2 * Copyright (c) 2000-2006 Silicon Graphics, Inc.
5 * This program is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU General Public License as
7 * published by the Free Software Foundation.
9 * This program is distributed in the hope that it would be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write the Free Software Foundation,
16 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
20 #include "xfs_types.h"
24 #include "xfs_trans.h"
28 #include "xfs_dmapi.h"
29 #include "xfs_mount.h"
30 #include "xfs_error.h"
31 #include "xfs_bmap_btree.h"
32 #include "xfs_alloc_btree.h"
33 #include "xfs_ialloc_btree.h"
34 #include "xfs_dir2_sf.h"
35 #include "xfs_attr_sf.h"
36 #include "xfs_dinode.h"
37 #include "xfs_inode.h"
38 #include "xfs_inode_item.h"
40 #include "xfs_alloc.h"
41 #include "xfs_ialloc.h"
42 #include "xfs_log_priv.h"
43 #include "xfs_buf_item.h"
44 #include "xfs_log_recover.h"
45 #include "xfs_extfree_item.h"
46 #include "xfs_trans_priv.h"
47 #include "xfs_quota.h"
49 #include "xfs_utils.h"
51 STATIC
int xlog_find_zeroed(xlog_t
*, xfs_daddr_t
*);
52 STATIC
int xlog_clear_stale_blocks(xlog_t
*, xfs_lsn_t
);
53 STATIC
void xlog_recover_insert_item_backq(xlog_recover_item_t
**q
,
54 xlog_recover_item_t
*item
);
56 STATIC
void xlog_recover_check_summary(xlog_t
*);
57 STATIC
void xlog_recover_check_ail(xfs_mount_t
*, xfs_log_item_t
*, int);
59 #define xlog_recover_check_summary(log)
60 #define xlog_recover_check_ail(mp, lip, gen)
65 * Sector aligned buffer routines for buffer create/read/write/access
68 #define XLOG_SECTOR_ROUNDUP_BBCOUNT(log, bbs) \
69 ( ((log)->l_sectbb_mask && (bbs & (log)->l_sectbb_mask)) ? \
70 ((bbs + (log)->l_sectbb_mask + 1) & ~(log)->l_sectbb_mask) : (bbs) )
71 #define XLOG_SECTOR_ROUNDDOWN_BLKNO(log, bno) ((bno) & ~(log)->l_sectbb_mask)
78 ASSERT(num_bblks
> 0);
80 if (log
->l_sectbb_log
) {
82 num_bblks
+= XLOG_SECTOR_ROUNDUP_BBCOUNT(log
, 1);
83 num_bblks
= XLOG_SECTOR_ROUNDUP_BBCOUNT(log
, num_bblks
);
85 return xfs_buf_get_noaddr(BBTOB(num_bblks
), log
->l_mp
->m_logdev_targp
);
97 * nbblks should be uint, but oh well. Just want to catch that 32-bit length.
108 if (log
->l_sectbb_log
) {
109 blk_no
= XLOG_SECTOR_ROUNDDOWN_BLKNO(log
, blk_no
);
110 nbblks
= XLOG_SECTOR_ROUNDUP_BBCOUNT(log
, nbblks
);
114 ASSERT(BBTOB(nbblks
) <= XFS_BUF_SIZE(bp
));
117 XFS_BUF_SET_ADDR(bp
, log
->l_logBBstart
+ blk_no
);
120 XFS_BUF_SET_COUNT(bp
, BBTOB(nbblks
));
121 XFS_BUF_SET_TARGET(bp
, log
->l_mp
->m_logdev_targp
);
123 xfsbdstrat(log
->l_mp
, bp
);
124 error
= xfs_iowait(bp
);
126 xfs_ioerror_alert("xlog_bread", log
->l_mp
,
127 bp
, XFS_BUF_ADDR(bp
));
132 * Write out the buffer at the given block for the given number of blocks.
133 * The buffer is kept locked across the write and is returned locked.
134 * This can only be used for synchronous log writes.
145 if (log
->l_sectbb_log
) {
146 blk_no
= XLOG_SECTOR_ROUNDDOWN_BLKNO(log
, blk_no
);
147 nbblks
= XLOG_SECTOR_ROUNDUP_BBCOUNT(log
, nbblks
);
151 ASSERT(BBTOB(nbblks
) <= XFS_BUF_SIZE(bp
));
153 XFS_BUF_SET_ADDR(bp
, log
->l_logBBstart
+ blk_no
);
154 XFS_BUF_ZEROFLAGS(bp
);
157 XFS_BUF_PSEMA(bp
, PRIBIO
);
158 XFS_BUF_SET_COUNT(bp
, BBTOB(nbblks
));
159 XFS_BUF_SET_TARGET(bp
, log
->l_mp
->m_logdev_targp
);
161 if ((error
= xfs_bwrite(log
->l_mp
, bp
)))
162 xfs_ioerror_alert("xlog_bwrite", log
->l_mp
,
163 bp
, XFS_BUF_ADDR(bp
));
176 if (!log
->l_sectbb_log
)
177 return XFS_BUF_PTR(bp
);
179 ptr
= XFS_BUF_PTR(bp
) + BBTOB((int)blk_no
& log
->l_sectbb_mask
);
180 ASSERT(XFS_BUF_SIZE(bp
) >=
181 BBTOB(nbblks
+ (blk_no
& log
->l_sectbb_mask
)));
187 * dump debug superblock and log record information
190 xlog_header_check_dump(
192 xlog_rec_header_t
*head
)
196 cmn_err(CE_DEBUG
, "%s: SB : uuid = ", __func__
);
197 for (b
= 0; b
< 16; b
++)
198 cmn_err(CE_DEBUG
, "%02x", ((uchar_t
*)&mp
->m_sb
.sb_uuid
)[b
]);
199 cmn_err(CE_DEBUG
, ", fmt = %d\n", XLOG_FMT
);
200 cmn_err(CE_DEBUG
, " log : uuid = ");
201 for (b
= 0; b
< 16; b
++)
202 cmn_err(CE_DEBUG
, "%02x",((uchar_t
*)&head
->h_fs_uuid
)[b
]);
203 cmn_err(CE_DEBUG
, ", fmt = %d\n", be32_to_cpu(head
->h_fmt
));
206 #define xlog_header_check_dump(mp, head)
210 * check log record header for recovery
213 xlog_header_check_recover(
215 xlog_rec_header_t
*head
)
217 ASSERT(be32_to_cpu(head
->h_magicno
) == XLOG_HEADER_MAGIC_NUM
);
220 * IRIX doesn't write the h_fmt field and leaves it zeroed
221 * (XLOG_FMT_UNKNOWN). This stops us from trying to recover
222 * a dirty log created in IRIX.
224 if (unlikely(be32_to_cpu(head
->h_fmt
) != XLOG_FMT
)) {
226 "XFS: dirty log written in incompatible format - can't recover");
227 xlog_header_check_dump(mp
, head
);
228 XFS_ERROR_REPORT("xlog_header_check_recover(1)",
229 XFS_ERRLEVEL_HIGH
, mp
);
230 return XFS_ERROR(EFSCORRUPTED
);
231 } else if (unlikely(!uuid_equal(&mp
->m_sb
.sb_uuid
, &head
->h_fs_uuid
))) {
233 "XFS: dirty log entry has mismatched uuid - can't recover");
234 xlog_header_check_dump(mp
, head
);
235 XFS_ERROR_REPORT("xlog_header_check_recover(2)",
236 XFS_ERRLEVEL_HIGH
, mp
);
237 return XFS_ERROR(EFSCORRUPTED
);
243 * read the head block of the log and check the header
246 xlog_header_check_mount(
248 xlog_rec_header_t
*head
)
250 ASSERT(be32_to_cpu(head
->h_magicno
) == XLOG_HEADER_MAGIC_NUM
);
252 if (uuid_is_nil(&head
->h_fs_uuid
)) {
254 * IRIX doesn't write the h_fs_uuid or h_fmt fields. If
255 * h_fs_uuid is nil, we assume this log was last mounted
256 * by IRIX and continue.
258 xlog_warn("XFS: nil uuid in log - IRIX style log");
259 } else if (unlikely(!uuid_equal(&mp
->m_sb
.sb_uuid
, &head
->h_fs_uuid
))) {
260 xlog_warn("XFS: log has mismatched uuid - can't recover");
261 xlog_header_check_dump(mp
, head
);
262 XFS_ERROR_REPORT("xlog_header_check_mount",
263 XFS_ERRLEVEL_HIGH
, mp
);
264 return XFS_ERROR(EFSCORRUPTED
);
275 ASSERT(XFS_BUF_FSPRIVATE(bp
, void *));
277 if (XFS_BUF_GETERROR(bp
)) {
279 * We're not going to bother about retrying
280 * this during recovery. One strike!
282 mp
= XFS_BUF_FSPRIVATE(bp
, xfs_mount_t
*);
283 xfs_ioerror_alert("xlog_recover_iodone",
284 mp
, bp
, XFS_BUF_ADDR(bp
));
285 xfs_force_shutdown(mp
, SHUTDOWN_META_IO_ERROR
);
287 XFS_BUF_SET_FSPRIVATE(bp
, NULL
);
288 XFS_BUF_CLR_IODONE_FUNC(bp
);
293 * This routine finds (to an approximation) the first block in the physical
294 * log which contains the given cycle. It uses a binary search algorithm.
295 * Note that the algorithm can not be perfect because the disk will not
296 * necessarily be perfect.
299 xlog_find_cycle_start(
302 xfs_daddr_t first_blk
,
303 xfs_daddr_t
*last_blk
,
311 mid_blk
= BLK_AVG(first_blk
, *last_blk
);
312 while (mid_blk
!= first_blk
&& mid_blk
!= *last_blk
) {
313 if ((error
= xlog_bread(log
, mid_blk
, 1, bp
)))
315 offset
= xlog_align(log
, mid_blk
, 1, bp
);
316 mid_cycle
= xlog_get_cycle(offset
);
317 if (mid_cycle
== cycle
) {
319 /* last_half_cycle == mid_cycle */
322 /* first_half_cycle == mid_cycle */
324 mid_blk
= BLK_AVG(first_blk
, *last_blk
);
326 ASSERT((mid_blk
== first_blk
&& mid_blk
+1 == *last_blk
) ||
327 (mid_blk
== *last_blk
&& mid_blk
-1 == first_blk
));
333 * Check that the range of blocks does not contain the cycle number
334 * given. The scan needs to occur from front to back and the ptr into the
335 * region must be updated since a later routine will need to perform another
336 * test. If the region is completely good, we end up returning the same
339 * Set blkno to -1 if we encounter no errors. This is an invalid block number
340 * since we don't ever expect logs to get this large.
343 xlog_find_verify_cycle(
345 xfs_daddr_t start_blk
,
347 uint stop_on_cycle_no
,
348 xfs_daddr_t
*new_blk
)
354 xfs_caddr_t buf
= NULL
;
357 bufblks
= 1 << ffs(nbblks
);
359 while (!(bp
= xlog_get_bp(log
, bufblks
))) {
360 /* can't get enough memory to do everything in one big buffer */
362 if (bufblks
<= log
->l_sectbb_log
)
366 for (i
= start_blk
; i
< start_blk
+ nbblks
; i
+= bufblks
) {
369 bcount
= min(bufblks
, (start_blk
+ nbblks
- i
));
371 if ((error
= xlog_bread(log
, i
, bcount
, bp
)))
374 buf
= xlog_align(log
, i
, bcount
, bp
);
375 for (j
= 0; j
< bcount
; j
++) {
376 cycle
= xlog_get_cycle(buf
);
377 if (cycle
== stop_on_cycle_no
) {
394 * Potentially backup over partial log record write.
396 * In the typical case, last_blk is the number of the block directly after
397 * a good log record. Therefore, we subtract one to get the block number
398 * of the last block in the given buffer. extra_bblks contains the number
399 * of blocks we would have read on a previous read. This happens when the
400 * last log record is split over the end of the physical log.
402 * extra_bblks is the number of blocks potentially verified on a previous
403 * call to this routine.
406 xlog_find_verify_log_record(
408 xfs_daddr_t start_blk
,
409 xfs_daddr_t
*last_blk
,
414 xfs_caddr_t offset
= NULL
;
415 xlog_rec_header_t
*head
= NULL
;
418 int num_blks
= *last_blk
- start_blk
;
421 ASSERT(start_blk
!= 0 || *last_blk
!= start_blk
);
423 if (!(bp
= xlog_get_bp(log
, num_blks
))) {
424 if (!(bp
= xlog_get_bp(log
, 1)))
428 if ((error
= xlog_bread(log
, start_blk
, num_blks
, bp
)))
430 offset
= xlog_align(log
, start_blk
, num_blks
, bp
);
431 offset
+= ((num_blks
- 1) << BBSHIFT
);
434 for (i
= (*last_blk
) - 1; i
>= 0; i
--) {
436 /* valid log record not found */
438 "XFS: Log inconsistent (didn't find previous header)");
440 error
= XFS_ERROR(EIO
);
445 if ((error
= xlog_bread(log
, i
, 1, bp
)))
447 offset
= xlog_align(log
, i
, 1, bp
);
450 head
= (xlog_rec_header_t
*)offset
;
452 if (XLOG_HEADER_MAGIC_NUM
== be32_to_cpu(head
->h_magicno
))
460 * We hit the beginning of the physical log & still no header. Return
461 * to caller. If caller can handle a return of -1, then this routine
462 * will be called again for the end of the physical log.
470 * We have the final block of the good log (the first block
471 * of the log record _before_ the head. So we check the uuid.
473 if ((error
= xlog_header_check_mount(log
->l_mp
, head
)))
477 * We may have found a log record header before we expected one.
478 * last_blk will be the 1st block # with a given cycle #. We may end
479 * up reading an entire log record. In this case, we don't want to
480 * reset last_blk. Only when last_blk points in the middle of a log
481 * record do we update last_blk.
483 if (xfs_sb_version_haslogv2(&log
->l_mp
->m_sb
)) {
484 uint h_size
= be32_to_cpu(head
->h_size
);
486 xhdrs
= h_size
/ XLOG_HEADER_CYCLE_SIZE
;
487 if (h_size
% XLOG_HEADER_CYCLE_SIZE
)
493 if (*last_blk
- i
+ extra_bblks
!=
494 BTOBB(be32_to_cpu(head
->h_len
)) + xhdrs
)
503 * Head is defined to be the point of the log where the next log write
504 * write could go. This means that incomplete LR writes at the end are
505 * eliminated when calculating the head. We aren't guaranteed that previous
506 * LR have complete transactions. We only know that a cycle number of
507 * current cycle number -1 won't be present in the log if we start writing
508 * from our current block number.
510 * last_blk contains the block number of the first block with a given
513 * Return: zero if normal, non-zero if error.
518 xfs_daddr_t
*return_head_blk
)
522 xfs_daddr_t new_blk
, first_blk
, start_blk
, last_blk
, head_blk
;
524 uint first_half_cycle
, last_half_cycle
;
526 int error
, log_bbnum
= log
->l_logBBsize
;
528 /* Is the end of the log device zeroed? */
529 if ((error
= xlog_find_zeroed(log
, &first_blk
)) == -1) {
530 *return_head_blk
= first_blk
;
532 /* Is the whole lot zeroed? */
534 /* Linux XFS shouldn't generate totally zeroed logs -
535 * mkfs etc write a dummy unmount record to a fresh
536 * log so we can store the uuid in there
538 xlog_warn("XFS: totally zeroed log");
543 xlog_warn("XFS: empty log check failed");
547 first_blk
= 0; /* get cycle # of 1st block */
548 bp
= xlog_get_bp(log
, 1);
551 if ((error
= xlog_bread(log
, 0, 1, bp
)))
553 offset
= xlog_align(log
, 0, 1, bp
);
554 first_half_cycle
= xlog_get_cycle(offset
);
556 last_blk
= head_blk
= log_bbnum
- 1; /* get cycle # of last block */
557 if ((error
= xlog_bread(log
, last_blk
, 1, bp
)))
559 offset
= xlog_align(log
, last_blk
, 1, bp
);
560 last_half_cycle
= xlog_get_cycle(offset
);
561 ASSERT(last_half_cycle
!= 0);
564 * If the 1st half cycle number is equal to the last half cycle number,
565 * then the entire log is stamped with the same cycle number. In this
566 * case, head_blk can't be set to zero (which makes sense). The below
567 * math doesn't work out properly with head_blk equal to zero. Instead,
568 * we set it to log_bbnum which is an invalid block number, but this
569 * value makes the math correct. If head_blk doesn't changed through
570 * all the tests below, *head_blk is set to zero at the very end rather
571 * than log_bbnum. In a sense, log_bbnum and zero are the same block
572 * in a circular file.
