xen: implement Xen write_msr operation
[linux-2.6/mini2440.git] / arch / x86 / xen / enlighten.c
blob776c0fb77d6985d0f22312286ca2b2cfdad8da35
1 /*
2 * Core of Xen paravirt_ops implementation.
4 * This file contains the xen_paravirt_ops structure itself, and the
5 * implementations for:
6 * - privileged instructions
7 * - interrupt flags
8 * - segment operations
9 * - booting and setup
11 * Jeremy Fitzhardinge <jeremy@xensource.com>, XenSource Inc, 2007
14 #include <linux/kernel.h>
15 #include <linux/init.h>
16 #include <linux/smp.h>
17 #include <linux/preempt.h>
18 #include <linux/hardirq.h>
19 #include <linux/percpu.h>
20 #include <linux/delay.h>
21 #include <linux/start_kernel.h>
22 #include <linux/sched.h>
23 #include <linux/bootmem.h>
24 #include <linux/module.h>
25 #include <linux/mm.h>
26 #include <linux/page-flags.h>
27 #include <linux/highmem.h>
28 #include <linux/console.h>
30 #include <xen/interface/xen.h>
31 #include <xen/interface/physdev.h>
32 #include <xen/interface/vcpu.h>
33 #include <xen/interface/sched.h>
34 #include <xen/features.h>
35 #include <xen/page.h>
36 #include <xen/hvc-console.h>
38 #include <asm/paravirt.h>
39 #include <asm/page.h>
40 #include <asm/xen/hypercall.h>
41 #include <asm/xen/hypervisor.h>
42 #include <asm/fixmap.h>
43 #include <asm/processor.h>
44 #include <asm/msr-index.h>
45 #include <asm/setup.h>
46 #include <asm/desc.h>
47 #include <asm/pgtable.h>
48 #include <asm/tlbflush.h>
49 #include <asm/reboot.h>
51 #include "xen-ops.h"
52 #include "mmu.h"
53 #include "multicalls.h"
55 EXPORT_SYMBOL_GPL(hypercall_page);
57 DEFINE_PER_CPU(struct vcpu_info *, xen_vcpu);
58 DEFINE_PER_CPU(struct vcpu_info, xen_vcpu_info);
61 * Identity map, in addition to plain kernel map. This needs to be
62 * large enough to allocate page table pages to allocate the rest.
63 * Each page can map 2MB.
65 static pte_t level1_ident_pgt[PTRS_PER_PTE * 4] __page_aligned_bss;
67 #ifdef CONFIG_X86_64
68 /* l3 pud for userspace vsyscall mapping */
69 static pud_t level3_user_vsyscall[PTRS_PER_PUD] __page_aligned_bss;
70 #endif /* CONFIG_X86_64 */
73 * Note about cr3 (pagetable base) values:
75 * xen_cr3 contains the current logical cr3 value; it contains the
76 * last set cr3. This may not be the current effective cr3, because
77 * its update may be being lazily deferred. However, a vcpu looking
78 * at its own cr3 can use this value knowing that it everything will
79 * be self-consistent.
81 * xen_current_cr3 contains the actual vcpu cr3; it is set once the
82 * hypercall to set the vcpu cr3 is complete (so it may be a little
83 * out of date, but it will never be set early). If one vcpu is
84 * looking at another vcpu's cr3 value, it should use this variable.
86 DEFINE_PER_CPU(unsigned long, xen_cr3); /* cr3 stored as physaddr */
87 DEFINE_PER_CPU(unsigned long, xen_current_cr3); /* actual vcpu cr3 */
89 struct start_info *xen_start_info;
90 EXPORT_SYMBOL_GPL(xen_start_info);
92 struct shared_info xen_dummy_shared_info;
95 * Point at some empty memory to start with. We map the real shared_info
96 * page as soon as fixmap is up and running.
98 struct shared_info *HYPERVISOR_shared_info = (void *)&xen_dummy_shared_info;
101 * Flag to determine whether vcpu info placement is available on all
102 * VCPUs. We assume it is to start with, and then set it to zero on
103 * the first failure. This is because it can succeed on some VCPUs
104 * and not others, since it can involve hypervisor memory allocation,
105 * or because the guest failed to guarantee all the appropriate
106 * constraints on all VCPUs (ie buffer can't cross a page boundary).
108 * Note that any particular CPU may be using a placed vcpu structure,
109 * but we can only optimise if the all are.
111 * 0: not available, 1: available
113 static int have_vcpu_info_placement = 1;
115 static void xen_vcpu_setup(int cpu)
117 struct vcpu_register_vcpu_info info;
118 int err;
119 struct vcpu_info *vcpup;
121 BUG_ON(HYPERVISOR_shared_info == &xen_dummy_shared_info);
122 per_cpu(xen_vcpu, cpu) = &HYPERVISOR_shared_info->vcpu_info[cpu];
124 if (!have_vcpu_info_placement)
125 return; /* already tested, not available */
127 vcpup = &per_cpu(xen_vcpu_info, cpu);
129 info.mfn = virt_to_mfn(vcpup);
130 info.offset = offset_in_page(vcpup);
132 printk(KERN_DEBUG "trying to map vcpu_info %d at %p, mfn %llx, offset %d\n",
133 cpu, vcpup, info.mfn, info.offset);
135 /* Check to see if the hypervisor will put the vcpu_info
136 structure where we want it, which allows direct access via
137 a percpu-variable. */
138 err = HYPERVISOR_vcpu_op(VCPUOP_register_vcpu_info, cpu, &info);
140 if (err) {
141 printk(KERN_DEBUG "register_vcpu_info failed: err=%d\n", err);
142 have_vcpu_info_placement = 0;
143 } else {
144 /* This cpu is using the registered vcpu info, even if
145 later ones fail to. */
146 per_cpu(xen_vcpu, cpu) = vcpup;
148 printk(KERN_DEBUG "cpu %d using vcpu_info at %p\n",
149 cpu, vcpup);
154 * On restore, set the vcpu placement up again.
155 * If it fails, then we're in a bad state, since
156 * we can't back out from using it...
158 void xen_vcpu_restore(void)
160 if (have_vcpu_info_placement) {
161 int cpu;
163 for_each_online_cpu(cpu) {
164 bool other_cpu = (cpu != smp_processor_id());
166 if (other_cpu &&
167 HYPERVISOR_vcpu_op(VCPUOP_down, cpu, NULL))
168 BUG();
170 xen_vcpu_setup(cpu);
172 if (other_cpu &&
173 HYPERVISOR_vcpu_op(VCPUOP_up, cpu, NULL))
174 BUG();
177 BUG_ON(!have_vcpu_info_placement);
181 static void __init xen_banner(void)
183 printk(KERN_INFO "Booting paravirtualized kernel on %s\n",
184 pv_info.name);
185 printk(KERN_INFO "Hypervisor signature: %s%s\n",
186 xen_start_info->magic,
187 xen_feature(XENFEAT_mmu_pt_update_preserve_ad) ? " (preserve-AD)" : "");
190 static void xen_cpuid(unsigned int *ax, unsigned int *bx,
191 unsigned int *cx, unsigned int *dx)
193 unsigned maskedx = ~0;
196 * Mask out inconvenient features, to try and disable as many
197 * unsupported kernel subsystems as possible.
