i386: convert hardware exception 6 to an interrupt gate
[linux-2.6/mini2440.git] / arch / x86 / kernel / traps_32.c
blob39a6101a612392d6c56fd809ce41820a7a00260c
1 /*
2 * Copyright (C) 1991, 1992 Linus Torvalds
3 * Copyright (C) 2000, 2001, 2002 Andi Kleen, SuSE Labs
5 * Pentium III FXSR, SSE support
6 * Gareth Hughes <gareth@valinux.com>, May 2000
7 */
9 /*
10 * 'Traps.c' handles hardware traps and faults after we have saved some
11 * state in 'asm.s'.
13 #include <linux/interrupt.h>
14 #include <linux/kallsyms.h>
15 #include <linux/spinlock.h>
16 #include <linux/highmem.h>
17 #include <linux/kprobes.h>
18 #include <linux/uaccess.h>
19 #include <linux/utsname.h>
20 #include <linux/kdebug.h>
21 #include <linux/kernel.h>
22 #include <linux/module.h>
23 #include <linux/ptrace.h>
24 #include <linux/string.h>
25 #include <linux/unwind.h>
26 #include <linux/delay.h>
27 #include <linux/errno.h>
28 #include <linux/kexec.h>
29 #include <linux/sched.h>
30 #include <linux/timer.h>
31 #include <linux/init.h>
32 #include <linux/bug.h>
33 #include <linux/nmi.h>
34 #include <linux/mm.h>
36 #ifdef CONFIG_EISA
37 #include <linux/ioport.h>
38 #include <linux/eisa.h>
39 #endif
41 #ifdef CONFIG_MCA
42 #include <linux/mca.h>
43 #endif
45 #if defined(CONFIG_EDAC)
46 #include <linux/edac.h>
47 #endif
49 #include <asm/arch_hooks.h>
50 #include <asm/stacktrace.h>
51 #include <asm/processor.h>
52 #include <asm/debugreg.h>
53 #include <asm/atomic.h>
54 #include <asm/system.h>
55 #include <asm/unwind.h>
56 #include <asm/desc.h>
57 #include <asm/i387.h>
58 #include <asm/nmi.h>
59 #include <asm/smp.h>
60 #include <asm/io.h>
61 #include <asm/traps.h>
63 #include "mach_traps.h"
65 DECLARE_BITMAP(used_vectors, NR_VECTORS);
66 EXPORT_SYMBOL_GPL(used_vectors);
68 asmlinkage int system_call(void);
70 /* Do we ignore FPU interrupts ? */
71 char ignore_fpu_irq;
74 * The IDT has to be page-aligned to simplify the Pentium
75 * F0 0F bug workaround.. We have a special link segment
76 * for this.
78 gate_desc idt_table[256]
79 __attribute__((__section__(".data.idt"))) = { { { { 0, 0 } } }, };
81 int panic_on_unrecovered_nmi;
82 int kstack_depth_to_print = 24;
83 static unsigned int code_bytes = 64;
84 static int ignore_nmis;
85 static int die_counter;
87 static inline void conditional_sti(struct pt_regs *regs)
89 if (regs->flags & X86_EFLAGS_IF)
90 local_irq_enable();
93 void printk_address(unsigned long address, int reliable)
95 #ifdef CONFIG_KALLSYMS
96 unsigned long offset = 0;
97 unsigned long symsize;
98 const char *symname;
99 char *modname;
100 char *delim = ":";
101 char namebuf[KSYM_NAME_LEN];
102 char reliab[4] = "";
104 symname = kallsyms_lookup(address, &symsize, &offset,
105 &modname, namebuf);
106 if (!symname) {
107 printk(" [<%08lx>]\n", address);
108 return;
110 if (!reliable)
111 strcpy(reliab, "? ");
113 if (!modname)
114 modname = delim = "";
115 printk(" [<%08lx>] %s%s%s%s%s+0x%lx/0x%lx\n",
116 address, reliab, delim, modname, delim, symname, offset, symsize);
117 #else
118 printk(" [<%08lx>]\n", address);
119 #endif
122 static inline int valid_stack_ptr(struct thread_info *tinfo,
123 void *p, unsigned int size)
125 void *t = tinfo;
126 return p > t && p <= t + THREAD_SIZE - size;
129 /* The form of the top of the frame on the stack */
130 struct stack_frame {
131 struct stack_frame *next_frame;
132 unsigned long return_address;
135 static inline unsigned long
136 print_context_stack(struct thread_info *tinfo,
137 unsigned long *stack, unsigned long bp,
138 const struct stacktrace_ops *ops, void *data)
140 struct stack_frame *frame = (struct stack_frame *)bp;
142 while (valid_stack_ptr(tinfo, stack, sizeof(*stack))) {
143 unsigned long addr;
145 addr = *stack;
146 if (__kernel_text_address(addr)) {
147 if ((unsigned long) stack == bp + 4) {
148 ops->address(data, addr, 1);
149 frame = frame->next_frame;
150 bp = (unsigned long) frame;
151 } else {
152 ops->address(data, addr, bp == 0);
155 stack++;
157 return bp;
160 void dump_trace(struct task_struct *task, struct pt_regs *regs,
161 unsigned long *stack, unsigned long bp,
162 const struct stacktrace_ops *ops, void *data)
164 if (!task)
165 task = current;
167 if (!stack) {
168 unsigned long dummy;
169 stack = &dummy;
170 if (task != current)
171 stack = (unsigned long *)task->thread.sp;
174 #ifdef CONFIG_FRAME_POINTER
175 if (!bp) {
176 if (task == current) {
177 /* Grab bp right from our regs */
178 asm("movl %%ebp, %0" : "=r" (bp) :);
179 } else {
180 /* bp is the last reg pushed by switch_to */
181 bp = *(unsigned long *) task->thread.sp;
184 #endif
186 for (;;) {
187 struct thread_info *context;
189 context = (struct thread_info *)
190 ((unsigned long)stack & (~(THREAD_SIZE - 1)));
191 bp = print_context_stack(context, stack, bp, ops, data);
193 * Should be after the line below, but somewhere
194 * in early boot context comes out corrupted and we
195 * can't reference it:
197 if (ops->stack(data, "IRQ") < 0)
198 break;
199 stack = (unsigned long *)context->previous_esp;
200 if (!stack)
201 break;
202 touch_nmi_watchdog();
205 EXPORT_SYMBOL(dump_trace);
207 static void
208 print_trace_warning_symbol(void *data, char *msg, unsigned long symbol)
210 printk(data);
211 print_symbol(msg, symbol);
212 printk("\n");
215 static void print_trace_warning(void *data, char *msg)
217 printk("%s%s\n", (char *)data, msg);
220 static int print_trace_stack(void *data, char *name)
222 return 0;
226 * Print one address/symbol entries per line.