574 if (first_half_cycle
== last_half_cycle
) {
576 * In this case we believe that the entire log should have
577 * cycle number last_half_cycle. We need to scan backwards
578 * from the end verifying that there are no holes still
579 * containing last_half_cycle - 1. If we find such a hole,
580 * then the start of that hole will be the new head. The
581 * simple case looks like
582 * x | x ... | x - 1 | x
583 * Another case that fits this picture would be
584 * x | x + 1 | x ... | x
585 * In this case the head really is somewhere at the end of the
586 * log, as one of the latest writes at the beginning was
589 * x | x + 1 | x ... | x - 1 | x
590 * This is really the combination of the above two cases, and
591 * the head has to end up at the start of the x-1 hole at the
594 * In the 256k log case, we will read from the beginning to the
595 * end of the log and search for cycle numbers equal to x-1.
596 * We don't worry about the x+1 blocks that we encounter,
597 * because we know that they cannot be the head since the log
600 head_blk
= log_bbnum
;
601 stop_on_cycle
= last_half_cycle
- 1;
604 * In this case we want to find the first block with cycle
605 * number matching last_half_cycle. We expect the log to be
608 * The first block with cycle number x (last_half_cycle) will
609 * be where the new head belongs. First we do a binary search
610 * for the first occurrence of last_half_cycle. The binary
611 * search may not be totally accurate, so then we scan back
612 * from there looking for occurrences of last_half_cycle before
613 * us. If that backwards scan wraps around the beginning of
614 * the log, then we look for occurrences of last_half_cycle - 1
615 * at the end of the log. The cases we're looking for look
617 * x + 1 ... | x | x + 1 | x ...
618 * ^ binary search stopped here
620 * x + 1 ... | x ... | x - 1 | x
621 * <---------> less than scan distance
623 stop_on_cycle
= last_half_cycle
;
624 if ((error
= xlog_find_cycle_start(log
, bp
, first_blk
,
625 &head_blk
, last_half_cycle
)))
630 * Now validate the answer. Scan back some number of maximum possible
631 * blocks and make sure each one has the expected cycle number. The
632 * maximum is determined by the total possible amount of buffering
633 * in the in-core log. The following number can be made tighter if
634 * we actually look at the block size of the filesystem.
636 num_scan_bblks
= XLOG_TOTAL_REC_SHIFT(log
);
637 if (head_blk
>= num_scan_bblks
) {
639 * We are guaranteed that the entire check can be performed
642 start_blk
= head_blk
- num_scan_bblks
;
643 if ((error
= xlog_find_verify_cycle(log
,
644 start_blk
, num_scan_bblks
,
645 stop_on_cycle
, &new_blk
)))
649 } else { /* need to read 2 parts of log */
651 * We are going to scan backwards in the log in two parts.
652 * First we scan the physical end of the log. In this part
653 * of the log, we are looking for blocks with cycle number
654 * last_half_cycle - 1.
655 * If we find one, then we know that the log starts there, as
656 * we've found a hole that didn't get written in going around
657 * the end of the physical log. The simple case for this is
658 * x + 1 ... | x ... | x - 1 | x
659 * <---------> less than scan distance
660 * If all of the blocks at the end of the log have cycle number
661 * last_half_cycle, then we check the blocks at the start of
662 * the log looking for occurrences of last_half_cycle. If we
663 * find one, then our current estimate for the location of the
664 * first occurrence of last_half_cycle is wrong and we move
665 * back to the hole we've found. This case looks like
666 * x + 1 ... | x | x + 1 | x ...
667 * ^ binary search stopped here
668 * Another case we need to handle that only occurs in 256k
670 * x + 1 ... | x ... | x+1 | x ...
671 * ^ binary search stops here
672 * In a 256k log, the scan at the end of the log will see the
673 * x + 1 blocks. We need to skip past those since that is
674 * certainly not the head of the log. By searching for
675 * last_half_cycle-1 we accomplish that.
677 start_blk
= log_bbnum
- num_scan_bblks
+ head_blk
;
678 ASSERT(head_blk
<= INT_MAX
&&
679 (xfs_daddr_t
) num_scan_bblks
- head_blk
>= 0);
680 if ((error
= xlog_find_verify_cycle(log
, start_blk
,
681 num_scan_bblks
- (int)head_blk
,
682 (stop_on_cycle
- 1), &new_blk
)))
690 * Scan beginning of log now. The last part of the physical
691 * log is good. This scan needs to verify that it doesn't find
692 * the last_half_cycle.
695 ASSERT(head_blk
<= INT_MAX
);
696 if ((error
= xlog_find_verify_cycle(log
,
697 start_blk
, (int)head_blk
,
698 stop_on_cycle
, &new_blk
)))
706 * Now we need to make sure head_blk is not pointing to a block in
707 * the middle of a log record.
709 num_scan_bblks
= XLOG_REC_SHIFT(log
);
710 if (head_blk
>= num_scan_bblks
) {
711 start_blk
= head_blk
- num_scan_bblks
; /* don't read head_blk */
713 /* start ptr at last block ptr before head_blk */
714 if ((error
= xlog_find_verify_log_record(log
, start_blk
,
715 &head_blk
, 0)) == -1) {
716 error
= XFS_ERROR(EIO
);
722 ASSERT(head_blk
<= INT_MAX
);
723 if ((error
= xlog_find_verify_log_record(log
, start_blk
,
724 &head_blk
, 0)) == -1) {
725 /* We hit the beginning of the log during our search */
726 start_blk
= log_bbnum
- num_scan_bblks
+ head_blk
;
728 ASSERT(start_blk
<= INT_MAX
&&
729 (xfs_daddr_t
) log_bbnum
-start_blk
>= 0);
730 ASSERT(head_blk
<= INT_MAX
);
731 if ((error
= xlog_find_verify_log_record(log
,
733 (int)head_blk
)) == -1) {
734 error
= XFS_ERROR(EIO
);
738 if (new_blk
!= log_bbnum
)
745 if (head_blk
== log_bbnum
)
746 *return_head_blk
= 0;
748 *return_head_blk
= head_blk
;
750 * When returning here, we have a good block number. Bad block
751 * means that during a previous crash, we didn't have a clean break
752 * from cycle number N to cycle number N-1. In this case, we need
753 * to find the first block with cycle number N-1.
761 xlog_warn("XFS: failed to find log head");
766 * Find the sync block number or the tail of the log.
768 * This will be the block number of the last record to have its
769 * associated buffers synced to disk. Every log record header has
770 * a sync lsn embedded in it. LSNs hold block numbers, so it is easy
771 * to get a sync block number. The only concern is to figure out which
772 * log record header to believe.
774 * The following algorithm uses the log record header with the largest
775 * lsn. The entire log record does not need to be valid. We only care
776 * that the header is valid.
778 * We could speed up search by using current head_blk buffer, but it is not
784 xfs_daddr_t
*head_blk
,
785 xfs_daddr_t
*tail_blk
)
787 xlog_rec_header_t
*rhead
;
788 xlog_op_header_t
*op_head
;
789 xfs_caddr_t offset
= NULL
;
792 xfs_daddr_t umount_data_blk
;
793 xfs_daddr_t after_umount_blk
;
800 * Find previous log record
802 if ((error
= xlog_find_head(log
, head_blk
)))
805 bp
= xlog_get_bp(log
, 1);
808 if (*head_blk
== 0) { /* special case */
809 if ((error
= xlog_bread(log
, 0, 1, bp
)))
811 offset
= xlog_align(log
, 0, 1, bp
);
812 if (xlog_get_cycle(offset
) == 0) {
814 /* leave all other log inited values alone */
820 * Search backwards looking for log record header block
822 ASSERT(*head_blk
< INT_MAX
);
823 for (i
= (int)(*head_blk
) - 1; i
>= 0; i
--) {
824 if ((error
= xlog_bread(log
, i
, 1, bp
)))
826 offset
= xlog_align(log
, i
, 1, bp
);
827 if (XLOG_HEADER_MAGIC_NUM
== be32_to_cpu(*(__be32
*)offset
)) {
833 * If we haven't found the log record header block, start looking
834 * again from the end of the physical log. XXXmiken: There should be
835 * a check here to make sure we didn't search more than N blocks in
839 for (i
= log
->l_logBBsize
- 1; i
>= (int)(*head_blk
); i
--) {
840 if ((error
= xlog_bread(log
, i
, 1, bp
)))
842 offset
= xlog_align(log
, i
, 1, bp
);
843 if (XLOG_HEADER_MAGIC_NUM
==
844 be32_to_cpu(*(__be32
*)offset
)) {
851 xlog_warn("XFS: xlog_find_tail: couldn't find sync record");
853 return XFS_ERROR(EIO
);
856 /* find blk_no of tail of log */
857 rhead
= (xlog_rec_header_t
*)offset
;
858 *tail_blk
= BLOCK_LSN(be64_to_cpu(rhead
->h_tail_lsn
));
861 * Reset log values according to the state of the log when we
862 * crashed. In the case where head_blk == 0, we bump curr_cycle
863 * one because the next write starts a new cycle rather than
864 * continuing the cycle of the last good log record. At this
865 * point we have guaranteed that all partial log records have been
866 * accounted for. Therefore, we know that the last good log record
867 * written was complete and ended exactly on the end boundary
868 * of the physical log.
870 log
->l_prev_block
= i
;
871 log
->l_curr_block
= (int)*head_blk
;
872 log
->l_curr_cycle
= be32_to_cpu(rhead
->h_cycle
);
875 log
->l_tail_lsn
= be64_to_cpu(rhead
->h_tail_lsn
);
876 log
->l_last_sync_lsn
= be64_to_cpu(rhead
->h_lsn
);
877 log
->l_grant_reserve_cycle
= log
->l_curr_cycle
;
878 log
->l_grant_reserve_bytes
= BBTOB(log
->l_curr_block
);
879 log
->l_grant_write_cycle
= log
->l_curr_cycle
;
880 log
->l_grant_write_bytes
= BBTOB(log
->l_curr_block
);
883 * Look for unmount record. If we find it, then we know there
884 * was a clean unmount. Since 'i' could be the last block in
885 * the physical log, we convert to a log block before comparing
888 * Save the current tail lsn to use to pass to
889 * xlog_clear_stale_blocks() below. We won't want to clear the
890 * unmount record if there is one, so we pass the lsn of the
891 * unmount record rather than the block after it.
893 if (xfs_sb_version_haslogv2(&log
->l_mp
->m_sb
)) {
894 int h_size
= be32_to_cpu(rhead
->h_size
);
895 int h_version
= be32_to_cpu(rhead
->h_version
);
897 if ((h_version
& XLOG_VERSION_2
) &&
898 (h_size
> XLOG_HEADER_CYCLE_SIZE
)) {
899 hblks
= h_size
/ XLOG_HEADER_CYCLE_SIZE
;
900 if (h_size
% XLOG_HEADER_CYCLE_SIZE
)
908 after_umount_blk
= (i
+ hblks
+ (int)
909 BTOBB(be32_to_cpu(rhead
->h_len
))) % log
->l_logBBsize
;
910 tail_lsn
= log
->l_tail_lsn
;
911 if (*head_blk
== after_umount_blk
&&
912 be32_to_cpu(rhead
->h_num_logops
) == 1) {
913 umount_data_blk
= (i
+ hblks
) % log
->l_logBBsize
;
914 if ((error
= xlog_bread(log
, umount_data_blk
, 1, bp
))) {
917 offset
= xlog_align(log
, umount_data_blk
, 1, bp
);
918 op_head
= (xlog_op_header_t
*)offset
;
919 if (op_head
->oh_flags
& XLOG_UNMOUNT_TRANS
) {
921 * Set tail and last sync so that newly written
922 * log records will point recovery to after the
923 * current unmount record.
926 xlog_assign_lsn(log
->l_curr_cycle
,
928 log
->l_last_sync_lsn
=
929 xlog_assign_lsn(log
->l_curr_cycle
,
931 *tail_blk
= after_umount_blk
;
934 * Note that the unmount was clean. If the unmount
935 * was not clean, we need to know this to rebuild the
936 * superblock counters from the perag headers if we
937 * have a filesystem using non-persistent counters.
939 log
->l_mp
->m_flags
|= XFS_MOUNT_WAS_CLEAN
;
944 * Make sure that there are no blocks in front of the head
945 * with the same cycle number as the head. This can happen
946 * because we allow multiple outstanding log writes concurrently,
947 * and the later writes might make it out before earlier ones.
949 * We use the lsn from before modifying it so that we'll never
950 * overwrite the unmount record after a clean unmount.
952 * Do this only if we are going to recover the filesystem
954 * NOTE: This used to say "if (!readonly)"
955 * However on Linux, we can & do recover a read-only filesystem.
956 * We only skip recovery if NORECOVERY is specified on mount,
957 * in which case we would not be here.
959 * But... if the -device- itself is readonly, just skip this.
960 * We can't recover this device anyway, so it won't matter.
962 if (!xfs_readonly_buftarg(log
->l_mp
->m_logdev_targp
)) {
963 error
= xlog_clear_stale_blocks(log
, tail_lsn
);
971 xlog_warn("XFS: failed to locate log tail");
976 * Is the log zeroed at all?
978 * The last binary search should be changed to perform an X block read
979 * once X becomes small enough. You can then search linearly through
980 * the X blocks. This will cut down on the number of reads we need to do.
982 * If the log is partially zeroed, this routine will pass back the blkno
983 * of the first block with cycle number 0. It won't have a complete LR
987 * 0 => the log is completely written to
988 * -1 => use *blk_no as the first block of the log
989 * >0 => error has occurred
998 uint first_cycle
, last_cycle
;
999 xfs_daddr_t new_blk
, last_blk
, start_blk
;
1000 xfs_daddr_t num_scan_bblks
;
1001 int error
, log_bbnum
= log
->l_logBBsize
;
1005 /* check totally zeroed log */
1006 bp
= xlog_get_bp(log
, 1);
1009 if ((error
= xlog_bread(log
, 0, 1, bp
)))
1011 offset
= xlog_align(log
, 0, 1, bp
);
1012 first_cycle
= xlog_get_cycle(offset
);
1013 if (first_cycle
== 0) { /* completely zeroed log */
1019 /* check partially zeroed log */
1020 if ((error
= xlog_bread(log
, log_bbnum
-1, 1, bp
)))
1022 offset
= xlog_align(log
, log_bbnum
-1, 1, bp
);
1023 last_cycle
= xlog_get_cycle(offset
);
1024 if (last_cycle
!= 0) { /* log completely written to */
1027 } else if (first_cycle
!= 1) {
1029 * If the cycle of the last block is zero, the cycle of
1030 * the first block must be 1. If it's not, maybe we're
1031 * not looking at a log... Bail out.
1033 xlog_warn("XFS: Log inconsistent or not a log (last==0, first!=1)");
1034 return XFS_ERROR(EINVAL
);
1037 /* we have a partially zeroed log */
1038 last_blk
= log_bbnum
-1;
1039 if ((error
= xlog_find_cycle_start(log
, bp
, 0, &last_blk
, 0)))
1043 * Validate the answer. Because there is no way to guarantee that
1044 * the entire log is made up of log records which are the same size,
1045 * we scan over the defined maximum blocks. At this point, the maximum
1046 * is not chosen to mean anything special. XXXmiken
1048 num_scan_bblks
= XLOG_TOTAL_REC_SHIFT(log
);
1049 ASSERT(num_scan_bblks
<= INT_MAX
);
1051 if (last_blk
< num_scan_bblks
)
1052 num_scan_bblks
= last_blk
;
1053 start_blk
= last_blk
- num_scan_bblks
;
1056 * We search for any instances of cycle number 0 that occur before
1057 * our current estimate of the head. What we're trying to detect is
1058 * 1 ... | 0 | 1 | 0...
1059 * ^ binary search ends here
1061 if ((error
= xlog_find_verify_cycle(log
, start_blk
,
1062 (int)num_scan_bblks
, 0, &new_blk
)))
1068 * Potentially backup over partial log record write. We don't need
1069 * to search the end of the log because we know it is zero.
1071 if ((error
= xlog_find_verify_log_record(log
, start_blk
,
1072 &last_blk
, 0)) == -1) {
1073 error
= XFS_ERROR(EIO
);
1087 * These are simple subroutines used by xlog_clear_stale_blocks() below
1088 * to initialize a buffer full of empty log record headers and write
1089 * them into the log.
