4 * Basic PIO and command management functionality.
6 * This code was split off from ide.c. See ide.c for history and original
9 * This program is free software; you can redistribute it and/or modify it
10 * under the terms of the GNU General Public License as published by the
11 * Free Software Foundation; either version 2, or (at your option) any
14 * This program is distributed in the hope that it will be useful, but
15 * WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
17 * General Public License for more details.
19 * For the avoidance of doubt the "preferred form" of this code is one which
20 * is in an open non patent encumbered format. Where cryptographic key signing
21 * forms part of the process of creating an executable the information
22 * including keys needed to generate an equivalently functional executable
23 * are deemed to be part of the source code.
27 #include <linux/module.h>
28 #include <linux/types.h>
29 #include <linux/string.h>
30 #include <linux/kernel.h>
31 #include <linux/timer.h>
33 #include <linux/interrupt.h>
34 #include <linux/major.h>
35 #include <linux/errno.h>
36 #include <linux/genhd.h>
37 #include <linux/blkpg.h>
38 #include <linux/slab.h>
39 #include <linux/init.h>
40 #include <linux/pci.h>
41 #include <linux/delay.h>
42 #include <linux/ide.h>
43 #include <linux/completion.h>
44 #include <linux/reboot.h>
45 #include <linux/cdrom.h>
46 #include <linux/seq_file.h>
47 #include <linux/device.h>
48 #include <linux/kmod.h>
49 #include <linux/scatterlist.h>
50 #include <linux/bitops.h>
52 #include <asm/byteorder.h>
54 #include <asm/uaccess.h>
57 static int __ide_end_request(ide_drive_t
*drive
, struct request
*rq
,
58 int uptodate
, unsigned int nr_bytes
, int dequeue
)
63 * if failfast is set on a request, override number of sectors and
64 * complete the whole request right now
66 if (blk_noretry_request(rq
) && end_io_error(uptodate
))
67 nr_bytes
= rq
->hard_nr_sectors
<< 9;
69 if (!blk_fs_request(rq
) && end_io_error(uptodate
) && !rq
->errors
)
73 * decide whether to reenable DMA -- 3 is a random magic for now,
74 * if we DMA timeout more than 3 times, just stay in PIO
76 if (drive
->state
== DMA_PIO_RETRY
&& drive
->retry_pio
<= 3) {
78 HWGROUP(drive
)->hwif
->ide_dma_on(drive
);
81 if (!end_that_request_chunk(rq
, uptodate
, nr_bytes
)) {
82 add_disk_randomness(rq
->rq_disk
);
84 if (!list_empty(&rq
->queuelist
))
85 blkdev_dequeue_request(rq
);
86 HWGROUP(drive
)->rq
= NULL
;
88 end_that_request_last(rq
, uptodate
);
96 * ide_end_request - complete an IDE I/O
97 * @drive: IDE device for the I/O
99 * @nr_sectors: number of sectors completed
101 * This is our end_request wrapper function. We complete the I/O
102 * update random number input and dequeue the request, which if
103 * it was tagged may be out of order.
106 int ide_end_request (ide_drive_t
*drive
, int uptodate
, int nr_sectors
)
108 unsigned int nr_bytes
= nr_sectors
<< 9;
114 * room for locking improvements here, the calls below don't
115 * need the queue lock held at all
117 spin_lock_irqsave(&ide_lock
, flags
);
118 rq
= HWGROUP(drive
)->rq
;
121 if (blk_pc_request(rq
))
122 nr_bytes
= rq
->data_len
;
124 nr_bytes
= rq
->hard_cur_sectors
<< 9;
127 ret
= __ide_end_request(drive
, rq
, uptodate
, nr_bytes
, 1);
129 spin_unlock_irqrestore(&ide_lock
, flags
);
132 EXPORT_SYMBOL(ide_end_request
);
135 * Power Management state machine. This one is rather trivial for now,
136 * we should probably add more, like switching back to PIO on suspend
137 * to help some BIOSes, re-do the door locking on resume, etc...
141 ide_pm_flush_cache
= ide_pm_state_start_suspend
,
144 idedisk_pm_restore_pio
= ide_pm_state_start_resume
,
149 static void ide_complete_power_step(ide_drive_t
*drive
, struct request
*rq
, u8 stat
, u8 error
)
151 struct request_pm_state
*pm
= rq
->data
;
153 if (drive
->media
!= ide_disk
)
156 switch (pm
->pm_step
) {
157 case ide_pm_flush_cache
: /* Suspend step 1 (flush cache) complete */
158 if (pm
->pm_state
== PM_EVENT_FREEZE
)
159 pm
->pm_step
= ide_pm_state_completed
;
161 pm
->pm_step
= idedisk_pm_standby
;
163 case idedisk_pm_standby
: /* Suspend step 2 (standby) complete */
164 pm
->pm_step
= ide_pm_state_completed
;
166 case idedisk_pm_restore_pio
: /* Resume step 1 complete */
167 pm
->pm_step
= idedisk_pm_idle
;
169 case idedisk_pm_idle
: /* Resume step 2 (idle) complete */
170 pm
->pm_step
= ide_pm_restore_dma
;
175 static ide_startstop_t
ide_start_power_step(ide_drive_t
*drive
, struct request
*rq
)
177 struct request_pm_state
*pm
= rq
->data
;
178 ide_task_t
*args
= rq
->special
;
180 memset(args
, 0, sizeof(*args
));
182 switch (pm
->pm_step
) {
183 case ide_pm_flush_cache
: /* Suspend step 1 (flush cache) */
184 if (drive
->media
!= ide_disk
)
186 /* Not supported? Switch to next step now. */
187 if (!drive
->wcache
|| !ide_id_has_flush_cache(drive
->id
)) {
188 ide_complete_power_step(drive
, rq
, 0, 0);
191 if (ide_id_has_flush_cache_ext(drive
->id
))
192 args
->tf
.command
= WIN_FLUSH_CACHE_EXT
;
194 args
->tf
.command
= WIN_FLUSH_CACHE
;
197 case idedisk_pm_standby
: /* Suspend step 2 (standby) */
198 args
->tf
.command
= WIN_STANDBYNOW1
;
201 case idedisk_pm_restore_pio
: /* Resume step 1 (restore PIO) */
202 ide_set_max_pio(drive
);
204 * skip idedisk_pm_idle for ATAPI devices
206 if (drive
->media
!= ide_disk
)
207 pm
->pm_step
= ide_pm_restore_dma
;
209 ide_complete_power_step(drive
, rq
, 0, 0);
212 case idedisk_pm_idle
: /* Resume step 2 (idle) */
213 args
->tf
.command
= WIN_IDLEIMMEDIATE
;
216 case ide_pm_restore_dma
: /* Resume step 3 (restore DMA) */
218 * Right now, all we do is call ide_set_dma(drive),
219 * we could be smarter and check for current xfer_speed
220 * in struct drive etc...
222 if (drive
->hwif
->ide_dma_on
== NULL
)
224 drive
->hwif
->dma_off_quietly(drive
);
226 * TODO: respect ->using_dma setting
231 pm
->pm_step
= ide_pm_state_completed
;
235 args
->tf_flags
= IDE_TFLAG_OUT_TF
| IDE_TFLAG_OUT_DEVICE
;
236 args
->data_phase
= TASKFILE_NO_DATA
;
237 return do_rw_taskfile(drive
, args
);
241 * ide_end_dequeued_request - complete an IDE I/O
242 * @drive: IDE device for the I/O
244 * @nr_sectors: number of sectors completed
246 * Complete an I/O that is no longer on the request queue. This
247 * typically occurs when we pull the request and issue a REQUEST_SENSE.
