3 * Written by Mark Hemment, 1996/97.
4 * (markhe@nextd.demon.co.uk)
6 * kmem_cache_destroy() + some cleanup - 1999 Andrea Arcangeli
8 * Major cleanup, different bufctl logic, per-cpu arrays
9 * (c) 2000 Manfred Spraul
11 * Cleanup, make the head arrays unconditional, preparation for NUMA
12 * (c) 2002 Manfred Spraul
14 * An implementation of the Slab Allocator as described in outline in;
15 * UNIX Internals: The New Frontiers by Uresh Vahalia
16 * Pub: Prentice Hall ISBN 0-13-101908-2
17 * or with a little more detail in;
18 * The Slab Allocator: An Object-Caching Kernel Memory Allocator
19 * Jeff Bonwick (Sun Microsystems).
20 * Presented at: USENIX Summer 1994 Technical Conference
22 * The memory is organized in caches, one cache for each object type.
23 * (e.g. inode_cache, dentry_cache, buffer_head, vm_area_struct)
24 * Each cache consists out of many slabs (they are small (usually one
25 * page long) and always contiguous), and each slab contains multiple
26 * initialized objects.
28 * This means, that your constructor is used only for newly allocated
29 * slabs and you must pass objects with the same intializations to
32 * Each cache can only support one memory type (GFP_DMA, GFP_HIGHMEM,
33 * normal). If you need a special memory type, then must create a new
34 * cache for that memory type.
36 * In order to reduce fragmentation, the slabs are sorted in 3 groups:
37 * full slabs with 0 free objects
39 * empty slabs with no allocated objects
41 * If partial slabs exist, then new allocations come from these slabs,
42 * otherwise from empty slabs or new slabs are allocated.
44 * kmem_cache_destroy() CAN CRASH if you try to allocate from the cache
45 * during kmem_cache_destroy(). The caller must prevent concurrent allocs.
47 * Each cache has a short per-cpu head array, most allocs
48 * and frees go into that array, and if that array overflows, then 1/2
49 * of the entries in the array are given back into the global cache.
50 * The head array is strictly LIFO and should improve the cache hit rates.
51 * On SMP, it additionally reduces the spinlock operations.
53 * The c_cpuarray may not be read with enabled local interrupts -
54 * it's changed with a smp_call_function().
56 * SMP synchronization:
57 * constructors and destructors are called without any locking.
58 * Several members in struct kmem_cache and struct slab never change, they
59 * are accessed without any locking.
60 * The per-cpu arrays are never accessed from the wrong cpu, no locking,
61 * and local interrupts are disabled so slab code is preempt-safe.
62 * The non-constant members are protected with a per-cache irq spinlock.
64 * Many thanks to Mark Hemment, who wrote another per-cpu slab patch
65 * in 2000 - many ideas in the current implementation are derived from
68 * Further notes from the original documentation:
70 * 11 April '97. Started multi-threading - markhe
71 * The global cache-chain is protected by the mutex 'cache_chain_mutex'.
72 * The sem is only needed when accessing/extending the cache-chain, which
73 * can never happen inside an interrupt (kmem_cache_create(),
74 * kmem_cache_shrink() and kmem_cache_reap()).
76 * At present, each engine can be growing a cache. This should be blocked.
78 * 15 March 2005. NUMA slab allocator.
79 * Shai Fultheim <shai@scalex86.org>.
80 * Shobhit Dayal <shobhit@calsoftinc.com>
81 * Alok N Kataria <alokk@calsoftinc.com>
82 * Christoph Lameter <christoph@lameter.com>
84 * Modified the slab allocator to be node aware on NUMA systems.
85 * Each node has its own list of partial, free and full slabs.
86 * All object allocations for a node occur from node specific slab lists.
89 #include <linux/slab.h>
91 #include <linux/poison.h>
92 #include <linux/swap.h>
93 #include <linux/cache.h>
94 #include <linux/interrupt.h>
95 #include <linux/init.h>
96 #include <linux/compiler.h>
97 #include <linux/cpuset.h>
98 #include <linux/seq_file.h>
99 #include <linux/notifier.h>
100 #include <linux/kallsyms.h>
101 #include <linux/cpu.h>
102 #include <linux/sysctl.h>
103 #include <linux/module.h>
104 #include <linux/rcupdate.h>
105 #include <linux/string.h>
106 #include <linux/nodemask.h>
107 #include <linux/mempolicy.h>
108 #include <linux/mutex.h>
109 #include <linux/rtmutex.h>
111 #include <asm/uaccess.h>
112 #include <asm/cacheflush.h>
113 #include <asm/tlbflush.h>
114 #include <asm/page.h>
117 * DEBUG - 1 for kmem_cache_create() to honour; SLAB_DEBUG_INITIAL,
118 * SLAB_RED_ZONE & SLAB_POISON.
119 * 0 for faster, smaller code (especially in the critical paths).
121 * STATS - 1 to collect stats for /proc/slabinfo.
122 * 0 for faster, smaller code (especially in the critical paths).
124 * FORCED_DEBUG - 1 enables SLAB_RED_ZONE and SLAB_POISON (if possible)
127 #ifdef CONFIG_DEBUG_SLAB
130 #define FORCED_DEBUG 1
134 #define FORCED_DEBUG 0
137 /* Shouldn't this be in a header file somewhere? */
138 #define BYTES_PER_WORD sizeof(void *)
140 #ifndef cache_line_size
141 #define cache_line_size() L1_CACHE_BYTES
144 #ifndef ARCH_KMALLOC_MINALIGN
146 * Enforce a minimum alignment for the kmalloc caches.
147 * Usually, the kmalloc caches are cache_line_size() aligned, except when
148 * DEBUG and FORCED_DEBUG are enabled, then they are BYTES_PER_WORD aligned.
149 * Some archs want to perform DMA into kmalloc caches and need a guaranteed
150 * alignment larger than BYTES_PER_WORD. ARCH_KMALLOC_MINALIGN allows that.
151 * Note that this flag disables some debug features.
153 #define ARCH_KMALLOC_MINALIGN 0
156 #ifndef ARCH_SLAB_MINALIGN
158 * Enforce a minimum alignment for all caches.
159 * Intended for archs that get misalignment faults even for BYTES_PER_WORD
160 * aligned buffers. Includes ARCH_KMALLOC_MINALIGN.
161 * If possible: Do not enable this flag for CONFIG_DEBUG_SLAB, it disables
162 * some debug features.
164 #define ARCH_SLAB_MINALIGN 0
167 #ifndef ARCH_KMALLOC_FLAGS
168 #define ARCH_KMALLOC_FLAGS SLAB_HWCACHE_ALIGN
171 /* Legal flag mask for kmem_cache_create(). */
173 # define CREATE_MASK (SLAB_DEBUG_INITIAL | SLAB_RED_ZONE | \
174 SLAB_POISON | SLAB_HWCACHE_ALIGN | \
176 SLAB_MUST_HWCACHE_ALIGN | SLAB_STORE_USER | \
177 SLAB_RECLAIM_ACCOUNT | SLAB_PANIC | \
178 SLAB_DESTROY_BY_RCU | SLAB_MEM_SPREAD)
180 # define CREATE_MASK (SLAB_HWCACHE_ALIGN | \
181 SLAB_CACHE_DMA | SLAB_MUST_HWCACHE_ALIGN | \
182 SLAB_RECLAIM_ACCOUNT | SLAB_PANIC | \
183 SLAB_DESTROY_BY_RCU | SLAB_MEM_SPREAD)
189 * Bufctl's are used for linking objs within a slab
192 * This implementation relies on "struct page" for locating the cache &
193 * slab an object belongs to.
194 * This allows the bufctl structure to be small (one int), but limits
195 * the number of objects a slab (not a cache) can contain when off-slab
196 * bufctls are used. The limit is the size of the largest general cache
197 * that does not use off-slab slabs.
198 * For 32bit archs with 4 kB pages, is this 56.
199 * This is not serious, as it is only for large objects, when it is unwise
200 * to have too many per slab.
201 * Note: This limit can be raised by introducing a general cache whose size
202 * is less than 512 (PAGE_SIZE<<3), but greater than 256.
205 typedef unsigned int kmem_bufctl_t
;
206 #define BUFCTL_END (((kmem_bufctl_t)(~0U))-0)
207 #define BUFCTL_FREE (((kmem_bufctl_t)(~0U))-1)
208 #define BUFCTL_ACTIVE (((kmem_bufctl_t)(~0U))-2)
209 #define SLAB_LIMIT (((kmem_bufctl_t)(~0U))-3)
214 * Manages the objs in a slab. Placed either at the beginning of mem allocated
215 * for a slab, or allocated from an general cache.
216 * Slabs are chained into three list: fully used, partial, fully free slabs.
219 struct list_head list
;
220 unsigned long colouroff
;
221 void *s_mem
; /* including colour offset */
222 unsigned int inuse
; /* num of objs active in slab */
224 unsigned short nodeid
;
230 * slab_destroy on a SLAB_DESTROY_BY_RCU cache uses this structure to
231 * arrange for kmem_freepages to be called via RCU. This is useful if
232 * we need to approach a kernel structure obliquely, from its address
233 * obtained without the usual locking. We can lock the structure to
234 * stabilize it and check it's still at the given address, only if we
235 * can be sure that the memory has not been meanwhile reused for some
236 * other kind of object (which our subsystem's lock might corrupt).
238 * rcu_read_lock before reading the address, then rcu_read_unlock after
239 * taking the spinlock within the structure expected at that address.
241 * We assume struct slab_rcu can overlay struct slab when destroying.
244 struct rcu_head head
;
245 struct kmem_cache
*cachep
;
253 * - LIFO ordering, to hand out cache-warm objects from _alloc
254 * - reduce the number of linked list operations
255 * - reduce spinlock operations
257 * The limit is stored in the per-cpu structure to reduce the data cache
264 unsigned int batchcount
;
265 unsigned int touched
;
268 * Must have this definition in here for the proper
269 * alignment of array_cache. Also simplifies accessing
271 * [0] is for gcc 2.95. It should really be [].
276 * bootstrap: The caches do not work without cpuarrays anymore, but the
277 * cpuarrays are allocated from the generic caches...
279 #define BOOT_CPUCACHE_ENTRIES 1
280 struct arraycache_init
{
281 struct array_cache cache
;
282 void *entries
[BOOT_CPUCACHE_ENTRIES
];
286 * The slab lists for all objects.
289 struct list_head slabs_partial
; /* partial list first, better asm code */
290 struct list_head slabs_full
;
291 struct list_head slabs_free
;
292 unsigned long free_objects
;
293 unsigned int free_limit
;
294 unsigned int colour_next
; /* Per-node cache coloring */
295 spinlock_t list_lock
;
296 struct array_cache
*shared
; /* shared per node */
297 struct array_cache
**alien
; /* on other nodes */
298 unsigned long next_reap
; /* updated without locking */
299 int free_touched
; /* updated without locking */
303 * Need this for bootstrapping a per node allocator.
305 #define NUM_INIT_LISTS (2 * MAX_NUMNODES + 1)
306 struct kmem_list3 __initdata initkmem_list3
[NUM_INIT_LISTS
];
307 #define CACHE_CACHE 0
309 #define SIZE_L3 (1 + MAX_NUMNODES)
311 static int drain_freelist(struct kmem_cache
*cache
,
312 struct kmem_list3
*l3
, int tofree
);
313 static void free_block(struct kmem_cache
*cachep
, void **objpp
, int len
,
315 static int enable_cpucache(struct kmem_cache
*cachep
);
316 static void cache_reap(void *unused
);
319 * This function must be completely optimized away if a constant is passed to
320 * it. Mostly the same as what is in linux/slab.h except it returns an index.
322 static __always_inline
int index_of(const size_t size
)
324 extern void __bad_size(void);
326 if (__builtin_constant_p(size
)) {
334 #include "linux/kmalloc_sizes.h"
342 static int slab_early_init
= 1;
344 #define INDEX_AC index_of(sizeof(struct arraycache_init))
345 #define INDEX_L3 index_of(sizeof(struct kmem_list3))
347 static void kmem_list3_init(struct kmem_list3
*parent
)
349 INIT_LIST_HEAD(&parent
->slabs_full
);
350 INIT_LIST_HEAD(&parent
->slabs_partial
);
351 INIT_LIST_HEAD(&parent
->slabs_free
);
352 parent
->shared
= NULL
;
353 parent
->alien
= NULL
;
354 parent
->colour_next
= 0;
355 spin_lock_init(&parent
->list_lock
);
356 parent
->free_objects
= 0;
357 parent
->free_touched
= 0;
360 #define MAKE_LIST(cachep, listp, slab, nodeid) \
362 INIT_LIST_HEAD(listp); \
363 list_splice(&(cachep->nodelists[nodeid]->slab), listp); \
366 #define MAKE_ALL_LISTS(cachep, ptr, nodeid) \
368 MAKE_LIST((cachep), (&(ptr)->slabs_full), slabs_full, nodeid); \
369 MAKE_LIST((cachep), (&(ptr)->slabs_partial), slabs_partial, nodeid); \
370 MAKE_LIST((cachep), (&(ptr)->slabs_free), slabs_free, nodeid); \
380 /* 1) per-cpu data, touched during every alloc/free */
381 struct array_cache
*array
[NR_CPUS
];
382 /* 2) Cache tunables. Protected by cache_chain_mutex */
383 unsigned int batchcount
;
387 unsigned int buffer_size
;
388 /* 3) touched by every alloc & free from the backend */
389 struct kmem_list3
*nodelists
[MAX_NUMNODES
];
391 unsigned int flags
; /* constant flags */
392 unsigned int num
; /* # of objs per slab */
394 /* 4) cache_grow/shrink */
395 /* order of pgs per slab (2^n) */
396 unsigned int gfporder
;
398 /* force GFP flags, e.g. GFP_DMA */
401 size_t colour
; /* cache colouring range */
402 unsigned int colour_off
; /* colour offset */
403 struct kmem_cache
*slabp_cache
;
404 unsigned int slab_size
;
405 unsigned int dflags
; /* dynamic flags */
407 /* constructor func */
408 void (*ctor
) (void *, struct kmem_cache
*, unsigned long);
410 /* de-constructor func */
411 void (*dtor
) (void *, struct kmem_cache
*, unsigned long);
413 /* 5) cache creation/removal */
415 struct list_head next
;
419 unsigned long num_active
;
420 unsigned long num_allocations
;
421 unsigned long high_mark
;
423 unsigned long reaped
;
424 unsigned long errors
;
425 unsigned long max_freeable
;
426 unsigned long node_allocs
;
427 unsigned long node_frees
;
428 unsigned long node_overflow
;
436 * If debugging is enabled, then the allocator can add additional
437 * fields and/or padding to every object. buffer_size contains the total
438 * object size including these internal fields, the following two
439 * variables contain the offset to the user object and its size.
446 #define CFLGS_OFF_SLAB (0x80000000UL)
447 #define OFF_SLAB(x) ((x)->flags & CFLGS_OFF_SLAB)
449 #define BATCHREFILL_LIMIT 16
451 * Optimization question: fewer reaps means less probability for unnessary
452 * cpucache drain/refill cycles.
454 * OTOH the cpuarrays can contain lots of objects,
455 * which could lock up otherwise freeable slabs.
457 #define REAPTIMEOUT_CPUC (2*HZ)
458 #define REAPTIMEOUT_LIST3 (4*HZ)
461 #define STATS_INC_ACTIVE(x) ((x)->num_active++)
462 #define STATS_DEC_ACTIVE(x) ((x)->num_active--)
463 #define STATS_INC_ALLOCED(x) ((x)->num_allocations++)
464 #define STATS_INC_GROWN(x) ((x)->grown++)
465 #define STATS_ADD_REAPED(x,y) ((x)->reaped += (y))
466 #define STATS_SET_HIGH(x) \
468 if ((x)->num_active > (x)->high_mark) \
469 (x)->high_mark = (x)->num_active; \
471 #define STATS_INC_ERR(x) ((x)->errors++)
472 #define STATS_INC_NODEALLOCS(x) ((x)->node_allocs++)
473 #define STATS_INC_NODEFREES(x) ((x)->node_frees++)
474 #define STATS_INC_ACOVERFLOW(x) ((x)->node_overflow++)
475 #define STATS_SET_FREEABLE(x, i) \
477 if ((x)->max_freeable < i) \
478 (x)->max_freeable = i; \
480 #define STATS_INC_ALLOCHIT(x) atomic_inc(&(x)->allochit)
481 #define STATS_INC_ALLOCMISS(x) atomic_inc(&(x)->allocmiss)
482 #define STATS_INC_FREEHIT(x) atomic_inc(&(x)->freehit)
483 #define STATS_INC_FREEMISS(x) atomic_inc(&(x)->freemiss)
485 #define STATS_INC_ACTIVE(x) do { } while (0)
486 #define STATS_DEC_ACTIVE(x) do { } while (0)
487 #define STATS_INC_ALLOCED(x) do { } while (0)
488 #define STATS_INC_GROWN(x) do { } while (0)
489 #define STATS_ADD_REAPED(x,y) do { } while (0)
490 #define STATS_SET_HIGH(x) do { } while (0)
491 #define STATS_INC_ERR(x) do { } while (0)
492 #define STATS_INC_NODEALLOCS(x) do { } while (0)
493 #define STATS_INC_NODEFREES(x) do { } while (0)
494 #define STATS_INC_ACOVERFLOW(x) do { } while (0)
495 #define STATS_SET_FREEABLE(x, i) do { } while (0)
496 #define STATS_INC_ALLOCHIT(x) do { } while (0)
497 #define STATS_INC_ALLOCMISS(x) do { } while (0)
498 #define STATS_INC_FREEHIT(x) do { } while (0)
499 #define STATS_INC_FREEMISS(x) do { } while (0)
505 * memory layout of objects:
507 * 0 .. cachep->obj_offset - BYTES_PER_WORD - 1: padding. This ensures that
508 * the end of an object is aligned with the end of the real
509 * allocation. Catches writes behind the end of the allocation.
