4 * Copyright (C) 1991, 1992 Linus Torvalds
7 #include <linux/module.h>
9 #include <linux/utsname.h>
10 #include <linux/mman.h>
11 #include <linux/smp_lock.h>
12 #include <linux/notifier.h>
13 #include <linux/reboot.h>
14 #include <linux/prctl.h>
15 #include <linux/highuid.h>
17 #include <linux/resource.h>
18 #include <linux/kernel.h>
19 #include <linux/kexec.h>
20 #include <linux/workqueue.h>
21 #include <linux/capability.h>
22 #include <linux/device.h>
23 #include <linux/key.h>
24 #include <linux/times.h>
25 #include <linux/posix-timers.h>
26 #include <linux/security.h>
27 #include <linux/dcookies.h>
28 #include <linux/suspend.h>
29 #include <linux/tty.h>
30 #include <linux/signal.h>
31 #include <linux/cn_proc.h>
32 #include <linux/getcpu.h>
33 #include <linux/task_io_accounting_ops.h>
35 #include <linux/compat.h>
36 #include <linux/syscalls.h>
37 #include <linux/kprobes.h>
39 #include <asm/uaccess.h>
41 #include <asm/unistd.h>
43 #ifndef SET_UNALIGN_CTL
44 # define SET_UNALIGN_CTL(a,b) (-EINVAL)
46 #ifndef GET_UNALIGN_CTL
47 # define GET_UNALIGN_CTL(a,b) (-EINVAL)
50 # define SET_FPEMU_CTL(a,b) (-EINVAL)
53 # define GET_FPEMU_CTL(a,b) (-EINVAL)
56 # define SET_FPEXC_CTL(a,b) (-EINVAL)
59 # define GET_FPEXC_CTL(a,b) (-EINVAL)
62 # define GET_ENDIAN(a,b) (-EINVAL)
65 # define SET_ENDIAN(a,b) (-EINVAL)
69 * this is where the system-wide overflow UID and GID are defined, for
70 * architectures that now have 32-bit UID/GID but didn't in the past
73 int overflowuid
= DEFAULT_OVERFLOWUID
;
74 int overflowgid
= DEFAULT_OVERFLOWGID
;
77 EXPORT_SYMBOL(overflowuid
);
78 EXPORT_SYMBOL(overflowgid
);
82 * the same as above, but for filesystems which can only store a 16-bit
83 * UID and GID. as such, this is needed on all architectures
86 int fs_overflowuid
= DEFAULT_FS_OVERFLOWUID
;
87 int fs_overflowgid
= DEFAULT_FS_OVERFLOWUID
;
89 EXPORT_SYMBOL(fs_overflowuid
);
90 EXPORT_SYMBOL(fs_overflowgid
);
93 * this indicates whether you can reboot with ctrl-alt-del: the default is yes
98 EXPORT_SYMBOL(cad_pid
);
101 * Notifier list for kernel code which wants to be called
102 * at shutdown. This is used to stop any idling DMA operations
106 static BLOCKING_NOTIFIER_HEAD(reboot_notifier_list
);
109 * Notifier chain core routines. The exported routines below
110 * are layered on top of these, with appropriate locking added.
113 static int notifier_chain_register(struct notifier_block
**nl
,
114 struct notifier_block
*n
)
116 while ((*nl
) != NULL
) {
117 if (n
->priority
> (*nl
)->priority
)
122 rcu_assign_pointer(*nl
, n
);
126 static int notifier_chain_unregister(struct notifier_block
**nl
,
127 struct notifier_block
*n
)
129 while ((*nl
) != NULL
) {
131 rcu_assign_pointer(*nl
, n
->next
);
140 * notifier_call_chain - Informs the registered notifiers about an event.
141 * @nl: Pointer to head of the blocking notifier chain
142 * @val: Value passed unmodified to notifier function
143 * @v: Pointer passed unmodified to notifier function
144 * @nr_to_call: Number of notifier functions to be called. Don't care
145 * value of this parameter is -1.
146 * @nr_calls: Records the number of notifications sent. Don't care
147 * value of this field is NULL.
148 * @returns: notifier_call_chain returns the value returned by the
149 * last notifier function called.
152 static int __kprobes
notifier_call_chain(struct notifier_block
**nl
,
153 unsigned long val
, void *v
,
154 int nr_to_call
, int *nr_calls
)
156 int ret
= NOTIFY_DONE
;
157 struct notifier_block
*nb
, *next_nb
;
159 nb
= rcu_dereference(*nl
);
161 while (nb
&& nr_to_call
) {
162 next_nb
= rcu_dereference(nb
->next
);
163 ret
= nb
->notifier_call(nb
, val
, v
);
168 if ((ret
& NOTIFY_STOP_MASK
) == NOTIFY_STOP_MASK
)
177 * Atomic notifier chain routines. Registration and unregistration
178 * use a spinlock, and call_chain is synchronized by RCU (no locks).
182 * atomic_notifier_chain_register - Add notifier to an atomic notifier chain
183 * @nh: Pointer to head of the atomic notifier chain
184 * @n: New entry in notifier chain
186 * Adds a notifier to an atomic notifier chain.
188 * Currently always returns zero.
191 int atomic_notifier_chain_register(struct atomic_notifier_head
*nh
,
192 struct notifier_block
*n
)
197 spin_lock_irqsave(&nh
->lock
, flags
);
198 ret
= notifier_chain_register(&nh
->head
, n
);
199 spin_unlock_irqrestore(&nh
->lock
, flags
);
203 EXPORT_SYMBOL_GPL(atomic_notifier_chain_register
);
206 * atomic_notifier_chain_unregister - Remove notifier from an atomic notifier chain
207 * @nh: Pointer to head of the atomic notifier chain
208 * @n: Entry to remove from notifier chain
210 * Removes a notifier from an atomic notifier chain.
212 * Returns zero on success or %-ENOENT on failure.
214 int atomic_notifier_chain_unregister(struct atomic_notifier_head
*nh
,
215 struct notifier_block
*n
)
220 spin_lock_irqsave(&nh
->lock
, flags
);
221 ret
= notifier_chain_unregister(&nh
->head
, n
);
222 spin_unlock_irqrestore(&nh
->lock
, flags
);
227 EXPORT_SYMBOL_GPL(atomic_notifier_chain_unregister
);
230 * __atomic_notifier_call_chain - Call functions in an atomic notifier chain
231 * @nh: Pointer to head of the atomic notifier chain
232 * @val: Value passed unmodified to notifier function
233 * @v: Pointer passed unmodified to notifier function
234 * @nr_to_call: See the comment for notifier_call_chain.
235 * @nr_calls: See the comment for notifier_call_chain.
237 * Calls each function in a notifier chain in turn. The functions
238 * run in an atomic context, so they must not block.
239 * This routine uses RCU to synchronize with changes to the chain.
241 * If the return value of the notifier can be and'ed
242 * with %NOTIFY_STOP_MASK then atomic_notifier_call_chain()
243 * will return immediately, with the return value of
244 * the notifier function which halted execution.
245 * Otherwise the return value is the return value
246 * of the last notifier function called.
249 int __kprobes
__atomic_notifier_call_chain(struct atomic_notifier_head
*nh
,
250 unsigned long val
, void *v
,
251 int nr_to_call
, int *nr_calls
)
256 ret
= notifier_call_chain(&nh
->head
, val
, v
, nr_to_call
, nr_calls
);
261 EXPORT_SYMBOL_GPL(__atomic_notifier_call_chain
);
263 int __kprobes
atomic_notifier_call_chain(struct atomic_notifier_head
*nh
,
264 unsigned long val
, void *v
)
266 return __atomic_notifier_call_chain(nh
, val
, v
, -1, NULL
);
269 EXPORT_SYMBOL_GPL(atomic_notifier_call_chain
);
271 * Blocking notifier chain routines. All access to the chain is
272 * synchronized by an rwsem.
276 * blocking_notifier_chain_register - Add notifier to a blocking notifier chain
277 * @nh: Pointer to head of the blocking notifier chain
278 * @n: New entry in notifier chain
280 * Adds a notifier to a blocking notifier chain.
281 * Must be called in process context.
283 * Currently always returns zero.