199 if (*ax == 1)
200 maskedx = ~((1 << X86_FEATURE_APIC) | /* disable APIC */
201 (1 << X86_FEATURE_ACPI) | /* disable ACPI */
202 (1 << X86_FEATURE_MCE) | /* disable MCE */
203 (1 << X86_FEATURE_MCA) | /* disable MCA */
204 (1 << X86_FEATURE_ACC)); /* thermal monitoring */
206 asm(XEN_EMULATE_PREFIX "cpuid"
207 : "=a" (*ax),
208 "=b" (*bx),
209 "=c" (*cx),
210 "=d" (*dx)
211 : "0" (*ax), "2" (*cx));
212 *dx &= maskedx;
215 static void xen_set_debugreg(int reg, unsigned long val)
217 HYPERVISOR_set_debugreg(reg, val);
220 static unsigned long xen_get_debugreg(int reg)
222 return HYPERVISOR_get_debugreg(reg);
225 static unsigned long xen_save_fl(void)
227 struct vcpu_info *vcpu;
228 unsigned long flags;
230 vcpu = x86_read_percpu(xen_vcpu);
232 /* flag has opposite sense of mask */
233 flags = !vcpu->evtchn_upcall_mask;
235 /* convert to IF type flag
236 -0 -> 0x00000000
237 -1 -> 0xffffffff
239 return (-flags) & X86_EFLAGS_IF;
242 static void xen_restore_fl(unsigned long flags)
244 struct vcpu_info *vcpu;
246 /* convert from IF type flag */
247 flags = !(flags & X86_EFLAGS_IF);
249 /* There's a one instruction preempt window here. We need to
250 make sure we're don't switch CPUs between getting the vcpu
251 pointer and updating the mask. */
252 preempt_disable();
253 vcpu = x86_read_percpu(xen_vcpu);
254 vcpu->evtchn_upcall_mask = flags;
255 preempt_enable_no_resched();
257 /* Doesn't matter if we get preempted here, because any
258 pending event will get dealt with anyway. */
260 if (flags == 0) {
261 preempt_check_resched();
262 barrier(); /* unmask then check (avoid races) */
263 if (unlikely(vcpu->evtchn_upcall_pending))
264 force_evtchn_callback();
268 static void xen_irq_disable(void)
270 /* There's a one instruction preempt window here. We need to
271 make sure we're don't switch CPUs between getting the vcpu
272 pointer and updating the mask. */
273 preempt_disable();
274 x86_read_percpu(xen_vcpu)->evtchn_upcall_mask = 1;
275 preempt_enable_no_resched();
278 static void xen_irq_enable(void)
280 struct vcpu_info *vcpu;
282 /* We don't need to worry about being preempted here, since
283 either a) interrupts are disabled, so no preemption, or b)
284 the caller is confused and is trying to re-enable interrupts
285 on an indeterminate processor. */
287 vcpu = x86_read_percpu(xen_vcpu);
288 vcpu->evtchn_upcall_mask = 0;
290 /* Doesn't matter if we get preempted here, because any
291 pending event will get dealt with anyway. */
293 barrier(); /* unmask then check (avoid races) */
294 if (unlikely(vcpu->evtchn_upcall_pending))
295 force_evtchn_callback();
298 static void xen_safe_halt(void)
300 /* Blocking includes an implicit local_irq_enable(). */
301 if (HYPERVISOR_sched_op(SCHEDOP_block, NULL) != 0)
302 BUG();
305 static void xen_halt(void)
307 if (irqs_disabled())
308 HYPERVISOR_vcpu_op(VCPUOP_down, smp_processor_id(), NULL);
309 else
310 xen_safe_halt();
313 static void xen_leave_lazy(void)
315 paravirt_leave_lazy(paravirt_get_lazy_mode());
316 xen_mc_flush();
319 static unsigned long xen_store_tr(void)
321 return 0;
324 static void xen_set_ldt(const void *addr, unsigned entries)
326 struct mmuext_op *op;
327 struct multicall_space mcs = xen_mc_entry(sizeof(*op));
329 op = mcs.args;
330 op->cmd = MMUEXT_SET_LDT;
331 op->arg1.linear_addr = (unsigned long)addr;
332 op->arg2.nr_ents = entries;
334 MULTI_mmuext_op(mcs.mc, op, 1, NULL, DOMID_SELF);
336 xen_mc_issue(PARAVIRT_LAZY_CPU);
339 static void xen_load_gdt(const struct desc_ptr *dtr)
341 unsigned long *frames;
342 unsigned long va = dtr->address;
343 unsigned int size = dtr->size + 1;
344 unsigned pages = (size + PAGE_SIZE - 1) / PAGE_SIZE;
345 int f;
346 struct multicall_space mcs;
348 /* A GDT can be up to 64k in size, which corresponds to 8192
349 8-byte entries, or 16 4k pages.. */
351 BUG_ON(size > 65536);
352 BUG_ON(va & ~PAGE_MASK);
354 mcs = xen_mc_entry(sizeof(*frames) * pages);
355 frames = mcs.args;
357 for (f = 0; va < dtr->address + size; va += PAGE_SIZE, f++) {
358 frames[f] = virt_to_mfn(va);
359 make_lowmem_page_readonly((void *)va);
362 MULTI_set_gdt(mcs.mc, frames, size / sizeof(struct desc_struct));
364 xen_mc_issue(PARAVIRT_LAZY_CPU);
367 static void load_TLS_descriptor(struct thread_struct *t,
368 unsigned int cpu, unsigned int i)
370 struct desc_struct *gdt = get_cpu_gdt_table(cpu);
371 xmaddr_t maddr = virt_to_machine(&gdt[GDT_ENTRY_TLS_MIN+i]);
372 struct multicall_space mc = __xen_mc_entry(0);
374 MULTI_update_descriptor(mc.mc, maddr.maddr, t->tls_array[i]);
377 static void xen_load_tls(struct thread_struct *t, unsigned int cpu)
380 * XXX sleazy hack: If we're being called in a lazy-cpu zone,
381 * it means we're in a context switch, and %gs has just been
382 * saved. This means we can zero it out to prevent faults on
383 * exit from the hypervisor if the next process has no %gs.
384 * Either way, it has been saved, and the new value will get
385 * loaded properly. This will go away as soon as Xen has been
386 * modified to not save/restore %gs for normal hypercalls.
388 * On x86_64, this hack is not used for %gs, because gs points
389 * to KERNEL_GS_BASE (and uses it for PDA references), so we
390 * must not zero %gs on x86_64
392 * For x86_64, we need to zero %fs, otherwise we may get an
393 * exception between the new %fs descriptor being loaded and
394 * %fs being effectively cleared at __switch_to().