510 * cachep->obj_offset - BYTES_PER_WORD .. cachep->obj_offset - 1:
512 * cachep->obj_offset: The real object.
513 * cachep->buffer_size - 2* BYTES_PER_WORD: redzone word [BYTES_PER_WORD long]
514 * cachep->buffer_size - 1* BYTES_PER_WORD: last caller address
515 * [BYTES_PER_WORD long]
517 static int obj_offset(struct kmem_cache
*cachep
)
519 return cachep
->obj_offset
;
522 static int obj_size(struct kmem_cache
*cachep
)
524 return cachep
->obj_size
;
527 static unsigned long *dbg_redzone1(struct kmem_cache
*cachep
, void *objp
)
529 BUG_ON(!(cachep
->flags
& SLAB_RED_ZONE
));
530 return (unsigned long*) (objp
+obj_offset(cachep
)-BYTES_PER_WORD
);
533 static unsigned long *dbg_redzone2(struct kmem_cache
*cachep
, void *objp
)
535 BUG_ON(!(cachep
->flags
& SLAB_RED_ZONE
));
536 if (cachep
->flags
& SLAB_STORE_USER
)
537 return (unsigned long *)(objp
+ cachep
->buffer_size
-
539 return (unsigned long *)(objp
+ cachep
->buffer_size
- BYTES_PER_WORD
);
542 static void **dbg_userword(struct kmem_cache
*cachep
, void *objp
)
544 BUG_ON(!(cachep
->flags
& SLAB_STORE_USER
));
545 return (void **)(objp
+ cachep
->buffer_size
- BYTES_PER_WORD
);
550 #define obj_offset(x) 0
551 #define obj_size(cachep) (cachep->buffer_size)
552 #define dbg_redzone1(cachep, objp) ({BUG(); (unsigned long *)NULL;})
553 #define dbg_redzone2(cachep, objp) ({BUG(); (unsigned long *)NULL;})
554 #define dbg_userword(cachep, objp) ({BUG(); (void **)NULL;})
559 * Maximum size of an obj (in 2^order pages) and absolute limit for the gfp
562 #if defined(CONFIG_LARGE_ALLOCS)
563 #define MAX_OBJ_ORDER 13 /* up to 32Mb */
564 #define MAX_GFP_ORDER 13 /* up to 32Mb */
565 #elif defined(CONFIG_MMU)
566 #define MAX_OBJ_ORDER 5 /* 32 pages */
567 #define MAX_GFP_ORDER 5 /* 32 pages */
569 #define MAX_OBJ_ORDER 8 /* up to 1Mb */
570 #define MAX_GFP_ORDER 8 /* up to 1Mb */
574 * Do not go above this order unless 0 objects fit into the slab.
576 #define BREAK_GFP_ORDER_HI 1
577 #define BREAK_GFP_ORDER_LO 0
578 static int slab_break_gfp_order
= BREAK_GFP_ORDER_LO
;
581 * Functions for storing/retrieving the cachep and or slab from the page
582 * allocator. These are used to find the slab an obj belongs to. With kfree(),
583 * these are used to find the cache which an obj belongs to.
585 static inline void page_set_cache(struct page
*page
, struct kmem_cache
*cache
)
587 page
->lru
.next
= (struct list_head
*)cache
;
590 static inline struct kmem_cache
*page_get_cache(struct page
*page
)
592 if (unlikely(PageCompound(page
)))
593 page
= (struct page
*)page_private(page
);
594 BUG_ON(!PageSlab(page
));
595 return (struct kmem_cache
*)page
->lru
.next
;
598 static inline void page_set_slab(struct page
*page
, struct slab
*slab
)
600 page
->lru
.prev
= (struct list_head
*)slab
;
603 static inline struct slab
*page_get_slab(struct page
*page
)
605 if (unlikely(PageCompound(page
)))
606 page
= (struct page
*)page_private(page
);
607 BUG_ON(!PageSlab(page
));
608 return (struct slab
*)page
->lru
.prev
;
611 static inline struct kmem_cache
*virt_to_cache(const void *obj
)
613 struct page
*page
= virt_to_page(obj
);
614 return page_get_cache(page
);
617 static inline struct slab
*virt_to_slab(const void *obj
)
619 struct page
*page
= virt_to_page(obj
);
620 return page_get_slab(page
);
623 static inline void *index_to_obj(struct kmem_cache
*cache
, struct slab
*slab
,
626 return slab
->s_mem
+ cache
->buffer_size
* idx
;
629 static inline unsigned int obj_to_index(struct kmem_cache
*cache
,
630 struct slab
*slab
, void *obj
)
632 return (unsigned)(obj
- slab
->s_mem
) / cache
->buffer_size
;
636 * These are the default caches for kmalloc. Custom caches can have other sizes.
638 struct cache_sizes malloc_sizes
[] = {
639 #define CACHE(x) { .cs_size = (x) },
640 #include <linux/kmalloc_sizes.h>
644 EXPORT_SYMBOL(malloc_sizes
);
646 /* Must match cache_sizes above. Out of line to keep cache footprint low. */
652 static struct cache_names __initdata cache_names
[] = {
653 #define CACHE(x) { .name = "size-" #x, .name_dma = "size-" #x "(DMA)" },
654 #include <linux/kmalloc_sizes.h>
659 static struct arraycache_init initarray_cache __initdata
=
660 { {0, BOOT_CPUCACHE_ENTRIES
, 1, 0} };
661 static struct arraycache_init initarray_generic
=
662 { {0, BOOT_CPUCACHE_ENTRIES
, 1, 0} };
664 /* internal cache of cache description objs */
665 static struct kmem_cache cache_cache
= {
667 .limit
= BOOT_CPUCACHE_ENTRIES
,
669 .buffer_size
= sizeof(struct kmem_cache
),
670 .name
= "kmem_cache",
672 .obj_size
= sizeof(struct kmem_cache
),
676 #define BAD_ALIEN_MAGIC 0x01020304ul
678 #ifdef CONFIG_LOCKDEP
681 * Slab sometimes uses the kmalloc slabs to store the slab headers
682 * for other slabs "off slab".
683 * The locking for this is tricky in that it nests within the locks
684 * of all other slabs in a few places; to deal with this special
685 * locking we put on-slab caches into a separate lock-class.
687 * We set lock class for alien array caches which are up during init.
688 * The lock annotation will be lost if all cpus of a node goes down and
689 * then comes back up during hotplug
691 static struct lock_class_key on_slab_l3_key
;
692 static struct lock_class_key on_slab_alc_key
;
694 static inline void init_lock_keys(void)
698 struct cache_sizes
*s
= malloc_sizes
;
700 while (s
->cs_size
!= ULONG_MAX
) {
702 struct array_cache
**alc
;
704 struct kmem_list3
*l3
= s
->cs_cachep
->nodelists
[q
];
705 if (!l3
|| OFF_SLAB(s
->cs_cachep
))
707 lockdep_set_class(&l3
->list_lock
, &on_slab_l3_key
);
710 * FIXME: This check for BAD_ALIEN_MAGIC
711 * should go away when common slab code is taught to
712 * work even without alien caches.
713 * Currently, non NUMA code returns BAD_ALIEN_MAGIC
714 * for alloc_alien_cache,
716 if (!alc
|| (unsigned long)alc
== BAD_ALIEN_MAGIC
)
720 lockdep_set_class(&alc
[r
]->lock
,
728 static inline void init_lock_keys(void)
733 /* Guard access to the cache-chain. */
734 static DEFINE_MUTEX(cache_chain_mutex
);
735 static struct list_head cache_chain
;
738 * chicken and egg problem: delay the per-cpu array allocation
739 * until the general caches are up.
749 * used by boot code to determine if it can use slab based allocator
751 int slab_is_available(void)
753 return g_cpucache_up
== FULL
;
756 static DEFINE_PER_CPU(struct work_struct
, reap_work
);
758 static inline struct array_cache
*cpu_cache_get(struct kmem_cache
*cachep
)
760 return cachep
->array
[smp_processor_id()];
763 static inline struct kmem_cache
*__find_general_cachep(size_t size
,
766 struct cache_sizes
*csizep
= malloc_sizes
;
769 /* This happens if someone tries to call
770 * kmem_cache_create(), or __kmalloc(), before
771 * the generic caches are initialized.
773 BUG_ON(malloc_sizes
[INDEX_AC
].cs_cachep
== NULL
);
775 while (size
> csizep
->cs_size
)
779 * Really subtle: The last entry with cs->cs_size==ULONG_MAX
780 * has cs_{dma,}cachep==NULL. Thus no special case
781 * for large kmalloc calls required.
783 if (unlikely(gfpflags
& GFP_DMA
))
784 return csizep
->cs_dmacachep
;
785 return csizep
->cs_cachep
;
788 static struct kmem_cache
*kmem_find_general_cachep(size_t size
, gfp_t gfpflags
)
790 return __find_general_cachep(size
, gfpflags
);
793 static size_t slab_mgmt_size(size_t nr_objs
, size_t align
)
795 return ALIGN(sizeof(struct slab
)+nr_objs
*sizeof(kmem_bufctl_t
), align
);
799 * Calculate the number of objects and left-over bytes for a given buffer size.
801 static void cache_estimate(unsigned long gfporder
, size_t buffer_size
,
802 size_t align
, int flags
, size_t *left_over
,
807 size_t slab_size
= PAGE_SIZE
<< gfporder
;
810 * The slab management structure can be either off the slab or
811 * on it. For the latter case, the memory allocated for a
815 * - One kmem_bufctl_t for each object
816 * - Padding to respect alignment of @align
817 * - @buffer_size bytes for each object
819 * If the slab management structure is off the slab, then the
820 * alignment will already be calculated into the size. Because
821 * the slabs are all pages aligned, the objects will be at the
822 * correct alignment when allocated.
824 if (flags
& CFLGS_OFF_SLAB
) {
826 nr_objs
= slab_size
/ buffer_size
;
828 if (nr_objs
> SLAB_LIMIT
)
829 nr_objs
= SLAB_LIMIT
;
832 * Ignore padding for the initial guess. The padding
833 * is at most @align-1 bytes, and @buffer_size is at
834 * least @align. In the worst case, this result will
835 * be one greater than the number of objects that fit
836 * into the memory allocation when taking the padding
839 nr_objs
= (slab_size
- sizeof(struct slab
)) /
840 (buffer_size
+ sizeof(kmem_bufctl_t
));
843 * This calculated number will be either the right
844 * amount, or one greater than what we want.
846 if (slab_mgmt_size(nr_objs
, align
) + nr_objs
*buffer_size
850 if (nr_objs
> SLAB_LIMIT
)
851 nr_objs
= SLAB_LIMIT
;
853 mgmt_size
= slab_mgmt_size(nr_objs
, align
);
856 *left_over
= slab_size
- nr_objs
*buffer_size
- mgmt_size
;
859 #define slab_error(cachep, msg) __slab_error(__FUNCTION__, cachep, msg)
861 static void __slab_error(const char *function
, struct kmem_cache
*cachep
,
864 printk(KERN_ERR
"slab error in %s(): cache `%s': %s\n",
865 function
, cachep
->name
, msg
);
871 * Special reaping functions for NUMA systems called from cache_reap().
872 * These take care of doing round robin flushing of alien caches (containing
873 * objects freed on different nodes from which they were allocated) and the
874 * flushing of remote pcps by calling drain_node_pages.
876 static DEFINE_PER_CPU(unsigned long, reap_node
);
878 static void init_reap_node(int cpu
)
882 node
= next_node(cpu_to_node(cpu
), node_online_map
);
883 if (node
== MAX_NUMNODES
)
884 node
= first_node(node_online_map
);
886 __get_cpu_var(reap_node
) = node
;
889 static void next_reap_node(void)
891 int node
= __get_cpu_var(reap_node
);
894 * Also drain per cpu pages on remote zones
896 if (node
!= numa_node_id())
897 drain_node_pages(node
);
899 node
= next_node(node
, node_online_map
);
900 if (unlikely(node
>= MAX_NUMNODES
))
901 node
= first_node(node_online_map
);
902 __get_cpu_var(reap_node
) = node
;
906 #define init_reap_node(cpu) do { } while (0)
907 #define next_reap_node(void) do { } while (0)
911 * Initiate the reap timer running on the target CPU. We run at around 1 to 2Hz
912 * via the workqueue/eventd.
913 * Add the CPU number into the expiration time to minimize the possibility of
914 * the CPUs getting into lockstep and contending for the global cache chain
917 static void __devinit
start_cpu_timer(int cpu
)
919 struct work_struct
*reap_work
= &per_cpu(reap_work
, cpu
);
922 * When this gets called from do_initcalls via cpucache_init(),
923 * init_workqueues() has already run, so keventd will be setup
926 if (keventd_up() && reap_work
->func
== NULL
) {
928 INIT_WORK(reap_work
, cache_reap
, NULL
);
929 schedule_delayed_work_on(cpu
, reap_work
, HZ
+ 3 * cpu
);
933 static struct array_cache
*alloc_arraycache(int node
, int entries
,
936 int memsize
= sizeof(void *) * entries
+ sizeof(struct array_cache
);
937 struct array_cache
*nc
= NULL
;
939 nc
= kmalloc_node(memsize
, GFP_KERNEL
, node
);
943 nc
->batchcount
= batchcount
;
945 spin_lock_init(&nc
->lock
);
951 * Transfer objects in one arraycache to another.
952 * Locking must be handled by the caller.
954 * Return the number of entries transferred.
956 static int transfer_objects(struct array_cache
*to
,
957 struct array_cache
*from
, unsigned int max
)
959 /* Figure out how many entries to transfer */
960 int nr
= min(min(from
->avail
, max
), to
->limit
- to
->avail
);
965 memcpy(to
->entry
+ to
->avail
, from
->entry
+ from
->avail
-nr
,
976 #define drain_alien_cache(cachep, alien) do { } while (0)
977 #define reap_alien(cachep, l3) do { } while (0)
979 static inline struct array_cache
**alloc_alien_cache(int node
, int limit
)
981 return (struct array_cache
**)BAD_ALIEN_MAGIC
;
984 static inline void free_alien_cache(struct array_cache
**ac_ptr
)
988 static inline int cache_free_alien(struct kmem_cache
*cachep
, void *objp
)
993 static inline void *alternate_node_alloc(struct kmem_cache
*cachep
,
999 static inline void *__cache_alloc_node(struct kmem_cache
*cachep
,
1000 gfp_t flags
, int nodeid
)
1005 #else /* CONFIG_NUMA */
1007 static void *__cache_alloc_node(struct kmem_cache
*, gfp_t
, int);
1008 static void *alternate_node_alloc(struct kmem_cache
*, gfp_t
);
1010 static struct array_cache
**alloc_alien_cache(int node
, int limit
)
1012 struct array_cache
**ac_ptr
;
1013 int memsize
= sizeof(void *) * MAX_NUMNODES
;
1018 ac_ptr
= kmalloc_node(memsize
, GFP_KERNEL
, node
);
1021 if (i
== node
|| !node_online(i
)) {
1025 ac_ptr
[i
] = alloc_arraycache(node
, limit
, 0xbaadf00d);
1027 for (i
--; i
<= 0; i
--)
1037 static void free_alien_cache(struct array_cache
**ac_ptr
)
1048 static void __drain_alien_cache(struct kmem_cache
*cachep
,
1049 struct array_cache
*ac
, int node
)
1051 struct kmem_list3
*rl3
= cachep
->nodelists
[node
];
1054 spin_lock(&rl3
->list_lock
);
1056 * Stuff objects into the remote nodes shared array first.
