2 * Driver for OHCI 1394 controllers
4 * Copyright (C) 2003-2006 Kristian Hoegsberg <krh@bitplanet.net>
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License as published by
8 * the Free Software Foundation; either version 2 of the License, or
9 * (at your option) any later version.
11 * This program is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 * GNU General Public License for more details.
16 * You should have received a copy of the GNU General Public License
17 * along with this program; if not, write to the Free Software Foundation,
18 * Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
21 #include <linux/compiler.h>
22 #include <linux/delay.h>
23 #include <linux/dma-mapping.h>
24 #include <linux/gfp.h>
25 #include <linux/init.h>
26 #include <linux/interrupt.h>
27 #include <linux/kernel.h>
29 #include <linux/module.h>
30 #include <linux/pci.h>
31 #include <linux/spinlock.h>
34 #include <asm/system.h>
36 #ifdef CONFIG_PPC_PMAC
37 #include <asm/pmac_feature.h>
41 #include "fw-transaction.h"
43 #define DESCRIPTOR_OUTPUT_MORE 0
44 #define DESCRIPTOR_OUTPUT_LAST (1 << 12)
45 #define DESCRIPTOR_INPUT_MORE (2 << 12)
46 #define DESCRIPTOR_INPUT_LAST (3 << 12)
47 #define DESCRIPTOR_STATUS (1 << 11)
48 #define DESCRIPTOR_KEY_IMMEDIATE (2 << 8)
49 #define DESCRIPTOR_PING (1 << 7)
50 #define DESCRIPTOR_YY (1 << 6)
51 #define DESCRIPTOR_NO_IRQ (0 << 4)
52 #define DESCRIPTOR_IRQ_ERROR (1 << 4)
53 #define DESCRIPTOR_IRQ_ALWAYS (3 << 4)
54 #define DESCRIPTOR_BRANCH_ALWAYS (3 << 2)
55 #define DESCRIPTOR_WAIT (3 << 0)
61 __le32 branch_address
;
63 __le16 transfer_status
;
64 } __attribute__((aligned(16)));
66 struct db_descriptor
{
69 __le16 second_req_count
;
70 __le16 first_req_count
;
71 __le32 branch_address
;
72 __le16 second_res_count
;
73 __le16 first_res_count
;
78 } __attribute__((aligned(16)));
80 #define CONTROL_SET(regs) (regs)
81 #define CONTROL_CLEAR(regs) ((regs) + 4)
82 #define COMMAND_PTR(regs) ((regs) + 12)
83 #define CONTEXT_MATCH(regs) ((regs) + 16)
86 struct descriptor descriptor
;
87 struct ar_buffer
*next
;
93 struct ar_buffer
*current_buffer
;
94 struct ar_buffer
*last_buffer
;
97 struct tasklet_struct tasklet
;
102 typedef int (*descriptor_callback_t
)(struct context
*ctx
,
103 struct descriptor
*d
,
104 struct descriptor
*last
);
107 * A buffer that contains a block of DMA-able coherent memory used for
108 * storing a portion of a DMA descriptor program.
110 struct descriptor_buffer
{
111 struct list_head list
;
112 dma_addr_t buffer_bus
;
115 struct descriptor buffer
[0];
119 struct fw_ohci
*ohci
;
121 int total_allocation
;
124 * List of page-sized buffers for storing DMA descriptors.
125 * Head of list contains buffers in use and tail of list contains
128 struct list_head buffer_list
;
131 * Pointer to a buffer inside buffer_list that contains the tail
132 * end of the current DMA program.
134 struct descriptor_buffer
*buffer_tail
;
137 * The descriptor containing the branch address of the first
138 * descriptor that has not yet been filled by the device.
140 struct descriptor
*last
;
143 * The last descriptor in the DMA program. It contains the branch
144 * address that must be updated upon appending a new descriptor.
146 struct descriptor
*prev
;
148 descriptor_callback_t callback
;
150 struct tasklet_struct tasklet
;
153 #define IT_HEADER_SY(v) ((v) << 0)
154 #define IT_HEADER_TCODE(v) ((v) << 4)
155 #define IT_HEADER_CHANNEL(v) ((v) << 8)
156 #define IT_HEADER_TAG(v) ((v) << 14)
157 #define IT_HEADER_SPEED(v) ((v) << 16)
158 #define IT_HEADER_DATA_LENGTH(v) ((v) << 16)
161 struct fw_iso_context base
;
162 struct context context
;
165 size_t header_length
;
168 #define CONFIG_ROM_SIZE 1024
174 __iomem
char *registers
;
175 dma_addr_t self_id_bus
;
177 struct tasklet_struct bus_reset_tasklet
;
180 int request_generation
;
185 * Spinlock for accessing fw_ohci data. Never call out of
186 * this driver with this lock held.
189 u32 self_id_buffer
[512];
191 /* Config rom buffers */
193 dma_addr_t config_rom_bus
;
194 __be32
*next_config_rom
;
195 dma_addr_t next_config_rom_bus
;
198 struct ar_context ar_request_ctx
;
199 struct ar_context ar_response_ctx
;
200 struct context at_request_ctx
;
201 struct context at_response_ctx
;
204 struct iso_context
*it_context_list
;
206 struct iso_context
*ir_context_list
;
209 static inline struct fw_ohci
*fw_ohci(struct fw_card
*card
)
211 return container_of(card
, struct fw_ohci
, card
);
214 #define IT_CONTEXT_CYCLE_MATCH_ENABLE 0x80000000
215 #define IR_CONTEXT_BUFFER_FILL 0x80000000
216 #define IR_CONTEXT_ISOCH_HEADER 0x40000000
217 #define IR_CONTEXT_CYCLE_MATCH_ENABLE 0x20000000
218 #define IR_CONTEXT_MULTI_CHANNEL_MODE 0x10000000
219 #define IR_CONTEXT_DUAL_BUFFER_MODE 0x08000000
221 #define CONTEXT_RUN 0x8000
222 #define CONTEXT_WAKE 0x1000
223 #define CONTEXT_DEAD 0x0800
224 #define CONTEXT_ACTIVE 0x0400
226 #define OHCI1394_MAX_AT_REQ_RETRIES 0x2
227 #define OHCI1394_MAX_AT_RESP_RETRIES 0x2
228 #define OHCI1394_MAX_PHYS_RESP_RETRIES 0x8
230 #define FW_OHCI_MAJOR 240
231 #define OHCI1394_REGISTER_SIZE 0x800
232 #define OHCI_LOOP_COUNT 500
233 #define OHCI1394_PCI_HCI_Control 0x40
234 #define SELF_ID_BUF_SIZE 0x800
235 #define OHCI_TCODE_PHY_PACKET 0x0e
236 #define OHCI_VERSION_1_1 0x010010
238 static char ohci_driver_name
[] = KBUILD_MODNAME
;
240 static inline void reg_write(const struct fw_ohci
*ohci
, int offset
, u32 data
)
242 writel(data
, ohci
->registers
+ offset
);
245 static inline u32
reg_read(const struct fw_ohci
*ohci
, int offset
)
247 return readl(ohci
->registers
+ offset
);
250 static inline void flush_writes(const struct fw_ohci
*ohci
)
252 /* Do a dummy read to flush writes. */
253 reg_read(ohci
, OHCI1394_Version
);
257 ohci_update_phy_reg(struct fw_card
*card
, int addr
,
258 int clear_bits
, int set_bits
)
260 struct fw_ohci
*ohci
= fw_ohci(card
);
263 reg_write(ohci
, OHCI1394_PhyControl
, OHCI1394_PhyControl_Read(addr
));
266 val
= reg_read(ohci
, OHCI1394_PhyControl
);
267 if ((val
& OHCI1394_PhyControl_ReadDone
) == 0) {
268 fw_error("failed to set phy reg bits.\n");
272 old
= OHCI1394_PhyControl_ReadData(val
);
273 old
= (old
& ~clear_bits
) | set_bits
;
274 reg_write(ohci
, OHCI1394_PhyControl
,
275 OHCI1394_PhyControl_Write(addr
, old
));
280 static int ar_context_add_page(struct ar_context
*ctx
)
282 struct device
*dev
= ctx
->ohci
->card
.device
;
283 struct ar_buffer
*ab
;
287 ab
= (struct ar_buffer
*) __get_free_page(GFP_ATOMIC
);
291 ab_bus
= dma_map_single(dev
, ab
, PAGE_SIZE
, DMA_BIDIRECTIONAL
);
292 if (dma_mapping_error(ab_bus
)) {
293 free_page((unsigned long) ab
);
297 memset(&ab
->descriptor
, 0, sizeof(ab
->descriptor
));
298 ab
->descriptor
.control
= cpu_to_le16(DESCRIPTOR_INPUT_MORE
|
300 DESCRIPTOR_BRANCH_ALWAYS
);
301 offset
= offsetof(struct ar_buffer
, data
);
302 ab
->descriptor
.req_count
= cpu_to_le16(PAGE_SIZE
- offset
);
303 ab
->descriptor
.data_address
= cpu_to_le32(ab_bus
+ offset
);
304 ab
->descriptor
.res_count
= cpu_to_le16(PAGE_SIZE
- offset
);
305 ab
->descriptor
.branch_address
= 0;
307 dma_sync_single_for_device(dev
, ab_bus
, PAGE_SIZE
, DMA_BIDIRECTIONAL
);
309 ctx
->last_buffer
->descriptor
.branch_address
= cpu_to_le32(ab_bus
| 1);
310 ctx
->last_buffer
->next
= ab
;
311 ctx
->last_buffer
= ab
;
313 reg_write(ctx
->ohci
, CONTROL_SET(ctx
->regs
), CONTEXT_WAKE
);
314 flush_writes(ctx
->ohci
);
319 #if defined(CONFIG_PPC_PMAC) && defined(CONFIG_PPC32)
320 #define cond_le32_to_cpu(v) \
321 (ohci->old_uninorth ? (__force __u32)(v) : le32_to_cpu(v))
323 #define cond_le32_to_cpu(v) le32_to_cpu(v)
326 static __le32
*handle_ar_packet(struct ar_context
*ctx
, __le32
*buffer
)
328 struct fw_ohci
*ohci
= ctx
->ohci
;
330 u32 status
, length
, tcode
;
332 p
.header
[0] = cond_le32_to_cpu(buffer
[0]);
333 p
.header
[1] = cond_le32_to_cpu(buffer
[1]);
334 p
.header
[2] = cond_le32_to_cpu(buffer
[2]);
336 tcode
= (p
.header
[0] >> 4) & 0x0f;
338 case TCODE_WRITE_QUADLET_REQUEST
:
339 case TCODE_READ_QUADLET_RESPONSE
:
340 p
.header
[3] = (__force __u32
) buffer
[3];
341 p
.header_length
= 16;
342 p
.payload_length
= 0;
345 case TCODE_READ_BLOCK_REQUEST
:
346 p
.header
[3] = cond_le32_to_cpu(buffer
[3]);
347 p
.header_length
= 16;
348 p
.payload_length
= 0;
351 case TCODE_WRITE_BLOCK_REQUEST
:
352 case TCODE_READ_BLOCK_RESPONSE
:
353 case TCODE_LOCK_REQUEST
:
354 case TCODE_LOCK_RESPONSE
:
355 p
.header
[3] = cond_le32_to_cpu(buffer
[3]);
356 p
.header_length
= 16;
357 p
.payload_length
= p
.header
[3] >> 16;
360 case TCODE_WRITE_RESPONSE
:
361 case TCODE_READ_QUADLET_REQUEST
:
362 case OHCI_TCODE_PHY_PACKET
:
363 p
.header_length
= 12;
364 p
.payload_length
= 0;
368 p
.payload
= (void *) buffer
+ p
.header_length
;
370 /* FIXME: What to do about evt_* errors? */
371 length
= (p
.header_length
+ p
.payload_length
+ 3) / 4;
372 status
= cond_le32_to_cpu(buffer
[length
]);
374 p
.ack
= ((status
>> 16) & 0x1f) - 16;
375 p
.speed
= (status
>> 21) & 0x7;
376 p
.timestamp
= status
& 0xffff;
377 p
.generation
= ohci
->request_generation
;
380 * The OHCI bus reset handler synthesizes a phy packet with
381 * the new generation number when a bus reset happens (see
382 * section 8.4.2.3). This helps us determine when a request
383 * was received and make sure we send the response in the same
384 * generation. We only need this for requests; for responses
385 * we use the unique tlabel for finding the matching
389 if (p
.ack
+ 16 == 0x09)
390 ohci
->request_generation
= (p
.header
[2] >> 16) & 0xff;
391 else if (ctx
== &ohci
->ar_request_ctx
)
392 fw_core_handle_request(&ohci
->card
, &p
);
394 fw_core_handle_response(&ohci
->card
, &p
);
396 return buffer
+ length
+ 1;
399 static void ar_context_tasklet(unsigned long data
)
401 struct ar_context
*ctx
= (struct ar_context
*)data
;
402 struct fw_ohci
*ohci
= ctx
->ohci
;
403 struct ar_buffer
*ab
;
404 struct descriptor
*d
;
407 ab
= ctx
->current_buffer
;
410 if (d
->res_count
== 0) {
411 size_t size
, rest
, offset
;
414 * This descriptor is finished and we may have a
415 * packet split across this and the next buffer. We
416 * reuse the page for reassembling the split packet.