286 int blocking_notifier_chain_register(struct blocking_notifier_head
*nh
,
287 struct notifier_block
*n
)
292 * This code gets used during boot-up, when task switching is
293 * not yet working and interrupts must remain disabled. At
294 * such times we must not call down_write().
296 if (unlikely(system_state
== SYSTEM_BOOTING
))
297 return notifier_chain_register(&nh
->head
, n
);
299 down_write(&nh
->rwsem
);
300 ret
= notifier_chain_register(&nh
->head
, n
);
301 up_write(&nh
->rwsem
);
305 EXPORT_SYMBOL_GPL(blocking_notifier_chain_register
);
308 * blocking_notifier_chain_unregister - Remove notifier from a blocking notifier chain
309 * @nh: Pointer to head of the blocking notifier chain
310 * @n: Entry to remove from notifier chain
312 * Removes a notifier from a blocking notifier chain.
313 * Must be called from process context.
315 * Returns zero on success or %-ENOENT on failure.
317 int blocking_notifier_chain_unregister(struct blocking_notifier_head
*nh
,
318 struct notifier_block
*n
)
323 * This code gets used during boot-up, when task switching is
324 * not yet working and interrupts must remain disabled. At
325 * such times we must not call down_write().
327 if (unlikely(system_state
== SYSTEM_BOOTING
))
328 return notifier_chain_unregister(&nh
->head
, n
);
330 down_write(&nh
->rwsem
);
331 ret
= notifier_chain_unregister(&nh
->head
, n
);
332 up_write(&nh
->rwsem
);
336 EXPORT_SYMBOL_GPL(blocking_notifier_chain_unregister
);
339 * __blocking_notifier_call_chain - Call functions in a blocking notifier chain
340 * @nh: Pointer to head of the blocking notifier chain
341 * @val: Value passed unmodified to notifier function
342 * @v: Pointer passed unmodified to notifier function
343 * @nr_to_call: See comment for notifier_call_chain.
344 * @nr_calls: See comment for notifier_call_chain.
346 * Calls each function in a notifier chain in turn. The functions
347 * run in a process context, so they are allowed to block.
349 * If the return value of the notifier can be and'ed
350 * with %NOTIFY_STOP_MASK then blocking_notifier_call_chain()
351 * will return immediately, with the return value of
352 * the notifier function which halted execution.
353 * Otherwise the return value is the return value
354 * of the last notifier function called.
357 int __blocking_notifier_call_chain(struct blocking_notifier_head
*nh
,
358 unsigned long val
, void *v
,
359 int nr_to_call
, int *nr_calls
)
361 int ret
= NOTIFY_DONE
;
364 * We check the head outside the lock, but if this access is
365 * racy then it does not matter what the result of the test
366 * is, we re-check the list after having taken the lock anyway:
368 if (rcu_dereference(nh
->head
)) {
369 down_read(&nh
->rwsem
);
370 ret
= notifier_call_chain(&nh
->head
, val
, v
, nr_to_call
,
376 EXPORT_SYMBOL_GPL(__blocking_notifier_call_chain
);
378 int blocking_notifier_call_chain(struct blocking_notifier_head
*nh
,
379 unsigned long val
, void *v
)
381 return __blocking_notifier_call_chain(nh
, val
, v
, -1, NULL
);
383 EXPORT_SYMBOL_GPL(blocking_notifier_call_chain
);
386 * Raw notifier chain routines. There is no protection;
387 * the caller must provide it. Use at your own risk!
391 * raw_notifier_chain_register - Add notifier to a raw notifier chain
392 * @nh: Pointer to head of the raw notifier chain
393 * @n: New entry in notifier chain
395 * Adds a notifier to a raw notifier chain.
396 * All locking must be provided by the caller.
398 * Currently always returns zero.
401 int raw_notifier_chain_register(struct raw_notifier_head
*nh
,
402 struct notifier_block
*n
)
404 return notifier_chain_register(&nh
->head
, n
);
407 EXPORT_SYMBOL_GPL(raw_notifier_chain_register
);
410 * raw_notifier_chain_unregister - Remove notifier from a raw notifier chain
411 * @nh: Pointer to head of the raw notifier chain
412 * @n: Entry to remove from notifier chain
414 * Removes a notifier from a raw notifier chain.
415 * All locking must be provided by the caller.
417 * Returns zero on success or %-ENOENT on failure.
419 int raw_notifier_chain_unregister(struct raw_notifier_head
*nh
,
420 struct notifier_block
*n
)
422 return notifier_chain_unregister(&nh
->head
, n
);
425 EXPORT_SYMBOL_GPL(raw_notifier_chain_unregister
);
428 * __raw_notifier_call_chain - Call functions in a raw notifier chain
429 * @nh: Pointer to head of the raw notifier chain
430 * @val: Value passed unmodified to notifier function
431 * @v: Pointer passed unmodified to notifier function
432 * @nr_to_call: See comment for notifier_call_chain.
433 * @nr_calls: See comment for notifier_call_chain
435 * Calls each function in a notifier chain in turn. The functions
436 * run in an undefined context.
437 * All locking must be provided by the caller.
439 * If the return value of the notifier can be and'ed
440 * with %NOTIFY_STOP_MASK then raw_notifier_call_chain()
441 * will return immediately, with the return value of
442 * the notifier function which halted execution.
443 * Otherwise the return value is the return value
444 * of the last notifier function called.
447 int __raw_notifier_call_chain(struct raw_notifier_head
*nh
,
448 unsigned long val
, void *v
,
449 int nr_to_call
, int *nr_calls
)
451 return notifier_call_chain(&nh
->head
, val
, v
, nr_to_call
, nr_calls
);
454 EXPORT_SYMBOL_GPL(__raw_notifier_call_chain
);
456 int raw_notifier_call_chain(struct raw_notifier_head
*nh
,
457 unsigned long val
, void *v
)
459 return __raw_notifier_call_chain(nh
, val
, v
, -1, NULL
);
462 EXPORT_SYMBOL_GPL(raw_notifier_call_chain
);
465 * SRCU notifier chain routines. Registration and unregistration
466 * use a mutex, and call_chain is synchronized by SRCU (no locks).
470 * srcu_notifier_chain_register - Add notifier to an SRCU notifier chain
471 * @nh: Pointer to head of the SRCU notifier chain
472 * @n: New entry in notifier chain
474 * Adds a notifier to an SRCU notifier chain.
475 * Must be called in process context.
477 * Currently always returns zero.
480 int srcu_notifier_chain_register(struct srcu_notifier_head
*nh
,
481 struct notifier_block
*n
)
486 * This code gets used during boot-up, when task switching is
487 * not yet working and interrupts must remain disabled. At
488 * such times we must not call mutex_lock().
490 if (unlikely(system_state
== SYSTEM_BOOTING
))
491 return notifier_chain_register(&nh
->head
, n
);
493 mutex_lock(&nh
->mutex
);
494 ret
= notifier_chain_register(&nh
->head
, n
);
495 mutex_unlock(&nh
->mutex
);
499 EXPORT_SYMBOL_GPL(srcu_notifier_chain_register
);
502 * srcu_notifier_chain_unregister - Remove notifier from an SRCU notifier chain
503 * @nh: Pointer to head of the SRCU notifier chain
504 * @n: Entry to remove from notifier chain
506 * Removes a notifier from an SRCU notifier chain.
507 * Must be called from process context.
509 * Returns zero on success or %-ENOENT on failure.
511 int srcu_notifier_chain_unregister(struct srcu_notifier_head
*nh
,
512 struct notifier_block
*n
)
517 * This code gets used during boot-up, when task switching is
518 * not yet working and interrupts must remain disabled. At
519 * such times we must not call mutex_lock().
521 if (unlikely(system_state
== SYSTEM_BOOTING
))
522 return notifier_chain_unregister(&nh
->head
, n
);
524 mutex_lock(&nh
->mutex
);
525 ret
= notifier_chain_unregister(&nh
->head
, n
);
526 mutex_unlock(&nh
->mutex
);
527 synchronize_srcu(&nh
->srcu
);
531 EXPORT_SYMBOL_GPL(srcu_notifier_chain_unregister
);
534 * __srcu_notifier_call_chain - Call functions in an SRCU notifier chain
535 * @nh: Pointer to head of the SRCU notifier chain
536 * @val: Value passed unmodified to notifier function
537 * @v: Pointer passed unmodified to notifier function
538 * @nr_to_call: See comment for notifier_call_chain.
