ide: use ->data_phase to set ->handler in do_rw_taskfile()
[linux-2.6/mini2440.git] / drivers / ide / ide-io.c
blob18ac1bd0811f5d20191c152c0bcf1c297ddc1894
1 /*
2 * IDE I/O functions
4 * Basic PIO and command management functionality.
6 * This code was split off from ide.c. See ide.c for history and original
7 * copyrights.
9 * This program is free software; you can redistribute it and/or modify it
10 * under the terms of the GNU General Public License as published by the
11 * Free Software Foundation; either version 2, or (at your option) any
12 * later version.
14 * This program is distributed in the hope that it will be useful, but
15 * WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
17 * General Public License for more details.
19 * For the avoidance of doubt the "preferred form" of this code is one which
20 * is in an open non patent encumbered format. Where cryptographic key signing
21 * forms part of the process of creating an executable the information
22 * including keys needed to generate an equivalently functional executable
23 * are deemed to be part of the source code.
27 #include <linux/module.h>
28 #include <linux/types.h>
29 #include <linux/string.h>
30 #include <linux/kernel.h>
31 #include <linux/timer.h>
32 #include <linux/mm.h>
33 #include <linux/interrupt.h>
34 #include <linux/major.h>
35 #include <linux/errno.h>
36 #include <linux/genhd.h>
37 #include <linux/blkpg.h>
38 #include <linux/slab.h>
39 #include <linux/init.h>
40 #include <linux/pci.h>
41 #include <linux/delay.h>
42 #include <linux/ide.h>
43 #include <linux/completion.h>
44 #include <linux/reboot.h>
45 #include <linux/cdrom.h>
46 #include <linux/seq_file.h>
47 #include <linux/device.h>
48 #include <linux/kmod.h>
49 #include <linux/scatterlist.h>
50 #include <linux/bitops.h>
52 #include <asm/byteorder.h>
53 #include <asm/irq.h>
54 #include <asm/uaccess.h>
55 #include <asm/io.h>
57 static int __ide_end_request(ide_drive_t *drive, struct request *rq,
58 int uptodate, unsigned int nr_bytes, int dequeue)
60 int ret = 1;
63 * if failfast is set on a request, override number of sectors and
64 * complete the whole request right now
66 if (blk_noretry_request(rq) && end_io_error(uptodate))
67 nr_bytes = rq->hard_nr_sectors << 9;
69 if (!blk_fs_request(rq) && end_io_error(uptodate) && !rq->errors)
70 rq->errors = -EIO;
73 * decide whether to reenable DMA -- 3 is a random magic for now,
74 * if we DMA timeout more than 3 times, just stay in PIO
76 if (drive->state == DMA_PIO_RETRY && drive->retry_pio <= 3) {
77 drive->state = 0;
78 HWGROUP(drive)->hwif->ide_dma_on(drive);
81 if (!end_that_request_chunk(rq, uptodate, nr_bytes)) {
82 add_disk_randomness(rq->rq_disk);
83 if (dequeue) {
84 if (!list_empty(&rq->queuelist))
85 blkdev_dequeue_request(rq);
86 HWGROUP(drive)->rq = NULL;
88 end_that_request_last(rq, uptodate);
89 ret = 0;
92 return ret;
95 /**
96 * ide_end_request - complete an IDE I/O
97 * @drive: IDE device for the I/O
98 * @uptodate:
99 * @nr_sectors: number of sectors completed
101 * This is our end_request wrapper function. We complete the I/O
102 * update random number input and dequeue the request, which if
103 * it was tagged may be out of order.
106 int ide_end_request (ide_drive_t *drive, int uptodate, int nr_sectors)
108 unsigned int nr_bytes = nr_sectors << 9;
109 struct request *rq;
110 unsigned long flags;
111 int ret = 1;
114 * room for locking improvements here, the calls below don't
115 * need the queue lock held at all
117 spin_lock_irqsave(&ide_lock, flags);
118 rq = HWGROUP(drive)->rq;
120 if (!nr_bytes) {
121 if (blk_pc_request(rq))
122 nr_bytes = rq->data_len;
123 else
124 nr_bytes = rq->hard_cur_sectors << 9;
127 ret = __ide_end_request(drive, rq, uptodate, nr_bytes, 1);
129 spin_unlock_irqrestore(&ide_lock, flags);
130 return ret;
132 EXPORT_SYMBOL(ide_end_request);
135 * Power Management state machine. This one is rather trivial for now,
136 * we should probably add more, like switching back to PIO on suspend
137 * to help some BIOSes, re-do the door locking on resume, etc...
140 enum {
141 ide_pm_flush_cache = ide_pm_state_start_suspend,
142 idedisk_pm_standby,
144 idedisk_pm_restore_pio = ide_pm_state_start_resume,
145 idedisk_pm_idle,
146 ide_pm_restore_dma,
149 static void ide_complete_power_step(ide_drive_t *drive, struct request *rq, u8 stat, u8 error)
151 struct request_pm_state *pm = rq->data;
153 if (drive->media != ide_disk)
154 return;
156 switch (pm->pm_step) {
157 case ide_pm_flush_cache: /* Suspend step 1 (flush cache) complete */
158 if (pm->pm_state == PM_EVENT_FREEZE)
159 pm->pm_step = ide_pm_state_completed;
160 else
161 pm->pm_step = idedisk_pm_standby;
162 break;
163 case idedisk_pm_standby: /* Suspend step 2 (standby) complete */
164 pm->pm_step = ide_pm_state_completed;
165 break;
166 case idedisk_pm_restore_pio: /* Resume step 1 complete */
167 pm->pm_step = idedisk_pm_idle;
168 break;
169 case idedisk_pm_idle: /* Resume step 2 (idle) complete */
170 pm->pm_step = ide_pm_restore_dma;
171 break;
175 static ide_startstop_t ide_start_power_step(ide_drive_t *drive, struct request *rq)
177 struct request_pm_state *pm = rq->data;
178 ide_task_t *args = rq->special;
180 memset(args, 0, sizeof(*args));
182 switch (pm->pm_step) {
183 case ide_pm_flush_cache: /* Suspend step 1 (flush cache) */
184 if (drive->media != ide_disk)
185 break;
186 /* Not supported? Switch to next step now. */
187 if (!drive->wcache || !ide_id_has_flush_cache(drive->id)) {
188 ide_complete_power_step(drive, rq, 0, 0);
189 return ide_stopped;
191 if (ide_id_has_flush_cache_ext(drive->id))
192 args->tf.command = WIN_FLUSH_CACHE_EXT;
193 else
194 args->tf.command = WIN_FLUSH_CACHE;
195 goto out_do_tf;
197 case idedisk_pm_standby: /* Suspend step 2 (standby) */
198 args->tf.command = WIN_STANDBYNOW1;
199 goto out_do_tf;
201 case idedisk_pm_restore_pio: /* Resume step 1 (restore PIO) */
202 ide_set_max_pio(drive);
204 * skip idedisk_pm_idle for ATAPI devices
206 if (drive->media != ide_disk)
207 pm->pm_step = ide_pm_restore_dma;
208 else
209 ide_complete_power_step(drive, rq, 0, 0);
210 return ide_stopped;
212 case idedisk_pm_idle: /* Resume step 2 (idle) */
213 args->tf.command = WIN_IDLEIMMEDIATE;
214 goto out_do_tf;
216 case ide_pm_restore_dma: /* Resume step 3 (restore DMA) */
218 * Right now, all we do is call ide_set_dma(drive),
219 * we could be smarter and check for current xfer_speed
220 * in struct drive etc...