419 offset
= offsetof(struct ar_buffer
, data
);
420 dma_unmap_single(ohci
->card
.device
,
421 le32_to_cpu(ab
->descriptor
.data_address
) - offset
,
422 PAGE_SIZE
, DMA_BIDIRECTIONAL
);
427 size
= buffer
+ PAGE_SIZE
- ctx
->pointer
;
428 rest
= le16_to_cpu(d
->req_count
) - le16_to_cpu(d
->res_count
);
429 memmove(buffer
, ctx
->pointer
, size
);
430 memcpy(buffer
+ size
, ab
->data
, rest
);
431 ctx
->current_buffer
= ab
;
432 ctx
->pointer
= (void *) ab
->data
+ rest
;
433 end
= buffer
+ size
+ rest
;
436 buffer
= handle_ar_packet(ctx
, buffer
);
438 free_page((unsigned long)buffer
);
439 ar_context_add_page(ctx
);
441 buffer
= ctx
->pointer
;
443 (void *) ab
+ PAGE_SIZE
- le16_to_cpu(d
->res_count
);
446 buffer
= handle_ar_packet(ctx
, buffer
);
451 ar_context_init(struct ar_context
*ctx
, struct fw_ohci
*ohci
, u32 regs
)
457 ctx
->last_buffer
= &ab
;
458 tasklet_init(&ctx
->tasklet
, ar_context_tasklet
, (unsigned long)ctx
);
460 ar_context_add_page(ctx
);
461 ar_context_add_page(ctx
);
462 ctx
->current_buffer
= ab
.next
;
463 ctx
->pointer
= ctx
->current_buffer
->data
;
468 static void ar_context_run(struct ar_context
*ctx
)
470 struct ar_buffer
*ab
= ctx
->current_buffer
;
474 offset
= offsetof(struct ar_buffer
, data
);
475 ab_bus
= le32_to_cpu(ab
->descriptor
.data_address
) - offset
;
477 reg_write(ctx
->ohci
, COMMAND_PTR(ctx
->regs
), ab_bus
| 1);
478 reg_write(ctx
->ohci
, CONTROL_SET(ctx
->regs
), CONTEXT_RUN
);
479 flush_writes(ctx
->ohci
);
482 static struct descriptor
*
483 find_branch_descriptor(struct descriptor
*d
, int z
)
487 b
= (le16_to_cpu(d
->control
) & DESCRIPTOR_BRANCH_ALWAYS
) >> 2;
488 key
= (le16_to_cpu(d
->control
) & DESCRIPTOR_KEY_IMMEDIATE
) >> 8;
490 /* figure out which descriptor the branch address goes in */
491 if (z
== 2 && (b
== 3 || key
== 2))
497 static void context_tasklet(unsigned long data
)
499 struct context
*ctx
= (struct context
*) data
;
500 struct descriptor
*d
, *last
;
503 struct descriptor_buffer
*desc
;
505 desc
= list_entry(ctx
->buffer_list
.next
,
506 struct descriptor_buffer
, list
);
508 while (last
->branch_address
!= 0) {
509 struct descriptor_buffer
*old_desc
= desc
;
510 address
= le32_to_cpu(last
->branch_address
);
514 /* If the branch address points to a buffer outside of the
515 * current buffer, advance to the next buffer. */
516 if (address
< desc
->buffer_bus
||
517 address
>= desc
->buffer_bus
+ desc
->used
)
518 desc
= list_entry(desc
->list
.next
,
519 struct descriptor_buffer
, list
);
520 d
= desc
->buffer
+ (address
- desc
->buffer_bus
) / sizeof(*d
);
521 last
= find_branch_descriptor(d
, z
);
523 if (!ctx
->callback(ctx
, d
, last
))
526 if (old_desc
!= desc
) {
527 /* If we've advanced to the next buffer, move the
528 * previous buffer to the free list. */
531 spin_lock_irqsave(&ctx
->ohci
->lock
, flags
);
532 list_move_tail(&old_desc
->list
, &ctx
->buffer_list
);
533 spin_unlock_irqrestore(&ctx
->ohci
->lock
, flags
);
540 * Allocate a new buffer and add it to the list of free buffers for this
541 * context. Must be called with ohci->lock held.
544 context_add_buffer(struct context
*ctx
)
546 struct descriptor_buffer
*desc
;
551 * 16MB of descriptors should be far more than enough for any DMA
552 * program. This will catch run-away userspace or DoS attacks.
554 if (ctx
->total_allocation
>= 16*1024*1024)
557 desc
= dma_alloc_coherent(ctx
->ohci
->card
.device
, PAGE_SIZE
,
558 &bus_addr
, GFP_ATOMIC
);
562 offset
= (void *)&desc
->buffer
- (void *)desc
;
563 desc
->buffer_size
= PAGE_SIZE
- offset
;
564 desc
->buffer_bus
= bus_addr
+ offset
;
567 list_add_tail(&desc
->list
, &ctx
->buffer_list
);
568 ctx
->total_allocation
+= PAGE_SIZE
;
574 context_init(struct context
*ctx
, struct fw_ohci
*ohci
,
575 u32 regs
, descriptor_callback_t callback
)
579 ctx
->total_allocation
= 0;
581 INIT_LIST_HEAD(&ctx
->buffer_list
);
582 if (context_add_buffer(ctx
) < 0)
585 ctx
->buffer_tail
= list_entry(ctx
->buffer_list
.next
,
586 struct descriptor_buffer
, list
);
588 tasklet_init(&ctx
->tasklet
, context_tasklet
, (unsigned long)ctx
);
589 ctx
->callback
= callback
;
592 * We put a dummy descriptor in the buffer that has a NULL
593 * branch address and looks like it's been sent. That way we
594 * have a descriptor to append DMA programs to.
596 memset(ctx
->buffer_tail
->buffer
, 0, sizeof(*ctx
->buffer_tail
->buffer
));
597 ctx
->buffer_tail
->buffer
->control
= cpu_to_le16(DESCRIPTOR_OUTPUT_LAST
);
598 ctx
->buffer_tail
->buffer
->transfer_status
= cpu_to_le16(0x8011);
599 ctx
->buffer_tail
->used
+= sizeof(*ctx
->buffer_tail
->buffer
);
600 ctx
->last
= ctx
->buffer_tail
->buffer
;
601 ctx
->prev
= ctx
->buffer_tail
->buffer
;
607 context_release(struct context
*ctx
)
609 struct fw_card
*card
= &ctx
->ohci
->card
;
610 struct descriptor_buffer
*desc
, *tmp
;
612 list_for_each_entry_safe(desc
, tmp
, &ctx
->buffer_list
, list
)
613 dma_free_coherent(card
->device
, PAGE_SIZE
, desc
,
615 ((void *)&desc
->buffer
- (void *)desc
));
618 /* Must be called with ohci->lock held */
619 static struct descriptor
*
620 context_get_descriptors(struct context
*ctx
, int z
, dma_addr_t
*d_bus
)
622 struct descriptor
*d
= NULL
;
623 struct descriptor_buffer
*desc
= ctx
->buffer_tail
;
625 if (z
* sizeof(*d
) > desc
->buffer_size
)
628 if (z
* sizeof(*d
) > desc
->buffer_size
- desc
->used
) {
629 /* No room for the descriptor in this buffer, so advance to the
632 if (desc
->list
.next
== &ctx
->buffer_list
) {
633 /* If there is no free buffer next in the list,
635 if (context_add_buffer(ctx
) < 0)
638 desc
= list_entry(desc
->list
.next
,
639 struct descriptor_buffer
, list
);
640 ctx
->buffer_tail
= desc
;
643 d
= desc
->buffer
+ desc
->used
/ sizeof(*d
);
644 memset(d
, 0, z
* sizeof(*d
));
645 *d_bus
= desc
->buffer_bus
+ desc
->used
;
650 static void context_run(struct context
*ctx
, u32 extra
)
652 struct fw_ohci
*ohci
= ctx
->ohci
;
654 reg_write(ohci
, COMMAND_PTR(ctx
->regs
),
655 le32_to_cpu(ctx
->last
->branch_address
));
656 reg_write(ohci
, CONTROL_CLEAR(ctx
->regs
), ~0);
657 reg_write(ohci
, CONTROL_SET(ctx
->regs
), CONTEXT_RUN
| extra
);
661 static void context_append(struct context
*ctx
,
662 struct descriptor
*d
, int z
, int extra
)
665 struct descriptor_buffer
*desc
= ctx
->buffer_tail
;
667 d_bus
= desc
->buffer_bus
+ (d
- desc
->buffer
) * sizeof(*d
);
669 desc
->used
+= (z
+ extra
) * sizeof(*d
);
670 ctx
->prev
->branch_address
= cpu_to_le32(d_bus
| z
);
671 ctx
->prev
= find_branch_descriptor(d
, z
);
673 reg_write(ctx
->ohci
, CONTROL_SET(ctx
->regs
), CONTEXT_WAKE
);
674 flush_writes(ctx
->ohci
);
677 static void context_stop(struct context
*ctx
)
682 reg_write(ctx
->ohci
, CONTROL_CLEAR(ctx
->regs
), CONTEXT_RUN
);
683 flush_writes(ctx
->ohci
);
685 for (i
= 0; i
< 10; i
++) {
686 reg
= reg_read(ctx
->ohci
, CONTROL_SET(ctx
->regs
));
687 if ((reg
& CONTEXT_ACTIVE
) == 0)
690 fw_notify("context_stop: still active (0x%08x)\n", reg
);
696 struct fw_packet
*packet
;
700 * This function apppends a packet to the DMA queue for transmission.
