[AF_UNIX]: Make code static.
[linux-2.6/mini2440.git] / block / ll_rw_blk.c
blob8c2caff87cc342819d53eb893f82269ea2205dec
1 /*
2 * Copyright (C) 1991, 1992 Linus Torvalds
3 * Copyright (C) 1994, Karl Keyte: Added support for disk statistics
4 * Elevator latency, (C) 2000 Andrea Arcangeli <andrea@suse.de> SuSE
5 * Queue request tables / lock, selectable elevator, Jens Axboe <axboe@suse.de>
6 * kernel-doc documentation started by NeilBrown <neilb@cse.unsw.edu.au> - July2000
7 * bio rewrite, highmem i/o, etc, Jens Axboe <axboe@suse.de> - may 2001
8 */
11 * This handles all read/write requests to block devices
13 #include <linux/kernel.h>
14 #include <linux/module.h>
15 #include <linux/backing-dev.h>
16 #include <linux/bio.h>
17 #include <linux/blkdev.h>
18 #include <linux/highmem.h>
19 #include <linux/mm.h>
20 #include <linux/kernel_stat.h>
21 #include <linux/string.h>
22 #include <linux/init.h>
23 #include <linux/bootmem.h> /* for max_pfn/max_low_pfn */
24 #include <linux/completion.h>
25 #include <linux/slab.h>
26 #include <linux/swap.h>
27 #include <linux/writeback.h>
28 #include <linux/task_io_accounting_ops.h>
29 #include <linux/interrupt.h>
30 #include <linux/cpu.h>
31 #include <linux/blktrace_api.h>
32 #include <linux/fault-inject.h>
35 * for max sense size
37 #include <scsi/scsi_cmnd.h>
39 static void blk_unplug_work(struct work_struct *work);
40 static void blk_unplug_timeout(unsigned long data);
41 static void drive_stat_acct(struct request *rq, int nr_sectors, int new_io);
42 static void init_request_from_bio(struct request *req, struct bio *bio);
43 static int __make_request(struct request_queue *q, struct bio *bio);
44 static struct io_context *current_io_context(gfp_t gfp_flags, int node);
47 * For the allocated request tables
49 static struct kmem_cache *request_cachep;
52 * For queue allocation
54 static struct kmem_cache *requestq_cachep;
57 * For io context allocations
59 static struct kmem_cache *iocontext_cachep;
62 * Controlling structure to kblockd
64 static struct workqueue_struct *kblockd_workqueue;
66 unsigned long blk_max_low_pfn, blk_max_pfn;
68 EXPORT_SYMBOL(blk_max_low_pfn);
69 EXPORT_SYMBOL(blk_max_pfn);
71 static DEFINE_PER_CPU(struct list_head, blk_cpu_done);
73 /* Amount of time in which a process may batch requests */
74 #define BLK_BATCH_TIME (HZ/50UL)
76 /* Number of requests a "batching" process may submit */
77 #define BLK_BATCH_REQ 32
80 * Return the threshold (number of used requests) at which the queue is
81 * considered to be congested. It include a little hysteresis to keep the
82 * context switch rate down.
84 static inline int queue_congestion_on_threshold(struct request_queue *q)
86 return q->nr_congestion_on;
90 * The threshold at which a queue is considered to be uncongested
92 static inline int queue_congestion_off_threshold(struct request_queue *q)
94 return q->nr_congestion_off;
97 static void blk_queue_congestion_threshold(struct request_queue *q)
99 int nr;
101 nr = q->nr_requests - (q->nr_requests / 8) + 1;
102 if (nr > q->nr_requests)
103 nr = q->nr_requests;
104 q->nr_congestion_on = nr;
106 nr = q->nr_requests - (q->nr_requests / 8) - (q->nr_requests / 16) - 1;
107 if (nr < 1)
108 nr = 1;
109 q->nr_congestion_off = nr;
113 * blk_get_backing_dev_info - get the address of a queue's backing_dev_info
114 * @bdev: device
116 * Locates the passed device's request queue and returns the address of its
117 * backing_dev_info
119 * Will return NULL if the request queue cannot be located.
121 struct backing_dev_info *blk_get_backing_dev_info(struct block_device *bdev)
123 struct backing_dev_info *ret = NULL;
124 struct request_queue *q = bdev_get_queue(bdev);
126 if (q)
127 ret = &q->backing_dev_info;
128 return ret;
130 EXPORT_SYMBOL(blk_get_backing_dev_info);
133 * blk_queue_prep_rq - set a prepare_request function for queue
134 * @q: queue
135 * @pfn: prepare_request function
137 * It's possible for a queue to register a prepare_request callback which
138 * is invoked before the request is handed to the request_fn. The goal of
139 * the function is to prepare a request for I/O, it can be used to build a
140 * cdb from the request data for instance.
143 void blk_queue_prep_rq(struct request_queue *q, prep_rq_fn *pfn)
145 q->prep_rq_fn = pfn;
148 EXPORT_SYMBOL(blk_queue_prep_rq);
151 * blk_queue_merge_bvec - set a merge_bvec function for queue
152 * @q: queue
153 * @mbfn: merge_bvec_fn
155 * Usually queues have static limitations on the max sectors or segments that
156 * we can put in a request. Stacking drivers may have some settings that
157 * are dynamic, and thus we have to query the queue whether it is ok to
158 * add a new bio_vec to a bio at a given offset or not. If the block device
159 * has such limitations, it needs to register a merge_bvec_fn to control
160 * the size of bio's sent to it. Note that a block device *must* allow a
161 * single page to be added to an empty bio. The block device driver may want
162 * to use the bio_split() function to deal with these bio's. By default
163 * no merge_bvec_fn is defined for a queue, and only the fixed limits are
164 * honored.
166 void blk_queue_merge_bvec(struct request_queue *q, merge_bvec_fn *mbfn)
168 q->merge_bvec_fn = mbfn;
171 EXPORT_SYMBOL(blk_queue_merge_bvec);
173 void blk_queue_softirq_done(struct request_queue *q, softirq_done_fn *fn)
175 q->softirq_done_fn = fn;
178 EXPORT_SYMBOL(blk_queue_softirq_done);
181 * blk_queue_make_request - define an alternate make_request function for a device
182 * @q: the request queue for the device to be affected
183 * @mfn: the alternate make_request function
185 * Description:
186 * The normal way for &struct bios to be passed to a device
187 * driver is for them to be collected into requests on a request
188 * queue, and then to allow the device driver to select requests
189 * off that queue when it is ready. This works well for many block
190 * devices. However some block devices (typically virtual devices
191 * such as md or lvm) do not benefit from the processing on the
192 * request queue, and are served best by having the requests passed
193 * directly to them. This can be achieved by providing a function
194 * to blk_queue_make_request().
196 * Caveat:
197 * The driver that does this *must* be able to deal appropriately
198 * with buffers in "highmemory". This can be accomplished by either calling
199 * __bio_kmap_atomic() to get a temporary kernel mapping, or by calling
200 * blk_queue_bounce() to create a buffer in normal memory.
202 void blk_queue_make_request(struct request_queue * q, make_request_fn * mfn)
205 * set defaults
207 q->nr_requests = BLKDEV_MAX_RQ;
208 blk_queue_max_phys_segments(q, MAX_PHYS_SEGMENTS);
209 blk_queue_max_hw_segments(q, MAX_HW_SEGMENTS);
210 q->make_request_fn = mfn;
211 q->backing_dev_info.ra_pages = (VM_MAX_READAHEAD * 1024) / PAGE_CACHE_SIZE;
212 q->backing_dev_info.state = 0;
213 q->backing_dev_info.capabilities = BDI_CAP_MAP_COPY;
214 blk_queue_max_sectors(q, SAFE_MAX_SECTORS);
215 blk_queue_hardsect_size(q, 512);
216 blk_queue_dma_alignment(q, 511);
217 blk_queue_congestion_threshold(q);
218 q->nr_batching = BLK_BATCH_REQ;
220 q->unplug_thresh = 4; /* hmm */
221 q->unplug_delay = (3 * HZ) / 1000; /* 3 milliseconds */
222 if (q->unplug_delay == 0)
223 q->unplug_delay = 1;
225 INIT_WORK(&q->unplug_work, blk_unplug_work);
227 q->unplug_timer.function = blk_unplug_timeout;
228 q->unplug_timer.data = (unsigned long)q;
231 * by default assume old behaviour and bounce for any highmem page
233 blk_queue_bounce_limit(q, BLK_BOUNCE_HIGH);
236 EXPORT_SYMBOL(blk_queue_make_request);
238 static void rq_init(struct request_queue *q, struct request *rq)
240 INIT_LIST_HEAD(&rq->queuelist);
241 INIT_LIST_HEAD(&rq->donelist);
243 rq->errors = 0;
244 rq->bio = rq->biotail = NULL;
245 INIT_HLIST_NODE(&rq->hash);
246 RB_CLEAR_NODE(&rq->rb_node);
247 rq->ioprio = 0;
248 rq->buffer = NULL;
249 rq->ref_count = 1;
250 rq->q = q;
251 rq->special = NULL;
252 rq->data_len = 0;
253 rq->data = NULL;
254 rq->nr_phys_segments = 0;
255 rq->sense = NULL;
256 rq->end_io = NULL;
257 rq->end_io_data = NULL;
258 rq->completion_data = NULL;
259 rq->next_rq = NULL;
263 * blk_queue_ordered - does this queue support ordered writes
264 * @q: the request queue
265 * @ordered: one of QUEUE_ORDERED_*
266 * @prepare_flush_fn: rq setup helper for cache flush ordered writes
268 * Description:
269 * For journalled file systems, doing ordered writes on a commit
270 * block instead of explicitly doing wait_on_buffer (which is bad
271 * for performance) can be a big win. Block drivers supporting this
272 * feature should call this function and indicate so.
275 int blk_queue_ordered(struct request_queue *q, unsigned ordered,
276 prepare_flush_fn *prepare_flush_fn)
278 if (ordered & (QUEUE_ORDERED_PREFLUSH | QUEUE_ORDERED_POSTFLUSH) &&
279 prepare_flush_fn == NULL) {
280 printk(KERN_ERR "blk_queue_ordered: prepare_flush_fn required\n");
281 return -EINVAL;
284 if (ordered != QUEUE_ORDERED_NONE &&
285 ordered != QUEUE_ORDERED_DRAIN &&
286 ordered != QUEUE_ORDERED_DRAIN_FLUSH &&
287 ordered != QUEUE_ORDERED_DRAIN_FUA &&
288 ordered != QUEUE_ORDERED_TAG &&
289 ordered != QUEUE_ORDERED_TAG_FLUSH &&
290 ordered != QUEUE_ORDERED_TAG_FUA) {
291 printk(KERN_ERR "blk_queue_ordered: bad value %d\n", ordered);
292 return -EINVAL;
295 q->ordered = ordered;
296 q->next_ordered = ordered;
297 q->prepare_flush_fn = prepare_flush_fn;
299 return 0;
302 EXPORT_SYMBOL(blk_queue_ordered);
305 * blk_queue_issue_flush_fn - set function for issuing a flush
306 * @q: the request queue
307 * @iff: the function to be called issuing the flush
309 * Description:
310 * If a driver supports issuing a flush command, the support is notified
311 * to the block layer by defining it through this call.
314 void blk_queue_issue_flush_fn(struct request_queue *q, issue_flush_fn *iff)
316 q->issue_flush_fn = iff;
319 EXPORT_SYMBOL(blk_queue_issue_flush_fn);
322 * Cache flushing for ordered writes handling
324 inline unsigned blk_ordered_cur_seq(struct request_queue *q)
326 if (!q->ordseq)
327 return 0;
328 return 1 << ffz(q->ordseq);
331 unsigned blk_ordered_req_seq(struct request *rq)
333 struct request_queue *q = rq->q;
335 BUG_ON(q->ordseq == 0);
337 if (rq == &q->pre_flush_rq)
338 return QUEUE_ORDSEQ_PREFLUSH;
339 if (rq == &q->bar_rq)
340 return QUEUE_ORDSEQ_BAR;
341 if (rq == &q->post_flush_rq)
342 return QUEUE_ORDSEQ_POSTFLUSH;
345 * !fs requests don't need to follow barrier ordering. Always
346 * put them at the front. This fixes the following deadlock.
348 * http://thread.gmane.org/gmane.linux.kernel/537473
350 if (!blk_fs_request(rq))
351 return QUEUE_ORDSEQ_DRAIN;
353 if ((rq->cmd_flags & REQ_ORDERED_COLOR) ==
354 (q->orig_bar_rq->cmd_flags & REQ_ORDERED_COLOR))
355 return QUEUE_ORDSEQ_DRAIN;
356 else
357 return QUEUE_ORDSEQ_DONE;
360 void blk_ordered_complete_seq(struct request_queue *q, unsigned seq, int error)
362 struct request *rq;
363 int uptodate;
365 if (error && !q->orderr)
366 q->orderr = error;
368 BUG_ON(q->ordseq & seq);
369 q->ordseq |= seq;
371 if (blk_ordered_cur_seq(q) != QUEUE_ORDSEQ_DONE)
372 return;
375 * Okay, sequence complete.
377 rq = q->orig_bar_rq;
378 uptodate = q->orderr ? q->orderr : 1;
380 q->ordseq = 0;
382 end_that_request_first(rq, uptodate, rq->hard_nr_sectors);
383 end_that_request_last(rq, uptodate);
386 static void pre_flush_end_io(struct request *rq, int error)
388 elv_completed_request(rq->q, rq);
389 blk_ordered_complete_seq(rq->q, QUEUE_ORDSEQ_PREFLUSH, error);
392 static void bar_end_io(struct request *rq, int error)
394 elv_completed_request(rq->q, rq);
395 blk_ordered_complete_seq(rq->q, QUEUE_ORDSEQ_BAR, error);
398 static void post_flush_end_io(struct request *rq, int error)
400 elv_completed_request(rq->q, rq);
401 blk_ordered_complete_seq(rq->q, QUEUE_ORDSEQ_POSTFLUSH, error);
404 static void queue_flush(struct request_queue *q, unsigned which)
406 struct request *rq;
407 rq_end_io_fn *end_io;
409 if (which == QUEUE_ORDERED_PREFLUSH) {
410 rq = &q->pre_flush_rq;
411 end_io = pre_flush_end_io;
412 } else {
413 rq = &q->post_flush_rq;
414 end_io = post_flush_end_io;
417 rq->cmd_flags = REQ_HARDBARRIER;
418 rq_init(q, rq);
419 rq->elevator_private = NULL;
420 rq->elevator_private2 = NULL;
421 rq->rq_disk = q->bar_rq.rq_disk;
422 rq->end_io = end_io;
423 q->prepare_flush_fn(q, rq);
425 elv_insert(q, rq, ELEVATOR_INSERT_FRONT);
428 static inline struct request *start_ordered(struct request_queue *q,
429 struct request *rq)
431 q->bi_size = 0;
432 q->orderr = 0;
433 q->ordered = q->next_ordered;
434 q->ordseq |= QUEUE_ORDSEQ_STARTED;
437 * Prep proxy barrier request.
439 blkdev_dequeue_request(rq);
440 q->orig_bar_rq = rq;
441 rq = &q->bar_rq;
442 rq->cmd_flags = 0;
443 rq_init(q, rq);
444 if (bio_data_dir(q->orig_bar_rq->bio) == WRITE)
445 rq->cmd_flags |= REQ_RW;
446 rq->cmd_flags |= q->ordered & QUEUE_ORDERED_FUA ? REQ_FUA : 0;
447 rq->elevator_private = NULL;
448 rq->elevator_private2 = NULL;
449 init_request_from_bio(rq, q->orig_bar_rq->bio);
450 rq->end_io = bar_end_io;
453 * Queue ordered sequence. As we stack them at the head, we
454 * need to queue in reverse order. Note that we rely on that
455 * no fs request uses ELEVATOR_INSERT_FRONT and thus no fs
456 * request gets inbetween ordered sequence.
458 if (q->ordered & QUEUE_ORDERED_POSTFLUSH)
459 queue_flush(q, QUEUE_ORDERED_POSTFLUSH);
460 else
461 q->ordseq |= QUEUE_ORDSEQ_POSTFLUSH;
463 elv_insert(q, rq, ELEVATOR_INSERT_FRONT);
465 if (q->ordered & QUEUE_ORDERED_PREFLUSH) {
466 queue_flush(q, QUEUE_ORDERED_PREFLUSH);
467 rq = &q->pre_flush_rq;
468 } else
469 q->ordseq |= QUEUE_ORDSEQ_PREFLUSH;
471 if ((q->ordered & QUEUE_ORDERED_TAG) || q->in_flight == 0)
472 q->ordseq |= QUEUE_ORDSEQ_DRAIN;
473 else
474 rq = NULL;
476 return rq;
479 int blk_do_ordered(struct request_queue *q, struct request **rqp)
481 struct request *rq = *rqp;
482 int is_barrier = blk_fs_request(rq) && blk_barrier_rq(rq);
484 if (!q->ordseq) {
485 if (!is_barrier)
486 return 1;
488 if (q->next_ordered != QUEUE_ORDERED_NONE) {
489 *rqp = start_ordered(q, rq);
490 return 1;
491 } else {
493 * This can happen when the queue switches to
494 * ORDERED_NONE while this request is on it.