1100 xlog_rec_header_t
*recp
= (xlog_rec_header_t
*)buf
;
1102 memset(buf
, 0, BBSIZE
);
1103 recp
->h_magicno
= cpu_to_be32(XLOG_HEADER_MAGIC_NUM
);
1104 recp
->h_cycle
= cpu_to_be32(cycle
);
1105 recp
->h_version
= cpu_to_be32(
1106 xfs_sb_version_haslogv2(&log
->l_mp
->m_sb
) ? 2 : 1);
1107 recp
->h_lsn
= cpu_to_be64(xlog_assign_lsn(cycle
, block
));
1108 recp
->h_tail_lsn
= cpu_to_be64(xlog_assign_lsn(tail_cycle
, tail_block
));
1109 recp
->h_fmt
= cpu_to_be32(XLOG_FMT
);
1110 memcpy(&recp
->h_fs_uuid
, &log
->l_mp
->m_sb
.sb_uuid
, sizeof(uuid_t
));
1114 xlog_write_log_records(
1125 int sectbb
= XLOG_SECTOR_ROUNDUP_BBCOUNT(log
, 1);
1126 int end_block
= start_block
+ blocks
;
1131 bufblks
= 1 << ffs(blocks
);
1132 while (!(bp
= xlog_get_bp(log
, bufblks
))) {
1134 if (bufblks
<= log
->l_sectbb_log
)
1138 /* We may need to do a read at the start to fill in part of
1139 * the buffer in the starting sector not covered by the first
1142 balign
= XLOG_SECTOR_ROUNDDOWN_BLKNO(log
, start_block
);
1143 if (balign
!= start_block
) {
1144 if ((error
= xlog_bread(log
, start_block
, 1, bp
))) {
1148 j
= start_block
- balign
;
1151 for (i
= start_block
; i
< end_block
; i
+= bufblks
) {
1152 int bcount
, endcount
;
1154 bcount
= min(bufblks
, end_block
- start_block
);
1155 endcount
= bcount
- j
;
1157 /* We may need to do a read at the end to fill in part of
1158 * the buffer in the final sector not covered by the write.
1159 * If this is the same sector as the above read, skip it.
1161 ealign
= XLOG_SECTOR_ROUNDDOWN_BLKNO(log
, end_block
);
1162 if (j
== 0 && (start_block
+ endcount
> ealign
)) {
1163 offset
= XFS_BUF_PTR(bp
);
1164 balign
= BBTOB(ealign
- start_block
);
1165 error
= XFS_BUF_SET_PTR(bp
, offset
+ balign
,
1168 error
= xlog_bread(log
, ealign
, sectbb
, bp
);
1170 error
= XFS_BUF_SET_PTR(bp
, offset
, bufblks
);
1175 offset
= xlog_align(log
, start_block
, endcount
, bp
);
1176 for (; j
< endcount
; j
++) {
1177 xlog_add_record(log
, offset
, cycle
, i
+j
,
1178 tail_cycle
, tail_block
);
1181 error
= xlog_bwrite(log
, start_block
, endcount
, bp
);
1184 start_block
+= endcount
;
1192 * This routine is called to blow away any incomplete log writes out
1193 * in front of the log head. We do this so that we won't become confused
1194 * if we come up, write only a little bit more, and then crash again.
1195 * If we leave the partial log records out there, this situation could
1196 * cause us to think those partial writes are valid blocks since they
1197 * have the current cycle number. We get rid of them by overwriting them
1198 * with empty log records with the old cycle number rather than the
1201 * The tail lsn is passed in rather than taken from
1202 * the log so that we will not write over the unmount record after a
1203 * clean unmount in a 512 block log. Doing so would leave the log without
1204 * any valid log records in it until a new one was written. If we crashed
1205 * during that time we would not be able to recover.
1208 xlog_clear_stale_blocks(
1212 int tail_cycle
, head_cycle
;
1213 int tail_block
, head_block
;
1214 int tail_distance
, max_distance
;
1218 tail_cycle
= CYCLE_LSN(tail_lsn
);
1219 tail_block
= BLOCK_LSN(tail_lsn
);
1220 head_cycle
= log
->l_curr_cycle
;
1221 head_block
= log
->l_curr_block
;
1224 * Figure out the distance between the new head of the log
1225 * and the tail. We want to write over any blocks beyond the
1226 * head that we may have written just before the crash, but
1227 * we don't want to overwrite the tail of the log.
1229 if (head_cycle
== tail_cycle
) {
1231 * The tail is behind the head in the physical log,
1232 * so the distance from the head to the tail is the
1233 * distance from the head to the end of the log plus
1234 * the distance from the beginning of the log to the
1237 if (unlikely(head_block
< tail_block
|| head_block
>= log
->l_logBBsize
)) {
1238 XFS_ERROR_REPORT("xlog_clear_stale_blocks(1)",
1239 XFS_ERRLEVEL_LOW
, log
->l_mp
);
1240 return XFS_ERROR(EFSCORRUPTED
);
1242 tail_distance
= tail_block
+ (log
->l_logBBsize
- head_block
);
1245 * The head is behind the tail in the physical log,
1246 * so the distance from the head to the tail is just
1247 * the tail block minus the head block.
1249 if (unlikely(head_block
>= tail_block
|| head_cycle
!= (tail_cycle
+ 1))){
1250 XFS_ERROR_REPORT("xlog_clear_stale_blocks(2)",
1251 XFS_ERRLEVEL_LOW
, log
->l_mp
);
1252 return XFS_ERROR(EFSCORRUPTED
);
1254 tail_distance
= tail_block
- head_block
;
1258 * If the head is right up against the tail, we can't clear
1261 if (tail_distance
<= 0) {
1262 ASSERT(tail_distance
== 0);
1266 max_distance
= XLOG_TOTAL_REC_SHIFT(log
);
1268 * Take the smaller of the maximum amount of outstanding I/O
1269 * we could have and the distance to the tail to clear out.
1270 * We take the smaller so that we don't overwrite the tail and
1271 * we don't waste all day writing from the head to the tail
1274 max_distance
= MIN(max_distance
, tail_distance
);
1276 if ((head_block
+ max_distance
) <= log
->l_logBBsize
) {
1278 * We can stomp all the blocks we need to without
1279 * wrapping around the end of the log. Just do it
1280 * in a single write. Use the cycle number of the
1281 * current cycle minus one so that the log will look like:
1284 error
= xlog_write_log_records(log
, (head_cycle
- 1),
1285 head_block
, max_distance
, tail_cycle
,
1291 * We need to wrap around the end of the physical log in
1292 * order to clear all the blocks. Do it in two separate
1293 * I/Os. The first write should be from the head to the
1294 * end of the physical log, and it should use the current
1295 * cycle number minus one just like above.
1297 distance
= log
->l_logBBsize
- head_block
;
1298 error
= xlog_write_log_records(log
, (head_cycle
- 1),
1299 head_block
, distance
, tail_cycle
,
1306 * Now write the blocks at the start of the physical log.
1307 * This writes the remainder of the blocks we want to clear.
1308 * It uses the current cycle number since we're now on the
1309 * same cycle as the head so that we get:
1310 * n ... n ... | n - 1 ...
1311 * ^^^^^ blocks we're writing
1313 distance
= max_distance
- (log
->l_logBBsize
- head_block
);
1314 error
= xlog_write_log_records(log
, head_cycle
, 0, distance
,
1315 tail_cycle
, tail_block
);
1323 /******************************************************************************
1325 * Log recover routines
1327 ******************************************************************************
1330 STATIC xlog_recover_t
*
1331 xlog_recover_find_tid(
1335 xlog_recover_t
*p
= q
;
1338 if (p
->r_log_tid
== tid
)
1346 xlog_recover_put_hashq(
1348 xlog_recover_t
*trans
)
1355 xlog_recover_add_item(
1356 xlog_recover_item_t
**itemq
)
1358 xlog_recover_item_t
*item
;
1360 item
= kmem_zalloc(sizeof(xlog_recover_item_t
), KM_SLEEP
);
1361 xlog_recover_insert_item_backq(itemq
, item
);
1365 xlog_recover_add_to_cont_trans(
1366 xlog_recover_t
*trans
,
1370 xlog_recover_item_t
*item
;
1371 xfs_caddr_t ptr
, old_ptr
;
1374 item
= trans
->r_itemq
;
1376 /* finish copying rest of trans header */
1377 xlog_recover_add_item(&trans
->r_itemq
);
1378 ptr
= (xfs_caddr_t
) &trans
->r_theader
+
1379 sizeof(xfs_trans_header_t
) - len
;
1380 memcpy(ptr
, dp
, len
); /* d, s, l */
1383 item
= item
->ri_prev
;
1385 old_ptr
= item
->ri_buf
[item
->ri_cnt
-1].i_addr
;
1386 old_len
= item
->ri_buf
[item
->ri_cnt
-1].i_len
;
1388 ptr
= kmem_realloc(old_ptr
, len
+old_len
, old_len
, 0u);
1389 memcpy(&ptr
[old_len
], dp
, len
); /* d, s, l */
1390 item
->ri_buf
[item
->ri_cnt
-1].i_len
+= len
;
1391 item
->ri_buf
[item
->ri_cnt
-1].i_addr
= ptr
;
1396 * The next region to add is the start of a new region. It could be
1397 * a whole region or it could be the first part of a new region. Because
1398 * of this, the assumption here is that the type and size fields of all
1399 * format structures fit into the first 32 bits of the structure.
1401 * This works because all regions must be 32 bit aligned. Therefore, we
1402 * either have both fields or we have neither field. In the case we have
1403 * neither field, the data part of the region is zero length. We only have
1404 * a log_op_header and can throw away the header since a new one will appear
1405 * later. If we have at least 4 bytes, then we can determine how many regions
1406 * will appear in the current log item.
1409 xlog_recover_add_to_trans(
1410 xlog_recover_t
*trans
,
1414 xfs_inode_log_format_t
*in_f
; /* any will do */
1415 xlog_recover_item_t
*item
;
1420 item
= trans
->r_itemq
;
1422 ASSERT(*(uint
*)dp
== XFS_TRANS_HEADER_MAGIC
);
1423 if (len
== sizeof(xfs_trans_header_t
))
1424 xlog_recover_add_item(&trans
->r_itemq
);
1425 memcpy(&trans
->r_theader
, dp
, len
); /* d, s, l */
1429 ptr
= kmem_alloc(len
, KM_SLEEP
);
1430 memcpy(ptr
, dp
, len
);
1431 in_f
= (xfs_inode_log_format_t
*)ptr
;
1433 if (item
->ri_prev
->ri_total
!= 0 &&
1434 item
->ri_prev
->ri_total
== item
->ri_prev
->ri_cnt
) {
1435 xlog_recover_add_item(&trans
->r_itemq
);
1437 item
= trans
->r_itemq
;
1438 item
= item
->ri_prev
;
1440 if (item
->ri_total
== 0) { /* first region to be added */
1441 item
->ri_total
= in_f
->ilf_size
;
1442 ASSERT(item
->ri_total
<= XLOG_MAX_REGIONS_IN_ITEM
);
1443 item
->ri_buf
= kmem_zalloc((item
->ri_total
*
1444 sizeof(xfs_log_iovec_t
)), KM_SLEEP
);
1446 ASSERT(item
->ri_total
> item
->ri_cnt
);
1447 /* Description region is ri_buf[0] */
1448 item
->ri_buf
[item
->ri_cnt
].i_addr
= ptr
;
1449 item
->ri_buf
[item
->ri_cnt
].i_len
= len
;
1455 xlog_recover_new_tid(
1460 xlog_recover_t
*trans
;
1462 trans
= kmem_zalloc(sizeof(xlog_recover_t
), KM_SLEEP
);
1463 trans
->r_log_tid
= tid
;
1465 xlog_recover_put_hashq(q
, trans
);
1469 xlog_recover_unlink_tid(
1471 xlog_recover_t
*trans
)
1476 ASSERT(trans
!= NULL
);
1482 if (tp
->r_next
== trans
) {
1490 "XFS: xlog_recover_unlink_tid: trans not found");
1492 return XFS_ERROR(EIO
);
1494 tp
->r_next
= tp
->r_next
->r_next
;
1500 xlog_recover_insert_item_backq(
1501 xlog_recover_item_t
**q
,
1502 xlog_recover_item_t
*item
)
1505 item
->ri_prev
= item
->ri_next
= item
;
1509 item
->ri_prev
= (*q
)->ri_prev
;
1510 (*q
)->ri_prev
= item
;
1511 item
->ri_prev
->ri_next
= item
;
1516 xlog_recover_insert_item_frontq(
1517 xlog_recover_item_t
**q
,
1518 xlog_recover_item_t
*item
)
1520 xlog_recover_insert_item_backq(q
, item
);
1525 xlog_recover_reorder_trans(
1526 xlog_recover_t
*trans
)
1528 xlog_recover_item_t
*first_item
, *itemq
, *itemq_next
;
1529 xfs_buf_log_format_t
*buf_f
;
1532 first_item
= itemq
= trans
->r_itemq
;
1533 trans
->r_itemq
= NULL
;
1535 itemq_next
= itemq
->ri_next
;
1536 buf_f
= (xfs_buf_log_format_t
*)itemq
->ri_buf
[0].i_addr
;
1538 switch (ITEM_TYPE(itemq
)) {
1540 flags
= buf_f
->blf_flags
;
1541 if (!(flags
& XFS_BLI_CANCEL
)) {
1542 xlog_recover_insert_item_frontq(&trans
->r_itemq
,
1548 case XFS_LI_QUOTAOFF
:
1551 xlog_recover_insert_item_backq(&trans
->r_itemq
, itemq
);
1555 "XFS: xlog_recover_reorder_trans: unrecognized type of log operation");
1557 return XFS_ERROR(EIO
);
1560 } while (first_item
!= itemq
);
1565 * Build up the table of buf cancel records so that we don't replay
1566 * cancelled data in the second pass. For buffer records that are
1567 * not cancel records, there is nothing to do here so we just return.
1569 * If we get a cancel record which is already in the table, this indicates
1570 * that the buffer was cancelled multiple times. In order to ensure
1571 * that during pass 2 we keep the record in the table until we reach its
1572 * last occurrence in the log, we keep a reference count in the cancel
1573 * record in the table to tell us how many times we expect to see this
1574 * record during the second pass.
1577 xlog_recover_do_buffer_pass1(
1579 xfs_buf_log_format_t
*buf_f
)
1581 xfs_buf_cancel_t
*bcp
;
1582 xfs_buf_cancel_t
*nextp
;
1583 xfs_buf_cancel_t
*prevp
;
1584 xfs_buf_cancel_t
**bucket
;
1585 xfs_daddr_t blkno
= 0;
1589 switch (buf_f
->blf_type
) {
1591 blkno
= buf_f
->blf_blkno
;
1592 len
= buf_f
->blf_len
;
1593 flags
= buf_f
->blf_flags
;
1598 * If this isn't a cancel buffer item, then just return.
1600 if (!(flags
& XFS_BLI_CANCEL
))
1604 * Insert an xfs_buf_cancel record into the hash table of
1605 * them. If there is already an identical record, bump
1606 * its reference count.
1608 bucket
= &log
->l_buf_cancel_table
[(__uint64_t
)blkno
%
1609 XLOG_BC_TABLE_SIZE
];
1611 * If the hash bucket is empty then just insert a new record into
1614 if (*bucket
== NULL
) {
1615 bcp
= (xfs_buf_cancel_t
*)kmem_alloc(sizeof(xfs_buf_cancel_t
),
1617 bcp
->bc_blkno
= blkno
;
1619 bcp
->bc_refcount
= 1;
1620 bcp
->bc_next
= NULL
;
1626 * The hash bucket is not empty, so search for duplicates of our
1627 * record. If we find one them just bump its refcount. If not
1628 * then add us at the end of the list.
1632 while (nextp
!= NULL
) {
1633 if (nextp
->bc_blkno
== blkno
&& nextp
->bc_len
== len
) {
1634 nextp
->bc_refcount
++;
1638 nextp
= nextp
->bc_next
;
1640 ASSERT(prevp
!= NULL
);
1641 bcp
= (xfs_buf_cancel_t
*)kmem_alloc(sizeof(xfs_buf_cancel_t
),
1643 bcp
->bc_blkno
= blkno
;
1645 bcp
->bc_refcount
= 1;
1646 bcp
->bc_next
= NULL
;
1647 prevp
->bc_next
= bcp
;
1651 * Check to see whether the buffer being recovered has a corresponding
1652 * entry in the buffer cancel record table. If it does then return 1
1653 * so that it will be cancelled, otherwise return 0. If the buffer is
1654 * actually a buffer cancel item (XFS_BLI_CANCEL is set), then decrement
1655 * the refcount on the entry in the table and remove it from the table
1656 * if this is the last reference.