228 static void print_trace_address(void *data, unsigned long addr, int reliable)
230 printk("%s [<%08lx>] ", (char *)data, addr);
231 if (!reliable)
232 printk("? ");
233 print_symbol("%s\n", addr);
234 touch_nmi_watchdog();
237 static const struct stacktrace_ops print_trace_ops = {
238 .warning = print_trace_warning,
239 .warning_symbol = print_trace_warning_symbol,
240 .stack = print_trace_stack,
241 .address = print_trace_address,
244 static void
245 show_trace_log_lvl(struct task_struct *task, struct pt_regs *regs,
246 unsigned long *stack, unsigned long bp, char *log_lvl)
248 dump_trace(task, regs, stack, bp, &print_trace_ops, log_lvl);
249 printk("%s =======================\n", log_lvl);
252 void show_trace(struct task_struct *task, struct pt_regs *regs,
253 unsigned long *stack, unsigned long bp)
255 show_trace_log_lvl(task, regs, stack, bp, "");
258 static void
259 show_stack_log_lvl(struct task_struct *task, struct pt_regs *regs,
260 unsigned long *sp, unsigned long bp, char *log_lvl)
262 unsigned long *stack;
263 int i;
265 if (sp == NULL) {
266 if (task)
267 sp = (unsigned long *)task->thread.sp;
268 else
269 sp = (unsigned long *)&sp;
272 stack = sp;
273 for (i = 0; i < kstack_depth_to_print; i++) {
274 if (kstack_end(stack))
275 break;
276 if (i && ((i % 8) == 0))
277 printk("\n%s ", log_lvl);
278 printk("%08lx ", *stack++);
280 printk("\n%sCall Trace:\n", log_lvl);
282 show_trace_log_lvl(task, regs, sp, bp, log_lvl);
285 void show_stack(struct task_struct *task, unsigned long *sp)
287 printk(" ");
288 show_stack_log_lvl(task, NULL, sp, 0, "");
292 * The architecture-independent dump_stack generator
294 void dump_stack(void)
296 unsigned long bp = 0;
297 unsigned long stack;
299 #ifdef CONFIG_FRAME_POINTER
300 if (!bp)
301 asm("movl %%ebp, %0" : "=r" (bp):);
302 #endif
304 printk("Pid: %d, comm: %.20s %s %s %.*s\n",
305 current->pid, current->comm, print_tainted(),
306 init_utsname()->release,
307 (int)strcspn(init_utsname()->version, " "),
308 init_utsname()->version);
310 show_trace(current, NULL, &stack, bp);
313 EXPORT_SYMBOL(dump_stack);
315 void show_registers(struct pt_regs *regs)
317 int i;
319 print_modules();
320 __show_registers(regs, 0);
322 printk(KERN_EMERG "Process %.*s (pid: %d, ti=%p task=%p task.ti=%p)",
323 TASK_COMM_LEN, current->comm, task_pid_nr(current),
324 current_thread_info(), current, task_thread_info(current));
326 * When in-kernel, we also print out the stack and code at the
327 * time of the fault..