496 blkdev_dequeue_request(rq);
497 end_that_request_first(rq, -EOPNOTSUPP,
498 rq->hard_nr_sectors);
499 end_that_request_last(rq, -EOPNOTSUPP);
500 *rqp = NULL;
501 return 0;
506 * Ordered sequence in progress
509 /* Special requests are not subject to ordering rules. */
510 if (!blk_fs_request(rq) &&
511 rq != &q->pre_flush_rq && rq != &q->post_flush_rq)
512 return 1;
514 if (q->ordered & QUEUE_ORDERED_TAG) {
515 /* Ordered by tag. Blocking the next barrier is enough. */
516 if (is_barrier && rq != &q->bar_rq)
517 *rqp = NULL;
518 } else {
519 /* Ordered by draining. Wait for turn. */
520 WARN_ON(blk_ordered_req_seq(rq) < blk_ordered_cur_seq(q));
521 if (blk_ordered_req_seq(rq) > blk_ordered_cur_seq(q))
522 *rqp = NULL;
525 return 1;
528 static int flush_dry_bio_endio(struct bio *bio, unsigned int bytes, int error)
530 struct request_queue *q = bio->bi_private;
533 * This is dry run, restore bio_sector and size. We'll finish
534 * this request again with the original bi_end_io after an
535 * error occurs or post flush is complete.
537 q->bi_size += bytes;
539 if (bio->bi_size)
540 return 1;
542 /* Reset bio */
543 set_bit(BIO_UPTODATE, &bio->bi_flags);
544 bio->bi_size = q->bi_size;
545 bio->bi_sector -= (q->bi_size >> 9);
546 q->bi_size = 0;
548 return 0;
551 static int ordered_bio_endio(struct request *rq, struct bio *bio,
552 unsigned int nbytes, int error)
554 struct request_queue *q = rq->q;
555 bio_end_io_t *endio;
556 void *private;
558 if (&q->bar_rq != rq)
559 return 0;
562 * Okay, this is the barrier request in progress, dry finish it.
564 if (error && !q->orderr)
565 q->orderr = error;
567 endio = bio->bi_end_io;
568 private = bio->bi_private;
569 bio->bi_end_io = flush_dry_bio_endio;
570 bio->bi_private = q;
572 bio_endio(bio, nbytes, error);
574 bio->bi_end_io = endio;
575 bio->bi_private = private;
577 return 1;
581 * blk_queue_bounce_limit - set bounce buffer limit for queue
582 * @q: the request queue for the device
583 * @dma_addr: bus address limit
585 * Description:
586 * Different hardware can have different requirements as to what pages
587 * it can do I/O directly to. A low level driver can call
588 * blk_queue_bounce_limit to have lower memory pages allocated as bounce
589 * buffers for doing I/O to pages residing above @page.
591 void blk_queue_bounce_limit(struct request_queue *q, u64 dma_addr)
593 unsigned long bounce_pfn = dma_addr >> PAGE_SHIFT;
594 int dma = 0;
596 q->bounce_gfp = GFP_NOIO;
597 #if BITS_PER_LONG == 64
598 /* Assume anything <= 4GB can be handled by IOMMU.
599 Actually some IOMMUs can handle everything, but I don't
600 know of a way to test this here. */
601 if (bounce_pfn < (min_t(u64,0xffffffff,BLK_BOUNCE_HIGH) >> PAGE_SHIFT))
602 dma = 1;
603 q->bounce_pfn = max_low_pfn;
604 #else
605 if (bounce_pfn < blk_max_low_pfn)
606 dma = 1;
607 q->bounce_pfn = bounce_pfn;
608 #endif
609 if (dma) {
610 init_emergency_isa_pool();
611 q->bounce_gfp = GFP_NOIO | GFP_DMA;
612 q->bounce_pfn = bounce_pfn;
616 EXPORT_SYMBOL(blk_queue_bounce_limit);
619 * blk_queue_max_sectors - set max sectors for a request for this queue
620 * @q: the request queue for the device
621 * @max_sectors: max sectors in the usual 512b unit
623 * Description:
624 * Enables a low level driver to set an upper limit on the size of
625 * received requests.
627 void blk_queue_max_sectors(struct request_queue *q, unsigned int max_sectors)
629 if ((max_sectors << 9) < PAGE_CACHE_SIZE) {
630 max_sectors = 1 << (PAGE_CACHE_SHIFT - 9);
631 printk("%s: set to minimum %d\n", __FUNCTION__, max_sectors);
634 if (BLK_DEF_MAX_SECTORS > max_sectors)
635 q->max_hw_sectors = q->max_sectors = max_sectors;
636 else {
637 q->max_sectors = BLK_DEF_MAX_SECTORS;
638 q->max_hw_sectors = max_sectors;
642 EXPORT_SYMBOL(blk_queue_max_sectors);
645 * blk_queue_max_phys_segments - set max phys segments for a request for this queue
646 * @q: the request queue for the device
647 * @max_segments: max number of segments
649 * Description:
650 * Enables a low level driver to set an upper limit on the number of
651 * physical data segments in a request. This would be the largest sized
652 * scatter list the driver could handle.
654 void blk_queue_max_phys_segments(struct request_queue *q,
655 unsigned short max_segments)
657 if (!max_segments) {
658 max_segments = 1;
659 printk("%s: set to minimum %d\n", __FUNCTION__, max_segments);
662 q->max_phys_segments = max_segments;
665 EXPORT_SYMBOL(blk_queue_max_phys_segments);
668 * blk_queue_max_hw_segments - set max hw segments for a request for this queue
669 * @q: the request queue for the device
670 * @max_segments: max number of segments
672 * Description:
673 * Enables a low level driver to set an upper limit on the number of
674 * hw data segments in a request. This would be the largest number of
675 * address/length pairs the host adapter can actually give as once
676 * to the device.
678 void blk_queue_max_hw_segments(struct request_queue *q,
679 unsigned short max_segments)
681 if (!max_segments) {
682 max_segments = 1;
683 printk("%s: set to minimum %d\n", __FUNCTION__, max_segments);
686 q->max_hw_segments = max_segments;
689 EXPORT_SYMBOL(blk_queue_max_hw_segments);
692 * blk_queue_max_segment_size - set max segment size for blk_rq_map_sg
693 * @q: the request queue for the device
694 * @max_size: max size of segment in bytes
696 * Description:
697 * Enables a low level driver to set an upper limit on the size of a
698 * coalesced segment
700 void blk_queue_max_segment_size(struct request_queue *q, unsigned int max_size)
702 if (max_size < PAGE_CACHE_SIZE) {
703 max_size = PAGE_CACHE_SIZE;
704 printk("%s: set to minimum %d\n", __FUNCTION__, max_size);
707 q->max_segment_size = max_size;
710 EXPORT_SYMBOL(blk_queue_max_segment_size);
713 * blk_queue_hardsect_size - set hardware sector size for the queue
714 * @q: the request queue for the device
715 * @size: the hardware sector size, in bytes
717 * Description:
718 * This should typically be set to the lowest possible sector size
719 * that the hardware can operate on (possible without reverting to
720 * even internal read-modify-write operations). Usually the default
721 * of 512 covers most hardware.
723 void blk_queue_hardsect_size(struct request_queue *q, unsigned short size)
725 q->hardsect_size = size;
728 EXPORT_SYMBOL(blk_queue_hardsect_size);
731 * Returns the minimum that is _not_ zero, unless both are zero.
733 #define min_not_zero(l, r) (l == 0) ? r : ((r == 0) ? l : min(l, r))
736 * blk_queue_stack_limits - inherit underlying queue limits for stacked drivers
737 * @t: the stacking driver (top)
738 * @b: the underlying device (bottom)
740 void blk_queue_stack_limits(struct request_queue *t, struct request_queue *b)
742 /* zero is "infinity" */
743 t->max_sectors = min_not_zero(t->max_sectors,b->max_sectors);
744 t->max_hw_sectors = min_not_zero(t->max_hw_sectors,b->max_hw_sectors);
746 t->max_phys_segments = min(t->max_phys_segments,b->max_phys_segments);
747 t->max_hw_segments = min(t->max_hw_segments,b->max_hw_segments);
748 t->max_segment_size = min(t->max_segment_size,b->max_segment_size);
749 t->hardsect_size = max(t->hardsect_size,b->hardsect_size);
750 if (!test_bit(QUEUE_FLAG_CLUSTER, &b->queue_flags))
751 clear_bit(QUEUE_FLAG_CLUSTER, &t->queue_flags);
754 EXPORT_SYMBOL(blk_queue_stack_limits);
757 * blk_queue_segment_boundary - set boundary rules for segment merging
758 * @q: the request queue for the device
759 * @mask: the memory boundary mask
761 void blk_queue_segment_boundary(struct request_queue *q, unsigned long mask)
763 if (mask < PAGE_CACHE_SIZE - 1) {
764 mask = PAGE_CACHE_SIZE - 1;
765 printk("%s: set to minimum %lx\n", __FUNCTION__, mask);
768 q->seg_boundary_mask = mask;
771 EXPORT_SYMBOL(blk_queue_segment_boundary);
774 * blk_queue_dma_alignment - set dma length and memory alignment
775 * @q: the request queue for the device
776 * @mask: alignment mask
778 * description:
779 * set required memory and length aligment for direct dma transactions.
780 * this is used when buiding direct io requests for the queue.
783 void blk_queue_dma_alignment(struct request_queue *q, int mask)
785 q->dma_alignment = mask;
788 EXPORT_SYMBOL(blk_queue_dma_alignment);
791 * blk_queue_find_tag - find a request by its tag and queue
792 * @q: The request queue for the device
793 * @tag: The tag of the request
795 * Notes:
796 * Should be used when a device returns a tag and you want to match
797 * it with a request.
799 * no locks need be held.
801 struct request *blk_queue_find_tag(struct request_queue *q, int tag)
803 return blk_map_queue_find_tag(q->queue_tags, tag);
806 EXPORT_SYMBOL(blk_queue_find_tag);
809 * __blk_free_tags - release a given set of tag maintenance info
810 * @bqt: the tag map to free
812 * Tries to free the specified @bqt@. Returns true if it was
813 * actually freed and false if there are still references using it
815 static int __blk_free_tags(struct blk_queue_tag *bqt)
817 int retval;
819 retval = atomic_dec_and_test(&bqt->refcnt);
820 if (retval) {
821 BUG_ON(bqt->busy);
822 BUG_ON(!list_empty(&bqt->busy_list));
824 kfree(bqt->tag_index);
825 bqt->tag_index = NULL;
827 kfree(bqt->tag_map);
828 bqt->tag_map = NULL;
830 kfree(bqt);
834 return retval;
838 * __blk_queue_free_tags - release tag maintenance info
839 * @q: the request queue for the device
841 * Notes:
842 * blk_cleanup_queue() will take care of calling this function, if tagging
843 * has been used. So there's no need to call this directly.
845 static void __blk_queue_free_tags(struct request_queue *q)
847 struct blk_queue_tag *bqt = q->queue_tags;
849 if (!bqt)
850 return;
852 __blk_free_tags(bqt);
854 q->queue_tags = NULL;
855 q->queue_flags &= ~(1 << QUEUE_FLAG_QUEUED);
860 * blk_free_tags - release a given set of tag maintenance info
861 * @bqt: the tag map to free
863 * For externally managed @bqt@ frees the map. Callers of this
864 * function must guarantee to have released all the queues that
865 * might have been using this tag map.
867 void blk_free_tags(struct blk_queue_tag *bqt)
869 if (unlikely(!__blk_free_tags(bqt)))
870 BUG();
872 EXPORT_SYMBOL(blk_free_tags);
875 * blk_queue_free_tags - release tag maintenance info
876 * @q: the request queue for the device
878 * Notes:
879 * This is used to disabled tagged queuing to a device, yet leave
880 * queue in function.
882 void blk_queue_free_tags(struct request_queue *q)
884 clear_bit(QUEUE_FLAG_QUEUED, &q->queue_flags);
887 EXPORT_SYMBOL(blk_queue_free_tags);
889 static int
890 init_tag_map(struct request_queue *q, struct blk_queue_tag *tags, int depth)
892 struct request **tag_index;
893 unsigned long *tag_map;
894 int nr_ulongs;
896 if (q && depth > q->nr_requests * 2) {
897 depth = q->nr_requests * 2;
898 printk(KERN_ERR "%s: adjusted depth to %d\n",
899 __FUNCTION__, depth);
902 tag_index = kzalloc(depth * sizeof(struct request *), GFP_ATOMIC);
903 if (!tag_index)
904 goto fail;
906 nr_ulongs = ALIGN(depth, BITS_PER_LONG) / BITS_PER_LONG;
907 tag_map = kzalloc(nr_ulongs * sizeof(unsigned long), GFP_ATOMIC);
908 if (!tag_map)
909 goto fail;
911 tags->real_max_depth = depth;
912 tags->max_depth = depth;
913 tags->tag_index = tag_index;
914 tags->tag_map = tag_map;
916 return 0;
917 fail:
918 kfree(tag_index);
919 return -ENOMEM;
922 static struct blk_queue_tag *__blk_queue_init_tags(struct request_queue *q,
923 int depth)
925 struct blk_queue_tag *tags;
927 tags = kmalloc(sizeof(struct blk_queue_tag), GFP_ATOMIC);
928 if (!tags)
929 goto fail;
931 if (init_tag_map(q, tags, depth))
932 goto fail;
934 INIT_LIST_HEAD(&tags->busy_list);
935 tags->busy = 0;
936 atomic_set(&tags->refcnt, 1);
937 return tags;
938 fail:
939 kfree(tags);
940 return NULL;
944 * blk_init_tags - initialize the tag info for an external tag map
945 * @depth: the maximum queue depth supported
946 * @tags: the tag to use
948 struct blk_queue_tag *blk_init_tags(int depth)
950 return __blk_queue_init_tags(NULL, depth);
952 EXPORT_SYMBOL(blk_init_tags);
955 * blk_queue_init_tags - initialize the queue tag info
956 * @q: the request queue for the device
957 * @depth: the maximum queue depth supported
958 * @tags: the tag to use
960 int blk_queue_init_tags(struct request_queue *q, int depth,
961 struct blk_queue_tag *tags)
963 int rc;
965 BUG_ON(tags && q->queue_tags && tags != q->queue_tags);
967 if (!tags && !q->queue_tags) {
968 tags = __blk_queue_init_tags(q, depth);
970 if (!tags)
971 goto fail;
972 } else if (q->queue_tags) {
973 if ((rc = blk_queue_resize_tags(q, depth)))
974 return rc;
975 set_bit(QUEUE_FLAG_QUEUED, &q->queue_flags);
976 return 0;
977 } else
978 atomic_inc(&tags->refcnt);
981 * assign it, all done
983 q->queue_tags = tags;
984 q->queue_flags |= (1 << QUEUE_FLAG_QUEUED);
985 return 0;
986 fail:
987 kfree(tags);
988 return -ENOMEM;
991 EXPORT_SYMBOL(blk_queue_init_tags);
994 * blk_queue_resize_tags - change the queueing depth
995 * @q: the request queue for the device
996 * @new_depth: the new max command queueing depth
998 * Notes:
999 * Must be called with the queue lock held.
1001 int blk_queue_resize_tags(struct request_queue *q, int new_depth)
1003 struct blk_queue_tag *bqt = q->queue_tags;
1004 struct request **tag_index;
1005 unsigned long *tag_map;
1006 int max_depth, nr_ulongs;
1008 if (!bqt)
1009 return -ENXIO;
1012 * if we already have large enough real_max_depth. just
1013 * adjust max_depth. *NOTE* as requests with tag value
1014 * between new_depth and real_max_depth can be in-flight, tag
1015 * map can not be shrunk blindly here.
1017 if (new_depth <= bqt->real_max_depth) {
1018 bqt->max_depth = new_depth;
1019 return 0;
1023 * Currently cannot replace a shared tag map with a new
1024 * one, so error out if this is the case
1026 if (atomic_read(&bqt->refcnt) != 1)
1027 return -EBUSY;
1030 * save the old state info, so we can copy it back
1032 tag_index = bqt->tag_index;
1033 tag_map = bqt->tag_map;
1034 max_depth = bqt->real_max_depth;
1036 if (init_tag_map(q, bqt, new_depth))
1037 return -ENOMEM;
1039 memcpy(bqt->tag_index, tag_index, max_depth * sizeof(struct request *));
1040 nr_ulongs = ALIGN(max_depth, BITS_PER_LONG) / BITS_PER_LONG;
1041 memcpy(bqt->tag_map, tag_map, nr_ulongs * sizeof(unsigned long));
1043 kfree(tag_index);
1044 kfree(tag_map);
1045 return 0;
1048 EXPORT_SYMBOL(blk_queue_resize_tags);
1051 * blk_queue_end_tag - end tag operations for a request
1052 * @q: the request queue for the device
1053 * @rq: the request that has completed
1055 * Description:
1056 * Typically called when end_that_request_first() returns 0, meaning
1057 * all transfers have been done for a request. It's important to call
1058 * this function before end_that_request_last(), as that will put the
1059 * request back on the free list thus corrupting the internal tag list.