1658 * We remove the cancel record from the table when we encounter its
1659 * last occurrence in the log so that if the same buffer is re-used
1660 * again after its last cancellation we actually replay the changes
1661 * made at that point.
1664 xlog_check_buffer_cancelled(
1670 xfs_buf_cancel_t
*bcp
;
1671 xfs_buf_cancel_t
*prevp
;
1672 xfs_buf_cancel_t
**bucket
;
1674 if (log
->l_buf_cancel_table
== NULL
) {
1676 * There is nothing in the table built in pass one,
1677 * so this buffer must not be cancelled.
1679 ASSERT(!(flags
& XFS_BLI_CANCEL
));
1683 bucket
= &log
->l_buf_cancel_table
[(__uint64_t
)blkno
%
1684 XLOG_BC_TABLE_SIZE
];
1688 * There is no corresponding entry in the table built
1689 * in pass one, so this buffer has not been cancelled.
1691 ASSERT(!(flags
& XFS_BLI_CANCEL
));
1696 * Search for an entry in the buffer cancel table that
1697 * matches our buffer.
1700 while (bcp
!= NULL
) {
1701 if (bcp
->bc_blkno
== blkno
&& bcp
->bc_len
== len
) {
1703 * We've go a match, so return 1 so that the
1704 * recovery of this buffer is cancelled.
1705 * If this buffer is actually a buffer cancel
1706 * log item, then decrement the refcount on the
1707 * one in the table and remove it if this is the
1710 if (flags
& XFS_BLI_CANCEL
) {
1712 if (bcp
->bc_refcount
== 0) {
1713 if (prevp
== NULL
) {
1714 *bucket
= bcp
->bc_next
;
1716 prevp
->bc_next
= bcp
->bc_next
;
1719 sizeof(xfs_buf_cancel_t
));
1728 * We didn't find a corresponding entry in the table, so
1729 * return 0 so that the buffer is NOT cancelled.
1731 ASSERT(!(flags
& XFS_BLI_CANCEL
));
1736 xlog_recover_do_buffer_pass2(
1738 xfs_buf_log_format_t
*buf_f
)
1740 xfs_daddr_t blkno
= 0;
1744 switch (buf_f
->blf_type
) {
1746 blkno
= buf_f
->blf_blkno
;
1747 flags
= buf_f
->blf_flags
;
1748 len
= buf_f
->blf_len
;
1752 return xlog_check_buffer_cancelled(log
, blkno
, len
, flags
);
1756 * Perform recovery for a buffer full of inodes. In these buffers,
1757 * the only data which should be recovered is that which corresponds
1758 * to the di_next_unlinked pointers in the on disk inode structures.
1759 * The rest of the data for the inodes is always logged through the
1760 * inodes themselves rather than the inode buffer and is recovered
1761 * in xlog_recover_do_inode_trans().
1763 * The only time when buffers full of inodes are fully recovered is
1764 * when the buffer is full of newly allocated inodes. In this case
1765 * the buffer will not be marked as an inode buffer and so will be
1766 * sent to xlog_recover_do_reg_buffer() below during recovery.
1769 xlog_recover_do_inode_buffer(
1771 xlog_recover_item_t
*item
,
1773 xfs_buf_log_format_t
*buf_f
)
1781 int next_unlinked_offset
;
1783 xfs_agino_t
*logged_nextp
;
1784 xfs_agino_t
*buffer_nextp
;
1785 unsigned int *data_map
= NULL
;
1786 unsigned int map_size
= 0;
1788 switch (buf_f
->blf_type
) {
1790 data_map
= buf_f
->blf_data_map
;
1791 map_size
= buf_f
->blf_map_size
;
1795 * Set the variables corresponding to the current region to
1796 * 0 so that we'll initialize them on the first pass through
1804 inodes_per_buf
= XFS_BUF_COUNT(bp
) >> mp
->m_sb
.sb_inodelog
;
1805 for (i
= 0; i
< inodes_per_buf
; i
++) {
1806 next_unlinked_offset
= (i
* mp
->m_sb
.sb_inodesize
) +
1807 offsetof(xfs_dinode_t
, di_next_unlinked
);
1809 while (next_unlinked_offset
>=
1810 (reg_buf_offset
+ reg_buf_bytes
)) {
1812 * The next di_next_unlinked field is beyond
1813 * the current logged region. Find the next
1814 * logged region that contains or is beyond
1815 * the current di_next_unlinked field.
1818 bit
= xfs_next_bit(data_map
, map_size
, bit
);
1821 * If there are no more logged regions in the
1822 * buffer, then we're done.
1828 nbits
= xfs_contig_bits(data_map
, map_size
,
1831 reg_buf_offset
= bit
<< XFS_BLI_SHIFT
;
1832 reg_buf_bytes
= nbits
<< XFS_BLI_SHIFT
;
1837 * If the current logged region starts after the current
1838 * di_next_unlinked field, then move on to the next
1839 * di_next_unlinked field.
1841 if (next_unlinked_offset
< reg_buf_offset
) {
1845 ASSERT(item
->ri_buf
[item_index
].i_addr
!= NULL
);
1846 ASSERT((item
->ri_buf
[item_index
].i_len
% XFS_BLI_CHUNK
) == 0);
1847 ASSERT((reg_buf_offset
+ reg_buf_bytes
) <= XFS_BUF_COUNT(bp
));
1850 * The current logged region contains a copy of the
1851 * current di_next_unlinked field. Extract its value
1852 * and copy it to the buffer copy.
1854 logged_nextp
= (xfs_agino_t
*)
1855 ((char *)(item
->ri_buf
[item_index
].i_addr
) +
1856 (next_unlinked_offset
- reg_buf_offset
));
1857 if (unlikely(*logged_nextp
== 0)) {
1858 xfs_fs_cmn_err(CE_ALERT
, mp
,
1859 "bad inode buffer log record (ptr = 0x%p, bp = 0x%p). XFS trying to replay bad (0) inode di_next_unlinked field",
1861 XFS_ERROR_REPORT("xlog_recover_do_inode_buf",
1862 XFS_ERRLEVEL_LOW
, mp
);
1863 return XFS_ERROR(EFSCORRUPTED
);
1866 buffer_nextp
= (xfs_agino_t
*)xfs_buf_offset(bp
,
1867 next_unlinked_offset
);
1868 *buffer_nextp
= *logged_nextp
;
1875 * Perform a 'normal' buffer recovery. Each logged region of the
1876 * buffer should be copied over the corresponding region in the
1877 * given buffer. The bitmap in the buf log format structure indicates
1878 * where to place the logged data.
1882 xlog_recover_do_reg_buffer(
1883 xlog_recover_item_t
*item
,
1885 xfs_buf_log_format_t
*buf_f
)
1890 unsigned int *data_map
= NULL
;
1891 unsigned int map_size
= 0;
1894 switch (buf_f
->blf_type
) {
1896 data_map
= buf_f
->blf_data_map
;
1897 map_size
= buf_f
->blf_map_size
;
1901 i
= 1; /* 0 is the buf format structure */
1903 bit
= xfs_next_bit(data_map
, map_size
, bit
);
1906 nbits
= xfs_contig_bits(data_map
, map_size
, bit
);
1908 ASSERT(item
->ri_buf
[i
].i_addr
!= NULL
);
1909 ASSERT(item
->ri_buf
[i
].i_len
% XFS_BLI_CHUNK
== 0);
1910 ASSERT(XFS_BUF_COUNT(bp
) >=
1911 ((uint
)bit
<< XFS_BLI_SHIFT
)+(nbits
<<XFS_BLI_SHIFT
));
1914 * Do a sanity check if this is a dquot buffer. Just checking
1915 * the first dquot in the buffer should do. XXXThis is
1916 * probably a good thing to do for other buf types also.
1919 if (buf_f
->blf_flags
&
1920 (XFS_BLI_UDQUOT_BUF
|XFS_BLI_PDQUOT_BUF
|XFS_BLI_GDQUOT_BUF
)) {
1921 error
= xfs_qm_dqcheck((xfs_disk_dquot_t
*)
1922 item
->ri_buf
[i
].i_addr
,
1923 -1, 0, XFS_QMOPT_DOWARN
,
1924 "dquot_buf_recover");
1927 memcpy(xfs_buf_offset(bp
,
1928 (uint
)bit
<< XFS_BLI_SHIFT
), /* dest */
1929 item
->ri_buf
[i
].i_addr
, /* source */
1930 nbits
<<XFS_BLI_SHIFT
); /* length */
1935 /* Shouldn't be any more regions */
1936 ASSERT(i
== item
->ri_total
);
1940 * Do some primitive error checking on ondisk dquot data structures.
1944 xfs_disk_dquot_t
*ddq
,
1946 uint type
, /* used only when IO_dorepair is true */
1950 xfs_dqblk_t
*d
= (xfs_dqblk_t
*)ddq
;
1954 * We can encounter an uninitialized dquot buffer for 2 reasons:
1955 * 1. If we crash while deleting the quotainode(s), and those blks got
1956 * used for user data. This is because we take the path of regular
1957 * file deletion; however, the size field of quotainodes is never
1958 * updated, so all the tricks that we play in itruncate_finish
1959 * don't quite matter.
1961 * 2. We don't play the quota buffers when there's a quotaoff logitem.
1962 * But the allocation will be replayed so we'll end up with an
1963 * uninitialized quota block.
1965 * This is all fine; things are still consistent, and we haven't lost
1966 * any quota information. Just don't complain about bad dquot blks.
1968 if (be16_to_cpu(ddq
->d_magic
) != XFS_DQUOT_MAGIC
) {
1969 if (flags
& XFS_QMOPT_DOWARN
)
1971 "%s : XFS dquot ID 0x%x, magic 0x%x != 0x%x",
1972 str
, id
, be16_to_cpu(ddq
->d_magic
), XFS_DQUOT_MAGIC
);
1975 if (ddq
->d_version
!= XFS_DQUOT_VERSION
) {
1976 if (flags
& XFS_QMOPT_DOWARN
)
1978 "%s : XFS dquot ID 0x%x, version 0x%x != 0x%x",
1979 str
, id
, ddq
->d_version
, XFS_DQUOT_VERSION
);
1983 if (ddq
->d_flags
!= XFS_DQ_USER
&&
1984 ddq
->d_flags
!= XFS_DQ_PROJ
&&
1985 ddq
->d_flags
!= XFS_DQ_GROUP
) {
1986 if (flags
& XFS_QMOPT_DOWARN
)
1988 "%s : XFS dquot ID 0x%x, unknown flags 0x%x",
1989 str
, id
, ddq
->d_flags
);
1993 if (id
!= -1 && id
!= be32_to_cpu(ddq
->d_id
)) {
1994 if (flags
& XFS_QMOPT_DOWARN
)
1996 "%s : ondisk-dquot 0x%p, ID mismatch: "
1997 "0x%x expected, found id 0x%x",
1998 str
, ddq
, id
, be32_to_cpu(ddq
->d_id
));
2002 if (!errs
&& ddq
->d_id
) {
2003 if (ddq
->d_blk_softlimit
&&
2004 be64_to_cpu(ddq
->d_bcount
) >=
2005 be64_to_cpu(ddq
->d_blk_softlimit
)) {
2006 if (!ddq
->d_btimer
) {
2007 if (flags
& XFS_QMOPT_DOWARN
)
2009 "%s : Dquot ID 0x%x (0x%p) "
2010 "BLK TIMER NOT STARTED",
2011 str
, (int)be32_to_cpu(ddq
->d_id
), ddq
);
2015 if (ddq
->d_ino_softlimit
&&
2016 be64_to_cpu(ddq
->d_icount
) >=
2017 be64_to_cpu(ddq
->d_ino_softlimit
)) {
2018 if (!ddq
->d_itimer
) {
2019 if (flags
& XFS_QMOPT_DOWARN
)
2021 "%s : Dquot ID 0x%x (0x%p) "
2022 "INODE TIMER NOT STARTED",
2023 str
, (int)be32_to_cpu(ddq
->d_id
), ddq
);
2027 if (ddq
->d_rtb_softlimit
&&
2028 be64_to_cpu(ddq
->d_rtbcount
) >=
2029 be64_to_cpu(ddq
->d_rtb_softlimit
)) {
2030 if (!ddq
->d_rtbtimer
) {
2031 if (flags
& XFS_QMOPT_DOWARN
)
2033 "%s : Dquot ID 0x%x (0x%p) "
2034 "RTBLK TIMER NOT STARTED",
2035 str
, (int)be32_to_cpu(ddq
->d_id
), ddq
);
2041 if (!errs
|| !(flags
& XFS_QMOPT_DQREPAIR
))
2044 if (flags
& XFS_QMOPT_DOWARN
)
2045 cmn_err(CE_NOTE
, "Re-initializing dquot ID 0x%x", id
);
2048 * Typically, a repair is only requested by quotacheck.
2051 ASSERT(flags
& XFS_QMOPT_DQREPAIR
);
2052 memset(d
, 0, sizeof(xfs_dqblk_t
));
2054 d
->dd_diskdq
.d_magic
= cpu_to_be16(XFS_DQUOT_MAGIC
);
2055 d
->dd_diskdq
.d_version
= XFS_DQUOT_VERSION
;
2056 d
->dd_diskdq
.d_flags
= type
;
2057 d
->dd_diskdq
.d_id
= cpu_to_be32(id
);
2063 * Perform a dquot buffer recovery.
2064 * Simple algorithm: if we have found a QUOTAOFF logitem of the same type
2065 * (ie. USR or GRP), then just toss this buffer away; don't recover it.
2066 * Else, treat it as a regular buffer and do recovery.
2069 xlog_recover_do_dquot_buffer(
2072 xlog_recover_item_t
*item
,
2074 xfs_buf_log_format_t
*buf_f
)
2079 * Filesystems are required to send in quota flags at mount time.
2081 if (mp
->m_qflags
== 0) {
2086 if (buf_f
->blf_flags
& XFS_BLI_UDQUOT_BUF
)
2087 type
|= XFS_DQ_USER
;
2088 if (buf_f
->blf_flags
& XFS_BLI_PDQUOT_BUF
)
2089 type
|= XFS_DQ_PROJ
;
2090 if (buf_f
->blf_flags
& XFS_BLI_GDQUOT_BUF
)
2091 type
|= XFS_DQ_GROUP
;
2093 * This type of quotas was turned off, so ignore this buffer
2095 if (log
->l_quotaoffs_flag
& type
)
2098 xlog_recover_do_reg_buffer(item
, bp
, buf_f
);
2102 * This routine replays a modification made to a buffer at runtime.
2103 * There are actually two types of buffer, regular and inode, which
2104 * are handled differently. Inode buffers are handled differently
2105 * in that we only recover a specific set of data from them, namely
2106 * the inode di_next_unlinked fields. This is because all other inode
2107 * data is actually logged via inode records and any data we replay
2108 * here which overlaps that may be stale.
2110 * When meta-data buffers are freed at run time we log a buffer item
2111 * with the XFS_BLI_CANCEL bit set to indicate that previous copies
2112 * of the buffer in the log should not be replayed at recovery time.
2113 * This is so that if the blocks covered by the buffer are reused for
2114 * file data before we crash we don't end up replaying old, freed
2115 * meta-data into a user's file.
2117 * To handle the cancellation of buffer log items, we make two passes
2118 * over the log during recovery. During the first we build a table of
2119 * those buffers which have been cancelled, and during the second we
2120 * only replay those buffers which do not have corresponding cancel
2121 * records in the table. See xlog_recover_do_buffer_pass[1,2] above
2122 * for more details on the implementation of the table of cancel records.
2125 xlog_recover_do_buffer_trans(
2127 xlog_recover_item_t
*item
,
2130 xfs_buf_log_format_t
*buf_f
;
2139 buf_f
= (xfs_buf_log_format_t
*)item
->ri_buf
[0].i_addr
;
2141 if (pass
== XLOG_RECOVER_PASS1
) {
2143 * In this pass we're only looking for buf items
2144 * with the XFS_BLI_CANCEL bit set.
2146 xlog_recover_do_buffer_pass1(log
, buf_f
);
2150 * In this pass we want to recover all the buffers
2151 * which have not been cancelled and are not
2152 * cancellation buffers themselves. The routine
2153 * we call here will tell us whether or not to
2154 * continue with the replay of this buffer.