539 * @nr_calls: See comment for notifier_call_chain
541 * Calls each function in a notifier chain in turn. The functions
542 * run in a process context, so they are allowed to block.
544 * If the return value of the notifier can be and'ed
545 * with %NOTIFY_STOP_MASK then srcu_notifier_call_chain()
546 * will return immediately, with the return value of
547 * the notifier function which halted execution.
548 * Otherwise the return value is the return value
549 * of the last notifier function called.
552 int __srcu_notifier_call_chain(struct srcu_notifier_head
*nh
,
553 unsigned long val
, void *v
,
554 int nr_to_call
, int *nr_calls
)
559 idx
= srcu_read_lock(&nh
->srcu
);
560 ret
= notifier_call_chain(&nh
->head
, val
, v
, nr_to_call
, nr_calls
);
561 srcu_read_unlock(&nh
->srcu
, idx
);
564 EXPORT_SYMBOL_GPL(__srcu_notifier_call_chain
);
566 int srcu_notifier_call_chain(struct srcu_notifier_head
*nh
,
567 unsigned long val
, void *v
)
569 return __srcu_notifier_call_chain(nh
, val
, v
, -1, NULL
);
571 EXPORT_SYMBOL_GPL(srcu_notifier_call_chain
);
574 * srcu_init_notifier_head - Initialize an SRCU notifier head
575 * @nh: Pointer to head of the srcu notifier chain
577 * Unlike other sorts of notifier heads, SRCU notifier heads require
578 * dynamic initialization. Be sure to call this routine before
579 * calling any of the other SRCU notifier routines for this head.
581 * If an SRCU notifier head is deallocated, it must first be cleaned
582 * up by calling srcu_cleanup_notifier_head(). Otherwise the head's
583 * per-cpu data (used by the SRCU mechanism) will leak.
586 void srcu_init_notifier_head(struct srcu_notifier_head
*nh
)
588 mutex_init(&nh
->mutex
);
589 if (init_srcu_struct(&nh
->srcu
) < 0)
594 EXPORT_SYMBOL_GPL(srcu_init_notifier_head
);
597 * register_reboot_notifier - Register function to be called at reboot time
598 * @nb: Info about notifier function to be called
600 * Registers a function with the list of functions
601 * to be called at reboot time.
603 * Currently always returns zero, as blocking_notifier_chain_register()
604 * always returns zero.
607 int register_reboot_notifier(struct notifier_block
* nb
)
609 return blocking_notifier_chain_register(&reboot_notifier_list
, nb
);
612 EXPORT_SYMBOL(register_reboot_notifier
);
615 * unregister_reboot_notifier - Unregister previously registered reboot notifier
616 * @nb: Hook to be unregistered
618 * Unregisters a previously registered reboot
621 * Returns zero on success, or %-ENOENT on failure.
624 int unregister_reboot_notifier(struct notifier_block
* nb
)
626 return blocking_notifier_chain_unregister(&reboot_notifier_list
, nb
);
629 EXPORT_SYMBOL(unregister_reboot_notifier
);
631 static int set_one_prio(struct task_struct
*p
, int niceval
, int error
)
635 if (p
->uid
!= current
->euid
&&
636 p
->euid
!= current
->euid
&& !capable(CAP_SYS_NICE
)) {
640 if (niceval
< task_nice(p
) && !can_nice(p
, niceval
)) {
644 no_nice
= security_task_setnice(p
, niceval
);
651 set_user_nice(p
, niceval
);
656 asmlinkage
long sys_setpriority(int which
, int who
, int niceval
)
658 struct task_struct
*g
, *p
;
659 struct user_struct
*user
;
663 if (which
> PRIO_USER
|| which
< PRIO_PROCESS
)
666 /* normalize: avoid signed division (rounding problems) */
673 read_lock(&tasklist_lock
);
677 p
= find_task_by_pid(who
);
681 error
= set_one_prio(p
, niceval
, error
);
685 pgrp
= find_pid(who
);
687 pgrp
= task_pgrp(current
);
688 do_each_pid_task(pgrp
, PIDTYPE_PGID
, p
) {
689 error
= set_one_prio(p
, niceval
, error
);
690 } while_each_pid_task(pgrp
, PIDTYPE_PGID
, p
);
693 user
= current
->user
;
697 if ((who
!= current
->uid
) && !(user
= find_user(who
)))
698 goto out_unlock
; /* No processes for this user */
702 error
= set_one_prio(p
, niceval
, error
);
703 while_each_thread(g
, p
);
704 if (who
!= current
->uid
)
705 free_uid(user
); /* For find_user() */
709 read_unlock(&tasklist_lock
);
715 * Ugh. To avoid negative return values, "getpriority()" will
716 * not return the normal nice-value, but a negated value that
717 * has been offset by 20 (ie it returns 40..1 instead of -20..19)
718 * to stay compatible.
720 asmlinkage
long sys_getpriority(int which
, int who
)
722 struct task_struct
*g
, *p
;
723 struct user_struct
*user
;
724 long niceval
, retval
= -ESRCH
;
727 if (which
> PRIO_USER
|| which
< PRIO_PROCESS
)
730 read_lock(&tasklist_lock
);
734 p
= find_task_by_pid(who
);
738 niceval
= 20 - task_nice(p
);
739 if (niceval
> retval
)
745 pgrp
= find_pid(who
);
747 pgrp
= task_pgrp(current
);
748 do_each_pid_task(pgrp
, PIDTYPE_PGID
, p
) {
749 niceval
= 20 - task_nice(p
);
750 if (niceval
> retval
)
752 } while_each_pid_task(pgrp
, PIDTYPE_PGID
, p
);
755 user
= current
->user
;
759 if ((who
!= current
->uid
) && !(user
= find_user(who
)))
760 goto out_unlock
; /* No processes for this user */
764 niceval
= 20 - task_nice(p
);
765 if (niceval
> retval
)
768 while_each_thread(g
, p
);
769 if (who
!= current
->uid
)
770 free_uid(user
); /* for find_user() */
774 read_unlock(&tasklist_lock
);
780 * emergency_restart - reboot the system
782 * Without shutting down any hardware or taking any locks
783 * reboot the system. This is called when we know we are in
784 * trouble so this is our best effort to reboot. This is
785 * safe to call in interrupt context.
787 void emergency_restart(void)
789 machine_emergency_restart();
791 EXPORT_SYMBOL_GPL(emergency_restart
);
793 static void kernel_restart_prepare(char *cmd
)
795 blocking_notifier_call_chain(&reboot_notifier_list
, SYS_RESTART
, cmd
);
796 system_state
= SYSTEM_RESTART
;
801 * kernel_restart - reboot the system
802 * @cmd: pointer to buffer containing command to execute for restart
805 * Shutdown everything and perform a clean reboot.
806 * This is not safe to call in interrupt context.
808 void kernel_restart(char *cmd
)
810 kernel_restart_prepare(cmd
);
812 printk(KERN_EMERG
"Restarting system.\n");
814 printk(KERN_EMERG
"Restarting system with command '%s'.\n", cmd
);
815 machine_restart(cmd
);
817 EXPORT_SYMBOL_GPL(kernel_restart
);
820 * kernel_kexec - reboot the system
822 * Move into place and start executing a preloaded standalone
823 * executable. If nothing was preloaded return an error.
825 static void kernel_kexec(void)
828 struct kimage
*image
;
829 image
= xchg(&kexec_image
, NULL
);
832 kernel_restart_prepare(NULL
);
833 printk(KERN_EMERG
"Starting new kernel\n");
835 machine_kexec(image
);
839 void kernel_shutdown_prepare(enum system_states state
)
841 blocking_notifier_call_chain(&reboot_notifier_list
,
842 (state
== SYSTEM_HALT
)?SYS_HALT
:SYS_POWER_OFF
, NULL
);
843 system_state
= state
;
847 * kernel_halt - halt the system
849 * Shutdown everything and perform a clean system halt.