1061 * Notes:
1062 * queue lock must be held.
1064 void blk_queue_end_tag(struct request_queue *q, struct request *rq)
1066 struct blk_queue_tag *bqt = q->queue_tags;
1067 int tag = rq->tag;
1069 BUG_ON(tag == -1);
1071 if (unlikely(tag >= bqt->real_max_depth))
1073 * This can happen after tag depth has been reduced.
1074 * FIXME: how about a warning or info message here?
1076 return;
1078 if (unlikely(!__test_and_clear_bit(tag, bqt->tag_map))) {
1079 printk(KERN_ERR "%s: attempt to clear non-busy tag (%d)\n",
1080 __FUNCTION__, tag);
1081 return;
1084 list_del_init(&rq->queuelist);
1085 rq->cmd_flags &= ~REQ_QUEUED;
1086 rq->tag = -1;
1088 if (unlikely(bqt->tag_index[tag] == NULL))
1089 printk(KERN_ERR "%s: tag %d is missing\n",
1090 __FUNCTION__, tag);
1092 bqt->tag_index[tag] = NULL;
1093 bqt->busy--;
1096 EXPORT_SYMBOL(blk_queue_end_tag);
1099 * blk_queue_start_tag - find a free tag and assign it
1100 * @q: the request queue for the device
1101 * @rq: the block request that needs tagging
1103 * Description:
1104 * This can either be used as a stand-alone helper, or possibly be
1105 * assigned as the queue &prep_rq_fn (in which case &struct request
1106 * automagically gets a tag assigned). Note that this function
1107 * assumes that any type of request can be queued! if this is not
1108 * true for your device, you must check the request type before
1109 * calling this function. The request will also be removed from
1110 * the request queue, so it's the drivers responsibility to readd
1111 * it if it should need to be restarted for some reason.
1113 * Notes:
1114 * queue lock must be held.
1116 int blk_queue_start_tag(struct request_queue *q, struct request *rq)
1118 struct blk_queue_tag *bqt = q->queue_tags;
1119 int tag;
1121 if (unlikely((rq->cmd_flags & REQ_QUEUED))) {
1122 printk(KERN_ERR
1123 "%s: request %p for device [%s] already tagged %d",
1124 __FUNCTION__, rq,
1125 rq->rq_disk ? rq->rq_disk->disk_name : "?", rq->tag);
1126 BUG();
1130 * Protect against shared tag maps, as we may not have exclusive
1131 * access to the tag map.
1133 do {
1134 tag = find_first_zero_bit(bqt->tag_map, bqt->max_depth);
1135 if (tag >= bqt->max_depth)
1136 return 1;
1138 } while (test_and_set_bit(tag, bqt->tag_map));
1140 rq->cmd_flags |= REQ_QUEUED;
1141 rq->tag = tag;
1142 bqt->tag_index[tag] = rq;
1143 blkdev_dequeue_request(rq);
1144 list_add(&rq->queuelist, &bqt->busy_list);
1145 bqt->busy++;
1146 return 0;
1149 EXPORT_SYMBOL(blk_queue_start_tag);
1152 * blk_queue_invalidate_tags - invalidate all pending tags
1153 * @q: the request queue for the device
1155 * Description:
1156 * Hardware conditions may dictate a need to stop all pending requests.
1157 * In this case, we will safely clear the block side of the tag queue and
1158 * readd all requests to the request queue in the right order.
1160 * Notes:
1161 * queue lock must be held.
1163 void blk_queue_invalidate_tags(struct request_queue *q)
1165 struct blk_queue_tag *bqt = q->queue_tags;
1166 struct list_head *tmp, *n;
1167 struct request *rq;
1169 list_for_each_safe(tmp, n, &bqt->busy_list) {
1170 rq = list_entry_rq(tmp);
1172 if (rq->tag == -1) {
1173 printk(KERN_ERR
1174 "%s: bad tag found on list\n", __FUNCTION__);
1175 list_del_init(&rq->queuelist);
1176 rq->cmd_flags &= ~REQ_QUEUED;
1177 } else
1178 blk_queue_end_tag(q, rq);
1180 rq->cmd_flags &= ~REQ_STARTED;
1181 __elv_add_request(q, rq, ELEVATOR_INSERT_BACK, 0);
1185 EXPORT_SYMBOL(blk_queue_invalidate_tags);
1187 void blk_dump_rq_flags(struct request *rq, char *msg)
1189 int bit;
1191 printk("%s: dev %s: type=%x, flags=%x\n", msg,
1192 rq->rq_disk ? rq->rq_disk->disk_name : "?", rq->cmd_type,
1193 rq->cmd_flags);
1195 printk("\nsector %llu, nr/cnr %lu/%u\n", (unsigned long long)rq->sector,
1196 rq->nr_sectors,
1197 rq->current_nr_sectors);
1198 printk("bio %p, biotail %p, buffer %p, data %p, len %u\n", rq->bio, rq->biotail, rq->buffer, rq->data, rq->data_len);
1200 if (blk_pc_request(rq)) {
1201 printk("cdb: ");
1202 for (bit = 0; bit < sizeof(rq->cmd); bit++)
1203 printk("%02x ", rq->cmd[bit]);
1204 printk("\n");
1208 EXPORT_SYMBOL(blk_dump_rq_flags);
1210 void blk_recount_segments(struct request_queue *q, struct bio *bio)
1212 struct bio_vec *bv, *bvprv = NULL;
1213 int i, nr_phys_segs, nr_hw_segs, seg_size, hw_seg_size, cluster;
1214 int high, highprv = 1;
1216 if (unlikely(!bio->bi_io_vec))
1217 return;
1219 cluster = q->queue_flags & (1 << QUEUE_FLAG_CLUSTER);
1220 hw_seg_size = seg_size = nr_phys_segs = nr_hw_segs = 0;
1221 bio_for_each_segment(bv, bio, i) {
1223 * the trick here is making sure that a high page is never
1224 * considered part of another segment, since that might
1225 * change with the bounce page.
1227 high = page_to_pfn(bv->bv_page) > q->bounce_pfn;
1228 if (high || highprv)
1229 goto new_hw_segment;
1230 if (cluster) {
1231 if (seg_size + bv->bv_len > q->max_segment_size)
1232 goto new_segment;
1233 if (!BIOVEC_PHYS_MERGEABLE(bvprv, bv))
1234 goto new_segment;
1235 if (!BIOVEC_SEG_BOUNDARY(q, bvprv, bv))
1236 goto new_segment;
1237 if (BIOVEC_VIRT_OVERSIZE(hw_seg_size + bv->bv_len))
1238 goto new_hw_segment;
1240 seg_size += bv->bv_len;
1241 hw_seg_size += bv->bv_len;
1242 bvprv = bv;
1243 continue;
1245 new_segment:
1246 if (BIOVEC_VIRT_MERGEABLE(bvprv, bv) &&
1247 !BIOVEC_VIRT_OVERSIZE(hw_seg_size + bv->bv_len)) {
1248 hw_seg_size += bv->bv_len;
1249 } else {
1250 new_hw_segment:
1251 if (hw_seg_size > bio->bi_hw_front_size)
1252 bio->bi_hw_front_size = hw_seg_size;
1253 hw_seg_size = BIOVEC_VIRT_START_SIZE(bv) + bv->bv_len;
1254 nr_hw_segs++;
1257 nr_phys_segs++;
1258 bvprv = bv;
1259 seg_size = bv->bv_len;
1260 highprv = high;
1262 if (hw_seg_size > bio->bi_hw_back_size)
1263 bio->bi_hw_back_size = hw_seg_size;
1264 if (nr_hw_segs == 1 && hw_seg_size > bio->bi_hw_front_size)
1265 bio->bi_hw_front_size = hw_seg_size;
1266 bio->bi_phys_segments = nr_phys_segs;
1267 bio->bi_hw_segments = nr_hw_segs;
1268 bio->bi_flags |= (1 << BIO_SEG_VALID);
1270 EXPORT_SYMBOL(blk_recount_segments);
1272 static int blk_phys_contig_segment(struct request_queue *q, struct bio *bio,
1273 struct bio *nxt)
1275 if (!(q->queue_flags & (1 << QUEUE_FLAG_CLUSTER)))
1276 return 0;
1278 if (!BIOVEC_PHYS_MERGEABLE(__BVEC_END(bio), __BVEC_START(nxt)))
1279 return 0;
1280 if (bio->bi_size + nxt->bi_size > q->max_segment_size)
1281 return 0;
1284 * bio and nxt are contigous in memory, check if the queue allows
1285 * these two to be merged into one
1287 if (BIO_SEG_BOUNDARY(q, bio, nxt))
1288 return 1;
1290 return 0;
1293 static int blk_hw_contig_segment(struct request_queue *q, struct bio *bio,
1294 struct bio *nxt)
1296 if (unlikely(!bio_flagged(bio, BIO_SEG_VALID)))
1297 blk_recount_segments(q, bio);
1298 if (unlikely(!bio_flagged(nxt, BIO_SEG_VALID)))
1299 blk_recount_segments(q, nxt);
1300 if (!BIOVEC_VIRT_MERGEABLE(__BVEC_END(bio), __BVEC_START(nxt)) ||
1301 BIOVEC_VIRT_OVERSIZE(bio->bi_hw_back_size + nxt->bi_hw_front_size))
1302 return 0;
1303 if (bio->bi_hw_back_size + nxt->bi_hw_front_size > q->max_segment_size)
1304 return 0;
1306 return 1;
1310 * map a request to scatterlist, return number of sg entries setup. Caller
1311 * must make sure sg can hold rq->nr_phys_segments entries
1313 int blk_rq_map_sg(struct request_queue *q, struct request *rq,
1314 struct scatterlist *sg)
1316 struct bio_vec *bvec, *bvprv;
1317 struct bio *bio;
1318 int nsegs, i, cluster;
1320 nsegs = 0;
1321 cluster = q->queue_flags & (1 << QUEUE_FLAG_CLUSTER);
1324 * for each bio in rq
1326 bvprv = NULL;
1327 rq_for_each_bio(bio, rq) {
1329 * for each segment in bio
1331 bio_for_each_segment(bvec, bio, i) {
1332 int nbytes = bvec->bv_len;
1334 if (bvprv && cluster) {
1335 if (sg[nsegs - 1].length + nbytes > q->max_segment_size)
1336 goto new_segment;
1338 if (!BIOVEC_PHYS_MERGEABLE(bvprv, bvec))
1339 goto new_segment;
1340 if (!BIOVEC_SEG_BOUNDARY(q, bvprv, bvec))
1341 goto new_segment;
1343 sg[nsegs - 1].length += nbytes;
1344 } else {
1345 new_segment:
1346 memset(&sg[nsegs],0,sizeof(struct scatterlist));
1347 sg[nsegs].page = bvec->bv_page;
1348 sg[nsegs].length = nbytes;
1349 sg[nsegs].offset = bvec->bv_offset;
1351 nsegs++;
1353 bvprv = bvec;
1354 } /* segments in bio */
1355 } /* bios in rq */
1357 return nsegs;
1360 EXPORT_SYMBOL(blk_rq_map_sg);
1363 * the standard queue merge functions, can be overridden with device
1364 * specific ones if so desired
1367 static inline int ll_new_mergeable(struct request_queue *q,
1368 struct request *req,
1369 struct bio *bio)
1371 int nr_phys_segs = bio_phys_segments(q, bio);
1373 if (req->nr_phys_segments + nr_phys_segs > q->max_phys_segments) {
1374 req->cmd_flags |= REQ_NOMERGE;
1375 if (req == q->last_merge)
1376 q->last_merge = NULL;
1377 return 0;
1381 * A hw segment is just getting larger, bump just the phys
1382 * counter.
1384 req->nr_phys_segments += nr_phys_segs;
1385 return 1;
1388 static inline int ll_new_hw_segment(struct request_queue *q,
1389 struct request *req,
1390 struct bio *bio)
1392 int nr_hw_segs = bio_hw_segments(q, bio);
1393 int nr_phys_segs = bio_phys_segments(q, bio);
1395 if (req->nr_hw_segments + nr_hw_segs > q->max_hw_segments
1396 || req->nr_phys_segments + nr_phys_segs > q->max_phys_segments) {
1397 req->cmd_flags |= REQ_NOMERGE;
1398 if (req == q->last_merge)
1399 q->last_merge = NULL;
1400 return 0;
1404 * This will form the start of a new hw segment. Bump both
1405 * counters.
1407 req->nr_hw_segments += nr_hw_segs;
1408 req->nr_phys_segments += nr_phys_segs;
1409 return 1;
1412 int ll_back_merge_fn(struct request_queue *q, struct request *req, struct bio *bio)
1414 unsigned short max_sectors;
1415 int len;
1417 if (unlikely(blk_pc_request(req)))
1418 max_sectors = q->max_hw_sectors;
1419 else
1420 max_sectors = q->max_sectors;
1422 if (req->nr_sectors + bio_sectors(bio) > max_sectors) {
1423 req->cmd_flags |= REQ_NOMERGE;
1424 if (req == q->last_merge)
1425 q->last_merge = NULL;
1426 return 0;
1428 if (unlikely(!bio_flagged(req->biotail, BIO_SEG_VALID)))
1429 blk_recount_segments(q, req->biotail);
1430 if (unlikely(!bio_flagged(bio, BIO_SEG_VALID)))
1431 blk_recount_segments(q, bio);
1432 len = req->biotail->bi_hw_back_size + bio->bi_hw_front_size;
1433 if (BIOVEC_VIRT_MERGEABLE(__BVEC_END(req->biotail), __BVEC_START(bio)) &&
1434 !BIOVEC_VIRT_OVERSIZE(len)) {
1435 int mergeable = ll_new_mergeable(q, req, bio);
1437 if (mergeable) {
1438 if (req->nr_hw_segments == 1)
1439 req->bio->bi_hw_front_size = len;
1440 if (bio->bi_hw_segments == 1)
1441 bio->bi_hw_back_size = len;
1443 return mergeable;
1446 return ll_new_hw_segment(q, req, bio);
1448 EXPORT_SYMBOL(ll_back_merge_fn);
1450 static int ll_front_merge_fn(struct request_queue *q, struct request *req,
1451 struct bio *bio)
1453 unsigned short max_sectors;
1454 int len;
1456 if (unlikely(blk_pc_request(req)))
1457 max_sectors = q->max_hw_sectors;
1458 else
1459 max_sectors = q->max_sectors;
1462 if (req->nr_sectors + bio_sectors(bio) > max_sectors) {
1463 req->cmd_flags |= REQ_NOMERGE;
1464 if (req == q->last_merge)
1465 q->last_merge = NULL;
1466 return 0;
1468 len = bio->bi_hw_back_size + req->bio->bi_hw_front_size;
1469 if (unlikely(!bio_flagged(bio, BIO_SEG_VALID)))
1470 blk_recount_segments(q, bio);
1471 if (unlikely(!bio_flagged(req->bio, BIO_SEG_VALID)))
1472 blk_recount_segments(q, req->bio);
1473 if (BIOVEC_VIRT_MERGEABLE(__BVEC_END(bio), __BVEC_START(req->bio)) &&
1474 !BIOVEC_VIRT_OVERSIZE(len)) {
1475 int mergeable = ll_new_mergeable(q, req, bio);
1477 if (mergeable) {
1478 if (bio->bi_hw_segments == 1)
1479 bio->bi_hw_front_size = len;
1480 if (req->nr_hw_segments == 1)
1481 req->biotail->bi_hw_back_size = len;
1483 return mergeable;
1486 return ll_new_hw_segment(q, req, bio);
1489 static int ll_merge_requests_fn(struct request_queue *q, struct request *req,
1490 struct request *next)
1492 int total_phys_segments;
1493 int total_hw_segments;
1496 * First check if the either of the requests are re-queued
1497 * requests. Can't merge them if they are.
1499 if (req->special || next->special)
1500 return 0;
1503 * Will it become too large?