2156 cancel
= xlog_recover_do_buffer_pass2(log
, buf_f
);
2161 switch (buf_f
->blf_type
) {
2163 blkno
= buf_f
->blf_blkno
;
2164 len
= buf_f
->blf_len
;
2165 flags
= buf_f
->blf_flags
;
2168 xfs_fs_cmn_err(CE_ALERT
, log
->l_mp
,
2169 "xfs_log_recover: unknown buffer type 0x%x, logdev %s",
2170 buf_f
->blf_type
, log
->l_mp
->m_logname
?
2171 log
->l_mp
->m_logname
: "internal");
2172 XFS_ERROR_REPORT("xlog_recover_do_buffer_trans",
2173 XFS_ERRLEVEL_LOW
, log
->l_mp
);
2174 return XFS_ERROR(EFSCORRUPTED
);
2178 if (flags
& XFS_BLI_INODE_BUF
) {
2179 bp
= xfs_buf_read_flags(mp
->m_ddev_targp
, blkno
, len
,
2182 bp
= xfs_buf_read(mp
->m_ddev_targp
, blkno
, len
, 0);
2184 if (XFS_BUF_ISERROR(bp
)) {
2185 xfs_ioerror_alert("xlog_recover_do..(read#1)", log
->l_mp
,
2187 error
= XFS_BUF_GETERROR(bp
);
2193 if (flags
& XFS_BLI_INODE_BUF
) {
2194 error
= xlog_recover_do_inode_buffer(mp
, item
, bp
, buf_f
);
2196 (XFS_BLI_UDQUOT_BUF
|XFS_BLI_PDQUOT_BUF
|XFS_BLI_GDQUOT_BUF
)) {
2197 xlog_recover_do_dquot_buffer(mp
, log
, item
, bp
, buf_f
);
2199 xlog_recover_do_reg_buffer(item
, bp
, buf_f
);
2202 return XFS_ERROR(error
);
2205 * Perform delayed write on the buffer. Asynchronous writes will be
2206 * slower when taking into account all the buffers to be flushed.
2208 * Also make sure that only inode buffers with good sizes stay in
2209 * the buffer cache. The kernel moves inodes in buffers of 1 block
2210 * or XFS_INODE_CLUSTER_SIZE bytes, whichever is bigger. The inode
2211 * buffers in the log can be a different size if the log was generated
2212 * by an older kernel using unclustered inode buffers or a newer kernel
2213 * running with a different inode cluster size. Regardless, if the
2214 * the inode buffer size isn't MAX(blocksize, XFS_INODE_CLUSTER_SIZE)
2215 * for *our* value of XFS_INODE_CLUSTER_SIZE, then we need to keep
2216 * the buffer out of the buffer cache so that the buffer won't
2217 * overlap with future reads of those inodes.
2219 if (XFS_DINODE_MAGIC
==
2220 be16_to_cpu(*((__be16
*)xfs_buf_offset(bp
, 0))) &&
2221 (XFS_BUF_COUNT(bp
) != MAX(log
->l_mp
->m_sb
.sb_blocksize
,
2222 (__uint32_t
)XFS_INODE_CLUSTER_SIZE(log
->l_mp
)))) {
2224 error
= xfs_bwrite(mp
, bp
);
2226 ASSERT(XFS_BUF_FSPRIVATE(bp
, void *) == NULL
||
2227 XFS_BUF_FSPRIVATE(bp
, xfs_mount_t
*) == mp
);
2228 XFS_BUF_SET_FSPRIVATE(bp
, mp
);
2229 XFS_BUF_SET_IODONE_FUNC(bp
, xlog_recover_iodone
);
2230 xfs_bdwrite(mp
, bp
);
2237 xlog_recover_do_inode_trans(
2239 xlog_recover_item_t
*item
,
2242 xfs_inode_log_format_t
*in_f
;
2254 xfs_icdinode_t
*dicp
;
2257 if (pass
== XLOG_RECOVER_PASS1
) {
2261 if (item
->ri_buf
[0].i_len
== sizeof(xfs_inode_log_format_t
)) {
2262 in_f
= (xfs_inode_log_format_t
*)item
->ri_buf
[0].i_addr
;
2264 in_f
= (xfs_inode_log_format_t
*)kmem_alloc(
2265 sizeof(xfs_inode_log_format_t
), KM_SLEEP
);
2267 error
= xfs_inode_item_format_convert(&item
->ri_buf
[0], in_f
);
2271 ino
= in_f
->ilf_ino
;
2273 if (ITEM_TYPE(item
) == XFS_LI_INODE
) {
2274 imap
.im_blkno
= (xfs_daddr_t
)in_f
->ilf_blkno
;
2275 imap
.im_len
= in_f
->ilf_len
;
2276 imap
.im_boffset
= in_f
->ilf_boffset
;
2279 * It's an old inode format record. We don't know where
2280 * its cluster is located on disk, and we can't allow
2281 * xfs_imap() to figure it out because the inode btrees
2282 * are not ready to be used. Therefore do not pass the
2283 * XFS_IMAP_LOOKUP flag to xfs_imap(). This will give
2284 * us only the single block in which the inode lives
2285 * rather than its cluster, so we must make sure to
2286 * invalidate the buffer when we write it out below.
2289 error
= xfs_imap(log
->l_mp
, NULL
, ino
, &imap
, 0);
2295 * Inode buffers can be freed, look out for it,
2296 * and do not replay the inode.
2298 if (xlog_check_buffer_cancelled(log
, imap
.im_blkno
, imap
.im_len
, 0)) {
2303 bp
= xfs_buf_read_flags(mp
->m_ddev_targp
, imap
.im_blkno
, imap
.im_len
,
2305 if (XFS_BUF_ISERROR(bp
)) {
2306 xfs_ioerror_alert("xlog_recover_do..(read#2)", mp
,
2308 error
= XFS_BUF_GETERROR(bp
);
2313 ASSERT(in_f
->ilf_fields
& XFS_ILOG_CORE
);
2314 dip
= (xfs_dinode_t
*)xfs_buf_offset(bp
, imap
.im_boffset
);
2317 * Make sure the place we're flushing out to really looks
2320 if (unlikely(be16_to_cpu(dip
->di_core
.di_magic
) != XFS_DINODE_MAGIC
)) {
2322 xfs_fs_cmn_err(CE_ALERT
, mp
,
2323 "xfs_inode_recover: Bad inode magic number, dino ptr = 0x%p, dino bp = 0x%p, ino = %Ld",
2325 XFS_ERROR_REPORT("xlog_recover_do_inode_trans(1)",
2326 XFS_ERRLEVEL_LOW
, mp
);
2327 error
= EFSCORRUPTED
;
2330 dicp
= (xfs_icdinode_t
*)(item
->ri_buf
[1].i_addr
);
2331 if (unlikely(dicp
->di_magic
!= XFS_DINODE_MAGIC
)) {
2333 xfs_fs_cmn_err(CE_ALERT
, mp
,
2334 "xfs_inode_recover: Bad inode log record, rec ptr 0x%p, ino %Ld",
2336 XFS_ERROR_REPORT("xlog_recover_do_inode_trans(2)",
2337 XFS_ERRLEVEL_LOW
, mp
);
2338 error
= EFSCORRUPTED
;
2342 /* Skip replay when the on disk inode is newer than the log one */
2343 if (dicp
->di_flushiter
< be16_to_cpu(dip
->di_core
.di_flushiter
)) {
2345 * Deal with the wrap case, DI_MAX_FLUSH is less
2346 * than smaller numbers
2348 if (be16_to_cpu(dip
->di_core
.di_flushiter
) == DI_MAX_FLUSH
&&
2349 dicp
->di_flushiter
< (DI_MAX_FLUSH
>> 1)) {
2357 /* Take the opportunity to reset the flush iteration count */
2358 dicp
->di_flushiter
= 0;
2360 if (unlikely((dicp
->di_mode
& S_IFMT
) == S_IFREG
)) {
2361 if ((dicp
->di_format
!= XFS_DINODE_FMT_EXTENTS
) &&
2362 (dicp
->di_format
!= XFS_DINODE_FMT_BTREE
)) {
2363 XFS_CORRUPTION_ERROR("xlog_recover_do_inode_trans(3)",
2364 XFS_ERRLEVEL_LOW
, mp
, dicp
);
2366 xfs_fs_cmn_err(CE_ALERT
, mp
,
2367 "xfs_inode_recover: Bad regular inode log record, rec ptr 0x%p, ino ptr = 0x%p, ino bp = 0x%p, ino %Ld",
2368 item
, dip
, bp
, ino
);
2369 error
= EFSCORRUPTED
;
2372 } else if (unlikely((dicp
->di_mode
& S_IFMT
) == S_IFDIR
)) {
2373 if ((dicp
->di_format
!= XFS_DINODE_FMT_EXTENTS
) &&
2374 (dicp
->di_format
!= XFS_DINODE_FMT_BTREE
) &&
2375 (dicp
->di_format
!= XFS_DINODE_FMT_LOCAL
)) {
2376 XFS_CORRUPTION_ERROR("xlog_recover_do_inode_trans(4)",
2377 XFS_ERRLEVEL_LOW
, mp
, dicp
);
2379 xfs_fs_cmn_err(CE_ALERT
, mp
,
2380 "xfs_inode_recover: Bad dir inode log record, rec ptr 0x%p, ino ptr = 0x%p, ino bp = 0x%p, ino %Ld",
2381 item
, dip
, bp
, ino
);
2382 error
= EFSCORRUPTED
;
2386 if (unlikely(dicp
->di_nextents
+ dicp
->di_anextents
> dicp
->di_nblocks
)){
2387 XFS_CORRUPTION_ERROR("xlog_recover_do_inode_trans(5)",
2388 XFS_ERRLEVEL_LOW
, mp
, dicp
);
2390 xfs_fs_cmn_err(CE_ALERT
, mp
,
2391 "xfs_inode_recover: Bad inode log record, rec ptr 0x%p, dino ptr 0x%p, dino bp 0x%p, ino %Ld, total extents = %d, nblocks = %Ld",
2393 dicp
->di_nextents
+ dicp
->di_anextents
,
2395 error
= EFSCORRUPTED
;
2398 if (unlikely(dicp
->di_forkoff
> mp
->m_sb
.sb_inodesize
)) {
2399 XFS_CORRUPTION_ERROR("xlog_recover_do_inode_trans(6)",
2400 XFS_ERRLEVEL_LOW
, mp
, dicp
);
2402 xfs_fs_cmn_err(CE_ALERT
, mp
,
2403 "xfs_inode_recover: Bad inode log rec ptr 0x%p, dino ptr 0x%p, dino bp 0x%p, ino %Ld, forkoff 0x%x",
2404 item
, dip
, bp
, ino
, dicp
->di_forkoff
);
2405 error
= EFSCORRUPTED
;
2408 if (unlikely(item
->ri_buf
[1].i_len
> sizeof(xfs_dinode_core_t
))) {
2409 XFS_CORRUPTION_ERROR("xlog_recover_do_inode_trans(7)",
2410 XFS_ERRLEVEL_LOW
, mp
, dicp
);
2412 xfs_fs_cmn_err(CE_ALERT
, mp
,
2413 "xfs_inode_recover: Bad inode log record length %d, rec ptr 0x%p",
2414 item
->ri_buf
[1].i_len
, item
);
2415 error
= EFSCORRUPTED
;
2419 /* The core is in in-core format */
2420 xfs_dinode_to_disk(&dip
->di_core
,
2421 (xfs_icdinode_t
*)item
->ri_buf
[1].i_addr
);
2423 /* the rest is in on-disk format */
2424 if (item
->ri_buf
[1].i_len
> sizeof(xfs_dinode_core_t
)) {
2425 memcpy((xfs_caddr_t
) dip
+ sizeof(xfs_dinode_core_t
),
2426 item
->ri_buf
[1].i_addr
+ sizeof(xfs_dinode_core_t
),
2427 item
->ri_buf
[1].i_len
- sizeof(xfs_dinode_core_t
));
2430 fields
= in_f
->ilf_fields
;
2431 switch (fields
& (XFS_ILOG_DEV
| XFS_ILOG_UUID
)) {
2433 dip
->di_u
.di_dev
= cpu_to_be32(in_f
->ilf_u
.ilfu_rdev
);
2436 dip
->di_u
.di_muuid
= in_f
->ilf_u
.ilfu_uuid
;
2440 if (in_f
->ilf_size
== 2)
2441 goto write_inode_buffer
;
2442 len
= item
->ri_buf
[2].i_len
;
2443 src
= item
->ri_buf
[2].i_addr
;
2444 ASSERT(in_f
->ilf_size
<= 4);
2445 ASSERT((in_f
->ilf_size
== 3) || (fields
& XFS_ILOG_AFORK
));
2446 ASSERT(!(fields
& XFS_ILOG_DFORK
) ||
2447 (len
== in_f
->ilf_dsize
));
2449 switch (fields
& XFS_ILOG_DFORK
) {
2450 case XFS_ILOG_DDATA
:
2452 memcpy(&dip
->di_u
, src
, len
);
2455 case XFS_ILOG_DBROOT
:
2456 xfs_bmbt_to_bmdr((xfs_bmbt_block_t
*)src
, len
,
2457 &(dip
->di_u
.di_bmbt
),
2458 XFS_DFORK_DSIZE(dip
, mp
));
2463 * There are no data fork flags set.
2465 ASSERT((fields
& XFS_ILOG_DFORK
) == 0);
2470 * If we logged any attribute data, recover it. There may or
2471 * may not have been any other non-core data logged in this
2474 if (in_f
->ilf_fields
& XFS_ILOG_AFORK
) {
2475 if (in_f
->ilf_fields
& XFS_ILOG_DFORK
) {
2480 len
= item
->ri_buf
[attr_index
].i_len
;
2481 src
= item
->ri_buf
[attr_index
].i_addr
;
2482 ASSERT(len
== in_f
->ilf_asize
);
2484 switch (in_f
->ilf_fields
& XFS_ILOG_AFORK
) {
2485 case XFS_ILOG_ADATA
:
2487 dest
= XFS_DFORK_APTR(dip
);
2488 ASSERT(len
<= XFS_DFORK_ASIZE(dip
, mp
));
2489 memcpy(dest
, src
, len
);
2492 case XFS_ILOG_ABROOT
:
2493 dest
= XFS_DFORK_APTR(dip
);
2494 xfs_bmbt_to_bmdr((xfs_bmbt_block_t
*)src
, len
,
2495 (xfs_bmdr_block_t
*)dest
,
2496 XFS_DFORK_ASIZE(dip
, mp
));
2500 xlog_warn("XFS: xlog_recover_do_inode_trans: Invalid flag");
2509 if (ITEM_TYPE(item
) == XFS_LI_INODE
) {
2510 ASSERT(XFS_BUF_FSPRIVATE(bp
, void *) == NULL
||
2511 XFS_BUF_FSPRIVATE(bp
, xfs_mount_t
*) == mp
);
2512 XFS_BUF_SET_FSPRIVATE(bp
, mp
);
2513 XFS_BUF_SET_IODONE_FUNC(bp
, xlog_recover_iodone
);
2514 xfs_bdwrite(mp
, bp
);
2517 error
= xfs_bwrite(mp
, bp
);
2522 kmem_free(in_f
, sizeof(*in_f
));
2523 return XFS_ERROR(error
);
2527 * Recover QUOTAOFF records. We simply make a note of it in the xlog_t
2528 * structure, so that we know not to do any dquot item or dquot buffer recovery,
2532 xlog_recover_do_quotaoff_trans(
2534 xlog_recover_item_t
*item
,
2537 xfs_qoff_logformat_t
*qoff_f
;
2539 if (pass
== XLOG_RECOVER_PASS2
) {
2543 qoff_f
= (xfs_qoff_logformat_t
*)item
->ri_buf
[0].i_addr
;
2547 * The logitem format's flag tells us if this was user quotaoff,
2548 * group/project quotaoff or both.
2550 if (qoff_f
->qf_flags
& XFS_UQUOTA_ACCT
)
2551 log
->l_quotaoffs_flag
|= XFS_DQ_USER
;
2552 if (qoff_f
->qf_flags
& XFS_PQUOTA_ACCT
)
2553 log
->l_quotaoffs_flag
|= XFS_DQ_PROJ
;
2554 if (qoff_f
->qf_flags
& XFS_GQUOTA_ACCT
)
2555 log
->l_quotaoffs_flag
|= XFS_DQ_GROUP
;
2561 * Recover a dquot record
2564 xlog_recover_do_dquot_trans(
2566 xlog_recover_item_t
*item
,
2571 struct xfs_disk_dquot
*ddq
, *recddq
;
2573 xfs_dq_logformat_t
*dq_f
;
2576 if (pass
== XLOG_RECOVER_PASS1
) {
2582 * Filesystems are required to send in quota flags at mount time.