248 * We must still finish the old request but we must not tamper with the
249 * queue in the meantime.
251 * NOTE: This path does not handle barrier, but barrier is not supported
255 int ide_end_dequeued_request(ide_drive_t
*drive
, struct request
*rq
,
256 int uptodate
, int nr_sectors
)
261 spin_lock_irqsave(&ide_lock
, flags
);
262 BUG_ON(!blk_rq_started(rq
));
263 ret
= __ide_end_request(drive
, rq
, uptodate
, nr_sectors
<< 9, 0);
264 spin_unlock_irqrestore(&ide_lock
, flags
);
268 EXPORT_SYMBOL_GPL(ide_end_dequeued_request
);
272 * ide_complete_pm_request - end the current Power Management request
273 * @drive: target drive
276 * This function cleans up the current PM request and stops the queue
279 static void ide_complete_pm_request (ide_drive_t
*drive
, struct request
*rq
)
284 printk("%s: completing PM request, %s\n", drive
->name
,
285 blk_pm_suspend_request(rq
) ? "suspend" : "resume");
287 spin_lock_irqsave(&ide_lock
, flags
);
288 if (blk_pm_suspend_request(rq
)) {
289 blk_stop_queue(drive
->queue
);
292 blk_start_queue(drive
->queue
);
294 blkdev_dequeue_request(rq
);
295 HWGROUP(drive
)->rq
= NULL
;
296 end_that_request_last(rq
, 1);
297 spin_unlock_irqrestore(&ide_lock
, flags
);
301 * ide_end_drive_cmd - end an explicit drive command
306 * Clean up after success/failure of an explicit drive command.
307 * These get thrown onto the queue so they are synchronized with
308 * real I/O operations on the drive.
310 * In LBA48 mode we have to read the register set twice to get
311 * all the extra information out.
314 void ide_end_drive_cmd (ide_drive_t
*drive
, u8 stat
, u8 err
)
316 ide_hwif_t
*hwif
= HWIF(drive
);
320 spin_lock_irqsave(&ide_lock
, flags
);
321 rq
= HWGROUP(drive
)->rq
;
322 spin_unlock_irqrestore(&ide_lock
, flags
);
324 if (rq
->cmd_type
== REQ_TYPE_ATA_CMD
) {
325 u8
*args
= (u8
*) rq
->buffer
;
327 rq
->errors
= !OK_STAT(stat
,READY_STAT
,BAD_STAT
);
332 args
[2] = hwif
->INB(IDE_NSECTOR_REG
);
334 } else if (rq
->cmd_type
== REQ_TYPE_ATA_TASKFILE
) {
335 ide_task_t
*args
= (ide_task_t
*) rq
->special
;
337 rq
->errors
= !OK_STAT(stat
,READY_STAT
,BAD_STAT
);
340 struct ide_taskfile
*tf
= &args
->tf
;
342 if (args
->tf_flags
& IDE_TFLAG_IN_DATA
) {
343 u16 data
= hwif
->INW(IDE_DATA_REG
);
345 tf
->data
= data
& 0xff;
346 tf
->hob_data
= (data
>> 8) & 0xff;
349 /* be sure we're looking at the low order bits */
350 hwif
->OUTB(drive
->ctl
& ~0x80, IDE_CONTROL_REG
);
351 tf
->nsect
= hwif
->INB(IDE_NSECTOR_REG
);
352 tf
->lbal
= hwif
->INB(IDE_SECTOR_REG
);
353 tf
->lbam
= hwif
->INB(IDE_LCYL_REG
);
354 tf
->lbah
= hwif
->INB(IDE_HCYL_REG
);
355 tf
->device
= hwif
->INB(IDE_SELECT_REG
);
358 if (args
->tf_flags
& IDE_TFLAG_LBA48
) {
359 hwif
->OUTB(drive
->ctl
|0x80, IDE_CONTROL_REG
);
360 tf
->hob_feature
= hwif
->INB(IDE_FEATURE_REG
);
361 tf
->hob_nsect
= hwif
->INB(IDE_NSECTOR_REG
);
362 tf
->hob_lbal
= hwif
->INB(IDE_SECTOR_REG
);
363 tf
->hob_lbam
= hwif
->INB(IDE_LCYL_REG
);
364 tf
->hob_lbah
= hwif
->INB(IDE_HCYL_REG
);
367 } else if (blk_pm_request(rq
)) {
368 struct request_pm_state
*pm
= rq
->data
;
370 printk("%s: complete_power_step(step: %d, stat: %x, err: %x)\n",
371 drive
->name
, rq
->pm
->pm_step
, stat
, err
);
373 ide_complete_power_step(drive
, rq
, stat
, err
);
374 if (pm
->pm_step
== ide_pm_state_completed
)
375 ide_complete_pm_request(drive
, rq
);
379 spin_lock_irqsave(&ide_lock
, flags
);
380 blkdev_dequeue_request(rq
);
381 HWGROUP(drive
)->rq
= NULL
;
383 end_that_request_last(rq
, !rq
->errors
);
384 spin_unlock_irqrestore(&ide_lock
, flags
);
387 EXPORT_SYMBOL(ide_end_drive_cmd
);
390 * try_to_flush_leftover_data - flush junk
391 * @drive: drive to flush
393 * try_to_flush_leftover_data() is invoked in response to a drive
394 * unexpectedly having its DRQ_STAT bit set. As an alternative to
395 * resetting the drive, this routine tries to clear the condition
396 * by read a sector's worth of data from the drive. Of course,
397 * this may not help if the drive is *waiting* for data from *us*.