396 if (paravirt_get_lazy_mode() == PARAVIRT_LAZY_CPU) {
397 #ifdef CONFIG_X86_32
398 loadsegment(gs, 0);
399 #else
400 loadsegment(fs, 0);
401 #endif
404 xen_mc_batch();
406 load_TLS_descriptor(t, cpu, 0);
407 load_TLS_descriptor(t, cpu, 1);
408 load_TLS_descriptor(t, cpu, 2);
410 xen_mc_issue(PARAVIRT_LAZY_CPU);
413 #ifdef CONFIG_X86_64
414 static void xen_load_gs_index(unsigned int idx)
416 if (HYPERVISOR_set_segment_base(SEGBASE_GS_USER_SEL, idx))
417 BUG();
419 #endif
421 static void xen_write_ldt_entry(struct desc_struct *dt, int entrynum,
422 const void *ptr)
424 unsigned long lp = (unsigned long)&dt[entrynum];
425 xmaddr_t mach_lp = virt_to_machine(lp);
426 u64 entry = *(u64 *)ptr;
428 preempt_disable();
430 xen_mc_flush();
431 if (HYPERVISOR_update_descriptor(mach_lp.maddr, entry))
432 BUG();
434 preempt_enable();
437 static int cvt_gate_to_trap(int vector, const gate_desc *val,
438 struct trap_info *info)
440 if (val->type != 0xf && val->type != 0xe)
441 return 0;
443 info->vector = vector;
444 info->address = gate_offset(*val);
445 info->cs = gate_segment(*val);
446 info->flags = val->dpl;
447 /* interrupt gates clear IF */
448 if (val->type == 0xe)
449 info->flags |= 4;
451 return 1;
454 /* Locations of each CPU's IDT */
455 static DEFINE_PER_CPU(struct desc_ptr, idt_desc);
457 /* Set an IDT entry. If the entry is part of the current IDT, then
458 also update Xen. */
459 static void xen_write_idt_entry(gate_desc *dt, int entrynum, const gate_desc *g)
461 unsigned long p = (unsigned long)&dt[entrynum];
462 unsigned long start, end;
464 preempt_disable();
466 start = __get_cpu_var(idt_desc).address;
467 end = start + __get_cpu_var(idt_desc).size + 1;
469 xen_mc_flush();
471 native_write_idt_entry(dt, entrynum, g);
473 if (p >= start && (p + 8) <= end) {
474 struct trap_info info[2];
476 info[1].address = 0;
478 if (cvt_gate_to_trap(entrynum, g, &info[0]))
479 if (HYPERVISOR_set_trap_table(info))
480 BUG();
483 preempt_enable();
486 static void xen_convert_trap_info(const struct desc_ptr *desc,
487 struct trap_info *traps)
489 unsigned in, out, count;
491 count = (desc->size+1) / sizeof(gate_desc);
492 BUG_ON(count > 256);
494 for (in = out = 0; in < count; in++) {
495 gate_desc *entry = (gate_desc*)(desc->address) + in;
497 if (cvt_gate_to_trap(in, entry, &traps[out]))
498 out++;
500 traps[out].address = 0;
503 void xen_copy_trap_info(struct trap_info *traps)
505 const struct desc_ptr *desc = &__get_cpu_var(idt_desc);
507 xen_convert_trap_info(desc, traps);
510 /* Load a new IDT into Xen. In principle this can be per-CPU, so we
511 hold a spinlock to protect the static traps[] array (static because
512 it avoids allocation, and saves stack space). */
513 static void xen_load_idt(const struct desc_ptr *desc)
515 static DEFINE_SPINLOCK(lock);
516 static struct trap_info traps[257];
518 spin_lock(&lock);
520 __get_cpu_var(idt_desc) = *desc;
522 xen_convert_trap_info(desc, traps);
524 xen_mc_flush();
525 if (HYPERVISOR_set_trap_table(traps))
526 BUG();
528 spin_unlock(&lock);
531 /* Write a GDT descriptor entry. Ignore LDT descriptors, since
532 they're handled differently. */
533 static void xen_write_gdt_entry(struct desc_struct *dt, int entry,
534 const void *desc, int type)
536 preempt_disable();
538 switch (type) {
539 case DESC_LDT:
540 case DESC_TSS:
541 /* ignore */
542 break;
544 default: {
545 xmaddr_t maddr = virt_to_machine(&dt[entry]);
547 xen_mc_flush();
548 if (HYPERVISOR_update_descriptor(maddr.maddr, *(u64 *)desc))
549 BUG();
554 preempt_enable();
557 static void xen_load_sp0(struct tss_struct *tss,
558 struct thread_struct *thread)
560 struct multicall_space mcs = xen_mc_entry(0);
561 MULTI_stack_switch(mcs.mc, __KERNEL_DS, thread->sp0);
562 xen_mc_issue(PARAVIRT_LAZY_CPU);
565 static void xen_set_iopl_mask(unsigned mask)
567 struct physdev_set_iopl set_iopl;
569 /* Force the change at ring 0. */
570 set_iopl.iopl = (mask == 0) ? 1 : (mask >> 12) & 3;
571 HYPERVISOR_physdev_op(PHYSDEVOP_set_iopl, &set_iopl);
574 static void xen_io_delay(void)
578 #ifdef CONFIG_X86_LOCAL_APIC
579 static u32 xen_apic_read(unsigned long reg)
581 return 0;
584 static void xen_apic_write(unsigned long reg, u32 val)
586 /* Warn to see if there's any stray references */
587 WARN_ON(1);
589 #endif
591 static void xen_flush_tlb(void)
593 struct mmuext_op *op;
594 struct multicall_space mcs;
596 preempt_disable();
598 mcs = xen_mc_entry(sizeof(*op));
600 op = mcs.args;
601 op->cmd = MMUEXT_TLB_FLUSH_LOCAL;
602 MULTI_mmuext_op(mcs.mc, op, 1, NULL, DOMID_SELF);
604 xen_mc_issue(PARAVIRT_LAZY_MMU);
606 preempt_enable();
609 static void xen_flush_tlb_single(unsigned long addr)
611 struct mmuext_op *op;
612 struct multicall_space mcs;
614 preempt_disable();
616 mcs = xen_mc_entry(sizeof(*op));
617 op = mcs.args;
618 op->cmd = MMUEXT_INVLPG_LOCAL;
619 op->arg1.linear_addr = addr & PAGE_MASK;
620 MULTI_mmuext_op(mcs.mc, op, 1, NULL, DOMID_SELF);
622 xen_mc_issue(PARAVIRT_LAZY_MMU);
624 preempt_enable();
627 static void xen_flush_tlb_others(const cpumask_t *cpus, struct mm_struct *mm,
628 unsigned long va)
630 struct {
631 struct mmuext_op op;
632 cpumask_t mask;
633 } *args;
634 cpumask_t cpumask = *cpus;
635 struct multicall_space mcs;
638 * A couple of (to be removed) sanity checks:
640 * - current CPU must not be in mask
641 * - mask must exist :)
643 BUG_ON(cpus_empty(cpumask));
644 BUG_ON(cpu_isset(smp_processor_id(), cpumask));
645 BUG_ON(!mm);
647 /* If a CPU which we ran on has gone down, OK. */
648 cpus_and(cpumask, cpumask, cpu_online_map);
649 if (cpus_empty(cpumask))
650 return;
652 mcs = xen_mc_entry(sizeof(*args));
653 args = mcs.args;
654 args->mask = cpumask;
655 args->op.arg2.vcpumask = &args->mask;
657 if (va == TLB_FLUSH_ALL) {
658 args->op.cmd = MMUEXT_TLB_FLUSH_MULTI;
659 } else {
660 args->op.cmd = MMUEXT_INVLPG_MULTI;
661 args->op.arg1.linear_addr = va;
664 MULTI_mmuext_op(mcs.mc, &args->op, 1, NULL, DOMID_SELF);
666 xen_mc_issue(PARAVIRT_LAZY_MMU);