222 if (drive->hwif->ide_dma_on == NULL)
223 break;
224 drive->hwif->dma_off_quietly(drive);
226 * TODO: respect ->using_dma setting
228 ide_set_dma(drive);
229 break;
231 pm->pm_step = ide_pm_state_completed;
232 return ide_stopped;
234 out_do_tf:
235 args->tf_flags = IDE_TFLAG_OUT_TF | IDE_TFLAG_OUT_DEVICE;
236 args->data_phase = TASKFILE_NO_DATA;
237 return do_rw_taskfile(drive, args);
241 * ide_end_dequeued_request - complete an IDE I/O
242 * @drive: IDE device for the I/O
243 * @uptodate:
244 * @nr_sectors: number of sectors completed
246 * Complete an I/O that is no longer on the request queue. This
247 * typically occurs when we pull the request and issue a REQUEST_SENSE.
248 * We must still finish the old request but we must not tamper with the
249 * queue in the meantime.
251 * NOTE: This path does not handle barrier, but barrier is not supported
252 * on ide-cd anyway.
255 int ide_end_dequeued_request(ide_drive_t *drive, struct request *rq,
256 int uptodate, int nr_sectors)
258 unsigned long flags;
259 int ret;
261 spin_lock_irqsave(&ide_lock, flags);
262 BUG_ON(!blk_rq_started(rq));
263 ret = __ide_end_request(drive, rq, uptodate, nr_sectors << 9, 0);
264 spin_unlock_irqrestore(&ide_lock, flags);
266 return ret;
268 EXPORT_SYMBOL_GPL(ide_end_dequeued_request);
272 * ide_complete_pm_request - end the current Power Management request
273 * @drive: target drive
274 * @rq: request
276 * This function cleans up the current PM request and stops the queue
277 * if necessary.
279 static void ide_complete_pm_request (ide_drive_t *drive, struct request *rq)
281 unsigned long flags;
283 #ifdef DEBUG_PM
284 printk("%s: completing PM request, %s\n", drive->name,
285 blk_pm_suspend_request(rq) ? "suspend" : "resume");
286 #endif
287 spin_lock_irqsave(&ide_lock, flags);
288 if (blk_pm_suspend_request(rq)) {
289 blk_stop_queue(drive->queue);
290 } else {
291 drive->blocked = 0;
292 blk_start_queue(drive->queue);
294 blkdev_dequeue_request(rq);
295 HWGROUP(drive)->rq = NULL;
296 end_that_request_last(rq, 1);
297 spin_unlock_irqrestore(&ide_lock, flags);
301 * ide_end_drive_cmd - end an explicit drive command
302 * @drive: command
303 * @stat: status bits
304 * @err: error bits
306 * Clean up after success/failure of an explicit drive command.
307 * These get thrown onto the queue so they are synchronized with
308 * real I/O operations on the drive.
310 * In LBA48 mode we have to read the register set twice to get
311 * all the extra information out.
314 void ide_end_drive_cmd (ide_drive_t *drive, u8 stat, u8 err)
316 ide_hwif_t *hwif = HWIF(drive);
317 unsigned long flags;
318 struct request *rq;
320 spin_lock_irqsave(&ide_lock, flags);
321 rq = HWGROUP(drive)->rq;
322 spin_unlock_irqrestore(&ide_lock, flags);
324 if (rq->cmd_type == REQ_TYPE_ATA_CMD) {
325 u8 *args = (u8 *) rq->buffer;
326 if (rq->errors == 0)
327 rq->errors = !OK_STAT(stat,READY_STAT,BAD_STAT);
329 if (args) {
330 args[0] = stat;
331 args[1] = err;
332 args[2] = hwif->INB(IDE_NSECTOR_REG);
334 } else if (rq->cmd_type == REQ_TYPE_ATA_TASKFILE) {
335 ide_task_t *args = (ide_task_t *) rq->special;
336 if (rq->errors == 0)
337 rq->errors = !OK_STAT(stat,READY_STAT,BAD_STAT);
339 if (args) {
340 struct ide_taskfile *tf = &args->tf;
342 if (args->tf_flags & IDE_TFLAG_IN_DATA) {
343 u16 data = hwif->INW(IDE_DATA_REG);
345 tf->data = data & 0xff;
346 tf->hob_data = (data >> 8) & 0xff;
348 tf->error = err;
349 /* be sure we're looking at the low order bits */
350 hwif->OUTB(drive->ctl & ~0x80, IDE_CONTROL_REG);
351 tf->nsect = hwif->INB(IDE_NSECTOR_REG);
352 tf->lbal = hwif->INB(IDE_SECTOR_REG);
353 tf->lbam = hwif->INB(IDE_LCYL_REG);
354 tf->lbah = hwif->INB(IDE_HCYL_REG);
355 tf->device = hwif->INB(IDE_SELECT_REG);
356 tf->status = stat;
358 if (args->tf_flags & IDE_TFLAG_LBA48) {
359 hwif->OUTB(drive->ctl|0x80, IDE_CONTROL_REG);
360 tf->hob_feature = hwif->INB(IDE_FEATURE_REG);
361 tf->hob_nsect = hwif->INB(IDE_NSECTOR_REG);
362 tf->hob_lbal = hwif->INB(IDE_SECTOR_REG);
363 tf->hob_lbam = hwif->INB(IDE_LCYL_REG);
364 tf->hob_lbah = hwif->INB(IDE_HCYL_REG);
367 } else if (blk_pm_request(rq)) {
368 struct request_pm_state *pm = rq->data;
369 #ifdef DEBUG_PM
370 printk("%s: complete_power_step(step: %d, stat: %x, err: %x)\n",
371 drive->name, rq->pm->pm_step, stat, err);
372 #endif
373 ide_complete_power_step(drive, rq, stat, err);
374 if (pm->pm_step == ide_pm_state_completed)
375 ide_complete_pm_request(drive, rq);
376 return;
379 spin_lock_irqsave(&ide_lock, flags);
380 blkdev_dequeue_request(rq);
381 HWGROUP(drive)->rq = NULL;
382 rq->errors = err;
383 end_that_request_last(rq, !rq->errors);
384 spin_unlock_irqrestore(&ide_lock, flags);
387 EXPORT_SYMBOL(ide_end_drive_cmd);
390 * try_to_flush_leftover_data - flush junk
391 * @drive: drive to flush
393 * try_to_flush_leftover_data() is invoked in response to a drive
394 * unexpectedly having its DRQ_STAT bit set. As an alternative to
395 * resetting the drive, this routine tries to clear the condition
396 * by read a sector's worth of data from the drive. Of course,
397 * this may not help if the drive is *waiting* for data from *us*.