399 static void try_to_flush_leftover_data (ide_drive_t
*drive
)
401 int i
= (drive
->mult_count
? drive
->mult_count
: 1) * SECTOR_WORDS
;
403 if (drive
->media
!= ide_disk
)
407 u32 wcount
= (i
> 16) ? 16 : i
;
410 HWIF(drive
)->ata_input_data(drive
, buffer
, wcount
);
414 static void ide_kill_rq(ide_drive_t
*drive
, struct request
*rq
)
419 drv
= *(ide_driver_t
**)rq
->rq_disk
->private_data
;
420 drv
->end_request(drive
, 0, 0);
422 ide_end_request(drive
, 0, 0);
425 static ide_startstop_t
ide_ata_error(ide_drive_t
*drive
, struct request
*rq
, u8 stat
, u8 err
)
427 ide_hwif_t
*hwif
= drive
->hwif
;
429 if (stat
& BUSY_STAT
|| ((stat
& WRERR_STAT
) && !drive
->nowerr
)) {
430 /* other bits are useless when BUSY */
431 rq
->errors
|= ERROR_RESET
;
432 } else if (stat
& ERR_STAT
) {
433 /* err has different meaning on cdrom and tape */
434 if (err
== ABRT_ERR
) {
435 if (drive
->select
.b
.lba
&&
436 /* some newer drives don't support WIN_SPECIFY */
437 hwif
->INB(IDE_COMMAND_REG
) == WIN_SPECIFY
)
439 } else if ((err
& BAD_CRC
) == BAD_CRC
) {
440 /* UDMA crc error, just retry the operation */
442 } else if (err
& (BBD_ERR
| ECC_ERR
)) {
443 /* retries won't help these */
444 rq
->errors
= ERROR_MAX
;
445 } else if (err
& TRK0_ERR
) {
446 /* help it find track zero */
447 rq
->errors
|= ERROR_RECAL
;
451 if ((stat
& DRQ_STAT
) && rq_data_dir(rq
) == READ
&&
452 (hwif
->host_flags
& IDE_HFLAG_ERROR_STOPS_FIFO
) == 0)
453 try_to_flush_leftover_data(drive
);
455 if (rq
->errors
>= ERROR_MAX
|| blk_noretry_request(rq
)) {
456 ide_kill_rq(drive
, rq
);
460 if (hwif
->INB(IDE_STATUS_REG
) & (BUSY_STAT
|DRQ_STAT
))
461 rq
->errors
|= ERROR_RESET
;
463 if ((rq
->errors
& ERROR_RESET
) == ERROR_RESET
) {
465 return ide_do_reset(drive
);
468 if ((rq
->errors
& ERROR_RECAL
) == ERROR_RECAL
)
469 drive
->special
.b
.recalibrate
= 1;
476 static ide_startstop_t
ide_atapi_error(ide_drive_t
*drive
, struct request
*rq
, u8 stat
, u8 err
)
478 ide_hwif_t
*hwif
= drive
->hwif
;
480 if (stat
& BUSY_STAT
|| ((stat
& WRERR_STAT
) && !drive
->nowerr
)) {
481 /* other bits are useless when BUSY */
482 rq
->errors
|= ERROR_RESET
;
484 /* add decoding error stuff */
487 if (hwif
->INB(IDE_STATUS_REG
) & (BUSY_STAT
|DRQ_STAT
))
489 hwif
->OUTB(WIN_IDLEIMMEDIATE
, IDE_COMMAND_REG
);
491 if (rq
->errors
>= ERROR_MAX
) {
492 ide_kill_rq(drive
, rq
);
494 if ((rq
->errors
& ERROR_RESET
) == ERROR_RESET
) {
496 return ide_do_reset(drive
);
505 __ide_error(ide_drive_t
*drive
, struct request
*rq
, u8 stat
, u8 err
)
507 if (drive
->media
== ide_disk
)
508 return ide_ata_error(drive
, rq
, stat
, err
);
509 return ide_atapi_error(drive
, rq
, stat
, err
);
512 EXPORT_SYMBOL_GPL(__ide_error
);
515 * ide_error - handle an error on the IDE
516 * @drive: drive the error occurred on
517 * @msg: message to report
520 * ide_error() takes action based on the error returned by the drive.
521 * For normal I/O that may well include retries. We deal with
522 * both new-style (taskfile) and old style command handling here.
523 * In the case of taskfile command handling there is work left to
527 ide_startstop_t
ide_error (ide_drive_t
*drive
, const char *msg
, u8 stat
)
532 err
= ide_dump_status(drive
, msg
, stat
);
534 if ((rq
= HWGROUP(drive
)->rq
) == NULL
)
537 /* retry only "normal" I/O: */
538 if (!blk_fs_request(rq
)) {
540 ide_end_drive_cmd(drive
, stat
, err
);
547 drv
= *(ide_driver_t
**)rq
->rq_disk
->private_data
;
548 return drv
->error(drive
, rq
, stat
, err
);
550 return __ide_error(drive
, rq
, stat
, err
);
553 EXPORT_SYMBOL_GPL(ide_error
);
555 ide_startstop_t
__ide_abort(ide_drive_t
*drive
, struct request
*rq
)
557 if (drive
->media
!= ide_disk
)
558 rq
->errors
|= ERROR_RESET
;
560 ide_kill_rq(drive
, rq
);
565 EXPORT_SYMBOL_GPL(__ide_abort
);
568 * ide_abort - abort pending IDE operations
569 * @drive: drive the error occurred on
570 * @msg: message to report
572 * ide_abort kills and cleans up when we are about to do a
573 * host initiated reset on active commands. Longer term we
574 * want handlers to have sensible abort handling themselves
576 * This differs fundamentally from ide_error because in
577 * this case the command is doing just fine when we
581 ide_startstop_t
ide_abort(ide_drive_t
*drive
, const char *msg
)
585 if (drive
== NULL
|| (rq
= HWGROUP(drive
)->rq
) == NULL
)
588 /* retry only "normal" I/O: */
589 if (!blk_fs_request(rq
)) {
591 ide_end_drive_cmd(drive
, BUSY_STAT
, 0);
598 drv
= *(ide_driver_t
**)rq
->rq_disk
->private_data
;
599 return drv
->abort(drive
, rq
);
601 return __ide_abort(drive
, rq
);
605 * drive_cmd_intr - drive command completion interrupt
606 * @drive: drive the completion interrupt occurred on
608 * drive_cmd_intr() is invoked on completion of a special DRIVE_CMD.
609 * We do any necessary data reading and then wait for the drive to
610 * go non busy. At that point we may read the error data and complete
614 static ide_startstop_t
drive_cmd_intr (ide_drive_t
*drive
)
616 struct request
*rq
= HWGROUP(drive
)->rq
;
617 ide_hwif_t
*hwif
= HWIF(drive
);
618 u8
*args
= (u8
*) rq
->buffer
;
619 u8 stat
= hwif
->INB(IDE_STATUS_REG
);
622 local_irq_enable_in_hardirq();
623 if (rq
->cmd_type
== REQ_TYPE_ATA_CMD
&&
624 (stat
& DRQ_STAT
) && args
&& args
[3]) {
625 u8 io_32bit
= drive
->io_32bit
;
627 hwif
->ata_input_data(drive
, &args
[4], args
[3] * SECTOR_WORDS
);
628 drive
->io_32bit
= io_32bit
;
629 while (((stat
= hwif
->INB(IDE_STATUS_REG
)) & BUSY_STAT
) && retries
--)
633 if (!OK_STAT(stat
, READY_STAT
, BAD_STAT
))
634 return ide_error(drive
, "drive_cmd", stat
);
635 /* calls ide_end_drive_cmd */
636 ide_end_drive_cmd(drive
, stat
, hwif
->INB(IDE_ERROR_REG
));
640 static void ide_init_specify_cmd(ide_drive_t
*drive
, ide_task_t
*task
)