669 static void xen_clts(void)
671 struct multicall_space mcs;
673 mcs = xen_mc_entry(0);
675 MULTI_fpu_taskswitch(mcs.mc, 0);
677 xen_mc_issue(PARAVIRT_LAZY_CPU);
680 static void xen_write_cr0(unsigned long cr0)
682 struct multicall_space mcs;
684 /* Only pay attention to cr0.TS; everything else is
685 ignored. */
686 mcs = xen_mc_entry(0);
688 MULTI_fpu_taskswitch(mcs.mc, (cr0 & X86_CR0_TS) != 0);
690 xen_mc_issue(PARAVIRT_LAZY_CPU);
693 static void xen_write_cr2(unsigned long cr2)
695 x86_read_percpu(xen_vcpu)->arch.cr2 = cr2;
698 static unsigned long xen_read_cr2(void)
700 return x86_read_percpu(xen_vcpu)->arch.cr2;
703 static unsigned long xen_read_cr2_direct(void)
705 return x86_read_percpu(xen_vcpu_info.arch.cr2);
708 static void xen_write_cr4(unsigned long cr4)
710 cr4 &= ~X86_CR4_PGE;
711 cr4 &= ~X86_CR4_PSE;
713 native_write_cr4(cr4);
716 static unsigned long xen_read_cr3(void)
718 return x86_read_percpu(xen_cr3);
721 static void set_current_cr3(void *v)
723 x86_write_percpu(xen_current_cr3, (unsigned long)v);
726 static void __xen_write_cr3(bool kernel, unsigned long cr3)
728 struct mmuext_op *op;
729 struct multicall_space mcs;
730 unsigned long mfn;
732 if (cr3)
733 mfn = pfn_to_mfn(PFN_DOWN(cr3));
734 else
735 mfn = 0;
737 WARN_ON(mfn == 0 && kernel);
739 mcs = __xen_mc_entry(sizeof(*op));
741 op = mcs.args;
742 op->cmd = kernel ? MMUEXT_NEW_BASEPTR : MMUEXT_NEW_USER_BASEPTR;
743 op->arg1.mfn = mfn;
745 MULTI_mmuext_op(mcs.mc, op, 1, NULL, DOMID_SELF);
747 if (kernel) {
748 x86_write_percpu(xen_cr3, cr3);
750 /* Update xen_current_cr3 once the batch has actually
751 been submitted. */
752 xen_mc_callback(set_current_cr3, (void *)cr3);
756 static void xen_write_cr3(unsigned long cr3)
758 BUG_ON(preemptible());
760 xen_mc_batch(); /* disables interrupts */
762 /* Update while interrupts are disabled, so its atomic with
763 respect to ipis */
764 x86_write_percpu(xen_cr3, cr3);
766 __xen_write_cr3(true, cr3);
768 #ifdef CONFIG_X86_64
770 pgd_t *user_pgd = xen_get_user_pgd(__va(cr3));
771 if (user_pgd)
772 __xen_write_cr3(false, __pa(user_pgd));
773 else
774 __xen_write_cr3(false, 0);
776 #endif
778 xen_mc_issue(PARAVIRT_LAZY_CPU); /* interrupts restored */
781 static int xen_write_msr_safe(unsigned int msr, unsigned low, unsigned high)
783 int ret;
785 ret = 0;
787 switch(msr) {
788 #ifdef CONFIG_X86_64
789 unsigned which;
790 u64 base;
792 case MSR_FS_BASE: which = SEGBASE_FS; goto set;
793 case MSR_KERNEL_GS_BASE: which = SEGBASE_GS_USER; goto set;
794 case MSR_GS_BASE: which = SEGBASE_GS_KERNEL; goto set;
796 set:
797 base = ((u64)high << 32) | low;
798 if (HYPERVISOR_set_segment_base(which, base) != 0)
799 ret = -EFAULT;
800 break;
801 #endif
802 default:
803 ret = native_write_msr_safe(msr, low, high);
806 return ret;
809 /* Early in boot, while setting up the initial pagetable, assume
810 everything is pinned. */
811 static __init void xen_alloc_pte_init(struct mm_struct *mm, u32 pfn)
813 #ifdef CONFIG_FLATMEM
814 BUG_ON(mem_map); /* should only be used early */
815 #endif
816 make_lowmem_page_readonly(__va(PFN_PHYS(pfn)));
819 /* Early release_pte assumes that all pts are pinned, since there's
820 only init_mm and anything attached to that is pinned. */
821 static void xen_release_pte_init(u32 pfn)
823 make_lowmem_page_readwrite(__va(PFN_PHYS(pfn)));
826 static void pin_pagetable_pfn(unsigned cmd, unsigned long pfn)
828 struct mmuext_op op;
829 op.cmd = cmd;
830 op.arg1.mfn = pfn_to_mfn(pfn);
831 if (HYPERVISOR_mmuext_op(&op, 1, NULL, DOMID_SELF))
832 BUG();
835 /* This needs to make sure the new pte page is pinned iff its being
836 attached to a pinned pagetable. */
837 static void xen_alloc_ptpage(struct mm_struct *mm, u32 pfn, unsigned level)
839 struct page *page = pfn_to_page(pfn);
841 if (PagePinned(virt_to_page(mm->pgd))) {
842 SetPagePinned(page);
844 if (!PageHighMem(page)) {
845 make_lowmem_page_readonly(__va(PFN_PHYS(pfn)));
846 if (level == PT_PTE)
847 pin_pagetable_pfn(MMUEXT_PIN_L1_TABLE, pfn);
848 } else
849 /* make sure there are no stray mappings of
850 this page */
851 kmap_flush_unused();
855 static void xen_alloc_pte(struct mm_struct *mm, u32 pfn)
857 xen_alloc_ptpage(mm, pfn, PT_PTE);
860 static void xen_alloc_pmd(struct mm_struct *mm, u32 pfn)
862 xen_alloc_ptpage(mm, pfn, PT_PMD);
865 static int xen_pgd_alloc(struct mm_struct *mm)
867 pgd_t *pgd = mm->pgd;
868 int ret = 0;
870 BUG_ON(PagePinned(virt_to_page(pgd)));
872 #ifdef CONFIG_X86_64
874 struct page *page = virt_to_page(pgd);
875 pgd_t *user_pgd;
877 BUG_ON(page->private != 0);
879 ret = -ENOMEM;
881 user_pgd = (pgd_t *)__get_free_page(GFP_KERNEL | __GFP_ZERO);
882 page->private = (unsigned long)user_pgd;
884 if (user_pgd != NULL) {
885 user_pgd[pgd_index(VSYSCALL_START)] =
886 __pgd(__pa(level3_user_vsyscall) | _PAGE_TABLE);
887 ret = 0;
890 BUG_ON(PagePinned(virt_to_page(xen_get_user_pgd(pgd))));
892 #endif
894 return ret;
897 static void xen_pgd_free(struct mm_struct *mm, pgd_t *pgd)
899 #ifdef CONFIG_X86_64
900 pgd_t *user_pgd = xen_get_user_pgd(pgd);
902 if (user_pgd)
903 free_page((unsigned long)user_pgd);
904 #endif
907 /* This should never happen until we're OK to use struct page */
908 static void xen_release_ptpage(u32 pfn, unsigned level)
910 struct page *page = pfn_to_page(pfn);
912 if (PagePinned(page)) {
913 if (!PageHighMem(page)) {
914 if (level == PT_PTE)
915 pin_pagetable_pfn(MMUEXT_UNPIN_TABLE, pfn);
916 make_lowmem_page_readwrite(__va(PFN_PHYS(pfn)));
918 ClearPagePinned(page);
922 static void xen_release_pte(u32 pfn)
924 xen_release_ptpage(pfn, PT_PTE);
927 static void xen_release_pmd(u32 pfn)
929 xen_release_ptpage(pfn, PT_PMD);
932 #if PAGETABLE_LEVELS == 4
933 static void xen_alloc_pud(struct mm_struct *mm, u32 pfn)
935 xen_alloc_ptpage(mm, pfn, PT_PUD);
938 static void xen_release_pud(u32 pfn)
940 xen_release_ptpage(pfn, PT_PUD);
942 #endif
944 #ifdef CONFIG_HIGHPTE
945 static void *xen_kmap_atomic_pte(struct page *page, enum km_type type)