701 * Must always be called with the ochi->lock held to ensure proper
702 * generation handling and locking around packet queue manipulation.
705 at_context_queue_packet(struct context
*ctx
, struct fw_packet
*packet
)
707 struct fw_ohci
*ohci
= ctx
->ohci
;
708 dma_addr_t d_bus
, uninitialized_var(payload_bus
);
709 struct driver_data
*driver_data
;
710 struct descriptor
*d
, *last
;
715 d
= context_get_descriptors(ctx
, 4, &d_bus
);
717 packet
->ack
= RCODE_SEND_ERROR
;
721 d
[0].control
= cpu_to_le16(DESCRIPTOR_KEY_IMMEDIATE
);
722 d
[0].res_count
= cpu_to_le16(packet
->timestamp
);
725 * The DMA format for asyncronous link packets is different
726 * from the IEEE1394 layout, so shift the fields around
727 * accordingly. If header_length is 8, it's a PHY packet, to
728 * which we need to prepend an extra quadlet.
731 header
= (__le32
*) &d
[1];
732 if (packet
->header_length
> 8) {
733 header
[0] = cpu_to_le32((packet
->header
[0] & 0xffff) |
734 (packet
->speed
<< 16));
735 header
[1] = cpu_to_le32((packet
->header
[1] & 0xffff) |
736 (packet
->header
[0] & 0xffff0000));
737 header
[2] = cpu_to_le32(packet
->header
[2]);
739 tcode
= (packet
->header
[0] >> 4) & 0x0f;
740 if (TCODE_IS_BLOCK_PACKET(tcode
))
741 header
[3] = cpu_to_le32(packet
->header
[3]);
743 header
[3] = (__force __le32
) packet
->header
[3];
745 d
[0].req_count
= cpu_to_le16(packet
->header_length
);
747 header
[0] = cpu_to_le32((OHCI1394_phy_tcode
<< 4) |
748 (packet
->speed
<< 16));
749 header
[1] = cpu_to_le32(packet
->header
[0]);
750 header
[2] = cpu_to_le32(packet
->header
[1]);
751 d
[0].req_count
= cpu_to_le16(12);
754 driver_data
= (struct driver_data
*) &d
[3];
755 driver_data
->packet
= packet
;
756 packet
->driver_data
= driver_data
;
758 if (packet
->payload_length
> 0) {
760 dma_map_single(ohci
->card
.device
, packet
->payload
,
761 packet
->payload_length
, DMA_TO_DEVICE
);
762 if (dma_mapping_error(payload_bus
)) {
763 packet
->ack
= RCODE_SEND_ERROR
;
767 d
[2].req_count
= cpu_to_le16(packet
->payload_length
);
768 d
[2].data_address
= cpu_to_le32(payload_bus
);
776 last
->control
|= cpu_to_le16(DESCRIPTOR_OUTPUT_LAST
|
777 DESCRIPTOR_IRQ_ALWAYS
|
778 DESCRIPTOR_BRANCH_ALWAYS
);
780 /* FIXME: Document how the locking works. */
781 if (ohci
->generation
!= packet
->generation
) {
782 if (packet
->payload_length
> 0)
783 dma_unmap_single(ohci
->card
.device
, payload_bus
,
784 packet
->payload_length
, DMA_TO_DEVICE
);
785 packet
->ack
= RCODE_GENERATION
;
789 context_append(ctx
, d
, z
, 4 - z
);
791 /* If the context isn't already running, start it up. */
792 reg
= reg_read(ctx
->ohci
, CONTROL_SET(ctx
->regs
));
793 if ((reg
& CONTEXT_RUN
) == 0)
799 static int handle_at_packet(struct context
*context
,
800 struct descriptor
*d
,
801 struct descriptor
*last
)
803 struct driver_data
*driver_data
;
804 struct fw_packet
*packet
;
805 struct fw_ohci
*ohci
= context
->ohci
;
806 dma_addr_t payload_bus
;
809 if (last
->transfer_status
== 0)
810 /* This descriptor isn't done yet, stop iteration. */
813 driver_data
= (struct driver_data
*) &d
[3];
814 packet
= driver_data
->packet
;
816 /* This packet was cancelled, just continue. */
819 payload_bus
= le32_to_cpu(last
->data_address
);
820 if (payload_bus
!= 0)
821 dma_unmap_single(ohci
->card
.device
, payload_bus
,
822 packet
->payload_length
, DMA_TO_DEVICE
);
824 evt
= le16_to_cpu(last
->transfer_status
) & 0x1f;
825 packet
->timestamp
= le16_to_cpu(last
->res_count
);
828 case OHCI1394_evt_timeout
:
829 /* Async response transmit timed out. */
830 packet
->ack
= RCODE_CANCELLED
;
833 case OHCI1394_evt_flushed
:
835 * The packet was flushed should give same error as
836 * when we try to use a stale generation count.
838 packet
->ack
= RCODE_GENERATION
;
841 case OHCI1394_evt_missing_ack
:
843 * Using a valid (current) generation count, but the
844 * node is not on the bus or not sending acks.
846 packet
->ack
= RCODE_NO_ACK
;
849 case ACK_COMPLETE
+ 0x10:
850 case ACK_PENDING
+ 0x10:
851 case ACK_BUSY_X
+ 0x10:
852 case ACK_BUSY_A
+ 0x10:
853 case ACK_BUSY_B
+ 0x10:
854 case ACK_DATA_ERROR
+ 0x10:
855 case ACK_TYPE_ERROR
+ 0x10:
856 packet
->ack
= evt
- 0x10;
860 packet
->ack
= RCODE_SEND_ERROR
;
864 packet
->callback(packet
, &ohci
->card
, packet
->ack
);
869 #define HEADER_GET_DESTINATION(q) (((q) >> 16) & 0xffff)
870 #define HEADER_GET_TCODE(q) (((q) >> 4) & 0x0f)
871 #define HEADER_GET_OFFSET_HIGH(q) (((q) >> 0) & 0xffff)
872 #define HEADER_GET_DATA_LENGTH(q) (((q) >> 16) & 0xffff)
873 #define HEADER_GET_EXTENDED_TCODE(q) (((q) >> 0) & 0xffff)
876 handle_local_rom(struct fw_ohci
*ohci
, struct fw_packet
*packet
, u32 csr
)
878 struct fw_packet response
;
879 int tcode
, length
, i
;
881 tcode
= HEADER_GET_TCODE(packet
->header
[0]);
882 if (TCODE_IS_BLOCK_PACKET(tcode
))
883 length
= HEADER_GET_DATA_LENGTH(packet
->header
[3]);
887 i
= csr
- CSR_CONFIG_ROM
;
888 if (i
+ length
> CONFIG_ROM_SIZE
) {
889 fw_fill_response(&response
, packet
->header
,
890 RCODE_ADDRESS_ERROR
, NULL
, 0);
891 } else if (!TCODE_IS_READ_REQUEST(tcode
)) {
892 fw_fill_response(&response
, packet
->header
,
893 RCODE_TYPE_ERROR
, NULL
, 0);
895 fw_fill_response(&response
, packet
->header
, RCODE_COMPLETE
,
896 (void *) ohci
->config_rom
+ i
, length
);
899 fw_core_handle_response(&ohci
->card
, &response
);
903 handle_local_lock(struct fw_ohci
*ohci
, struct fw_packet
*packet
, u32 csr
)
905 struct fw_packet response
;
906 int tcode
, length
, ext_tcode
, sel
;
907 __be32
*payload
, lock_old
;
908 u32 lock_arg
, lock_data
;
910 tcode
= HEADER_GET_TCODE(packet
->header
[0]);
911 length
= HEADER_GET_DATA_LENGTH(packet
->header
[3]);
912 payload
= packet
->payload
;
913 ext_tcode
= HEADER_GET_EXTENDED_TCODE(packet
->header
[3]);
915 if (tcode
== TCODE_LOCK_REQUEST
&&
916 ext_tcode
== EXTCODE_COMPARE_SWAP
&& length
== 8) {
917 lock_arg
= be32_to_cpu(payload
[0]);
918 lock_data
= be32_to_cpu(payload
[1]);
919 } else if (tcode
== TCODE_READ_QUADLET_REQUEST
) {
923 fw_fill_response(&response
, packet
->header
,
924 RCODE_TYPE_ERROR
, NULL
, 0);
928 sel
= (csr
- CSR_BUS_MANAGER_ID
) / 4;
929 reg_write(ohci
, OHCI1394_CSRData
, lock_data
);
930 reg_write(ohci
, OHCI1394_CSRCompareData
, lock_arg
);
931 reg_write(ohci
, OHCI1394_CSRControl
, sel
);
933 if (reg_read(ohci
, OHCI1394_CSRControl
) & 0x80000000)
934 lock_old
= cpu_to_be32(reg_read(ohci
, OHCI1394_CSRData
));
936 fw_notify("swap not done yet\n");
938 fw_fill_response(&response
, packet
->header
,
939 RCODE_COMPLETE
, &lock_old
, sizeof(lock_old
));
941 fw_core_handle_response(&ohci
->card
, &response
);
945 handle_local_request(struct context
*ctx
, struct fw_packet
*packet
)
950 if (ctx
== &ctx
->ohci
->at_request_ctx
) {
951 packet
->ack
= ACK_PENDING
;
952 packet
->callback(packet
, &ctx
->ohci
->card
, packet
->ack
);
956 ((unsigned long long)
957 HEADER_GET_OFFSET_HIGH(packet
->header
[1]) << 32) |
959 csr
= offset
- CSR_REGISTER_BASE
;
961 /* Handle config rom reads. */
962 if (csr
>= CSR_CONFIG_ROM
&& csr
< CSR_CONFIG_ROM_END
)
963 handle_local_rom(ctx
->ohci
, packet
, csr
);
965 case CSR_BUS_MANAGER_ID
:
966 case CSR_BANDWIDTH_AVAILABLE
:
967 case CSR_CHANNELS_AVAILABLE_HI
:
968 case CSR_CHANNELS_AVAILABLE_LO
:
969 handle_local_lock(ctx