642 task
->tf
.nsect
= drive
->sect
;
643 task
->tf
.lbal
= drive
->sect
;
644 task
->tf
.lbam
= drive
->cyl
;
645 task
->tf
.lbah
= drive
->cyl
>> 8;
646 task
->tf
.device
= ((drive
->head
- 1) | drive
->select
.all
) & ~ATA_LBA
;
647 task
->tf
.command
= WIN_SPECIFY
;
649 task
->handler
= &set_geometry_intr
;
652 static void ide_init_restore_cmd(ide_drive_t
*drive
, ide_task_t
*task
)
654 task
->tf
.nsect
= drive
->sect
;
655 task
->tf
.command
= WIN_RESTORE
;
657 task
->handler
= &recal_intr
;
660 static void ide_init_setmult_cmd(ide_drive_t
*drive
, ide_task_t
*task
)
662 task
->tf
.nsect
= drive
->mult_req
;
663 task
->tf
.command
= WIN_SETMULT
;
665 task
->handler
= &set_multmode_intr
;
668 static ide_startstop_t
ide_disk_special(ide_drive_t
*drive
)
670 special_t
*s
= &drive
->special
;
673 memset(&args
, 0, sizeof(ide_task_t
));
674 args
.data_phase
= TASKFILE_NO_DATA
;
676 if (s
->b
.set_geometry
) {
677 s
->b
.set_geometry
= 0;
678 ide_init_specify_cmd(drive
, &args
);
679 } else if (s
->b
.recalibrate
) {
680 s
->b
.recalibrate
= 0;
681 ide_init_restore_cmd(drive
, &args
);
682 } else if (s
->b
.set_multmode
) {
683 s
->b
.set_multmode
= 0;
684 if (drive
->mult_req
> drive
->id
->max_multsect
)
685 drive
->mult_req
= drive
->id
->max_multsect
;
686 ide_init_setmult_cmd(drive
, &args
);
688 int special
= s
->all
;
690 printk(KERN_ERR
"%s: bad special flag: 0x%02x\n", drive
->name
, special
);
694 args
.tf_flags
= IDE_TFLAG_OUT_TF
| IDE_TFLAG_OUT_DEVICE
;
696 do_rw_taskfile(drive
, &args
);
702 * handle HDIO_SET_PIO_MODE ioctl abusers here, eventually it will go away
704 static int set_pio_mode_abuse(ide_hwif_t
*hwif
, u8 req_pio
)
713 return (hwif
->host_flags
& IDE_HFLAG_ABUSE_DMA_MODES
) ? 1 : 0;
716 return (hwif
->host_flags
& IDE_HFLAG_ABUSE_PREFETCH
) ? 1 : 0;
719 return (hwif
->host_flags
& IDE_HFLAG_ABUSE_FAST_DEVSEL
) ? 1 : 0;
726 * do_special - issue some special commands
727 * @drive: drive the command is for
729 * do_special() is used to issue WIN_SPECIFY, WIN_RESTORE, and WIN_SETMULT
730 * commands to a drive. It used to do much more, but has been scaled
734 static ide_startstop_t
do_special (ide_drive_t
*drive
)
736 special_t
*s
= &drive
->special
;
739 printk("%s: do_special: 0x%02x\n", drive
->name
, s
->all
);
742 ide_hwif_t
*hwif
= drive
->hwif
;
743 u8 req_pio
= drive
->tune_req
;
747 if (set_pio_mode_abuse(drive
->hwif
, req_pio
)) {
749 if (hwif
->set_pio_mode
== NULL
)
753 * take ide_lock for drive->[no_]unmask/[no_]io_32bit
755 if (req_pio
== 8 || req_pio
== 9) {
758 spin_lock_irqsave(&ide_lock
, flags
);
759 hwif
->set_pio_mode(drive
, req_pio
);
760 spin_unlock_irqrestore(&ide_lock
, flags
);
762 hwif
->set_pio_mode(drive
, req_pio
);
764 int keep_dma
= drive
->using_dma
;
766 ide_set_pio(drive
, req_pio
);
768 if (hwif
->host_flags
& IDE_HFLAG_SET_PIO_MODE_KEEP_DMA
) {
770 hwif
->ide_dma_on(drive
);
776 if (drive
->media
== ide_disk
)
777 return ide_disk_special(drive
);
785 void ide_map_sg(ide_drive_t
*drive
, struct request
*rq
)
787 ide_hwif_t
*hwif
= drive
->hwif
;
788 struct scatterlist
*sg
= hwif
->sg_table
;
790 if (hwif
->sg_mapped
) /* needed by ide-scsi */
793 if (rq
->cmd_type
!= REQ_TYPE_ATA_TASKFILE
) {
794 hwif
->sg_nents
= blk_rq_map_sg(drive
->queue
, rq
, sg
);
796 sg_init_one(sg
, rq
->buffer
, rq
->nr_sectors
* SECTOR_SIZE
);
801 EXPORT_SYMBOL_GPL(ide_map_sg
);
803 void ide_init_sg_cmd(ide_drive_t
*drive
, struct request
*rq
)
805 ide_hwif_t
*hwif
= drive
->hwif
;
807 hwif
->nsect
= hwif
->nleft
= rq
->nr_sectors
;
812 EXPORT_SYMBOL_GPL(ide_init_sg_cmd
);
815 * execute_drive_command - issue special drive command
816 * @drive: the drive to issue the command on
817 * @rq: the request structure holding the command
819 * execute_drive_cmd() issues a special drive command, usually
820 * initiated by ioctl() from the external hdparm program. The
821 * command can be a drive command, drive task or taskfile
822 * operation. Weirdly you can call it with NULL to wait for
823 * all commands to finish. Don't do this as that is due to change
826 static ide_startstop_t
execute_drive_cmd (ide_drive_t
*drive
,
829 ide_hwif_t
*hwif
= HWIF(drive
);
830 u8
*args
= rq
->buffer
;
832 struct ide_taskfile
*tf
= <ask
.tf
;
834 if (rq
->cmd_type
== REQ_TYPE_ATA_TASKFILE
) {
835 ide_task_t
*task
= rq
->special
;
840 hwif
->data_phase
= task
->data_phase
;
842 switch (hwif
->data_phase
) {
843 case TASKFILE_MULTI_OUT
:
845 case TASKFILE_MULTI_IN
:
847 ide_init_sg_cmd(drive
, rq
);
848 ide_map_sg(drive
, rq
);
853 return do_rw_taskfile(drive
, task
);
859 memset(<ask
, 0, sizeof(ltask
));
860 if (rq
->cmd_type
== REQ_TYPE_ATA_CMD
) {
862 printk("%s: DRIVE_CMD\n", drive
->name
);
864 tf
->feature
= args
[2];
865 if (args
[0] == WIN_SMART
) {
870 ltask
.tf_flags
= IDE_TFLAG_OUT_TF
;
873 ltask
.tf_flags
= IDE_TFLAG_OUT_FEATURE
|
877 tf
->command
= args
[0];
878 ide_tf_load(drive
, <ask
);
879 ide_execute_command(drive
, args
[0], &drive_cmd_intr
, WAIT_WORSTCASE
, NULL
);
884 * NULL is actually a valid way of waiting for
885 * all current requests to be flushed from the queue.
888 printk("%s: DRIVE_CMD (null)\n", drive
->name
);
890 ide_end_drive_cmd(drive
,
891 hwif
->INB(IDE_STATUS_REG
),
892 hwif
->INB(IDE_ERROR_REG
));
896 static void ide_check_pm_state(ide_drive_t
*drive
, struct request
*rq
)
898 struct request_pm_state
*pm
= rq
->data
;
900 if (blk_pm_suspend_request(rq
) &&
901 pm
->pm_step
== ide_pm_state_start_suspend
)
902 /* Mark drive blocked when starting the suspend sequence. */
904 else if (blk_pm_resume_request(rq
) &&
905 pm
->pm_step
== ide_pm_state_start_resume
) {
907 * The first thing we do on wakeup is to wait for BSY bit to
908 * go away (with a looong timeout) as a drive on this hwif may
909 * just be POSTing itself.