1505 if ((req->nr_sectors + next->nr_sectors) > q->max_sectors)
1506 return 0;
1508 total_phys_segments = req->nr_phys_segments + next->nr_phys_segments;
1509 if (blk_phys_contig_segment(q, req->biotail, next->bio))
1510 total_phys_segments--;
1512 if (total_phys_segments > q->max_phys_segments)
1513 return 0;
1515 total_hw_segments = req->nr_hw_segments + next->nr_hw_segments;
1516 if (blk_hw_contig_segment(q, req->biotail, next->bio)) {
1517 int len = req->biotail->bi_hw_back_size + next->bio->bi_hw_front_size;
1519 * propagate the combined length to the end of the requests
1521 if (req->nr_hw_segments == 1)
1522 req->bio->bi_hw_front_size = len;
1523 if (next->nr_hw_segments == 1)
1524 next->biotail->bi_hw_back_size = len;
1525 total_hw_segments--;
1528 if (total_hw_segments > q->max_hw_segments)
1529 return 0;
1531 /* Merge is OK... */
1532 req->nr_phys_segments = total_phys_segments;
1533 req->nr_hw_segments = total_hw_segments;
1534 return 1;
1538 * "plug" the device if there are no outstanding requests: this will
1539 * force the transfer to start only after we have put all the requests
1540 * on the list.
1542 * This is called with interrupts off and no requests on the queue and
1543 * with the queue lock held.
1545 void blk_plug_device(struct request_queue *q)
1547 WARN_ON(!irqs_disabled());
1550 * don't plug a stopped queue, it must be paired with blk_start_queue()
1551 * which will restart the queueing
1553 if (blk_queue_stopped(q))
1554 return;
1556 if (!test_and_set_bit(QUEUE_FLAG_PLUGGED, &q->queue_flags)) {
1557 mod_timer(&q->unplug_timer, jiffies + q->unplug_delay);
1558 blk_add_trace_generic(q, NULL, 0, BLK_TA_PLUG);
1562 EXPORT_SYMBOL(blk_plug_device);
1565 * remove the queue from the plugged list, if present. called with
1566 * queue lock held and interrupts disabled.
1568 int blk_remove_plug(struct request_queue *q)
1570 WARN_ON(!irqs_disabled());
1572 if (!test_and_clear_bit(QUEUE_FLAG_PLUGGED, &q->queue_flags))
1573 return 0;
1575 del_timer(&q->unplug_timer);
1576 return 1;
1579 EXPORT_SYMBOL(blk_remove_plug);
1582 * remove the plug and let it rip..
1584 void __generic_unplug_device(struct request_queue *q)
1586 if (unlikely(blk_queue_stopped(q)))
1587 return;
1589 if (!blk_remove_plug(q))
1590 return;
1592 q->request_fn(q);
1594 EXPORT_SYMBOL(__generic_unplug_device);
1597 * generic_unplug_device - fire a request queue
1598 * @q: The &struct request_queue in question
1600 * Description:
1601 * Linux uses plugging to build bigger requests queues before letting
1602 * the device have at them. If a queue is plugged, the I/O scheduler
1603 * is still adding and merging requests on the queue. Once the queue
1604 * gets unplugged, the request_fn defined for the queue is invoked and
1605 * transfers started.
1607 void generic_unplug_device(struct request_queue *q)
1609 spin_lock_irq(q->queue_lock);
1610 __generic_unplug_device(q);
1611 spin_unlock_irq(q->queue_lock);
1613 EXPORT_SYMBOL(generic_unplug_device);
1615 static void blk_backing_dev_unplug(struct backing_dev_info *bdi,
1616 struct page *page)
1618 struct request_queue *q = bdi->unplug_io_data;
1621 * devices don't necessarily have an ->unplug_fn defined
1623 if (q->unplug_fn) {
1624 blk_add_trace_pdu_int(q, BLK_TA_UNPLUG_IO, NULL,
1625 q->rq.count[READ] + q->rq.count[WRITE]);
1627 q->unplug_fn(q);
1631 static void blk_unplug_work(struct work_struct *work)
1633 struct request_queue *q =
1634 container_of(work, struct request_queue, unplug_work);
1636 blk_add_trace_pdu_int(q, BLK_TA_UNPLUG_IO, NULL,
1637 q->rq.count[READ] + q->rq.count[WRITE]);
1639 q->unplug_fn(q);
1642 static void blk_unplug_timeout(unsigned long data)
1644 struct request_queue *q = (struct request_queue *)data;
1646 blk_add_trace_pdu_int(q, BLK_TA_UNPLUG_TIMER, NULL,
1647 q->rq.count[READ] + q->rq.count[WRITE]);
1649 kblockd_schedule_work(&q->unplug_work);
1653 * blk_start_queue - restart a previously stopped queue
1654 * @q: The &struct request_queue in question
1656 * Description:
1657 * blk_start_queue() will clear the stop flag on the queue, and call
1658 * the request_fn for the queue if it was in a stopped state when
1659 * entered. Also see blk_stop_queue(). Queue lock must be held.
1661 void blk_start_queue(struct request_queue *q)
1663 WARN_ON(!irqs_disabled());
1665 clear_bit(QUEUE_FLAG_STOPPED, &q->queue_flags);
1668 * one level of recursion is ok and is much faster than kicking
1669 * the unplug handling
1671 if (!test_and_set_bit(QUEUE_FLAG_REENTER, &q->queue_flags)) {
1672 q->request_fn(q);
1673 clear_bit(QUEUE_FLAG_REENTER, &q->queue_flags);
1674 } else {
1675 blk_plug_device(q);
1676 kblockd_schedule_work(&q->unplug_work);
1680 EXPORT_SYMBOL(blk_start_queue);
1683 * blk_stop_queue - stop a queue
1684 * @q: The &struct request_queue in question
1686 * Description:
1687 * The Linux block layer assumes that a block driver will consume all
1688 * entries on the request queue when the request_fn strategy is called.
1689 * Often this will not happen, because of hardware limitations (queue
1690 * depth settings). If a device driver gets a 'queue full' response,
1691 * or if it simply chooses not to queue more I/O at one point, it can
1692 * call this function to prevent the request_fn from being called until
1693 * the driver has signalled it's ready to go again. This happens by calling
1694 * blk_start_queue() to restart queue operations. Queue lock must be held.
1696 void blk_stop_queue(struct request_queue *q)
1698 blk_remove_plug(q);
1699 set_bit(QUEUE_FLAG_STOPPED, &q->queue_flags);
1701 EXPORT_SYMBOL(blk_stop_queue);
1704 * blk_sync_queue - cancel any pending callbacks on a queue
1705 * @q: the queue
1707 * Description:
1708 * The block layer may perform asynchronous callback activity
1709 * on a queue, such as calling the unplug function after a timeout.
1710 * A block device may call blk_sync_queue to ensure that any
1711 * such activity is cancelled, thus allowing it to release resources
1712 * that the callbacks might use. The caller must already have made sure
1713 * that its ->make_request_fn will not re-add plugging prior to calling
1714 * this function.
1717 void blk_sync_queue(struct request_queue *q)
1719 del_timer_sync(&q->unplug_timer);
1721 EXPORT_SYMBOL(blk_sync_queue);
1724 * blk_run_queue - run a single device queue
1725 * @q: The queue to run
1727 void blk_run_queue(struct request_queue *q)
1729 unsigned long flags;
1731 spin_lock_irqsave(q->queue_lock, flags);
1732 blk_remove_plug(q);
1735 * Only recurse once to avoid overrunning the stack, let the unplug
1736 * handling reinvoke the handler shortly if we already got there.
1738 if (!elv_queue_empty(q)) {
1739 if (!test_and_set_bit(QUEUE_FLAG_REENTER, &q->queue_flags)) {
1740 q->request_fn(q);
1741 clear_bit(QUEUE_FLAG_REENTER, &q->queue_flags);
1742 } else {
1743 blk_plug_device(q);
1744 kblockd_schedule_work(&q->unplug_work);
1748 spin_unlock_irqrestore(q->queue_lock, flags);
1750 EXPORT_SYMBOL(blk_run_queue);
1753 * blk_cleanup_queue: - release a &struct request_queue when it is no longer needed
1754 * @kobj: the kobj belonging of the request queue to be released
1756 * Description:
1757 * blk_cleanup_queue is the pair to blk_init_queue() or
1758 * blk_queue_make_request(). It should be called when a request queue is
1759 * being released; typically when a block device is being de-registered.
1760 * Currently, its primary task it to free all the &struct request
1761 * structures that were allocated to the queue and the queue itself.
1763 * Caveat:
1764 * Hopefully the low level driver will have finished any
1765 * outstanding requests first...
1767 static void blk_release_queue(struct kobject *kobj)
1769 struct request_queue *q =
1770 container_of(kobj, struct request_queue, kobj);
1771 struct request_list *rl = &q->rq;
1773 blk_sync_queue(q);
1775 if (rl->rq_pool)
1776 mempool_destroy(rl->rq_pool);
1778 if (q->queue_tags)
1779 __blk_queue_free_tags(q);
1781 blk_trace_shutdown(q);
1783 kmem_cache_free(requestq_cachep, q);
1786 void blk_put_queue(struct request_queue *q)
1788 kobject_put(&q->kobj);
1790 EXPORT_SYMBOL(blk_put_queue);
1792 void blk_cleanup_queue(struct request_queue * q)
1794 mutex_lock(&q->sysfs_lock);
1795 set_bit(QUEUE_FLAG_DEAD, &q->queue_flags);
1796 mutex_unlock(&q->sysfs_lock);
1798 if (q->elevator)
1799 elevator_exit(q->elevator);
1801 blk_put_queue(q);
1804 EXPORT_SYMBOL(blk_cleanup_queue);
1806 static int blk_init_free_list(struct request_queue *q)
1808 struct request_list *rl = &q->rq;
1810 rl->count[READ] = rl->count[WRITE] = 0;
1811 rl->starved[READ] = rl->starved[WRITE] = 0;
1812 rl->elvpriv = 0;
1813 init_waitqueue_head(&rl->wait[READ]);
1814 init_waitqueue_head(&rl->wait[WRITE]);
1816 rl->rq_pool = mempool_create_node(BLKDEV_MIN_RQ, mempool_alloc_slab,
1817 mempool_free_slab, request_cachep, q->node);
1819 if (!rl->rq_pool)
1820 return -ENOMEM;
1822 return 0;
1825 struct request_queue *blk_alloc_queue(gfp_t gfp_mask)
1827 return blk_alloc_queue_node(gfp_mask, -1);
1829 EXPORT_SYMBOL(blk_alloc_queue);
1831 static struct kobj_type queue_ktype;
1833 struct request_queue *blk_alloc_queue_node(gfp_t gfp_mask, int node_id)
1835 struct request_queue *q;
1837 q = kmem_cache_alloc_node(requestq_cachep,
1838 gfp_mask | __GFP_ZERO, node_id);
1839 if (!q)
1840 return NULL;
1842 init_timer(&q->unplug_timer);
1844 snprintf(q->kobj.name, KOBJ_NAME_LEN, "%s", "queue");
1845 q->kobj.ktype = &queue_ktype;
1846 kobject_init(&q->kobj);
1848 q->backing_dev_info.unplug_io_fn = blk_backing_dev_unplug;
1849 q->backing_dev_info.unplug_io_data = q;
1851 mutex_init(&q->sysfs_lock);
1853 return q;
1855 EXPORT_SYMBOL(blk_alloc_queue_node);
1858 * blk_init_queue - prepare a request queue for use with a block device
1859 * @rfn: The function to be called to process requests that have been
1860 * placed on the queue.
1861 * @lock: Request queue spin lock
1863 * Description:
1864 * If a block device wishes to use the standard request handling procedures,
1865 * which sorts requests and coalesces adjacent requests, then it must
1866 * call blk_init_queue(). The function @rfn will be called when there
1867 * are requests on the queue that need to be processed. If the device
1868 * supports plugging, then @rfn may not be called immediately when requests
1869 * are available on the queue, but may be called at some time later instead.
1870 * Plugged queues are generally unplugged when a buffer belonging to one
1871 * of the requests on the queue is needed, or due to memory pressure.
1873 * @rfn is not required, or even expected, to remove all requests off the
1874 * queue, but only as many as it can handle at a time. If it does leave
1875 * requests on the queue, it is responsible for arranging that the requests
1876 * get dealt with eventually.
1878 * The queue spin lock must be held while manipulating the requests on the
1879 * request queue; this lock will be taken also from interrupt context, so irq
1880 * disabling is needed for it.
1882 * Function returns a pointer to the initialized request queue, or NULL if
1883 * it didn't succeed.
1885 * Note:
1886 * blk_init_queue() must be paired with a blk_cleanup_queue() call
1887 * when the block device is deactivated (such as at module unload).
1890 struct request_queue *blk_init_queue(request_fn_proc *rfn, spinlock_t *lock)
1892 return blk_init_queue_node(rfn, lock, -1);
1894 EXPORT_SYMBOL(blk_init_queue);
1896 struct request_queue *
1897 blk_init_queue_node(request_fn_proc *rfn, spinlock_t *lock, int node_id)
1899 struct request_queue *q = blk_alloc_queue_node(GFP_KERNEL, node_id);
1901 if (!q)
1902 return NULL;
1904 q->node = node_id;
1905 if (blk_init_free_list(q)) {
1906 kmem_cache_free(requestq_cachep, q);
1907 return NULL;
1911 * if caller didn't supply a lock, they get per-queue locking with
1912 * our embedded lock
1914 if (!lock) {
1915 spin_lock_init(&q->__queue_lock);
1916 lock = &q->__queue_lock;
1919 q->request_fn = rfn;
1920 q->prep_rq_fn = NULL;
1921 q->unplug_fn = generic_unplug_device;
1922 q->queue_flags = (1 << QUEUE_FLAG_CLUSTER);
1923 q->queue_lock = lock;
1925 blk_queue_segment_boundary(q, 0xffffffff);
1927 blk_queue_make_request(q, __make_request);
1928 blk_queue_max_segment_size(q, MAX_SEGMENT_SIZE);
1930 blk_queue_max_hw_segments(q, MAX_HW_SEGMENTS);
1931 blk_queue_max_phys_segments(q, MAX_PHYS_SEGMENTS);
1933 q->sg_reserved_size = INT_MAX;
1936 * all done
1938 if (!elevator_init(q, NULL)) {
1939 blk_queue_congestion_threshold(q);
1940 return q;
1943 blk_put_queue(q);
1944 return NULL;
1946 EXPORT_SYMBOL(blk_init_queue_node);
1948 int blk_get_queue(struct request_queue *q)
1950 if (likely(!test_bit(QUEUE_FLAG_DEAD, &q->queue_flags))) {
1951 kobject_get(&q->kobj);
1952 return 0;
1955 return 1;
1958 EXPORT_SYMBOL(blk_get_queue);
1960 static inline void blk_free_request(struct request_queue *q, struct request *rq)
1962 if (rq->cmd_flags & REQ_ELVPRIV)
1963 elv_put_request(q, rq);
1964 mempool_free(rq, q->rq.rq_pool);
1967 static struct request *
1968 blk_alloc_request(struct request_queue *q, int rw, int priv, gfp_t gfp_mask)
1970 struct request *rq = mempool_alloc(q->rq.rq_pool, gfp_mask);
1972 if (!rq)
1973 return NULL;
1976 * first three bits are identical in rq->cmd_flags and bio->bi_rw,
1977 * see bio.h and blkdev.h
1979 rq->cmd_flags = rw | REQ_ALLOCED;
1981 if (priv) {
1982 if (unlikely(elv_set_request(q, rq, gfp_mask))) {
1983 mempool_free(rq, q->rq.rq_pool);
1984 return NULL;
1986 rq->cmd_flags |= REQ_ELVPRIV;
1989 return rq;
1993 * ioc_batching returns true if the ioc is a valid batching request and
1994 * should be given priority access to a request.
1996 static inline int ioc_batching(struct request_queue *q, struct io_context *ioc)
1998 if (!ioc)
1999 return 0;
2002 * Make sure the process is able to allocate at least 1 request
2003 * even if the batch times out, otherwise we could theoretically
2004 * lose wakeups.
2006 return ioc->nr_batch_requests == q->nr_batching ||
2007 (ioc->nr_batch_requests > 0
2008 && time_before(jiffies, ioc->last_waited + BLK_BATCH_TIME));
2012 * ioc_set_batching sets ioc to be a new "batcher" if it is not one. This
2013 * will cause the process to be a "batcher" on all queues in the system. This
2014 * is the behaviour we want though - once it gets a wakeup it should be given
2015 * a nice run.
2017 static void ioc_set_batching(struct request_queue *q, struct io_context *ioc)
2019 if (!ioc || ioc_batching(q, ioc))
2020 return;
2022 ioc->nr_batch_requests = q->nr_batching;
2023 ioc->last_waited = jiffies;
2026 static void __freed_request(struct request_queue *q, int rw)
2028 struct request_list *rl = &q->rq;
2030 if (rl->count[rw] < queue_congestion_off_threshold(q))
2031 blk_clear_queue_congested(q, rw);
2033 if (rl->count[rw] + 1 <= q->nr_requests) {
2034 if (waitqueue_active(&rl->wait[rw]))
2035 wake_up(&rl->wait[rw]);
2037 blk_clear_queue_full(q, rw);
2042 * A request has just been released. Account for it, update the full and
2043 * congestion status, wake up any waiters. Called under q->queue_lock.