329 if (!user_mode_vm(regs)) {
330 unsigned int code_prologue = code_bytes * 43 / 64;
331 unsigned int code_len = code_bytes;
332 unsigned char c;
333 u8 *ip;
335 printk("\n" KERN_EMERG "Stack: ");
336 show_stack_log_lvl(NULL, regs, &regs->sp, 0, KERN_EMERG);
338 printk(KERN_EMERG "Code: ");
340 ip = (u8 *)regs->ip - code_prologue;
341 if (ip < (u8 *)PAGE_OFFSET || probe_kernel_address(ip, c)) {
342 /* try starting at EIP */
343 ip = (u8 *)regs->ip;
344 code_len = code_len - code_prologue + 1;
346 for (i = 0; i < code_len; i++, ip++) {
347 if (ip < (u8 *)PAGE_OFFSET ||
348 probe_kernel_address(ip, c)) {
349 printk(" Bad EIP value.");
350 break;
352 if (ip == (u8 *)regs->ip)
353 printk("<%02x> ", c);
354 else
355 printk("%02x ", c);
358 printk("\n");
361 int is_valid_bugaddr(unsigned long ip)
363 unsigned short ud2;
365 if (ip < PAGE_OFFSET)
366 return 0;
367 if (probe_kernel_address((unsigned short *)ip, ud2))
368 return 0;
370 return ud2 == 0x0b0f;
373 static raw_spinlock_t die_lock = __RAW_SPIN_LOCK_UNLOCKED;
374 static int die_owner = -1;
375 static unsigned int die_nest_count;
377 unsigned __kprobes long oops_begin(void)
379 unsigned long flags;
381 oops_enter();
383 if (die_owner != raw_smp_processor_id()) {
384 console_verbose();
385 raw_local_irq_save(flags);
386 __raw_spin_lock(&die_lock);
387 die_owner = smp_processor_id();
388 die_nest_count = 0;
389 bust_spinlocks(1);
390 } else {
391 raw_local_irq_save(flags);
393 die_nest_count++;
394 return flags;
397 void __kprobes oops_end(unsigned long flags, struct pt_regs *regs, int signr)
399 bust_spinlocks(0);
400 die_owner = -1;
401 add_taint(TAINT_DIE);
402 __raw_spin_unlock(&die_lock);
403 raw_local_irq_restore(flags);
405 if (!regs)
406 return;
408 if (kexec_should_crash(current))
409 crash_kexec(regs);
411 if (in_interrupt())
412 panic("Fatal exception in interrupt");
414 if (panic_on_oops)
415 panic("Fatal exception");
417 oops_exit();
418 do_exit(signr);
421 int __kprobes __die(const char *str, struct pt_regs *regs, long err)
423 unsigned short ss;
424 unsigned long sp;
426 printk(KERN_EMERG "%s: %04lx [#%d] ", str, err & 0xffff, ++die_counter);
427 #ifdef CONFIG_PREEMPT
428 printk("PREEMPT ");
429 #endif
430 #ifdef CONFIG_SMP
431 printk("SMP ");
432 #endif
433 #ifdef CONFIG_DEBUG_PAGEALLOC
434 printk("DEBUG_PAGEALLOC");
435 #endif
436 printk("\n");
437 if (notify_die(DIE_OOPS, str, regs, err,
438 current->thread.trap_no, SIGSEGV) == NOTIFY_STOP)
439 return 1;
441 show_registers(regs);
442 /* Executive summary in case the oops scrolled away */
443 sp = (unsigned long) (&regs->sp);
444 savesegment(ss, ss);
445 if (user_mode(regs)) {
446 sp = regs->sp;
447 ss = regs->ss & 0xffff;
449 printk(KERN_EMERG "EIP: [<%08lx>] ", regs->ip);
450 print_symbol("%s", regs->ip);
451 printk(" SS:ESP %04x:%08lx\n", ss, sp);
452 return 0;
456 * This is gone through when something in the kernel has done something bad
457 * and is about to be terminated:
459 void die(const char *str, struct pt_regs *regs, long err)
461 unsigned long flags = oops_begin();
463 if (die_nest_count < 3) {
464 report_bug(regs->ip, regs);
466 if (__die(str, regs, err))
467 regs = NULL;
468 } else {
469 printk(KERN_EMERG "Recursive die() failure, output suppressed\n");
472 oops_end(flags, regs, SIGSEGV);
475 static inline void
476 die_if_kernel(const char *str, struct pt_regs *regs, long err)
478 if (!user_mode_vm(regs))
479 die(str, regs, err);
482 static void __kprobes
483 do_trap(int trapnr, int signr, char *str, int vm86, struct pt_regs *regs,
484 long error_code, siginfo_t *info)
486 struct task_struct *tsk = current;
488 if (regs->flags & X86_VM_MASK) {
489 if (vm86)
490 goto vm86_trap;
491 goto trap_signal;
494 if (!user_mode(regs))
495 goto kernel_trap;
497 trap_signal:
499 * We want error_code and trap_no set for userspace faults and
500 * kernelspace faults which result in die(), but not
501 * kernelspace faults which are fixed up. die() gives the
502 * process no chance to handle the signal and notice the
503 * kernel fault information, so that won't result in polluting
504 * the information about previously queued, but not yet
505 * delivered, faults. See also do_general_protection below.