851 void kernel_halt(void)
853 kernel_shutdown_prepare(SYSTEM_HALT
);
854 printk(KERN_EMERG
"System halted.\n");
858 EXPORT_SYMBOL_GPL(kernel_halt
);
861 * kernel_power_off - power_off the system
863 * Shutdown everything and perform a clean system power_off.
865 void kernel_power_off(void)
867 kernel_shutdown_prepare(SYSTEM_POWER_OFF
);
868 printk(KERN_EMERG
"Power down.\n");
871 EXPORT_SYMBOL_GPL(kernel_power_off
);
873 * Reboot system call: for obvious reasons only root may call it,
874 * and even root needs to set up some magic numbers in the registers
875 * so that some mistake won't make this reboot the whole machine.
876 * You can also set the meaning of the ctrl-alt-del-key here.
878 * reboot doesn't sync: do that yourself before calling this.
880 asmlinkage
long sys_reboot(int magic1
, int magic2
, unsigned int cmd
, void __user
* arg
)
884 /* We only trust the superuser with rebooting the system. */
885 if (!capable(CAP_SYS_BOOT
))
888 /* For safety, we require "magic" arguments. */
889 if (magic1
!= LINUX_REBOOT_MAGIC1
||
890 (magic2
!= LINUX_REBOOT_MAGIC2
&&
891 magic2
!= LINUX_REBOOT_MAGIC2A
&&
892 magic2
!= LINUX_REBOOT_MAGIC2B
&&
893 magic2
!= LINUX_REBOOT_MAGIC2C
))
896 /* Instead of trying to make the power_off code look like
897 * halt when pm_power_off is not set do it the easy way.
899 if ((cmd
== LINUX_REBOOT_CMD_POWER_OFF
) && !pm_power_off
)
900 cmd
= LINUX_REBOOT_CMD_HALT
;
904 case LINUX_REBOOT_CMD_RESTART
:
905 kernel_restart(NULL
);
908 case LINUX_REBOOT_CMD_CAD_ON
:
912 case LINUX_REBOOT_CMD_CAD_OFF
:
916 case LINUX_REBOOT_CMD_HALT
:
922 case LINUX_REBOOT_CMD_POWER_OFF
:
928 case LINUX_REBOOT_CMD_RESTART2
:
929 if (strncpy_from_user(&buffer
[0], arg
, sizeof(buffer
) - 1) < 0) {
933 buffer
[sizeof(buffer
) - 1] = '\0';
935 kernel_restart(buffer
);
938 case LINUX_REBOOT_CMD_KEXEC
:
943 #ifdef CONFIG_SOFTWARE_SUSPEND
944 case LINUX_REBOOT_CMD_SW_SUSPEND
:
946 int ret
= hibernate();
960 static void deferred_cad(struct work_struct
*dummy
)
962 kernel_restart(NULL
);
966 * This function gets called by ctrl-alt-del - ie the keyboard interrupt.
967 * As it's called within an interrupt, it may NOT sync: the only choice
968 * is whether to reboot at once, or just ignore the ctrl-alt-del.
970 void ctrl_alt_del(void)
972 static DECLARE_WORK(cad_work
, deferred_cad
);
975 schedule_work(&cad_work
);
977 kill_cad_pid(SIGINT
, 1);
981 * Unprivileged users may change the real gid to the effective gid
982 * or vice versa. (BSD-style)
984 * If you set the real gid at all, or set the effective gid to a value not
985 * equal to the real gid, then the saved gid is set to the new effective gid.
987 * This makes it possible for a setgid program to completely drop its
988 * privileges, which is often a useful assertion to make when you are doing
989 * a security audit over a program.
991 * The general idea is that a program which uses just setregid() will be
992 * 100% compatible with BSD. A program which uses just setgid() will be
993 * 100% compatible with POSIX with saved IDs.
995 * SMP: There are not races, the GIDs are checked only by filesystem
996 * operations (as far as semantic preservation is concerned).
998 asmlinkage
long sys_setregid(gid_t rgid
, gid_t egid
)
1000 int old_rgid
= current
->gid
;
1001 int old_egid
= current
->egid
;
1002 int new_rgid
= old_rgid
;
1003 int new_egid
= old_egid
;
1006 retval
= security_task_setgid(rgid
, egid
, (gid_t
)-1, LSM_SETID_RE
);
1010 if (rgid
!= (gid_t
) -1) {
1011 if ((old_rgid
== rgid
) ||
1012 (current
->egid
==rgid
) ||
1013 capable(CAP_SETGID
))
1018 if (egid
!= (gid_t
) -1) {
1019 if ((old_rgid
== egid
) ||
1020 (current
->egid
== egid
) ||
1021 (current
->sgid
== egid
) ||
1022 capable(CAP_SETGID
))
1027 if (new_egid
!= old_egid
) {
1028 current
->mm
->dumpable
= suid_dumpable
;
1031 if (rgid
!= (gid_t
) -1 ||
1032 (egid
!= (gid_t
) -1 && egid
!= old_rgid
))
1033 current
->sgid
= new_egid
;
1034 current
->fsgid
= new_egid
;
1035 current
->egid
= new_egid
;
1036 current
->gid
= new_rgid
;
1037 key_fsgid_changed(current
);
1038 proc_id_connector(current
, PROC_EVENT_GID
);
1043 * setgid() is implemented like SysV w/ SAVED_IDS
1045 * SMP: Same implicit races as above.
1047 asmlinkage
long sys_setgid(gid_t gid
)
1049 int old_egid
= current
->egid
;
1052 retval
= security_task_setgid(gid
, (gid_t
)-1, (gid_t
)-1, LSM_SETID_ID
);
1056 if (capable(CAP_SETGID
)) {
1057 if (old_egid
!= gid
) {
1058 current
->mm
->dumpable
= suid_dumpable
;
1061 current
->gid
= current
->egid
= current
->sgid
= current
->fsgid
= gid
;
1062 } else if ((gid
== current
->gid
) || (gid
== current
->sgid
)) {
1063 if (old_egid
!= gid
) {
1064 current
->mm
->dumpable
= suid_dumpable
;
1067 current
->egid
= current
->fsgid
= gid
;
1072 key_fsgid_changed(current
);
1073 proc_id_connector(current
, PROC_EVENT_GID
);
1077 static int set_user(uid_t new_ruid
, int dumpclear
)
1079 struct user_struct
*new_user
;
1081 new_user
= alloc_uid(new_ruid
);
1085 if (atomic_read(&new_user
->processes
) >=
1086 current
->signal
->rlim
[RLIMIT_NPROC
].rlim_cur
&&
1087 new_user
!= &root_user
) {
1092 switch_uid(new_user
);
1095 current
->mm
->dumpable
= suid_dumpable
;
1098 current
->uid
= new_ruid
;
1103 * Unprivileged users may change the real uid to the effective uid
1104 * or vice versa. (BSD-style)
1106 * If you set the real uid at all, or set the effective uid to a value not
1107 * equal to the real uid, then the saved uid is set to the new effective uid.
1109 * This makes it possible for a setuid program to completely drop its
1110 * privileges, which is often a useful assertion to make when you are doing
1111 * a security audit over a program.
1113 * The general idea is that a program which uses just setreuid() will be
1114 * 100% compatible with BSD. A program which uses just setuid() will be
1115 * 100% compatible with POSIX with saved IDs.