399 static void try_to_flush_leftover_data (ide_drive_t *drive)
401 int i = (drive->mult_count ? drive->mult_count : 1) * SECTOR_WORDS;
403 if (drive->media != ide_disk)
404 return;
405 while (i > 0) {
406 u32 buffer[16];
407 u32 wcount = (i > 16) ? 16 : i;
409 i -= wcount;
410 HWIF(drive)->ata_input_data(drive, buffer, wcount);
414 static void ide_kill_rq(ide_drive_t *drive, struct request *rq)
416 if (rq->rq_disk) {
417 ide_driver_t *drv;
419 drv = *(ide_driver_t **)rq->rq_disk->private_data;
420 drv->end_request(drive, 0, 0);
421 } else
422 ide_end_request(drive, 0, 0);
425 static ide_startstop_t ide_ata_error(ide_drive_t *drive, struct request *rq, u8 stat, u8 err)
427 ide_hwif_t *hwif = drive->hwif;
429 if (stat & BUSY_STAT || ((stat & WRERR_STAT) && !drive->nowerr)) {
430 /* other bits are useless when BUSY */
431 rq->errors |= ERROR_RESET;
432 } else if (stat & ERR_STAT) {
433 /* err has different meaning on cdrom and tape */
434 if (err == ABRT_ERR) {
435 if (drive->select.b.lba &&
436 /* some newer drives don't support WIN_SPECIFY */
437 hwif->INB(IDE_COMMAND_REG) == WIN_SPECIFY)
438 return ide_stopped;
439 } else if ((err & BAD_CRC) == BAD_CRC) {
440 /* UDMA crc error, just retry the operation */
441 drive->crc_count++;
442 } else if (err & (BBD_ERR | ECC_ERR)) {
443 /* retries won't help these */
444 rq->errors = ERROR_MAX;
445 } else if (err & TRK0_ERR) {
446 /* help it find track zero */
447 rq->errors |= ERROR_RECAL;
451 if ((stat & DRQ_STAT) && rq_data_dir(rq) == READ &&
452 (hwif->host_flags & IDE_HFLAG_ERROR_STOPS_FIFO) == 0)
453 try_to_flush_leftover_data(drive);
455 if (rq->errors >= ERROR_MAX || blk_noretry_request(rq)) {
456 ide_kill_rq(drive, rq);
457 return ide_stopped;
460 if (hwif->INB(IDE_STATUS_REG) & (BUSY_STAT|DRQ_STAT))
461 rq->errors |= ERROR_RESET;
463 if ((rq->errors & ERROR_RESET) == ERROR_RESET) {
464 ++rq->errors;
465 return ide_do_reset(drive);
468 if ((rq->errors & ERROR_RECAL) == ERROR_RECAL)
469 drive->special.b.recalibrate = 1;
471 ++rq->errors;
473 return ide_stopped;
476 static ide_startstop_t ide_atapi_error(ide_drive_t *drive, struct request *rq, u8 stat, u8 err)
478 ide_hwif_t *hwif = drive->hwif;
480 if (stat & BUSY_STAT || ((stat & WRERR_STAT) && !drive->nowerr)) {
481 /* other bits are useless when BUSY */
482 rq->errors |= ERROR_RESET;
483 } else {
484 /* add decoding error stuff */
487 if (hwif->INB(IDE_STATUS_REG) & (BUSY_STAT|DRQ_STAT))
488 /* force an abort */
489 hwif->OUTB(WIN_IDLEIMMEDIATE, IDE_COMMAND_REG);
491 if (rq->errors >= ERROR_MAX) {
492 ide_kill_rq(drive, rq);
493 } else {
494 if ((rq->errors & ERROR_RESET) == ERROR_RESET) {
495 ++rq->errors;
496 return ide_do_reset(drive);
498 ++rq->errors;
501 return ide_stopped;
504 ide_startstop_t
505 __ide_error(ide_drive_t *drive, struct request *rq, u8 stat, u8 err)
507 if (drive->media == ide_disk)
508 return ide_ata_error(drive, rq, stat, err);
509 return ide_atapi_error(drive, rq, stat, err);
512 EXPORT_SYMBOL_GPL(__ide_error);
515 * ide_error - handle an error on the IDE
516 * @drive: drive the error occurred on
517 * @msg: message to report
518 * @stat: status bits
520 * ide_error() takes action based on the error returned by the drive.
521 * For normal I/O that may well include retries. We deal with
522 * both new-style (taskfile) and old style command handling here.
523 * In the case of taskfile command handling there is work left to
524 * do
527 ide_startstop_t ide_error (ide_drive_t *drive, const char *msg, u8 stat)
529 struct request *rq;
530 u8 err;
532 err = ide_dump_status(drive, msg, stat);
534 if ((rq = HWGROUP(drive)->rq) == NULL)
535 return ide_stopped;
537 /* retry only "normal" I/O: */
538 if (!blk_fs_request(rq)) {
539 rq->errors = 1;
540 ide_end_drive_cmd(drive, stat, err);
541 return ide_stopped;
544 if (rq->rq_disk) {
545 ide_driver_t *drv;
547 drv = *(ide_driver_t **)rq->rq_disk->private_data;
548 return drv->error(drive, rq, stat, err);
549 } else
550 return __ide_error(drive, rq, stat, err);
553 EXPORT_SYMBOL_GPL(ide_error);
555 ide_startstop_t __ide_abort(ide_drive_t *drive, struct request *rq)
557 if (drive->media != ide_disk)
558 rq->errors |= ERROR_RESET;
560 ide_kill_rq(drive, rq);
562 return ide_stopped;
565 EXPORT_SYMBOL_GPL(__ide_abort);
568 * ide_abort - abort pending IDE operations
569 * @drive: drive the error occurred on
570 * @msg: message to report
572 * ide_abort kills and cleans up when we are about to do a
573 * host initiated reset on active commands. Longer term we
574 * want handlers to have sensible abort handling themselves
576 * This differs fundamentally from ide_error because in
577 * this case the command is doing just fine when we
578 * blow it away.
581 ide_startstop_t ide_abort(ide_drive_t *drive, const char *msg)
583 struct request *rq;
585 if (drive == NULL || (rq = HWGROUP(drive)->rq) == NULL)
586 return ide_stopped;
588 /* retry only "normal" I/O: */
589 if (!blk_fs_request(rq)) {
590 rq->errors = 1;
591 ide_end_drive_cmd(drive, BUSY_STAT, 0);
592 return ide_stopped;
595 if (rq->rq_disk) {
596 ide_driver_t *drv;
598 drv = *(ide_driver_t **)rq->rq_disk->private_data;
599 return drv->abort(drive, rq);
600 } else
601 return __ide_abort(drive, rq);
605 * drive_cmd_intr - drive command completion interrupt
606 * @drive: drive the completion interrupt occurred on
608 * drive_cmd_intr() is invoked on completion of a special DRIVE_CMD.
609 * We do any necessary data reading and then wait for the drive to
610 * go non busy. At that point we may read the error data and complete
611 * the request
614 static ide_startstop_t drive_cmd_intr (ide_drive_t *drive)
616 struct request *rq = HWGROUP(drive)->rq;
617 ide_hwif_t *hwif = HWIF(drive);
618 u8 *args = (u8 *) rq->buffer;
619 u8 stat = hwif->INB(IDE_STATUS_REG);
620 int retries = 10;
622 local_irq_enable_in_hardirq();
623 if (rq->cmd_type == REQ_TYPE_ATA_CMD &&
624 (stat & DRQ_STAT) && args && args[3]) {
625 u8 io_32bit = drive->io_32bit;
626 drive->io_32bit = 0;
627 hwif->ata_input_data(drive, &args[4], args[3] * SECTOR_WORDS);
628 drive->io_32bit = io_32bit;
629 while (((stat = hwif->INB(IDE_STATUS_REG)) & BUSY_STAT) && retries--)
630 udelay(100);
633 if (!OK_STAT(stat, READY_STAT, BAD_STAT))
634 return ide_error(drive, "drive_cmd", stat);
635 /* calls ide_end_drive_cmd */
636 ide_end_drive_cmd(drive, stat, hwif->INB(IDE_ERROR_REG));
637 return ide_stopped;
640 static void ide_init_specify_cmd(ide_drive_t *drive, ide_task_t *task)
642 task->tf.nsect = drive->sect;
643 task->tf.lbal = drive->sect;
644 task->tf.lbam = drive->cyl;
645 task->tf.lbah = drive->cyl >> 8;
646 task->tf.device = ((drive->head - 1) | drive->select.all) & ~ATA_LBA;
647 task->tf.command = WIN_SPECIFY;
649 task->handler = &set_geometry_intr;
652 static void ide_init_restore_cmd(ide_drive_t *drive, ide_task_t *task)
654 task->tf.nsect = drive->sect;
655 task->tf.command = WIN_RESTORE;
657 task->handler = &recal_intr;
660 static void ide_init_setmult_cmd(ide_drive_t *drive, ide_task_t *task)
662 task->tf.nsect = drive->mult_req;
663 task->tf.command = WIN_SETMULT;
665 task->handler = &set_multmode_intr;
668 static ide_startstop_t ide_disk_special(ide_drive_t *drive)
670 special_t *s = &drive->special;
671 ide_task_t args;
673 memset(&args, 0, sizeof(ide_task_t));
674 args.data_phase = TASKFILE_NO_DATA;
676 if (s->b.set_geometry) {
677 s->b.set_geometry = 0;
678 ide_init_specify_cmd(drive, &args);
679 } else if (s->b.recalibrate) {
680 s->b.recalibrate = 0;
681 ide_init_restore_cmd(drive, &args);
682 } else if (s->b.set_multmode) {
683 s->b.set_multmode = 0;
684 if (drive->mult_req > drive->id->max_multsect)
685 drive->mult_req = drive->id->max_multsect;
686 ide_init_setmult_cmd(drive, &args);
687 } else if (s->all) {
688 int special = s->all;
689 s->all = 0;
690 printk(KERN_ERR "%s: bad special flag: 0x%02x\n", drive->name, special);
691 return ide_stopped;
694 args.tf_flags = IDE_TFLAG_OUT_TF | IDE_TFLAG_OUT_DEVICE;
696 do_rw_taskfile(drive, &args);
698 return ide_started;
702 * handle HDIO_SET_PIO_MODE ioctl abusers here, eventually it will go away
704 static int set_pio_mode_abuse(ide_hwif_t *hwif, u8 req_pio)
706 switch (req_pio) {
707 case 202:
708 case 201:
709 case 200:
710 case 102:
711 case 101:
712 case 100:
713 return (hwif->host_flags & IDE_HFLAG_ABUSE_DMA_MODES) ? 1 : 0;
714 case 9:
715 case 8:
716 return (hwif->host_flags & IDE_HFLAG_ABUSE_PREFETCH) ? 1 : 0;
717 case 7:
718 case 6:
719 return (hwif->host_flags & IDE_HFLAG_ABUSE_FAST_DEVSEL) ? 1 : 0;
720 default:
721 return 0;
726 * do_special - issue some special commands
727 * @drive: drive the command is for
729 * do_special() is used to issue WIN_SPECIFY, WIN_RESTORE, and WIN_SETMULT
730 * commands to a drive. It used to do much more, but has been scaled
731 * back.