1057 * That way we could avoid the overhead of putting the objects
1058 * into the free lists and getting them back later.
1061 transfer_objects(rl3
->shared
, ac
, ac
->limit
);
1063 free_block(cachep
, ac
->entry
, ac
->avail
, node
);
1065 spin_unlock(&rl3
->list_lock
);
1070 * Called from cache_reap() to regularly drain alien caches round robin.
1072 static void reap_alien(struct kmem_cache
*cachep
, struct kmem_list3
*l3
)
1074 int node
= __get_cpu_var(reap_node
);
1077 struct array_cache
*ac
= l3
->alien
[node
];
1079 if (ac
&& ac
->avail
&& spin_trylock_irq(&ac
->lock
)) {
1080 __drain_alien_cache(cachep
, ac
, node
);
1081 spin_unlock_irq(&ac
->lock
);
1086 static void drain_alien_cache(struct kmem_cache
*cachep
,
1087 struct array_cache
**alien
)
1090 struct array_cache
*ac
;
1091 unsigned long flags
;
1093 for_each_online_node(i
) {
1096 spin_lock_irqsave(&ac
->lock
, flags
);
1097 __drain_alien_cache(cachep
, ac
, i
);
1098 spin_unlock_irqrestore(&ac
->lock
, flags
);
1103 static inline int cache_free_alien(struct kmem_cache
*cachep
, void *objp
)
1105 struct slab
*slabp
= virt_to_slab(objp
);
1106 int nodeid
= slabp
->nodeid
;
1107 struct kmem_list3
*l3
;
1108 struct array_cache
*alien
= NULL
;
1111 * Make sure we are not freeing a object from another node to the array
1112 * cache on this cpu.
1114 if (likely(slabp
->nodeid
== numa_node_id()))
1117 l3
= cachep
->nodelists
[numa_node_id()];
1118 STATS_INC_NODEFREES(cachep
);
1119 if (l3
->alien
&& l3
->alien
[nodeid
]) {
1120 alien
= l3
->alien
[nodeid
];
1121 spin_lock(&alien
->lock
);
1122 if (unlikely(alien
->avail
== alien
->limit
)) {
1123 STATS_INC_ACOVERFLOW(cachep
);
1124 __drain_alien_cache(cachep
, alien
, nodeid
);
1126 alien
->entry
[alien
->avail
++] = objp
;
1127 spin_unlock(&alien
->lock
);
1129 spin_lock(&(cachep
->nodelists
[nodeid
])->list_lock
);
1130 free_block(cachep
, &objp
, 1, nodeid
);
1131 spin_unlock(&(cachep
->nodelists
[nodeid
])->list_lock
);
1137 static int __cpuinit
cpuup_callback(struct notifier_block
*nfb
,
1138 unsigned long action
, void *hcpu
)
1140 long cpu
= (long)hcpu
;
1141 struct kmem_cache
*cachep
;
1142 struct kmem_list3
*l3
= NULL
;
1143 int node
= cpu_to_node(cpu
);
1144 int memsize
= sizeof(struct kmem_list3
);
1147 case CPU_UP_PREPARE
:
1148 mutex_lock(&cache_chain_mutex
);
1150 * We need to do this right in the beginning since
1151 * alloc_arraycache's are going to use this list.
1152 * kmalloc_node allows us to add the slab to the right
1153 * kmem_list3 and not this cpu's kmem_list3
1156 list_for_each_entry(cachep
, &cache_chain
, next
) {
1158 * Set up the size64 kmemlist for cpu before we can
1159 * begin anything. Make sure some other cpu on this
1160 * node has not already allocated this
1162 if (!cachep
->nodelists
[node
]) {
1163 l3
= kmalloc_node(memsize
, GFP_KERNEL
, node
);
1166 kmem_list3_init(l3
);
1167 l3
->next_reap
= jiffies
+ REAPTIMEOUT_LIST3
+
1168 ((unsigned long)cachep
) % REAPTIMEOUT_LIST3
;
1171 * The l3s don't come and go as CPUs come and
1172 * go. cache_chain_mutex is sufficient
1175 cachep
->nodelists
[node
] = l3
;
1178 spin_lock_irq(&cachep
->nodelists
[node
]->list_lock
);
1179 cachep
->nodelists
[node
]->free_limit
=
1180 (1 + nr_cpus_node(node
)) *
1181 cachep
->batchcount
+ cachep
->num
;
1182 spin_unlock_irq(&cachep
->nodelists
[node
]->list_lock
);
1186 * Now we can go ahead with allocating the shared arrays and
1189 list_for_each_entry(cachep
, &cache_chain
, next
) {
1190 struct array_cache
*nc
;
1191 struct array_cache
*shared
;
1192 struct array_cache
**alien
;
1194 nc
= alloc_arraycache(node
, cachep
->limit
,
1195 cachep
->batchcount
);
1198 shared
= alloc_arraycache(node
,
1199 cachep
->shared
* cachep
->batchcount
,
1204 alien
= alloc_alien_cache(node
, cachep
->limit
);
1207 cachep
->array
[cpu
] = nc
;
1208 l3
= cachep
->nodelists
[node
];
1211 spin_lock_irq(&l3
->list_lock
);
1214 * We are serialised from CPU_DEAD or
1215 * CPU_UP_CANCELLED by the cpucontrol lock
1217 l3
->shared
= shared
;
1226 spin_unlock_irq(&l3
->list_lock
);
1228 free_alien_cache(alien
);
1230 mutex_unlock(&cache_chain_mutex
);
1233 start_cpu_timer(cpu
);
1235 #ifdef CONFIG_HOTPLUG_CPU
1238 * Even if all the cpus of a node are down, we don't free the
1239 * kmem_list3 of any cache. This to avoid a race between
1240 * cpu_down, and a kmalloc allocation from another cpu for
1241 * memory from the node of the cpu going down. The list3
1242 * structure is usually allocated from kmem_cache_create() and
1243 * gets destroyed at kmem_cache_destroy().
1246 case CPU_UP_CANCELED
:
1247 mutex_lock(&cache_chain_mutex
);
1248 list_for_each_entry(cachep
, &cache_chain
, next
) {
1249 struct array_cache
*nc
;
1250 struct array_cache
*shared
;
1251 struct array_cache
**alien
;
1254 mask
= node_to_cpumask(node
);
1255 /* cpu is dead; no one can alloc from it. */
1256 nc
= cachep
->array
[cpu
];
1257 cachep
->array
[cpu
] = NULL
;
1258 l3
= cachep
->nodelists
[node
];
1261 goto free_array_cache
;
1263 spin_lock_irq(&l3
->list_lock
);
1265 /* Free limit for this kmem_list3 */
1266 l3
->free_limit
-= cachep
->batchcount
;
1268 free_block(cachep
, nc
->entry
, nc
->avail
, node
);
1270 if (!cpus_empty(mask
)) {
1271 spin_unlock_irq(&l3
->list_lock
);
1272 goto free_array_cache
;
1275 shared
= l3
->shared
;
1277 free_block(cachep
, l3
->shared
->entry
,
1278 l3
->shared
->avail
, node
);
1285 spin_unlock_irq(&l3
->list_lock
);
1289 drain_alien_cache(cachep
, alien
);
1290 free_alien_cache(alien
);
1296 * In the previous loop, all the objects were freed to
1297 * the respective cache's slabs, now we can go ahead and
1298 * shrink each nodelist to its limit.
1300 list_for_each_entry(cachep
, &cache_chain
, next
) {
1301 l3
= cachep
->nodelists
[node
];
1304 drain_freelist(cachep
, l3
, l3
->free_objects
);
1306 mutex_unlock(&cache_chain_mutex
);
1312 mutex_unlock(&cache_chain_mutex
);
1316 static struct notifier_block __cpuinitdata cpucache_notifier
= {
1317 &cpuup_callback
, NULL
, 0
1321 * swap the static kmem_list3 with kmalloced memory
1323 static void init_list(struct kmem_cache
*cachep
, struct kmem_list3
*list
,
1326 struct kmem_list3
*ptr
;
1328 BUG_ON(cachep
->nodelists
[nodeid
] != list
);
1329 ptr
= kmalloc_node(sizeof(struct kmem_list3
), GFP_KERNEL
, nodeid
);
1332 local_irq_disable();
1333 memcpy(ptr
, list
, sizeof(struct kmem_list3
));
1335 * Do not assume that spinlocks can be initialized via memcpy:
1337 spin_lock_init(&ptr
->list_lock
);
1339 MAKE_ALL_LISTS(cachep
, ptr
, nodeid
);
1340 cachep
->nodelists
[nodeid
] = ptr
;
1345 * Initialisation. Called after the page allocator have been initialised and
1346 * before smp_init().
1348 void __init
kmem_cache_init(void)
1351 struct cache_sizes
*sizes
;
1352 struct cache_names
*names
;
1356 for (i
= 0; i
< NUM_INIT_LISTS
; i
++) {
1357 kmem_list3_init(&initkmem_list3
[i
]);
1358 if (i
< MAX_NUMNODES
)
1359 cache_cache
.nodelists
[i
] = NULL
;
1363 * Fragmentation resistance on low memory - only use bigger
1364 * page orders on machines with more than 32MB of memory.
1366 if (num_physpages
> (32 << 20) >> PAGE_SHIFT
)
1367 slab_break_gfp_order
= BREAK_GFP_ORDER_HI
;
1369 /* Bootstrap is tricky, because several objects are allocated
1370 * from caches that do not exist yet:
1371 * 1) initialize the cache_cache cache: it contains the struct
1372 * kmem_cache structures of all caches, except cache_cache itself:
1373 * cache_cache is statically allocated.
1374 * Initially an __init data area is used for the head array and the
1375 * kmem_list3 structures, it's replaced with a kmalloc allocated
1376 * array at the end of the bootstrap.
1377 * 2) Create the first kmalloc cache.
1378 * The struct kmem_cache for the new cache is allocated normally.
1379 * An __init data area is used for the head array.
1380 * 3) Create the remaining kmalloc caches, with minimally sized
1382 * 4) Replace the __init data head arrays for cache_cache and the first
1383 * kmalloc cache with kmalloc allocated arrays.
1384 * 5) Replace the __init data for kmem_list3 for cache_cache and
1385 * the other cache's with kmalloc allocated memory.
1386 * 6) Resize the head arrays of the kmalloc caches to their final sizes.
1389 /* 1) create the cache_cache */
1390 INIT_LIST_HEAD(&cache_chain
);
1391 list_add(&cache_cache
.next
, &cache_chain
);
1392 cache_cache
.colour_off
= cache_line_size();
1393 cache_cache
.array
[smp_processor_id()] = &initarray_cache
.cache
;
1394 cache_cache
.nodelists
[numa_node_id()] = &initkmem_list3
[CACHE_CACHE
];
1396 cache_cache
.buffer_size
= ALIGN(cache_cache
.buffer_size
,
1399 for (order
= 0; order
< MAX_ORDER
; order
++) {
1400 cache_estimate(order
, cache_cache
.buffer_size
,
1401 cache_line_size(), 0, &left_over
, &cache_cache
.num
);
1402 if (cache_cache
.num
)
1405 BUG_ON(!cache_cache
.num
);
1406 cache_cache
.gfporder
= order
;
1407 cache_cache
.colour
= left_over
/ cache_cache
.colour_off
;
1408 cache_cache
.slab_size
= ALIGN(cache_cache
.num
* sizeof(kmem_bufctl_t
) +
1409 sizeof(struct slab
), cache_line_size());
1411 /* 2+3) create the kmalloc caches */
1412 sizes
= malloc_sizes
;
1413 names
= cache_names
;
1416 * Initialize the caches that provide memory for the array cache and the
1417 * kmem_list3 structures first. Without this, further allocations will
1421 sizes
[INDEX_AC
].cs_cachep
= kmem_cache_create(names
[INDEX_AC
].name
,
1422 sizes
[INDEX_AC
].cs_size
,
1423 ARCH_KMALLOC_MINALIGN
,
1424 ARCH_KMALLOC_FLAGS
|SLAB_PANIC
,
1427 if (INDEX_AC
!= INDEX_L3
) {
1428 sizes
[INDEX_L3
].cs_cachep
=
1429 kmem_cache_create(names
[INDEX_L3
].name
,
1430 sizes
[INDEX_L3
].cs_size
,
1431 ARCH_KMALLOC_MINALIGN
,
1432 ARCH_KMALLOC_FLAGS
|SLAB_PANIC
,
1436 slab_early_init
= 0;
1438 while (sizes
->cs_size
!= ULONG_MAX
) {
1440 * For performance, all the general caches are L1 aligned.
1441 * This should be particularly beneficial on SMP boxes, as it
1442 * eliminates "false sharing".
1443 * Note for systems short on memory removing the alignment will
1444 * allow tighter packing of the smaller caches.
1446 if (!sizes
->cs_cachep
) {
1447 sizes
->cs_cachep
= kmem_cache_create(names
->name
,
1449 ARCH_KMALLOC_MINALIGN
,
1450 ARCH_KMALLOC_FLAGS
|SLAB_PANIC
,
1454 sizes
->cs_dmacachep
= kmem_cache_create(names
->name_dma
,
1456 ARCH_KMALLOC_MINALIGN
,
1457 ARCH_KMALLOC_FLAGS
|SLAB_CACHE_DMA
|
1463 /* 4) Replace the bootstrap head arrays */
1465 struct array_cache
*ptr
;
1467 ptr
= kmalloc(sizeof(struct arraycache_init
), GFP_KERNEL
);
1469 local_irq_disable();
1470 BUG_ON(cpu_cache_get(&cache_cache
) != &initarray_cache
.cache
);
1471 memcpy(ptr
, cpu_cache_get(&cache_cache
),
1472 sizeof(struct arraycache_init
));
1474 * Do not assume that spinlocks can be initialized via memcpy:
1476 spin_lock_init(&ptr
->lock
);
1478 cache_cache
.array
[smp_processor_id()] = ptr
;
1481 ptr
= kmalloc(sizeof(struct arraycache_init
), GFP_KERNEL
);
1483 local_irq_disable();
1484 BUG_ON(cpu_cache_get(malloc_sizes
[INDEX_AC
].cs_cachep
)
1485 != &initarray_generic
.cache
);
1486 memcpy(ptr
, cpu_cache_get(malloc_sizes
[INDEX_AC
].cs_cachep
),
1487 sizeof(struct arraycache_init
));
1489 * Do not assume that spinlocks can be initialized via memcpy:
1491 spin_lock_init(&ptr
->lock
);
1493 malloc_sizes
[INDEX_AC
].cs_cachep
->array
[smp_processor_id()] =
1497 /* 5) Replace the bootstrap kmem_list3's */
1500 /* Replace the static kmem_list3 structures for the boot cpu */
1501 init_list(&cache_cache
, &initkmem_list3
[CACHE_CACHE
],
1504 for_each_online_node(node
) {
1505 init_list(malloc_sizes
[INDEX_AC
].cs_cachep
,
1506 &initkmem_list3
[SIZE_AC
+ node
], node
);
1508 if (INDEX_AC
!= INDEX_L3
) {
1509 init_list(malloc_sizes
[INDEX_L3
].cs_cachep
,
1510 &initkmem_list3
[SIZE_L3
+ node
],
1516 /* 6) resize the head arrays to their final sizes */
1518 struct kmem_cache
*cachep
;
1519 mutex_lock(&cache_chain_mutex
);
1520 list_for_each_entry(cachep
, &cache_chain
, next
)
1521 if (enable_cpucache(cachep
))
1523 mutex_unlock(&cache_chain_mutex
);
1526 /* Annotate slab for lockdep -- annotate the malloc caches */
1531 g_cpucache_up
= FULL
;
1534 * Register a cpu startup notifier callback that initializes
1535 * cpu_cache_get for all new cpus
1537 register_cpu_notifier(&cpucache_notifier
);
1540 * The reap timers are started later, with a module init call: That part
1541 * of the kernel is not yet operational.
1545 static int __init
cpucache_init(void)
1550 * Register the timers that return unneeded pages to the page allocator
1552 for_each_online_cpu(cpu
)
1553 start_cpu_timer(cpu
);
1556 __initcall(cpucache_init
);
1559 * Interface to system's page allocator. No need to hold the cache-lock.
1561 * If we requested dmaable memory, we will get it. Even if we
1562 * did not request dmaable memory, we might get it, but that
1563 * would be relatively rare and ignorable.
