __all_stat_inc(disk
, part
, ios
[rw
], req
->sector
);
1729 __all_stat_add(disk
, part
, ticks
[rw
], duration
, req
->sector
);
1730 disk_round_stats(disk
);
1733 part_round_stats(part
);
1739 req
->end_io(req
, error
);
1741 if (blk_bidi_rq(req
))
1742 __blk_put_request(req
->next_rq
->q
, req
->next_rq
);
1744 __blk_put_request(req
->q
, req
);
1748 static inline void __end_request(struct request
*rq
, int uptodate
,
1749 unsigned int nr_bytes
)
1754 error
= uptodate
? uptodate
: -EIO
;
1756 __blk_end_request(rq
, error
, nr_bytes
);
1760 * blk_rq_bytes - Returns bytes left to complete in the entire request
1761 * @rq: the request being processed
1763 unsigned int blk_rq_bytes(struct request
*rq
)
1765 if (blk_fs_request(rq
))
1766 return rq
->hard_nr_sectors
<< 9;
1768 return rq
->data_len
;
1770 EXPORT_SYMBOL_GPL(blk_rq_bytes
);
1773 * blk_rq_cur_bytes - Returns bytes left to complete in the current segment
1774 * @rq: the request being processed
1776 unsigned int blk_rq_cur_bytes(struct request
*rq
)
1778 if (blk_fs_request(rq
))
1779 return rq
->current_nr_sectors
<< 9;
1782 return rq
->bio
->bi_size
;
1784 return rq
->data_len
;
1786 EXPORT_SYMBOL_GPL(blk_rq_cur_bytes
);
1789 * end_queued_request - end all I/O on a queued request
1790 * @rq: the request being processed
1791 * @uptodate: error value or 0/1 uptodate flag
1794 * Ends all I/O on a request, and removes it from the block layer queues.
1795 * Not suitable for normal IO completion, unless the driver still has
1796 * the request attached to the block layer.
1799 void end_queued_request(struct request
*rq
, int uptodate
)
1801 __end_request(rq
, uptodate
, blk_rq_bytes(rq
));
1803 EXPORT_SYMBOL(end_queued_request
);
1806 * end_dequeued_request - end all I/O on a dequeued request
1807 * @rq: the request being processed
1808 * @uptodate: error value or 0/1 uptodate flag
1811 * Ends all I/O on a request. The request must already have been
1812 * dequeued using blkdev_dequeue_request(), as is normally the case
1816 void end_dequeued_request(struct request
*rq
, int uptodate
)
1818 __end_request(rq
, uptodate
, blk_rq_bytes(rq
));
1820 EXPORT_SYMBOL(end_dequeued_request
);
1824 * end_request - end I/O on the current segment of the request
1825 * @req: the request being processed
1826 * @uptodate: error value or 0/1 uptodate flag
1829 * Ends I/O on the current segment of a request. If that is the only
1830 * remaining segment, the request is also completed and freed.
1832 * This is a remnant of how older block drivers handled IO completions.
1833 * Modern drivers typically end IO on the full request in one go, unless
1834 * they have a residual value to account for. For that case this function
1835 * isn't really useful, unless the residual just happens to be the
1836 * full current segment. In other words, don't use this function in new
1837 * code. Either use end_request_completely(), or the
1838 * end_that_request_chunk() (along with end_that_request_last()) for
1839 * partial completions.
1842 void end_request(struct request
*req
, int uptodate
)
1844 __end_request(req
, uptodate
, req
->hard_cur_sectors
<< 9);
1846 EXPORT_SYMBOL(end_request
);
1849 * blk_end_io - Generic end_io function to complete a request.
1850 * @rq: the request being processed
1851 * @error: 0 for success, < 0 for error
1852 * @nr_bytes: number of bytes to complete @rq
1853 * @bidi_bytes: number of bytes to complete @rq->next_rq
1854 * @drv_callback: function called between completion of bios in the request
1855 * and completion of the request.
1856 * If the callback returns non 0, this helper returns without
1857 * completion of the request.
1860 * Ends I/O on a number of bytes attached to @rq and @rq->next_rq.
1861 * If @rq has leftover, sets it up for the next range of segments.
1864 * 0 - we are done with this request
1865 * 1 - this request is not freed yet, it still has pending buffers.
1867 static int blk_end_io(struct request
*rq
, int error
, unsigned int nr_bytes
,
1868 unsigned int bidi_bytes
,
1869 int (drv_callback
)(struct request
*))
1871 struct request_queue
*q
= rq
->q
;
1872 unsigned long flags
= 0UL;
1874 if (blk_fs_request(rq
) || blk_pc_request(rq
)) {
1875 if (__end_that_request_first(rq
, error
, nr_bytes
))
1878 /* Bidi request must be completed as a whole */
1879 if (blk_bidi_rq(rq
) &&
1880 __end_that_request_first(rq
->next_rq
, error
, bidi_bytes
))
1884 /* Special feature for tricky drivers */
1885 if (drv_callback
&& drv_callback(rq
))
1888 add_disk_randomness(rq
->rq_disk
);
1890 spin_lock_irqsave(q
->queue_lock
, flags
);
1891 end_that_request_last(rq
, error
);
1892 spin_unlock_irqrestore(q
->queue_lock
, flags
);
1898 * blk_end_request - Helper function for drivers to complete the request.
1899 * @rq: the request being processed
1900 * @error: 0 for success, < 0 for error
1901 * @nr_bytes: number of bytes to complete
1904 * Ends I/O on a number of bytes attached to @rq.