734 static ide_startstop_t do_special (ide_drive_t *drive)
736 special_t *s = &drive->special;
738 #ifdef DEBUG
739 printk("%s: do_special: 0x%02x\n", drive->name, s->all);
740 #endif
741 if (s->b.set_tune) {
742 ide_hwif_t *hwif = drive->hwif;
743 u8 req_pio = drive->tune_req;
745 s->b.set_tune = 0;
747 if (set_pio_mode_abuse(drive->hwif, req_pio)) {
749 if (hwif->set_pio_mode == NULL)
750 return ide_stopped;
753 * take ide_lock for drive->[no_]unmask/[no_]io_32bit
755 if (req_pio == 8 || req_pio == 9) {
756 unsigned long flags;
758 spin_lock_irqsave(&ide_lock, flags);
759 hwif->set_pio_mode(drive, req_pio);
760 spin_unlock_irqrestore(&ide_lock, flags);
761 } else
762 hwif->set_pio_mode(drive, req_pio);
763 } else {
764 int keep_dma = drive->using_dma;
766 ide_set_pio(drive, req_pio);
768 if (hwif->host_flags & IDE_HFLAG_SET_PIO_MODE_KEEP_DMA) {
769 if (keep_dma)
770 hwif->ide_dma_on(drive);
774 return ide_stopped;
775 } else {
776 if (drive->media == ide_disk)
777 return ide_disk_special(drive);
779 s->all = 0;
780 drive->mult_req = 0;
781 return ide_stopped;
785 void ide_map_sg(ide_drive_t *drive, struct request *rq)
787 ide_hwif_t *hwif = drive->hwif;
788 struct scatterlist *sg = hwif->sg_table;
790 if (hwif->sg_mapped) /* needed by ide-scsi */
791 return;
793 if (rq->cmd_type != REQ_TYPE_ATA_TASKFILE) {
794 hwif->sg_nents = blk_rq_map_sg(drive->queue, rq, sg);
795 } else {
796 sg_init_one(sg, rq->buffer, rq->nr_sectors * SECTOR_SIZE);
797 hwif->sg_nents = 1;
801 EXPORT_SYMBOL_GPL(ide_map_sg);
803 void ide_init_sg_cmd(ide_drive_t *drive, struct request *rq)
805 ide_hwif_t *hwif = drive->hwif;
807 hwif->nsect = hwif->nleft = rq->nr_sectors;
808 hwif->cursg_ofs = 0;
809 hwif->cursg = NULL;
812 EXPORT_SYMBOL_GPL(ide_init_sg_cmd);
815 * execute_drive_command - issue special drive command
816 * @drive: the drive to issue the command on
817 * @rq: the request structure holding the command
819 * execute_drive_cmd() issues a special drive command, usually
820 * initiated by ioctl() from the external hdparm program. The
821 * command can be a drive command, drive task or taskfile
822 * operation. Weirdly you can call it with NULL to wait for
823 * all commands to finish. Don't do this as that is due to change
826 static ide_startstop_t execute_drive_cmd (ide_drive_t *drive,
827 struct request *rq)
829 ide_hwif_t *hwif = HWIF(drive);
830 u8 *args = rq->buffer;
831 ide_task_t ltask;
832 struct ide_taskfile *tf = &ltask.tf;
834 if (rq->cmd_type == REQ_TYPE_ATA_TASKFILE) {
835 ide_task_t *task = rq->special;
837 if (task == NULL)
838 goto done;
840 hwif->data_phase = task->data_phase;
842 switch (hwif->data_phase) {
843 case TASKFILE_MULTI_OUT:
844 case TASKFILE_OUT:
845 case TASKFILE_MULTI_IN:
846 case TASKFILE_IN:
847 ide_init_sg_cmd(drive, rq);
848 ide_map_sg(drive, rq);
849 default:
850 break;
853 return do_rw_taskfile(drive, task);
856 if (args == NULL)
857 goto done;
859 memset(&ltask, 0, sizeof(ltask));
860 if (rq->cmd_type == REQ_TYPE_ATA_CMD) {
861 #ifdef DEBUG
862 printk("%s: DRIVE_CMD\n", drive->name);
863 #endif
864 tf->feature = args[2];
865 if (args[0] == WIN_SMART) {
866 tf->nsect = args[3];
867 tf->lbal = args[1];
868 tf->lbam = 0x4f;
869 tf->lbah = 0xc2;
870 ltask.tf_flags = IDE_TFLAG_OUT_TF;
871 } else {
872 tf->nsect = args[1];
873 ltask.tf_flags = IDE_TFLAG_OUT_FEATURE |
874 IDE_TFLAG_OUT_NSECT;
877 tf->command = args[0];
878 ide_tf_load(drive, &ltask);
879 ide_execute_command(drive, args[0], &drive_cmd_intr, WAIT_WORSTCASE, NULL);
880 return ide_started;
882 done:
884 * NULL is actually a valid way of waiting for
885 * all current requests to be flushed from the queue.
887 #ifdef DEBUG
888 printk("%s: DRIVE_CMD (null)\n", drive->name);
889 #endif
890 ide_end_drive_cmd(drive,
891 hwif->INB(IDE_STATUS_REG),
892 hwif->INB(IDE_ERROR_REG));
893 return ide_stopped;
896 static void ide_check_pm_state(ide_drive_t *drive, struct request *rq)
898 struct request_pm_state *pm = rq->data;
900 if (blk_pm_suspend_request(rq) &&
901 pm->pm_step == ide_pm_state_start_suspend)
902 /* Mark drive blocked when starting the suspend sequence. */
903 drive->blocked = 1;
904 else if (blk_pm_resume_request(rq) &&
905 pm->pm_step == ide_pm_state_start_resume) {
907 * The first thing we do on wakeup is to wait for BSY bit to
908 * go away (with a looong timeout) as a drive on this hwif may
909 * just be POSTing itself.
910 * We do that before even selecting as the "other" device on
911 * the bus may be broken enough to walk on our toes at this
912 * point.