->ohci
, packet
, csr
);
972 if (ctx
== &ctx
->ohci
->at_request_ctx
)
973 fw_core_handle_request(&ctx
->ohci
->card
, packet
);
975 fw_core_handle_response(&ctx
->ohci
->card
, packet
);
979 if (ctx
== &ctx
->ohci
->at_response_ctx
) {
980 packet
->ack
= ACK_COMPLETE
;
981 packet
->callback(packet
, &ctx
->ohci
->card
, packet
->ack
);
986 at_context_transmit(struct context
*ctx
, struct fw_packet
*packet
)
991 spin_lock_irqsave(&ctx
->ohci
->lock
, flags
);
993 if (HEADER_GET_DESTINATION(packet
->header
[0]) == ctx
->ohci
->node_id
&&
994 ctx
->ohci
->generation
== packet
->generation
) {
995 spin_unlock_irqrestore(&ctx
->ohci
->lock
, flags
);
996 handle_local_request(ctx
, packet
);
1000 retval
= at_context_queue_packet(ctx
, packet
);
1001 spin_unlock_irqrestore(&ctx
->ohci
->lock
, flags
);
1004 packet
->callback(packet
, &ctx
->ohci
->card
, packet
->ack
);
1008 static void bus_reset_tasklet(unsigned long data
)
1010 struct fw_ohci
*ohci
= (struct fw_ohci
*)data
;
1011 int self_id_count
, i
, j
, reg
;
1012 int generation
, new_generation
;
1013 unsigned long flags
;
1014 void *free_rom
= NULL
;
1015 dma_addr_t free_rom_bus
= 0;
1017 reg
= reg_read(ohci
, OHCI1394_NodeID
);
1018 if (!(reg
& OHCI1394_NodeID_idValid
)) {
1019 fw_notify("node ID not valid, new bus reset in progress\n");
1022 if ((reg
& OHCI1394_NodeID_nodeNumber
) == 63) {
1023 fw_notify("malconfigured bus\n");
1026 ohci
->node_id
= reg
& (OHCI1394_NodeID_busNumber
|
1027 OHCI1394_NodeID_nodeNumber
);
1030 * The count in the SelfIDCount register is the number of
1031 * bytes in the self ID receive buffer. Since we also receive
1032 * the inverted quadlets and a header quadlet, we shift one
1033 * bit extra to get the actual number of self IDs.
1036 self_id_count
= (reg_read(ohci
, OHCI1394_SelfIDCount
) >> 3) & 0x3ff;
1037 generation
= (cond_le32_to_cpu(ohci
->self_id_cpu
[0]) >> 16) & 0xff;
1040 for (i
= 1, j
= 0; j
< self_id_count
; i
+= 2, j
++) {
1041 if (ohci
->self_id_cpu
[i
] != ~ohci
->self_id_cpu
[i
+ 1])
1042 fw_error("inconsistent self IDs\n");
1043 ohci
->self_id_buffer
[j
] =
1044 cond_le32_to_cpu(ohci
->self_id_cpu
[i
]);
1049 * Check the consistency of the self IDs we just read. The
1050 * problem we face is that a new bus reset can start while we
1051 * read out the self IDs from the DMA buffer. If this happens,
1052 * the DMA buffer will be overwritten with new self IDs and we
1053 * will read out inconsistent data. The OHCI specification
1054 * (section 11.2) recommends a technique similar to
1055 * linux/seqlock.h, where we remember the generation of the
1056 * self IDs in the buffer before reading them out and compare
1057 * it to the current generation after reading them out. If
1058 * the two generations match we know we have a consistent set
1062 new_generation
= (reg_read(ohci
, OHCI1394_SelfIDCount
) >> 16) & 0xff;
1063 if (new_generation
!= generation
) {
1064 fw_notify("recursive bus reset detected, "
1065 "discarding self ids\n");
1069 /* FIXME: Document how the locking works. */
1070 spin_lock_irqsave(&ohci
->lock
, flags
);
1072 ohci
->generation
= generation
;
1073 context_stop(&ohci
->at_request_ctx
);
1074 context_stop(&ohci
->at_response_ctx
);
1075 reg_write(ohci
, OHCI1394_IntEventClear
, OHCI1394_busReset
);
1078 * This next bit is unrelated to the AT context stuff but we
1079 * have to do it under the spinlock also. If a new config rom
1080 * was set up before this reset, the old one is now no longer
1081 * in use and we can free it. Update the config rom pointers
1082 * to point to the current config rom and clear the
1083 * next_config_rom pointer so a new udpate can take place.
1086 if (ohci
->next_config_rom
!= NULL
) {
1087 if (ohci
->next_config_rom
!= ohci
->config_rom
) {
1088 free_rom
= ohci
->config_rom
;
1089 free_rom_bus
= ohci
->config_rom_bus
;
1091 ohci
->config_rom
= ohci
->next_config_rom
;
1092 ohci
->config_rom_bus
= ohci
->next_config_rom_bus
;
1093 ohci
->next_config_rom
= NULL
;
1096 * Restore config_rom image and manually update
1097 * config_rom registers. Writing the header quadlet
1098 * will indicate that the config rom is ready, so we
1101 reg_write(ohci
, OHCI1394_BusOptions
,
1102 be32_to_cpu(ohci
->config_rom
[2]));
1103 ohci
->config_rom
[0] = cpu_to_be32(ohci
->next_header
);
1104 reg_write(ohci
, OHCI1394_ConfigROMhdr
, ohci
->next_header
);
1107 spin_unlock_irqrestore(&ohci
->lock
, flags
);
1110 dma_free_coherent(ohci
->card
.device
, CONFIG_ROM_SIZE
,
1111 free_rom
, free_rom_bus
);
1113 fw_core_handle_bus_reset(&ohci
->card
, ohci
->node_id
, generation
,
1114 self_id_count
, ohci
->self_id_buffer
);
1117 static irqreturn_t
irq_handler(int irq
, void *data
)
1119 struct fw_ohci
*ohci
= data
;
1120 u32 event
, iso_event
, cycle_time
;
1123 event
= reg_read(ohci
, OHCI1394_IntEventClear
);
1125 if (!event
|| !~event
)
1128 reg_write(ohci
, OHCI1394_IntEventClear
, event
);
1130 if (event
& OHCI1394_selfIDComplete
)
1131 tasklet_schedule(&ohci
->bus_reset_tasklet
);
1133 if (event
& OHCI1394_RQPkt
)
1134 tasklet_schedule(&ohci
->ar_request_ctx
.tasklet
);
1136 if (event
& OHCI1394_RSPkt
)
1137 tasklet_schedule(&ohci
->ar_response_ctx
.tasklet
);
1139 if (event
& OHCI1394_reqTxComplete
)
1140 tasklet_schedule(&ohci
->at_request_ctx
.tasklet
);
1142 if (event
& OHCI1394_respTxComplete
)
1143 tasklet_schedule(&ohci
->at_response_ctx
.tasklet
);
1145 iso_event
= reg_read(ohci
, OHCI1394_IsoRecvIntEventClear
);
1146 reg_write(ohci
, OHCI1394_IsoRecvIntEventClear
, iso_event
);
1149 i
= ffs(iso_event
) - 1;
1150 tasklet_schedule(&ohci
->ir_context_list
[i
].context
.tasklet
);
1151 iso_event
&= ~(1 << i
);
1154 iso_event
= reg_read(ohci
, OHCI1394_IsoXmitIntEventClear
);
1155 reg_write(ohci
, OHCI1394_IsoXmitIntEventClear
, iso_event
);
1158 i
= ffs(iso_event
) - 1;
1159 tasklet_schedule(&ohci
->it_context_list
[i
].context
.tasklet
);
1160 iso_event
&= ~(1 << i
);
1163 if (unlikely(event
& OHCI1394_postedWriteErr
))
1164 fw_error("PCI posted write error\n");
1166 if (unlikely(event
& OHCI1394_cycleTooLong
)) {
1167 if (printk_ratelimit())
1168 fw_notify("isochronous cycle too long\n");
1169 reg_write(ohci
, OHCI1394_LinkControlSet
,
1170 OHCI1394_LinkControl_cycleMaster
);
1173 if (event
& OHCI1394_cycle64Seconds
) {
1174 cycle_time
= reg_read(ohci
, OHCI1394_IsochronousCycleTimer
);
1175 if ((cycle_time
& 0x80000000) == 0)
1176 ohci
->bus_seconds
++;
1182 static int software_reset(struct fw_ohci
*ohci
)
1186 reg_write(ohci
, OHCI1394_HCControlSet
, OHCI1394_HCControl_softReset
);
1188 for (i
= 0; i
< OHCI_LOOP_COUNT
; i
++) {
1189 if ((reg_read(ohci
, OHCI1394_HCControlSet
) &
1190 OHCI1394_HCControl_softReset
) == 0)
1198 static int ohci_enable(struct fw_card
*card
, u32
*config_rom
, size_t length
)
1200 struct fw_ohci
*ohci
= fw_ohci(card
);
1201 struct pci_dev
*dev
= to_pci_dev(card
->device
);
1203 if (software_reset(ohci
)) {
1204 fw_error("Failed to reset ohci card.\n");
1209 * Now enable LPS, which we need in order to start accessing
1210 * most of the registers. In fact, on some cards (ALI M5251),
1211 * accessing registers in the SClk domain without LPS enabled
1212 * will lock up the machine. Wait 50msec to make sure we have
1213 * full link enabled.