2045 static void freed_request(struct request_queue *q, int rw, int priv)
2047 struct request_list *rl = &q->rq;
2049 rl->count[rw]--;
2050 if (priv)
2051 rl->elvpriv--;
2053 __freed_request(q, rw);
2055 if (unlikely(rl->starved[rw ^ 1]))
2056 __freed_request(q, rw ^ 1);
2059 #define blkdev_free_rq(list) list_entry((list)->next, struct request, queuelist)
2061 * Get a free request, queue_lock must be held.
2062 * Returns NULL on failure, with queue_lock held.
2063 * Returns !NULL on success, with queue_lock *not held*.
2065 static struct request *get_request(struct request_queue *q, int rw_flags,
2066 struct bio *bio, gfp_t gfp_mask)
2068 struct request *rq = NULL;
2069 struct request_list *rl = &q->rq;
2070 struct io_context *ioc = NULL;
2071 const int rw = rw_flags & 0x01;
2072 int may_queue, priv;
2074 may_queue = elv_may_queue(q, rw_flags);
2075 if (may_queue == ELV_MQUEUE_NO)
2076 goto rq_starved;
2078 if (rl->count[rw]+1 >= queue_congestion_on_threshold(q)) {
2079 if (rl->count[rw]+1 >= q->nr_requests) {
2080 ioc = current_io_context(GFP_ATOMIC, q->node);
2082 * The queue will fill after this allocation, so set
2083 * it as full, and mark this process as "batching".
2084 * This process will be allowed to complete a batch of
2085 * requests, others will be blocked.
2087 if (!blk_queue_full(q, rw)) {
2088 ioc_set_batching(q, ioc);
2089 blk_set_queue_full(q, rw);
2090 } else {
2091 if (may_queue != ELV_MQUEUE_MUST
2092 && !ioc_batching(q, ioc)) {
2094 * The queue is full and the allocating
2095 * process is not a "batcher", and not
2096 * exempted by the IO scheduler
2098 goto out;
2102 blk_set_queue_congested(q, rw);
2106 * Only allow batching queuers to allocate up to 50% over the defined
2107 * limit of requests, otherwise we could have thousands of requests
2108 * allocated with any setting of ->nr_requests
2110 if (rl->count[rw] >= (3 * q->nr_requests / 2))
2111 goto out;
2113 rl->count[rw]++;
2114 rl->starved[rw] = 0;
2116 priv = !test_bit(QUEUE_FLAG_ELVSWITCH, &q->queue_flags);
2117 if (priv)
2118 rl->elvpriv++;
2120 spin_unlock_irq(q->queue_lock);
2122 rq = blk_alloc_request(q, rw_flags, priv, gfp_mask);
2123 if (unlikely(!rq)) {
2125 * Allocation failed presumably due to memory. Undo anything
2126 * we might have messed up.
2128 * Allocating task should really be put onto the front of the
2129 * wait queue, but this is pretty rare.
2131 spin_lock_irq(q->queue_lock);
2132 freed_request(q, rw, priv);
2135 * in the very unlikely event that allocation failed and no
2136 * requests for this direction was pending, mark us starved
2137 * so that freeing of a request in the other direction will
2138 * notice us. another possible fix would be to split the
2139 * rq mempool into READ and WRITE
2141 rq_starved:
2142 if (unlikely(rl->count[rw] == 0))
2143 rl->starved[rw] = 1;
2145 goto out;
2149 * ioc may be NULL here, and ioc_batching will be false. That's
2150 * OK, if the queue is under the request limit then requests need
2151 * not count toward the nr_batch_requests limit. There will always
2152 * be some limit enforced by BLK_BATCH_TIME.
2154 if (ioc_batching(q, ioc))
2155 ioc->nr_batch_requests--;
2157 rq_init(q, rq);
2159 blk_add_trace_generic(q, bio, rw, BLK_TA_GETRQ);
2160 out:
2161 return rq;
2165 * No available requests for this queue, unplug the device and wait for some
2166 * requests to become available.
2168 * Called with q->queue_lock held, and returns with it unlocked.
2170 static struct request *get_request_wait(struct request_queue *q, int rw_flags,
2171 struct bio *bio)
2173 const int rw = rw_flags & 0x01;
2174 struct request *rq;
2176 rq = get_request(q, rw_flags, bio, GFP_NOIO);
2177 while (!rq) {
2178 DEFINE_WAIT(wait);
2179 struct request_list *rl = &q->rq;
2181 prepare_to_wait_exclusive(&rl->wait[rw], &wait,
2182 TASK_UNINTERRUPTIBLE);
2184 rq = get_request(q, rw_flags, bio, GFP_NOIO);
2186 if (!rq) {
2187 struct io_context *ioc;
2189 blk_add_trace_generic(q, bio, rw, BLK_TA_SLEEPRQ);
2191 __generic_unplug_device(q);
2192 spin_unlock_irq(q->queue_lock);
2193 io_schedule();
2196 * After sleeping, we become a "batching" process and
2197 * will be able to allocate at least one request, and
2198 * up to a big batch of them for a small period time.
2199 * See ioc_batching, ioc_set_batching
2201 ioc = current_io_context(GFP_NOIO, q->node);
2202 ioc_set_batching(q, ioc);
2204 spin_lock_irq(q->queue_lock);
2206 finish_wait(&rl->wait[rw], &wait);
2209 return rq;
2212 struct request *blk_get_request(struct request_queue *q, int rw, gfp_t gfp_mask)
2214 struct request *rq;
2216 BUG_ON(rw != READ && rw != WRITE);
2218 spin_lock_irq(q->queue_lock);
2219 if (gfp_mask & __GFP_WAIT) {
2220 rq = get_request_wait(q, rw, NULL);
2221 } else {
2222 rq = get_request(q, rw, NULL, gfp_mask);
2223 if (!rq)
2224 spin_unlock_irq(q->queue_lock);
2226 /* q->queue_lock is unlocked at this point */
2228 return rq;
2230 EXPORT_SYMBOL(blk_get_request);
2233 * blk_start_queueing - initiate dispatch of requests to device
2234 * @q: request queue to kick into gear
2236 * This is basically a helper to remove the need to know whether a queue
2237 * is plugged or not if someone just wants to initiate dispatch of requests
2238 * for this queue.
2240 * The queue lock must be held with interrupts disabled.
2242 void blk_start_queueing(struct request_queue *q)
2244 if (!blk_queue_plugged(q))
2245 q->request_fn(q);
2246 else
2247 __generic_unplug_device(q);
2249 EXPORT_SYMBOL(blk_start_queueing);
2252 * blk_requeue_request - put a request back on queue
2253 * @q: request queue where request should be inserted
2254 * @rq: request to be inserted
2256 * Description:
2257 * Drivers often keep queueing requests until the hardware cannot accept
2258 * more, when that condition happens we need to put the request back
2259 * on the queue. Must be called with queue lock held.
2261 void blk_requeue_request(struct request_queue *q, struct request *rq)
2263 blk_add_trace_rq(q, rq, BLK_TA_REQUEUE);
2265 if (blk_rq_tagged(rq))
2266 blk_queue_end_tag(q, rq);
2268 elv_requeue_request(q, rq);
2271 EXPORT_SYMBOL(blk_requeue_request);
2274 * blk_insert_request - insert a special request in to a request queue
2275 * @q: request queue where request should be inserted
2276 * @rq: request to be inserted
2277 * @at_head: insert request at head or tail of queue
2278 * @data: private data
2280 * Description:
2281 * Many block devices need to execute commands asynchronously, so they don't
2282 * block the whole kernel from preemption during request execution. This is
2283 * accomplished normally by inserting aritficial requests tagged as
2284 * REQ_SPECIAL in to the corresponding request queue, and letting them be
2285 * scheduled for actual execution by the request queue.
2287 * We have the option of inserting the head or the tail of the queue.
2288 * Typically we use the tail for new ioctls and so forth. We use the head
2289 * of the queue for things like a QUEUE_FULL message from a device, or a
2290 * host that is unable to accept a particular command.
2292 void blk_insert_request(struct request_queue *q, struct request *rq,
2293 int at_head, void *data)
2295 int where = at_head ? ELEVATOR_INSERT_FRONT : ELEVATOR_INSERT_BACK;
2296 unsigned long flags;
2299 * tell I/O scheduler that this isn't a regular read/write (ie it
2300 * must not attempt merges on this) and that it acts as a soft
2301 * barrier
2303 rq->cmd_type = REQ_TYPE_SPECIAL;
2304 rq->cmd_flags |= REQ_SOFTBARRIER;
2306 rq->special = data;
2308 spin_lock_irqsave(q->queue_lock, flags);
2311 * If command is tagged, release the tag
2313 if (blk_rq_tagged(rq))
2314 blk_queue_end_tag(q, rq);
2316 drive_stat_acct(rq, rq->nr_sectors, 1);
2317 __elv_add_request(q, rq, where, 0);
2318 blk_start_queueing(q);
2319 spin_unlock_irqrestore(q->queue_lock, flags);
2322 EXPORT_SYMBOL(blk_insert_request);
2324 static int __blk_rq_unmap_user(struct bio *bio)
2326 int ret = 0;
2328 if (bio) {
2329 if (bio_flagged(bio, BIO_USER_MAPPED))
2330 bio_unmap_user(bio);
2331 else
2332 ret = bio_uncopy_user(bio);
2335 return ret;
2338 static int __blk_rq_map_user(struct request_queue *q, struct request *rq,
2339 void __user *ubuf, unsigned int len)
2341 unsigned long uaddr;
2342 struct bio *bio, *orig_bio;
2343 int reading, ret;
2345 reading = rq_data_dir(rq) == READ;
2348 * if alignment requirement is satisfied, map in user pages for
2349 * direct dma. else, set up kernel bounce buffers
2351 uaddr = (unsigned long) ubuf;
2352 if (!(uaddr & queue_dma_alignment(q)) && !(len & queue_dma_alignment(q)))
2353 bio = bio_map_user(q, NULL, uaddr, len, reading);
2354 else
2355 bio = bio_copy_user(q, uaddr, len, reading);
2357 if (IS_ERR(bio))
2358 return PTR_ERR(bio);
2360 orig_bio = bio;
2361 blk_queue_bounce(q, &bio);
2364 * We link the bounce buffer in and could have to traverse it
2365 * later so we have to get a ref to prevent it from being freed
2367 bio_get(bio);
2369 if (!rq->bio)
2370 blk_rq_bio_prep(q, rq, bio);
2371 else if (!ll_back_merge_fn(q, rq, bio)) {
2372 ret = -EINVAL;
2373 goto unmap_bio;
2374 } else {
2375 rq->biotail->bi_next = bio;
2376 rq->biotail = bio;
2378 rq->data_len += bio->bi_size;
2381 return bio->bi_size;
2383 unmap_bio:
2384 /* if it was boucned we must call the end io function */
2385 bio_endio(bio, bio->bi_size, 0);
2386 __blk_rq_unmap_user(orig_bio);
2387 bio_put(bio);
2388 return ret;
2392 * blk_rq_map_user - map user data to a request, for REQ_BLOCK_PC usage
2393 * @q: request queue where request should be inserted
2394 * @rq: request structure to fill
2395 * @ubuf: the user buffer
2396 * @len: length of user data
2398 * Description:
2399 * Data will be mapped directly for zero copy io, if possible. Otherwise
2400 * a kernel bounce buffer is used.
2402 * A matching blk_rq_unmap_user() must be issued at the end of io, while
2403 * still in process context.
2405 * Note: The mapped bio may need to be bounced through blk_queue_bounce()
2406 * before being submitted to the device, as pages mapped may be out of
2407 * reach. It's the callers responsibility to make sure this happens. The
2408 * original bio must be passed back in to blk_rq_unmap_user() for proper
2409 * unmapping.
2411 int blk_rq_map_user(struct request_queue *q, struct request *rq,
2412 void __user *ubuf, unsigned long len)
2414 unsigned long bytes_read = 0;
2415 struct bio *bio = NULL;
2416 int ret;
2418 if (len > (q->max_hw_sectors << 9))
2419 return -EINVAL;
2420 if (!len || !ubuf)
2421 return -EINVAL;
2423 while (bytes_read != len) {
2424 unsigned long map_len, end, start;
2426 map_len = min_t(unsigned long, len - bytes_read, BIO_MAX_SIZE);
2427 end = ((unsigned long)ubuf + map_len + PAGE_SIZE - 1)
2428 >> PAGE_SHIFT;
2429 start = (unsigned long)ubuf >> PAGE_SHIFT;
2432 * A bad offset could cause us to require BIO_MAX_PAGES + 1
2433 * pages. If this happens we just lower the requested
2434 * mapping len by a page so that we can fit
2436 if (end - start > BIO_MAX_PAGES)
2437 map_len -= PAGE_SIZE;
2439 ret = __blk_rq_map_user(q, rq, ubuf, map_len);
2440 if (ret < 0)
2441 goto unmap_rq;
2442 if (!bio)
2443 bio = rq->bio;
2444 bytes_read += ret;
2445 ubuf += ret;
2448 rq->buffer = rq->data = NULL;
2449 return 0;
2450 unmap_rq:
2451 blk_rq_unmap_user(bio);
2452 return ret;
2455 EXPORT_SYMBOL(blk_rq_map_user);
2458 * blk_rq_map_user_iov - map user data to a request, for REQ_BLOCK_PC usage
2459 * @q: request queue where request should be inserted
2460 * @rq: request to map data to
2461 * @iov: pointer to the iovec
2462 * @iov_count: number of elements in the iovec
2463 * @len: I/O byte count
2465 * Description:
2466 * Data will be mapped directly for zero copy io, if possible. Otherwise
2467 * a kernel bounce buffer is used.
2469 * A matching blk_rq_unmap_user() must be issued at the end of io, while
2470 * still in process context.
2472 * Note: The mapped bio may need to be bounced through blk_queue_bounce()
2473 * before being submitted to the device, as pages mapped may be out of
2474 * reach. It's the callers responsibility to make sure this happens. The
2475 * original bio must be passed back in to blk_rq_unmap_user() for proper
2476 * unmapping.
2478 int blk_rq_map_user_iov(struct request_queue *q, struct request *rq,
2479 struct sg_iovec *iov, int iov_count, unsigned int len)
2481 struct bio *bio;
2483 if (!iov || iov_count <= 0)
2484 return -EINVAL;
2486 /* we don't allow misaligned data like bio_map_user() does. If the
2487 * user is using sg, they're expected to know the alignment constraints
2488 * and respect them accordingly */
2489 bio = bio_map_user_iov(q, NULL, iov, iov_count, rq_data_dir(rq)== READ);
2490 if (IS_ERR(bio))
2491 return PTR_ERR(bio);
2493 if (bio->bi_size != len) {
2494 bio_endio(bio, bio->bi_size, 0);
2495 bio_unmap_user(bio);
2496 return -EINVAL;
2499 bio_get(bio);
2500 blk_rq_bio_prep(q, rq, bio);
2501 rq->buffer = rq->data = NULL;
2502 return 0;
2505 EXPORT_SYMBOL(blk_rq_map_user_iov);
2508 * blk_rq_unmap_user - unmap a request with user data
2509 * @bio: start of bio list
2511 * Description:
2512 * Unmap a rq previously mapped by blk_rq_map_user(). The caller must
2513 * supply the original rq->bio from the blk_rq_map_user() return, since
2514 * the io completion may have changed rq->bio.
2516 int blk_rq_unmap_user(struct bio *bio)
2518 struct bio *mapped_bio;
2519 int ret = 0, ret2;
2521 while (bio) {
2522 mapped_bio = bio;
2523 if (unlikely(bio_flagged(bio, BIO_BOUNCED)))
2524 mapped_bio = bio->bi_private;
2526 ret2 = __blk_rq_unmap_user(mapped_bio);
2527 if (ret2 && !ret)
2528 ret = ret2;
2530 mapped_bio = bio;
2531 bio = bio->bi_next;
2532 bio_put(mapped_bio);
2535 return ret;
2538 EXPORT_SYMBOL(blk_rq_unmap_user);
2541 * blk_rq_map_kern - map kernel data to a request, for REQ_BLOCK_PC usage
2542 * @q: request queue where request should be inserted
2543 * @rq: request to fill
2544 * @kbuf: the kernel buffer
2545 * @len: length of user data
2546 * @gfp_mask: memory allocation flags
2548 int blk_rq_map_kern(struct request_queue *q, struct request *rq, void *kbuf,
2549 unsigned int len, gfp_t gfp_mask)
2551 struct bio *bio;
2553 if (len > (q->max_hw_sectors << 9))
2554 return -EINVAL;
2555 if (!len || !kbuf)
2556 return -EINVAL;
2558 bio = bio_map_kern(q, kbuf, len, gfp_mask);
2559 if (IS_ERR(bio))
2560 return PTR_ERR(bio);
2562 if (rq_data_dir(rq) == WRITE)
2563 bio->bi_rw |= (1 << BIO_RW);
2565 blk_rq_bio_prep(q, rq, bio);
2566 blk_queue_bounce(q, &rq->bio);
2567 rq->buffer = rq->data = NULL;
2568 return 0;
2571 EXPORT_SYMBOL(blk_rq_map_kern);
2574 * blk_execute_rq_nowait - insert a request into queue for execution
2575 * @q: queue to insert the request in
2576 * @bd_disk: matching gendisk
2577 * @rq: request to insert
2578 * @at_head: insert request at head or tail of queue
2579 * @done: I/O completion handler
2581 * Description:
2582 * Insert a fully prepared request at the back of the io scheduler queue
2583 * for execution. Don't wait for completion.