914 int rc;
915 #ifdef DEBUG_PM
916 printk("%s: Wakeup request inited, waiting for !BSY...\n", drive->name);
917 #endif
918 rc = ide_wait_not_busy(HWIF(drive), 35000);
919 if (rc)
920 printk(KERN_WARNING "%s: bus not ready on wakeup\n", drive->name);
921 SELECT_DRIVE(drive);
922 if (IDE_CONTROL_REG)
923 HWIF(drive)->OUTB(drive->ctl, IDE_CONTROL_REG);
924 rc = ide_wait_not_busy(HWIF(drive), 100000);
925 if (rc)
926 printk(KERN_WARNING "%s: drive not ready on wakeup\n", drive->name);
931 * start_request - start of I/O and command issuing for IDE
933 * start_request() initiates handling of a new I/O request. It
934 * accepts commands and I/O (read/write) requests. It also does
935 * the final remapping for weird stuff like EZDrive. Once
936 * device mapper can work sector level the EZDrive stuff can go away
938 * FIXME: this function needs a rename
941 static ide_startstop_t start_request (ide_drive_t *drive, struct request *rq)
943 ide_startstop_t startstop;
944 sector_t block;
946 BUG_ON(!blk_rq_started(rq));
948 #ifdef DEBUG
949 printk("%s: start_request: current=0x%08lx\n",
950 HWIF(drive)->name, (unsigned long) rq);
951 #endif
953 /* bail early if we've exceeded max_failures */
954 if (drive->max_failures && (drive->failures > drive->max_failures)) {
955 rq->cmd_flags |= REQ_FAILED;
956 goto kill_rq;
959 block = rq->sector;
960 if (blk_fs_request(rq) &&
961 (drive->media == ide_disk || drive->media == ide_floppy)) {
962 block += drive->sect0;
964 /* Yecch - this will shift the entire interval,
965 possibly killing some innocent following sector */
966 if (block == 0 && drive->remap_0_to_1 == 1)
967 block = 1; /* redirect MBR access to EZ-Drive partn table */
969 if (blk_pm_request(rq))
970 ide_check_pm_state(drive, rq);
972 SELECT_DRIVE(drive);
973 if (ide_wait_stat(&startstop, drive, drive->ready_stat, BUSY_STAT|DRQ_STAT, WAIT_READY)) {
974 printk(KERN_ERR "%s: drive not ready for command\n", drive->name);
975 return startstop;
977 if (!drive->special.all) {
978 ide_driver_t *drv;
981 * We reset the drive so we need to issue a SETFEATURES.
982 * Do it _after_ do_special() restored device parameters.
984 if (drive->current_speed == 0xff)
985 ide_config_drive_speed(drive, drive->desired_speed);
987 if (rq->cmd_type == REQ_TYPE_ATA_CMD ||
988 rq->cmd_type == REQ_TYPE_ATA_TASKFILE)
989 return execute_drive_cmd(drive, rq);
990 else if (blk_pm_request(rq)) {
991 struct request_pm_state *pm = rq->data;
992 #ifdef DEBUG_PM
993 printk("%s: start_power_step(step: %d)\n",
994 drive->name, rq->pm->pm_step);
995 #endif
996 startstop = ide_start_power_step(drive, rq);
997 if (startstop == ide_stopped &&
998 pm->pm_step == ide_pm_state_completed)
999 ide_complete_pm_request(drive, rq);
1000 return startstop;
1003 drv = *(ide_driver_t **)rq->rq_disk->private_data;
1004 return drv->do_request(drive, rq, block);
1006 return do_special(drive);
1007 kill_rq:
1008 ide_kill_rq(drive, rq);
1009 return ide_stopped;
1013 * ide_stall_queue - pause an IDE device
1014 * @drive: drive to stall
1015 * @timeout: time to stall for (jiffies)
1017 * ide_stall_queue() can be used by a drive to give excess bandwidth back
1018 * to the hwgroup by sleeping for timeout jiffies.
1021 void ide_stall_queue (ide_drive_t *drive, unsigned long timeout)
1023 if (timeout > WAIT_WORSTCASE)
1024 timeout = WAIT_WORSTCASE;
1025 drive->sleep = timeout + jiffies;
1026 drive->sleeping = 1;
1029 EXPORT_SYMBOL(ide_stall_queue);
1031 #define WAKEUP(drive) ((drive)->service_start + 2 * (drive)->service_time)
1034 * choose_drive - select a drive to service
1035 * @hwgroup: hardware group to select on
1037 * choose_drive() selects the next drive which will be serviced.
1038 * This is necessary because the IDE layer can't issue commands
1039 * to both drives on the same cable, unlike SCSI.
1042 static inline ide_drive_t *choose_drive (ide_hwgroup_t *hwgroup)
1044 ide_drive_t *drive, *best;
1046 repeat:
1047 best = NULL;
1048 drive = hwgroup->drive;
1051 * drive is doing pre-flush, ordered write, post-flush sequence. even
1052 * though that is 3 requests, it must be seen as a single transaction.
1053 * we must not preempt this drive until that is complete
1055 if (blk_queue_flushing(drive->queue)) {
1057 * small race where queue could get replugged during
1058 * the 3-request flush cycle, just yank the plug since
1059 * we want it to finish asap
1061 blk_remove_plug(drive->queue);
1062 return drive;
1065 do {
1066 if ((!drive->sleeping || time_after_eq(jiffies, drive->sleep))
1067 && !elv_queue_empty(drive->queue)) {
1068 if (!best
1069 || (drive->sleeping && (!best->sleeping || time_before(drive->sleep, best->sleep)))
1070 || (!best->sleeping && time_before(WAKEUP(drive), WAKEUP(best))))
1072 if (!blk_queue_plugged(drive->queue))
1073 best = drive;
1076 } while ((drive = drive->next) != hwgroup->drive);
1077 if (best && best->nice1 && !best->sleeping && best != hwgroup->drive && best->service_time > WAIT_MIN_SLEEP) {
1078 long t = (signed long)(WAKEUP(best) - jiffies);
1079 if (t >= WAIT_MIN_SLEEP) {
1081 * We *may* have some time to spare, but first let's see if
1082 * someone can potentially benefit from our nice mood today..
1084 drive = best->next;
1085 do {
1086 if (!drive->sleeping
1087 && time_before(jiffies - best->service_time, WAKEUP(drive))
1088 && time_before(WAKEUP(drive), jiffies + t))
1090 ide_stall_queue(best, min_t(long, t, 10 * WAIT_MIN_SLEEP));
1091 goto repeat;
1093 } while ((drive = drive->next) != best);
1096 return best;
1100 * Issue a new request to a drive from hwgroup
1101 * Caller must have already done spin_lock_irqsave(&ide_lock, ..);
1103 * A hwgroup is a serialized group of IDE interfaces. Usually there is
1104 * exactly one hwif (interface) per hwgroup, but buggy controllers (eg. CMD640)
1105 * may have both interfaces in a single hwgroup to "serialize" access.
1106 * Or possibly multiple ISA interfaces can share a common IRQ by being grouped
1107 * together into one hwgroup for serialized access.
1109 * Note also that several hwgroups can end up sharing a single IRQ,
1110 * possibly along with many other devices. This is especially common in
1111 * PCI-based systems with off-board IDE controller cards.
1113 * The IDE driver uses the single global ide_lock spinlock to protect
1114 * access to the request queues, and to protect the hwgroup->busy flag.
1116 * The first thread into the driver for a particular hwgroup sets the
1117 * hwgroup->busy flag to indicate that this hwgroup is now active,
1118 * and then initiates processing of the top request from the request queue.
1120 * Other threads attempting entry notice the busy setting, and will simply
1121 * queue their new requests and exit immediately. Note that hwgroup->busy
1122 * remains set even when the driver is merely awaiting the next interrupt.
1123 * Thus, the meaning is "this hwgroup is busy processing a request".