507 tsk->thread.error_code = error_code;
508 tsk->thread.trap_no = trapnr;
510 if (info)
511 force_sig_info(signr, info, tsk);
512 else
513 force_sig(signr, tsk);
514 return;
516 kernel_trap:
517 if (!fixup_exception(regs)) {
518 tsk->thread.error_code = error_code;
519 tsk->thread.trap_no = trapnr;
520 die(str, regs, error_code);
522 return;
524 vm86_trap:
525 if (handle_vm86_trap((struct kernel_vm86_regs *) regs,
526 error_code, trapnr))
527 goto trap_signal;
528 return;
531 #define DO_TRAP(trapnr, signr, str, name) \
532 void do_##name(struct pt_regs *regs, long error_code) \
534 trace_hardirqs_fixup(); \
535 if (notify_die(DIE_TRAP, str, regs, error_code, trapnr, signr) \
536 == NOTIFY_STOP) \
537 return; \
538 do_trap(trapnr, signr, str, 0, regs, error_code, NULL); \
541 #define DO_TRAP_INFO(trapnr, signr, str, name, sicode, siaddr, irq) \
542 void do_##name(struct pt_regs *regs, long error_code) \
544 siginfo_t info; \
545 if (irq) \
546 local_irq_enable(); \
547 info.si_signo = signr; \
548 info.si_errno = 0; \
549 info.si_code = sicode; \
550 info.si_addr = (void __user *)siaddr; \
551 if (notify_die(DIE_TRAP, str, regs, error_code, trapnr, signr) \
552 == NOTIFY_STOP) \
553 return; \
554 do_trap(trapnr, signr, str, 0, regs, error_code, &info); \
557 #define DO_VM86_TRAP(trapnr, signr, str, name) \
558 void do_##name(struct pt_regs *regs, long error_code) \
560 if (notify_die(DIE_TRAP, str, regs, error_code, trapnr, signr) \
561 == NOTIFY_STOP) \
562 return; \
563 do_trap(trapnr, signr, str, 1, regs, error_code, NULL); \
566 #define DO_VM86_TRAP_INFO(trapnr, signr, str, name, sicode, siaddr) \
567 void do_##name(struct pt_regs *regs, long error_code) \
569 siginfo_t info; \
570 info.si_signo = signr; \
571 info.si_errno = 0; \
572 info.si_code = sicode; \
573 info.si_addr = (void __user *)siaddr; \
574 trace_hardirqs_fixup(); \
575 if (notify_die(DIE_TRAP, str, regs, error_code, trapnr, signr) \
576 == NOTIFY_STOP) \
577 return; \
578 do_trap(trapnr, signr, str, 1, regs, error_code, &info); \
581 #define DO_ERROR(trapnr, signr, str, name) \
582 void do_##name(struct pt_regs *regs, long error_code) \
584 trace_hardirqs_fixup(); \
585 if (notify_die(DIE_TRAP, str, regs, error_code, trapnr, signr) \
586 == NOTIFY_STOP) \
587 return; \
588 conditional_sti(regs); \
589 do_trap(trapnr, signr, str, 0, regs, error_code, NULL); \
592 #define DO_ERROR_INFO(trapnr, signr, str, name, sicode, siaddr, irq) \
593 void do_##name(struct pt_regs *regs, long error_code) \
595 siginfo_t info; \
596 if (irq) \
597 local_irq_enable(); \
598 info.si_signo = signr; \
599 info.si_errno = 0; \
600 info.si_code = sicode; \
601 info.si_addr = (void __user *)siaddr; \
602 if (notify_die(DIE_TRAP, str, regs, error_code, trapnr, signr) \
603 == NOTIFY_STOP) \
604 return; \
605 conditional_sti(regs); \
606 do_trap(trapnr, signr, str, 0, regs, error_code, &info); \
609 #define DO_VM86_ERROR(trapnr, signr, str, name) \
610 void do_##name(struct pt_regs *regs, long error_code) \
612 if (notify_die(DIE_TRAP, str, regs, error_code, trapnr, signr) \
613 == NOTIFY_STOP) \
614 return; \
615 conditional_sti(regs); \
616 do_trap(trapnr, signr, str, 1, regs, error_code, NULL); \
619 #define DO_VM86_ERROR_INFO(trapnr, signr, str, name, sicode, siaddr) \
620 void do_##name(struct pt_regs *regs, long error_code) \
622 siginfo_t info; \
623 info.si_signo = signr; \
624 info.si_errno = 0; \
625 info.si_code = sicode; \
626 info.si_addr = (void __user *)siaddr; \
627 trace_hardirqs_fixup(); \
628 if (notify_die(DIE_TRAP, str, regs, error_code, trapnr, signr) \
629 == NOTIFY_STOP) \
630 return; \
631 conditional_sti(regs); \
632 do_trap(trapnr, signr, str, 1, regs, error_code, &info); \
635 DO_VM86_ERROR_INFO(0, SIGFPE, "divide error", divide_error, FPE_INTDIV, regs->ip)
636 DO_VM86_ERROR(4, SIGSEGV, "overflow", overflow)
637 DO_VM86_ERROR(5, SIGSEGV, "bounds", bounds)
638 DO_ERROR_INFO(6, SIGILL, "invalid opcode", invalid_op, ILL_ILLOPN, regs->ip, 0)
639 DO_TRAP(9, SIGFPE, "coprocessor segment overrun", coprocessor_segment_overrun)
640 DO_TRAP(10, SIGSEGV, "invalid TSS", invalid_TSS)
641 DO_TRAP(11, SIGBUS, "segment not present", segment_not_present)
642 DO_TRAP(12, SIGBUS, "stack segment", stack_segment)
643 DO_TRAP_INFO(17, SIGBUS, "alignment check", alignment_check, BUS_ADRALN, 0, 0)
644 DO_TRAP_INFO(32, SIGILL, "iret exception", iret_error, ILL_BADSTK, 0, 1)
646 void __kprobes
647 do_general_protection(struct pt_regs *regs, long error_code)
649 struct task_struct *tsk;
650 struct thread_struct *thread;
651 struct tss_struct *tss;
652 int cpu;
654 cpu = get_cpu();
655 tss = &per_cpu(init_tss, cpu);
656 thread = &current->thread;
659 * Perform the lazy TSS's I/O bitmap copy. If the TSS has an
660 * invalid offset set (the LAZY one) and the faulting thread has
661 * a valid I/O bitmap pointer, we copy the I/O bitmap in the TSS
662 * and we set the offset field correctly. Then we let the CPU to
663 * restart the faulting instruction.