1215 reg_write(ohci
, OHCI1394_HCControlSet
,
1216 OHCI1394_HCControl_LPS
|
1217 OHCI1394_HCControl_postedWriteEnable
);
1221 reg_write(ohci
, OHCI1394_HCControlClear
,
1222 OHCI1394_HCControl_noByteSwapData
);
1224 reg_write(ohci
, OHCI1394_LinkControlSet
,
1225 OHCI1394_LinkControl_rcvSelfID
|
1226 OHCI1394_LinkControl_cycleTimerEnable
|
1227 OHCI1394_LinkControl_cycleMaster
);
1229 reg_write(ohci
, OHCI1394_ATRetries
,
1230 OHCI1394_MAX_AT_REQ_RETRIES
|
1231 (OHCI1394_MAX_AT_RESP_RETRIES
<< 4) |
1232 (OHCI1394_MAX_PHYS_RESP_RETRIES
<< 8));
1234 ar_context_run(&ohci
->ar_request_ctx
);
1235 ar_context_run(&ohci
->ar_response_ctx
);
1237 reg_write(ohci
, OHCI1394_SelfIDBuffer
, ohci
->self_id_bus
);
1238 reg_write(ohci
, OHCI1394_PhyUpperBound
, 0x00010000);
1239 reg_write(ohci
, OHCI1394_IntEventClear
, ~0);
1240 reg_write(ohci
, OHCI1394_IntMaskClear
, ~0);
1241 reg_write(ohci
, OHCI1394_IntMaskSet
,
1242 OHCI1394_selfIDComplete
|
1243 OHCI1394_RQPkt
| OHCI1394_RSPkt
|
1244 OHCI1394_reqTxComplete
| OHCI1394_respTxComplete
|
1245 OHCI1394_isochRx
| OHCI1394_isochTx
|
1246 OHCI1394_postedWriteErr
| OHCI1394_cycleTooLong
|
1247 OHCI1394_cycle64Seconds
| OHCI1394_masterIntEnable
);
1249 /* Activate link_on bit and contender bit in our self ID packets.*/
1250 if (ohci_update_phy_reg(card
, 4, 0,
1251 PHY_LINK_ACTIVE
| PHY_CONTENDER
) < 0)
1255 * When the link is not yet enabled, the atomic config rom
1256 * update mechanism described below in ohci_set_config_rom()
1257 * is not active. We have to update ConfigRomHeader and
1258 * BusOptions manually, and the write to ConfigROMmap takes
1259 * effect immediately. We tie this to the enabling of the
1260 * link, so we have a valid config rom before enabling - the
1261 * OHCI requires that ConfigROMhdr and BusOptions have valid
1262 * values before enabling.
1264 * However, when the ConfigROMmap is written, some controllers
1265 * always read back quadlets 0 and 2 from the config rom to
1266 * the ConfigRomHeader and BusOptions registers on bus reset.
1267 * They shouldn't do that in this initial case where the link
1268 * isn't enabled. This means we have to use the same
1269 * workaround here, setting the bus header to 0 and then write
1270 * the right values in the bus reset tasklet.
1274 ohci
->next_config_rom
=
1275 dma_alloc_coherent(ohci
->card
.device
, CONFIG_ROM_SIZE
,
1276 &ohci
->next_config_rom_bus
,
1278 if (ohci
->next_config_rom
== NULL
)
1281 memset(ohci
->next_config_rom
, 0, CONFIG_ROM_SIZE
);
1282 fw_memcpy_to_be32(ohci
->next_config_rom
, config_rom
, length
* 4);
1285 * In the suspend case, config_rom is NULL, which
1286 * means that we just reuse the old config rom.
1288 ohci
->next_config_rom
= ohci
->config_rom
;
1289 ohci
->next_config_rom_bus
= ohci
->config_rom_bus
;
1292 ohci
->next_header
= be32_to_cpu(ohci
->next_config_rom
[0]);
1293 ohci
->next_config_rom
[0] = 0;
1294 reg_write(ohci
, OHCI1394_ConfigROMhdr
, 0);
1295 reg_write(ohci
, OHCI1394_BusOptions
,
1296 be32_to_cpu(ohci
->next_config_rom
[2]));
1297 reg_write(ohci
, OHCI1394_ConfigROMmap
, ohci
->next_config_rom_bus
);
1299 reg_write(ohci
, OHCI1394_AsReqFilterHiSet
, 0x80000000);
1301 if (request_irq(dev
->irq
, irq_handler
,
1302 IRQF_SHARED
, ohci_driver_name
, ohci
)) {
1303 fw_error("Failed to allocate shared interrupt %d.\n",
1305 dma_free_coherent(ohci
->card
.device
, CONFIG_ROM_SIZE
,
1306 ohci
->config_rom
, ohci
->config_rom_bus
);
1310 reg_write(ohci
, OHCI1394_HCControlSet
,
1311 OHCI1394_HCControl_linkEnable
|
1312 OHCI1394_HCControl_BIBimageValid
);
1316 * We are ready to go, initiate bus reset to finish the
1320 fw_core_initiate_bus_reset(&ohci
->card
, 1);
1326 ohci_set_config_rom(struct fw_card
*card
, u32
*config_rom
, size_t length
)
1328 struct fw_ohci
*ohci
;
1329 unsigned long flags
;
1330 int retval
= -EBUSY
;
1331 __be32
*next_config_rom
;
1332 dma_addr_t next_config_rom_bus
;
1334 ohci
= fw_ohci(card
);
1337 * When the OHCI controller is enabled, the config rom update
1338 * mechanism is a bit tricky, but easy enough to use. See
1339 * section 5.5.6 in the OHCI specification.
1341 * The OHCI controller caches the new config rom address in a
1342 * shadow register (ConfigROMmapNext) and needs a bus reset
1343 * for the changes to take place. When the bus reset is
1344 * detected, the controller loads the new values for the
1345 * ConfigRomHeader and BusOptions registers from the specified
1346 * config rom and loads ConfigROMmap from the ConfigROMmapNext
1347 * shadow register. All automatically and atomically.
1349 * Now, there's a twist to this story. The automatic load of
1350 * ConfigRomHeader and BusOptions doesn't honor the
1351 * noByteSwapData bit, so with a be32 config rom, the
1352 * controller will load be32 values in to these registers
1353 * during the atomic update, even on litte endian
1354 * architectures. The workaround we use is to put a 0 in the
1355 * header quadlet; 0 is endian agnostic and means that the
1356 * config rom isn't ready yet. In the bus reset tasklet we
1357 * then set up the real values for the two registers.
1359 * We use ohci->lock to avoid racing with the code that sets
1360 * ohci->next_config_rom to NULL (see bus_reset_tasklet).
1364 dma_alloc_coherent(ohci
->card
.device
, CONFIG_ROM_SIZE
,
1365 &next_config_rom_bus
, GFP_KERNEL
);
1366 if (next_config_rom
== NULL
)
1369 spin_lock_irqsave(&ohci
->lock
, flags
);
1371 if (ohci
->next_config_rom
== NULL
) {
1372 ohci
->next_config_rom
= next_config_rom
;
1373 ohci
->next_config_rom_bus
= next_config_rom_bus
;
1375 memset(ohci
->next_config_rom
, 0, CONFIG_ROM_SIZE
);
1376 fw_memcpy_to_be32(ohci
->next_config_rom
, config_rom
,
1379 ohci
->next_header
= config_rom
[0];
1380 ohci
->next_config_rom
[0] = 0;
1382 reg_write(ohci
, OHCI1394_ConfigROMmap
,
1383 ohci
->next_config_rom_bus
);
1387 spin_unlock_irqrestore(&ohci
->lock
, flags
);
1390 * Now initiate a bus reset to have the changes take
1391 * effect. We clean up the old config rom memory and DMA
1392 * mappings in the bus reset tasklet, since the OHCI
1393 * controller could need to access it before the bus reset
1397 fw_core_initiate_bus_reset(&ohci
->card
, 1);
1399 dma_free_coherent(ohci
->card
.device
, CONFIG_ROM_SIZE
,
1400 next_config_rom
, next_config_rom_bus
);
1405 static void ohci_send_request(struct fw_card
*card
, struct fw_packet
*packet
)
1407 struct fw_ohci
*ohci
= fw_ohci(card
);
1409 at_context_transmit(&ohci
->at_request_ctx
, packet
);
1412 static void ohci_send_response(struct fw_card
*card
, struct fw_packet
*packet
)
1414 struct fw_ohci
*ohci
= fw_ohci(card
);
1416 at_context_transmit(&ohci
->at_response_ctx
, packet
);
1419 static int ohci_cancel_packet(struct fw_card
*card
, struct fw_packet
*packet
)
1421 struct fw_ohci
*ohci
= fw_ohci(card
);
1422 struct context
*ctx
= &ohci
->at_request_ctx
;
1423 struct driver_data
*driver_data
= packet
->driver_data
;
1424 int retval
= -ENOENT
;
1426 tasklet_disable(&ctx
->tasklet
);
1428 if (packet
->ack
!= 0)
1431 driver_data
->packet
= NULL
;
1432 packet
->ack
= RCODE_CANCELLED
;
1433 packet
->callback(packet
, &ohci
->card
, packet
->ack
);
1437 tasklet_enable(&ctx
->tasklet
);
1443 ohci_enable_phys_dma(struct fw_card
*card
, int node_id
, int generation
)
1445 struct fw_ohci
*ohci
= fw_ohci(card
);
1446 unsigned long flags
;
1450 * FIXME: Make sure this bitmask is cleared when we clear the busReset
1451 * interrupt bit. Clear physReqResourceAllBuses on bus reset.
1454 spin_lock_irqsave(&ohci
->lock
, flags
);
1456 if (ohci
->generation
!= generation
) {
1462 * Note, if the node ID contains a non-local bus ID, physical DMA is
1463 * enabled for _all_ nodes on remote buses.