947 pgprot_t prot = PAGE_KERNEL;
949 if (PagePinned(page))
950 prot = PAGE_KERNEL_RO;
952 if (0 && PageHighMem(page))
953 printk("mapping highpte %lx type %d prot %s\n",
954 page_to_pfn(page), type,
955 (unsigned long)pgprot_val(prot) & _PAGE_RW ? "WRITE" : "READ");
957 return kmap_atomic_prot(page, type, prot);
959 #endif
961 static __init pte_t mask_rw_pte(pte_t *ptep, pte_t pte)
963 /* If there's an existing pte, then don't allow _PAGE_RW to be set */
964 if (pte_val_ma(*ptep) & _PAGE_PRESENT)
965 pte = __pte_ma(((pte_val_ma(*ptep) & _PAGE_RW) | ~_PAGE_RW) &
966 pte_val_ma(pte));
968 return pte;
971 /* Init-time set_pte while constructing initial pagetables, which
972 doesn't allow RO pagetable pages to be remapped RW */
973 static __init void xen_set_pte_init(pte_t *ptep, pte_t pte)
975 pte = mask_rw_pte(ptep, pte);
977 xen_set_pte(ptep, pte);
980 static __init void xen_pagetable_setup_start(pgd_t *base)
984 void xen_setup_shared_info(void)
986 if (!xen_feature(XENFEAT_auto_translated_physmap)) {
987 set_fixmap(FIX_PARAVIRT_BOOTMAP,
988 xen_start_info->shared_info);
990 HYPERVISOR_shared_info =
991 (struct shared_info *)fix_to_virt(FIX_PARAVIRT_BOOTMAP);
992 } else
993 HYPERVISOR_shared_info =
994 (struct shared_info *)__va(xen_start_info->shared_info);
996 #ifndef CONFIG_SMP
997 /* In UP this is as good a place as any to set up shared info */
998 xen_setup_vcpu_info_placement();
999 #endif
1001 xen_setup_mfn_list_list();
1004 static __init void xen_pagetable_setup_done(pgd_t *base)
1006 xen_setup_shared_info();
1009 static __init void xen_post_allocator_init(void)
1011 pv_mmu_ops.set_pte = xen_set_pte;
1012 pv_mmu_ops.set_pmd = xen_set_pmd;
1013 pv_mmu_ops.set_pud = xen_set_pud;
1014 #if PAGETABLE_LEVELS == 4
1015 pv_mmu_ops.set_pgd = xen_set_pgd;
1016 #endif
1018 /* This will work as long as patching hasn't happened yet
1019 (which it hasn't) */
1020 pv_mmu_ops.alloc_pte = xen_alloc_pte;
1021 pv_mmu_ops.alloc_pmd = xen_alloc_pmd;
1022 pv_mmu_ops.release_pte = xen_release_pte;
1023 pv_mmu_ops.release_pmd = xen_release_pmd;
1024 #if PAGETABLE_LEVELS == 4
1025 pv_mmu_ops.alloc_pud = xen_alloc_pud;
1026 pv_mmu_ops.release_pud = xen_release_pud;
1027 #endif
1029 #ifdef CONFIG_X86_64
1030 SetPagePinned(virt_to_page(level3_user_vsyscall));
1031 #endif
1032 xen_mark_init_mm_pinned();
1035 /* This is called once we have the cpu_possible_map */
1036 void xen_setup_vcpu_info_placement(void)
1038 int cpu;
1040 for_each_possible_cpu(cpu)
1041 xen_vcpu_setup(cpu);
1043 /* xen_vcpu_setup managed to place the vcpu_info within the
1044 percpu area for all cpus, so make use of it */
1045 #ifdef CONFIG_X86_32
1046 if (have_vcpu_info_placement) {
1047 printk(KERN_INFO "Xen: using vcpu_info placement\n");
1049 pv_irq_ops.save_fl = xen_save_fl_direct;
1050 pv_irq_ops.restore_fl = xen_restore_fl_direct;
1051 pv_irq_ops.irq_disable = xen_irq_disable_direct;
1052 pv_irq_ops.irq_enable = xen_irq_enable_direct;
1053 pv_mmu_ops.read_cr2 = xen_read_cr2_direct;
1055 #endif
1058 static unsigned xen_patch(u8 type, u16 clobbers, void *insnbuf,
1059 unsigned long addr, unsigned len)
1061 char *start, *end, *reloc;
1062 unsigned ret;
1064 start = end = reloc = NULL;
1066 #define SITE(op, x) \
1067 case PARAVIRT_PATCH(op.x): \
1068 if (have_vcpu_info_placement) { \
1069 start = (char *)xen_##x##_direct; \
1070 end = xen_##x##_direct_end; \
1071 reloc = xen_##x##_direct_reloc; \
1073 goto patch_site
1075 switch (type) {
1076 #ifdef CONFIG_X86_32
1077 SITE(pv_irq_ops, irq_enable);
1078 SITE(pv_irq_ops, irq_disable);
1079 SITE(pv_irq_ops, save_fl);
1080 SITE(pv_irq_ops, restore_fl);
1081 #endif /* CONFIG_X86_32 */
1082 #undef SITE
1084 patch_site:
1085 if (start == NULL || (end-start) > len)
1086 goto default_patch;
1088 ret = paravirt_patch_insns(insnbuf, len, start, end);
1090 /* Note: because reloc is assigned from something that
1091 appears to be an array, gcc assumes it's non-null,
1092 but doesn't know its relationship with start and
1093 end. */
1094 if (reloc > start && reloc < end) {
1095 int reloc_off = reloc - start;
1096 long *relocp = (long *)(insnbuf + reloc_off);
1097 long delta = start - (char *)addr;
1099 *relocp += delta;
1101 break;
1103 default_patch:
1104 default:
1105 ret = paravirt_patch_default(type, clobbers, insnbuf,
1106 addr, len);
1107 break;
1110 return ret;
1113 static void xen_set_fixmap(unsigned idx, unsigned long phys, pgprot_t prot)
1115 pte_t pte;
1117 phys >>= PAGE_SHIFT;
1119 switch (idx) {
1120 case FIX_BTMAP_END ... FIX_BTMAP_BEGIN:
1121 #ifdef CONFIG_X86_F00F_BUG
1122 case FIX_F00F_IDT:
1123 #endif
1124 #ifdef CONFIG_X86_32
1125 case FIX_WP_TEST:
1126 case FIX_VDSO:
1127 case FIX_KMAP_BEGIN ... FIX_KMAP_END:
1128 #else
1129 case VSYSCALL_LAST_PAGE ... VSYSCALL_FIRST_PAGE:
1130 #endif
1131 #ifdef CONFIG_X86_LOCAL_APIC
1132 case FIX_APIC_BASE: /* maps dummy local APIC */
1133 #endif
1134 pte = pfn_pte(phys, prot);
1135 break;
1137 default:
1138 pte = mfn_pte(phys, prot);
1139 break;
1142 __native_set_fixmap(idx, pte);
1144 #ifdef CONFIG_X86_64
1145 /* Replicate changes to map the vsyscall page into the user
1146 pagetable vsyscall mapping. */
1147 if (idx >= VSYSCALL_LAST_PAGE && idx <= VSYSCALL_FIRST_PAGE) {
1148 unsigned long vaddr = __fix_to_virt(idx);
1149 set_pte_vaddr_pud(level3_user_vsyscall, vaddr, pte);
1151 #endif
1154 static const struct pv_info xen_info __initdata = {
1155 .paravirt_enabled = 1,
1156 .shared_kernel_pmd = 0,
1158 .name = "Xen",
1161 static const struct pv_init_ops xen_init_ops __initdata = {
1162 .patch = xen_patch,
1164 .banner = xen_banner,
1165 .memory_setup = xen_memory_setup,
1166 .arch_setup = xen_arch_setup,
1167 .post_allocator_init = xen_post_allocator_init,
1170 static const struct pv_time_ops xen_time_ops __initdata = {
1171 .time_init = xen_time_init,
1173 .set_wallclock = xen_set_wallclock,
1174 .get_wallclock = xen_get_wallclock,
1175 .get_tsc_khz = xen_tsc_khz,