1565 static void *kmem_getpages(struct kmem_cache
*cachep
, gfp_t flags
, int nodeid
)
1573 * Nommu uses slab's for process anonymous memory allocations, and thus
1574 * requires __GFP_COMP to properly refcount higher order allocations
1576 flags
|= __GFP_COMP
;
1580 * Under NUMA we want memory on the indicated node. We will handle
1581 * the needed fallback ourselves since we want to serve from our
1582 * per node object lists first for other nodes.
1584 flags
|= cachep
->gfpflags
| GFP_THISNODE
;
1586 page
= alloc_pages_node(nodeid
, flags
, cachep
->gfporder
);
1590 nr_pages
= (1 << cachep
->gfporder
);
1591 if (cachep
->flags
& SLAB_RECLAIM_ACCOUNT
)
1592 add_zone_page_state(page_zone(page
),
1593 NR_SLAB_RECLAIMABLE
, nr_pages
);
1595 add_zone_page_state(page_zone(page
),
1596 NR_SLAB_UNRECLAIMABLE
, nr_pages
);
1597 for (i
= 0; i
< nr_pages
; i
++)
1598 __SetPageSlab(page
+ i
);
1599 return page_address(page
);
1603 * Interface to system's page release.
1605 static void kmem_freepages(struct kmem_cache
*cachep
, void *addr
)
1607 unsigned long i
= (1 << cachep
->gfporder
);
1608 struct page
*page
= virt_to_page(addr
);
1609 const unsigned long nr_freed
= i
;
1611 if (cachep
->flags
& SLAB_RECLAIM_ACCOUNT
)
1612 sub_zone_page_state(page_zone(page
),
1613 NR_SLAB_RECLAIMABLE
, nr_freed
);
1615 sub_zone_page_state(page_zone(page
),
1616 NR_SLAB_UNRECLAIMABLE
, nr_freed
);
1618 BUG_ON(!PageSlab(page
));
1619 __ClearPageSlab(page
);
1622 if (current
->reclaim_state
)
1623 current
->reclaim_state
->reclaimed_slab
+= nr_freed
;
1624 free_pages((unsigned long)addr
, cachep
->gfporder
);
1627 static void kmem_rcu_free(struct rcu_head
*head
)
1629 struct slab_rcu
*slab_rcu
= (struct slab_rcu
*)head
;
1630 struct kmem_cache
*cachep
= slab_rcu
->cachep
;
1632 kmem_freepages(cachep
, slab_rcu
->addr
);
1633 if (OFF_SLAB(cachep
))
1634 kmem_cache_free(cachep
->slabp_cache
, slab_rcu
);
1639 #ifdef CONFIG_DEBUG_PAGEALLOC
1640 static void store_stackinfo(struct kmem_cache
*cachep
, unsigned long *addr
,
1641 unsigned long caller
)
1643 int size
= obj_size(cachep
);
1645 addr
= (unsigned long *)&((char *)addr
)[obj_offset(cachep
)];
1647 if (size
< 5 * sizeof(unsigned long))
1650 *addr
++ = 0x12345678;
1652 *addr
++ = smp_processor_id();
1653 size
-= 3 * sizeof(unsigned long);
1655 unsigned long *sptr
= &caller
;
1656 unsigned long svalue
;
1658 while (!kstack_end(sptr
)) {
1660 if (kernel_text_address(svalue
)) {
1662 size
-= sizeof(unsigned long);
1663 if (size
<= sizeof(unsigned long))
1669 *addr
++ = 0x87654321;
1673 static void poison_obj(struct kmem_cache
*cachep
, void *addr
, unsigned char val
)
1675 int size
= obj_size(cachep
);
1676 addr
= &((char *)addr
)[obj_offset(cachep
)];
1678 memset(addr
, val
, size
);
1679 *(unsigned char *)(addr
+ size
- 1) = POISON_END
;
1682 static void dump_line(char *data
, int offset
, int limit
)
1685 unsigned char error
= 0;
1688 printk(KERN_ERR
"%03x:", offset
);
1689 for (i
= 0; i
< limit
; i
++) {
1690 if (data
[offset
+ i
] != POISON_FREE
) {
1691 error
= data
[offset
+ i
];
1694 printk(" %02x", (unsigned char)data
[offset
+ i
]);
1698 if (bad_count
== 1) {
1699 error
^= POISON_FREE
;
1700 if (!(error
& (error
- 1))) {
1701 printk(KERN_ERR
"Single bit error detected. Probably "
1704 printk(KERN_ERR
"Run memtest86+ or a similar memory "
1707 printk(KERN_ERR
"Run a memory test tool.\n");
1716 static void print_objinfo(struct kmem_cache
*cachep
, void *objp
, int lines
)
1721 if (cachep
->flags
& SLAB_RED_ZONE
) {
1722 printk(KERN_ERR
"Redzone: 0x%lx/0x%lx.\n",
1723 *dbg_redzone1(cachep
, objp
),
1724 *dbg_redzone2(cachep
, objp
));
1727 if (cachep
->flags
& SLAB_STORE_USER
) {
1728 printk(KERN_ERR
"Last user: [<%p>]",
1729 *dbg_userword(cachep
, objp
));
1730 print_symbol("(%s)",
1731 (unsigned long)*dbg_userword(cachep
, objp
));
1734 realobj
= (char *)objp
+ obj_offset(cachep
);
1735 size
= obj_size(cachep
);
1736 for (i
= 0; i
< size
&& lines
; i
+= 16, lines
--) {
1739 if (i
+ limit
> size
)
1741 dump_line(realobj
, i
, limit
);
1745 static void check_poison_obj(struct kmem_cache
*cachep
, void *objp
)
1751 realobj
= (char *)objp
+ obj_offset(cachep
);
1752 size
= obj_size(cachep
);
1754 for (i
= 0; i
< size
; i
++) {
1755 char exp
= POISON_FREE
;
1758 if (realobj
[i
] != exp
) {
1764 "Slab corruption: start=%p, len=%d\n",
1766 print_objinfo(cachep
, objp
, 0);
1768 /* Hexdump the affected line */
1771 if (i
+ limit
> size
)
1773 dump_line(realobj
, i
, limit
);
1776 /* Limit to 5 lines */
1782 /* Print some data about the neighboring objects, if they
1785 struct slab
*slabp
= virt_to_slab(objp
);
1788 objnr
= obj_to_index(cachep
, slabp
, objp
);
1790 objp
= index_to_obj(cachep
, slabp
, objnr
- 1);
1791 realobj
= (char *)objp
+ obj_offset(cachep
);
1792 printk(KERN_ERR
"Prev obj: start=%p, len=%d\n",
1794 print_objinfo(cachep
, objp
, 2);
1796 if (objnr
+ 1 < cachep
->num
) {
1797 objp
= index_to_obj(cachep
, slabp
, objnr
+ 1);
1798 realobj
= (char *)objp
+ obj_offset(cachep
);
1799 printk(KERN_ERR
"Next obj: start=%p, len=%d\n",
1801 print_objinfo(cachep
, objp
, 2);
1809 * slab_destroy_objs - destroy a slab and its objects
1810 * @cachep: cache pointer being destroyed
1811 * @slabp: slab pointer being destroyed
1813 * Call the registered destructor for each object in a slab that is being
1816 static void slab_destroy_objs(struct kmem_cache
*cachep
, struct slab
*slabp
)
1819 for (i
= 0; i
< cachep
->num
; i
++) {
1820 void *objp
= index_to_obj(cachep
, slabp
, i
);
1822 if (cachep
->flags
& SLAB_POISON
) {
1823 #ifdef CONFIG_DEBUG_PAGEALLOC
1824 if (cachep
->buffer_size
% PAGE_SIZE
== 0 &&
1826 kernel_map_pages(virt_to_page(objp
),
1827 cachep
->buffer_size
/ PAGE_SIZE
, 1);
1829 check_poison_obj(cachep
, objp
);
1831 check_poison_obj(cachep
, objp
);
1834 if (cachep
->flags
& SLAB_RED_ZONE
) {
1835 if (*dbg_redzone1(cachep
, objp
) != RED_INACTIVE
)
1836 slab_error(cachep
, "start of a freed object "
1838 if (*dbg_redzone2(cachep
, objp
) != RED_INACTIVE
)
1839 slab_error(cachep
, "end of a freed object "
1842 if (cachep
->dtor
&& !(cachep
->flags
& SLAB_POISON
))
1843 (cachep
->dtor
) (objp
+ obj_offset(cachep
), cachep
, 0);
1847 static void slab_destroy_objs(struct kmem_cache
*cachep
, struct slab
*slabp
)
1851 for (i
= 0; i
< cachep
->num
; i
++) {
1852 void *objp
= index_to_obj(cachep
, slabp
, i
);
1853 (cachep
->dtor
) (objp
, cachep
, 0);
1860 * slab_destroy - destroy and release all objects in a slab
1861 * @cachep: cache pointer being destroyed
1862 * @slabp: slab pointer being destroyed
1864 * Destroy all the objs in a slab, and release the mem back to the system.
1865 * Before calling the slab must have been unlinked from the cache. The
1866 * cache-lock is not held/needed.
1868 static void slab_destroy(struct kmem_cache
*cachep
, struct slab
*slabp
)
1870 void *addr
= slabp
->s_mem
- slabp
->colouroff
;
1872 slab_destroy_objs(cachep
, slabp
);
1873 if (unlikely(cachep
->flags
& SLAB_DESTROY_BY_RCU
)) {
1874 struct slab_rcu
*slab_rcu
;
1876 slab_rcu
= (struct slab_rcu
*)slabp
;
1877 slab_rcu
->cachep
= cachep
;
1878 slab_rcu
->addr
= addr
;
1879 call_rcu(&slab_rcu
->head
, kmem_rcu_free
);
1881 kmem_freepages(cachep
, addr
);
1882 if (OFF_SLAB(cachep
))
1883 kmem_cache_free(cachep
->slabp_cache
, slabp
);
1888 * For setting up all the kmem_list3s for cache whose buffer_size is same as
1889 * size of kmem_list3.
1891 static void set_up_list3s(struct kmem_cache
*cachep
, int index
)
1895 for_each_online_node(node
) {
1896 cachep
->nodelists
[node
] = &initkmem_list3
[index
+ node
];
1897 cachep
->nodelists
[node
]->next_reap
= jiffies
+
1899 ((unsigned long)cachep
) % REAPTIMEOUT_LIST3
;
1903 static void __kmem_cache_destroy(struct kmem_cache
*cachep
)
1906 struct kmem_list3
*l3
;
1908 for_each_online_cpu(i
)
1909 kfree(cachep
->array
[i
]);
1911 /* NUMA: free the list3 structures */
1912 for_each_online_node(i
) {
1913 l3
= cachep
->nodelists
[i
];
1916 free_alien_cache(l3
->alien
);
1920 kmem_cache_free(&cache_cache
, cachep
);
1925 * calculate_slab_order - calculate size (page order) of slabs
1926 * @cachep: pointer to the cache that is being created
1927 * @size: size of objects to be created in this cache.
1928 * @align: required alignment for the objects.
1929 * @flags: slab allocation flags
1931 * Also calculates the number of objects per slab.
1933 * This could be made much more intelligent. For now, try to avoid using
1934 * high order pages for slabs. When the gfp() functions are more friendly
1935 * towards high-order requests, this should be changed.
1937 static size_t calculate_slab_order(struct kmem_cache
*cachep
,
1938 size_t size
, size_t align
, unsigned long flags
)
1940 unsigned long offslab_limit
;
1941 size_t left_over
= 0;
1944 for (gfporder
= 0; gfporder
<= MAX_GFP_ORDER
; gfporder
++) {
1948 cache_estimate(gfporder
, size
, align
, flags
, &remainder
, &num
);
1952 if (flags
& CFLGS_OFF_SLAB
) {
1954 * Max number of objs-per-slab for caches which
1955 * use off-slab slabs. Needed to avoid a possible
1956 * looping condition in cache_grow().
1958 offslab_limit
= size
- sizeof(struct slab
);
1959 offslab_limit
/= sizeof(kmem_bufctl_t
);
1961 if (num
> offslab_limit
)
1965 /* Found something acceptable - save it away */
1967 cachep
->gfporder
= gfporder
;
1968 left_over
= remainder
;
1971 * A VFS-reclaimable slab tends to have most allocations
1972 * as GFP_NOFS and we really don't want to have to be allocating
1973 * higher-order pages when we are unable to shrink dcache.
1975 if (flags
& SLAB_RECLAIM_ACCOUNT
)
1979 * Large number of objects is good, but very large slabs are
1980 * currently bad for the gfp()s.
1982 if (gfporder
>= slab_break_gfp_order
)
1986 * Acceptable internal fragmentation?
1988 if (left_over
* 8 <= (PAGE_SIZE
<< gfporder
))
1994 static int setup_cpu_cache(struct kmem_cache
*cachep
)
1996 if (g_cpucache_up
== FULL
)
1997 return enable_cpucache(cachep
);
1999 if (g_cpucache_up
== NONE
) {
2001 * Note: the first kmem_cache_create must create the cache
2002 * that's used by kmalloc(24), otherwise the creation of
2003 * further caches will BUG().
2005 cachep
->array
[smp_processor_id()] = &initarray_generic
.cache
;
2008 * If the cache that's used by kmalloc(sizeof(kmem_list3)) is
2009 * the first cache, then we need to set up all its list3s,
2010 * otherwise the creation of further caches will BUG().
2012 set_up_list3s(cachep
, SIZE_AC
);
2013 if (INDEX_AC
== INDEX_L3
)
2014 g_cpucache_up
= PARTIAL_L3
;
2016 g_cpucache_up
= PARTIAL_AC
;
2018 cachep
->array
[smp_processor_id()] =
2019 kmalloc(sizeof(struct arraycache_init
), GFP_KERNEL
);
2021 if (g_cpucache_up
== PARTIAL_AC
) {
2022 set_up_list3s(cachep
, SIZE_L3
);
2023 g_cpucache_up
= PARTIAL_L3
;
2026 for_each_online_node(node
) {
2027 cachep
->nodelists
[node
] =
2028 kmalloc_node(sizeof(struct kmem_list3
),
2030 BUG_ON(!cachep
->nodelists
[node
]);
2031 kmem_list3_init(cachep
->nodelists
[node
]);
2035 cachep
->nodelists
[numa_node_id()]->next_reap
=
2036 jiffies
+ REAPTIMEOUT_LIST3
+
2037 ((unsigned long)cachep
) % REAPTIMEOUT_LIST3
;
2039 cpu_cache_get(cachep
)->avail
= 0;
2040 cpu_cache_get(cachep
)->limit
= BOOT_CPUCACHE_ENTRIES
;
2041 cpu_cache_get(cachep
)->batchcount
= 1;
2042 cpu_cache_get(cachep
)->touched
= 0;
2043 cachep
->batchcount
= 1;
2044 cachep
->limit
= BOOT_CPUCACHE_ENTRIES
;
2049 * kmem_cache_create - Create a cache.
2050 * @name: A string which is used in /proc/slabinfo to identify this cache.
2051 * @size: The size of objects to be created in this cache.
2052 * @align: The required alignment for the objects.
2053 * @flags: SLAB flags
2054 * @ctor: A constructor for the objects.
2055 * @dtor: A destructor for the objects.
2057 * Returns a ptr to the cache on success, NULL on failure.
2058 * Cannot be called within a int, but can be interrupted.
2059 * The @ctor is run when new pages are allocated by the cache
2060 * and the @dtor is run before the pages are handed back.
2062 * @name must be valid until the cache is destroyed. This implies that
2063 * the module calling this has to destroy the cache before getting unloaded.
2067 * %SLAB_POISON - Poison the slab with a known test pattern (a5a5a5a5)
2068 * to catch references to uninitialised memory.
2070 * %SLAB_RED_ZONE - Insert `Red' zones around the allocated memory to check
2071 * for buffer overruns.
2073 * %SLAB_HWCACHE_ALIGN - Align the objects in this cache to a hardware
2074 * cacheline. This can be beneficial if you're counting cycles as closely
2078 kmem_cache_create (const char *name
, size_t size
, size_t align
,
2079 unsigned long flags
,
2080 void (*ctor
)(void*, struct kmem_cache
*, unsigned long),
2081 void (*dtor
)(void*, struct kmem_cache
*, unsigned long))
2083 size_t left_over
, slab_size
, ralign
;
2084 struct kmem_cache
*cachep
= NULL
, *pc
;
2087 * Sanity checks... these are all serious usage bugs.
2089 if (!name
|| in_interrupt() || (size
< BYTES_PER_WORD
) ||
2090 (size
> (1 << MAX_OBJ_ORDER
) * PAGE_SIZE
) || (dtor
&& !ctor
)) {
2091 printk(KERN_ERR
"%s: Early error in slab %s\n", __FUNCTION__
,
2097 * Prevent CPUs from coming and going.