1466 n
= (node_id
& 0xffc0) == LOCAL_BUS
? node_id
& 0x3f : 63;
1468 reg_write(ohci
, OHCI1394_PhyReqFilterLoSet
, 1 << n
);
1470 reg_write(ohci
, OHCI1394_PhyReqFilterHiSet
, 1 << (n
- 32));
1474 spin_unlock_irqrestore(&ohci
->lock
, flags
);
1479 ohci_get_bus_time(struct fw_card
*card
)
1481 struct fw_ohci
*ohci
= fw_ohci(card
);
1485 cycle_time
= reg_read(ohci
, OHCI1394_IsochronousCycleTimer
);
1486 bus_time
= ((u64
) ohci
->bus_seconds
<< 32) | cycle_time
;
1491 static int handle_ir_dualbuffer_packet(struct context
*context
,
1492 struct descriptor
*d
,
1493 struct descriptor
*last
)
1495 struct iso_context
*ctx
=
1496 container_of(context
, struct iso_context
, context
);
1497 struct db_descriptor
*db
= (struct db_descriptor
*) d
;
1499 size_t header_length
;
1503 if (db
->first_res_count
!= 0 && db
->second_res_count
!= 0) {
1504 if (ctx
->excess_bytes
<= le16_to_cpu(db
->second_req_count
)) {
1505 /* This descriptor isn't done yet, stop iteration. */
1508 ctx
->excess_bytes
-= le16_to_cpu(db
->second_req_count
);
1511 header_length
= le16_to_cpu(db
->first_req_count
) -
1512 le16_to_cpu(db
->first_res_count
);
1514 i
= ctx
->header_length
;
1516 end
= p
+ header_length
;
1517 while (p
< end
&& i
+ ctx
->base
.header_size
<= PAGE_SIZE
) {
1519 * The iso header is byteswapped to little endian by
1520 * the controller, but the remaining header quadlets
1521 * are big endian. We want to present all the headers
1522 * as big endian, so we have to swap the first
1525 *(u32
*) (ctx
->header
+ i
) = __swab32(*(u32
*) (p
+ 4));
1526 memcpy(ctx
->header
+ i
+ 4, p
+ 8, ctx
->base
.header_size
- 4);
1527 i
+= ctx
->base
.header_size
;
1528 ctx
->excess_bytes
+=
1529 (le32_to_cpu(*(__le32
*)(p
+ 4)) >> 16) & 0xffff;
1530 p
+= ctx
->base
.header_size
+ 4;
1532 ctx
->header_length
= i
;
1534 ctx
->excess_bytes
-= le16_to_cpu(db
->second_req_count
) -
1535 le16_to_cpu(db
->second_res_count
);
1537 if (le16_to_cpu(db
->control
) & DESCRIPTOR_IRQ_ALWAYS
) {
1538 ir_header
= (__le32
*) (db
+ 1);
1539 ctx
->base
.callback(&ctx
->base
,
1540 le32_to_cpu(ir_header
[0]) & 0xffff,
1541 ctx
->header_length
, ctx
->header
,
1542 ctx
->base
.callback_data
);
1543 ctx
->header_length
= 0;
1549 static int handle_ir_packet_per_buffer(struct context
*context
,
1550 struct descriptor
*d
,
1551 struct descriptor
*last
)
1553 struct iso_context
*ctx
=
1554 container_of(context
, struct iso_context
, context
);
1555 struct descriptor
*pd
;
1560 for (pd
= d
; pd
<= last
; pd
++) {
1561 if (pd
->transfer_status
)
1565 /* Descriptor(s) not done yet, stop iteration */
1568 i
= ctx
->header_length
;
1571 if (ctx
->base
.header_size
> 0 &&
1572 i
+ ctx
->base
.header_size
<= PAGE_SIZE
) {
1574 * The iso header is byteswapped to little endian by
1575 * the controller, but the remaining header quadlets
1576 * are big endian. We want to present all the headers
1577 * as big endian, so we have to swap the first quadlet.
1579 *(u32
*) (ctx
->header
+ i
) = __swab32(*(u32
*) (p
+ 4));
1580 memcpy(ctx
->header
+ i
+ 4, p
+ 8, ctx
->base
.header_size
- 4);
1581 ctx
->header_length
+= ctx
->base
.header_size
;
1584 if (le16_to_cpu(last
->control
) & DESCRIPTOR_IRQ_ALWAYS
) {
1585 ir_header
= (__le32
*) p
;
1586 ctx
->base
.callback(&ctx
->base
,
1587 le32_to_cpu(ir_header
[0]) & 0xffff,
1588 ctx
->header_length
, ctx
->header
,
1589 ctx
->base
.callback_data
);
1590 ctx
->header_length
= 0;
1596 static int handle_it_packet(struct context
*context
,
1597 struct descriptor
*d
,
1598 struct descriptor
*last
)
1600 struct iso_context
*ctx
=
1601 container_of(context
, struct iso_context
, context
);
1603 if (last
->transfer_status
== 0)
1604 /* This descriptor isn't done yet, stop iteration. */
1607 if (le16_to_cpu(last
->control
) & DESCRIPTOR_IRQ_ALWAYS
)
1608 ctx
->base
.callback(&ctx
->base
, le16_to_cpu(last
->res_count
),
1609 0, NULL
, ctx
->base
.callback_data
);
1614 static struct fw_iso_context
*
1615 ohci_allocate_iso_context(struct fw_card
*card
, int type
, size_t header_size
)
1617 struct fw_ohci
*ohci
= fw_ohci(card
);
1618 struct iso_context
*ctx
, *list
;
1619 descriptor_callback_t callback
;
1621 unsigned long flags
;
1622 int index
, retval
= -ENOMEM
;
1624 if (type
== FW_ISO_CONTEXT_TRANSMIT
) {
1625 mask
= &ohci
->it_context_mask
;
1626 list
= ohci
->it_context_list
;
1627 callback
= handle_it_packet
;
1629 mask
= &ohci
->ir_context_mask
;
1630 list
= ohci
->ir_context_list
;
1631 if (ohci
->version
>= OHCI_VERSION_1_1
)
1632 callback
= handle_ir_dualbuffer_packet
;
1634 callback
= handle_ir_packet_per_buffer
;
1637 spin_lock_irqsave(&ohci
->lock
, flags
);
1638 index
= ffs(*mask
) - 1;
1640 *mask
&= ~(1 << index
);
1641 spin_unlock_irqrestore(&ohci
->lock
, flags
);
1644 return ERR_PTR(-EBUSY
);
1646 if (type
== FW_ISO_CONTEXT_TRANSMIT
)
1647 regs
= OHCI1394_IsoXmitContextBase(index
);
1649 regs
= OHCI1394_IsoRcvContextBase(index
);
1652 memset(ctx
, 0, sizeof(*ctx
));
1653 ctx
->header_length
= 0;
1654 ctx
->header
= (void *) __get_free_page(GFP_KERNEL
);
1655 if (ctx
->header
== NULL
)
1658 retval
= context_init(&ctx
->context
, ohci
, regs
, callback
);
1660 goto out_with_header
;
1665 free_page((unsigned long)ctx
->header
);
1667 spin_lock_irqsave(&ohci
->lock
, flags
);
1668 *mask
|= 1 << index
;
1669 spin_unlock_irqrestore(&ohci
->lock
, flags
);
1671 return ERR_PTR(retval
);
1674 static int ohci_start_iso(struct fw_iso_context
*base
,
1675 s32 cycle
, u32 sync
, u32 tags
)
1677 struct iso_context
*ctx
= container_of(base
, struct iso_context
, base
);
1678 struct fw_ohci
*ohci
= ctx
->context
.ohci
;
1682 if (ctx
->base
.type
== FW_ISO_CONTEXT_TRANSMIT
) {
1683 index
= ctx
- ohci
->it_context_list
;
1686 match
= IT_CONTEXT_CYCLE_MATCH_ENABLE
|
1687 (cycle
& 0x7fff) << 16;
1689 reg_write(ohci
, OHCI1394_IsoXmitIntEventClear
, 1 << index
);
1690 reg_write(ohci
, OHCI1394_IsoXmitIntMaskSet
, 1 << index
);
1691 context_run(&ctx
->context
, match
);
1693 index
= ctx
- ohci
->ir_context_list
;
1694 control
= IR_CONTEXT_ISOCH_HEADER
;
1695 if (ohci
->version
>= OHCI_VERSION_1_1
)
1696 control
|= IR_CONTEXT_DUAL_BUFFER_MODE
;
1697 match
= (tags
<< 28) | (sync
<< 8) | ctx
->base
.channel
;
1699 match
|= (cycle
& 0x07fff) << 12;
1700 control
|= IR_CONTEXT_CYCLE_MATCH_ENABLE
;
1703 reg_write(ohci
, OHCI1394_IsoRecvIntEventClear
, 1 << index
);
1704 reg_write(ohci
, OHCI1394_IsoRecvIntMaskSet
, 1 << index
);
1705 reg_write(ohci
, CONTEXT_MATCH(ctx
->context
.regs
), match
);
1706 context_run(&ctx
->context
, control
);
1712 static int ohci_stop_iso(struct fw_iso_context
*base
)
1714 struct fw_ohci
*ohci
= fw_ohci(base
->card
);
1715 struct iso_context
*ctx
= container_of(base
, struct iso_context
, base
);
1718 if (ctx
->base
.type
== FW_ISO_CONTEXT_TRANSMIT
) {
1719 index
= ctx
- ohci
->it_context_list
;
1720 reg_write(ohci
, OHCI1394_IsoXmitIntMaskClear
, 1 << index
);
1722 index
= ctx
- ohci
->ir_context_list
;
1723 reg_write(ohci
, OHCI1394_IsoRecvIntMaskClear
, 1 << index
);
1726 context_stop(&ctx
->context
);
1731 static void ohci_free_iso_context(struct fw_iso_context
*base
)
1733 struct fw_ohci
*ohci
= fw_ohci(base
->card
);
1734 struct iso_context
*ctx
= container_of(base
, struct iso_context
, base
);
1735 unsigned long flags
;
1738 ohci_stop_iso(base
);
1739 context_release(&ctx
->context
);
1740 free_page((unsigned long)ctx
->header
);
1742 spin_lock_irqsave(&ohci
->lock
, flags
);
1744 if (ctx
->base
.type
== FW_ISO_CONTEXT_TRANSMIT
) {
1745 index
= ctx
- ohci
->it_context_list
;
1746 ohci
->it_context_mask
|= 1 << index
;
1748 index
= ctx
- ohci
->ir_context_list
;
1749 ohci
->ir_context_mask
|= 1 << index
;
1752 spin_unlock_irqrestore(&ohci
->lock
, flags
);
1756 ohci_queue_iso_transmit(struct fw_iso_context
*base
,
1757 struct fw_iso_packet
*packet
,
1758 struct fw_iso_buffer
*buffer
,
1759 unsigned long payload
)
1761 struct iso_context
*ctx
= container_of(base
, struct iso_context
, base
);
1762 struct descriptor
*d
, *last
, *pd
;
1763 struct fw_iso_packet
*p
;
1765 dma_addr_t d_bus
, page_bus
;
1766 u32 z
, header_z
, payload_z
, irq
;
1767 u32 payload_index
, payload_end_index
, next_page_index
;
1768 int page
, end_page
, i
, length
, offset
;
1771 * FIXME: Cycle lost behavior should be configurable: lose
1772 * packet, retransmit or terminate..