1176 .sched_clock = xen_sched_clock,
1179 static const struct pv_cpu_ops xen_cpu_ops __initdata = {
1180 .cpuid = xen_cpuid,
1182 .set_debugreg = xen_set_debugreg,
1183 .get_debugreg = xen_get_debugreg,
1185 .clts = xen_clts,
1187 .read_cr0 = native_read_cr0,
1188 .write_cr0 = xen_write_cr0,
1190 .read_cr4 = native_read_cr4,
1191 .read_cr4_safe = native_read_cr4_safe,
1192 .write_cr4 = xen_write_cr4,
1194 .wbinvd = native_wbinvd,
1196 .read_msr = native_read_msr_safe,
1197 .write_msr = xen_write_msr_safe,
1198 .read_tsc = native_read_tsc,
1199 .read_pmc = native_read_pmc,
1201 .iret = xen_iret,
1202 .irq_enable_sysexit = xen_sysexit,
1203 #ifdef CONFIG_X86_64
1204 .usergs_sysret32 = xen_sysret32,
1205 .usergs_sysret64 = xen_sysret64,
1206 #endif
1208 .load_tr_desc = paravirt_nop,
1209 .set_ldt = xen_set_ldt,
1210 .load_gdt = xen_load_gdt,
1211 .load_idt = xen_load_idt,
1212 .load_tls = xen_load_tls,
1213 #ifdef CONFIG_X86_64
1214 .load_gs_index = xen_load_gs_index,
1215 #endif
1217 .store_gdt = native_store_gdt,
1218 .store_idt = native_store_idt,
1219 .store_tr = xen_store_tr,
1221 .write_ldt_entry = xen_write_ldt_entry,
1222 .write_gdt_entry = xen_write_gdt_entry,
1223 .write_idt_entry = xen_write_idt_entry,
1224 .load_sp0 = xen_load_sp0,
1226 .set_iopl_mask = xen_set_iopl_mask,
1227 .io_delay = xen_io_delay,
1229 /* Xen takes care of %gs when switching to usermode for us */
1230 .swapgs = paravirt_nop,
1232 .lazy_mode = {
1233 .enter = paravirt_enter_lazy_cpu,
1234 .leave = xen_leave_lazy,
1238 static void __init __xen_init_IRQ(void)
1240 #ifdef CONFIG_X86_64
1241 int i;
1243 /* Create identity vector->irq map */
1244 for(i = 0; i < NR_VECTORS; i++) {
1245 int cpu;
1247 for_each_possible_cpu(cpu)
1248 per_cpu(vector_irq, cpu)[i] = i;
1250 #endif /* CONFIG_X86_64 */
1252 xen_init_IRQ();
1255 static const struct pv_irq_ops xen_irq_ops __initdata = {
1256 .init_IRQ = __xen_init_IRQ,
1257 .save_fl = xen_save_fl,
1258 .restore_fl = xen_restore_fl,
1259 .irq_disable = xen_irq_disable,
1260 .irq_enable = xen_irq_enable,
1261 .safe_halt = xen_safe_halt,
1262 .halt = xen_halt,
1263 #ifdef CONFIG_X86_64
1264 .adjust_exception_frame = xen_adjust_exception_frame,
1265 #endif
1268 static const struct pv_apic_ops xen_apic_ops __initdata = {
1269 #ifdef CONFIG_X86_LOCAL_APIC
1270 .apic_write = xen_apic_write,
1271 .apic_write_atomic = xen_apic_write,
1272 .apic_read = xen_apic_read,
1273 .setup_boot_clock = paravirt_nop,
1274 .setup_secondary_clock = paravirt_nop,
1275 .startup_ipi_hook = paravirt_nop,
1276 #endif
1279 static const struct pv_mmu_ops xen_mmu_ops __initdata = {
1280 .pagetable_setup_start = xen_pagetable_setup_start,
1281 .pagetable_setup_done = xen_pagetable_setup_done,
1283 .read_cr2 = xen_read_cr2,
1284 .write_cr2 = xen_write_cr2,
1286 .read_cr3 = xen_read_cr3,
1287 .write_cr3 = xen_write_cr3,
1289 .flush_tlb_user = xen_flush_tlb,
1290 .flush_tlb_kernel = xen_flush_tlb,
1291 .flush_tlb_single = xen_flush_tlb_single,
1292 .flush_tlb_others = xen_flush_tlb_others,
1294 .pte_update = paravirt_nop,
1295 .pte_update_defer = paravirt_nop,
1297 .pgd_alloc = xen_pgd_alloc,
1298 .pgd_free = xen_pgd_free,
1300 .alloc_pte = xen_alloc_pte_init,
1301 .release_pte = xen_release_pte_init,
1302 .alloc_pmd = xen_alloc_pte_init,
1303 .alloc_pmd_clone = paravirt_nop,
1304 .release_pmd = xen_release_pte_init,
1306 #ifdef CONFIG_HIGHPTE
1307 .kmap_atomic_pte = xen_kmap_atomic_pte,
1308 #endif
1310 #ifdef CONFIG_X86_64
1311 .set_pte = xen_set_pte,
1312 #else
1313 .set_pte = xen_set_pte_init,
1314 #endif
1315 .set_pte_at = xen_set_pte_at,
1316 .set_pmd = xen_set_pmd_hyper,
1318 .ptep_modify_prot_start = __ptep_modify_prot_start,
1319 .ptep_modify_prot_commit = __ptep_modify_prot_commit,
1321 .pte_val = xen_pte_val,
1322 .pte_flags = native_pte_val,
1323 .pgd_val = xen_pgd_val,
1325 .make_pte = xen_make_pte,
1326 .make_pgd = xen_make_pgd,
1328 #ifdef CONFIG_X86_PAE
1329 .set_pte_atomic = xen_set_pte_atomic,
1330 .set_pte_present = xen_set_pte_at,
1331 .pte_clear = xen_pte_clear,
1332 .pmd_clear = xen_pmd_clear,
1333 #endif /* CONFIG_X86_PAE */
1334 .set_pud = xen_set_pud_hyper,
1336 .make_pmd = xen_make_pmd,
1337 .pmd_val = xen_pmd_val,
1339 #if PAGETABLE_LEVELS == 4
1340 .pud_val = xen_pud_val,
1341 .make_pud = xen_make_pud,
1342 .set_pgd = xen_set_pgd_hyper,
1344 .alloc_pud = xen_alloc_pte_init,
1345 .release_pud = xen_release_pte_init,
1346 #endif /* PAGETABLE_LEVELS == 4 */
1348 .activate_mm = xen_activate_mm,
1349 .dup_mmap = xen_dup_mmap,
1350 .exit_mmap = xen_exit_mmap,
1352 .lazy_mode = {
1353 .enter = paravirt_enter_lazy_mmu,
1354 .leave = xen_leave_lazy,
1357 .set_fixmap = xen_set_fixmap,
1360 static void xen_reboot(int reason)
1362 struct sched_shutdown r = { .reason = reason };
1364 #ifdef CONFIG_SMP
1365 smp_send_stop();
1366 #endif
1368 if (HYPERVISOR_sched_op(SCHEDOP_shutdown, &r))
1369 BUG();
1372 static void xen_restart(char *msg)
1374 xen_reboot(SHUTDOWN_reboot);
1377 static void xen_emergency_restart(void)
1379 xen_reboot(SHUTDOWN_reboot);
1382 static void xen_machine_halt(void)
1384 xen_reboot(SHUTDOWN_poweroff);
1387 static void xen_crash_shutdown(struct pt_regs *regs)
1389 xen_reboot(SHUTDOWN_crash);
1392 static const struct machine_ops __initdata xen_machine_ops = {
1393 .restart = xen_restart,
1394 .halt = xen_machine_halt,
1395 .power_off = xen_machine_halt,
1396 .shutdown = xen_machine_halt,
1397 .crash_shutdown = xen_crash_shutdown,
1398 .emergency_restart = xen_emergency_restart,
1402 static void __init xen_reserve_top(void)
1404 #ifdef CONFIG_X86_32
1405 unsigned long top = HYPERVISOR_VIRT_START;
1406 struct xen_platform_parameters pp;
1408 if (HYPERVISOR_xen_version(XENVER_platform_parameters, &pp) == 0)
1409 top = pp.virt_start;
1411 reserve_top_address(-top + 2 * PAGE_SIZE);
1412 #endif /* CONFIG_X86_32 */
1416 * Like __va(), but returns address in the kernel mapping (which is
1417 * all we have until the physical memory mapping has been set up.