1125 * When processing of a request completes, the completing thread or IRQ-handler
1126 * will start the next request from the queue. If no more work remains,
1127 * the driver will clear the hwgroup->busy flag and exit.
1129 * The ide_lock (spinlock) is used to protect all access to the
1130 * hwgroup->busy flag, but is otherwise not needed for most processing in
1131 * the driver. This makes the driver much more friendlier to shared IRQs
1132 * than previous designs, while remaining 100% (?) SMP safe and capable.
1134 static void ide_do_request (ide_hwgroup_t *hwgroup, int masked_irq)
1136 ide_drive_t *drive;
1137 ide_hwif_t *hwif;
1138 struct request *rq;
1139 ide_startstop_t startstop;
1140 int loops = 0;
1142 /* for atari only: POSSIBLY BROKEN HERE(?) */
1143 ide_get_lock(ide_intr, hwgroup);
1145 /* caller must own ide_lock */
1146 BUG_ON(!irqs_disabled());
1148 while (!hwgroup->busy) {
1149 hwgroup->busy = 1;
1150 drive = choose_drive(hwgroup);
1151 if (drive == NULL) {
1152 int sleeping = 0;
1153 unsigned long sleep = 0; /* shut up, gcc */
1154 hwgroup->rq = NULL;
1155 drive = hwgroup->drive;
1156 do {
1157 if (drive->sleeping && (!sleeping || time_before(drive->sleep, sleep))) {
1158 sleeping = 1;
1159 sleep = drive->sleep;
1161 } while ((drive = drive->next) != hwgroup->drive);
1162 if (sleeping) {
1164 * Take a short snooze, and then wake up this hwgroup again.
1165 * This gives other hwgroups on the same a chance to
1166 * play fairly with us, just in case there are big differences
1167 * in relative throughputs.. don't want to hog the cpu too much.
1169 if (time_before(sleep, jiffies + WAIT_MIN_SLEEP))
1170 sleep = jiffies + WAIT_MIN_SLEEP;
1171 #if 1
1172 if (timer_pending(&hwgroup->timer))
1173 printk(KERN_CRIT "ide_set_handler: timer already active\n");
1174 #endif
1175 /* so that ide_timer_expiry knows what to do */
1176 hwgroup->sleeping = 1;
1177 hwgroup->req_gen_timer = hwgroup->req_gen;
1178 mod_timer(&hwgroup->timer, sleep);
1179 /* we purposely leave hwgroup->busy==1
1180 * while sleeping */
1181 } else {
1182 /* Ugly, but how can we sleep for the lock
1183 * otherwise? perhaps from tq_disk?
1186 /* for atari only */
1187 ide_release_lock();
1188 hwgroup->busy = 0;
1191 /* no more work for this hwgroup (for now) */
1192 return;
1194 again:
1195 hwif = HWIF(drive);
1196 if (hwgroup->hwif->sharing_irq &&
1197 hwif != hwgroup->hwif &&
1198 hwif->io_ports[IDE_CONTROL_OFFSET]) {
1200 * set nIEN for previous hwif, drives in the
1201 * quirk_list may not like intr setups/cleanups
1203 if (drive->quirk_list != 1)
1204 hwif->OUTB(drive->ctl | 2, IDE_CONTROL_REG);
1206 hwgroup->hwif = hwif;
1207 hwgroup->drive = drive;
1208 drive->sleeping = 0;
1209 drive->service_start = jiffies;
1211 if (blk_queue_plugged(drive->queue)) {
1212 printk(KERN_ERR "ide: huh? queue was plugged!\n");
1213 break;
1217 * we know that the queue isn't empty, but this can happen
1218 * if the q->prep_rq_fn() decides to kill a request
1220 rq = elv_next_request(drive->queue);
1221 if (!rq) {
1222 hwgroup->busy = 0;
1223 break;
1227 * Sanity: don't accept a request that isn't a PM request
1228 * if we are currently power managed. This is very important as
1229 * blk_stop_queue() doesn't prevent the elv_next_request()
1230 * above to return us whatever is in the queue. Since we call
1231 * ide_do_request() ourselves, we end up taking requests while
1232 * the queue is blocked...
1234 * We let requests forced at head of queue with ide-preempt
1235 * though. I hope that doesn't happen too much, hopefully not
1236 * unless the subdriver triggers such a thing in its own PM
1237 * state machine.
1239 * We count how many times we loop here to make sure we service
1240 * all drives in the hwgroup without looping for ever
1242 if (drive->blocked && !blk_pm_request(rq) && !(rq->cmd_flags & REQ_PREEMPT)) {
1243 drive = drive->next ? drive->next : hwgroup->drive;
1244 if (loops++ < 4 && !blk_queue_plugged(drive->queue))
1245 goto again;
1246 /* We clear busy, there should be no pending ATA command at this point. */
1247 hwgroup->busy = 0;
1248 break;
1251 hwgroup->rq = rq;
1254 * Some systems have trouble with IDE IRQs arriving while
1255 * the driver is still setting things up. So, here we disable
1256 * the IRQ used by this interface while the request is being started.
1257 * This may look bad at first, but pretty much the same thing
1258 * happens anyway when any interrupt comes in, IDE or otherwise
1259 * -- the kernel masks the IRQ while it is being handled.
1261 if (masked_irq != IDE_NO_IRQ && hwif->irq != masked_irq)
1262 disable_irq_nosync(hwif->irq);
1263 spin_unlock(&ide_lock);
1264 local_irq_enable_in_hardirq();
1265 /* allow other IRQs while we start this request */
1266 startstop = start_request(drive, rq);
1267 spin_lock_irq(&ide_lock);
1268 if (masked_irq != IDE_NO_IRQ && hwif->irq != masked_irq)
1269 enable_irq(hwif->irq);
1270 if (startstop == ide_stopped)
1271 hwgroup->busy = 0;
1276 * Passes the stuff to ide_do_request
1278 void do_ide_request(struct request_queue *q)
1280 ide_drive_t *drive = q->queuedata;
1282 ide_do_request(HWGROUP(drive), IDE_NO_IRQ);
1286 * un-busy the hwgroup etc, and clear any pending DMA status. we want to
1287 * retry the current request in pio mode instead of risking tossing it
1288 * all away
1290 static ide_startstop_t ide_dma_timeout_retry(ide_drive_t *drive, int error)
1292 ide_hwif_t *hwif = HWIF(drive);
1293 struct request *rq;
1294 ide_startstop_t ret = ide_stopped;
1297 * end current dma transaction
1300 if (error < 0) {
1301 printk(KERN_WARNING "%s: DMA timeout error\n", drive->name);
1302 (void)HWIF(drive)->ide_dma_end(drive);
1303 ret = ide_error(drive, "dma timeout error",
1304 hwif->INB(IDE_STATUS_REG));
1305 } else {
1306 printk(KERN_WARNING "%s: DMA timeout retry\n", drive->name);
1307 hwif->dma_timeout(drive);
1311 * disable dma for now, but remember that we did so because of
1312 * a timeout -- we'll reenable after we finish this next request
1313 * (or rather the first chunk of it) in pio.
1315 drive->retry_pio++;
1316 drive->state = DMA_PIO_RETRY;
1317 hwif->dma_off_quietly(drive);
1320 * un-busy drive etc (hwgroup->busy is cleared on return) and
1321 * make sure request is sane
1323 rq = HWGROUP(drive)->rq;
1325 if (!rq)
1326 goto out;
1328 HWGROUP(drive)->rq = NULL;
1330 rq->errors = 0;
1332 if (!rq->bio)
1333 goto out;
1335 rq->sector = rq->bio->bi_sector;
1336 rq->current_nr_sectors = bio_iovec(rq->bio)->bv_len >> 9;
1337 rq->hard_cur_sectors = rq->current_nr_sectors;
1338 rq->buffer = bio_data(rq->bio);
1339 out:
1340 return ret;
1344 * ide_timer_expiry - handle lack of an IDE interrupt
1345 * @data: timer callback magic (hwgroup)
1347 * An IDE command has timed out before the expected drive return
1348 * occurred. At this point we attempt to clean up the current
1349 * mess. If the current handler includes an expiry handler then
1350 * we invoke the expiry handler, and providing it is happy the
1351 * work is done. If that fails we apply generic recovery rules
1352 * invoking the handler and checking the drive DMA status. We
1353 * have an excessively incestuous relationship with the DMA
1354 * logic that wants cleaning up.