2585 void blk_execute_rq_nowait(struct request_queue *q, struct gendisk *bd_disk,
2586 struct request *rq, int at_head,
2587 rq_end_io_fn *done)
2589 int where = at_head ? ELEVATOR_INSERT_FRONT : ELEVATOR_INSERT_BACK;
2591 rq->rq_disk = bd_disk;
2592 rq->cmd_flags |= REQ_NOMERGE;
2593 rq->end_io = done;
2594 WARN_ON(irqs_disabled());
2595 spin_lock_irq(q->queue_lock);
2596 __elv_add_request(q, rq, where, 1);
2597 __generic_unplug_device(q);
2598 spin_unlock_irq(q->queue_lock);
2600 EXPORT_SYMBOL_GPL(blk_execute_rq_nowait);
2603 * blk_execute_rq - insert a request into queue for execution
2604 * @q: queue to insert the request in
2605 * @bd_disk: matching gendisk
2606 * @rq: request to insert
2607 * @at_head: insert request at head or tail of queue
2609 * Description:
2610 * Insert a fully prepared request at the back of the io scheduler queue
2611 * for execution and wait for completion.
2613 int blk_execute_rq(struct request_queue *q, struct gendisk *bd_disk,
2614 struct request *rq, int at_head)
2616 DECLARE_COMPLETION_ONSTACK(wait);
2617 char sense[SCSI_SENSE_BUFFERSIZE];
2618 int err = 0;
2621 * we need an extra reference to the request, so we can look at
2622 * it after io completion
2624 rq->ref_count++;
2626 if (!rq->sense) {
2627 memset(sense, 0, sizeof(sense));
2628 rq->sense = sense;
2629 rq->sense_len = 0;
2632 rq->end_io_data = &wait;
2633 blk_execute_rq_nowait(q, bd_disk, rq, at_head, blk_end_sync_rq);
2634 wait_for_completion(&wait);
2636 if (rq->errors)
2637 err = -EIO;
2639 return err;
2642 EXPORT_SYMBOL(blk_execute_rq);
2645 * blkdev_issue_flush - queue a flush
2646 * @bdev: blockdev to issue flush for
2647 * @error_sector: error sector
2649 * Description:
2650 * Issue a flush for the block device in question. Caller can supply
2651 * room for storing the error offset in case of a flush error, if they
2652 * wish to. Caller must run wait_for_completion() on its own.
2654 int blkdev_issue_flush(struct block_device *bdev, sector_t *error_sector)
2656 struct request_queue *q;
2658 if (bdev->bd_disk == NULL)
2659 return -ENXIO;
2661 q = bdev_get_queue(bdev);
2662 if (!q)
2663 return -ENXIO;
2664 if (!q->issue_flush_fn)
2665 return -EOPNOTSUPP;
2667 return q->issue_flush_fn(q, bdev->bd_disk, error_sector);
2670 EXPORT_SYMBOL(blkdev_issue_flush);
2672 static void drive_stat_acct(struct request *rq, int nr_sectors, int new_io)
2674 int rw = rq_data_dir(rq);
2676 if (!blk_fs_request(rq) || !rq->rq_disk)
2677 return;
2679 if (!new_io) {
2680 __disk_stat_inc(rq->rq_disk, merges[rw]);
2681 } else {
2682 disk_round_stats(rq->rq_disk);
2683 rq->rq_disk->in_flight++;
2688 * add-request adds a request to the linked list.
2689 * queue lock is held and interrupts disabled, as we muck with the
2690 * request queue list.
2692 static inline void add_request(struct request_queue * q, struct request * req)
2694 drive_stat_acct(req, req->nr_sectors, 1);
2697 * elevator indicated where it wants this request to be
2698 * inserted at elevator_merge time
2700 __elv_add_request(q, req, ELEVATOR_INSERT_SORT, 0);
2704 * disk_round_stats() - Round off the performance stats on a struct
2705 * disk_stats.
2707 * The average IO queue length and utilisation statistics are maintained
2708 * by observing the current state of the queue length and the amount of
2709 * time it has been in this state for.
2711 * Normally, that accounting is done on IO completion, but that can result
2712 * in more than a second's worth of IO being accounted for within any one
2713 * second, leading to >100% utilisation. To deal with that, we call this
2714 * function to do a round-off before returning the results when reading
2715 * /proc/diskstats. This accounts immediately for all queue usage up to
2716 * the current jiffies and restarts the counters again.
2718 void disk_round_stats(struct gendisk *disk)
2720 unsigned long now = jiffies;
2722 if (now == disk->stamp)
2723 return;
2725 if (disk->in_flight) {
2726 __disk_stat_add(disk, time_in_queue,
2727 disk->in_flight * (now - disk->stamp));
2728 __disk_stat_add(disk, io_ticks, (now - disk->stamp));
2730 disk->stamp = now;
2733 EXPORT_SYMBOL_GPL(disk_round_stats);
2736 * queue lock must be held
2738 void __blk_put_request(struct request_queue *q, struct request *req)
2740 if (unlikely(!q))
2741 return;
2742 if (unlikely(--req->ref_count))
2743 return;
2745 elv_completed_request(q, req);
2748 * Request may not have originated from ll_rw_blk. if not,
2749 * it didn't come out of our reserved rq pools
2751 if (req->cmd_flags & REQ_ALLOCED) {
2752 int rw = rq_data_dir(req);
2753 int priv = req->cmd_flags & REQ_ELVPRIV;
2755 BUG_ON(!list_empty(&req->queuelist));
2756 BUG_ON(!hlist_unhashed(&req->hash));
2758 blk_free_request(q, req);
2759 freed_request(q, rw, priv);
2763 EXPORT_SYMBOL_GPL(__blk_put_request);
2765 void blk_put_request(struct request *req)
2767 unsigned long flags;
2768 struct request_queue *q = req->q;
2771 * Gee, IDE calls in w/ NULL q. Fix IDE and remove the
2772 * following if (q) test.
2774 if (q) {
2775 spin_lock_irqsave(q->queue_lock, flags);
2776 __blk_put_request(q, req);
2777 spin_unlock_irqrestore(q->queue_lock, flags);
2781 EXPORT_SYMBOL(blk_put_request);
2784 * blk_end_sync_rq - executes a completion event on a request
2785 * @rq: request to complete
2786 * @error: end io status of the request
2788 void blk_end_sync_rq(struct request *rq, int error)
2790 struct completion *waiting = rq->end_io_data;
2792 rq->end_io_data = NULL;
2793 __blk_put_request(rq->q, rq);
2796 * complete last, if this is a stack request the process (and thus
2797 * the rq pointer) could be invalid right after this complete()
2799 complete(waiting);
2801 EXPORT_SYMBOL(blk_end_sync_rq);
2804 * Has to be called with the request spinlock acquired
2806 static int attempt_merge(struct request_queue *q, struct request *req,
2807 struct request *next)
2809 if (!rq_mergeable(req) || !rq_mergeable(next))
2810 return 0;
2813 * not contiguous
2815 if (req->sector + req->nr_sectors != next->sector)
2816 return 0;
2818 if (rq_data_dir(req) != rq_data_dir(next)
2819 || req->rq_disk != next->rq_disk
2820 || next->special)
2821 return 0;
2824 * If we are allowed to merge, then append bio list
2825 * from next to rq and release next. merge_requests_fn
2826 * will have updated segment counts, update sector
2827 * counts here.
2829 if (!ll_merge_requests_fn(q, req, next))
2830 return 0;
2833 * At this point we have either done a back merge
2834 * or front merge. We need the smaller start_time of
2835 * the merged requests to be the current request
2836 * for accounting purposes.
2838 if (time_after(req->start_time, next->start_time))
2839 req->start_time = next->start_time;
2841 req->biotail->bi_next = next->bio;
2842 req->biotail = next->biotail;
2844 req->nr_sectors = req->hard_nr_sectors += next->hard_nr_sectors;
2846 elv_merge_requests(q, req, next);
2848 if (req->rq_disk) {
2849 disk_round_stats(req->rq_disk);
2850 req->rq_disk->in_flight--;
2853 req->ioprio = ioprio_best(req->ioprio, next->ioprio);
2855 __blk_put_request(q, next);
2856 return 1;
2859 static inline int attempt_back_merge(struct request_queue *q,
2860 struct request *rq)
2862 struct request *next = elv_latter_request(q, rq);
2864 if (next)
2865 return attempt_merge(q, rq, next);
2867 return 0;
2870 static inline int attempt_front_merge(struct request_queue *q,
2871 struct request *rq)
2873 struct request *prev = elv_former_request(q, rq);
2875 if (prev)
2876 return attempt_merge(q, prev, rq);
2878 return 0;
2881 static void init_request_from_bio(struct request *req, struct bio *bio)
2883 req->cmd_type = REQ_TYPE_FS;
2886 * inherit FAILFAST from bio (for read-ahead, and explicit FAILFAST)
2888 if (bio_rw_ahead(bio) || bio_failfast(bio))
2889 req->cmd_flags |= REQ_FAILFAST;
2892 * REQ_BARRIER implies no merging, but lets make it explicit
2894 if (unlikely(bio_barrier(bio)))
2895 req->cmd_flags |= (REQ_HARDBARRIER | REQ_NOMERGE);
2897 if (bio_sync(bio))
2898 req->cmd_flags |= REQ_RW_SYNC;
2899 if (bio_rw_meta(bio))
2900 req->cmd_flags |= REQ_RW_META;
2902 req->errors = 0;
2903 req->hard_sector = req->sector = bio->bi_sector;
2904 req->hard_nr_sectors = req->nr_sectors = bio_sectors(bio);
2905 req->current_nr_sectors = req->hard_cur_sectors = bio_cur_sectors(bio);
2906 req->nr_phys_segments = bio_phys_segments(req->q, bio);
2907 req->nr_hw_segments = bio_hw_segments(req->q, bio);
2908 req->buffer = bio_data(bio); /* see ->buffer comment above */
2909 req->bio = req->biotail = bio;
2910 req->ioprio = bio_prio(bio);
2911 req->rq_disk = bio->bi_bdev->bd_disk;
2912 req->start_time = jiffies;
2915 static int __make_request(struct request_queue *q, struct bio *bio)
2917 struct request *req;
2918 int el_ret, nr_sectors, barrier, err;
2919 const unsigned short prio = bio_prio(bio);
2920 const int sync = bio_sync(bio);
2921 int rw_flags;
2923 nr_sectors = bio_sectors(bio);
2926 * low level driver can indicate that it wants pages above a
2927 * certain limit bounced to low memory (ie for highmem, or even
2928 * ISA dma in theory)
2930 blk_queue_bounce(q, &bio);
2932 barrier = bio_barrier(bio);
2933 if (unlikely(barrier) && (q->next_ordered == QUEUE_ORDERED_NONE)) {
2934 err = -EOPNOTSUPP;
2935 goto end_io;
2938 spin_lock_irq(q->queue_lock);
2940 if (unlikely(barrier) || elv_queue_empty(q))
2941 goto get_rq;
2943 el_ret = elv_merge(q, &req, bio);
2944 switch (el_ret) {
2945 case ELEVATOR_BACK_MERGE:
2946 BUG_ON(!rq_mergeable(req));
2948 if (!ll_back_merge_fn(q, req, bio))
2949 break;
2951 blk_add_trace_bio(q, bio, BLK_TA_BACKMERGE);
2953 req->biotail->bi_next = bio;
2954 req->biotail = bio;
2955 req->nr_sectors = req->hard_nr_sectors += nr_sectors;
2956 req->ioprio = ioprio_best(req->ioprio, prio);
2957 drive_stat_acct(req, nr_sectors, 0);
2958 if (!attempt_back_merge(q, req))
2959 elv_merged_request(q, req, el_ret);
2960 goto out;
2962 case ELEVATOR_FRONT_MERGE:
2963 BUG_ON(!rq_mergeable(req));
2965 if (!ll_front_merge_fn(q, req, bio))
2966 break;
2968 blk_add_trace_bio(q, bio, BLK_TA_FRONTMERGE);
2970 bio->bi_next = req->bio;
2971 req->bio = bio;
2974 * may not be valid. if the low level driver said
2975 * it didn't need a bounce buffer then it better
2976 * not touch req->buffer either...
2978 req->buffer = bio_data(bio);
2979 req->current_nr_sectors = bio_cur_sectors(bio);
2980 req->hard_cur_sectors = req->current_nr_sectors;
2981 req->sector = req->hard_sector = bio->bi_sector;
2982 req->nr_sectors = req->hard_nr_sectors += nr_sectors;
2983 req->ioprio = ioprio_best(req->ioprio, prio);
2984 drive_stat_acct(req, nr_sectors, 0);
2985 if (!attempt_front_merge(q, req))
2986 elv_merged_request(q, req, el_ret);
2987 goto out;
2989 /* ELV_NO_MERGE: elevator says don't/can't merge. */
2990 default:
2994 get_rq:
2996 * This sync check and mask will be re-done in init_request_from_bio(),
2997 * but we need to set it earlier to expose the sync flag to the
2998 * rq allocator and io schedulers.
3000 rw_flags = bio_data_dir(bio);
3001 if (sync)
3002 rw_flags |= REQ_RW_SYNC;
3005 * Grab a free request. This is might sleep but can not fail.
3006 * Returns with the queue unlocked.
3008 req = get_request_wait(q, rw_flags, bio);
3011 * After dropping the lock and possibly sleeping here, our request
3012 * may now be mergeable after it had proven unmergeable (above).
3013 * We don't worry about that case for efficiency. It won't happen
3014 * often, and the elevators are able to handle it.
3016 init_request_from_bio(req, bio);
3018 spin_lock_irq(q->queue_lock);
3019 if (elv_queue_empty(q))
3020 blk_plug_device(q);
3021 add_request(q, req);
3022 out:
3023 if (sync)
3024 __generic_unplug_device(q);
3026 spin_unlock_irq(q->queue_lock);
3027 return 0;
3029 end_io:
3030 bio_endio(bio, nr_sectors << 9, err);
3031 return 0;
3035 * If bio->bi_dev is a partition, remap the location
3037 static inline void blk_partition_remap(struct bio *bio)
3039 struct block_device *bdev = bio->bi_bdev;
3041 if (bdev != bdev->bd_contains) {
3042 struct hd_struct *p = bdev->bd_part;
3043 const int rw = bio_data_dir(bio);
3045 p->sectors[rw] += bio_sectors(bio);
3046 p->ios[rw]++;
3048 bio->bi_sector += p->start_sect;
3049 bio->bi_bdev = bdev->bd_contains;
3053 static void handle_bad_sector(struct bio *bio)
3055 char b[BDEVNAME_SIZE];
3057 printk(KERN_INFO "attempt to access beyond end of device\n");
3058 printk(KERN_INFO "%s: rw=%ld, want=%Lu, limit=%Lu\n",
3059 bdevname(bio->bi_bdev, b),
3060 bio->bi_rw,
3061 (unsigned long long)bio->bi_sector + bio_sectors(bio),
3062 (long long)(bio->bi_bdev->bd_inode->i_size >> 9));
3064 set_bit(BIO_EOF, &bio->bi_flags);
3067 #ifdef CONFIG_FAIL_MAKE_REQUEST
3069 static DECLARE_FAULT_ATTR(fail_make_request);
3071 static int __init setup_fail_make_request(char *str)
3073 return setup_fault_attr(&fail_make_request, str);
3075 __setup("fail_make_request=", setup_fail_make_request);
3077 static int should_fail_request(struct bio *bio)
3079 if ((bio->bi_bdev->bd_disk->flags & GENHD_FL_FAIL) ||
3080 (bio->bi_bdev->bd_part && bio->bi_bdev->bd_part->make_it_fail))
3081 return should_fail(&fail_make_request, bio->bi_size);
3083 return 0;
3086 static int __init fail_make_request_debugfs(void)
3088 return init_fault_attr_dentries(&fail_make_request,
3089 "fail_make_request");
3092 late_initcall(fail_make_request_debugfs);
3094 #else /* CONFIG_FAIL_MAKE_REQUEST */
3096 static inline int should_fail_request(struct bio *bio)
3098 return 0;
3101 #endif /* CONFIG_FAIL_MAKE_REQUEST */
3104 * generic_make_request: hand a buffer to its device driver for I/O
3105 * @bio: The bio describing the location in memory and on the device.