2098 * lock_cpu_hotplug() nests outside cache_chain_mutex
2102 mutex_lock(&cache_chain_mutex
);
2104 list_for_each_entry(pc
, &cache_chain
, next
) {
2105 mm_segment_t old_fs
= get_fs();
2110 * This happens when the module gets unloaded and doesn't
2111 * destroy its slab cache and no-one else reuses the vmalloc
2112 * area of the module. Print a warning.
2115 res
= __get_user(tmp
, pc
->name
);
2118 printk("SLAB: cache with size %d has lost its name\n",
2123 if (!strcmp(pc
->name
, name
)) {
2124 printk("kmem_cache_create: duplicate cache %s\n", name
);
2131 WARN_ON(strchr(name
, ' ')); /* It confuses parsers */
2132 if ((flags
& SLAB_DEBUG_INITIAL
) && !ctor
) {
2133 /* No constructor, but inital state check requested */
2134 printk(KERN_ERR
"%s: No con, but init state check "
2135 "requested - %s\n", __FUNCTION__
, name
);
2136 flags
&= ~SLAB_DEBUG_INITIAL
;
2140 * Enable redzoning and last user accounting, except for caches with
2141 * large objects, if the increased size would increase the object size
2142 * above the next power of two: caches with object sizes just above a
2143 * power of two have a significant amount of internal fragmentation.
2145 if (size
< 4096 || fls(size
- 1) == fls(size
-1 + 3 * BYTES_PER_WORD
))
2146 flags
|= SLAB_RED_ZONE
| SLAB_STORE_USER
;
2147 if (!(flags
& SLAB_DESTROY_BY_RCU
))
2148 flags
|= SLAB_POISON
;
2150 if (flags
& SLAB_DESTROY_BY_RCU
)
2151 BUG_ON(flags
& SLAB_POISON
);
2153 if (flags
& SLAB_DESTROY_BY_RCU
)
2157 * Always checks flags, a caller might be expecting debug support which
2160 BUG_ON(flags
& ~CREATE_MASK
);
2163 * Check that size is in terms of words. This is needed to avoid
2164 * unaligned accesses for some archs when redzoning is used, and makes
2165 * sure any on-slab bufctl's are also correctly aligned.
2167 if (size
& (BYTES_PER_WORD
- 1)) {
2168 size
+= (BYTES_PER_WORD
- 1);
2169 size
&= ~(BYTES_PER_WORD
- 1);
2172 /* calculate the final buffer alignment: */
2174 /* 1) arch recommendation: can be overridden for debug */
2175 if (flags
& SLAB_HWCACHE_ALIGN
) {
2177 * Default alignment: as specified by the arch code. Except if
2178 * an object is really small, then squeeze multiple objects into
2181 ralign
= cache_line_size();
2182 while (size
<= ralign
/ 2)
2185 ralign
= BYTES_PER_WORD
;
2189 * Redzoning and user store require word alignment. Note this will be
2190 * overridden by architecture or caller mandated alignment if either
2191 * is greater than BYTES_PER_WORD.
2193 if (flags
& SLAB_RED_ZONE
|| flags
& SLAB_STORE_USER
)
2194 ralign
= BYTES_PER_WORD
;
2196 /* 2) arch mandated alignment: disables debug if necessary */
2197 if (ralign
< ARCH_SLAB_MINALIGN
) {
2198 ralign
= ARCH_SLAB_MINALIGN
;
2199 if (ralign
> BYTES_PER_WORD
)
2200 flags
&= ~(SLAB_RED_ZONE
| SLAB_STORE_USER
);
2202 /* 3) caller mandated alignment: disables debug if necessary */
2203 if (ralign
< align
) {
2205 if (ralign
> BYTES_PER_WORD
)
2206 flags
&= ~(SLAB_RED_ZONE
| SLAB_STORE_USER
);
2213 /* Get cache's description obj. */
2214 cachep
= kmem_cache_zalloc(&cache_cache
, SLAB_KERNEL
);
2219 cachep
->obj_size
= size
;
2222 * Both debugging options require word-alignment which is calculated
2225 if (flags
& SLAB_RED_ZONE
) {
2226 /* add space for red zone words */
2227 cachep
->obj_offset
+= BYTES_PER_WORD
;
2228 size
+= 2 * BYTES_PER_WORD
;
2230 if (flags
& SLAB_STORE_USER
) {
2231 /* user store requires one word storage behind the end of
2234 size
+= BYTES_PER_WORD
;
2236 #if FORCED_DEBUG && defined(CONFIG_DEBUG_PAGEALLOC)
2237 if (size
>= malloc_sizes
[INDEX_L3
+ 1].cs_size
2238 && cachep
->obj_size
> cache_line_size() && size
< PAGE_SIZE
) {
2239 cachep
->obj_offset
+= PAGE_SIZE
- size
;
2246 * Determine if the slab management is 'on' or 'off' slab.
2247 * (bootstrapping cannot cope with offslab caches so don't do
2250 if ((size
>= (PAGE_SIZE
>> 3)) && !slab_early_init
)
2252 * Size is large, assume best to place the slab management obj
2253 * off-slab (should allow better packing of objs).
2255 flags
|= CFLGS_OFF_SLAB
;
2257 size
= ALIGN(size
, align
);
2259 left_over
= calculate_slab_order(cachep
, size
, align
, flags
);
2262 printk("kmem_cache_create: couldn't create cache %s.\n", name
);
2263 kmem_cache_free(&cache_cache
, cachep
);
2267 slab_size
= ALIGN(cachep
->num
* sizeof(kmem_bufctl_t
)
2268 + sizeof(struct slab
), align
);
2271 * If the slab has been placed off-slab, and we have enough space then
2272 * move it on-slab. This is at the expense of any extra colouring.
2274 if (flags
& CFLGS_OFF_SLAB
&& left_over
>= slab_size
) {
2275 flags
&= ~CFLGS_OFF_SLAB
;
2276 left_over
-= slab_size
;
2279 if (flags
& CFLGS_OFF_SLAB
) {
2280 /* really off slab. No need for manual alignment */
2282 cachep
->num
* sizeof(kmem_bufctl_t
) + sizeof(struct slab
);
2285 cachep
->colour_off
= cache_line_size();
2286 /* Offset must be a multiple of the alignment. */
2287 if (cachep
->colour_off
< align
)
2288 cachep
->colour_off
= align
;
2289 cachep
->colour
= left_over
/ cachep
->colour_off
;
2290 cachep
->slab_size
= slab_size
;
2291 cachep
->flags
= flags
;
2292 cachep
->gfpflags
= 0;
2293 if (flags
& SLAB_CACHE_DMA
)
2294 cachep
->gfpflags
|= GFP_DMA
;
2295 cachep
->buffer_size
= size
;
2297 if (flags
& CFLGS_OFF_SLAB
) {
2298 cachep
->slabp_cache
= kmem_find_general_cachep(slab_size
, 0u);
2300 * This is a possibility for one of the malloc_sizes caches.
2301 * But since we go off slab only for object size greater than
2302 * PAGE_SIZE/8, and malloc_sizes gets created in ascending order,
2303 * this should not happen at all.
2304 * But leave a BUG_ON for some lucky dude.
2306 BUG_ON(!cachep
->slabp_cache
);
2308 cachep
->ctor
= ctor
;
2309 cachep
->dtor
= dtor
;
2310 cachep
->name
= name
;
2312 if (setup_cpu_cache(cachep
)) {
2313 __kmem_cache_destroy(cachep
);
2318 /* cache setup completed, link it into the list */
2319 list_add(&cachep
->next
, &cache_chain
);
2321 if (!cachep
&& (flags
& SLAB_PANIC
))
2322 panic("kmem_cache_create(): failed to create slab `%s'\n",
2324 mutex_unlock(&cache_chain_mutex
);
2325 unlock_cpu_hotplug();
2328 EXPORT_SYMBOL(kmem_cache_create
);
2331 static void check_irq_off(void)
2333 BUG_ON(!irqs_disabled());
2336 static void check_irq_on(void)
2338 BUG_ON(irqs_disabled());
2341 static void check_spinlock_acquired(struct kmem_cache
*cachep
)
2345 assert_spin_locked(&cachep
->nodelists
[numa_node_id()]->list_lock
);
2349 static void check_spinlock_acquired_node(struct kmem_cache
*cachep
, int node
)
2353 assert_spin_locked(&cachep
->nodelists
[node
]->list_lock
);
2358 #define check_irq_off() do { } while(0)
2359 #define check_irq_on() do { } while(0)
2360 #define check_spinlock_acquired(x) do { } while(0)
2361 #define check_spinlock_acquired_node(x, y) do { } while(0)
2364 static void drain_array(struct kmem_cache
*cachep
, struct kmem_list3
*l3
,
2365 struct array_cache
*ac
,
2366 int force
, int node
);
2368 static void do_drain(void *arg
)
2370 struct kmem_cache
*cachep
= arg
;
2371 struct array_cache
*ac
;
2372 int node
= numa_node_id();
2375 ac
= cpu_cache_get(cachep
);
2376 spin_lock(&cachep
->nodelists
[node
]->list_lock
);
2377 free_block(cachep
, ac
->entry
, ac
->avail
, node
);
2378 spin_unlock(&cachep
->nodelists
[node
]->list_lock
);
2382 static void drain_cpu_caches(struct kmem_cache
*cachep
)
2384 struct kmem_list3
*l3
;
2387 on_each_cpu(do_drain
, cachep
, 1, 1);
2389 for_each_online_node(node
) {
2390 l3
= cachep
->nodelists
[node
];
2391 if (l3
&& l3
->alien
)
2392 drain_alien_cache(cachep
, l3
->alien
);
2395 for_each_online_node(node
) {
2396 l3
= cachep
->nodelists
[node
];
2398 drain_array(cachep
, l3
, l3
->shared
, 1, node
);
2403 * Remove slabs from the list of free slabs.
2404 * Specify the number of slabs to drain in tofree.
2406 * Returns the actual number of slabs released.
2408 static int drain_freelist(struct kmem_cache
*cache
,
2409 struct kmem_list3
*l3
, int tofree
)
2411 struct list_head
*p
;
2416 while (nr_freed
< tofree
&& !list_empty(&l3
->slabs_free
)) {
2418 spin_lock_irq(&l3
->list_lock
);
2419 p
= l3
->slabs_free
.prev
;
2420 if (p
== &l3
->slabs_free
) {
2421 spin_unlock_irq(&l3
->list_lock
);
2425 slabp
= list_entry(p
, struct slab
, list
);
2427 BUG_ON(slabp
->inuse
);
2429 list_del(&slabp
->list
);
2431 * Safe to drop the lock. The slab is no longer linked
2434 l3
->free_objects
-= cache
->num
;
2435 spin_unlock_irq(&l3
->list_lock
);
2436 slab_destroy(cache
, slabp
);
2443 static int __cache_shrink(struct kmem_cache
*cachep
)
2446 struct kmem_list3
*l3
;
2448 drain_cpu_caches(cachep
);
2451 for_each_online_node(i
) {
2452 l3
= cachep
->nodelists
[i
];
2456 drain_freelist(cachep
, l3
, l3
->free_objects
);
2458 ret
+= !list_empty(&l3
->slabs_full
) ||
2459 !list_empty(&l3
->slabs_partial
);
2461 return (ret
? 1 : 0);
2465 * kmem_cache_shrink - Shrink a cache.
2466 * @cachep: The cache to shrink.
2468 * Releases as many slabs as possible for a cache.
2469 * To help debugging, a zero exit status indicates all slabs were released.
2471 int kmem_cache_shrink(struct kmem_cache
*cachep
)
2473 BUG_ON(!cachep
|| in_interrupt());
2475 return __cache_shrink(cachep
);
2477 EXPORT_SYMBOL(kmem_cache_shrink
);
2480 * kmem_cache_destroy - delete a cache
2481 * @cachep: the cache to destroy
2483 * Remove a struct kmem_cache object from the slab cache.
2485 * It is expected this function will be called by a module when it is
2486 * unloaded. This will remove the cache completely, and avoid a duplicate
2487 * cache being allocated each time a module is loaded and unloaded, if the
2488 * module doesn't have persistent in-kernel storage across loads and unloads.
2490 * The cache must be empty before calling this function.
2492 * The caller must guarantee that noone will allocate memory from the cache
2493 * during the kmem_cache_destroy().
2495 void kmem_cache_destroy(struct kmem_cache
*cachep
)
2497 BUG_ON(!cachep
|| in_interrupt());
2499 /* Don't let CPUs to come and go */
2502 /* Find the cache in the chain of caches. */
2503 mutex_lock(&cache_chain_mutex
);
2505 * the chain is never empty, cache_cache is never destroyed
2507 list_del(&cachep
->next
);
2508 mutex_unlock(&cache_chain_mutex
);
2510 if (__cache_shrink(cachep
)) {
2511 slab_error(cachep
, "Can't free all objects");
2512 mutex_lock(&cache_chain_mutex
);
2513 list_add(&cachep
->next
, &cache_chain
);
2514 mutex_unlock(&cache_chain_mutex
);
2515 unlock_cpu_hotplug();
2519 if (unlikely(cachep
->flags
& SLAB_DESTROY_BY_RCU
))
2522 __kmem_cache_destroy(cachep
);
2523 unlock_cpu_hotplug();
2525 EXPORT_SYMBOL(kmem_cache_destroy
);
2528 * Get the memory for a slab management obj.
2529 * For a slab cache when the slab descriptor is off-slab, slab descriptors
2530 * always come from malloc_sizes caches. The slab descriptor cannot
2531 * come from the same cache which is getting created because,
2532 * when we are searching for an appropriate cache for these
2533 * descriptors in kmem_cache_create, we search through the malloc_sizes array.
2534 * If we are creating a malloc_sizes cache here it would not be visible to
2535 * kmem_find_general_cachep till the initialization is complete.
2536 * Hence we cannot have slabp_cache same as the original cache.
2538 static struct slab
*alloc_slabmgmt(struct kmem_cache
*cachep
, void *objp
,
2539 int colour_off
, gfp_t local_flags
,
2544 if (OFF_SLAB(cachep
)) {
2545 /* Slab management obj is off-slab. */
2546 slabp
= kmem_cache_alloc_node(cachep
->slabp_cache
,
2547 local_flags
, nodeid
);
2551 slabp
= objp
+ colour_off
;
2552 colour_off
+= cachep
->slab_size
;
2555 slabp
->colouroff
= colour_off
;
2556 slabp
->s_mem
= objp
+ colour_off
;
2557 slabp
->nodeid
= nodeid
;
2561 static inline kmem_bufctl_t
*slab_bufctl(struct slab
*slabp
)
2563 return (kmem_bufctl_t
*) (slabp
+ 1);
2566 static void cache_init_objs(struct kmem_cache
*cachep
,
2567 struct slab
*slabp
, unsigned long ctor_flags
)
2571 for (i
= 0; i
< cachep
->num
; i
++) {
2572 void *objp
= index_to_obj(cachep
, slabp
, i
);
2574 /* need to poison the objs? */
2575 if (cachep
->flags
& SLAB_POISON
)
2576 poison_obj(cachep
, objp
, POISON_FREE
);
2577 if (cachep
->flags
& SLAB_STORE_USER
)
2578 *dbg_userword(cachep
, objp
) = NULL
;
2580 if (cachep
->flags
& SLAB_RED_ZONE
) {
2581 *dbg_redzone1(cachep
, objp
) = RED_INACTIVE
;
2582 *dbg_redzone2(cachep
, objp
) = RED_INACTIVE
;
2585 * Constructors are not allowed to allocate memory from the same
2586 * cache which they are a constructor for. Otherwise, deadlock.
2587 * They must also be threaded.