1905 * If @rq has leftover, sets it up for the next range of segments.
1908 * 0 - we are done with this request
1909 * 1 - still buffers pending for this request
1911 int blk_end_request(struct request
*rq
, int error
, unsigned int nr_bytes
)
1913 return blk_end_io(rq
, error
, nr_bytes
, 0, NULL
);
1915 EXPORT_SYMBOL_GPL(blk_end_request
);
1918 * __blk_end_request - Helper function for drivers to complete the request.
1919 * @rq: the request being processed
1920 * @error: 0 for success, < 0 for error
1921 * @nr_bytes: number of bytes to complete
1924 * Must be called with queue lock held unlike blk_end_request().
1927 * 0 - we are done with this request
1928 * 1 - still buffers pending for this request
1930 int __blk_end_request(struct request
*rq
, int error
, unsigned int nr_bytes
)
1932 if (blk_fs_request(rq
) || blk_pc_request(rq
)) {
1933 if (__end_that_request_first(rq
, error
, nr_bytes
))
1937 add_disk_randomness(rq
->rq_disk
);
1939 end_that_request_last(rq
, error
);
1943 EXPORT_SYMBOL_GPL(__blk_end_request
);
1946 * blk_end_bidi_request - Helper function for drivers to complete bidi request.
1947 * @rq: the bidi request being processed
1948 * @error: 0 for success, < 0 for error
1949 * @nr_bytes: number of bytes to complete @rq
1950 * @bidi_bytes: number of bytes to complete @rq->next_rq
1953 * Ends I/O on a number of bytes attached to @rq and @rq->next_rq.
1956 * 0 - we are done with this request
1957 * 1 - still buffers pending for this request
1959 int blk_end_bidi_request(struct request
*rq
, int error
, unsigned int nr_bytes
,
1960 unsigned int bidi_bytes
)
1962 return blk_end_io(rq
, error
, nr_bytes
, bidi_bytes
, NULL
);
1964 EXPORT_SYMBOL_GPL(blk_end_bidi_request
);
1967 * blk_end_request_callback - Special helper function for tricky drivers
1968 * @rq: the request being processed
1969 * @error: 0 for success, < 0 for error
1970 * @nr_bytes: number of bytes to complete
1971 * @drv_callback: function called between completion of bios in the request
1972 * and completion of the request.
1973 * If the callback returns non 0, this helper returns without
1974 * completion of the request.
1977 * Ends I/O on a number of bytes attached to @rq.
1978 * If @rq has leftover, sets it up for the next range of segments.
1980 * This special helper function is used only for existing tricky drivers.
1981 * (e.g. cdrom_newpc_intr() of ide-cd)
1982 * This interface will be removed when such drivers are rewritten.
1983 * Don't use this interface in other places anymore.
1986 * 0 - we are done with this request
1987 * 1 - this request is not freed yet.
1988 * this request still has pending buffers or
1989 * the driver doesn't want to finish this request yet.
1991 int blk_end_request_callback(struct request
*rq
, int error
,
1992 unsigned int nr_bytes
,
1993 int (drv_callback
)(struct request
*))
1995 return blk_end_io(rq
, error
, nr_bytes
, 0, drv_callback
);
1997 EXPORT_SYMBOL_GPL(blk_end_request_callback
);
1999 void blk_rq_bio_prep(struct request_queue
*q
, struct request
*rq
,
2002 /* first two bits are identical in rq->cmd_flags and bio->bi_rw */
2003 rq
->cmd_flags
|= (bio
->bi_rw
& 3);
2005 rq
->nr_phys_segments
= bio_phys_segments(q
, bio
);
2006 rq
->nr_hw_segments
= bio_hw_segments(q
, bio
);
2007 rq
->current_nr_sectors
= bio_cur_sectors(bio
);
2008 rq
->hard_cur_sectors
= rq
->current_nr_sectors
;
2009 rq
->hard_nr_sectors
= rq
->nr_sectors
= bio_sectors(bio
);
2010 rq
->buffer
= bio_data(bio
);
2011 rq
->data_len
= bio
->bi_size
;
2013 rq
->bio
= rq
->biotail
= bio
;
2016 rq
->rq_disk
= bio
->bi_bdev
->bd_disk
;
2019 int kblockd_schedule_work(struct work_struct
*work
)
2021 return queue_work(kblockd_workqueue
, work
);
2023 EXPORT_SYMBOL(kblockd_schedule_work
);
2025 void kblockd_flush_work(struct work_struct
*work
)
2027 cancel_work_sync(work
);
2029 EXPORT_SYMBOL(kblockd_flush_work
);
2031 int __init
blk_dev_init(void)
2035 kblockd_workqueue
= create_workqueue("kblockd");
2036 if (!kblockd_workqueue
)
2037 panic("Failed to create kblockd\n");
2039 request_cachep
= kmem_cache_create("blkdev_requests",
2040 sizeof(struct request
), 0, SLAB_PANIC
, NULL
);
2042 blk_requestq_cachep
= kmem_cache_create("blkdev_queue",
2043 sizeof(struct request_queue
), 0, SLAB_PANIC
, NULL
);
2045 for_each_possible_cpu(i
)
2046 INIT_LIST_HEAD(&per_cpu(blk_cpu_done
, i
));
2048 open_softirq(BLOCK_SOFTIRQ
, blk_done_softirq
, NULL
);
2049 register_hotcpu_notifier(&blk_cpu_notifier
);