1776 payload_index
= payload
;
1782 if (p
->header_length
> 0)
1785 /* Determine the first page the payload isn't contained in. */
1786 end_page
= PAGE_ALIGN(payload_index
+ p
->payload_length
) >> PAGE_SHIFT
;
1787 if (p
->payload_length
> 0)
1788 payload_z
= end_page
- (payload_index
>> PAGE_SHIFT
);
1794 /* Get header size in number of descriptors. */
1795 header_z
= DIV_ROUND_UP(p
->header_length
, sizeof(*d
));
1797 d
= context_get_descriptors(&ctx
->context
, z
+ header_z
, &d_bus
);
1802 d
[0].control
= cpu_to_le16(DESCRIPTOR_KEY_IMMEDIATE
);
1803 d
[0].req_count
= cpu_to_le16(8);
1805 header
= (__le32
*) &d
[1];
1806 header
[0] = cpu_to_le32(IT_HEADER_SY(p
->sy
) |
1807 IT_HEADER_TAG(p
->tag
) |
1808 IT_HEADER_TCODE(TCODE_STREAM_DATA
) |
1809 IT_HEADER_CHANNEL(ctx
->base
.channel
) |
1810 IT_HEADER_SPEED(ctx
->base
.speed
));
1812 cpu_to_le32(IT_HEADER_DATA_LENGTH(p
->header_length
+
1813 p
->payload_length
));
1816 if (p
->header_length
> 0) {
1817 d
[2].req_count
= cpu_to_le16(p
->header_length
);
1818 d
[2].data_address
= cpu_to_le32(d_bus
+ z
* sizeof(*d
));
1819 memcpy(&d
[z
], p
->header
, p
->header_length
);
1822 pd
= d
+ z
- payload_z
;
1823 payload_end_index
= payload_index
+ p
->payload_length
;
1824 for (i
= 0; i
< payload_z
; i
++) {
1825 page
= payload_index
>> PAGE_SHIFT
;
1826 offset
= payload_index
& ~PAGE_MASK
;
1827 next_page_index
= (page
+ 1) << PAGE_SHIFT
;
1829 min(next_page_index
, payload_end_index
) - payload_index
;
1830 pd
[i
].req_count
= cpu_to_le16(length
);
1832 page_bus
= page_private(buffer
->pages
[page
]);
1833 pd
[i
].data_address
= cpu_to_le32(page_bus
+ offset
);
1835 payload_index
+= length
;
1839 irq
= DESCRIPTOR_IRQ_ALWAYS
;
1841 irq
= DESCRIPTOR_NO_IRQ
;
1843 last
= z
== 2 ? d
: d
+ z
- 1;
1844 last
->control
|= cpu_to_le16(DESCRIPTOR_OUTPUT_LAST
|
1846 DESCRIPTOR_BRANCH_ALWAYS
|
1849 context_append(&ctx
->context
, d
, z
, header_z
);
1855 ohci_queue_iso_receive_dualbuffer(struct fw_iso_context
*base
,
1856 struct fw_iso_packet
*packet
,
1857 struct fw_iso_buffer
*buffer
,
1858 unsigned long payload
)
1860 struct iso_context
*ctx
= container_of(base
, struct iso_context
, base
);
1861 struct db_descriptor
*db
= NULL
;
1862 struct descriptor
*d
;
1863 struct fw_iso_packet
*p
;
1864 dma_addr_t d_bus
, page_bus
;
1865 u32 z
, header_z
, length
, rest
;
1866 int page
, offset
, packet_count
, header_size
;
1869 * FIXME: Cycle lost behavior should be configurable: lose
1870 * packet, retransmit or terminate..
1877 * The OHCI controller puts the status word in the header
1878 * buffer too, so we need 4 extra bytes per packet.
1880 packet_count
= p
->header_length
/ ctx
->base
.header_size
;
1881 header_size
= packet_count
* (ctx
->base
.header_size
+ 4);
1883 /* Get header size in number of descriptors. */
1884 header_z
= DIV_ROUND_UP(header_size
, sizeof(*d
));
1885 page
= payload
>> PAGE_SHIFT
;
1886 offset
= payload
& ~PAGE_MASK
;
1887 rest
= p
->payload_length
;
1889 /* FIXME: make packet-per-buffer/dual-buffer a context option */
1891 d
= context_get_descriptors(&ctx
->context
,
1892 z
+ header_z
, &d_bus
);
1896 db
= (struct db_descriptor
*) d
;
1897 db
->control
= cpu_to_le16(DESCRIPTOR_STATUS
|
1898 DESCRIPTOR_BRANCH_ALWAYS
);
1899 db
->first_size
= cpu_to_le16(ctx
->base
.header_size
+ 4);
1900 if (p
->skip
&& rest
== p
->payload_length
) {
1901 db
->control
|= cpu_to_le16(DESCRIPTOR_WAIT
);
1902 db
->first_req_count
= db
->first_size
;
1904 db
->first_req_count
= cpu_to_le16(header_size
);
1906 db
->first_res_count
= db
->first_req_count
;
1907 db
->first_buffer
= cpu_to_le32(d_bus
+ sizeof(*db
));
1909 if (p
->skip
&& rest
== p
->payload_length
)
1911 else if (offset
+ rest
< PAGE_SIZE
)
1914 length
= PAGE_SIZE
- offset
;
1916 db
->second_req_count
= cpu_to_le16(length
);
1917 db
->second_res_count
= db
->second_req_count
;
1918 page_bus
= page_private(buffer
->pages
[page
]);
1919 db
->second_buffer
= cpu_to_le32(page_bus
+ offset
);
1921 if (p
->interrupt
&& length
== rest
)
1922 db
->control
|= cpu_to_le16(DESCRIPTOR_IRQ_ALWAYS
);
1924 context_append(&ctx
->context
, d
, z
, header_z
);
1925 offset
= (offset
+ length
) & ~PAGE_MASK
;
1935 ohci_queue_iso_receive_packet_per_buffer(struct fw_iso_context
*base
,
1936 struct fw_iso_packet
*packet
,
1937 struct fw_iso_buffer
*buffer
,
1938 unsigned long payload
)
1940 struct iso_context
*ctx
= container_of(base
, struct iso_context
, base
);
1941 struct descriptor
*d
= NULL
, *pd
= NULL
;
1942 struct fw_iso_packet
*p
= packet
;
1943 dma_addr_t d_bus
, page_bus
;
1944 u32 z
, header_z
, rest
;
1946 int page
, offset
, packet_count
, header_size
, payload_per_buffer
;
1949 * The OHCI controller puts the status word in the
1950 * buffer too, so we need 4 extra bytes per packet.
1952 packet_count
= p
->header_length
/ ctx
->base
.header_size
;
1953 header_size
= ctx
->base
.header_size
+ 4;
1955 /* Get header size in number of descriptors. */
1956 header_z
= DIV_ROUND_UP(header_size
, sizeof(*d
));
1957 page
= payload
>> PAGE_SHIFT
;
1958 offset
= payload
& ~PAGE_MASK
;
1959 payload_per_buffer
= p
->payload_length
/ packet_count
;
1961 for (i
= 0; i
< packet_count
; i
++) {
1962 /* d points to the header descriptor */
1963 z
= DIV_ROUND_UP(payload_per_buffer
+ offset
, PAGE_SIZE
) + 1;
1964 d
= context_get_descriptors(&ctx
->context
,
1965 z
+ header_z
, &d_bus
);
1969 d
->control
= cpu_to_le16(DESCRIPTOR_STATUS
|
1970 DESCRIPTOR_INPUT_MORE
);
1971 if (p
->skip
&& i
== 0)
1972 d
->control
|= cpu_to_le16(DESCRIPTOR_WAIT
);
1973 d
->req_count
= cpu_to_le16(header_size
);
1974 d
->res_count
= d
->req_count
;
1975 d
->transfer_status
= 0;
1976 d
->data_address
= cpu_to_le32(d_bus
+ (z
* sizeof(*d
)));
1978 rest
= payload_per_buffer
;
1979 for (j
= 1; j
< z
; j
++) {
1981 pd
->control
= cpu_to_le16(DESCRIPTOR_STATUS
|
1982 DESCRIPTOR_INPUT_MORE
);
1984 if (offset
+ rest
< PAGE_SIZE
)
1987 length
= PAGE_SIZE
- offset
;
1988 pd
->req_count
= cpu_to_le16(length
);
1989 pd
->res_count
= pd
->req_count
;
1990 pd
->transfer_status
= 0;
1992 page_bus
= page_private(buffer
->pages
[page
]);
1993 pd
->data_address
= cpu_to_le32(page_bus
+ offset
);
1995 offset
= (offset
+ length
) & ~PAGE_MASK
;
2000 pd
->control
= cpu_to_le16(DESCRIPTOR_STATUS
|
2001 DESCRIPTOR_INPUT_LAST
|
2002 DESCRIPTOR_BRANCH_ALWAYS
);
2003 if (p
->interrupt
&& i
== packet_count
- 1)
2004 pd
->control
|= cpu_to_le16(DESCRIPTOR_IRQ_ALWAYS
);
2006 context_append(&ctx
->context
, d
, z
, header_z
);
2013 ohci_queue_iso(struct fw_iso_context
*base
,
2014 struct fw_iso_packet
*packet
,
2015 struct fw_iso_buffer
*buffer
,
2016 unsigned long payload
)
2018 struct iso_context
*ctx
= container_of(base
, struct iso_context
, base
);
2019 unsigned long flags
;
2022 spin_lock_irqsave(&ctx
->context
.ohci
->lock
, flags
);
2023 if (base
->type
== FW_ISO_CONTEXT_TRANSMIT
)
2024 retval
= ohci_queue_iso_transmit(base
, packet
, buffer
, payload
);
2025 else if (ctx
->context
.ohci
->version
>= OHCI_VERSION_1_1
)
2026 retval
= ohci_queue_iso_receive_dualbuffer(base
, packet
,
2029 retval
= ohci_queue_iso_receive_packet_per_buffer(base
, packet
,
2032 spin_unlock_irqrestore(&ctx
->context
.ohci
->lock
, flags
);
2037 static const struct fw_card_driver ohci_driver
= {
2038 .name
= ohci_driver_name
,
2039 .enable
= ohci_enable
,
2040 .update_phy_reg
= ohci_update_phy_reg
,
2041 .set_config_rom
= ohci_set_config_rom
,
2042 .send_request
= ohci_send_request
,