2584 if (mp
->m_qflags
== 0)
2587 recddq
= (xfs_disk_dquot_t
*)item
->ri_buf
[1].i_addr
;
2590 * This type of quotas was turned off, so ignore this record.
2592 type
= recddq
->d_flags
& (XFS_DQ_USER
| XFS_DQ_PROJ
| XFS_DQ_GROUP
);
2594 if (log
->l_quotaoffs_flag
& type
)
2598 * At this point we know that quota was _not_ turned off.
2599 * Since the mount flags are not indicating to us otherwise, this
2600 * must mean that quota is on, and the dquot needs to be replayed.
2601 * Remember that we may not have fully recovered the superblock yet,
2602 * so we can't do the usual trick of looking at the SB quota bits.
2604 * The other possibility, of course, is that the quota subsystem was
2605 * removed since the last mount - ENOSYS.
2607 dq_f
= (xfs_dq_logformat_t
*)item
->ri_buf
[0].i_addr
;
2609 if ((error
= xfs_qm_dqcheck(recddq
,
2611 0, XFS_QMOPT_DOWARN
,
2612 "xlog_recover_do_dquot_trans (log copy)"))) {
2613 return XFS_ERROR(EIO
);
2615 ASSERT(dq_f
->qlf_len
== 1);
2617 error
= xfs_read_buf(mp
, mp
->m_ddev_targp
,
2619 XFS_FSB_TO_BB(mp
, dq_f
->qlf_len
),
2622 xfs_ioerror_alert("xlog_recover_do..(read#3)", mp
,
2623 bp
, dq_f
->qlf_blkno
);
2627 ddq
= (xfs_disk_dquot_t
*)xfs_buf_offset(bp
, dq_f
->qlf_boffset
);
2630 * At least the magic num portion should be on disk because this
2631 * was among a chunk of dquots created earlier, and we did some
2632 * minimal initialization then.
2634 if (xfs_qm_dqcheck(ddq
, dq_f
->qlf_id
, 0, XFS_QMOPT_DOWARN
,
2635 "xlog_recover_do_dquot_trans")) {
2637 return XFS_ERROR(EIO
);
2640 memcpy(ddq
, recddq
, item
->ri_buf
[1].i_len
);
2642 ASSERT(dq_f
->qlf_size
== 2);
2643 ASSERT(XFS_BUF_FSPRIVATE(bp
, void *) == NULL
||
2644 XFS_BUF_FSPRIVATE(bp
, xfs_mount_t
*) == mp
);
2645 XFS_BUF_SET_FSPRIVATE(bp
, mp
);
2646 XFS_BUF_SET_IODONE_FUNC(bp
, xlog_recover_iodone
);
2647 xfs_bdwrite(mp
, bp
);
2653 * This routine is called to create an in-core extent free intent
2654 * item from the efi format structure which was logged on disk.
2655 * It allocates an in-core efi, copies the extents from the format
2656 * structure into it, and adds the efi to the AIL with the given
2660 xlog_recover_do_efi_trans(
2662 xlog_recover_item_t
*item
,
2668 xfs_efi_log_item_t
*efip
;
2669 xfs_efi_log_format_t
*efi_formatp
;
2671 if (pass
== XLOG_RECOVER_PASS1
) {
2675 efi_formatp
= (xfs_efi_log_format_t
*)item
->ri_buf
[0].i_addr
;
2678 efip
= xfs_efi_init(mp
, efi_formatp
->efi_nextents
);
2679 if ((error
= xfs_efi_copy_format(&(item
->ri_buf
[0]),
2680 &(efip
->efi_format
)))) {
2681 xfs_efi_item_free(efip
);
2684 efip
->efi_next_extent
= efi_formatp
->efi_nextents
;
2685 efip
->efi_flags
|= XFS_EFI_COMMITTED
;
2687 spin_lock(&mp
->m_ail_lock
);
2689 * xfs_trans_update_ail() drops the AIL lock.
2691 xfs_trans_update_ail(mp
, (xfs_log_item_t
*)efip
, lsn
);
2697 * This routine is called when an efd format structure is found in
2698 * a committed transaction in the log. It's purpose is to cancel
2699 * the corresponding efi if it was still in the log. To do this
2700 * it searches the AIL for the efi with an id equal to that in the
2701 * efd format structure. If we find it, we remove the efi from the
2705 xlog_recover_do_efd_trans(
2707 xlog_recover_item_t
*item
,
2711 xfs_efd_log_format_t
*efd_formatp
;
2712 xfs_efi_log_item_t
*efip
= NULL
;
2713 xfs_log_item_t
*lip
;
2717 if (pass
== XLOG_RECOVER_PASS1
) {
2721 efd_formatp
= (xfs_efd_log_format_t
*)item
->ri_buf
[0].i_addr
;
2722 ASSERT((item
->ri_buf
[0].i_len
== (sizeof(xfs_efd_log_format_32_t
) +
2723 ((efd_formatp
->efd_nextents
- 1) * sizeof(xfs_extent_32_t
)))) ||
2724 (item
->ri_buf
[0].i_len
== (sizeof(xfs_efd_log_format_64_t
) +
2725 ((efd_formatp
->efd_nextents
- 1) * sizeof(xfs_extent_64_t
)))));
2726 efi_id
= efd_formatp
->efd_efi_id
;
2729 * Search for the efi with the id in the efd format structure
2733 spin_lock(&mp
->m_ail_lock
);
2734 lip
= xfs_trans_first_ail(mp
, &gen
);
2735 while (lip
!= NULL
) {
2736 if (lip
->li_type
== XFS_LI_EFI
) {
2737 efip
= (xfs_efi_log_item_t
*)lip
;
2738 if (efip
->efi_format
.efi_id
== efi_id
) {
2740 * xfs_trans_delete_ail() drops the
2743 xfs_trans_delete_ail(mp
, lip
);
2744 xfs_efi_item_free(efip
);
2748 lip
= xfs_trans_next_ail(mp
, lip
, &gen
, NULL
);
2750 spin_unlock(&mp
->m_ail_lock
);
2754 * Perform the transaction
2756 * If the transaction modifies a buffer or inode, do it now. Otherwise,
2757 * EFIs and EFDs get queued up by adding entries into the AIL for them.
2760 xlog_recover_do_trans(
2762 xlog_recover_t
*trans
,
2766 xlog_recover_item_t
*item
, *first_item
;
2768 if ((error
= xlog_recover_reorder_trans(trans
)))
2770 first_item
= item
= trans
->r_itemq
;
2773 * we don't need to worry about the block number being
2774 * truncated in > 1 TB buffers because in user-land,
2775 * we're now n32 or 64-bit so xfs_daddr_t is 64-bits so
2776 * the blknos will get through the user-mode buffer
2777 * cache properly. The only bad case is o32 kernels
2778 * where xfs_daddr_t is 32-bits but mount will warn us
2779 * off a > 1 TB filesystem before we get here.
2781 if ((ITEM_TYPE(item
) == XFS_LI_BUF
)) {
2782 if ((error
= xlog_recover_do_buffer_trans(log
, item
,
2785 } else if ((ITEM_TYPE(item
) == XFS_LI_INODE
)) {
2786 if ((error
= xlog_recover_do_inode_trans(log
, item
,
2789 } else if (ITEM_TYPE(item
) == XFS_LI_EFI
) {
2790 if ((error
= xlog_recover_do_efi_trans(log
, item
, trans
->r_lsn
,
2793 } else if (ITEM_TYPE(item
) == XFS_LI_EFD
) {
2794 xlog_recover_do_efd_trans(log
, item
, pass
);
2795 } else if (ITEM_TYPE(item
) == XFS_LI_DQUOT
) {
2796 if ((error
= xlog_recover_do_dquot_trans(log
, item
,
2799 } else if ((ITEM_TYPE(item
) == XFS_LI_QUOTAOFF
)) {
2800 if ((error
= xlog_recover_do_quotaoff_trans(log
, item
,
2804 xlog_warn("XFS: xlog_recover_do_trans");
2806 error
= XFS_ERROR(EIO
);
2809 item
= item
->ri_next
;
2810 } while (first_item
!= item
);
2816 * Free up any resources allocated by the transaction
2818 * Remember that EFIs, EFDs, and IUNLINKs are handled later.
2821 xlog_recover_free_trans(
2822 xlog_recover_t
*trans
)
2824 xlog_recover_item_t
*first_item
, *item
, *free_item
;
2827 item
= first_item
= trans
->r_itemq
;
2830 item
= item
->ri_next
;
2831 /* Free the regions in the item. */
2832 for (i
= 0; i
< free_item
->ri_cnt
; i
++) {
2833 kmem_free(free_item
->ri_buf
[i
].i_addr
,
2834 free_item
->ri_buf
[i
].i_len
);
2836 /* Free the item itself */
2837 kmem_free(free_item
->ri_buf
,
2838 (free_item
->ri_total
* sizeof(xfs_log_iovec_t
)));
2839 kmem_free(free_item
, sizeof(xlog_recover_item_t
));
2840 } while (first_item
!= item
);
2841 /* Free the transaction recover structure */
2842 kmem_free(trans
, sizeof(xlog_recover_t
));
2846 xlog_recover_commit_trans(
2849 xlog_recover_t
*trans
,
2854 if ((error
= xlog_recover_unlink_tid(q
, trans
)))
2856 if ((error
= xlog_recover_do_trans(log
, trans
, pass
)))
2858 xlog_recover_free_trans(trans
); /* no error */
2863 xlog_recover_unmount_trans(
2864 xlog_recover_t
*trans
)
2866 /* Do nothing now */
2867 xlog_warn("XFS: xlog_recover_unmount_trans: Unmount LR");
2872 * There are two valid states of the r_state field. 0 indicates that the
2873 * transaction structure is in a normal state. We have either seen the
2874 * start of the transaction or the last operation we added was not a partial
2875 * operation. If the last operation we added to the transaction was a
2876 * partial operation, we need to mark r_state with XLOG_WAS_CONT_TRANS.
2878 * NOTE: skip LRs with 0 data length.
2881 xlog_recover_process_data(
2883 xlog_recover_t
*rhash
[],
2884 xlog_rec_header_t
*rhead
,
2890 xlog_op_header_t
*ohead
;
2891 xlog_recover_t
*trans
;
2897 lp
= dp
+ be32_to_cpu(rhead
->h_len
);
2898 num_logops
= be32_to_cpu(rhead
->h_num_logops
);
2900 /* check the log format matches our own - else we can't recover */
2901 if (xlog_header_check_recover(log
->l_mp
, rhead
))
2902 return (XFS_ERROR(EIO
));
2904 while ((dp
< lp
) && num_logops
) {
2905 ASSERT(dp
+ sizeof(xlog_op_header_t
) <= lp
);
2906 ohead
= (xlog_op_header_t
*)dp
;
2907 dp
+= sizeof(xlog_op_header_t
);
2908 if (ohead
->oh_clientid
!= XFS_TRANSACTION
&&
2909 ohead
->oh_clientid
!= XFS_LOG
) {
2911 "XFS: xlog_recover_process_data: bad clientid");
2913 return (XFS_ERROR(EIO
));
2915 tid
= be32_to_cpu(ohead
->oh_tid
);
2916 hash
= XLOG_RHASH(tid
);
2917 trans
= xlog_recover_find_tid(rhash
[hash
], tid
);
2918 if (trans
== NULL
) { /* not found; add new tid */
2919 if (ohead
->oh_flags
& XLOG_START_TRANS
)
2920 xlog_recover_new_tid(&rhash
[hash
], tid
,
2921 be64_to_cpu(rhead
->h_lsn
));
2923 if (dp
+ be32_to_cpu(ohead
->oh_len
) > lp
) {
2925 "XFS: xlog_recover_process_data: bad length");
2927 return (XFS_ERROR(EIO
));
2929 flags
= ohead
->oh_flags
& ~XLOG_END_TRANS
;
2930 if (flags
& XLOG_WAS_CONT_TRANS
)
2931 flags
&= ~XLOG_CONTINUE_TRANS
;
2933 case XLOG_COMMIT_TRANS
:
2934 error
= xlog_recover_commit_trans(log
,
2935 &rhash
[hash
], trans
, pass
);
2937 case XLOG_UNMOUNT_TRANS
:
2938 error
= xlog_recover_unmount_trans(trans
);
2940 case XLOG_WAS_CONT_TRANS
:
2941 error
= xlog_recover_add_to_cont_trans(trans
,
2942 dp
, be32_to_cpu(ohead
->oh_len
));
2944 case XLOG_START_TRANS
:
2946 "XFS: xlog_recover_process_data: bad transaction");
2948 error
= XFS_ERROR(EIO
);
2951 case XLOG_CONTINUE_TRANS
:
2952 error
= xlog_recover_add_to_trans(trans
,
2953 dp
, be32_to_cpu(ohead
->oh_len
));
2957 "XFS: xlog_recover_process_data: bad flag");
2959 error
= XFS_ERROR(EIO
);
2965 dp
+= be32_to_cpu(ohead
->oh_len
);
2972 * Process an extent free intent item that was recovered from
2973 * the log. We need to free the extents that it describes.
2976 xlog_recover_process_efi(
2978 xfs_efi_log_item_t
*efip
)
2980 xfs_efd_log_item_t
*efdp
;
2985 xfs_fsblock_t startblock_fsb
;
2987 ASSERT(!(efip
->efi_flags
& XFS_EFI_RECOVERED
));
2990 * First check the validity of the extents described by the
2991 * EFI. If any are bad, then assume that all are bad and
2992 * just toss the EFI.
2994 for (i
= 0; i
< efip
->efi_format
.efi_nextents
; i
++) {
2995 extp
= &(efip
->efi_format
.efi_extents
[i
]);
2996 startblock_fsb
= XFS_BB_TO_FSB(mp
,
2997 XFS_FSB_TO_DADDR(mp
, extp
->ext_start
));
2998 if ((startblock_fsb
== 0) ||
2999 (extp
->ext_len
== 0) ||
3000 (startblock_fsb
>= mp
->m_sb
.sb_dblocks
) ||
3001 (extp
->ext_len
>= mp
->m_sb
.sb_agblocks
)) {
3003 * This will pull the EFI from the AIL and
3004 * free the memory associated with it.
3006 xfs_efi_release(efip
, efip
->efi_format
.efi_nextents
);
3007 return XFS_ERROR(EIO
);
3011 tp
= xfs_trans_alloc(mp
, 0);
3012 error
= xfs_trans_reserve(tp
, 0, XFS_ITRUNCATE_LOG_RES(mp
), 0, 0, 0);
3015 efdp
= xfs_trans_get_efd(tp
, efip
, efip
->efi_format
.efi_nextents
);
3017 for (i
= 0; i
< efip
->efi_format
.efi_nextents
; i
++) {
3018 extp
= &(efip
->efi_format
.efi_extents
[i
]);
3019 error
= xfs_free_extent(tp
, extp
->ext_start
, extp
->ext_len
);
3022 xfs_trans_log_efd_extent(tp
, efdp
, extp
->ext_start
,
3026 efip
->efi_flags
|= XFS_EFI_RECOVERED
;
3027 error
= xfs_trans_commit(tp
, 0);
3031 xfs_trans_cancel(tp
, XFS_TRANS_ABORT
);
3036 * Verify that once we've encountered something other than an EFI
3037 * in the AIL that there are no more EFIs in the AIL.
3041 xlog_recover_check_ail(
3043 xfs_log_item_t
*lip
,
3049 ASSERT(lip
->li_type
!= XFS_LI_EFI
);
3050 lip
= xfs_trans_next_ail(mp
, lip
, &gen
, NULL
);
3052 * The check will be bogus if we restart from the
3053 * beginning of the AIL, so ASSERT that we don't.
3054 * We never should since we're holding the AIL lock
3057 ASSERT(gen
== orig_gen
);
3058 } while (lip
!= NULL
);
3063 * When this is called, all of the EFIs which did not have
3064 * corresponding EFDs should be in the AIL. What we do now
3065 * is free the extents associated with each one.
3067 * Since we process the EFIs in normal transactions, they
3068 * will be removed at some point after the commit. This prevents
3069 * us from just walking down the list processing each one.