1117 asmlinkage
long sys_setreuid(uid_t ruid
, uid_t euid
)
1119 int old_ruid
, old_euid
, old_suid
, new_ruid
, new_euid
;
1122 retval
= security_task_setuid(ruid
, euid
, (uid_t
)-1, LSM_SETID_RE
);
1126 new_ruid
= old_ruid
= current
->uid
;
1127 new_euid
= old_euid
= current
->euid
;
1128 old_suid
= current
->suid
;
1130 if (ruid
!= (uid_t
) -1) {
1132 if ((old_ruid
!= ruid
) &&
1133 (current
->euid
!= ruid
) &&
1134 !capable(CAP_SETUID
))
1138 if (euid
!= (uid_t
) -1) {
1140 if ((old_ruid
!= euid
) &&
1141 (current
->euid
!= euid
) &&
1142 (current
->suid
!= euid
) &&
1143 !capable(CAP_SETUID
))
1147 if (new_ruid
!= old_ruid
&& set_user(new_ruid
, new_euid
!= old_euid
) < 0)
1150 if (new_euid
!= old_euid
) {
1151 current
->mm
->dumpable
= suid_dumpable
;
1154 current
->fsuid
= current
->euid
= new_euid
;
1155 if (ruid
!= (uid_t
) -1 ||
1156 (euid
!= (uid_t
) -1 && euid
!= old_ruid
))
1157 current
->suid
= current
->euid
;
1158 current
->fsuid
= current
->euid
;
1160 key_fsuid_changed(current
);
1161 proc_id_connector(current
, PROC_EVENT_UID
);
1163 return security_task_post_setuid(old_ruid
, old_euid
, old_suid
, LSM_SETID_RE
);
1169 * setuid() is implemented like SysV with SAVED_IDS
1171 * Note that SAVED_ID's is deficient in that a setuid root program
1172 * like sendmail, for example, cannot set its uid to be a normal
1173 * user and then switch back, because if you're root, setuid() sets
1174 * the saved uid too. If you don't like this, blame the bright people
1175 * in the POSIX committee and/or USG. Note that the BSD-style setreuid()
1176 * will allow a root program to temporarily drop privileges and be able to
1177 * regain them by swapping the real and effective uid.
1179 asmlinkage
long sys_setuid(uid_t uid
)
1181 int old_euid
= current
->euid
;
1182 int old_ruid
, old_suid
, new_suid
;
1185 retval
= security_task_setuid(uid
, (uid_t
)-1, (uid_t
)-1, LSM_SETID_ID
);
1189 old_ruid
= current
->uid
;
1190 old_suid
= current
->suid
;
1191 new_suid
= old_suid
;
1193 if (capable(CAP_SETUID
)) {
1194 if (uid
!= old_ruid
&& set_user(uid
, old_euid
!= uid
) < 0)
1197 } else if ((uid
!= current
->uid
) && (uid
!= new_suid
))
1200 if (old_euid
!= uid
) {
1201 current
->mm
->dumpable
= suid_dumpable
;
1204 current
->fsuid
= current
->euid
= uid
;
1205 current
->suid
= new_suid
;
1207 key_fsuid_changed(current
);
1208 proc_id_connector(current
, PROC_EVENT_UID
);
1210 return security_task_post_setuid(old_ruid
, old_euid
, old_suid
, LSM_SETID_ID
);
1215 * This function implements a generic ability to update ruid, euid,
1216 * and suid. This allows you to implement the 4.4 compatible seteuid().
1218 asmlinkage
long sys_setresuid(uid_t ruid
, uid_t euid
, uid_t suid
)
1220 int old_ruid
= current
->uid
;
1221 int old_euid
= current
->euid
;
1222 int old_suid
= current
->suid
;
1225 retval
= security_task_setuid(ruid
, euid
, suid
, LSM_SETID_RES
);
1229 if (!capable(CAP_SETUID
)) {
1230 if ((ruid
!= (uid_t
) -1) && (ruid
!= current
->uid
) &&
1231 (ruid
!= current
->euid
) && (ruid
!= current
->suid
))
1233 if ((euid
!= (uid_t
) -1) && (euid
!= current
->uid
) &&
1234 (euid
!= current
->euid
) && (euid
!= current
->suid
))
1236 if ((suid
!= (uid_t
) -1) && (suid
!= current
->uid
) &&
1237 (suid
!= current
->euid
) && (suid
!= current
->suid
))
1240 if (ruid
!= (uid_t
) -1) {
1241 if (ruid
!= current
->uid
&& set_user(ruid
, euid
!= current
->euid
) < 0)
1244 if (euid
!= (uid_t
) -1) {
1245 if (euid
!= current
->euid
) {
1246 current
->mm
->dumpable
= suid_dumpable
;
1249 current
->euid
= euid
;
1251 current
->fsuid
= current
->euid
;
1252 if (suid
!= (uid_t
) -1)
1253 current
->suid
= suid
;
1255 key_fsuid_changed(current
);
1256 proc_id_connector(current
, PROC_EVENT_UID
);
1258 return security_task_post_setuid(old_ruid
, old_euid
, old_suid
, LSM_SETID_RES
);
1261 asmlinkage
long sys_getresuid(uid_t __user
*ruid
, uid_t __user
*euid
, uid_t __user
*suid
)
1265 if (!(retval
= put_user(current
->uid
, ruid
)) &&
1266 !(retval
= put_user(current
->euid
, euid
)))
1267 retval
= put_user(current
->suid
, suid
);
1273 * Same as above, but for rgid, egid, sgid.
1275 asmlinkage
long sys_setresgid(gid_t rgid
, gid_t egid
, gid_t sgid
)
1279 retval
= security_task_setgid(rgid
, egid
, sgid
, LSM_SETID_RES
);
1283 if (!capable(CAP_SETGID
)) {
1284 if ((rgid
!= (gid_t
) -1) && (rgid
!= current
->gid
) &&
1285 (rgid
!= current
->egid
) && (rgid
!= current
->sgid
))
1287 if ((egid
!= (gid_t
) -1) && (egid
!= current
->gid
) &&
1288 (egid
!= current
->egid
) && (egid
!= current
->sgid
))
1290 if ((sgid
!= (gid_t
) -1) && (sgid
!= current
->gid
) &&
1291 (sgid
!= current
->egid
) && (sgid
!= current
->sgid
))
1294 if (egid
!= (gid_t
) -1) {
1295 if (egid
!= current
->egid
) {
1296 current
->mm
->dumpable
= suid_dumpable
;
1299 current
->egid
= egid
;
1301 current
->fsgid
= current
->egid
;
1302 if (rgid
!= (gid_t
) -1)
1303 current
->gid
= rgid
;
1304 if (sgid
!= (gid_t
) -1)
1305 current
->sgid
= sgid
;
1307 key_fsgid_changed(current
);
1308 proc_id_connector(current
, PROC_EVENT_GID
);
1312 asmlinkage
long sys_getresgid(gid_t __user
*rgid
, gid_t __user
*egid
, gid_t __user
*sgid
)
1316 if (!(retval
= put_user(current
->gid
, rgid
)) &&
1317 !(retval
= put_user(current
->egid
, egid
)))
1318 retval
= put_user(current
->sgid
, sgid
);
1325 * "setfsuid()" sets the fsuid - the uid used for filesystem checks. This
1326 * is used for "access()" and for the NFS daemon (letting nfsd stay at
1327 * whatever uid it wants to). It normally shadows "euid", except when
1328 * explicitly set by setfsuid() or for access..
1330 asmlinkage
long sys_setfsuid(uid_t uid
)
1334 old_fsuid
= current
->fsuid
;
1335 if (security_task_setuid(uid
, (uid_t
)-1, (uid_t
)-1, LSM_SETID_FS
))
1338 if (uid
== current
->uid
|| uid
== current
->euid
||
1339 uid
== current
->suid
|| uid
== current
->fsuid
||
1340 capable(CAP_SETUID
)) {
1341 if (uid
!= old_fsuid
) {
1342 current
->mm
->dumpable
= suid_dumpable
;
1345 current
->fsuid
= uid
;
1348 key_fsuid_changed(current
);
1349 proc_id_connector(current
, PROC_EVENT_UID
);
1351 security_task_post_setuid(old_fsuid
, (uid_t
)-1, (uid_t
)-1, LSM_SETID_FS
);
1357 * Samma på svenska..
1359 asmlinkage
long sys_setfsgid(gid_t gid
)
1363 old_fsgid
= current
->fsgid
;
1364 if (security_task_setgid(gid
, (gid_t
)-1, (gid_t
)-1, LSM_SETID_FS
))
1367 if (gid
== current
->gid
|| gid
== current
->egid
||
1368 gid
== current
->sgid
|| gid
== current
->fsgid
||
1369 capable(CAP_SETGID
)) {
1370 if (gid
!= old_fsgid
) {
1371 current
->mm
->dumpable
= suid_dumpable
;
1374 current
->fsgid
= gid
;
1375 key_fsgid_changed(current
);
1376 proc_id_connector(current
, PROC_EVENT_GID
);
1381 asmlinkage
long sys_times(struct tms __user
* tbuf
)
1384 * In the SMP world we might just be unlucky and have one of
1385 * the times increment as we use it. Since the value is an
1386 * atomically safe type this is just fine. Conceptually its
1387 * as if the syscall took an instant longer to occur.