665 if (tss->x86_tss.io_bitmap_base == INVALID_IO_BITMAP_OFFSET_LAZY &&
666 thread->io_bitmap_ptr) {
667 memcpy(tss->io_bitmap, thread->io_bitmap_ptr,
668 thread->io_bitmap_max);
670 * If the previously set map was extending to higher ports
671 * than the current one, pad extra space with 0xff (no access).
673 if (thread->io_bitmap_max < tss->io_bitmap_max) {
674 memset((char *) tss->io_bitmap +
675 thread->io_bitmap_max, 0xff,
676 tss->io_bitmap_max - thread->io_bitmap_max);
678 tss->io_bitmap_max = thread->io_bitmap_max;
679 tss->x86_tss.io_bitmap_base = IO_BITMAP_OFFSET;
680 tss->io_bitmap_owner = thread;
681 put_cpu();
683 return;
685 put_cpu();
687 if (regs->flags & X86_VM_MASK)
688 goto gp_in_vm86;
690 tsk = current;
691 if (!user_mode(regs))
692 goto gp_in_kernel;
694 tsk->thread.error_code = error_code;
695 tsk->thread.trap_no = 13;
697 if (show_unhandled_signals && unhandled_signal(tsk, SIGSEGV) &&
698 printk_ratelimit()) {
699 printk(KERN_INFO
700 "%s[%d] general protection ip:%lx sp:%lx error:%lx",
701 tsk->comm, task_pid_nr(tsk),
702 regs->ip, regs->sp, error_code);
703 print_vma_addr(" in ", regs->ip);
704 printk("\n");
707 force_sig(SIGSEGV, tsk);
708 return;
710 gp_in_vm86:
711 local_irq_enable();
712 handle_vm86_fault((struct kernel_vm86_regs *) regs, error_code);
713 return;
715 gp_in_kernel:
716 if (fixup_exception(regs))
717 return;
719 tsk->thread.error_code = error_code;
720 tsk->thread.trap_no = 13;
721 if (notify_die(DIE_GPF, "general protection fault", regs,
722 error_code, 13, SIGSEGV) == NOTIFY_STOP)
723 return;
724 die("general protection fault", regs, error_code);
727 static notrace __kprobes void
728 mem_parity_error(unsigned char reason, struct pt_regs *regs)
730 printk(KERN_EMERG
731 "Uhhuh. NMI received for unknown reason %02x on CPU %d.\n",
732 reason, smp_processor_id());
734 printk(KERN_EMERG
735 "You have some hardware problem, likely on the PCI bus.\n");
737 #if defined(CONFIG_EDAC)
738 if (edac_handler_set()) {
739 edac_atomic_assert_error();
740 return;
742 #endif
744 if (panic_on_unrecovered_nmi)
745 panic("NMI: Not continuing");
747 printk(KERN_EMERG "Dazed and confused, but trying to continue\n");
749 /* Clear and disable the memory parity error line. */
750 clear_mem_error(reason);
753 static notrace __kprobes void
754 io_check_error(unsigned char reason, struct pt_regs *regs)
756 unsigned long i;
758 printk(KERN_EMERG "NMI: IOCK error (debug interrupt?)\n");
759 show_registers(regs);
761 /* Re-enable the IOCK line, wait for a few seconds */
762 reason = (reason & 0xf) | 8;
763 outb(reason, 0x61);
765 i = 2000;
766 while (--i)
767 udelay(1000);
769 reason &= ~8;
770 outb(reason, 0x61);
773 static notrace __kprobes void
774 unknown_nmi_error(unsigned char reason, struct pt_regs *regs)
776 if (notify_die(DIE_NMIUNKNOWN, "nmi", regs, reason, 2, SIGINT) == NOTIFY_STOP)
777 return;
778 #ifdef CONFIG_MCA
780 * Might actually be able to figure out what the guilty party
781 * is:
783 if (MCA_bus) {
784 mca_handle_nmi();
785 return;
787 #endif
788 printk(KERN_EMERG
789 "Uhhuh. NMI received for unknown reason %02x on CPU %d.\n",
790 reason, smp_processor_id());
792 printk(KERN_EMERG "Do you have a strange power saving mode enabled?\n");
793 if (panic_on_unrecovered_nmi)
794 panic("NMI: Not continuing");
796 printk(KERN_EMERG "Dazed and confused, but trying to continue\n");
799 static DEFINE_SPINLOCK(nmi_print_lock);
801 void notrace __kprobes die_nmi(char *str, struct pt_regs *regs, int do_panic)
803 if (notify_die(DIE_NMIWATCHDOG, str, regs, 0, 2, SIGINT) == NOTIFY_STOP)
804 return;
806 spin_lock(&nmi_print_lock);
808 * We are in trouble anyway, lets at least try
809 * to get a message out:
811 bust_spinlocks(1);
812 printk(KERN_EMERG "%s", str);
813 printk(" on CPU%d, ip %08lx, registers:\n",
814 smp_processor_id(), regs->ip);
815 show_registers(regs);
816 if (do_panic)
817 panic("Non maskable interrupt");
818 console_silent();
819 spin_unlock(&nmi_print_lock);
820 bust_spinlocks(0);
823 * If we are in kernel we are probably nested up pretty bad
824 * and might aswell get out now while we still can:
826 if (!user_mode_vm(regs)) {
827 current->thread.trap_no = 2;
828 crash_kexec(regs);
831 do_exit(SIGSEGV);
834 static notrace __kprobes void default_do_nmi(struct pt_regs *regs)
836 unsigned char reason = 0;
837 int cpu;
839 cpu = smp_processor_id();
841 /* Only the BSP gets external NMIs from the system. */
842 if (!cpu)
843 reason = get_nmi_reason();
845 if (!(reason & 0xc0)) {
846 if (notify_die(DIE_NMI_IPI, "nmi_ipi", regs, reason, 2, SIGINT)
847 == NOTIFY_STOP)
848 return;
849 #ifdef CONFIG_X86_LOCAL_APIC
851 * Ok, so this is none of the documented NMI sources,
852 * so it must be the NMI watchdog.