1419 static void *__ka(phys_addr_t paddr)
1421 #ifdef CONFIG_X86_64
1422 return (void *)(paddr + __START_KERNEL_map);
1423 #else
1424 return __va(paddr);
1425 #endif
1428 /* Convert a machine address to physical address */
1429 static unsigned long m2p(phys_addr_t maddr)
1431 phys_addr_t paddr;
1433 maddr &= PTE_MASK;
1434 paddr = mfn_to_pfn(maddr >> PAGE_SHIFT) << PAGE_SHIFT;
1436 return paddr;
1439 /* Convert a machine address to kernel virtual */
1440 static void *m2v(phys_addr_t maddr)
1442 return __ka(m2p(maddr));
1445 #ifdef CONFIG_X86_64
1446 static void walk(pgd_t *pgd, unsigned long addr)
1448 unsigned l4idx = pgd_index(addr);
1449 unsigned l3idx = pud_index(addr);
1450 unsigned l2idx = pmd_index(addr);
1451 unsigned l1idx = pte_index(addr);
1452 pgd_t l4;
1453 pud_t l3;
1454 pmd_t l2;
1455 pte_t l1;
1457 xen_raw_printk("walk %p, %lx -> %d %d %d %d\n",
1458 pgd, addr, l4idx, l3idx, l2idx, l1idx);
1460 l4 = pgd[l4idx];
1461 xen_raw_printk(" l4: %016lx\n", l4.pgd);
1462 xen_raw_printk(" %016lx\n", pgd_val(l4));
1464 l3 = ((pud_t *)(m2v(l4.pgd)))[l3idx];
1465 xen_raw_printk(" l3: %016lx\n", l3.pud);
1466 xen_raw_printk(" %016lx\n", pud_val(l3));
1468 l2 = ((pmd_t *)(m2v(l3.pud)))[l2idx];
1469 xen_raw_printk(" l2: %016lx\n", l2.pmd);
1470 xen_raw_printk(" %016lx\n", pmd_val(l2));
1472 l1 = ((pte_t *)(m2v(l2.pmd)))[l1idx];
1473 xen_raw_printk(" l1: %016lx\n", l1.pte);
1474 xen_raw_printk(" %016lx\n", pte_val(l1));
1476 #endif
1478 static void set_page_prot(void *addr, pgprot_t prot)
1480 unsigned long pfn = __pa(addr) >> PAGE_SHIFT;
1481 pte_t pte = pfn_pte(pfn, prot);
1483 xen_raw_printk("addr=%p pfn=%lx mfn=%lx prot=%016llx pte=%016llx\n",
1484 addr, pfn, get_phys_to_machine(pfn),
1485 pgprot_val(prot), pte.pte);
1487 if (HYPERVISOR_update_va_mapping((unsigned long)addr, pte, 0))
1488 BUG();
1491 static __init void xen_map_identity_early(pmd_t *pmd, unsigned long max_pfn)
1493 unsigned pmdidx, pteidx;
1494 unsigned ident_pte;
1495 unsigned long pfn;
1497 ident_pte = 0;
1498 pfn = 0;
1499 for(pmdidx = 0; pmdidx < PTRS_PER_PMD && pfn < max_pfn; pmdidx++) {
1500 pte_t *pte_page;
1502 /* Reuse or allocate a page of ptes */
1503 if (pmd_present(pmd[pmdidx]))
1504 pte_page = m2v(pmd[pmdidx].pmd);
1505 else {
1506 /* Check for free pte pages */
1507 if (ident_pte == ARRAY_SIZE(level1_ident_pgt))
1508 break;
1510 pte_page = &level1_ident_pgt[ident_pte];
1511 ident_pte += PTRS_PER_PTE;
1513 pmd[pmdidx] = __pmd(__pa(pte_page) | _PAGE_TABLE);
1516 /* Install mappings */
1517 for(pteidx = 0; pteidx < PTRS_PER_PTE; pteidx++, pfn++) {
1518 pte_t pte;
1520 if (pfn > max_pfn_mapped)
1521 max_pfn_mapped = pfn;
1523 if (!pte_none(pte_page[pteidx]))
1524 continue;
1526 pte = pfn_pte(pfn, PAGE_KERNEL_EXEC);
1527 pte_page[pteidx] = pte;
1531 for(pteidx = 0; pteidx < ident_pte; pteidx += PTRS_PER_PTE)
1532 set_page_prot(&level1_ident_pgt[pteidx], PAGE_KERNEL_RO);
1534 set_page_prot(pmd, PAGE_KERNEL_RO);
1537 #ifdef CONFIG_X86_64
1538 static void convert_pfn_mfn(void *v)
1540 pte_t *pte = v;
1541 int i;
1543 /* All levels are converted the same way, so just treat them
1544 as ptes. */
1545 for(i = 0; i < PTRS_PER_PTE; i++)
1546 pte[i] = xen_make_pte(pte[i].pte);
1550 * Set up the inital kernel pagetable.
1552 * We can construct this by grafting the Xen provided pagetable into
1553 * head_64.S's preconstructed pagetables. We copy the Xen L2's into
1554 * level2_ident_pgt, level2_kernel_pgt and level2_fixmap_pgt. This
1555 * means that only the kernel has a physical mapping to start with -
1556 * but that's enough to get __va working. We need to fill in the rest
1557 * of the physical mapping once some sort of allocator has been set
1558 * up.
1560 static __init pgd_t *xen_setup_kernel_pagetable(pgd_t *pgd, unsigned long max_pfn)
1562 pud_t *l3;
1563 pmd_t *l2;
1565 /* Zap identity mapping */
1566 init_level4_pgt[0] = __pgd(0);
1568 /* Pre-constructed entries are in pfn, so convert to mfn */
1569 convert_pfn_mfn(init_level4_pgt);
1570 convert_pfn_mfn(level3_ident_pgt);
1571 convert_pfn_mfn(level3_kernel_pgt);
1573 l3 = m2v(pgd[pgd_index(__START_KERNEL_map)].pgd);
1574 l2 = m2v(l3[pud_index(__START_KERNEL_map)].pud);
1576 memcpy(level2_ident_pgt, l2, sizeof(pmd_t) * PTRS_PER_PMD);
1577 memcpy(level2_kernel_pgt, l2, sizeof(pmd_t) * PTRS_PER_PMD);
1579 l3 = m2v(pgd[pgd_index(__START_KERNEL_map + PMD_SIZE)].pgd);
1580 l2 = m2v(l3[pud_index(__START_KERNEL_map + PMD_SIZE)].pud);
1581 memcpy(level2_fixmap_pgt, l2, sizeof(pmd_t) * PTRS_PER_PMD);
1583 /* Set up identity map */
1584 xen_map_identity_early(level2_ident_pgt, max_pfn);
1586 /* Make pagetable pieces RO */
1587 set_page_prot(init_level4_pgt, PAGE_KERNEL_RO);
1588 set_page_prot(level3_ident_pgt, PAGE_KERNEL_RO);
1589 set_page_prot(level3_kernel_pgt, PAGE_KERNEL_RO);
1590 set_page_prot(level3_user_vsyscall, PAGE_KERNEL_RO);
1591 set_page_prot(level2_kernel_pgt, PAGE_KERNEL_RO);
1592 set_page_prot(level2_fixmap_pgt, PAGE_KERNEL_RO);
1594 /* Pin down new L4 */
1595 pin_pagetable_pfn(MMUEXT_PIN_L4_TABLE,
1596 PFN_DOWN(__pa_symbol(init_level4_pgt)));
1598 /* Unpin Xen-provided one */
1599 pin_pagetable_pfn(MMUEXT_UNPIN_TABLE, PFN_DOWN(__pa(pgd)));
1601 /* Switch over */
1602 pgd = init_level4_pgt;
1605 * At this stage there can be no user pgd, and no page
1606 * structure to attach it to, so make sure we just set kernel
1607 * pgd.