1391 struct task_struct
*tsk
= current
;
1392 struct task_struct
*t
;
1393 cputime_t utime
, stime
, cutime
, cstime
;
1395 spin_lock_irq(&tsk
->sighand
->siglock
);
1396 utime
= tsk
->signal
->utime
;
1397 stime
= tsk
->signal
->stime
;
1400 utime
= cputime_add(utime
, t
->utime
);
1401 stime
= cputime_add(stime
, t
->stime
);
1405 cutime
= tsk
->signal
->cutime
;
1406 cstime
= tsk
->signal
->cstime
;
1407 spin_unlock_irq(&tsk
->sighand
->siglock
);
1409 tmp
.tms_utime
= cputime_to_clock_t(utime
);
1410 tmp
.tms_stime
= cputime_to_clock_t(stime
);
1411 tmp
.tms_cutime
= cputime_to_clock_t(cutime
);
1412 tmp
.tms_cstime
= cputime_to_clock_t(cstime
);
1413 if (copy_to_user(tbuf
, &tmp
, sizeof(struct tms
)))
1416 return (long) jiffies_64_to_clock_t(get_jiffies_64());
1420 * This needs some heavy checking ...
1421 * I just haven't the stomach for it. I also don't fully
1422 * understand sessions/pgrp etc. Let somebody who does explain it.
1424 * OK, I think I have the protection semantics right.... this is really
1425 * only important on a multi-user system anyway, to make sure one user
1426 * can't send a signal to a process owned by another. -TYT, 12/12/91
1428 * Auch. Had to add the 'did_exec' flag to conform completely to POSIX.
1432 asmlinkage
long sys_setpgid(pid_t pid
, pid_t pgid
)
1434 struct task_struct
*p
;
1435 struct task_struct
*group_leader
= current
->group_leader
;
1439 pid
= group_leader
->pid
;
1445 /* From this point forward we keep holding onto the tasklist lock
1446 * so that our parent does not change from under us. -DaveM
1448 write_lock_irq(&tasklist_lock
);
1451 p
= find_task_by_pid(pid
);
1456 if (!thread_group_leader(p
))
1459 if (p
->real_parent
== group_leader
) {
1461 if (task_session(p
) != task_session(group_leader
))
1468 if (p
!= group_leader
)
1473 if (p
->signal
->leader
)
1477 struct task_struct
*g
=
1478 find_task_by_pid_type(PIDTYPE_PGID
, pgid
);
1480 if (!g
|| task_session(g
) != task_session(group_leader
))
1484 err
= security_task_setpgid(p
, pgid
);
1488 if (process_group(p
) != pgid
) {
1489 detach_pid(p
, PIDTYPE_PGID
);
1490 p
->signal
->pgrp
= pgid
;
1491 attach_pid(p
, PIDTYPE_PGID
, find_pid(pgid
));
1496 /* All paths lead to here, thus we are safe. -DaveM */
1497 write_unlock_irq(&tasklist_lock
);
1501 asmlinkage
long sys_getpgid(pid_t pid
)
1504 return process_group(current
);
1507 struct task_struct
*p
;
1509 read_lock(&tasklist_lock
);
1510 p
= find_task_by_pid(pid
);
1514 retval
= security_task_getpgid(p
);
1516 retval
= process_group(p
);
1518 read_unlock(&tasklist_lock
);
1523 #ifdef __ARCH_WANT_SYS_GETPGRP
1525 asmlinkage
long sys_getpgrp(void)
1527 /* SMP - assuming writes are word atomic this is fine */
1528 return process_group(current
);
1533 asmlinkage
long sys_getsid(pid_t pid
)
1536 return process_session(current
);
1539 struct task_struct
*p
;
1541 read_lock(&tasklist_lock
);
1542 p
= find_task_by_pid(pid
);
1546 retval
= security_task_getsid(p
);
1548 retval
= process_session(p
);
1550 read_unlock(&tasklist_lock
);
1555 asmlinkage
long sys_setsid(void)
1557 struct task_struct
*group_leader
= current
->group_leader
;
1561 write_lock_irq(&tasklist_lock
);
1563 /* Fail if I am already a session leader */
1564 if (group_leader
->signal
->leader
)
1567 session
= group_leader
->pid
;
1568 /* Fail if a process group id already exists that equals the
1569 * proposed session id.
1571 * Don't check if session id == 1 because kernel threads use this
1572 * session id and so the check will always fail and make it so
1573 * init cannot successfully call setsid.
1575 if (session
> 1 && find_task_by_pid_type(PIDTYPE_PGID
, session
))
1578 group_leader
->signal
->leader
= 1;
1579 __set_special_pids(session
, session
);
1581 spin_lock(&group_leader
->sighand
->siglock
);
1582 group_leader
->signal
->tty
= NULL
;
1583 spin_unlock(&group_leader
->sighand
->siglock
);
1585 err
= process_group(group_leader
);
1587 write_unlock_irq(&tasklist_lock
);
1592 * Supplementary group IDs
1595 /* init to 2 - one for init_task, one to ensure it is never freed */
1596 struct group_info init_groups
= { .usage
= ATOMIC_INIT(2) };
1598 struct group_info
*groups_alloc(int gidsetsize
)
1600 struct group_info
*group_info
;
1604 nblocks
= (gidsetsize
+ NGROUPS_PER_BLOCK
- 1) / NGROUPS_PER_BLOCK
;
1605 /* Make sure we always allocate at least one indirect block pointer */
1606 nblocks
= nblocks
? : 1;
1607 group_info
= kmalloc(sizeof(*group_info
) + nblocks
*sizeof(gid_t
*), GFP_USER
);
1610 group_info
->ngroups
= gidsetsize
;
1611 group_info
->nblocks
= nblocks
;
1612 atomic_set(&group_info
->usage
, 1);
1614 if (gidsetsize
<= NGROUPS_SMALL
)
1615 group_info
->blocks
[0] = group_info
->small_block
;
1617 for (i
= 0; i
< nblocks
; i
++) {
1619 b
= (void *)__get_free_page(GFP_USER
);
1621 goto out_undo_partial_alloc
;
1622 group_info
->blocks
[i
] = b
;
1627 out_undo_partial_alloc
:
1629 free_page((unsigned long)group_info
->blocks
[i
]);
1635 EXPORT_SYMBOL(groups_alloc
);
1637 void groups_free(struct group_info
*group_info
)
1639 if (group_info
->blocks
[0] != group_info
->small_block
) {
1641 for (i
= 0; i
< group_info
->nblocks
; i
++)
1642 free_page((unsigned long)group_info
->blocks
[i
]);
1647 EXPORT_SYMBOL(groups_free
);
1649 /* export the group_info to a user-space array */
1650 static int groups_to_user(gid_t __user
*grouplist
,
1651 struct group_info
*group_info
)
1654 int count
= group_info
->ngroups
;
1656 for (i
= 0; i
< group_info
->nblocks
; i
++) {
1657 int cp_count
= min(NGROUPS_PER_BLOCK
, count
);
1658 int off
= i
* NGROUPS_PER_BLOCK
;
1659 int len
= cp_count
* sizeof(*grouplist
);
1661 if (copy_to_user(grouplist
+off
, group_info
->blocks
[i
], len
))
1669 /* fill a group_info from a user-space array - it must be allocated already */
1670 static int groups_from_user(struct group_info
*group_info
,
1671 gid_t __user
*grouplist
)
1674 int count
= group_info
->ngroups
;
1676 for (i
= 0; i
< group_info
->nblocks
; i
++) {
1677 int cp_count
= min(NGROUPS_PER_BLOCK
, count
);
1678 int off
= i
* NGROUPS_PER_BLOCK
;
1679 int len
= cp_count
* sizeof(*grouplist
);
1681 if (copy_from_user(group_info
->blocks
[i
], grouplist
+off
, len
))
1689 /* a simple Shell sort */
1690 static void groups_sort(struct group_info
*group_info
)
1692 int base
, max
, stride
;
1693 int gidsetsize
= group_info
->ngroups
;
1695 for (stride
= 1; stride
< gidsetsize
; stride
= 3 * stride
+ 1)
1700 max
= gidsetsize
- stride
;
1701 for (base
= 0; base
< max
; base
++) {
1703 int right
= left
+ stride
;
1704 gid_t tmp
= GROUP_AT(group_info
, right
);
1706 while (left
>= 0 && GROUP_AT(group_info
, left
) > tmp
) {
1707 GROUP_AT(group_info
, right
) =
1708 GROUP_AT(group_info
, left
);
1712 GROUP_AT(group_info
, right
) = tmp
;
1718 /* a simple bsearch */
1719 int groups_search(struct group_info
*group_info
, gid_t grp
)
1721 unsigned int left
, right
;
1727 right
= group_info
->ngroups
;
1728 while (left
< right
) {
1729 unsigned int mid
= (left
+right
)/2;
1730 int cmp
= grp
- GROUP_AT(group_info
, mid
);
1741 /* validate and set current->group_info */
1742 int set_current_groups(struct group_info
*group_info
)
1745 struct group_info
*old_info
;
1747 retval
= security_task_setgroups(group_info
);
1751 groups_sort(group_info
);
1752 get_group_info(group_info
);
1755 old_info
= current
->group_info
;
1756 current
->group_info
= group_info
;
1757 task_unlock(current
);
1759 put_group_info(old_info
);
1764 EXPORT_SYMBOL(set_current_groups
);
1766 asmlinkage
long sys_getgroups(int gidsetsize
, gid_t __user
*grouplist
)
1771 * SMP: Nobody else can change our grouplist. Thus we are
1778 /* no need to grab task_lock here; it cannot change */
1779 i
= current
->group_info
->ngroups
;
1781 if (i
> gidsetsize
) {
1785 if (groups_to_user(grouplist
, current
->group_info
)) {
1795 * SMP: Our groups are copy-on-write. We can set them safely
1796 * without another task interfering.