854 if (nmi_watchdog_tick(regs, reason))
855 return;
856 if (!do_nmi_callback(regs, cpu))
857 unknown_nmi_error(reason, regs);
858 #else
859 unknown_nmi_error(reason, regs);
860 #endif
862 return;
864 if (notify_die(DIE_NMI, "nmi", regs, reason, 2, SIGINT) == NOTIFY_STOP)
865 return;
867 /* AK: following checks seem to be broken on modern chipsets. FIXME */
868 if (reason & 0x80)
869 mem_parity_error(reason, regs);
870 if (reason & 0x40)
871 io_check_error(reason, regs);
873 * Reassert NMI in case it became active meanwhile
874 * as it's edge-triggered:
876 reassert_nmi();
879 notrace __kprobes void do_nmi(struct pt_regs *regs, long error_code)
881 int cpu;
883 nmi_enter();
885 cpu = smp_processor_id();
887 ++nmi_count(cpu);
889 if (!ignore_nmis)
890 default_do_nmi(regs);
892 nmi_exit();
895 void stop_nmi(void)
897 acpi_nmi_disable();
898 ignore_nmis++;
901 void restart_nmi(void)
903 ignore_nmis--;
904 acpi_nmi_enable();
907 void __kprobes do_int3(struct pt_regs *regs, long error_code)
909 #ifdef CONFIG_KPROBES
910 trace_hardirqs_fixup();
912 if (notify_die(DIE_INT3, "int3", regs, error_code, 3, SIGTRAP)
913 == NOTIFY_STOP)
914 return;
916 * This is an interrupt gate, because kprobes wants interrupts
917 * disabled. Normal trap handlers don't.
919 conditional_sti(regs);
920 #else
921 if (notify_die(DIE_TRAP, "int3", regs, error_code, 3, SIGTRAP)
922 == NOTIFY_STOP)
923 return;
924 #endif
926 do_trap(3, SIGTRAP, "int3", 1, regs, error_code, NULL);
930 * Our handling of the processor debug registers is non-trivial.
931 * We do not clear them on entry and exit from the kernel. Therefore
932 * it is possible to get a watchpoint trap here from inside the kernel.
933 * However, the code in ./ptrace.c has ensured that the user can
934 * only set watchpoints on userspace addresses. Therefore the in-kernel
935 * watchpoint trap can only occur in code which is reading/writing
936 * from user space. Such code must not hold kernel locks (since it
937 * can equally take a page fault), therefore it is safe to call
938 * force_sig_info even though that claims and releases locks.
940 * Code in ./signal.c ensures that the debug control register
941 * is restored before we deliver any signal, and therefore that
942 * user code runs with the correct debug control register even though
943 * we clear it here.
945 * Being careful here means that we don't have to be as careful in a
946 * lot of more complicated places (task switching can be a bit lazy
947 * about restoring all the debug state, and ptrace doesn't have to
948 * find every occurrence of the TF bit that could be saved away even
949 * by user code)
951 void __kprobes do_debug(struct pt_regs *regs, long error_code)
953 struct task_struct *tsk = current;
954 unsigned int condition;
955 int si_code;
957 trace_hardirqs_fixup();
959 get_debugreg(condition, 6);
962 * The processor cleared BTF, so don't mark that we need it set.
964 clear_tsk_thread_flag(tsk, TIF_DEBUGCTLMSR);
965 tsk->thread.debugctlmsr = 0;
967 if (notify_die(DIE_DEBUG, "debug", regs, condition, error_code,
968 SIGTRAP) == NOTIFY_STOP)
969 return;
970 /* It's safe to allow irq's after DR6 has been saved */
971 if (regs->flags & X86_EFLAGS_IF)
972 local_irq_enable();
974 /* Mask out spurious debug traps due to lazy DR7 setting */
975 if (condition & (DR_TRAP0|DR_TRAP1|DR_TRAP2|DR_TRAP3)) {
976 if (!tsk->thread.debugreg7)
977 goto clear_dr7;
980 if (regs->flags & X86_VM_MASK)
981 goto debug_vm86;
983 /* Save debug status register where ptrace can see it */
984 tsk->thread.debugreg6 = condition;
987 * Single-stepping through TF: make sure we ignore any events in
988 * kernel space (but re-enable TF when returning to user mode).
990 if (condition & DR_STEP) {
992 * We already checked v86 mode above, so we can
993 * check for kernel mode by just checking the CPL
994 * of CS.
996 if (!user_mode(regs))
997 goto clear_TF_reenable;
1000 si_code = get_si_code((unsigned long)condition);
1001 /* Ok, finally something we can handle */
1002 send_sigtrap(tsk, regs, error_code, si_code);
1005 * Disable additional traps. They'll be re-enabled when
1006 * the signal is delivered.