2043 .send_response
= ohci_send_response
,
2044 .cancel_packet
= ohci_cancel_packet
,
2045 .enable_phys_dma
= ohci_enable_phys_dma
,
2046 .get_bus_time
= ohci_get_bus_time
,
2048 .allocate_iso_context
= ohci_allocate_iso_context
,
2049 .free_iso_context
= ohci_free_iso_context
,
2050 .queue_iso
= ohci_queue_iso
,
2051 .start_iso
= ohci_start_iso
,
2052 .stop_iso
= ohci_stop_iso
,
2055 static int __devinit
2056 pci_probe(struct pci_dev
*dev
, const struct pci_device_id
*ent
)
2058 struct fw_ohci
*ohci
;
2059 u32 bus_options
, max_receive
, link_speed
;
2064 #ifdef CONFIG_PPC_PMAC
2065 /* Necessary on some machines if fw-ohci was loaded/ unloaded before */
2066 if (machine_is(powermac
)) {
2067 struct device_node
*ofn
= pci_device_to_OF_node(dev
);
2070 pmac_call_feature(PMAC_FTR_1394_CABLE_POWER
, ofn
, 0, 1);
2071 pmac_call_feature(PMAC_FTR_1394_ENABLE
, ofn
, 0, 1);
2074 #endif /* CONFIG_PPC_PMAC */
2076 ohci
= kzalloc(sizeof(*ohci
), GFP_KERNEL
);
2078 fw_error("Could not malloc fw_ohci data.\n");
2082 fw_card_initialize(&ohci
->card
, &ohci_driver
, &dev
->dev
);
2084 err
= pci_enable_device(dev
);
2086 fw_error("Failed to enable OHCI hardware.\n");
2090 pci_set_master(dev
);
2091 pci_write_config_dword(dev
, OHCI1394_PCI_HCI_Control
, 0);
2092 pci_set_drvdata(dev
, ohci
);
2094 #if defined(CONFIG_PPC_PMAC) && defined(CONFIG_PPC32)
2095 ohci
->old_uninorth
= dev
->vendor
== PCI_VENDOR_ID_APPLE
&&
2096 dev
->device
== PCI_DEVICE_ID_APPLE_UNI_N_FW
;
2098 spin_lock_init(&ohci
->lock
);
2100 tasklet_init(&ohci
->bus_reset_tasklet
,
2101 bus_reset_tasklet
, (unsigned long)ohci
);
2103 err
= pci_request_region(dev
, 0, ohci_driver_name
);
2105 fw_error("MMIO resource unavailable\n");
2109 ohci
->registers
= pci_iomap(dev
, 0, OHCI1394_REGISTER_SIZE
);
2110 if (ohci
->registers
== NULL
) {
2111 fw_error("Failed to remap registers\n");
2116 ar_context_init(&ohci
->ar_request_ctx
, ohci
,
2117 OHCI1394_AsReqRcvContextControlSet
);
2119 ar_context_init(&ohci
->ar_response_ctx
, ohci
,
2120 OHCI1394_AsRspRcvContextControlSet
);
2122 context_init(&ohci
->at_request_ctx
, ohci
,
2123 OHCI1394_AsReqTrContextControlSet
, handle_at_packet
);
2125 context_init(&ohci
->at_response_ctx
, ohci
,
2126 OHCI1394_AsRspTrContextControlSet
, handle_at_packet
);
2128 reg_write(ohci
, OHCI1394_IsoRecvIntMaskSet
, ~0);
2129 ohci
->it_context_mask
= reg_read(ohci
, OHCI1394_IsoRecvIntMaskSet
);
2130 reg_write(ohci
, OHCI1394_IsoRecvIntMaskClear
, ~0);
2131 size
= sizeof(struct iso_context
) * hweight32(ohci
->it_context_mask
);
2132 ohci
->it_context_list
= kzalloc(size
, GFP_KERNEL
);
2134 reg_write(ohci
, OHCI1394_IsoXmitIntMaskSet
, ~0);
2135 ohci
->ir_context_mask
= reg_read(ohci
, OHCI1394_IsoXmitIntMaskSet
);
2136 reg_write(ohci
, OHCI1394_IsoXmitIntMaskClear
, ~0);
2137 size
= sizeof(struct iso_context
) * hweight32(ohci
->ir_context_mask
);
2138 ohci
->ir_context_list
= kzalloc(size
, GFP_KERNEL
);
2140 if (ohci
->it_context_list
== NULL
|| ohci
->ir_context_list
== NULL
) {
2141 fw_error("Out of memory for it/ir contexts.\n");
2143 goto fail_registers
;
2146 /* self-id dma buffer allocation */
2147 ohci
->self_id_cpu
= dma_alloc_coherent(ohci
->card
.device
,
2151 if (ohci
->self_id_cpu
== NULL
) {
2152 fw_error("Out of memory for self ID buffer.\n");
2154 goto fail_registers
;
2157 bus_options
= reg_read(ohci
, OHCI1394_BusOptions
);
2158 max_receive
= (bus_options
>> 12) & 0xf;
2159 link_speed
= bus_options
& 0x7;
2160 guid
= ((u64
) reg_read(ohci
, OHCI1394_GUIDHi
) << 32) |
2161 reg_read(ohci
, OHCI1394_GUIDLo
);
2163 err
= fw_card_add(&ohci
->card
, max_receive
, link_speed
, guid
);
2167 ohci
->version
= reg_read(ohci
, OHCI1394_Version
) & 0x00ff00ff;
2168 fw_notify("Added fw-ohci device %s, OHCI version %x.%x\n",
2169 dev
->dev
.bus_id
, ohci
->version
>> 16, ohci
->version
& 0xff);
2173 dma_free_coherent(ohci
->card
.device
, SELF_ID_BUF_SIZE
,
2174 ohci
->self_id_cpu
, ohci
->self_id_bus
);
2176 kfree(ohci
->it_context_list
);
2177 kfree(ohci
->ir_context_list
);
2178 pci_iounmap(dev
, ohci
->registers
);
2180 pci_release_region(dev
, 0);
2182 pci_disable_device(dev
);
2184 fw_card_put(&ohci
->card
);
2189 static void pci_remove(struct pci_dev
*dev
)
2191 struct fw_ohci
*ohci
;
2193 ohci
= pci_get_drvdata(dev
);
2194 reg_write(ohci
, OHCI1394_IntMaskClear
, ~0);
2196 fw_core_remove_card(&ohci
->card
);
2199 * FIXME: Fail all pending packets here, now that the upper
2200 * layers can't queue any more.
2203 software_reset(ohci
);
2204 free_irq(dev
->irq
, ohci
);
2205 dma_free_coherent(ohci
->card
.device
, SELF_ID_BUF_SIZE
,
2206 ohci
->self_id_cpu
, ohci
->self_id_bus
);
2207 kfree(ohci
->it_context_list
);
2208 kfree(ohci
->ir_context_list
);
2209 pci_iounmap(dev
, ohci
->registers
);
2210 pci_release_region(dev
, 0);
2211 pci_disable_device(dev
);
2212 fw_card_put(&ohci
->card
);
2214 #ifdef CONFIG_PPC_PMAC
2215 /* On UniNorth, power down the cable and turn off the chip clock
2216 * to save power on laptops */
2217 if (machine_is(powermac
)) {
2218 struct device_node
*ofn
= pci_device_to_OF_node(dev
);
2221 pmac_call_feature(PMAC_FTR_1394_ENABLE
, ofn
, 0, 0);
2222 pmac_call_feature(PMAC_FTR_1394_CABLE_POWER
, ofn
, 0, 0);
2225 #endif /* CONFIG_PPC_PMAC */
2227 fw_notify("Removed fw-ohci device.\n");
2231 static int pci_suspend(struct pci_dev
*pdev
, pm_message_t state
)
2233 struct fw_ohci
*ohci
= pci_get_drvdata(pdev
);
2236 software_reset(ohci
);
2237 free_irq(pdev
->irq
, ohci
);
2238 err
= pci_save_state(pdev
);
2240 fw_error("pci_save_state failed\n");
2243 err
= pci_set_power_state(pdev
, pci_choose_state(pdev
, state
));
2245 fw_error("pci_set_power_state failed with %d\n", err
);
2247 /* PowerMac suspend code comes last */
2248 #ifdef CONFIG_PPC_PMAC
2249 if (machine_is(powermac
)) {
2250 struct device_node
*ofn
= pci_device_to_OF_node(pdev
);
2253 pmac_call_feature(PMAC_FTR_1394_ENABLE
, ofn
, 0, 0);
2255 #endif /* CONFIG_PPC_PMAC */
2260 static int pci_resume(struct pci_dev
*pdev
)
2262 struct fw_ohci
*ohci
= pci_get_drvdata(pdev
);
2265 /* PowerMac resume code comes first */
2266 #ifdef CONFIG_PPC_PMAC
2267 if (machine_is(powermac
)) {
2268 struct device_node
*ofn
= pci_device_to_OF_node(pdev
);
2271 pmac_call_feature(PMAC_FTR_1394_ENABLE
, ofn
, 0, 1);
2273 #endif /* CONFIG_PPC_PMAC */
2275 pci_set_power_state(pdev
, PCI_D0
);
2276 pci_restore_state(pdev
);
2277 err
= pci_enable_device(pdev
);
2279 fw_error("pci_enable_device failed\n");
2283 return ohci_enable(&ohci
->card
, NULL
, 0);
2287 static struct pci_device_id pci_table
[] = {
2288 { PCI_DEVICE_CLASS(PCI_CLASS_SERIAL_FIREWIRE_OHCI
, ~0) },
2292 MODULE_DEVICE_TABLE(pci
, pci_table
);
2294 static struct pci_driver fw_ohci_pci_driver
= {
2295 .name
= ohci_driver_name
,
2296 .id_table
= pci_table
,
2298 .remove
= pci_remove
,
2300 .resume
= pci_resume
,
2301 .suspend
= pci_suspend
,
2305 MODULE_AUTHOR("Kristian Hoegsberg <krh@bitplanet.net>");
2306 MODULE_DESCRIPTION("Driver for PCI OHCI IEEE1394 controllers");
2307 MODULE_LICENSE("GPL");
2309 /* Provide a module alias so root-on-sbp2 initrds don't break. */
2310 #ifndef CONFIG_IEEE1394_OHCI1394_MODULE
2311 MODULE_ALIAS("ohci1394");
2314 static int __init
fw_ohci_init(void)
2316 return pci_register_driver(&fw_ohci_pci_driver
);
2319 static void __exit
fw_ohci_cleanup(void)
2321 pci_unregister_driver(&fw_ohci_pci_driver
);
2324 module_init(fw_ohci_init
);
2325 module_exit(fw_ohci_cleanup
);