1799 asmlinkage
long sys_setgroups(int gidsetsize
, gid_t __user
*grouplist
)
1801 struct group_info
*group_info
;
1804 if (!capable(CAP_SETGID
))
1806 if ((unsigned)gidsetsize
> NGROUPS_MAX
)
1809 group_info
= groups_alloc(gidsetsize
);
1812 retval
= groups_from_user(group_info
, grouplist
);
1814 put_group_info(group_info
);
1818 retval
= set_current_groups(group_info
);
1819 put_group_info(group_info
);
1825 * Check whether we're fsgid/egid or in the supplemental group..
1827 int in_group_p(gid_t grp
)
1830 if (grp
!= current
->fsgid
)
1831 retval
= groups_search(current
->group_info
, grp
);
1835 EXPORT_SYMBOL(in_group_p
);
1837 int in_egroup_p(gid_t grp
)
1840 if (grp
!= current
->egid
)
1841 retval
= groups_search(current
->group_info
, grp
);
1845 EXPORT_SYMBOL(in_egroup_p
);
1847 DECLARE_RWSEM(uts_sem
);
1849 EXPORT_SYMBOL(uts_sem
);
1851 asmlinkage
long sys_newuname(struct new_utsname __user
* name
)
1855 down_read(&uts_sem
);
1856 if (copy_to_user(name
, utsname(), sizeof *name
))
1862 asmlinkage
long sys_sethostname(char __user
*name
, int len
)
1865 char tmp
[__NEW_UTS_LEN
];
1867 if (!capable(CAP_SYS_ADMIN
))
1869 if (len
< 0 || len
> __NEW_UTS_LEN
)
1871 down_write(&uts_sem
);
1873 if (!copy_from_user(tmp
, name
, len
)) {
1874 memcpy(utsname()->nodename
, tmp
, len
);
1875 utsname()->nodename
[len
] = 0;
1882 #ifdef __ARCH_WANT_SYS_GETHOSTNAME
1884 asmlinkage
long sys_gethostname(char __user
*name
, int len
)
1890 down_read(&uts_sem
);
1891 i
= 1 + strlen(utsname()->nodename
);
1895 if (copy_to_user(name
, utsname()->nodename
, i
))
1904 * Only setdomainname; getdomainname can be implemented by calling
1907 asmlinkage
long sys_setdomainname(char __user
*name
, int len
)
1910 char tmp
[__NEW_UTS_LEN
];
1912 if (!capable(CAP_SYS_ADMIN
))
1914 if (len
< 0 || len
> __NEW_UTS_LEN
)
1917 down_write(&uts_sem
);
1919 if (!copy_from_user(tmp
, name
, len
)) {
1920 memcpy(utsname()->domainname
, tmp
, len
);
1921 utsname()->domainname
[len
] = 0;
1928 asmlinkage
long sys_getrlimit(unsigned int resource
, struct rlimit __user
*rlim
)
1930 if (resource
>= RLIM_NLIMITS
)
1933 struct rlimit value
;
1934 task_lock(current
->group_leader
);
1935 value
= current
->signal
->rlim
[resource
];
1936 task_unlock(current
->group_leader
);
1937 return copy_to_user(rlim
, &value
, sizeof(*rlim
)) ? -EFAULT
: 0;
1941 #ifdef __ARCH_WANT_SYS_OLD_GETRLIMIT
1944 * Back compatibility for getrlimit. Needed for some apps.
1947 asmlinkage
long sys_old_getrlimit(unsigned int resource
, struct rlimit __user
*rlim
)
1950 if (resource
>= RLIM_NLIMITS
)
1953 task_lock(current
->group_leader
);
1954 x
= current
->signal
->rlim
[resource
];
1955 task_unlock(current
->group_leader
);
1956 if (x
.rlim_cur
> 0x7FFFFFFF)
1957 x
.rlim_cur
= 0x7FFFFFFF;
1958 if (x
.rlim_max
> 0x7FFFFFFF)
1959 x
.rlim_max
= 0x7FFFFFFF;
1960 return copy_to_user(rlim
, &x
, sizeof(x
))?-EFAULT
:0;
1965 asmlinkage
long sys_setrlimit(unsigned int resource
, struct rlimit __user
*rlim
)
1967 struct rlimit new_rlim
, *old_rlim
;
1968 unsigned long it_prof_secs
;
1971 if (resource
>= RLIM_NLIMITS
)
1973 if (copy_from_user(&new_rlim
, rlim
, sizeof(*rlim
)))
1975 if (new_rlim
.rlim_cur
> new_rlim
.rlim_max
)
1977 old_rlim
= current
->signal
->rlim
+ resource
;
1978 if ((new_rlim
.rlim_max
> old_rlim
->rlim_max
) &&
1979 !capable(CAP_SYS_RESOURCE
))
1981 if (resource
== RLIMIT_NOFILE
&& new_rlim
.rlim_max
> NR_OPEN
)
1984 retval
= security_task_setrlimit(resource
, &new_rlim
);
1988 if (resource
== RLIMIT_CPU
&& new_rlim
.rlim_cur
== 0) {
1990 * The caller is asking for an immediate RLIMIT_CPU
1991 * expiry. But we use the zero value to mean "it was
1992 * never set". So let's cheat and make it one second
1995 new_rlim
.rlim_cur
= 1;
1998 task_lock(current
->group_leader
);
1999 *old_rlim
= new_rlim
;
2000 task_unlock(current
->group_leader
);
2002 if (resource
!= RLIMIT_CPU
)
2006 * RLIMIT_CPU handling. Note that the kernel fails to return an error
2007 * code if it rejected the user's attempt to set RLIMIT_CPU. This is a
2008 * very long-standing error, and fixing it now risks breakage of
2009 * applications, so we live with it
2011 if (new_rlim
.rlim_cur
== RLIM_INFINITY
)
2014 it_prof_secs
= cputime_to_secs(current
->signal
->it_prof_expires
);
2015 if (it_prof_secs
== 0 || new_rlim
.rlim_cur
<= it_prof_secs
) {
2016 unsigned long rlim_cur
= new_rlim
.rlim_cur
;
2019 cputime
= secs_to_cputime(rlim_cur
);
2020 read_lock(&tasklist_lock
);
2021 spin_lock_irq(¤t
->sighand
->siglock
);
2022 set_process_cpu_timer(current
, CPUCLOCK_PROF
, &cputime
, NULL
);
2023 spin_unlock_irq(¤t
->sighand
->siglock
);
2024 read_unlock(&tasklist_lock
);
2031 * It would make sense to put struct rusage in the task_struct,
2032 * except that would make the task_struct be *really big*. After
2033 * task_struct gets moved into malloc'ed memory, it would
2034 * make sense to do this. It will make moving the rest of the information
2035 * a lot simpler! (Which we're not doing right now because we're not
2036 * measuring them yet).