3107 * generic_make_request() is used to make I/O requests of block
3108 * devices. It is passed a &struct bio, which describes the I/O that needs
3109 * to be done.
3111 * generic_make_request() does not return any status. The
3112 * success/failure status of the request, along with notification of
3113 * completion, is delivered asynchronously through the bio->bi_end_io
3114 * function described (one day) else where.
3116 * The caller of generic_make_request must make sure that bi_io_vec
3117 * are set to describe the memory buffer, and that bi_dev and bi_sector are
3118 * set to describe the device address, and the
3119 * bi_end_io and optionally bi_private are set to describe how
3120 * completion notification should be signaled.
3122 * generic_make_request and the drivers it calls may use bi_next if this
3123 * bio happens to be merged with someone else, and may change bi_dev and
3124 * bi_sector for remaps as it sees fit. So the values of these fields
3125 * should NOT be depended on after the call to generic_make_request.
3127 static inline void __generic_make_request(struct bio *bio)
3129 struct request_queue *q;
3130 sector_t maxsector;
3131 sector_t old_sector;
3132 int ret, nr_sectors = bio_sectors(bio);
3133 dev_t old_dev;
3135 might_sleep();
3136 /* Test device or partition size, when known. */
3137 maxsector = bio->bi_bdev->bd_inode->i_size >> 9;
3138 if (maxsector) {
3139 sector_t sector = bio->bi_sector;
3141 if (maxsector < nr_sectors || maxsector - nr_sectors < sector) {
3143 * This may well happen - the kernel calls bread()
3144 * without checking the size of the device, e.g., when
3145 * mounting a device.
3147 handle_bad_sector(bio);
3148 goto end_io;
3153 * Resolve the mapping until finished. (drivers are
3154 * still free to implement/resolve their own stacking
3155 * by explicitly returning 0)
3157 * NOTE: we don't repeat the blk_size check for each new device.
3158 * Stacking drivers are expected to know what they are doing.
3160 old_sector = -1;
3161 old_dev = 0;
3162 do {
3163 char b[BDEVNAME_SIZE];
3165 q = bdev_get_queue(bio->bi_bdev);
3166 if (!q) {
3167 printk(KERN_ERR
3168 "generic_make_request: Trying to access "
3169 "nonexistent block-device %s (%Lu)\n",
3170 bdevname(bio->bi_bdev, b),
3171 (long long) bio->bi_sector);
3172 end_io:
3173 bio_endio(bio, bio->bi_size, -EIO);
3174 break;
3177 if (unlikely(bio_sectors(bio) > q->max_hw_sectors)) {
3178 printk("bio too big device %s (%u > %u)\n",
3179 bdevname(bio->bi_bdev, b),
3180 bio_sectors(bio),
3181 q->max_hw_sectors);
3182 goto end_io;
3185 if (unlikely(test_bit(QUEUE_FLAG_DEAD, &q->queue_flags)))
3186 goto end_io;
3188 if (should_fail_request(bio))
3189 goto end_io;
3192 * If this device has partitions, remap block n
3193 * of partition p to block n+start(p) of the disk.
3195 blk_partition_remap(bio);
3197 if (old_sector != -1)
3198 blk_add_trace_remap(q, bio, old_dev, bio->bi_sector,
3199 old_sector);
3201 blk_add_trace_bio(q, bio, BLK_TA_QUEUE);
3203 old_sector = bio->bi_sector;
3204 old_dev = bio->bi_bdev->bd_dev;
3206 maxsector = bio->bi_bdev->bd_inode->i_size >> 9;
3207 if (maxsector) {
3208 sector_t sector = bio->bi_sector;
3210 if (maxsector < nr_sectors ||
3211 maxsector - nr_sectors < sector) {
3213 * This may well happen - partitions are not
3214 * checked to make sure they are within the size
3215 * of the whole device.
3217 handle_bad_sector(bio);
3218 goto end_io;
3222 ret = q->make_request_fn(q, bio);
3223 } while (ret);
3227 * We only want one ->make_request_fn to be active at a time,
3228 * else stack usage with stacked devices could be a problem.
3229 * So use current->bio_{list,tail} to keep a list of requests
3230 * submited by a make_request_fn function.
3231 * current->bio_tail is also used as a flag to say if
3232 * generic_make_request is currently active in this task or not.
3233 * If it is NULL, then no make_request is active. If it is non-NULL,
3234 * then a make_request is active, and new requests should be added
3235 * at the tail
3237 void generic_make_request(struct bio *bio)
3239 if (current->bio_tail) {
3240 /* make_request is active */
3241 *(current->bio_tail) = bio;
3242 bio->bi_next = NULL;
3243 current->bio_tail = &bio->bi_next;
3244 return;
3246 /* following loop may be a bit non-obvious, and so deserves some
3247 * explanation.
3248 * Before entering the loop, bio->bi_next is NULL (as all callers
3249 * ensure that) so we have a list with a single bio.
3250 * We pretend that we have just taken it off a longer list, so
3251 * we assign bio_list to the next (which is NULL) and bio_tail
3252 * to &bio_list, thus initialising the bio_list of new bios to be
3253 * added. __generic_make_request may indeed add some more bios
3254 * through a recursive call to generic_make_request. If it
3255 * did, we find a non-NULL value in bio_list and re-enter the loop
3256 * from the top. In this case we really did just take the bio
3257 * of the top of the list (no pretending) and so fixup bio_list and
3258 * bio_tail or bi_next, and call into __generic_make_request again.
3260 * The loop was structured like this to make only one call to
3261 * __generic_make_request (which is important as it is large and
3262 * inlined) and to keep the structure simple.
3264 BUG_ON(bio->bi_next);
3265 do {
3266 current->bio_list = bio->bi_next;
3267 if (bio->bi_next == NULL)
3268 current->bio_tail = &current->bio_list;
3269 else
3270 bio->bi_next = NULL;
3271 __generic_make_request(bio);
3272 bio = current->bio_list;
3273 } while (bio);
3274 current->bio_tail = NULL; /* deactivate */
3277 EXPORT_SYMBOL(generic_make_request);
3280 * submit_bio: submit a bio to the block device layer for I/O
3281 * @rw: whether to %READ or %WRITE, or maybe to %READA (read ahead)
3282 * @bio: The &struct bio which describes the I/O
3284 * submit_bio() is very similar in purpose to generic_make_request(), and
3285 * uses that function to do most of the work. Both are fairly rough
3286 * interfaces, @bio must be presetup and ready for I/O.
3289 void submit_bio(int rw, struct bio *bio)
3291 int count = bio_sectors(bio);
3293 BIO_BUG_ON(!bio->bi_size);
3294 BIO_BUG_ON(!bio->bi_io_vec);
3295 bio->bi_rw |= rw;
3296 if (rw & WRITE) {
3297 count_vm_events(PGPGOUT, count);
3298 } else {
3299 task_io_account_read(bio->bi_size);
3300 count_vm_events(PGPGIN, count);
3303 if (unlikely(block_dump)) {
3304 char b[BDEVNAME_SIZE];
3305 printk(KERN_DEBUG "%s(%d): %s block %Lu on %s\n",
3306 current->comm, current->pid,
3307 (rw & WRITE) ? "WRITE" : "READ",
3308 (unsigned long long)bio->bi_sector,
3309 bdevname(bio->bi_bdev,b));
3312 generic_make_request(bio);
3315 EXPORT_SYMBOL(submit_bio);
3317 static void blk_recalc_rq_segments(struct request *rq)
3319 struct bio *bio, *prevbio = NULL;
3320 int nr_phys_segs, nr_hw_segs;
3321 unsigned int phys_size, hw_size;
3322 struct request_queue *q = rq->q;
3324 if (!rq->bio)
3325 return;
3327 phys_size = hw_size = nr_phys_segs = nr_hw_segs = 0;
3328 rq_for_each_bio(bio, rq) {
3329 /* Force bio hw/phys segs to be recalculated. */
3330 bio->bi_flags &= ~(1 << BIO_SEG_VALID);
3332 nr_phys_segs += bio_phys_segments(q, bio);
3333 nr_hw_segs += bio_hw_segments(q, bio);
3334 if (prevbio) {
3335 int pseg = phys_size + prevbio->bi_size + bio->bi_size;
3336 int hseg = hw_size + prevbio->bi_size + bio->bi_size;
3338 if (blk_phys_contig_segment(q, prevbio, bio) &&
3339 pseg <= q->max_segment_size) {
3340 nr_phys_segs--;
3341 phys_size += prevbio->bi_size + bio->bi_size;
3342 } else
3343 phys_size = 0;
3345 if (blk_hw_contig_segment(q, prevbio, bio) &&
3346 hseg <= q->max_segment_size) {
3347 nr_hw_segs--;
3348 hw_size += prevbio->bi_size + bio->bi_size;
3349 } else
3350 hw_size = 0;
3352 prevbio = bio;
3355 rq->nr_phys_segments = nr_phys_segs;
3356 rq->nr_hw_segments = nr_hw_segs;
3359 static void blk_recalc_rq_sectors(struct request *rq, int nsect)
3361 if (blk_fs_request(rq)) {
3362 rq->hard_sector += nsect;
3363 rq->hard_nr_sectors -= nsect;
3366 * Move the I/O submission pointers ahead if required.
3368 if ((rq->nr_sectors >= rq->hard_nr_sectors) &&
3369 (rq->sector <= rq->hard_sector)) {
3370 rq->sector = rq->hard_sector;
3371 rq->nr_sectors = rq->hard_nr_sectors;
3372 rq->hard_cur_sectors = bio_cur_sectors(rq->bio);
3373 rq->current_nr_sectors = rq->hard_cur_sectors;
3374 rq->buffer = bio_data(rq->bio);
3378 * if total number of sectors is less than the first segment
3379 * size, something has gone terribly wrong
3381 if (rq->nr_sectors < rq->current_nr_sectors) {
3382 printk("blk: request botched\n");
3383 rq->nr_sectors = rq->current_nr_sectors;
3388 static int __end_that_request_first(struct request *req, int uptodate,
3389 int nr_bytes)
3391 int total_bytes, bio_nbytes, error, next_idx = 0;
3392 struct bio *bio;
3394 blk_add_trace_rq(req->q, req, BLK_TA_COMPLETE);
3397 * extend uptodate bool to allow < 0 value to be direct io error
3399 error = 0;
3400 if (end_io_error(uptodate))
3401 error = !uptodate ? -EIO : uptodate;
3404 * for a REQ_BLOCK_PC request, we want to carry any eventual
3405 * sense key with us all the way through
3407 if (!blk_pc_request(req))
3408 req->errors = 0;
3410 if (!uptodate) {
3411 if (blk_fs_request(req) && !(req->cmd_flags & REQ_QUIET))
3412 printk("end_request: I/O error, dev %s, sector %llu\n",
3413 req->rq_disk ? req->rq_disk->disk_name : "?",
3414 (unsigned long long)req->sector);
3417 if (blk_fs_request(req) && req->rq_disk) {
3418 const int rw = rq_data_dir(req);
3420 disk_stat_add(req->rq_disk, sectors[rw], nr_bytes >> 9);
3423 total_bytes = bio_nbytes = 0;
3424 while ((bio = req->bio) != NULL) {
3425 int nbytes;
3427 if (nr_bytes >= bio->bi_size) {
3428 req->bio = bio->bi_next;
3429 nbytes = bio->bi_size;
3430 if (!ordered_bio_endio(req, bio, nbytes, error))
3431 bio_endio(bio, nbytes, error);
3432 next_idx = 0;
3433 bio_nbytes = 0;
3434 } else {
3435 int idx = bio->bi_idx + next_idx;
3437 if (unlikely(bio->bi_idx >= bio->bi_vcnt)) {
3438 blk_dump_rq_flags(req, "__end_that");
3439 printk("%s: bio idx %d >= vcnt %d\n",
3440 __FUNCTION__,
3441 bio->bi_idx, bio->bi_vcnt);
3442 break;
3445 nbytes = bio_iovec_idx(bio, idx)->bv_len;
3446 BIO_BUG_ON(nbytes > bio->bi_size);
3449 * not a complete bvec done
3451 if (unlikely(nbytes > nr_bytes)) {
3452 bio_nbytes += nr_bytes;
3453 total_bytes += nr_bytes;
3454 break;
3458 * advance to the next vector
3460 next_idx++;
3461 bio_nbytes += nbytes;
3464 total_bytes += nbytes;
3465 nr_bytes -= nbytes;
3467 if ((bio = req->bio)) {
3469 * end more in this run, or just return 'not-done'
3471 if (unlikely(nr_bytes <= 0))
3472 break;
3477 * completely done
3479 if (!req->bio)
3480 return 0;
3483 * if the request wasn't completed, update state
3485 if (bio_nbytes) {
3486 if (!ordered_bio_endio(req, bio, bio_nbytes, error))
3487 bio_endio(bio, bio_nbytes, error);
3488 bio->bi_idx += next_idx;
3489 bio_iovec(bio)->bv_offset += nr_bytes;
3490 bio_iovec(bio)->bv_len -= nr_bytes;
3493 blk_recalc_rq_sectors(req, total_bytes >> 9);
3494 blk_recalc_rq_segments(req);
3495 return 1;
3499 * end_that_request_first - end I/O on a request
3500 * @req: the request being processed
3501 * @uptodate: 1 for success, 0 for I/O error, < 0 for specific error
3502 * @nr_sectors: number of sectors to end I/O on
3504 * Description:
3505 * Ends I/O on a number of sectors attached to @req, and sets it up
3506 * for the next range of segments (if any) in the cluster.
3508 * Return:
3509 * 0 - we are done with this request, call end_that_request_last()
3510 * 1 - still buffers pending for this request
3512 int end_that_request_first(struct request *req, int uptodate, int nr_sectors)
3514 return __end_that_request_first(req, uptodate, nr_sectors << 9);
3517 EXPORT_SYMBOL(end_that_request_first);
3520 * end_that_request_chunk - end I/O on a request
3521 * @req: the request being processed
3522 * @uptodate: 1 for success, 0 for I/O error, < 0 for specific error
3523 * @nr_bytes: number of bytes to complete
3525 * Description:
3526 * Ends I/O on a number of bytes attached to @req, and sets it up
3527 * for the next range of segments (if any). Like end_that_request_first(),
3528 * but deals with bytes instead of sectors.
3530 * Return:
3531 * 0 - we are done with this request, call end_that_request_last()
3532 * 1 - still buffers pending for this request
3534 int end_that_request_chunk(struct request *req, int uptodate, int nr_bytes)
3536 return __end_that_request_first(req, uptodate, nr_bytes);
3539 EXPORT_SYMBOL(end_that_request_chunk);
3542 * splice the completion data to a local structure and hand off to
3543 * process_completion_queue() to complete the requests
3545 static void blk_done_softirq(struct softirq_action *h)
3547 struct list_head *cpu_list, local_list;
3549 local_irq_disable();
3550 cpu_list = &__get_cpu_var(blk_cpu_done);
3551 list_replace_init(cpu_list, &local_list);
3552 local_irq_enable();
3554 while (!list_empty(&local_list)) {
3555 struct request *rq = list_entry(local_list.next, struct request, donelist);
3557 list_del_init(&rq->donelist);
3558 rq->q->softirq_done_fn(rq);
3562 static int blk_cpu_notify(struct notifier_block *self, unsigned long action,
3563 void *hcpu)
3566 * If a CPU goes away, splice its entries to the current CPU
3567 * and trigger a run of the softirq
3569 if (action == CPU_DEAD || action == CPU_DEAD_FROZEN) {
3570 int cpu = (unsigned long) hcpu;
3572 local_irq_disable();
3573 list_splice_init(&per_cpu(blk_cpu_done, cpu),
3574 &__get_cpu_var(blk_cpu_done));
3575 raise_softirq_irqoff(BLOCK_SOFTIRQ);
3576 local_irq_enable();
3579 return NOTIFY_OK;
3583 static struct notifier_block __devinitdata blk_cpu_notifier = {
3584 .notifier_call = blk_cpu_notify,
3588 * blk_complete_request - end I/O on a request
3589 * @req: the request being processed
3591 * Description:
3592 * Ends all I/O on a request. It does not handle partial completions,
3593 * unless the driver actually implements this in its completion callback
3594 * through requeueing. Theh actual completion happens out-of-order,
3595 * through a softirq handler. The user must have registered a completion
3596 * callback through blk_queue_softirq_done().