910 * We do that before even selecting as the "other" device on
911 * the bus may be broken enough to walk on our toes at this
916 printk("%s: Wakeup request inited, waiting for !BSY...\n", drive
->name
);
918 rc
= ide_wait_not_busy(HWIF(drive
), 35000);
920 printk(KERN_WARNING
"%s: bus not ready on wakeup\n", drive
->name
);
923 HWIF(drive
)->OUTB(drive
->ctl
, IDE_CONTROL_REG
);
924 rc
= ide_wait_not_busy(HWIF(drive
), 100000);
926 printk(KERN_WARNING
"%s: drive not ready on wakeup\n", drive
->name
);
931 * start_request - start of I/O and command issuing for IDE
933 * start_request() initiates handling of a new I/O request. It
934 * accepts commands and I/O (read/write) requests. It also does
935 * the final remapping for weird stuff like EZDrive. Once
936 * device mapper can work sector level the EZDrive stuff can go away
938 * FIXME: this function needs a rename
941 static ide_startstop_t
start_request (ide_drive_t
*drive
, struct request
*rq
)
943 ide_startstop_t startstop
;
946 BUG_ON(!blk_rq_started(rq
));
949 printk("%s: start_request: current=0x%08lx\n",
950 HWIF(drive
)->name
, (unsigned long) rq
);
953 /* bail early if we've exceeded max_failures */
954 if (drive
->max_failures
&& (drive
->failures
> drive
->max_failures
)) {
955 rq
->cmd_flags
|= REQ_FAILED
;
960 if (blk_fs_request(rq
) &&
961 (drive
->media
== ide_disk
|| drive
->media
== ide_floppy
)) {
962 block
+= drive
->sect0
;
964 /* Yecch - this will shift the entire interval,
965 possibly killing some innocent following sector */
966 if (block
== 0 && drive
->remap_0_to_1
== 1)
967 block
= 1; /* redirect MBR access to EZ-Drive partn table */
969 if (blk_pm_request(rq
))
970 ide_check_pm_state(drive
, rq
);
973 if (ide_wait_stat(&startstop
, drive
, drive
->ready_stat
, BUSY_STAT
|DRQ_STAT
, WAIT_READY
)) {
974 printk(KERN_ERR
"%s: drive not ready for command\n", drive
->name
);
977 if (!drive
->special
.all
) {
981 * We reset the drive so we need to issue a SETFEATURES.
982 * Do it _after_ do_special() restored device parameters.
984 if (drive
->current_speed
== 0xff)
985 ide_config_drive_speed(drive
, drive
->desired_speed
);
987 if (rq
->cmd_type
== REQ_TYPE_ATA_CMD
||
988 rq
->cmd_type
== REQ_TYPE_ATA_TASKFILE
)
989 return execute_drive_cmd(drive
, rq
);
990 else if (blk_pm_request(rq
)) {
991 struct request_pm_state
*pm
= rq
->data
;
993 printk("%s: start_power_step(step: %d)\n",
994 drive
->name
, rq
->pm
->pm_step
);
996 startstop
= ide_start_power_step(drive
, rq
);
997 if (startstop
== ide_stopped
&&
998 pm
->pm_step
== ide_pm_state_completed
)
999 ide_complete_pm_request(drive
, rq
);
1003 drv
= *(ide_driver_t
**)rq
->rq_disk
->private_data
;
1004 return drv
->do_request(drive
, rq
, block
);
1006 return do_special(drive
);
1008 ide_kill_rq(drive
, rq
);
1013 * ide_stall_queue - pause an IDE device
1014 * @drive: drive to stall
1015 * @timeout: time to stall for (jiffies)
1017 * ide_stall_queue() can be used by a drive to give excess bandwidth back
1018 * to the hwgroup by sleeping for timeout jiffies.
1021 void ide_stall_queue (ide_drive_t
*drive
, unsigned long timeout
)
1023 if (timeout
> WAIT_WORSTCASE
)
1024 timeout
= WAIT_WORSTCASE
;
1025 drive
->sleep
= timeout
+ jiffies
;
1026 drive
->sleeping
= 1;
1029 EXPORT_SYMBOL(ide_stall_queue
);
1031 #define WAKEUP(drive) ((drive)->service_start + 2 * (drive)->service_time)
1034 * choose_drive - select a drive to service
1035 * @hwgroup: hardware group to select on
1037 * choose_drive() selects the next drive which will be serviced.
1038 * This is necessary because the IDE layer can't issue commands
1039 * to both drives on the same cable, unlike SCSI.
1042 static inline ide_drive_t
*choose_drive (ide_hwgroup_t
*hwgroup
)
1044 ide_drive_t
*drive
, *best
;
1048 drive
= hwgroup
->drive
;
1051 * drive is doing pre-flush, ordered write, post-flush sequence. even
1052 * though that is 3 requests, it must be seen as a single transaction.
1053 * we must not preempt this drive until that is complete
1055 if (blk_queue_flushing(drive
->queue
)) {
1057 * small race where queue could get replugged during
1058 * the 3-request flush cycle, just yank the plug since
1059 * we want it to finish asap
1061 blk_remove_plug(drive
->queue
);
1066 if ((!drive
->sleeping
|| time_after_eq(jiffies
, drive
->sleep
))
1067 && !elv_queue_empty(drive
->queue
)) {
1069 || (drive
->sleeping
&& (!best
->sleeping
|| time_before(drive
->sleep
, best
->sleep
)))
1070 || (!best
->sleeping
&& time_before(WAKEUP(drive
), WAKEUP(best
))))
1072 if (!blk_queue_plugged(drive
->queue
))
1076 } while ((drive
= drive
->next
) != hwgroup
->drive
);
1077 if (best
&& best
->nice1
&& !best
->sleeping
&& best
!= hwgroup
->drive
&& best
->service_time
> WAIT_MIN_SLEEP
) {
1078 long t
= (signed long)(WAKEUP(best
) - jiffies
);
1079 if (t
>= WAIT_MIN_SLEEP
) {
1081 * We *may* have some time to spare, but first let's see if
1082 * someone can potentially benefit from our nice mood today..
1086 if (!drive
->sleeping
1087 && time_before(jiffies
- best
->service_time
, WAKEUP(drive
))
1088 && time_before(WAKEUP(drive
), jiffies
+ t
))
1090 ide_stall_queue(best
, min_t(long, t
, 10 * WAIT_MIN_SLEEP
));
1093 } while ((drive
= drive
->next
) != best
);
1100 * Issue a new request to a drive from hwgroup
1101 * Caller must have already done spin_lock_irqsave(&ide_lock, ..);
1103 * A hwgroup is a serialized group of IDE interfaces. Usually there is
1104 * exactly one hwif (interface) per hwgroup, but buggy controllers (eg. CMD640)
1105 * may have both interfaces in a single hwgroup to "serialize" access.
1106 * Or possibly multiple ISA interfaces can share a common IRQ by being grouped
1107 * together into one hwgroup for serialized access.
1109 * Note also that several hwgroups can end up sharing a single IRQ,
1110 * possibly along with many other devices. This is especially common in
1111 * PCI-based systems with off-board IDE controller cards.
1113 * The IDE driver uses the single global ide_lock spinlock to protect
1114 * access to the request queues, and to protect the hwgroup->busy flag.
1116 * The first thread into the driver for a particular hwgroup sets the
1117 * hwgroup->busy flag to indicate that this hwgroup is now active,
1118 * and then initiates processing of the top request from the request queue.
1120 * Other threads attempting entry notice the busy setting, and will simply
1121 * queue their new requests and exit immediately. Note that hwgroup->busy
1122 * remains set even when the driver is merely awaiting the next interrupt.
1123 * Thus, the meaning is "this hwgroup is busy processing a request".
1125 * When processing of a request completes, the completing thread or IRQ-handler
1126 * will start the next request from the queue. If no more work remains,
1127 * the driver will clear the hwgroup->busy flag and exit.