1357 void ide_timer_expiry (unsigned long data)
1359 ide_hwgroup_t *hwgroup = (ide_hwgroup_t *) data;
1360 ide_handler_t *handler;
1361 ide_expiry_t *expiry;
1362 unsigned long flags;
1363 unsigned long wait = -1;
1365 spin_lock_irqsave(&ide_lock, flags);
1367 if (((handler = hwgroup->handler) == NULL) ||
1368 (hwgroup->req_gen != hwgroup->req_gen_timer)) {
1370 * Either a marginal timeout occurred
1371 * (got the interrupt just as timer expired),
1372 * or we were "sleeping" to give other devices a chance.
1373 * Either way, we don't really want to complain about anything.
1375 if (hwgroup->sleeping) {
1376 hwgroup->sleeping = 0;
1377 hwgroup->busy = 0;
1379 } else {
1380 ide_drive_t *drive = hwgroup->drive;
1381 if (!drive) {
1382 printk(KERN_ERR "ide_timer_expiry: hwgroup->drive was NULL\n");
1383 hwgroup->handler = NULL;
1384 } else {
1385 ide_hwif_t *hwif;
1386 ide_startstop_t startstop = ide_stopped;
1387 if (!hwgroup->busy) {
1388 hwgroup->busy = 1; /* paranoia */
1389 printk(KERN_ERR "%s: ide_timer_expiry: hwgroup->busy was 0 ??\n", drive->name);
1391 if ((expiry = hwgroup->expiry) != NULL) {
1392 /* continue */
1393 if ((wait = expiry(drive)) > 0) {
1394 /* reset timer */
1395 hwgroup->timer.expires = jiffies + wait;
1396 hwgroup->req_gen_timer = hwgroup->req_gen;
1397 add_timer(&hwgroup->timer);
1398 spin_unlock_irqrestore(&ide_lock, flags);
1399 return;
1402 hwgroup->handler = NULL;
1404 * We need to simulate a real interrupt when invoking
1405 * the handler() function, which means we need to
1406 * globally mask the specific IRQ:
1408 spin_unlock(&ide_lock);
1409 hwif = HWIF(drive);
1410 /* disable_irq_nosync ?? */
1411 disable_irq(hwif->irq);
1412 /* local CPU only,
1413 * as if we were handling an interrupt */
1414 local_irq_disable();
1415 if (hwgroup->polling) {
1416 startstop = handler(drive);
1417 } else if (drive_is_ready(drive)) {
1418 if (drive->waiting_for_dma)
1419 hwgroup->hwif->dma_lost_irq(drive);
1420 (void)ide_ack_intr(hwif);
1421 printk(KERN_WARNING "%s: lost interrupt\n", drive->name);
1422 startstop = handler(drive);
1423 } else {
1424 if (drive->waiting_for_dma) {
1425 startstop = ide_dma_timeout_retry(drive, wait);
1426 } else
1427 startstop =
1428 ide_error(drive, "irq timeout", hwif->INB(IDE_STATUS_REG));
1430 drive->service_time = jiffies - drive->service_start;
1431 spin_lock_irq(&ide_lock);
1432 enable_irq(hwif->irq);
1433 if (startstop == ide_stopped)
1434 hwgroup->busy = 0;
1437 ide_do_request(hwgroup, IDE_NO_IRQ);
1438 spin_unlock_irqrestore(&ide_lock, flags);
1442 * unexpected_intr - handle an unexpected IDE interrupt
1443 * @irq: interrupt line
1444 * @hwgroup: hwgroup being processed
1446 * There's nothing really useful we can do with an unexpected interrupt,
1447 * other than reading the status register (to clear it), and logging it.
1448 * There should be no way that an irq can happen before we're ready for it,
1449 * so we needn't worry much about losing an "important" interrupt here.
1451 * On laptops (and "green" PCs), an unexpected interrupt occurs whenever
1452 * the drive enters "idle", "standby", or "sleep" mode, so if the status
1453 * looks "good", we just ignore the interrupt completely.
1455 * This routine assumes __cli() is in effect when called.
1457 * If an unexpected interrupt happens on irq15 while we are handling irq14
1458 * and if the two interfaces are "serialized" (CMD640), then it looks like
1459 * we could screw up by interfering with a new request being set up for
1460 * irq15.
1462 * In reality, this is a non-issue. The new command is not sent unless
1463 * the drive is ready to accept one, in which case we know the drive is
1464 * not trying to interrupt us. And ide_set_handler() is always invoked
1465 * before completing the issuance of any new drive command, so we will not
1466 * be accidentally invoked as a result of any valid command completion
1467 * interrupt.
1469 * Note that we must walk the entire hwgroup here. We know which hwif
1470 * is doing the current command, but we don't know which hwif burped
1471 * mysteriously.
1474 static void unexpected_intr (int irq, ide_hwgroup_t *hwgroup)
1476 u8 stat;
1477 ide_hwif_t *hwif = hwgroup->hwif;
1480 * handle the unexpected interrupt
1482 do {
1483 if (hwif->irq == irq) {
1484 stat = hwif->INB(hwif->io_ports[IDE_STATUS_OFFSET]);
1485 if (!OK_STAT(stat, READY_STAT, BAD_STAT)) {
1486 /* Try to not flood the console with msgs */
1487 static unsigned long last_msgtime, count;
1488 ++count;
1489 if (time_after(jiffies, last_msgtime + HZ)) {
1490 last_msgtime = jiffies;
1491 printk(KERN_ERR "%s%s: unexpected interrupt, "
1492 "status=0x%02x, count=%ld\n",
1493 hwif->name,
1494 (hwif->next==hwgroup->hwif) ? "" : "(?)", stat, count);
1498 } while ((hwif = hwif->next) != hwgroup->hwif);
1502 * ide_intr - default IDE interrupt handler
1503 * @irq: interrupt number
1504 * @dev_id: hwif group
1505 * @regs: unused weirdness from the kernel irq layer
1507 * This is the default IRQ handler for the IDE layer. You should
1508 * not need to override it. If you do be aware it is subtle in
1509 * places
1511 * hwgroup->hwif is the interface in the group currently performing
1512 * a command. hwgroup->drive is the drive and hwgroup->handler is
1513 * the IRQ handler to call. As we issue a command the handlers
1514 * step through multiple states, reassigning the handler to the
1515 * next step in the process. Unlike a smart SCSI controller IDE
1516 * expects the main processor to sequence the various transfer
1517 * stages. We also manage a poll timer to catch up with most
1518 * timeout situations. There are still a few where the handlers
1519 * don't ever decide to give up.
1521 * The handler eventually returns ide_stopped to indicate the
1522 * request completed. At this point we issue the next request
1523 * on the hwgroup and the process begins again.
1526 irqreturn_t ide_intr (int irq, void *dev_id)
1528 unsigned long flags;
1529 ide_hwgroup_t *hwgroup = (ide_hwgroup_t *)dev_id;
1530 ide_hwif_t *hwif;
1531 ide_drive_t *drive;
1532 ide_handler_t *handler;
1533 ide_startstop_t startstop;
1535 spin_lock_irqsave(&ide_lock, flags);
1536 hwif = hwgroup->hwif;
1538 if (!ide_ack_intr(hwif)) {
1539 spin_unlock_irqrestore(&ide_lock, flags);
1540 return IRQ_NONE;
1543 if ((handler = hwgroup->handler) == NULL || hwgroup->polling) {
1545 * Not expecting an interrupt from this drive.