3070 * We'll use a flag in the EFI to skip those that we've already
3071 * processed and use the AIL iteration mechanism's generation
3072 * count to try to speed this up at least a bit.
3074 * When we start, we know that the EFIs are the only things in
3075 * the AIL. As we process them, however, other items are added
3076 * to the AIL. Since everything added to the AIL must come after
3077 * everything already in the AIL, we stop processing as soon as
3078 * we see something other than an EFI in the AIL.
3081 xlog_recover_process_efis(
3084 xfs_log_item_t
*lip
;
3085 xfs_efi_log_item_t
*efip
;
3091 spin_lock(&mp
->m_ail_lock
);
3093 lip
= xfs_trans_first_ail(mp
, &gen
);
3094 while (lip
!= NULL
) {
3096 * We're done when we see something other than an EFI.
3098 if (lip
->li_type
!= XFS_LI_EFI
) {
3099 xlog_recover_check_ail(mp
, lip
, gen
);
3104 * Skip EFIs that we've already processed.
3106 efip
= (xfs_efi_log_item_t
*)lip
;
3107 if (efip
->efi_flags
& XFS_EFI_RECOVERED
) {
3108 lip
= xfs_trans_next_ail(mp
, lip
, &gen
, NULL
);
3112 spin_unlock(&mp
->m_ail_lock
);
3113 error
= xlog_recover_process_efi(mp
, efip
);
3116 spin_lock(&mp
->m_ail_lock
);
3117 lip
= xfs_trans_next_ail(mp
, lip
, &gen
, NULL
);
3119 spin_unlock(&mp
->m_ail_lock
);
3124 * This routine performs a transaction to null out a bad inode pointer
3125 * in an agi unlinked inode hash bucket.
3128 xlog_recover_clear_agi_bucket(
3130 xfs_agnumber_t agno
,
3139 tp
= xfs_trans_alloc(mp
, XFS_TRANS_CLEAR_AGI_BUCKET
);
3140 error
= xfs_trans_reserve(tp
, 0, XFS_CLEAR_AGI_BUCKET_LOG_RES(mp
), 0, 0, 0);
3142 error
= xfs_trans_read_buf(mp
, tp
, mp
->m_ddev_targp
,
3143 XFS_AG_DADDR(mp
, agno
, XFS_AGI_DADDR(mp
)),
3144 XFS_FSS_TO_BB(mp
, 1), 0, &agibp
);
3149 agi
= XFS_BUF_TO_AGI(agibp
);
3150 if (be32_to_cpu(agi
->agi_magicnum
) != XFS_AGI_MAGIC
)
3153 agi
->agi_unlinked
[bucket
] = cpu_to_be32(NULLAGINO
);
3154 offset
= offsetof(xfs_agi_t
, agi_unlinked
) +
3155 (sizeof(xfs_agino_t
) * bucket
);
3156 xfs_trans_log_buf(tp
, agibp
, offset
,
3157 (offset
+ sizeof(xfs_agino_t
) - 1));
3159 error
= xfs_trans_commit(tp
, 0);
3165 xfs_trans_cancel(tp
, XFS_TRANS_ABORT
);
3167 xfs_fs_cmn_err(CE_WARN
, mp
, "xlog_recover_clear_agi_bucket: "
3168 "failed to clear agi %d. Continuing.", agno
);
3173 * xlog_iunlink_recover
3175 * This is called during recovery to process any inodes which
3176 * we unlinked but not freed when the system crashed. These
3177 * inodes will be on the lists in the AGI blocks. What we do
3178 * here is scan all the AGIs and fully truncate and free any
3179 * inodes found on the lists. Each inode is removed from the
3180 * lists when it has been fully truncated and is freed. The
3181 * freeing of the inode and its removal from the list must be
3185 xlog_recover_process_iunlinks(
3189 xfs_agnumber_t agno
;
3204 * Prevent any DMAPI event from being sent while in this function.
3206 mp_dmevmask
= mp
->m_dmevmask
;
3209 for (agno
= 0; agno
< mp
->m_sb
.sb_agcount
; agno
++) {
3211 * Find the agi for this ag.
3213 agibp
= xfs_buf_read(mp
->m_ddev_targp
,
3214 XFS_AG_DADDR(mp
, agno
, XFS_AGI_DADDR(mp
)),
3215 XFS_FSS_TO_BB(mp
, 1), 0);
3216 if (XFS_BUF_ISERROR(agibp
)) {
3217 xfs_ioerror_alert("xlog_recover_process_iunlinks(#1)",
3219 XFS_AG_DADDR(mp
, agno
, XFS_AGI_DADDR(mp
)));
3221 agi
= XFS_BUF_TO_AGI(agibp
);
3222 ASSERT(XFS_AGI_MAGIC
== be32_to_cpu(agi
->agi_magicnum
));
3224 for (bucket
= 0; bucket
< XFS_AGI_UNLINKED_BUCKETS
; bucket
++) {
3226 agino
= be32_to_cpu(agi
->agi_unlinked
[bucket
]);
3227 while (agino
!= NULLAGINO
) {
3230 * Release the agi buffer so that it can
3231 * be acquired in the normal course of the
3232 * transaction to truncate and free the inode.
3234 xfs_buf_relse(agibp
);
3236 ino
= XFS_AGINO_TO_INO(mp
, agno
, agino
);
3237 error
= xfs_iget(mp
, NULL
, ino
, 0, 0, &ip
, 0);
3238 ASSERT(error
|| (ip
!= NULL
));
3242 * Get the on disk inode to find the
3243 * next inode in the bucket.
3245 error
= xfs_itobp(mp
, NULL
, ip
, &dip
,
3248 ASSERT(error
|| (dip
!= NULL
));
3252 ASSERT(ip
->i_d
.di_nlink
== 0);
3254 /* setup for the next pass */
3255 agino
= be32_to_cpu(
3256 dip
->di_next_unlinked
);
3259 * Prevent any DMAPI event from
3260 * being sent when the
3261 * reference on the inode is
3264 ip
->i_d
.di_dmevmask
= 0;
3267 * If this is a new inode, handle
3268 * it specially. Otherwise,
3269 * just drop our reference to the
3270 * inode. If there are no
3271 * other references, this will
3273 * xfs_inactive() which will
3274 * truncate the file and free
3277 if (ip
->i_d
.di_mode
== 0)
3278 xfs_iput_new(ip
, 0);
3283 * We can't read in the inode
3284 * this bucket points to, or
3285 * this inode is messed up. Just
3286 * ditch this bucket of inodes. We
3287 * will lose some inodes and space,
3288 * but at least we won't hang. Call
3289 * xlog_recover_clear_agi_bucket()
3290 * to perform a transaction to clear
3291 * the inode pointer in the bucket.
3293 xlog_recover_clear_agi_bucket(mp
, agno
,
3300 * Reacquire the agibuffer and continue around
3303 agibp
= xfs_buf_read(mp
->m_ddev_targp
,
3304 XFS_AG_DADDR(mp
, agno
,
3306 XFS_FSS_TO_BB(mp
, 1), 0);
3307 if (XFS_BUF_ISERROR(agibp
)) {
3309 "xlog_recover_process_iunlinks(#2)",
3311 XFS_AG_DADDR(mp
, agno
,
3312 XFS_AGI_DADDR(mp
)));
3314 agi
= XFS_BUF_TO_AGI(agibp
);
3315 ASSERT(XFS_AGI_MAGIC
== be32_to_cpu(
3316 agi
->agi_magicnum
));
3321 * Release the buffer for the current agi so we can
3322 * go on to the next one.
3324 xfs_buf_relse(agibp
);
3327 mp
->m_dmevmask
= mp_dmevmask
;
3333 xlog_pack_data_checksum(
3335 xlog_in_core_t
*iclog
,
3342 up
= (__be32
*)iclog
->ic_datap
;
3343 /* divide length by 4 to get # words */
3344 for (i
= 0; i
< (size
>> 2); i
++) {
3345 chksum
^= be32_to_cpu(*up
);
3348 iclog
->ic_header
.h_chksum
= cpu_to_be32(chksum
);
3351 #define xlog_pack_data_checksum(log, iclog, size)
3355 * Stamp cycle number in every block
3360 xlog_in_core_t
*iclog
,
3364 int size
= iclog
->ic_offset
+ roundoff
;
3367 xlog_in_core_2_t
*xhdr
;
3369 xlog_pack_data_checksum(log
, iclog
, size
);
3371 cycle_lsn
= CYCLE_LSN_DISK(iclog
->ic_header
.h_lsn
);
3373 dp
= iclog
->ic_datap
;
3374 for (i
= 0; i
< BTOBB(size
) &&
3375 i
< (XLOG_HEADER_CYCLE_SIZE
/ BBSIZE
); i
++) {
3376 iclog
->ic_header
.h_cycle_data
[i
] = *(__be32
*)dp
;
3377 *(__be32
*)dp
= cycle_lsn
;
3381 if (xfs_sb_version_haslogv2(&log
->l_mp
->m_sb
)) {
3382 xhdr
= (xlog_in_core_2_t
*)&iclog
->ic_header
;
3383 for ( ; i
< BTOBB(size
); i
++) {
3384 j
= i
/ (XLOG_HEADER_CYCLE_SIZE
/ BBSIZE
);
3385 k
= i
% (XLOG_HEADER_CYCLE_SIZE
/ BBSIZE
);
3386 xhdr
[j
].hic_xheader
.xh_cycle_data
[k
] = *(__be32
*)dp
;
3387 *(__be32
*)dp
= cycle_lsn
;
3391 for (i
= 1; i
< log
->l_iclog_heads
; i
++) {
3392 xhdr
[i
].hic_xheader
.xh_cycle
= cycle_lsn
;
3397 #if defined(DEBUG) && defined(XFS_LOUD_RECOVERY)
3399 xlog_unpack_data_checksum(
3400 xlog_rec_header_t
*rhead
,
3404 __be32
*up
= (__be32
*)dp
;
3408 /* divide length by 4 to get # words */
3409 for (i
=0; i
< be32_to_cpu(rhead
->h_len
) >> 2; i
++) {
3410 chksum
^= be32_to_cpu(*up
);
3413 if (chksum
!= be32_to_cpu(rhead
->h_chksum
)) {
3414 if (rhead
->h_chksum
||
3415 ((log
->l_flags
& XLOG_CHKSUM_MISMATCH
) == 0)) {
3417 "XFS: LogR chksum mismatch: was (0x%x) is (0x%x)\n",
3418 be32_to_cpu(rhead
->h_chksum
), chksum
);
3420 "XFS: Disregard message if filesystem was created with non-DEBUG kernel");
3421 if (xfs_sb_version_haslogv2(&log
->l_mp
->m_sb
)) {
3423 "XFS: LogR this is a LogV2 filesystem\n");
3425 log
->l_flags
|= XLOG_CHKSUM_MISMATCH
;
3430 #define xlog_unpack_data_checksum(rhead, dp, log)
3435 xlog_rec_header_t
*rhead
,
3440 xlog_in_core_2_t
*xhdr
;
3442 for (i
= 0; i
< BTOBB(be32_to_cpu(rhead
->h_len
)) &&
3443 i
< (XLOG_HEADER_CYCLE_SIZE
/ BBSIZE
); i
++) {
3444 *(__be32
*)dp
= *(__be32
*)&rhead
->h_cycle_data
[i
];
3448 if (xfs_sb_version_haslogv2(&log
->l_mp
->m_sb
)) {
3449 xhdr
= (xlog_in_core_2_t
*)rhead
;
3450 for ( ; i
< BTOBB(be32_to_cpu(rhead
->h_len
)); i
++) {
3451 j
= i
/ (XLOG_HEADER_CYCLE_SIZE
/ BBSIZE
);
3452 k
= i
% (XLOG_HEADER_CYCLE_SIZE
/ BBSIZE
);
3453 *(__be32
*)dp
= xhdr
[j
].hic_xheader
.xh_cycle_data
[k
];
3458 xlog_unpack_data_checksum(rhead
, dp
, log
);
3462 xlog_valid_rec_header(
3464 xlog_rec_header_t
*rhead
,
3469 if (unlikely(be32_to_cpu(rhead
->h_magicno
) != XLOG_HEADER_MAGIC_NUM
)) {
3470 XFS_ERROR_REPORT("xlog_valid_rec_header(1)",
3471 XFS_ERRLEVEL_LOW
, log
->l_mp
);
3472 return XFS_ERROR(EFSCORRUPTED
);
3475 (!rhead
->h_version
||
3476 (be32_to_cpu(rhead
->h_version
) & (~XLOG_VERSION_OKBITS
))))) {
3477 xlog_warn("XFS: %s: unrecognised log version (%d).",
3478 __func__
, be32_to_cpu(rhead
->h_version
));
3479 return XFS_ERROR(EIO
);
3482 /* LR body must have data or it wouldn't have been written */
3483 hlen
= be32_to_cpu(rhead
->h_len
);
3484 if (unlikely( hlen
<= 0 || hlen
> INT_MAX
)) {
3485 XFS_ERROR_REPORT("xlog_valid_rec_header(2)",
3486 XFS_ERRLEVEL_LOW
, log
->l_mp
);
3487 return XFS_ERROR(EFSCORRUPTED
);
3489 if (unlikely( blkno
> log
->l_logBBsize
|| blkno
> INT_MAX
)) {
3490 XFS_ERROR_REPORT("xlog_valid_rec_header(3)",
3491 XFS_ERRLEVEL_LOW
, log
->l_mp
);
3492 return XFS_ERROR(EFSCORRUPTED
);
3498 * Read the log from tail to head and process the log records found.
3499 * Handle the two cases where the tail and head are in the same cycle
3500 * and where the active portion of the log wraps around the end of
3501 * the physical log separately. The pass parameter is passed through
3502 * to the routines called to process the data and is not looked at
3506 xlog_do_recovery_pass(
3508 xfs_daddr_t head_blk
,
3509 xfs_daddr_t tail_blk
,
3512 xlog_rec_header_t
*rhead
;
3514 xfs_caddr_t bufaddr
, offset
;
3515 xfs_buf_t
*hbp
, *dbp
;
3516 int error
= 0, h_size
;
3517 int bblks
, split_bblks
;
3518 int hblks
, split_hblks
, wrapped_hblks
;
3519 xlog_recover_t
*rhash
[XLOG_RHASH_SIZE
];
3521 ASSERT(head_blk
!= tail_blk
);
3524 * Read the header of the tail block and get the iclog buffer size from
3525 * h_size. Use this to tell how many sectors make up the log header.
3527 if (xfs_sb_version_haslogv2(&log
->l_mp
->m_sb
)) {
3529 * When using variable length iclogs, read first sector of
3530 * iclog header and extract the header size from it. Get a
3531 * new hbp that is the correct size.
3533 hbp
= xlog_get_bp(log
, 1);
3536 if ((error
= xlog_bread(log
, tail_blk
, 1, hbp
)))
3538 offset
= xlog_align(log
, tail_blk
, 1, hbp
);
3539 rhead
= (xlog_rec_header_t
*)offset
;
3540 error
= xlog_valid_rec_header(log
, rhead
, tail_blk
);
3543 h_size
= be32_to_cpu(rhead
->h_size
);
3544 if ((be32_to_cpu(rhead
->h_version
) & XLOG_VERSION_2
) &&
3545 (h_size
> XLOG_HEADER_CYCLE_SIZE
)) {
3546 hblks
= h_size
/ XLOG_HEADER_CYCLE_SIZE
;
3547 if (h_size
% XLOG_HEADER_CYCLE_SIZE
)
3550 hbp
= xlog_get_bp(log
, hblks
);
3555 ASSERT(log
->l_sectbb_log
== 0);
3557 hbp
= xlog_get_bp(log
, 1);
3558 h_size
= XLOG_BIG_RECORD_BSIZE
;
3563 dbp
= xlog_get_bp(log
, BTOBB(h_size
));
3569 memset(rhash
, 0, sizeof(rhash
));
3570 if (tail_blk
<= head_blk
) {
3571 for (blk_no
= tail_blk
; blk_no
< head_blk
; ) {
3572 if ((error
= xlog_bread(log
, blk_no
, hblks
, hbp
)))
3574 offset
= xlog_align(log
, blk_no
, hblks
, hbp
);
3575 rhead
= (xlog_rec_header_t
*)offset
;
3576 error
= xlog_valid_rec_header(log
, rhead
, blk_no
);
3580 /* blocks in data section */
3581 bblks
= (int)BTOBB(be32_to_cpu(rhead
->h_len
));
3582 error
= xlog_bread(log
, blk_no
+ hblks
, bblks
, dbp
);
3585 offset
= xlog_align(log
, blk_no
+ hblks
, bblks
, dbp
);
3586 xlog_unpack_data(rhead
, offset
, log
);
3587 if ((error
= xlog_recover_process_data(log
,
3588 rhash
, rhead
, offset
, pass
)))
3590 blk_no
+= bblks
+ hblks
;
3594 * Perform recovery around the end of the physical log.