3599 void blk_complete_request(struct request *req)
3601 struct list_head *cpu_list;
3602 unsigned long flags;
3604 BUG_ON(!req->q->softirq_done_fn);
3606 local_irq_save(flags);
3608 cpu_list = &__get_cpu_var(blk_cpu_done);
3609 list_add_tail(&req->donelist, cpu_list);
3610 raise_softirq_irqoff(BLOCK_SOFTIRQ);
3612 local_irq_restore(flags);
3615 EXPORT_SYMBOL(blk_complete_request);
3618 * queue lock must be held
3620 void end_that_request_last(struct request *req, int uptodate)
3622 struct gendisk *disk = req->rq_disk;
3623 int error;
3626 * extend uptodate bool to allow < 0 value to be direct io error
3628 error = 0;
3629 if (end_io_error(uptodate))
3630 error = !uptodate ? -EIO : uptodate;
3632 if (unlikely(laptop_mode) && blk_fs_request(req))
3633 laptop_io_completion();
3636 * Account IO completion. bar_rq isn't accounted as a normal
3637 * IO on queueing nor completion. Accounting the containing
3638 * request is enough.
3640 if (disk && blk_fs_request(req) && req != &req->q->bar_rq) {
3641 unsigned long duration = jiffies - req->start_time;
3642 const int rw = rq_data_dir(req);
3644 __disk_stat_inc(disk, ios[rw]);
3645 __disk_stat_add(disk, ticks[rw], duration);
3646 disk_round_stats(disk);
3647 disk->in_flight--;
3649 if (req->end_io)
3650 req->end_io(req, error);
3651 else
3652 __blk_put_request(req->q, req);
3655 EXPORT_SYMBOL(end_that_request_last);
3657 void end_request(struct request *req, int uptodate)
3659 if (!end_that_request_first(req, uptodate, req->hard_cur_sectors)) {
3660 add_disk_randomness(req->rq_disk);
3661 blkdev_dequeue_request(req);
3662 end_that_request_last(req, uptodate);
3666 EXPORT_SYMBOL(end_request);
3668 void blk_rq_bio_prep(struct request_queue *q, struct request *rq,
3669 struct bio *bio)
3671 /* first two bits are identical in rq->cmd_flags and bio->bi_rw */
3672 rq->cmd_flags |= (bio->bi_rw & 3);
3674 rq->nr_phys_segments = bio_phys_segments(q, bio);
3675 rq->nr_hw_segments = bio_hw_segments(q, bio);
3676 rq->current_nr_sectors = bio_cur_sectors(bio);
3677 rq->hard_cur_sectors = rq->current_nr_sectors;
3678 rq->hard_nr_sectors = rq->nr_sectors = bio_sectors(bio);
3679 rq->buffer = bio_data(bio);
3680 rq->data_len = bio->bi_size;
3682 rq->bio = rq->biotail = bio;
3685 EXPORT_SYMBOL(blk_rq_bio_prep);
3687 int kblockd_schedule_work(struct work_struct *work)
3689 return queue_work(kblockd_workqueue, work);
3692 EXPORT_SYMBOL(kblockd_schedule_work);
3694 void kblockd_flush_work(struct work_struct *work)
3696 cancel_work_sync(work);
3698 EXPORT_SYMBOL(kblockd_flush_work);
3700 int __init blk_dev_init(void)
3702 int i;
3704 kblockd_workqueue = create_workqueue("kblockd");
3705 if (!kblockd_workqueue)
3706 panic("Failed to create kblockd\n");
3708 request_cachep = kmem_cache_create("blkdev_requests",
3709 sizeof(struct request), 0, SLAB_PANIC, NULL);
3711 requestq_cachep = kmem_cache_create("blkdev_queue",
3712 sizeof(struct request_queue), 0, SLAB_PANIC, NULL);
3714 iocontext_cachep = kmem_cache_create("blkdev_ioc",
3715 sizeof(struct io_context), 0, SLAB_PANIC, NULL);
3717 for_each_possible_cpu(i)
3718 INIT_LIST_HEAD(&per_cpu(blk_cpu_done, i));
3720 open_softirq(BLOCK_SOFTIRQ, blk_done_softirq, NULL);
3721 register_hotcpu_notifier(&blk_cpu_notifier);
3723 blk_max_low_pfn = max_low_pfn - 1;
3724 blk_max_pfn = max_pfn - 1;
3726 return 0;
3730 * IO Context helper functions
3732 void put_io_context(struct io_context *ioc)
3734 if (ioc == NULL)
3735 return;
3737 BUG_ON(atomic_read(&ioc->refcount) == 0);
3739 if (atomic_dec_and_test(&ioc->refcount)) {
3740 struct cfq_io_context *cic;
3742 rcu_read_lock();
3743 if (ioc->aic && ioc->aic->dtor)
3744 ioc->aic->dtor(ioc->aic);
3745 if (ioc->cic_root.rb_node != NULL) {
3746 struct rb_node *n = rb_first(&ioc->cic_root);
3748 cic = rb_entry(n, struct cfq_io_context, rb_node);
3749 cic->dtor(ioc);
3751 rcu_read_unlock();
3753 kmem_cache_free(iocontext_cachep, ioc);
3756 EXPORT_SYMBOL(put_io_context);
3758 /* Called by the exitting task */
3759 void exit_io_context(void)
3761 struct io_context *ioc;
3762 struct cfq_io_context *cic;
3764 task_lock(current);
3765 ioc = current->io_context;
3766 current->io_context = NULL;
3767 task_unlock(current);
3769 ioc->task = NULL;
3770 if (ioc->aic && ioc->aic->exit)
3771 ioc->aic->exit(ioc->aic);
3772 if (ioc->cic_root.rb_node != NULL) {
3773 cic = rb_entry(rb_first(&ioc->cic_root), struct cfq_io_context, rb_node);
3774 cic->exit(ioc);
3777 put_io_context(ioc);
3781 * If the current task has no IO context then create one and initialise it.
3782 * Otherwise, return its existing IO context.
3784 * This returned IO context doesn't have a specifically elevated refcount,
3785 * but since the current task itself holds a reference, the context can be
3786 * used in general code, so long as it stays within `current` context.
3788 static struct io_context *current_io_context(gfp_t gfp_flags, int node)
3790 struct task_struct *tsk = current;
3791 struct io_context *ret;
3793 ret = tsk->io_context;
3794 if (likely(ret))
3795 return ret;
3797 ret = kmem_cache_alloc_node(iocontext_cachep, gfp_flags, node);
3798 if (ret) {
3799 atomic_set(&ret->refcount, 1);
3800 ret->task = current;
3801 ret->ioprio_changed = 0;
3802 ret->last_waited = jiffies; /* doesn't matter... */
3803 ret->nr_batch_requests = 0; /* because this is 0 */
3804 ret->aic = NULL;
3805 ret->cic_root.rb_node = NULL;
3806 ret->ioc_data = NULL;
3807 /* make sure set_task_ioprio() sees the settings above */
3808 smp_wmb();
3809 tsk->io_context = ret;
3812 return ret;
3816 * If the current task has no IO context then create one and initialise it.
3817 * If it does have a context, take a ref on it.
3819 * This is always called in the context of the task which submitted the I/O.
3821 struct io_context *get_io_context(gfp_t gfp_flags, int node)
3823 struct io_context *ret;
3824 ret = current_io_context(gfp_flags, node);
3825 if (likely(ret))
3826 atomic_inc(&ret->refcount);
3827 return ret;
3829 EXPORT_SYMBOL(get_io_context);
3831 void copy_io_context(struct io_context **pdst, struct io_context **psrc)
3833 struct io_context *src = *psrc;
3834 struct io_context *dst = *pdst;
3836 if (src) {
3837 BUG_ON(atomic_read(&src->refcount) == 0);
3838 atomic_inc(&src->refcount);
3839 put_io_context(dst);
3840 *pdst = src;
3843 EXPORT_SYMBOL(copy_io_context);
3845 void swap_io_context(struct io_context **ioc1, struct io_context **ioc2)
3847 struct io_context *temp;
3848 temp = *ioc1;
3849 *ioc1 = *ioc2;
3850 *ioc2 = temp;
3852 EXPORT_SYMBOL(swap_io_context);
3855 * sysfs parts below
3857 struct queue_sysfs_entry {
3858 struct attribute attr;
3859 ssize_t (*show)(struct request_queue *, char *);
3860 ssize_t (*store)(struct request_queue *, const char *, size_t);
3863 static ssize_t
3864 queue_var_show(unsigned int var, char *page)
3866 return sprintf(page, "%d\n", var);
3869 static ssize_t
3870 queue_var_store(unsigned long *var, const char *page, size_t count)
3872 char *p = (char *) page;
3874 *var = simple_strtoul(p, &p, 10);
3875 return count;
3878 static ssize_t queue_requests_show(struct request_queue *q, char *page)
3880 return queue_var_show(q->nr_requests, (page));
3883 static ssize_t
3884 queue_requests_store(struct request_queue *q, const char *page, size_t count)
3886 struct request_list *rl = &q->rq;
3887 unsigned long nr;
3888 int ret = queue_var_store(&nr, page, count);
3889 if (nr < BLKDEV_MIN_RQ)
3890 nr = BLKDEV_MIN_RQ;
3892 spin_lock_irq(q->queue_lock);
3893 q->nr_requests = nr;
3894 blk_queue_congestion_threshold(q);
3896 if (rl->count[READ] >= queue_congestion_on_threshold(q))
3897 blk_set_queue_congested(q, READ);
3898 else if (rl->count[READ] < queue_congestion_off_threshold(q))
3899 blk_clear_queue_congested(q, READ);
3901 if (rl->count[WRITE] >= queue_congestion_on_threshold(q))
3902 blk_set_queue_congested(q, WRITE);
3903 else if (rl->count[WRITE] < queue_congestion_off_threshold(q))
3904 blk_clear_queue_congested(q, WRITE);
3906 if (rl->count[READ] >= q->nr_requests) {
3907 blk_set_queue_full(q, READ);
3908 } else if (rl->count[READ]+1 <= q->nr_requests) {
3909 blk_clear_queue_full(q, READ);
3910 wake_up(&rl->wait[READ]);
3913 if (rl->count[WRITE] >= q->nr_requests) {
3914 blk_set_queue_full(q, WRITE);
3915 } else if (rl->count[WRITE]+1 <= q->nr_requests) {
3916 blk_clear_queue_full(q, WRITE);
3917 wake_up(&rl->wait[WRITE]);
3919 spin_unlock_irq(q->queue_lock);
3920 return ret;
3923 static ssize_t queue_ra_show(struct request_queue *q, char *page)
3925 int ra_kb = q->backing_dev_info.ra_pages << (PAGE_CACHE_SHIFT - 10);
3927 return queue_var_show(ra_kb, (page));
3930 static ssize_t
3931 queue_ra_store(struct request_queue *q, const char *page, size_t count)
3933 unsigned long ra_kb;
3934 ssize_t ret = queue_var_store(&ra_kb, page, count);
3936 spin_lock_irq(q->queue_lock);
3937 q->backing_dev_info.ra_pages = ra_kb >> (PAGE_CACHE_SHIFT - 10);
3938 spin_unlock_irq(q->queue_lock);
3940 return ret;
3943 static ssize_t queue_max_sectors_show(struct request_queue *q, char *page)
3945 int max_sectors_kb = q->max_sectors >> 1;
3947 return queue_var_show(max_sectors_kb, (page));
3950 static ssize_t
3951 queue_max_sectors_store(struct request_queue *q, const char *page, size_t count)
3953 unsigned long max_sectors_kb,
3954 max_hw_sectors_kb = q->max_hw_sectors >> 1,
3955 page_kb = 1 << (PAGE_CACHE_SHIFT - 10);
3956 ssize_t ret = queue_var_store(&max_sectors_kb, page, count);
3957 int ra_kb;
3959 if (max_sectors_kb > max_hw_sectors_kb || max_sectors_kb < page_kb)
3960 return -EINVAL;
3962 * Take the queue lock to update the readahead and max_sectors
3963 * values synchronously:
3965 spin_lock_irq(q->queue_lock);
3967 * Trim readahead window as well, if necessary:
3969 ra_kb = q->backing_dev_info.ra_pages << (PAGE_CACHE_SHIFT - 10);
3970 if (ra_kb > max_sectors_kb)
3971 q->backing_dev_info.ra_pages =
3972 max_sectors_kb >> (PAGE_CACHE_SHIFT - 10);
3974 q->max_sectors = max_sectors_kb << 1;
3975 spin_unlock_irq(q->queue_lock);
3977 return ret;
3980 static ssize_t queue_max_hw_sectors_show(struct request_queue *q, char *page)
3982 int max_hw_sectors_kb = q->max_hw_sectors >> 1;
3984 return queue_var_show(max_hw_sectors_kb, (page));
3988 static struct queue_sysfs_entry queue_requests_entry = {
3989 .attr = {.name = "nr_requests", .mode = S_IRUGO | S_IWUSR },
3990 .show = queue_requests_show,
3991 .store = queue_requests_store,
3994 static struct queue_sysfs_entry queue_ra_entry = {
3995 .attr = {.name = "read_ahead_kb", .mode = S_IRUGO | S_IWUSR },
3996 .show = queue_ra_show,
3997 .store = queue_ra_store,
4000 static struct queue_sysfs_entry queue_max_sectors_entry = {
4001 .attr = {.name = "max_sectors_kb", .mode = S_IRUGO | S_IWUSR },
4002 .show = queue_max_sectors_show,
4003 .store = queue_max_sectors_store,
4006 static struct queue_sysfs_entry queue_max_hw_sectors_entry = {
4007 .attr = {.name = "max_hw_sectors_kb", .mode = S_IRUGO },
4008 .show = queue_max_hw_sectors_show,
4011 static struct queue_sysfs_entry queue_iosched_entry = {
4012 .attr = {.name = "scheduler", .mode = S_IRUGO | S_IWUSR },
4013 .show = elv_iosched_show,
4014 .store = elv_iosched_store,
4017 static struct attribute *default_attrs[] = {
4018 &queue_requests_entry.attr,
4019 &queue_ra_entry.attr,
4020 &queue_max_hw_sectors_entry.attr,
4021 &queue_max_sectors_entry.attr,
4022 &queue_iosched_entry.attr,
4023 NULL,
4026 #define to_queue(atr) container_of((atr), struct queue_sysfs_entry, attr)
4028 static ssize_t
4029 queue_attr_show(struct kobject *kobj, struct attribute *attr, char *page)
4031 struct queue_sysfs_entry *entry = to_queue(attr);
4032 struct request_queue *q =
4033 container_of(kobj, struct request_queue, kobj);
4034 ssize_t res;
4036 if (!entry->show)
4037 return -EIO;
4038 mutex_lock(&q->sysfs_lock);
4039 if (test_bit(QUEUE_FLAG_DEAD, &q->queue_flags)) {
4040 mutex_unlock(&q->sysfs_lock);
4041 return -ENOENT;
4043 res = entry->show(q, page);
4044 mutex_unlock(&q->sysfs_lock);
4045 return res;
4048 static ssize_t
4049 queue_attr_store(struct kobject *kobj, struct attribute *attr,
4050 const char *page, size_t length)
4052 struct queue_sysfs_entry *entry = to_queue(attr);
4053 struct request_queue *q = container_of(kobj, struct request_queue, kobj);
4055 ssize_t res;
4057 if (!entry->store)
4058 return -EIO;
4059 mutex_lock(&q->sysfs_lock);
4060 if (test_bit(QUEUE_FLAG_DEAD, &q->queue_flags)) {
4061 mutex_unlock(&q->sysfs_lock);
4062 return -ENOENT;
4064 res = entry->store(q, page, length);
4065 mutex_unlock(&q->sysfs_lock);
4066 return res;
4069 static struct sysfs_ops queue_sysfs_ops = {
4070 .show = queue_attr_show,
4071 .store = queue_attr_store,
4074 static struct kobj_type queue_ktype = {
4075 .sysfs_ops = &queue_sysfs_ops,
4076 .default_attrs = default_attrs,
4077 .release = blk_release_queue,
4080 int blk_register_queue(struct gendisk *disk)
4082 int ret;
4084 struct request_queue *q = disk->queue;
4086 if (!q || !q->request_fn)
4087 return -ENXIO;
4089 q->kobj.parent = kobject_get(&disk->kobj);
4091 ret = kobject_add(&q->kobj);
4092 if (ret < 0)
4093 return ret;
4095 kobject_uevent(&q->kobj, KOBJ_ADD);
4097 ret = elv_register_queue(q);
4098 if (ret) {
4099 kobject_uevent(&q->kobj, KOBJ_REMOVE);
4100 kobject_del(&q->kobj);
4101 return ret;
4104 return 0;
4107 void blk_unregister_queue(struct gendisk *disk)
4109 struct request_queue *q = disk->queue;
4111 if (q && q->request_fn) {
4112 elv_unregister_queue(q);
4114 kobject_uevent(&q->kobj, KOBJ_REMOVE);
4115 kobject_del(&q->kobj);
4116 kobject_put(&disk->kobj);