2589 if (cachep
->ctor
&& !(cachep
->flags
& SLAB_POISON
))
2590 cachep
->ctor(objp
+ obj_offset(cachep
), cachep
,
2593 if (cachep
->flags
& SLAB_RED_ZONE
) {
2594 if (*dbg_redzone2(cachep
, objp
) != RED_INACTIVE
)
2595 slab_error(cachep
, "constructor overwrote the"
2596 " end of an object");
2597 if (*dbg_redzone1(cachep
, objp
) != RED_INACTIVE
)
2598 slab_error(cachep
, "constructor overwrote the"
2599 " start of an object");
2601 if ((cachep
->buffer_size
% PAGE_SIZE
) == 0 &&
2602 OFF_SLAB(cachep
) && cachep
->flags
& SLAB_POISON
)
2603 kernel_map_pages(virt_to_page(objp
),
2604 cachep
->buffer_size
/ PAGE_SIZE
, 0);
2607 cachep
->ctor(objp
, cachep
, ctor_flags
);
2609 slab_bufctl(slabp
)[i
] = i
+ 1;
2611 slab_bufctl(slabp
)[i
- 1] = BUFCTL_END
;
2615 static void kmem_flagcheck(struct kmem_cache
*cachep
, gfp_t flags
)
2617 if (flags
& SLAB_DMA
)
2618 BUG_ON(!(cachep
->gfpflags
& GFP_DMA
));
2620 BUG_ON(cachep
->gfpflags
& GFP_DMA
);
2623 static void *slab_get_obj(struct kmem_cache
*cachep
, struct slab
*slabp
,
2626 void *objp
= index_to_obj(cachep
, slabp
, slabp
->free
);
2630 next
= slab_bufctl(slabp
)[slabp
->free
];
2632 slab_bufctl(slabp
)[slabp
->free
] = BUFCTL_FREE
;
2633 WARN_ON(slabp
->nodeid
!= nodeid
);
2640 static void slab_put_obj(struct kmem_cache
*cachep
, struct slab
*slabp
,
2641 void *objp
, int nodeid
)
2643 unsigned int objnr
= obj_to_index(cachep
, slabp
, objp
);
2646 /* Verify that the slab belongs to the intended node */
2647 WARN_ON(slabp
->nodeid
!= nodeid
);
2649 if (slab_bufctl(slabp
)[objnr
] + 1 <= SLAB_LIMIT
+ 1) {
2650 printk(KERN_ERR
"slab: double free detected in cache "
2651 "'%s', objp %p\n", cachep
->name
, objp
);
2655 slab_bufctl(slabp
)[objnr
] = slabp
->free
;
2656 slabp
->free
= objnr
;
2661 * Map pages beginning at addr to the given cache and slab. This is required
2662 * for the slab allocator to be able to lookup the cache and slab of a
2663 * virtual address for kfree, ksize, kmem_ptr_validate, and slab debugging.
2665 static void slab_map_pages(struct kmem_cache
*cache
, struct slab
*slab
,
2671 page
= virt_to_page(addr
);
2674 if (likely(!PageCompound(page
)))
2675 nr_pages
<<= cache
->gfporder
;
2678 page_set_cache(page
, cache
);
2679 page_set_slab(page
, slab
);
2681 } while (--nr_pages
);
2685 * Grow (by 1) the number of slabs within a cache. This is called by
2686 * kmem_cache_alloc() when there are no active objs left in a cache.
2688 static int cache_grow(struct kmem_cache
*cachep
, gfp_t flags
, int nodeid
)
2694 unsigned long ctor_flags
;
2695 struct kmem_list3
*l3
;
2698 * Be lazy and only check for valid flags here, keeping it out of the
2699 * critical path in kmem_cache_alloc().
2701 BUG_ON(flags
& ~(SLAB_DMA
| SLAB_LEVEL_MASK
| SLAB_NO_GROW
));
2702 if (flags
& SLAB_NO_GROW
)
2705 ctor_flags
= SLAB_CTOR_CONSTRUCTOR
;
2706 local_flags
= (flags
& SLAB_LEVEL_MASK
);
2707 if (!(local_flags
& __GFP_WAIT
))
2709 * Not allowed to sleep. Need to tell a constructor about
2710 * this - it might need to know...
2712 ctor_flags
|= SLAB_CTOR_ATOMIC
;
2714 /* Take the l3 list lock to change the colour_next on this node */
2716 l3
= cachep
->nodelists
[nodeid
];
2717 spin_lock(&l3
->list_lock
);
2719 /* Get colour for the slab, and cal the next value. */
2720 offset
= l3
->colour_next
;
2722 if (l3
->colour_next
>= cachep
->colour
)
2723 l3
->colour_next
= 0;
2724 spin_unlock(&l3
->list_lock
);
2726 offset
*= cachep
->colour_off
;
2728 if (local_flags
& __GFP_WAIT
)
2732 * The test for missing atomic flag is performed here, rather than
2733 * the more obvious place, simply to reduce the critical path length
2734 * in kmem_cache_alloc(). If a caller is seriously mis-behaving they
2735 * will eventually be caught here (where it matters).
2737 kmem_flagcheck(cachep
, flags
);
2740 * Get mem for the objs. Attempt to allocate a physical page from
2743 objp
= kmem_getpages(cachep
, flags
, nodeid
);
2747 /* Get slab management. */
2748 slabp
= alloc_slabmgmt(cachep
, objp
, offset
, local_flags
, nodeid
);
2752 slabp
->nodeid
= nodeid
;
2753 slab_map_pages(cachep
, slabp
, objp
);
2755 cache_init_objs(cachep
, slabp
, ctor_flags
);
2757 if (local_flags
& __GFP_WAIT
)
2758 local_irq_disable();
2760 spin_lock(&l3
->list_lock
);
2762 /* Make slab active. */
2763 list_add_tail(&slabp
->list
, &(l3
->slabs_free
));
2764 STATS_INC_GROWN(cachep
);
2765 l3
->free_objects
+= cachep
->num
;
2766 spin_unlock(&l3
->list_lock
);
2769 kmem_freepages(cachep
, objp
);
2771 if (local_flags
& __GFP_WAIT
)
2772 local_irq_disable();
2779 * Perform extra freeing checks:
2780 * - detect bad pointers.
2781 * - POISON/RED_ZONE checking
2782 * - destructor calls, for caches with POISON+dtor
2784 static void kfree_debugcheck(const void *objp
)
2788 if (!virt_addr_valid(objp
)) {
2789 printk(KERN_ERR
"kfree_debugcheck: out of range ptr %lxh.\n",
2790 (unsigned long)objp
);
2793 page
= virt_to_page(objp
);
2794 if (!PageSlab(page
)) {
2795 printk(KERN_ERR
"kfree_debugcheck: bad ptr %lxh.\n",
2796 (unsigned long)objp
);
2801 static inline void verify_redzone_free(struct kmem_cache
*cache
, void *obj
)
2803 unsigned long redzone1
, redzone2
;
2805 redzone1
= *dbg_redzone1(cache
, obj
);
2806 redzone2
= *dbg_redzone2(cache
, obj
);
2811 if (redzone1
== RED_ACTIVE
&& redzone2
== RED_ACTIVE
)
2814 if (redzone1
== RED_INACTIVE
&& redzone2
== RED_INACTIVE
)
2815 slab_error(cache
, "double free detected");
2817 slab_error(cache
, "memory outside object was overwritten");
2819 printk(KERN_ERR
"%p: redzone 1:0x%lx, redzone 2:0x%lx.\n",
2820 obj
, redzone1
, redzone2
);
2823 static void *cache_free_debugcheck(struct kmem_cache
*cachep
, void *objp
,
2830 objp
-= obj_offset(cachep
);
2831 kfree_debugcheck(objp
);
2832 page
= virt_to_page(objp
);
2834 slabp
= page_get_slab(page
);
2836 if (cachep
->flags
& SLAB_RED_ZONE
) {
2837 verify_redzone_free(cachep
, objp
);
2838 *dbg_redzone1(cachep
, objp
) = RED_INACTIVE
;
2839 *dbg_redzone2(cachep
, objp
) = RED_INACTIVE
;
2841 if (cachep
->flags
& SLAB_STORE_USER
)
2842 *dbg_userword(cachep
, objp
) = caller
;
2844 objnr
= obj_to_index(cachep
, slabp
, objp
);
2846 BUG_ON(objnr
>= cachep
->num
);
2847 BUG_ON(objp
!= index_to_obj(cachep
, slabp
, objnr
));
2849 if (cachep
->flags
& SLAB_DEBUG_INITIAL
) {
2851 * Need to call the slab's constructor so the caller can
2852 * perform a verify of its state (debugging). Called without
2853 * the cache-lock held.
2855 cachep
->ctor(objp
+ obj_offset(cachep
),
2856 cachep
, SLAB_CTOR_CONSTRUCTOR
| SLAB_CTOR_VERIFY
);
2858 if (cachep
->flags
& SLAB_POISON
&& cachep
->dtor
) {
2859 /* we want to cache poison the object,
2860 * call the destruction callback
2862 cachep
->dtor(objp
+ obj_offset(cachep
), cachep
, 0);
2864 #ifdef CONFIG_DEBUG_SLAB_LEAK
2865 slab_bufctl(slabp
)[objnr
] = BUFCTL_FREE
;
2867 if (cachep
->flags
& SLAB_POISON
) {
2868 #ifdef CONFIG_DEBUG_PAGEALLOC
2869 if ((cachep
->buffer_size
% PAGE_SIZE
)==0 && OFF_SLAB(cachep
)) {
2870 store_stackinfo(cachep
, objp
, (unsigned long)caller
);
2871 kernel_map_pages(virt_to_page(objp
),
2872 cachep
->buffer_size
/ PAGE_SIZE
, 0);
2874 poison_obj(cachep
, objp
, POISON_FREE
);
2877 poison_obj(cachep
, objp
, POISON_FREE
);
2883 static void check_slabp(struct kmem_cache
*cachep
, struct slab
*slabp
)
2888 /* Check slab's freelist to see if this obj is there. */
2889 for (i
= slabp
->free
; i
!= BUFCTL_END
; i
= slab_bufctl(slabp
)[i
]) {
2891 if (entries
> cachep
->num
|| i
>= cachep
->num
)
2894 if (entries
!= cachep
->num
- slabp
->inuse
) {
2896 printk(KERN_ERR
"slab: Internal list corruption detected in "
2897 "cache '%s'(%d), slabp %p(%d). Hexdump:\n",
2898 cachep
->name
, cachep
->num
, slabp
, slabp
->inuse
);
2900 i
< sizeof(*slabp
) + cachep
->num
* sizeof(kmem_bufctl_t
);
2903 printk("\n%03x:", i
);
2904 printk(" %02x", ((unsigned char *)slabp
)[i
]);
2911 #define kfree_debugcheck(x) do { } while(0)
2912 #define cache_free_debugcheck(x,objp,z) (objp)
2913 #define check_slabp(x,y) do { } while(0)
2916 static void *cache_alloc_refill(struct kmem_cache
*cachep
, gfp_t flags
)
2919 struct kmem_list3
*l3
;
2920 struct array_cache
*ac
;
2923 ac
= cpu_cache_get(cachep
);
2925 batchcount
= ac
->batchcount
;
2926 if (!ac
->touched
&& batchcount
> BATCHREFILL_LIMIT
) {
2928 * If there was little recent activity on this cache, then
2929 * perform only a partial refill. Otherwise we could generate
2932 batchcount
= BATCHREFILL_LIMIT
;
2934 l3
= cachep
->nodelists
[numa_node_id()];
2936 BUG_ON(ac
->avail
> 0 || !l3
);
2937 spin_lock(&l3
->list_lock
);
2939 /* See if we can refill from the shared array */
2940 if (l3
->shared
&& transfer_objects(ac
, l3
->shared
, batchcount
))
2943 while (batchcount
> 0) {
2944 struct list_head
*entry
;
2946 /* Get slab alloc is to come from. */
2947 entry
= l3
->slabs_partial
.next
;
2948 if (entry
== &l3
->slabs_partial
) {
2949 l3
->free_touched
= 1;
2950 entry
= l3
->slabs_free
.next
;
2951 if (entry
== &l3
->slabs_free
)
2955 slabp
= list_entry(entry
, struct slab
, list
);
2956 check_slabp(cachep
, slabp
);
2957 check_spinlock_acquired(cachep
);
2958 while (slabp
->inuse
< cachep
->num
&& batchcount
--) {
2959 STATS_INC_ALLOCED(cachep
);
2960 STATS_INC_ACTIVE(cachep
);
2961 STATS_SET_HIGH(cachep
);
2963 ac
->entry
[ac
->avail
++] = slab_get_obj(cachep
, slabp
,
2966 check_slabp(cachep
, slabp
);
2968 /* move slabp to correct slabp list: */
2969 list_del(&slabp
->list
);
2970 if (slabp
->free
== BUFCTL_END
)
2971 list_add(&slabp
->list
, &l3
->slabs_full
);
2973 list_add(&slabp
->list
, &l3
->slabs_partial
);
2977 l3
->free_objects
-= ac
->avail
;
2979 spin_unlock(&l3
->list_lock
);
2981 if (unlikely(!ac
->avail
)) {
2983 x
= cache_grow(cachep
, flags
, numa_node_id());
2985 /* cache_grow can reenable interrupts, then ac could change. */
2986 ac
= cpu_cache_get(cachep
);
2987 if (!x
&& ac
->avail
== 0) /* no objects in sight? abort */
2990 if (!ac
->avail
) /* objects refilled by interrupt? */
2994 return ac
->entry
[--ac
->avail
];
2997 static inline void cache_alloc_debugcheck_before(struct kmem_cache
*cachep
,
3000 might_sleep_if(flags
& __GFP_WAIT
);
3002 kmem_flagcheck(cachep
, flags
);
3007 static void *cache_alloc_debugcheck_after(struct kmem_cache
*cachep
,
3008 gfp_t flags
, void *objp
, void *caller
)
3012 if (cachep
->flags
& SLAB_POISON
) {
3013 #ifdef CONFIG_DEBUG_PAGEALLOC
3014 if ((cachep
->buffer_size
% PAGE_SIZE
) == 0 && OFF_SLAB(cachep
))
3015 kernel_map_pages(virt_to_page(objp
),
3016 cachep
->buffer_size
/ PAGE_SIZE
, 1);
3018 check_poison_obj(cachep
, objp
);
3020 check_poison_obj(cachep
, objp
);
3022 poison_obj(cachep
, objp
, POISON_INUSE
);
3024 if (cachep
->flags
& SLAB_STORE_USER
)
3025 *dbg_userword(cachep
, objp
) = caller
;
3027 if (cachep
->flags
& SLAB_RED_ZONE
) {
3028 if (*dbg_redzone1(cachep
, objp
) != RED_INACTIVE
||
3029 *dbg_redzone2(cachep
, objp
) != RED_INACTIVE
) {
3030 slab_error(cachep
, "double free, or memory outside"
3031 " object was overwritten");
3033 "%p: redzone 1:0x%lx, redzone 2:0x%lx\n",
3034 objp
, *dbg_redzone1(cachep
, objp
),
3035 *dbg_redzone2(cachep
, objp
));
3037 *dbg_redzone1(cachep
, objp
) = RED_ACTIVE
;
3038 *dbg_redzone2(cachep
, objp
) = RED_ACTIVE
;
3040 #ifdef CONFIG_DEBUG_SLAB_LEAK
3045 slabp
= page_get_slab(virt_to_page(objp
));
3046 objnr
= (unsigned)(objp
- slabp
->s_mem
) / cachep
->buffer_size
;
3047 slab_bufctl(slabp
)[objnr
] = BUFCTL_ACTIVE
;
3050 objp
+= obj_offset(cachep
);
3051 if (cachep
->ctor
&& cachep
->flags
& SLAB_POISON
) {
3052 unsigned long ctor_flags
= SLAB_CTOR_CONSTRUCTOR
;
3054 if (!(flags
& __GFP_WAIT
))
3055 ctor_flags
|= SLAB_CTOR_ATOMIC
;
3057 cachep
->ctor(objp
, cachep
, ctor_flags
);
3062 #define cache_alloc_debugcheck_after(a,b,objp,d) (objp)
3065 static inline void *____cache_alloc(struct kmem_cache
*cachep
, gfp_t flags
)
3068 struct array_cache
*ac
;
3071 ac
= cpu_cache_get(cachep
);
3072 if (likely(ac
->avail
)) {
3073 STATS_INC_ALLOCHIT(cachep
);
3075 objp
= ac
->entry
[--ac
->avail
];
3077 STATS_INC_ALLOCMISS(cachep
);
3078 objp
= cache_alloc_refill(cachep
, flags
);
3083 static __always_inline
void *__cache_alloc(struct kmem_cache
*cachep
,
3084 gfp_t flags
, void *caller
)
3086 unsigned long save_flags
;
3089 cache_alloc_debugcheck_before(cachep
, flags
);
3091 local_irq_save(save_flags
);
3093 if (unlikely(NUMA_BUILD
&&
3094 current
->flags
& (PF_SPREAD_SLAB
| PF_MEMPOLICY
)))
3095 objp
= alternate_node_alloc(cachep
, flags
);
3098 objp
= ____cache_alloc(cachep
, flags
);
3100 * We may just have run out of memory on the local node.
3101 * __cache_alloc_node() knows how to locate memory on other nodes
3103 if (NUMA_BUILD
&& !objp
)
3104 objp
= __cache_alloc_node(cachep
, flags
, numa_node_id());
3105 local_irq_restore(save_flags
);
3106 objp
= cache_alloc_debugcheck_after(cachep
, flags
, objp
,
3114 * Try allocating on another node if PF_SPREAD_SLAB|PF_MEMPOLICY.
3116 * If we are in_interrupt, then process context, including cpusets and
3117 * mempolicy, may not apply and should not be used for allocation policy.