3595 * When the head is not on the same cycle number as the tail,
3596 * we can't do a sequential recovery as above.
3599 while (blk_no
< log
->l_logBBsize
) {
3601 * Check for header wrapping around physical end-of-log
3606 if (blk_no
+ hblks
<= log
->l_logBBsize
) {
3607 /* Read header in one read */
3608 error
= xlog_bread(log
, blk_no
, hblks
, hbp
);
3611 offset
= xlog_align(log
, blk_no
, hblks
, hbp
);
3613 /* This LR is split across physical log end */
3614 if (blk_no
!= log
->l_logBBsize
) {
3615 /* some data before physical log end */
3616 ASSERT(blk_no
<= INT_MAX
);
3617 split_hblks
= log
->l_logBBsize
- (int)blk_no
;
3618 ASSERT(split_hblks
> 0);
3619 if ((error
= xlog_bread(log
, blk_no
,
3622 offset
= xlog_align(log
, blk_no
,
3626 * Note: this black magic still works with
3627 * large sector sizes (non-512) only because:
3628 * - we increased the buffer size originally
3629 * by 1 sector giving us enough extra space
3630 * for the second read;
3631 * - the log start is guaranteed to be sector
3633 * - we read the log end (LR header start)
3634 * _first_, then the log start (LR header end)
3635 * - order is important.
3637 wrapped_hblks
= hblks
- split_hblks
;
3638 bufaddr
= XFS_BUF_PTR(hbp
);
3639 error
= XFS_BUF_SET_PTR(hbp
,
3640 bufaddr
+ BBTOB(split_hblks
),
3641 BBTOB(hblks
- split_hblks
));
3643 error
= xlog_bread(log
, 0,
3644 wrapped_hblks
, hbp
);
3646 error
= XFS_BUF_SET_PTR(hbp
, bufaddr
,
3651 offset
= xlog_align(log
, 0,
3652 wrapped_hblks
, hbp
);
3654 rhead
= (xlog_rec_header_t
*)offset
;
3655 error
= xlog_valid_rec_header(log
, rhead
,
3656 split_hblks
? blk_no
: 0);
3660 bblks
= (int)BTOBB(be32_to_cpu(rhead
->h_len
));
3663 /* Read in data for log record */
3664 if (blk_no
+ bblks
<= log
->l_logBBsize
) {
3665 error
= xlog_bread(log
, blk_no
, bblks
, dbp
);
3668 offset
= xlog_align(log
, blk_no
, bblks
, dbp
);
3670 /* This log record is split across the
3671 * physical end of log */
3674 if (blk_no
!= log
->l_logBBsize
) {
3675 /* some data is before the physical
3677 ASSERT(!wrapped_hblks
);
3678 ASSERT(blk_no
<= INT_MAX
);
3680 log
->l_logBBsize
- (int)blk_no
;
3681 ASSERT(split_bblks
> 0);
3682 if ((error
= xlog_bread(log
, blk_no
,
3685 offset
= xlog_align(log
, blk_no
,
3689 * Note: this black magic still works with
3690 * large sector sizes (non-512) only because:
3691 * - we increased the buffer size originally
3692 * by 1 sector giving us enough extra space
3693 * for the second read;
3694 * - the log start is guaranteed to be sector
3696 * - we read the log end (LR header start)
3697 * _first_, then the log start (LR header end)
3698 * - order is important.
3700 bufaddr
= XFS_BUF_PTR(dbp
);
3701 error
= XFS_BUF_SET_PTR(dbp
,
3702 bufaddr
+ BBTOB(split_bblks
),
3703 BBTOB(bblks
- split_bblks
));
3705 error
= xlog_bread(log
, wrapped_hblks
,
3706 bblks
- split_bblks
,
3709 error
= XFS_BUF_SET_PTR(dbp
, bufaddr
,
3714 offset
= xlog_align(log
, wrapped_hblks
,
3715 bblks
- split_bblks
, dbp
);
3717 xlog_unpack_data(rhead
, offset
, log
);
3718 if ((error
= xlog_recover_process_data(log
, rhash
,
3719 rhead
, offset
, pass
)))
3724 ASSERT(blk_no
>= log
->l_logBBsize
);
3725 blk_no
-= log
->l_logBBsize
;
3727 /* read first part of physical log */
3728 while (blk_no
< head_blk
) {
3729 if ((error
= xlog_bread(log
, blk_no
, hblks
, hbp
)))
3731 offset
= xlog_align(log
, blk_no
, hblks
, hbp
);
3732 rhead
= (xlog_rec_header_t
*)offset
;
3733 error
= xlog_valid_rec_header(log
, rhead
, blk_no
);
3736 bblks
= (int)BTOBB(be32_to_cpu(rhead
->h_len
));
3737 if ((error
= xlog_bread(log
, blk_no
+hblks
, bblks
, dbp
)))
3739 offset
= xlog_align(log
, blk_no
+hblks
, bblks
, dbp
);
3740 xlog_unpack_data(rhead
, offset
, log
);
3741 if ((error
= xlog_recover_process_data(log
, rhash
,
3742 rhead
, offset
, pass
)))
3744 blk_no
+= bblks
+ hblks
;
3756 * Do the recovery of the log. We actually do this in two phases.
3757 * The two passes are necessary in order to implement the function
3758 * of cancelling a record written into the log. The first pass
3759 * determines those things which have been cancelled, and the
3760 * second pass replays log items normally except for those which
3761 * have been cancelled. The handling of the replay and cancellations
3762 * takes place in the log item type specific routines.
3764 * The table of items which have cancel records in the log is allocated
3765 * and freed at this level, since only here do we know when all of
3766 * the log recovery has been completed.
3769 xlog_do_log_recovery(
3771 xfs_daddr_t head_blk
,
3772 xfs_daddr_t tail_blk
)
3776 ASSERT(head_blk
!= tail_blk
);
3779 * First do a pass to find all of the cancelled buf log items.
3780 * Store them in the buf_cancel_table for use in the second pass.
3782 log
->l_buf_cancel_table
=
3783 (xfs_buf_cancel_t
**)kmem_zalloc(XLOG_BC_TABLE_SIZE
*
3784 sizeof(xfs_buf_cancel_t
*),
3786 error
= xlog_do_recovery_pass(log
, head_blk
, tail_blk
,
3787 XLOG_RECOVER_PASS1
);
3789 kmem_free(log
->l_buf_cancel_table
,
3790 XLOG_BC_TABLE_SIZE
* sizeof(xfs_buf_cancel_t
*));
3791 log
->l_buf_cancel_table
= NULL
;
3795 * Then do a second pass to actually recover the items in the log.
3796 * When it is complete free the table of buf cancel items.
3798 error
= xlog_do_recovery_pass(log
, head_blk
, tail_blk
,
3799 XLOG_RECOVER_PASS2
);
3804 for (i
= 0; i
< XLOG_BC_TABLE_SIZE
; i
++)
3805 ASSERT(log
->l_buf_cancel_table
[i
] == NULL
);
3809 kmem_free(log
->l_buf_cancel_table
,
3810 XLOG_BC_TABLE_SIZE
* sizeof(xfs_buf_cancel_t
*));
3811 log
->l_buf_cancel_table
= NULL
;
3817 * Do the actual recovery
3822 xfs_daddr_t head_blk
,
3823 xfs_daddr_t tail_blk
)
3830 * First replay the images in the log.
3832 error
= xlog_do_log_recovery(log
, head_blk
, tail_blk
);
3837 XFS_bflush(log
->l_mp
->m_ddev_targp
);
3840 * If IO errors happened during recovery, bail out.
3842 if (XFS_FORCED_SHUTDOWN(log
->l_mp
)) {
3847 * We now update the tail_lsn since much of the recovery has completed
3848 * and there may be space available to use. If there were no extent
3849 * or iunlinks, we can free up the entire log and set the tail_lsn to
3850 * be the last_sync_lsn. This was set in xlog_find_tail to be the
3851 * lsn of the last known good LR on disk. If there are extent frees
3852 * or iunlinks they will have some entries in the AIL; so we look at
3853 * the AIL to determine how to set the tail_lsn.
3855 xlog_assign_tail_lsn(log
->l_mp
);
3858 * Now that we've finished replaying all buffer and inode
3859 * updates, re-read in the superblock.
3861 bp
= xfs_getsb(log
->l_mp
, 0);
3863 ASSERT(!(XFS_BUF_ISWRITE(bp
)));
3864 ASSERT(!(XFS_BUF_ISDELAYWRITE(bp
)));
3866 XFS_BUF_UNASYNC(bp
);
3867 xfsbdstrat(log
->l_mp
, bp
);
3868 error
= xfs_iowait(bp
);
3870 xfs_ioerror_alert("xlog_do_recover",
3871 log
->l_mp
, bp
, XFS_BUF_ADDR(bp
));
3877 /* Convert superblock from on-disk format */
3878 sbp
= &log
->l_mp
->m_sb
;
3879 xfs_sb_from_disk(sbp
, XFS_BUF_TO_SBP(bp
));
3880 ASSERT(sbp
->sb_magicnum
== XFS_SB_MAGIC
);
3881 ASSERT(xfs_sb_good_version(sbp
));
3884 /* We've re-read the superblock so re-initialize per-cpu counters */
3885 xfs_icsb_reinit_counters(log
->l_mp
);
3887 xlog_recover_check_summary(log
);
3889 /* Normal transactions can now occur */
3890 log
->l_flags
&= ~XLOG_ACTIVE_RECOVERY
;
3895 * Perform recovery and re-initialize some log variables in xlog_find_tail.
3897 * Return error or zero.
3903 xfs_daddr_t head_blk
, tail_blk
;
3906 /* find the tail of the log */
3907 if ((error
= xlog_find_tail(log
, &head_blk
, &tail_blk
)))
3910 if (tail_blk
!= head_blk
) {
3911 /* There used to be a comment here:
3913 * disallow recovery on read-only mounts. note -- mount
3914 * checks for ENOSPC and turns it into an intelligent
3916 * ...but this is no longer true. Now, unless you specify
3917 * NORECOVERY (in which case this function would never be
3918 * called), we just go ahead and recover. We do this all
3919 * under the vfs layer, so we can get away with it unless
3920 * the device itself is read-only, in which case we fail.
3922 if ((error
= xfs_dev_is_read_only(log
->l_mp
, "recovery"))) {
3927 "Starting XFS recovery on filesystem: %s (logdev: %s)",
3928 log
->l_mp
->m_fsname
, log
->l_mp
->m_logname
?
3929 log
->l_mp
->m_logname
: "internal");
3931 error
= xlog_do_recover(log
, head_blk
, tail_blk
);
3932 log
->l_flags
|= XLOG_RECOVERY_NEEDED
;
3938 * In the first part of recovery we replay inodes and buffers and build
3939 * up the list of extent free items which need to be processed. Here
3940 * we process the extent free items and clean up the on disk unlinked
3941 * inode lists. This is separated from the first part of recovery so
3942 * that the root and real-time bitmap inodes can be read in from disk in
3943 * between the two stages. This is necessary so that we can free space
3944 * in the real-time portion of the file system.
3947 xlog_recover_finish(
3952 * Now we're ready to do the transactions needed for the
3953 * rest of recovery. Start with completing all the extent
3954 * free intent records and then process the unlinked inode
3955 * lists. At this point, we essentially run in normal mode
3956 * except that we're still performing recovery actions
3957 * rather than accepting new requests.
3959 if (log
->l_flags
& XLOG_RECOVERY_NEEDED
) {
3961 error
= xlog_recover_process_efis(log
);
3964 "Failed to recover EFIs on filesystem: %s",
3965 log
->l_mp
->m_fsname
);
3969 * Sync the log to get all the EFIs out of the AIL.
3970 * This isn't absolutely necessary, but it helps in
3971 * case the unlink transactions would have problems
3972 * pushing the EFIs out of the way.
3974 xfs_log_force(log
->l_mp
, (xfs_lsn_t
)0,
3975 (XFS_LOG_FORCE
| XFS_LOG_SYNC
));
3977 if ( (mfsi_flags
& XFS_MFSI_NOUNLINK
) == 0 ) {
3978 xlog_recover_process_iunlinks(log
);
3981 xlog_recover_check_summary(log
);
3984 "Ending XFS recovery on filesystem: %s (logdev: %s)",
3985 log
->l_mp
->m_fsname
, log
->l_mp
->m_logname
?
3986 log
->l_mp
->m_logname
: "internal");
3987 log
->l_flags
&= ~XLOG_RECOVERY_NEEDED
;
3990 "!Ending clean XFS mount for filesystem: %s\n",
3991 log
->l_mp
->m_fsname
);
3999 * Read all of the agf and agi counters and check that they
4000 * are consistent with the superblock counters.
4003 xlog_recover_check_summary(
4011 xfs_daddr_t agfdaddr
;
4012 xfs_daddr_t agidaddr
;
4014 #ifdef XFS_LOUD_RECOVERY
4017 xfs_agnumber_t agno
;
4018 __uint64_t freeblks
;
4027 for (agno
= 0; agno
< mp
->m_sb
.sb_agcount
; agno
++) {
4028 agfdaddr
= XFS_AG_DADDR(mp
, agno
, XFS_AGF_DADDR(mp
));
4029 agfbp
= xfs_buf_read(mp
->m_ddev_targp
, agfdaddr
,
4030 XFS_FSS_TO_BB(mp
, 1), 0);
4031 if (XFS_BUF_ISERROR(agfbp
)) {
4032 xfs_ioerror_alert("xlog_recover_check_summary(agf)",
4033 mp
, agfbp
, agfdaddr
);
4035 agfp
= XFS_BUF_TO_AGF(agfbp
);
4036 ASSERT(XFS_AGF_MAGIC
== be32_to_cpu(agfp
->agf_magicnum
));
4037 ASSERT(XFS_AGF_GOOD_VERSION(be32_to_cpu(agfp
->agf_versionnum
)));
4038 ASSERT(be32_to_cpu(agfp
->agf_seqno
) == agno
);
4040 freeblks
+= be32_to_cpu(agfp
->agf_freeblks
) +
4041 be32_to_cpu(agfp
->agf_flcount
);
4042 xfs_buf_relse(agfbp
);
4044 agidaddr
= XFS_AG_DADDR(mp
, agno
, XFS_AGI_DADDR(mp
));
4045 agibp
= xfs_buf_read(mp
->m_ddev_targp
, agidaddr
,
4046 XFS_FSS_TO_BB(mp
, 1), 0);
4047 if (XFS_BUF_ISERROR(agibp
)) {
4048 xfs_ioerror_alert("xlog_recover_check_summary(agi)",
4049 mp
, agibp
, agidaddr
);
4051 agip
= XFS_BUF_TO_AGI(agibp
);
4052 ASSERT(XFS_AGI_MAGIC
== be32_to_cpu(agip
->agi_magicnum
));
4053 ASSERT(XFS_AGI_GOOD_VERSION(be32_to_cpu(agip
->agi_versionnum
)));
4054 ASSERT(be32_to_cpu(agip
->agi_seqno
) == agno
);
4056 itotal
+= be32_to_cpu(agip
->agi_count
);
4057 ifree
+= be32_to_cpu(agip
->agi_freecount
);
4058 xfs_buf_relse(agibp
);
4061 sbbp
= xfs_getsb(mp
, 0);
4062 #ifdef XFS_LOUD_RECOVERY
4064 xfs_sb_from_disk(sbp
, XFS_BUF_TO_SBP(sbbp
));
4066 "xlog_recover_check_summary: sb_icount %Lu itotal %Lu",
4067 sbp
->sb_icount
, itotal
);
4069 "xlog_recover_check_summary: sb_ifree %Lu itotal %Lu",
4070 sbp
->sb_ifree
, ifree
);
4072 "xlog_recover_check_summary: sb_fdblocks %Lu freeblks %Lu",
4073 sbp
->sb_fdblocks
, freeblks
);
4076 * This is turned off until I account for the allocation
4077 * btree blocks which live in free space.
4079 ASSERT(sbp
->sb_icount
== itotal
);
4080 ASSERT(sbp
->sb_ifree
== ifree
);
4081 ASSERT(sbp
->sb_fdblocks
== freeblks
);
4084 xfs_buf_relse(sbbp
);