1008 clear_dr7:
1009 set_debugreg(0, 7);
1010 return;
1012 debug_vm86:
1013 handle_vm86_trap((struct kernel_vm86_regs *) regs, error_code, 1);
1014 return;
1016 clear_TF_reenable:
1017 set_tsk_thread_flag(tsk, TIF_SINGLESTEP);
1018 regs->flags &= ~X86_EFLAGS_TF;
1019 return;
1023 * Note that we play around with the 'TS' bit in an attempt to get
1024 * the correct behaviour even in the presence of the asynchronous
1025 * IRQ13 behaviour
1027 void math_error(void __user *ip)
1029 struct task_struct *task;
1030 siginfo_t info;
1031 unsigned short cwd, swd;
1034 * Save the info for the exception handler and clear the error.
1036 task = current;
1037 save_init_fpu(task);
1038 task->thread.trap_no = 16;
1039 task->thread.error_code = 0;
1040 info.si_signo = SIGFPE;
1041 info.si_errno = 0;
1042 info.si_code = __SI_FAULT;
1043 info.si_addr = ip;
1045 * (~cwd & swd) will mask out exceptions that are not set to unmasked
1046 * status. 0x3f is the exception bits in these regs, 0x200 is the
1047 * C1 reg you need in case of a stack fault, 0x040 is the stack
1048 * fault bit. We should only be taking one exception at a time,
1049 * so if this combination doesn't produce any single exception,
1050 * then we have a bad program that isn't synchronizing its FPU usage
1051 * and it will suffer the consequences since we won't be able to
1052 * fully reproduce the context of the exception
1054 cwd = get_fpu_cwd(task);
1055 swd = get_fpu_swd(task);
1056 switch (swd & ~cwd & 0x3f) {
1057 case 0x000: /* No unmasked exception */
1058 return;
1059 default: /* Multiple exceptions */
1060 break;
1061 case 0x001: /* Invalid Op */
1063 * swd & 0x240 == 0x040: Stack Underflow
1064 * swd & 0x240 == 0x240: Stack Overflow
1065 * User must clear the SF bit (0x40) if set
1067 info.si_code = FPE_FLTINV;
1068 break;
1069 case 0x002: /* Denormalize */
1070 case 0x010: /* Underflow */
1071 info.si_code = FPE_FLTUND;
1072 break;
1073 case 0x004: /* Zero Divide */
1074 info.si_code = FPE_FLTDIV;
1075 break;
1076 case 0x008: /* Overflow */
1077 info.si_code = FPE_FLTOVF;
1078 break;
1079 case 0x020: /* Precision */
1080 info.si_code = FPE_FLTRES;
1081 break;
1083 force_sig_info(SIGFPE, &info, task);
1086 void do_coprocessor_error(struct pt_regs *regs, long error_code)
1088 ignore_fpu_irq = 1;
1089 math_error((void __user *)regs->ip);
1092 static void simd_math_error(void __user *ip)
1094 struct task_struct *task;
1095 siginfo_t info;
1096 unsigned short mxcsr;
1099 * Save the info for the exception handler and clear the error.
1101 task = current;
1102 save_init_fpu(task);
1103 task->thread.trap_no = 19;
1104 task->thread.error_code = 0;
1105 info.si_signo = SIGFPE;
1106 info.si_errno = 0;
1107 info.si_code = __SI_FAULT;
1108 info.si_addr = ip;
1110 * The SIMD FPU exceptions are handled a little differently, as there
1111 * is only a single status/control register. Thus, to determine which
1112 * unmasked exception was caught we must mask the exception mask bits
1113 * at 0x1f80, and then use these to mask the exception bits at 0x3f.
1115 mxcsr = get_fpu_mxcsr(task);
1116 switch (~((mxcsr & 0x1f80) >> 7) & (mxcsr & 0x3f)) {
1117 case 0x000:
1118 default:
1119 break;
1120 case 0x001: /* Invalid Op */
1121 info.si_code = FPE_FLTINV;
1122 break;
1123 case 0x002: /* Denormalize */
1124 case 0x010: /* Underflow */
1125 info.si_code = FPE_FLTUND;
1126 break;
1127 case 0x004: /* Zero Divide */
1128 info.si_code = FPE_FLTDIV;
1129 break;
1130 case 0x008: /* Overflow */
1131 info.si_code = FPE_FLTOVF;
1132 break;
1133 case 0x020: /* Precision */
1134 info.si_code = FPE_FLTRES;
1135 break;
1137 force_sig_info(SIGFPE, &info, task);
1140 void do_simd_coprocessor_error(struct pt_regs *regs, long error_code)
1142 if (cpu_has_xmm) {
1143 /* Handle SIMD FPU exceptions on PIII+ processors. */
1144 ignore_fpu_irq = 1;
1145 simd_math_error((void __user *)regs->ip);
1146 return;
1149 * Handle strange cache flush from user space exception
1150 * in all other cases. This is undocumented behaviour.