1546 * That means this could be:
1547 * (1) an interrupt from another PCI device
1548 * sharing the same PCI INT# as us.
1549 * or (2) a drive just entered sleep or standby mode,
1550 * and is interrupting to let us know.
1551 * or (3) a spurious interrupt of unknown origin.
1553 * For PCI, we cannot tell the difference,
1554 * so in that case we just ignore it and hope it goes away.
1556 * FIXME: unexpected_intr should be hwif-> then we can
1557 * remove all the ifdef PCI crap
1559 #ifdef CONFIG_BLK_DEV_IDEPCI
1560 if (hwif->pci_dev && !hwif->pci_dev->vendor)
1561 #endif /* CONFIG_BLK_DEV_IDEPCI */
1564 * Probably not a shared PCI interrupt,
1565 * so we can safely try to do something about it:
1567 unexpected_intr(irq, hwgroup);
1568 #ifdef CONFIG_BLK_DEV_IDEPCI
1569 } else {
1571 * Whack the status register, just in case
1572 * we have a leftover pending IRQ.
1574 (void) hwif->INB(hwif->io_ports[IDE_STATUS_OFFSET]);
1575 #endif /* CONFIG_BLK_DEV_IDEPCI */
1577 spin_unlock_irqrestore(&ide_lock, flags);
1578 return IRQ_NONE;
1580 drive = hwgroup->drive;
1581 if (!drive) {
1583 * This should NEVER happen, and there isn't much
1584 * we could do about it here.
1586 * [Note - this can occur if the drive is hot unplugged]
1588 spin_unlock_irqrestore(&ide_lock, flags);
1589 return IRQ_HANDLED;
1591 if (!drive_is_ready(drive)) {
1593 * This happens regularly when we share a PCI IRQ with
1594 * another device. Unfortunately, it can also happen
1595 * with some buggy drives that trigger the IRQ before
1596 * their status register is up to date. Hopefully we have
1597 * enough advance overhead that the latter isn't a problem.
1599 spin_unlock_irqrestore(&ide_lock, flags);
1600 return IRQ_NONE;
1602 if (!hwgroup->busy) {
1603 hwgroup->busy = 1; /* paranoia */
1604 printk(KERN_ERR "%s: ide_intr: hwgroup->busy was 0 ??\n", drive->name);
1606 hwgroup->handler = NULL;
1607 hwgroup->req_gen++;
1608 del_timer(&hwgroup->timer);
1609 spin_unlock(&ide_lock);
1611 /* Some controllers might set DMA INTR no matter DMA or PIO;
1612 * bmdma status might need to be cleared even for
1613 * PIO interrupts to prevent spurious/lost irq.
1615 if (hwif->ide_dma_clear_irq && !(drive->waiting_for_dma))
1616 /* ide_dma_end() needs bmdma status for error checking.
1617 * So, skip clearing bmdma status here and leave it
1618 * to ide_dma_end() if this is dma interrupt.
1620 hwif->ide_dma_clear_irq(drive);
1622 if (drive->unmask)
1623 local_irq_enable_in_hardirq();
1624 /* service this interrupt, may set handler for next interrupt */
1625 startstop = handler(drive);
1626 spin_lock_irq(&ide_lock);
1629 * Note that handler() may have set things up for another
1630 * interrupt to occur soon, but it cannot happen until
1631 * we exit from this routine, because it will be the
1632 * same irq as is currently being serviced here, and Linux
1633 * won't allow another of the same (on any CPU) until we return.
1635 drive->service_time = jiffies - drive->service_start;
1636 if (startstop == ide_stopped) {
1637 if (hwgroup->handler == NULL) { /* paranoia */
1638 hwgroup->busy = 0;
1639 ide_do_request(hwgroup, hwif->irq);
1640 } else {
1641 printk(KERN_ERR "%s: ide_intr: huh? expected NULL handler "
1642 "on exit\n", drive->name);
1645 spin_unlock_irqrestore(&ide_lock, flags);
1646 return IRQ_HANDLED;
1650 * ide_init_drive_cmd - initialize a drive command request
1651 * @rq: request object
1653 * Initialize a request before we fill it in and send it down to
1654 * ide_do_drive_cmd. Commands must be set up by this function. Right
1655 * now it doesn't do a lot, but if that changes abusers will have a
1656 * nasty surprise.
1659 void ide_init_drive_cmd (struct request *rq)
1661 memset(rq, 0, sizeof(*rq));
1662 rq->cmd_type = REQ_TYPE_ATA_CMD;
1663 rq->ref_count = 1;
1666 EXPORT_SYMBOL(ide_init_drive_cmd);
1669 * ide_do_drive_cmd - issue IDE special command
1670 * @drive: device to issue command
1671 * @rq: request to issue
1672 * @action: action for processing
1674 * This function issues a special IDE device request
1675 * onto the request queue.
1677 * If action is ide_wait, then the rq is queued at the end of the
1678 * request queue, and the function sleeps until it has been processed.
1679 * This is for use when invoked from an ioctl handler.
1681 * If action is ide_preempt, then the rq is queued at the head of
1682 * the request queue, displacing the currently-being-processed
1683 * request and this function returns immediately without waiting
1684 * for the new rq to be completed. This is VERY DANGEROUS, and is
1685 * intended for careful use by the ATAPI tape/cdrom driver code.
1687 * If action is ide_end, then the rq is queued at the end of the
1688 * request queue, and the function returns immediately without waiting
1689 * for the new rq to be completed. This is again intended for careful
1690 * use by the ATAPI tape/cdrom driver code.
1693 int ide_do_drive_cmd (ide_drive_t *drive, struct request *rq, ide_action_t action)
1695 unsigned long flags;
1696 ide_hwgroup_t *hwgroup = HWGROUP(drive);
1697 DECLARE_COMPLETION_ONSTACK(wait);
1698 int where = ELEVATOR_INSERT_BACK, err;
1699 int must_wait = (action == ide_wait || action == ide_head_wait);
1701 rq->errors = 0;
1704 * we need to hold an extra reference to request for safe inspection
1705 * after completion
1707 if (must_wait) {
1708 rq->ref_count++;
1709 rq->end_io_data = &wait;
1710 rq->end_io = blk_end_sync_rq;
1713 spin_lock_irqsave(&ide_lock, flags);
1714 if (action == ide_preempt)
1715 hwgroup->rq = NULL;
1716 if (action == ide_preempt || action == ide_head_wait) {
1717 where = ELEVATOR_INSERT_FRONT;
1718 rq->cmd_flags |= REQ_PREEMPT;
1720 __elv_add_request(drive->queue, rq, where, 0);
1721 ide_do_request(hwgroup, IDE_NO_IRQ);
1722 spin_unlock_irqrestore(&ide_lock, flags);
1724 err = 0;
1725 if (must_wait) {
1726 wait_for_completion(&wait);
1727 if (rq->errors)
1728 err = -EIO;
1730 blk_put_request(rq);
1733 return err;
1736 EXPORT_SYMBOL(ide_do_drive_cmd);
1738 void ide_pktcmd_tf_load(ide_drive_t *drive, u32 tf_flags, u16 bcount, u8 dma)
1740 ide_task_t task;
1742 memset(&task, 0, sizeof(task));
1743 task.tf_flags = IDE_TFLAG_OUT_LBAH | IDE_TFLAG_OUT_LBAM |
1744 IDE_TFLAG_OUT_FEATURE | tf_flags;
1745 task.tf.feature = dma; /* Use PIO/DMA */
1746 task.tf.lbam = bcount & 0xff;
1747 task.tf.lbah = (bcount >> 8) & 0xff;
1749 ide_tf_load(drive, &task);
1752 EXPORT_SYMBOL_GPL(ide_pktcmd_tf_load);