1609 xen_mc_batch();
1610 __xen_write_cr3(true, __pa(pgd));
1611 xen_mc_issue(PARAVIRT_LAZY_CPU);
1613 reserve_early(__pa(xen_start_info->pt_base),
1614 __pa(xen_start_info->pt_base +
1615 xen_start_info->nr_pt_frames * PAGE_SIZE),
1616 "XEN PAGETABLES");
1618 return pgd;
1620 #else /* !CONFIG_X86_64 */
1621 static pmd_t level2_kernel_pgt[PTRS_PER_PMD] __page_aligned_bss;
1623 static __init pgd_t *xen_setup_kernel_pagetable(pgd_t *pgd, unsigned long max_pfn)
1625 pmd_t *kernel_pmd;
1627 init_pg_tables_start = __pa(pgd);
1628 init_pg_tables_end = __pa(pgd) + xen_start_info->nr_pt_frames*PAGE_SIZE;
1629 max_pfn_mapped = PFN_DOWN(init_pg_tables_end + 512*1024);
1631 kernel_pmd = m2v(pgd[KERNEL_PGD_BOUNDARY].pgd);
1632 memcpy(level2_kernel_pgt, kernel_pmd, sizeof(pmd_t) * PTRS_PER_PMD);
1634 xen_map_identity_early(level2_kernel_pgt, max_pfn);
1636 memcpy(swapper_pg_dir, pgd, sizeof(pgd_t) * PTRS_PER_PGD);
1637 set_pgd(&swapper_pg_dir[KERNEL_PGD_BOUNDARY],
1638 __pgd(__pa(level2_kernel_pgt) | _PAGE_PRESENT));
1640 set_page_prot(level2_kernel_pgt, PAGE_KERNEL_RO);
1641 set_page_prot(swapper_pg_dir, PAGE_KERNEL_RO);
1642 set_page_prot(empty_zero_page, PAGE_KERNEL_RO);
1644 pin_pagetable_pfn(MMUEXT_UNPIN_TABLE, PFN_DOWN(__pa(pgd)));
1646 xen_write_cr3(__pa(swapper_pg_dir));
1648 pin_pagetable_pfn(MMUEXT_PIN_L3_TABLE, PFN_DOWN(__pa(swapper_pg_dir)));
1650 return swapper_pg_dir;
1652 #endif /* CONFIG_X86_64 */
1654 /* First C function to be called on Xen boot */
1655 asmlinkage void __init xen_start_kernel(void)
1657 pgd_t *pgd;
1659 if (!xen_start_info)
1660 return;
1662 BUG_ON(memcmp(xen_start_info->magic, "xen-3", 5) != 0);
1664 xen_setup_features();
1666 /* Install Xen paravirt ops */
1667 pv_info = xen_info;
1668 pv_init_ops = xen_init_ops;
1669 pv_time_ops = xen_time_ops;
1670 pv_cpu_ops = xen_cpu_ops;
1671 pv_irq_ops = xen_irq_ops;
1672 pv_apic_ops = xen_apic_ops;
1673 pv_mmu_ops = xen_mmu_ops;
1675 if (xen_feature(XENFEAT_mmu_pt_update_preserve_ad)) {
1676 pv_mmu_ops.ptep_modify_prot_start = xen_ptep_modify_prot_start;
1677 pv_mmu_ops.ptep_modify_prot_commit = xen_ptep_modify_prot_commit;
1680 machine_ops = xen_machine_ops;
1682 #ifdef CONFIG_X86_64
1683 /* Disable until direct per-cpu data access. */
1684 have_vcpu_info_placement = 0;
1685 x86_64_init_pda();
1686 #endif
1688 xen_smp_init();
1690 /* Get mfn list */
1691 if (!xen_feature(XENFEAT_auto_translated_physmap))
1692 xen_build_dynamic_phys_to_machine();
1694 pgd = (pgd_t *)xen_start_info->pt_base;
1696 /* Prevent unwanted bits from being set in PTEs. */
1697 __supported_pte_mask &= ~_PAGE_GLOBAL;
1698 if (!is_initial_xendomain())
1699 __supported_pte_mask &= ~(_PAGE_PWT | _PAGE_PCD);
1701 /* Don't do the full vcpu_info placement stuff until we have a
1702 possible map and a non-dummy shared_info. */
1703 per_cpu(xen_vcpu, 0) = &HYPERVISOR_shared_info->vcpu_info[0];
1705 xen_raw_console_write("mapping kernel into physical memory\n");
1706 pgd = xen_setup_kernel_pagetable(pgd, xen_start_info->nr_pages);
1708 init_mm.pgd = pgd;
1710 /* keep using Xen gdt for now; no urgent need to change it */
1712 pv_info.kernel_rpl = 1;
1713 if (xen_feature(XENFEAT_supervisor_mode_kernel))
1714 pv_info.kernel_rpl = 0;
1716 /* set the limit of our address space */
1717 xen_reserve_top();
1719 #ifdef CONFIG_X86_32
1720 /* set up basic CPUID stuff */
1721 cpu_detect(&new_cpu_data);
1722 new_cpu_data.hard_math = 1;
1723 new_cpu_data.x86_capability[0] = cpuid_edx(1);
1724 #endif
1726 /* Poke various useful things into boot_params */
1727 boot_params.hdr.type_of_loader = (9 << 4) | 0;
1728 boot_params.hdr.ramdisk_image = xen_start_info->mod_start
1729 ? __pa(xen_start_info->mod_start) : 0;
1730 boot_params.hdr.ramdisk_size = xen_start_info->mod_len;
1731 boot_params.hdr.cmd_line_ptr = __pa(xen_start_info->cmd_line);
1733 if (!is_initial_xendomain()) {
1734 add_preferred_console("xenboot", 0, NULL);
1735 add_preferred_console("tty", 0, NULL);
1736 add_preferred_console("hvc", 0, NULL);
1739 xen_raw_console_write("about to get started...\n");
1741 #if 0
1742 xen_raw_printk("&boot_params=%p __pa(&boot_params)=%lx __va(__pa(&boot_params))=%lx\n",
1743 &boot_params, __pa_symbol(&boot_params),
1744 __va(__pa_symbol(&boot_params)));
1746 walk(pgd, &boot_params);
1747 walk(pgd, __va(__pa(&boot_params)));
1748 #endif
1750 /* Start the world */
1751 #ifdef CONFIG_X86_32
1752 i386_start_kernel();
1753 #else
1754 x86_64_start_reservations((char *)__pa_symbol(&boot_params));
1755 #endif