3119 static void *alternate_node_alloc(struct kmem_cache
*cachep
, gfp_t flags
)
3121 int nid_alloc
, nid_here
;
3123 if (in_interrupt() || (flags
& __GFP_THISNODE
))
3125 nid_alloc
= nid_here
= numa_node_id();
3126 if (cpuset_do_slab_mem_spread() && (cachep
->flags
& SLAB_MEM_SPREAD
))
3127 nid_alloc
= cpuset_mem_spread_node();
3128 else if (current
->mempolicy
)
3129 nid_alloc
= slab_node(current
->mempolicy
);
3130 if (nid_alloc
!= nid_here
)
3131 return __cache_alloc_node(cachep
, flags
, nid_alloc
);
3136 * Fallback function if there was no memory available and no objects on a
3137 * certain node and we are allowed to fall back. We mimick the behavior of
3138 * the page allocator. We fall back according to a zonelist determined by
3139 * the policy layer while obeying cpuset constraints.
3141 void *fallback_alloc(struct kmem_cache
*cache
, gfp_t flags
)
3143 struct zonelist
*zonelist
= &NODE_DATA(slab_node(current
->mempolicy
))
3144 ->node_zonelists
[gfp_zone(flags
)];
3148 for (z
= zonelist
->zones
; *z
&& !obj
; z
++)
3149 if (zone_idx(*z
) <= ZONE_NORMAL
&&
3150 cpuset_zone_allowed(*z
, flags
))
3151 obj
= __cache_alloc_node(cache
,
3152 flags
| __GFP_THISNODE
,
3158 * A interface to enable slab creation on nodeid
3160 static void *__cache_alloc_node(struct kmem_cache
*cachep
, gfp_t flags
,
3163 struct list_head
*entry
;
3165 struct kmem_list3
*l3
;
3169 l3
= cachep
->nodelists
[nodeid
];
3174 spin_lock(&l3
->list_lock
);
3175 entry
= l3
->slabs_partial
.next
;
3176 if (entry
== &l3
->slabs_partial
) {
3177 l3
->free_touched
= 1;
3178 entry
= l3
->slabs_free
.next
;
3179 if (entry
== &l3
->slabs_free
)
3183 slabp
= list_entry(entry
, struct slab
, list
);
3184 check_spinlock_acquired_node(cachep
, nodeid
);
3185 check_slabp(cachep
, slabp
);
3187 STATS_INC_NODEALLOCS(cachep
);
3188 STATS_INC_ACTIVE(cachep
);
3189 STATS_SET_HIGH(cachep
);
3191 BUG_ON(slabp
->inuse
== cachep
->num
);
3193 obj
= slab_get_obj(cachep
, slabp
, nodeid
);
3194 check_slabp(cachep
, slabp
);
3196 /* move slabp to correct slabp list: */
3197 list_del(&slabp
->list
);
3199 if (slabp
->free
== BUFCTL_END
)
3200 list_add(&slabp
->list
, &l3
->slabs_full
);
3202 list_add(&slabp
->list
, &l3
->slabs_partial
);
3204 spin_unlock(&l3
->list_lock
);
3208 spin_unlock(&l3
->list_lock
);
3209 x
= cache_grow(cachep
, flags
, nodeid
);
3213 if (!(flags
& __GFP_THISNODE
))
3214 /* Unable to grow the cache. Fall back to other nodes. */
3215 return fallback_alloc(cachep
, flags
);
3225 * Caller needs to acquire correct kmem_list's list_lock
3227 static void free_block(struct kmem_cache
*cachep
, void **objpp
, int nr_objects
,
3231 struct kmem_list3
*l3
;
3233 for (i
= 0; i
< nr_objects
; i
++) {
3234 void *objp
= objpp
[i
];
3237 slabp
= virt_to_slab(objp
);
3238 l3
= cachep
->nodelists
[node
];
3239 list_del(&slabp
->list
);
3240 check_spinlock_acquired_node(cachep
, node
);
3241 check_slabp(cachep
, slabp
);
3242 slab_put_obj(cachep
, slabp
, objp
, node
);
3243 STATS_DEC_ACTIVE(cachep
);
3245 check_slabp(cachep
, slabp
);
3247 /* fixup slab chains */
3248 if (slabp
->inuse
== 0) {
3249 if (l3
->free_objects
> l3
->free_limit
) {
3250 l3
->free_objects
-= cachep
->num
;
3251 /* No need to drop any previously held
3252 * lock here, even if we have a off-slab slab
3253 * descriptor it is guaranteed to come from
3254 * a different cache, refer to comments before
3257 slab_destroy(cachep
, slabp
);
3259 list_add(&slabp
->list
, &l3
->slabs_free
);
3262 /* Unconditionally move a slab to the end of the
3263 * partial list on free - maximum time for the
3264 * other objects to be freed, too.
3266 list_add_tail(&slabp
->list
, &l3
->slabs_partial
);
3271 static void cache_flusharray(struct kmem_cache
*cachep
, struct array_cache
*ac
)
3274 struct kmem_list3
*l3
;
3275 int node
= numa_node_id();
3277 batchcount
= ac
->batchcount
;
3279 BUG_ON(!batchcount
|| batchcount
> ac
->avail
);
3282 l3
= cachep
->nodelists
[node
];
3283 spin_lock(&l3
->list_lock
);
3285 struct array_cache
*shared_array
= l3
->shared
;
3286 int max
= shared_array
->limit
- shared_array
->avail
;
3288 if (batchcount
> max
)
3290 memcpy(&(shared_array
->entry
[shared_array
->avail
]),
3291 ac
->entry
, sizeof(void *) * batchcount
);
3292 shared_array
->avail
+= batchcount
;
3297 free_block(cachep
, ac
->entry
, batchcount
, node
);
3302 struct list_head
*p
;
3304 p
= l3
->slabs_free
.next
;
3305 while (p
!= &(l3
->slabs_free
)) {
3308 slabp
= list_entry(p
, struct slab
, list
);
3309 BUG_ON(slabp
->inuse
);
3314 STATS_SET_FREEABLE(cachep
, i
);
3317 spin_unlock(&l3
->list_lock
);
3318 ac
->avail
-= batchcount
;
3319 memmove(ac
->entry
, &(ac
->entry
[batchcount
]), sizeof(void *)*ac
->avail
);
3323 * Release an obj back to its cache. If the obj has a constructed state, it must
3324 * be in this state _before_ it is released. Called with disabled ints.
3326 static inline void __cache_free(struct kmem_cache
*cachep
, void *objp
)
3328 struct array_cache
*ac
= cpu_cache_get(cachep
);
3331 objp
= cache_free_debugcheck(cachep
, objp
, __builtin_return_address(0));
3333 if (cache_free_alien(cachep
, objp
))
3336 if (likely(ac
->avail
< ac
->limit
)) {
3337 STATS_INC_FREEHIT(cachep
);
3338 ac
->entry
[ac
->avail
++] = objp
;
3341 STATS_INC_FREEMISS(cachep
);
3342 cache_flusharray(cachep
, ac
);
3343 ac
->entry
[ac
->avail
++] = objp
;
3348 * kmem_cache_alloc - Allocate an object
3349 * @cachep: The cache to allocate from.
3350 * @flags: See kmalloc().
3352 * Allocate an object from this cache. The flags are only relevant
3353 * if the cache has no available objects.
3355 void *kmem_cache_alloc(struct kmem_cache
*cachep
, gfp_t flags
)
3357 return __cache_alloc(cachep
, flags
, __builtin_return_address(0));
3359 EXPORT_SYMBOL(kmem_cache_alloc
);
3362 * kmem_cache_zalloc - Allocate an object. The memory is set to zero.
3363 * @cache: The cache to allocate from.
3364 * @flags: See kmalloc().
3366 * Allocate an object from this cache and set the allocated memory to zero.
3367 * The flags are only relevant if the cache has no available objects.
3369 void *kmem_cache_zalloc(struct kmem_cache
*cache
, gfp_t flags
)
3371 void *ret
= __cache_alloc(cache
, flags
, __builtin_return_address(0));
3373 memset(ret
, 0, obj_size(cache
));
3376 EXPORT_SYMBOL(kmem_cache_zalloc
);
3379 * kmem_ptr_validate - check if an untrusted pointer might
3381 * @cachep: the cache we're checking against
3382 * @ptr: pointer to validate
3384 * This verifies that the untrusted pointer looks sane:
3385 * it is _not_ a guarantee that the pointer is actually
3386 * part of the slab cache in question, but it at least
3387 * validates that the pointer can be dereferenced and
3388 * looks half-way sane.
3390 * Currently only used for dentry validation.
3392 int fastcall
kmem_ptr_validate(struct kmem_cache
*cachep
, void *ptr
)
3394 unsigned long addr
= (unsigned long)ptr
;
3395 unsigned long min_addr
= PAGE_OFFSET
;
3396 unsigned long align_mask
= BYTES_PER_WORD
- 1;
3397 unsigned long size
= cachep
->buffer_size
;
3400 if (unlikely(addr
< min_addr
))
3402 if (unlikely(addr
> (unsigned long)high_memory
- size
))
3404 if (unlikely(addr
& align_mask
))
3406 if (unlikely(!kern_addr_valid(addr
)))
3408 if (unlikely(!kern_addr_valid(addr
+ size
- 1)))
3410 page
= virt_to_page(ptr
);
3411 if (unlikely(!PageSlab(page
)))
3413 if (unlikely(page_get_cache(page
) != cachep
))
3422 * kmem_cache_alloc_node - Allocate an object on the specified node
3423 * @cachep: The cache to allocate from.
3424 * @flags: See kmalloc().
3425 * @nodeid: node number of the target node.
3427 * Identical to kmem_cache_alloc, except that this function is slow
3428 * and can sleep. And it will allocate memory on the given node, which
3429 * can improve the performance for cpu bound structures.
3430 * New and improved: it will now make sure that the object gets
3431 * put on the correct node list so that there is no false sharing.
3433 void *kmem_cache_alloc_node(struct kmem_cache
*cachep
, gfp_t flags
, int nodeid
)
3435 unsigned long save_flags
;
3438 cache_alloc_debugcheck_before(cachep
, flags
);
3439 local_irq_save(save_flags
);
3441 if (nodeid
== -1 || nodeid
== numa_node_id() ||
3442 !cachep
->nodelists
[nodeid
])
3443 ptr
= ____cache_alloc(cachep
, flags
);
3445 ptr
= __cache_alloc_node(cachep
, flags
, nodeid
);
3446 local_irq_restore(save_flags
);
3448 ptr
= cache_alloc_debugcheck_after(cachep
, flags
, ptr
,
3449 __builtin_return_address(0));
3453 EXPORT_SYMBOL(kmem_cache_alloc_node
);
3455 void *__kmalloc_node(size_t size
, gfp_t flags
, int node
)
3457 struct kmem_cache
*cachep
;
3459 cachep
= kmem_find_general_cachep(size
, flags
);
3460 if (unlikely(cachep
== NULL
))
3462 return kmem_cache_alloc_node(cachep
, flags
, node
);
3464 EXPORT_SYMBOL(__kmalloc_node
);
3468 * __do_kmalloc - allocate memory
3469 * @size: how many bytes of memory are required.
3470 * @flags: the type of memory to allocate (see kmalloc).
3471 * @caller: function caller for debug tracking of the caller
3473 static __always_inline
void *__do_kmalloc(size_t size
, gfp_t flags
,
3476 struct kmem_cache
*cachep
;
3478 /* If you want to save a few bytes .text space: replace
3480 * Then kmalloc uses the uninlined functions instead of the inline
3483 cachep
= __find_general_cachep(size
, flags
);
3484 if (unlikely(cachep
== NULL
))
3486 return __cache_alloc(cachep
, flags
, caller
);
3490 #ifdef CONFIG_DEBUG_SLAB
3491 void *__kmalloc(size_t size
, gfp_t flags
)
3493 return __do_kmalloc(size
, flags
, __builtin_return_address(0));
3495 EXPORT_SYMBOL(__kmalloc
);
3497 void *__kmalloc_track_caller(size_t size
, gfp_t flags
, void *caller
)
3499 return __do_kmalloc(size
, flags
, caller
);
3501 EXPORT_SYMBOL(__kmalloc_track_caller
);
3504 void *__kmalloc(size_t size
, gfp_t flags
)
3506 return __do_kmalloc(size
, flags
, NULL
);
3508 EXPORT_SYMBOL(__kmalloc
);
3512 * kmem_cache_free - Deallocate an object
3513 * @cachep: The cache the allocation was from.
3514 * @objp: The previously allocated object.
3516 * Free an object which was previously allocated from this
3519 void kmem_cache_free(struct kmem_cache
*cachep
, void *objp
)
3521 unsigned long flags
;
3523 BUG_ON(virt_to_cache(objp
) != cachep
);
3525 local_irq_save(flags
);
3526 __cache_free(cachep
, objp
);
3527 local_irq_restore(flags
);
3529 EXPORT_SYMBOL(kmem_cache_free
);
3532 * kfree - free previously allocated memory
3533 * @objp: pointer returned by kmalloc.
3535 * If @objp is NULL, no operation is performed.
3537 * Don't free memory not originally allocated by kmalloc()
3538 * or you will run into trouble.
3540 void kfree(const void *objp
)
3542 struct kmem_cache
*c
;
3543 unsigned long flags
;
3545 if (unlikely(!objp
))
3547 local_irq_save(flags
);
3548 kfree_debugcheck(objp
);
3549 c
= virt_to_cache(objp
);
3550 debug_check_no_locks_freed(objp
, obj_size(c
));
3551 __cache_free(c
, (void *)objp
);
3552 local_irq_restore(flags
);
3554 EXPORT_SYMBOL(kfree
);
3556 unsigned int kmem_cache_size(struct kmem_cache
*cachep
)
3558 return obj_size(cachep
);
3560 EXPORT_SYMBOL(kmem_cache_size
);
3562 const char *kmem_cache_name(struct kmem_cache
*cachep
)
3564 return cachep
->name
;
3566 EXPORT_SYMBOL_GPL(kmem_cache_name
);
3569 * This initializes kmem_list3 or resizes varioius caches for all nodes.
3571 static int alloc_kmemlist(struct kmem_cache
*cachep
)
3574 struct kmem_list3
*l3
;
3575 struct array_cache
*new_shared
;
3576 struct array_cache
**new_alien
;
3578 for_each_online_node(node
) {
3580 new_alien
= alloc_alien_cache(node
, cachep
->limit
);
3584 new_shared
= alloc_arraycache(node
,
3585 cachep
->shared
*cachep
->batchcount
,
3588 free_alien_cache(new_alien
);
3592 l3
= cachep
->nodelists
[node
];
3594 struct array_cache
*shared
= l3
->shared
;
3596 spin_lock_irq(&l3
->list_lock
);
3599 free_block(cachep
, shared
->entry
,
3600 shared
->avail
, node
);
3602 l3
->shared
= new_shared
;
3604 l3
->alien
= new_alien
;
3607 l3
->free_limit
= (1 + nr_cpus_node(node
)) *
3608 cachep
->batchcount
+ cachep
->num
;
3609 spin_unlock_irq(&l3
->list_lock
);
3611 free_alien_cache(new_alien
);
3614 l3
= kmalloc_node(sizeof(struct kmem_list3
), GFP_KERNEL
, node
);
3616 free_alien_cache(new_alien
);
3621 kmem_list3_init(l3
);
3622 l3
->next_reap
= jiffies
+ REAPTIMEOUT_LIST3
+
3623 ((unsigned long)cachep
) % REAPTIMEOUT_LIST3
;
3624 l3
->shared
= new_shared
;
3625 l3
->alien
= new_alien
;
3626 l3
->free_limit
= (1 + nr_cpus_node(node
)) *
3627 cachep
->batchcount
+ cachep
->num
;
3628 cachep
->nodelists
[node
] = l3
;
3633 if (!cachep
->next
.next
) {
3634 /* Cache is not active yet. Roll back what we did */
3637 if (cachep
->nodelists
[node
]) {
3638 l3
= cachep
->nodelists
[node
];
3641 free_alien_cache(l3
->alien
);
3643 cachep
->nodelists
[node
] = NULL
;
3651 struct ccupdate_struct
{
3652 struct kmem_cache
*cachep
;
3653 struct array_cache
*new[NR_CPUS
];
3656 static void do_ccupdate_local(void *info
)
3658 struct ccupdate_struct
*new = info
;
3659 struct array_cache
*old
;
3662 old
= cpu_cache_get(new->cachep
);
3664 new->cachep
->array
[smp_processor_id()] = new->new[smp_processor_id()];
3665 new->new[smp_processor_id()] = old
;
3668 /* Always called with the cache_chain_mutex held */
3669 static int do_tune_cpucache(struct kmem_cache
*cachep
, int limit
,
3670 int batchcount
, int shared
)
3672 struct ccupdate_struct
*new;
3675 new = kzalloc(sizeof(*new), GFP_KERNEL
);
3679 for_each_online_cpu(i
) {
3680 new->new[i
] = alloc_arraycache(cpu_to_node(i
), limit
,
3683 for (i
--; i
>= 0; i
--)
3689 new->cachep
= cachep
;
3691 on_each_cpu(do_ccupdate_local
, (void *)new, 1, 1);
3694 cachep
->batchcount
= batchcount
;
3695 cachep
->limit
= limit
;
3696 cachep
->shared
= shared
;
3698 for_each_online_cpu(i
) {
3699 struct array_cache
*ccold
= new->new[i
];
3702 spin_lock_irq(&cachep
->nodelists
[cpu_to_node(i
)]->list_lock
);
3703 free_block(cachep
, ccold
->entry
, ccold
->avail
, cpu_to_node(i
));
3704 spin_unlock_irq(&cachep
->nodelists
[cpu_to_node(i
)]->list_lock
);
3708 return alloc_kmemlist(cachep
);
3711 /* Called with cache_chain_mutex held always */
3712 static int enable_cpucache(struct kmem_cache
*cachep
)
3718 * The head array serves three purposes:
3719 * - create a LIFO ordering, i.e. return objects that are cache-warm
3720 * - reduce the number of spinlock operations.