2038 * When sampling multiple threads for RUSAGE_SELF, under SMP we might have
2039 * races with threads incrementing their own counters. But since word
2040 * reads are atomic, we either get new values or old values and we don't
2041 * care which for the sums. We always take the siglock to protect reading
2042 * the c* fields from p->signal from races with exit.c updating those
2043 * fields when reaping, so a sample either gets all the additions of a
2044 * given child after it's reaped, or none so this sample is before reaping.
2047 * We need to take the siglock for CHILDEREN, SELF and BOTH
2048 * for the cases current multithreaded, non-current single threaded
2049 * non-current multithreaded. Thread traversal is now safe with
2051 * Strictly speaking, we donot need to take the siglock if we are current and
2052 * single threaded, as no one else can take our signal_struct away, no one
2053 * else can reap the children to update signal->c* counters, and no one else
2054 * can race with the signal-> fields. If we do not take any lock, the
2055 * signal-> fields could be read out of order while another thread was just
2056 * exiting. So we should place a read memory barrier when we avoid the lock.
2057 * On the writer side, write memory barrier is implied in __exit_signal
2058 * as __exit_signal releases the siglock spinlock after updating the signal->
2059 * fields. But we don't do this yet to keep things simple.
2063 static void k_getrusage(struct task_struct
*p
, int who
, struct rusage
*r
)
2065 struct task_struct
*t
;
2066 unsigned long flags
;
2067 cputime_t utime
, stime
;
2069 memset((char *) r
, 0, sizeof *r
);
2070 utime
= stime
= cputime_zero
;
2073 if (!lock_task_sighand(p
, &flags
)) {
2080 case RUSAGE_CHILDREN
:
2081 utime
= p
->signal
->cutime
;
2082 stime
= p
->signal
->cstime
;
2083 r
->ru_nvcsw
= p
->signal
->cnvcsw
;
2084 r
->ru_nivcsw
= p
->signal
->cnivcsw
;
2085 r
->ru_minflt
= p
->signal
->cmin_flt
;
2086 r
->ru_majflt
= p
->signal
->cmaj_flt
;
2087 r
->ru_inblock
= p
->signal
->cinblock
;
2088 r
->ru_oublock
= p
->signal
->coublock
;
2090 if (who
== RUSAGE_CHILDREN
)
2094 utime
= cputime_add(utime
, p
->signal
->utime
);
2095 stime
= cputime_add(stime
, p
->signal
->stime
);
2096 r
->ru_nvcsw
+= p
->signal
->nvcsw
;
2097 r
->ru_nivcsw
+= p
->signal
->nivcsw
;
2098 r
->ru_minflt
+= p
->signal
->min_flt
;
2099 r
->ru_majflt
+= p
->signal
->maj_flt
;
2100 r
->ru_inblock
+= p
->signal
->inblock
;
2101 r
->ru_oublock
+= p
->signal
->oublock
;
2104 utime
= cputime_add(utime
, t
->utime
);
2105 stime
= cputime_add(stime
, t
->stime
);
2106 r
->ru_nvcsw
+= t
->nvcsw
;
2107 r
->ru_nivcsw
+= t
->nivcsw
;
2108 r
->ru_minflt
+= t
->min_flt
;
2109 r
->ru_majflt
+= t
->maj_flt
;
2110 r
->ru_inblock
+= task_io_get_inblock(t
);
2111 r
->ru_oublock
+= task_io_get_oublock(t
);
2120 unlock_task_sighand(p
, &flags
);
2123 cputime_to_timeval(utime
, &r
->ru_utime
);
2124 cputime_to_timeval(stime
, &r
->ru_stime
);
2127 int getrusage(struct task_struct
*p
, int who
, struct rusage __user
*ru
)
2130 k_getrusage(p
, who
, &r
);
2131 return copy_to_user(ru
, &r
, sizeof(r
)) ? -EFAULT
: 0;
2134 asmlinkage
long sys_getrusage(int who
, struct rusage __user
*ru
)
2136 if (who
!= RUSAGE_SELF
&& who
!= RUSAGE_CHILDREN
)
2138 return getrusage(current
, who
, ru
);
2141 asmlinkage
long sys_umask(int mask
)
2143 mask
= xchg(¤t
->fs
->umask
, mask
& S_IRWXUGO
);
2147 asmlinkage
long sys_prctl(int option
, unsigned long arg2
, unsigned long arg3
,
2148 unsigned long arg4
, unsigned long arg5
)
2152 error
= security_task_prctl(option
, arg2
, arg3
, arg4
, arg5
);
2157 case PR_SET_PDEATHSIG
:
2158 if (!valid_signal(arg2
)) {
2162 current
->pdeath_signal
= arg2
;
2164 case PR_GET_PDEATHSIG
:
2165 error
= put_user(current
->pdeath_signal
, (int __user
*)arg2
);
2167 case PR_GET_DUMPABLE
:
2168 error
= current
->mm
->dumpable
;
2170 case PR_SET_DUMPABLE
:
2171 if (arg2
< 0 || arg2
> 1) {
2175 current
->mm
->dumpable
= arg2
;
2178 case PR_SET_UNALIGN
:
2179 error
= SET_UNALIGN_CTL(current
, arg2
);
2181 case PR_GET_UNALIGN
:
2182 error
= GET_UNALIGN_CTL(current
, arg2
);
2185 error
= SET_FPEMU_CTL(current
, arg2
);
2188 error
= GET_FPEMU_CTL(current
, arg2
);
2191 error
= SET_FPEXC_CTL(current
, arg2
);
2194 error
= GET_FPEXC_CTL(current
, arg2
);
2197 error
= PR_TIMING_STATISTICAL
;
2200 if (arg2
== PR_TIMING_STATISTICAL
)
2206 case PR_GET_KEEPCAPS
:
2207 if (current
->keep_capabilities
)
2210 case PR_SET_KEEPCAPS
:
2211 if (arg2
!= 0 && arg2
!= 1) {
2215 current
->keep_capabilities
= arg2
;
2218 struct task_struct
*me
= current
;
2219 unsigned char ncomm
[sizeof(me
->comm
)];
2221 ncomm
[sizeof(me
->comm
)-1] = 0;
2222 if (strncpy_from_user(ncomm
, (char __user
*)arg2
,
2223 sizeof(me
->comm
)-1) < 0)
2225 set_task_comm(me
, ncomm
);
2229 struct task_struct
*me
= current
;
2230 unsigned char tcomm
[sizeof(me
->comm
)];
2232 get_task_comm(tcomm
, me
);
2233 if (copy_to_user((char __user
*)arg2
, tcomm
, sizeof(tcomm
)))
2238 error
= GET_ENDIAN(current
, arg2
);
2241 error
= SET_ENDIAN(current
, arg2
);
2251 asmlinkage
long sys_getcpu(unsigned __user
*cpup
, unsigned __user
*nodep
,
2252 struct getcpu_cache __user
*cache
)
2255 int cpu
= raw_smp_processor_id();
2257 err
|= put_user(cpu
, cpup
);
2259 err
|= put_user(cpu_to_node(cpu
), nodep
);
2262 * The cache is not needed for this implementation,
2263 * but make sure user programs pass something
2264 * valid. vsyscall implementations can instead make
2265 * good use of the cache. Only use t0 and t1 because
2266 * these are available in both 32bit and 64bit ABI (no
2267 * need for a compat_getcpu). 32bit has enough
2270 unsigned long t0
, t1
;
2271 get_user(t0
, &cache
->blob
[0]);
2272 get_user(t1
, &cache
->blob
[1]);
2275 put_user(t0
, &cache
->blob
[0]);
2276 put_user(t1
, &cache
->blob
[1]);
2278 return err
? -EFAULT
: 0;