1129 * The ide_lock (spinlock) is used to protect all access to the
1130 * hwgroup->busy flag, but is otherwise not needed for most processing in
1131 * the driver. This makes the driver much more friendlier to shared IRQs
1132 * than previous designs, while remaining 100% (?) SMP safe and capable.
1134 static void ide_do_request (ide_hwgroup_t
*hwgroup
, int masked_irq
)
1139 ide_startstop_t startstop
;
1142 /* for atari only: POSSIBLY BROKEN HERE(?) */
1143 ide_get_lock(ide_intr
, hwgroup
);
1145 /* caller must own ide_lock */
1146 BUG_ON(!irqs_disabled());
1148 while (!hwgroup
->busy
) {
1150 drive
= choose_drive(hwgroup
);
1151 if (drive
== NULL
) {
1153 unsigned long sleep
= 0; /* shut up, gcc */
1155 drive
= hwgroup
->drive
;
1157 if (drive
->sleeping
&& (!sleeping
|| time_before(drive
->sleep
, sleep
))) {
1159 sleep
= drive
->sleep
;
1161 } while ((drive
= drive
->next
) != hwgroup
->drive
);
1164 * Take a short snooze, and then wake up this hwgroup again.
1165 * This gives other hwgroups on the same a chance to
1166 * play fairly with us, just in case there are big differences
1167 * in relative throughputs.. don't want to hog the cpu too much.
1169 if (time_before(sleep
, jiffies
+ WAIT_MIN_SLEEP
))
1170 sleep
= jiffies
+ WAIT_MIN_SLEEP
;
1172 if (timer_pending(&hwgroup
->timer
))
1173 printk(KERN_CRIT
"ide_set_handler: timer already active\n");
1175 /* so that ide_timer_expiry knows what to do */
1176 hwgroup
->sleeping
= 1;
1177 hwgroup
->req_gen_timer
= hwgroup
->req_gen
;
1178 mod_timer(&hwgroup
->timer
, sleep
);
1179 /* we purposely leave hwgroup->busy==1
1182 /* Ugly, but how can we sleep for the lock
1183 * otherwise? perhaps from tq_disk?
1186 /* for atari only */
1191 /* no more work for this hwgroup (for now) */
1196 if (hwgroup
->hwif
->sharing_irq
&&
1197 hwif
!= hwgroup
->hwif
&&
1198 hwif
->io_ports
[IDE_CONTROL_OFFSET
]) {
1200 * set nIEN for previous hwif, drives in the
1201 * quirk_list may not like intr setups/cleanups
1203 if (drive
->quirk_list
!= 1)
1204 hwif
->OUTB(drive
->ctl
| 2, IDE_CONTROL_REG
);
1206 hwgroup
->hwif
= hwif
;
1207 hwgroup
->drive
= drive
;
1208 drive
->sleeping
= 0;
1209 drive
->service_start
= jiffies
;
1211 if (blk_queue_plugged(drive
->queue
)) {
1212 printk(KERN_ERR
"ide: huh? queue was plugged!\n");
1217 * we know that the queue isn't empty, but this can happen
1218 * if the q->prep_rq_fn() decides to kill a request
1220 rq
= elv_next_request(drive
->queue
);
1227 * Sanity: don't accept a request that isn't a PM request
1228 * if we are currently power managed. This is very important as
1229 * blk_stop_queue() doesn't prevent the elv_next_request()
1230 * above to return us whatever is in the queue. Since we call
1231 * ide_do_request() ourselves, we end up taking requests while
1232 * the queue is blocked...
1234 * We let requests forced at head of queue with ide-preempt
1235 * though. I hope that doesn't happen too much, hopefully not
1236 * unless the subdriver triggers such a thing in its own PM
1239 * We count how many times we loop here to make sure we service
1240 * all drives in the hwgroup without looping for ever
1242 if (drive
->blocked
&& !blk_pm_request(rq
) && !(rq
->cmd_flags
& REQ_PREEMPT
)) {
1243 drive
= drive
->next
? drive
->next
: hwgroup
->drive
;
1244 if (loops
++ < 4 && !blk_queue_plugged(drive
->queue
))
1246 /* We clear busy, there should be no pending ATA command at this point. */
1254 * Some systems have trouble with IDE IRQs arriving while
1255 * the driver is still setting things up. So, here we disable
1256 * the IRQ used by this interface while the request is being started.
1257 * This may look bad at first, but pretty much the same thing
1258 * happens anyway when any interrupt comes in, IDE or otherwise
1259 * -- the kernel masks the IRQ while it is being handled.
1261 if (masked_irq
!= IDE_NO_IRQ
&& hwif
->irq
!= masked_irq
)
1262 disable_irq_nosync(hwif
->irq
);
1263 spin_unlock(&ide_lock
);
1264 local_irq_enable_in_hardirq();
1265 /* allow other IRQs while we start this request */
1266 startstop
= start_request(drive
, rq
);
1267 spin_lock_irq(&ide_lock
);
1268 if (masked_irq
!= IDE_NO_IRQ
&& hwif
->irq
!= masked_irq
)
1269 enable_irq(hwif
->irq
);
1270 if (startstop
== ide_stopped
)
1276 * Passes the stuff to ide_do_request
1278 void do_ide_request(struct request_queue
*q
)
1280 ide_drive_t
*drive
= q
->queuedata
;
1282 ide_do_request(HWGROUP(drive
), IDE_NO_IRQ
);
1286 * un-busy the hwgroup etc, and clear any pending DMA status. we want to
1287 * retry the current request in pio mode instead of risking tossing it
1290 static ide_startstop_t
ide_dma_timeout_retry(ide_drive_t
*drive
, int error
)
1292 ide_hwif_t
*hwif
= HWIF(drive
);
1294 ide_startstop_t ret
= ide_stopped
;
1297 * end current dma transaction
1301 printk(KERN_WARNING
"%s: DMA timeout error\n", drive
->name
);
1302 (void)HWIF(drive
)->ide_dma_end(drive
);
1303 ret
= ide_error(drive
, "dma timeout error",
1304 hwif
->INB(IDE_STATUS_REG
));
1306 printk(KERN_WARNING
"%s: DMA timeout retry\n", drive
->name
);
1307 hwif
->dma_timeout(drive
);
1311 * disable dma for now, but remember that we did so because of
1312 * a timeout -- we'll reenable after we finish this next request
1313 * (or rather the first chunk of it) in pio.
1316 drive
->state
= DMA_PIO_RETRY
;
1317 hwif
->dma_off_quietly(drive
);
1320 * un-busy drive etc (hwgroup->busy is cleared on return) and
1321 * make sure request is sane
1323 rq
= HWGROUP(drive
)->rq
;
1328 HWGROUP(drive
)->rq
= NULL
;
1335 rq
->sector
= rq
->bio
->bi_sector
;
1336 rq
->current_nr_sectors
= bio_iovec(rq
->bio
)->bv_len
>> 9;
1337 rq
->hard_cur_sectors
= rq
->current_nr_sectors
;
1338 rq
->buffer
= bio_data(rq
->bio
);
1344 * ide_timer_expiry - handle lack of an IDE interrupt
1345 * @data: timer callback magic (hwgroup)
1347 * An IDE command has timed out before the expected drive return
1348 * occurred. At this point we attempt to clean up the current
1349 * mess. If the current handler includes an expiry handler then
1350 * we invoke the expiry handler, and providing it is happy the
1351 * work is done. If that fails we apply generic recovery rules
1352 * invoking the handler and checking the drive DMA status. We
1353 * have an excessively incestuous relationship with the DMA
1354 * logic that wants cleaning up.