1152 if (regs->flags & X86_VM_MASK) {
1153 handle_vm86_fault((struct kernel_vm86_regs *)regs, error_code);
1154 return;
1156 current->thread.trap_no = 19;
1157 current->thread.error_code = error_code;
1158 die_if_kernel("cache flush denied", regs, error_code);
1159 force_sig(SIGSEGV, current);
1162 void do_spurious_interrupt_bug(struct pt_regs *regs, long error_code)
1164 #if 0
1165 /* No need to warn about this any longer. */
1166 printk(KERN_INFO "Ignoring P6 Local APIC Spurious Interrupt Bug...\n");
1167 #endif
1170 unsigned long patch_espfix_desc(unsigned long uesp, unsigned long kesp)
1172 struct desc_struct *gdt = get_cpu_gdt_table(smp_processor_id());
1173 unsigned long base = (kesp - uesp) & -THREAD_SIZE;
1174 unsigned long new_kesp = kesp - base;
1175 unsigned long lim_pages = (new_kesp | (THREAD_SIZE - 1)) >> PAGE_SHIFT;
1176 __u64 desc = *(__u64 *)&gdt[GDT_ENTRY_ESPFIX_SS];
1178 /* Set up base for espfix segment */
1179 desc &= 0x00f0ff0000000000ULL;
1180 desc |= ((((__u64)base) << 16) & 0x000000ffffff0000ULL) |
1181 ((((__u64)base) << 32) & 0xff00000000000000ULL) |
1182 ((((__u64)lim_pages) << 32) & 0x000f000000000000ULL) |
1183 (lim_pages & 0xffff);
1184 *(__u64 *)&gdt[GDT_ENTRY_ESPFIX_SS] = desc;
1186 return new_kesp;
1190 * 'math_state_restore()' saves the current math information in the
1191 * old math state array, and gets the new ones from the current task
1193 * Careful.. There are problems with IBM-designed IRQ13 behaviour.
1194 * Don't touch unless you *really* know how it works.
1196 * Must be called with kernel preemption disabled (in this case,
1197 * local interrupts are disabled at the call-site in entry.S).
1199 asmlinkage void math_state_restore(void)
1201 struct thread_info *thread = current_thread_info();
1202 struct task_struct *tsk = thread->task;
1204 if (!tsk_used_math(tsk)) {
1205 local_irq_enable();
1207 * does a slab alloc which can sleep
1209 if (init_fpu(tsk)) {
1211 * ran out of memory!
1213 do_group_exit(SIGKILL);
1214 return;
1216 local_irq_disable();
1219 clts(); /* Allow maths ops (or we recurse) */
1220 restore_fpu(tsk);
1221 thread->status |= TS_USEDFPU; /* So we fnsave on switch_to() */
1222 tsk->fpu_counter++;
1224 EXPORT_SYMBOL_GPL(math_state_restore);
1226 #ifndef CONFIG_MATH_EMULATION
1228 asmlinkage void math_emulate(long arg)
1230 printk(KERN_EMERG
1231 "math-emulation not enabled and no coprocessor found.\n");
1232 printk(KERN_EMERG "killing %s.\n", current->comm);
1233 force_sig(SIGFPE, current);
1234 schedule();
1237 #endif /* CONFIG_MATH_EMULATION */
1239 void __init trap_init(void)
1241 int i;
1243 #ifdef CONFIG_EISA
1244 void __iomem *p = early_ioremap(0x0FFFD9, 4);
1246 if (readl(p) == 'E' + ('I'<<8) + ('S'<<16) + ('A'<<24))
1247 EISA_bus = 1;
1248 early_iounmap(p, 4);
1249 #endif
1251 set_intr_gate(0, &divide_error);
1252 set_intr_gate(1, &debug);
1253 set_intr_gate(2, &nmi);
1254 set_system_intr_gate(3, &int3); /* int3 can be called from all */
1255 set_system_intr_gate(4, &overflow); /* int4 can be called from all */
1256 set_intr_gate(5, &bounds);
1257 set_intr_gate(6, &invalid_op);
1258 set_trap_gate(7, &device_not_available);
1259 set_task_gate(8, GDT_ENTRY_DOUBLEFAULT_TSS);
1260 set_trap_gate(9, &coprocessor_segment_overrun);
1261 set_trap_gate(10, &invalid_TSS);
1262 set_trap_gate(11, &segment_not_present);
1263 set_trap_gate(12, &stack_segment);
1264 set_trap_gate(13, &general_protection);
1265 set_intr_gate(14, &page_fault);
1266 set_trap_gate(15, &spurious_interrupt_bug);
1267 set_trap_gate(16, &coprocessor_error);
1268 set_trap_gate(17, &alignment_check);
1269 #ifdef CONFIG_X86_MCE
1270 set_trap_gate(18, &machine_check);
1271 #endif
1272 set_trap_gate(19, &simd_coprocessor_error);
1274 if (cpu_has_fxsr) {
1275 printk(KERN_INFO "Enabling fast FPU save and restore... ");
1276 set_in_cr4(X86_CR4_OSFXSR);
1277 printk("done.\n");
1279 if (cpu_has_xmm) {
1280 printk(KERN_INFO
1281 "Enabling unmasked SIMD FPU exception support... ");
1282 set_in_cr4(X86_CR4_OSXMMEXCPT);
1283 printk("done.\n");
1286 set_system_gate(SYSCALL_VECTOR, &system_call);
1288 /* Reserve all the builtin and the syscall vector: */
1289 for (i = 0; i < FIRST_EXTERNAL_VECTOR; i++)
1290 set_bit(i, used_vectors);
1292 set_bit(SYSCALL_VECTOR, used_vectors);
1295 * Should be a barrier for any external CPU state:
1297 cpu_init();
1299 trap_init_hook();
1302 static int __init kstack_setup(char *s)
1304 kstack_depth_to_print = simple_strtoul(s, NULL, 0);
1306 return 1;
1308 __setup("kstack=", kstack_setup);
1310 static int __init code_bytes_setup(char *s)
1312 code_bytes = simple_strtoul(s, NULL, 0);
1313 if (code_bytes > 8192)
1314 code_bytes = 8192;
1316 return 1;
1318 __setup("code_bytes=", code_bytes_setup);