3721 * - reduce the number of linked list operations on the slab and
3722 * bufctl chains: array operations are cheaper.
3723 * The numbers are guessed, we should auto-tune as described by
3726 if (cachep
->buffer_size
> 131072)
3728 else if (cachep
->buffer_size
> PAGE_SIZE
)
3730 else if (cachep
->buffer_size
> 1024)
3732 else if (cachep
->buffer_size
> 256)
3738 * CPU bound tasks (e.g. network routing) can exhibit cpu bound
3739 * allocation behaviour: Most allocs on one cpu, most free operations
3740 * on another cpu. For these cases, an efficient object passing between
3741 * cpus is necessary. This is provided by a shared array. The array
3742 * replaces Bonwick's magazine layer.
3743 * On uniprocessor, it's functionally equivalent (but less efficient)
3744 * to a larger limit. Thus disabled by default.
3748 if (cachep
->buffer_size
<= PAGE_SIZE
)
3754 * With debugging enabled, large batchcount lead to excessively long
3755 * periods with disabled local interrupts. Limit the batchcount
3760 err
= do_tune_cpucache(cachep
, limit
, (limit
+ 1) / 2, shared
);
3762 printk(KERN_ERR
"enable_cpucache failed for %s, error %d.\n",
3763 cachep
->name
, -err
);
3768 * Drain an array if it contains any elements taking the l3 lock only if
3769 * necessary. Note that the l3 listlock also protects the array_cache
3770 * if drain_array() is used on the shared array.
3772 void drain_array(struct kmem_cache
*cachep
, struct kmem_list3
*l3
,
3773 struct array_cache
*ac
, int force
, int node
)
3777 if (!ac
|| !ac
->avail
)
3779 if (ac
->touched
&& !force
) {
3782 spin_lock_irq(&l3
->list_lock
);
3784 tofree
= force
? ac
->avail
: (ac
->limit
+ 4) / 5;
3785 if (tofree
> ac
->avail
)
3786 tofree
= (ac
->avail
+ 1) / 2;
3787 free_block(cachep
, ac
->entry
, tofree
, node
);
3788 ac
->avail
-= tofree
;
3789 memmove(ac
->entry
, &(ac
->entry
[tofree
]),
3790 sizeof(void *) * ac
->avail
);
3792 spin_unlock_irq(&l3
->list_lock
);
3797 * cache_reap - Reclaim memory from caches.
3798 * @unused: unused parameter
3800 * Called from workqueue/eventd every few seconds.
3802 * - clear the per-cpu caches for this CPU.
3803 * - return freeable pages to the main free memory pool.
3805 * If we cannot acquire the cache chain mutex then just give up - we'll try
3806 * again on the next iteration.
3808 static void cache_reap(void *unused
)
3810 struct kmem_cache
*searchp
;
3811 struct kmem_list3
*l3
;
3812 int node
= numa_node_id();
3814 if (!mutex_trylock(&cache_chain_mutex
)) {
3815 /* Give up. Setup the next iteration. */
3816 schedule_delayed_work(&__get_cpu_var(reap_work
),
3821 list_for_each_entry(searchp
, &cache_chain
, next
) {
3825 * We only take the l3 lock if absolutely necessary and we
3826 * have established with reasonable certainty that
3827 * we can do some work if the lock was obtained.
3829 l3
= searchp
->nodelists
[node
];
3831 reap_alien(searchp
, l3
);
3833 drain_array(searchp
, l3
, cpu_cache_get(searchp
), 0, node
);
3836 * These are racy checks but it does not matter
3837 * if we skip one check or scan twice.
3839 if (time_after(l3
->next_reap
, jiffies
))
3842 l3
->next_reap
= jiffies
+ REAPTIMEOUT_LIST3
;
3844 drain_array(searchp
, l3
, l3
->shared
, 0, node
);
3846 if (l3
->free_touched
)
3847 l3
->free_touched
= 0;
3851 freed
= drain_freelist(searchp
, l3
, (l3
->free_limit
+
3852 5 * searchp
->num
- 1) / (5 * searchp
->num
));
3853 STATS_ADD_REAPED(searchp
, freed
);
3859 mutex_unlock(&cache_chain_mutex
);
3861 refresh_cpu_vm_stats(smp_processor_id());
3862 /* Set up the next iteration */
3863 schedule_delayed_work(&__get_cpu_var(reap_work
), REAPTIMEOUT_CPUC
);
3866 #ifdef CONFIG_PROC_FS
3868 static void print_slabinfo_header(struct seq_file
*m
)
3871 * Output format version, so at least we can change it
3872 * without _too_ many complaints.
3875 seq_puts(m
, "slabinfo - version: 2.1 (statistics)\n");
3877 seq_puts(m
, "slabinfo - version: 2.1\n");
3879 seq_puts(m
, "# name <active_objs> <num_objs> <objsize> "
3880 "<objperslab> <pagesperslab>");
3881 seq_puts(m
, " : tunables <limit> <batchcount> <sharedfactor>");
3882 seq_puts(m
, " : slabdata <active_slabs> <num_slabs> <sharedavail>");
3884 seq_puts(m
, " : globalstat <listallocs> <maxobjs> <grown> <reaped> "
3885 "<error> <maxfreeable> <nodeallocs> <remotefrees> <alienoverflow>");
3886 seq_puts(m
, " : cpustat <allochit> <allocmiss> <freehit> <freemiss>");
3891 static void *s_start(struct seq_file
*m
, loff_t
*pos
)
3894 struct list_head
*p
;
3896 mutex_lock(&cache_chain_mutex
);
3898 print_slabinfo_header(m
);
3899 p
= cache_chain
.next
;
3902 if (p
== &cache_chain
)
3905 return list_entry(p
, struct kmem_cache
, next
);
3908 static void *s_next(struct seq_file
*m
, void *p
, loff_t
*pos
)
3910 struct kmem_cache
*cachep
= p
;
3912 return cachep
->next
.next
== &cache_chain
?
3913 NULL
: list_entry(cachep
->next
.next
, struct kmem_cache
, next
);
3916 static void s_stop(struct seq_file
*m
, void *p
)
3918 mutex_unlock(&cache_chain_mutex
);
3921 static int s_show(struct seq_file
*m
, void *p
)
3923 struct kmem_cache
*cachep
= p
;
3925 unsigned long active_objs
;
3926 unsigned long num_objs
;
3927 unsigned long active_slabs
= 0;
3928 unsigned long num_slabs
, free_objects
= 0, shared_avail
= 0;
3932 struct kmem_list3
*l3
;
3936 for_each_online_node(node
) {
3937 l3
= cachep
->nodelists
[node
];
3942 spin_lock_irq(&l3
->list_lock
);
3944 list_for_each_entry(slabp
, &l3
->slabs_full
, list
) {
3945 if (slabp
->inuse
!= cachep
->num
&& !error
)
3946 error
= "slabs_full accounting error";
3947 active_objs
+= cachep
->num
;
3950 list_for_each_entry(slabp
, &l3
->slabs_partial
, list
) {
3951 if (slabp
->inuse
== cachep
->num
&& !error
)
3952 error
= "slabs_partial inuse accounting error";
3953 if (!slabp
->inuse
&& !error
)
3954 error
= "slabs_partial/inuse accounting error";
3955 active_objs
+= slabp
->inuse
;
3958 list_for_each_entry(slabp
, &l3
->slabs_free
, list
) {
3959 if (slabp
->inuse
&& !error
)
3960 error
= "slabs_free/inuse accounting error";
3963 free_objects
+= l3
->free_objects
;
3965 shared_avail
+= l3
->shared
->avail
;
3967 spin_unlock_irq(&l3
->list_lock
);
3969 num_slabs
+= active_slabs
;
3970 num_objs
= num_slabs
* cachep
->num
;
3971 if (num_objs
- active_objs
!= free_objects
&& !error
)
3972 error
= "free_objects accounting error";
3974 name
= cachep
->name
;
3976 printk(KERN_ERR
"slab: cache %s error: %s\n", name
, error
);
3978 seq_printf(m
, "%-17s %6lu %6lu %6u %4u %4d",
3979 name
, active_objs
, num_objs
, cachep
->buffer_size
,
3980 cachep
->num
, (1 << cachep
->gfporder
));
3981 seq_printf(m
, " : tunables %4u %4u %4u",
3982 cachep
->limit
, cachep
->batchcount
, cachep
->shared
);
3983 seq_printf(m
, " : slabdata %6lu %6lu %6lu",
3984 active_slabs
, num_slabs
, shared_avail
);
3987 unsigned long high
= cachep
->high_mark
;
3988 unsigned long allocs
= cachep
->num_allocations
;
3989 unsigned long grown
= cachep
->grown
;
3990 unsigned long reaped
= cachep
->reaped
;
3991 unsigned long errors
= cachep
->errors
;
3992 unsigned long max_freeable
= cachep
->max_freeable
;
3993 unsigned long node_allocs
= cachep
->node_allocs
;
3994 unsigned long node_frees
= cachep
->node_frees
;
3995 unsigned long overflows
= cachep
->node_overflow
;
3997 seq_printf(m
, " : globalstat %7lu %6lu %5lu %4lu \
3998 %4lu %4lu %4lu %4lu %4lu", allocs
, high
, grown
,
3999 reaped
, errors
, max_freeable
, node_allocs
,
4000 node_frees
, overflows
);
4004 unsigned long allochit
= atomic_read(&cachep
->allochit
);
4005 unsigned long allocmiss
= atomic_read(&cachep
->allocmiss
);
4006 unsigned long freehit
= atomic_read(&cachep
->freehit
);
4007 unsigned long freemiss
= atomic_read(&cachep
->freemiss
);
4009 seq_printf(m
, " : cpustat %6lu %6lu %6lu %6lu",
4010 allochit
, allocmiss
, freehit
, freemiss
);
4018 * slabinfo_op - iterator that generates /proc/slabinfo
4027 * num-pages-per-slab
4028 * + further values on SMP and with statistics enabled
4031 struct seq_operations slabinfo_op
= {
4038 #define MAX_SLABINFO_WRITE 128
4040 * slabinfo_write - Tuning for the slab allocator
4042 * @buffer: user buffer
4043 * @count: data length
4046 ssize_t
slabinfo_write(struct file
*file
, const char __user
* buffer
,
4047 size_t count
, loff_t
*ppos
)
4049 char kbuf
[MAX_SLABINFO_WRITE
+ 1], *tmp
;
4050 int limit
, batchcount
, shared
, res
;
4051 struct kmem_cache
*cachep
;
4053 if (count
> MAX_SLABINFO_WRITE
)
4055 if (copy_from_user(&kbuf
, buffer
, count
))
4057 kbuf
[MAX_SLABINFO_WRITE
] = '\0';
4059 tmp
= strchr(kbuf
, ' ');
4064 if (sscanf(tmp
, " %d %d %d", &limit
, &batchcount
, &shared
) != 3)
4067 /* Find the cache in the chain of caches. */
4068 mutex_lock(&cache_chain_mutex
);
4070 list_for_each_entry(cachep
, &cache_chain
, next
) {
4071 if (!strcmp(cachep
->name
, kbuf
)) {
4072 if (limit
< 1 || batchcount
< 1 ||
4073 batchcount
> limit
|| shared
< 0) {
4076 res
= do_tune_cpucache(cachep
, limit
,
4077 batchcount
, shared
);
4082 mutex_unlock(&cache_chain_mutex
);
4088 #ifdef CONFIG_DEBUG_SLAB_LEAK
4090 static void *leaks_start(struct seq_file
*m
, loff_t
*pos
)
4093 struct list_head
*p
;
4095 mutex_lock(&cache_chain_mutex
);
4096 p
= cache_chain
.next
;
4099 if (p
== &cache_chain
)
4102 return list_entry(p
, struct kmem_cache
, next
);
4105 static inline int add_caller(unsigned long *n
, unsigned long v
)
4115 unsigned long *q
= p
+ 2 * i
;
4129 memmove(p
+ 2, p
, n
[1] * 2 * sizeof(unsigned long) - ((void *)p
- (void *)n
));
4135 static void handle_slab(unsigned long *n
, struct kmem_cache
*c
, struct slab
*s
)
4141 for (i
= 0, p
= s
->s_mem
; i
< c
->num
; i
++, p
+= c
->buffer_size
) {
4142 if (slab_bufctl(s
)[i
] != BUFCTL_ACTIVE
)
4144 if (!add_caller(n
, (unsigned long)*dbg_userword(c
, p
)))
4149 static void show_symbol(struct seq_file
*m
, unsigned long address
)
4151 #ifdef CONFIG_KALLSYMS
4154 unsigned long offset
, size
;
4155 char namebuf
[KSYM_NAME_LEN
+1];
4157 name
= kallsyms_lookup(address
, &size
, &offset
, &modname
, namebuf
);
4160 seq_printf(m
, "%s+%#lx/%#lx", name
, offset
, size
);
4162 seq_printf(m
, " [%s]", modname
);
4166 seq_printf(m
, "%p", (void *)address
);
4169 static int leaks_show(struct seq_file
*m
, void *p
)
4171 struct kmem_cache
*cachep
= p
;
4173 struct kmem_list3
*l3
;
4175 unsigned long *n
= m
->private;
4179 if (!(cachep
->flags
& SLAB_STORE_USER
))
4181 if (!(cachep
->flags
& SLAB_RED_ZONE
))
4184 /* OK, we can do it */
4188 for_each_online_node(node
) {
4189 l3
= cachep
->nodelists
[node
];
4194 spin_lock_irq(&l3
->list_lock
);
4196 list_for_each_entry(slabp
, &l3
->slabs_full
, list
)
4197 handle_slab(n
, cachep
, slabp
);
4198 list_for_each_entry(slabp
, &l3
->slabs_partial
, list
)
4199 handle_slab(n
, cachep
, slabp
);
4200 spin_unlock_irq(&l3
->list_lock
);
4202 name
= cachep
->name
;
4204 /* Increase the buffer size */
4205 mutex_unlock(&cache_chain_mutex
);
4206 m
->private = kzalloc(n
[0] * 4 * sizeof(unsigned long), GFP_KERNEL
);
4208 /* Too bad, we are really out */
4210 mutex_lock(&cache_chain_mutex
);
4213 *(unsigned long *)m
->private = n
[0] * 2;
4215 mutex_lock(&cache_chain_mutex
);
4216 /* Now make sure this entry will be retried */
4220 for (i
= 0; i
< n
[1]; i
++) {
4221 seq_printf(m
, "%s: %lu ", name
, n
[2*i
+3]);
4222 show_symbol(m
, n
[2*i
+2]);
4229 struct seq_operations slabstats_op
= {
4230 .start
= leaks_start
,
4239 * ksize - get the actual amount of memory allocated for a given object
4240 * @objp: Pointer to the object
4242 * kmalloc may internally round up allocations and return more memory
4243 * than requested. ksize() can be used to determine the actual amount of
4244 * memory allocated. The caller may use this additional memory, even though
4245 * a smaller amount of memory was initially specified with the kmalloc call.
4246 * The caller must guarantee that objp points to a valid object previously
4247 * allocated with either kmalloc() or kmem_cache_alloc(). The object
4248 * must not be freed during the duration of the call.
4250 unsigned int ksize(const void *objp
)
4252 if (unlikely(objp
== NULL
))
4255 return obj_size(virt_to_cache(objp
));