1357 void ide_timer_expiry (unsigned long data
)
1359 ide_hwgroup_t
*hwgroup
= (ide_hwgroup_t
*) data
;
1360 ide_handler_t
*handler
;
1361 ide_expiry_t
*expiry
;
1362 unsigned long flags
;
1363 unsigned long wait
= -1;
1365 spin_lock_irqsave(&ide_lock
, flags
);
1367 if (((handler
= hwgroup
->handler
) == NULL
) ||
1368 (hwgroup
->req_gen
!= hwgroup
->req_gen_timer
)) {
1370 * Either a marginal timeout occurred
1371 * (got the interrupt just as timer expired),
1372 * or we were "sleeping" to give other devices a chance.
1373 * Either way, we don't really want to complain about anything.
1375 if (hwgroup
->sleeping
) {
1376 hwgroup
->sleeping
= 0;
1380 ide_drive_t
*drive
= hwgroup
->drive
;
1382 printk(KERN_ERR
"ide_timer_expiry: hwgroup->drive was NULL\n");
1383 hwgroup
->handler
= NULL
;
1386 ide_startstop_t startstop
= ide_stopped
;
1387 if (!hwgroup
->busy
) {
1388 hwgroup
->busy
= 1; /* paranoia */
1389 printk(KERN_ERR
"%s: ide_timer_expiry: hwgroup->busy was 0 ??\n", drive
->name
);
1391 if ((expiry
= hwgroup
->expiry
) != NULL
) {
1393 if ((wait
= expiry(drive
)) > 0) {
1395 hwgroup
->timer
.expires
= jiffies
+ wait
;
1396 hwgroup
->req_gen_timer
= hwgroup
->req_gen
;
1397 add_timer(&hwgroup
->timer
);
1398 spin_unlock_irqrestore(&ide_lock
, flags
);
1402 hwgroup
->handler
= NULL
;
1404 * We need to simulate a real interrupt when invoking
1405 * the handler() function, which means we need to
1406 * globally mask the specific IRQ:
1408 spin_unlock(&ide_lock
);
1410 /* disable_irq_nosync ?? */
1411 disable_irq(hwif
->irq
);
1413 * as if we were handling an interrupt */
1414 local_irq_disable();
1415 if (hwgroup
->polling
) {
1416 startstop
= handler(drive
);
1417 } else if (drive_is_ready(drive
)) {
1418 if (drive
->waiting_for_dma
)
1419 hwgroup
->hwif
->dma_lost_irq(drive
);
1420 (void)ide_ack_intr(hwif
);
1421 printk(KERN_WARNING
"%s: lost interrupt\n", drive
->name
);
1422 startstop
= handler(drive
);
1424 if (drive
->waiting_for_dma
) {
1425 startstop
= ide_dma_timeout_retry(drive
, wait
);
1428 ide_error(drive
, "irq timeout", hwif
->INB(IDE_STATUS_REG
));
1430 drive
->service_time
= jiffies
- drive
->service_start
;
1431 spin_lock_irq(&ide_lock
);
1432 enable_irq(hwif
->irq
);
1433 if (startstop
== ide_stopped
)
1437 ide_do_request(hwgroup
, IDE_NO_IRQ
);
1438 spin_unlock_irqrestore(&ide_lock
, flags
);
1442 * unexpected_intr - handle an unexpected IDE interrupt
1443 * @irq: interrupt line
1444 * @hwgroup: hwgroup being processed
1446 * There's nothing really useful we can do with an unexpected interrupt,
1447 * other than reading the status register (to clear it), and logging it.
1448 * There should be no way that an irq can happen before we're ready for it,
1449 * so we needn't worry much about losing an "important" interrupt here.
1451 * On laptops (and "green" PCs), an unexpected interrupt occurs whenever
1452 * the drive enters "idle", "standby", or "sleep" mode, so if the status
1453 * looks "good", we just ignore the interrupt completely.
1455 * This routine assumes __cli() is in effect when called.
1457 * If an unexpected interrupt happens on irq15 while we are handling irq14
1458 * and if the two interfaces are "serialized" (CMD640), then it looks like
1459 * we could screw up by interfering with a new request being set up for
1462 * In reality, this is a non-issue. The new command is not sent unless
1463 * the drive is ready to accept one, in which case we know the drive is
1464 * not trying to interrupt us. And ide_set_handler() is always invoked
1465 * before completing the issuance of any new drive command, so we will not
1466 * be accidentally invoked as a result of any valid command completion
1469 * Note that we must walk the entire hwgroup here. We know which hwif
1470 * is doing the current command, but we don't know which hwif burped
1474 static void unexpected_intr (int irq
, ide_hwgroup_t
*hwgroup
)
1477 ide_hwif_t
*hwif
= hwgroup
->hwif
;
1480 * handle the unexpected interrupt
1483 if (hwif
->irq
== irq
) {
1484 stat
= hwif
->INB(hwif
->io_ports
[IDE_STATUS_OFFSET
]);
1485 if (!OK_STAT(stat
, READY_STAT
, BAD_STAT
)) {
1486 /* Try to not flood the console with msgs */
1487 static unsigned long last_msgtime
, count
;
1489 if (time_after(jiffies
, last_msgtime
+ HZ
)) {
1490 last_msgtime
= jiffies
;
1491 printk(KERN_ERR
"%s%s: unexpected interrupt, "
1492 "status=0x%02x, count=%ld\n",
1494 (hwif
->next
==hwgroup
->hwif
) ? "" : "(?)", stat
, count
);
1498 } while ((hwif
= hwif
->next
) != hwgroup
->hwif
);
1502 * ide_intr - default IDE interrupt handler
1503 * @irq: interrupt number
1504 * @dev_id: hwif group
1505 * @regs: unused weirdness from the kernel irq layer
1507 * This is the default IRQ handler for the IDE layer. You should
1508 * not need to override it. If you do be aware it is subtle in
1511 * hwgroup->hwif is the interface in the group currently performing
1512 * a command. hwgroup->drive is the drive and hwgroup->handler is
1513 * the IRQ handler to call. As we issue a command the handlers
1514 * step through multiple states, reassigning the handler to the
1515 * next step in the process. Unlike a smart SCSI controller IDE
1516 * expects the main processor to sequence the various transfer
1517 * stages. We also manage a poll timer to catch up with most
1518 * timeout situations. There are still a few where the handlers
1519 * don't ever decide to give up.
1521 * The handler eventually returns ide_stopped to indicate the
1522 * request completed. At this point we issue the next request
1523 * on the hwgroup and the process begins again.
1526 irqreturn_t
ide_intr (int irq
, void *dev_id
)
1528 unsigned long flags
;
1529 ide_hwgroup_t
*hwgroup
= (ide_hwgroup_t
*)dev_id
;
1532 ide_handler_t
*handler
;
1533 ide_startstop_t startstop
;
1535 spin_lock_irqsave(&ide_lock
, flags
);
1536 hwif
= hwgroup
->hwif
;
1538 if (!ide_ack_intr(hwif
)) {
1539 spin_unlock_irqrestore(&ide_lock
, flags
);
1543 if ((handler
= hwgroup
->handler
) == NULL
|| hwgroup
->polling
) {
1545 * Not expecting an interrupt from this drive.
1546 * That means this could be:
1547 * (1) an interrupt from another PCI device
1548 * sharing the same PCI INT# as us.
1549 * or (2) a drive just entered sleep or standby mode,
1550 * and is interrupting to let us know.
1551 * or (3) a spurious interrupt of unknown origin.
1553 * For PCI, we cannot tell the difference,
1554 * so in that case we just ignore it and hope it goes away.
1556 * FIXME: unexpected_intr should be hwif-> then we can
1557 * remove all the ifdef PCI crap
1559 #ifdef CONFIG_BLK_DEV_IDEPCI
1560 if (hwif
->pci_dev
&& !hwif
->pci_dev
->vendor
)
1561 #endif /* CONFIG_BLK_DEV_IDEPCI */
1564 * Probably not a shared PCI interrupt,
1565 * so we can safely try to do something about it:
1567 unexpected_intr(irq
, hwgroup
);
1568 #ifdef CONFIG_BLK_DEV_IDEPCI
1571 * Whack the status register, just in case
1572 * we have a leftover pending IRQ.
1574 (void) hwif
->INB(hwif
->io_ports
[IDE_STATUS_OFFSET
]);
1575 #endif /* CONFIG_BLK_DEV_IDEPCI */
1577 spin_unlock_irqrestore(&ide_lock
, flags
);
1580 drive
= hwgroup
->drive
;
1583 * This should NEVER happen, and there isn't much
1584 * we could do about it here.
1586 * [Note - this can occur if the drive is hot unplugged]
1588 spin_unlock_irqrestore(&ide_lock
, flags
);
1591 if (!drive_is_ready(drive
)) {
1593 * This happens regularly when we share a PCI IRQ with
1594 * another device. Unfortunately, it can also happen
1595 * with some buggy drives that trigger the IRQ before
1596 * their status register is up to date. Hopefully we have
1597 * enough advance overhead that the latter isn't a problem.
1599 spin_unlock_irqrestore(&ide_lock
, flags
);
1602 if (!hwgroup
->busy
) {
1603 hwgroup
->busy
= 1; /* paranoia */
1604 printk(KERN_ERR
"%s: ide_intr: hwgroup->busy was 0 ??\n", drive
->name
);
1606 hwgroup
->handler
= NULL
;
1608 del_timer(&hwgroup
->timer
);
1609 spin_unlock(&ide_lock
);
1611 /* Some controllers might set DMA INTR no matter DMA or PIO;
1612 * bmdma status might need to be cleared even for
1613 * PIO interrupts to prevent spurious/lost irq.
1615 if (hwif
->ide_dma_clear_irq
&& !(drive
->waiting_for_dma
))
1616 /* ide_dma_end() needs bmdma status for error checking.
1617 * So, skip clearing bmdma status here and leave it
1618 * to ide_dma_end() if this is dma interrupt.
1620 hwif
->ide_dma_clear_irq(drive
);
1623 local_irq_enable_in_hardirq();
1624 /* service this interrupt, may set handler for next interrupt */
1625 startstop
= handler(drive
);
1626 spin_lock_irq(&ide_lock
);
1629 * Note that handler() may have set things up for another
1630 * interrupt to occur soon, but it cannot happen until
1631 * we exit from this routine, because it will be the
1632 * same irq as is currently being serviced here, and Linux
1633 * won't allow another of the same (on any CPU) until we return.
1635 drive
->service_time
= jiffies
- drive
->service_start
;
1636 if (startstop
== ide_stopped
) {
1637 if (hwgroup
->handler
== NULL
) { /* paranoia */
1639 ide_do_request(hwgroup
, hwif
->irq
);
1641 printk(KERN_ERR
"%s: ide_intr: huh? expected NULL handler "
1642 "on exit\n", drive
->name
);
1645 spin_unlock_irqrestore(&ide_lock
, flags
);
1650 * ide_init_drive_cmd - initialize a drive command request
1651 * @rq: request object
1653 * Initialize a request before we fill it in and send it down to
1654 * ide_do_drive_cmd. Commands must be set up by this function. Right
1655 * now it doesn't do a lot, but if that changes abusers will have a
1659 void ide_init_drive_cmd (struct request
*rq
)
1661 memset(rq
, 0, sizeof(*rq
));
1662 rq
->cmd_type
= REQ_TYPE_ATA_CMD
;
1666 EXPORT_SYMBOL(ide_init_drive_cmd
);
1669 * ide_do_drive_cmd - issue IDE special command
1670 * @drive: device to issue command
1671 * @rq: request to issue
1672 * @action: action for processing
1674 * This function issues a special IDE device request
1675 * onto the request queue.
1677 * If action is ide_wait, then the rq is queued at the end of the
1678 * request queue, and the function sleeps until it has been processed.
1679 * This is for use when invoked from an ioctl handler.
1681 * If action is ide_preempt, then the rq is queued at the head of
1682 * the request queue, displacing the currently-being-processed
1683 * request and this function returns immediately without waiting
1684 * for the new rq to be completed. This is VERY DANGEROUS, and is
1685 * intended for careful use by the ATAPI tape/cdrom driver code.
1687 * If action is ide_end, then the rq is queued at the end of the
1688 * request queue, and the function returns immediately without waiting
1689 * for the new rq to be completed. This is again intended for careful
1690 * use by the ATAPI tape/cdrom driver code.
1693 int ide_do_drive_cmd (ide_drive_t
*drive
, struct request
*rq
, ide_action_t action
)
1695 unsigned long flags
;
1696 ide_hwgroup_t
*hwgroup
= HWGROUP(drive
);
1697 DECLARE_COMPLETION_ONSTACK(wait
);
1698 int where
= ELEVATOR_INSERT_BACK
, err
;
1699 int must_wait
= (action
== ide_wait
|| action
== ide_head_wait
);
1704 * we need to hold an extra reference to request for safe inspection
1709 rq
->end_io_data
= &wait
;
1710 rq
->end_io
= blk_end_sync_rq
;
1713 spin_lock_irqsave(&ide_lock
, flags
);
1714 if (action
== ide_preempt
)
1716 if (action
== ide_preempt
|| action
== ide_head_wait
) {
1717 where
= ELEVATOR_INSERT_FRONT
;
1718 rq
->cmd_flags
|= REQ_PREEMPT
;
1720 __elv_add_request(drive
->queue
, rq
, where
, 0);
1721 ide_do_request(hwgroup
, IDE_NO_IRQ
);
1722 spin_unlock_irqrestore(&ide_lock
, flags
);
1726 wait_for_completion(&wait
);
1730 blk_put_request(rq
);
1736 EXPORT_SYMBOL(ide_do_drive_cmd
);
1738 void ide_pktcmd_tf_load(ide_drive_t
*drive
, u32 tf_flags
, u16 bcount
, u8 dma
)
1742 memset(&task
, 0, sizeof(task
));
1743 task
.tf_flags
= IDE_TFLAG_OUT_LBAH
| IDE_TFLAG_OUT_LBAM
|
1744 IDE_TFLAG_OUT_FEATURE
| tf_flags
;
1745 task
.tf
.feature
= dma
; /* Use PIO/DMA */
1746 task
.tf
.lbam
= bcount
& 0xff;
1747 task
.tf
.lbah
= (bcount
>> 8) & 0xff;
1749 ide_tf_load(drive
, &task
);
1752 EXPORT_SYMBOL_GPL(ide_pktcmd_tf_load
);