2 * Copyright (c) 2000-2001,2005 Silicon Graphics, Inc.
5 * This program is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU General Public License as
7 * published by the Free Software Foundation.
9 * This program is distributed in the hope that it would be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write the Free Software Foundation,
16 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
20 #include "xfs_types.h"
23 #include "xfs_trans.h"
24 #include "xfs_buf_item.h"
27 #include "xfs_dmapi.h"
28 #include "xfs_mount.h"
29 #include "xfs_trans_priv.h"
30 #include "xfs_extfree_item.h"
33 kmem_zone_t
*xfs_efi_zone
;
34 kmem_zone_t
*xfs_efd_zone
;
36 STATIC
void xfs_efi_item_unlock(xfs_efi_log_item_t
*);
39 xfs_efi_item_free(xfs_efi_log_item_t
*efip
)
41 int nexts
= efip
->efi_format
.efi_nextents
;
43 if (nexts
> XFS_EFI_MAX_FAST_EXTENTS
) {
44 kmem_free(efip
, sizeof(xfs_efi_log_item_t
) +
45 (nexts
- 1) * sizeof(xfs_extent_t
));
47 kmem_zone_free(xfs_efi_zone
, efip
);
52 * This returns the number of iovecs needed to log the given efi item.
53 * We only need 1 iovec for an efi item. It just logs the efi_log_format
58 xfs_efi_item_size(xfs_efi_log_item_t
*efip
)
64 * This is called to fill in the vector of log iovecs for the
65 * given efi log item. We use only 1 iovec, and we point that
66 * at the efi_log_format structure embedded in the efi item.
67 * It is at this point that we assert that all of the extent
68 * slots in the efi item have been filled.
71 xfs_efi_item_format(xfs_efi_log_item_t
*efip
,
72 xfs_log_iovec_t
*log_vector
)
76 ASSERT(efip
->efi_next_extent
== efip
->efi_format
.efi_nextents
);
78 efip
->efi_format
.efi_type
= XFS_LI_EFI
;
80 size
= sizeof(xfs_efi_log_format_t
);
81 size
+= (efip
->efi_format
.efi_nextents
- 1) * sizeof(xfs_extent_t
);
82 efip
->efi_format
.efi_size
= 1;
84 log_vector
->i_addr
= (xfs_caddr_t
)&(efip
->efi_format
);
85 log_vector
->i_len
= size
;
86 XLOG_VEC_SET_TYPE(log_vector
, XLOG_REG_TYPE_EFI_FORMAT
);
87 ASSERT(size
>= sizeof(xfs_efi_log_format_t
));
92 * Pinning has no meaning for an efi item, so just return.
96 xfs_efi_item_pin(xfs_efi_log_item_t
*efip
)
103 * While EFIs cannot really be pinned, the unpin operation is the
104 * last place at which the EFI is manipulated during a transaction.
105 * Here we coordinate with xfs_efi_cancel() to determine who gets to
110 xfs_efi_item_unpin(xfs_efi_log_item_t
*efip
, int stale
)
114 mp
= efip
->efi_item
.li_mountp
;
115 spin_lock(&mp
->m_ail_lock
);
116 if (efip
->efi_flags
& XFS_EFI_CANCELED
) {
118 * xfs_trans_delete_ail() drops the AIL lock.
120 xfs_trans_delete_ail(mp
, (xfs_log_item_t
*)efip
);
121 xfs_efi_item_free(efip
);
123 efip
->efi_flags
|= XFS_EFI_COMMITTED
;
124 spin_unlock(&mp
->m_ail_lock
);
129 * like unpin only we have to also clear the xaction descriptor
130 * pointing the log item if we free the item. This routine duplicates
131 * unpin because efi_flags is protected by the AIL lock. Freeing
132 * the descriptor and then calling unpin would force us to drop the AIL
133 * lock which would open up a race condition.
136 xfs_efi_item_unpin_remove(xfs_efi_log_item_t
*efip
, xfs_trans_t
*tp
)
139 xfs_log_item_desc_t
*lidp
;
141 mp
= efip
->efi_item
.li_mountp
;
142 spin_lock(&mp
->m_ail_lock
);
143 if (efip
->efi_flags
& XFS_EFI_CANCELED
) {
145 * free the xaction descriptor pointing to this item
147 lidp
= xfs_trans_find_item(tp
, (xfs_log_item_t
*) efip
);
148 xfs_trans_free_item(tp
, lidp
);
150 * pull the item off the AIL.
151 * xfs_trans_delete_ail() drops the AIL lock.
153 xfs_trans_delete_ail(mp
, (xfs_log_item_t
*)efip
);
154 xfs_efi_item_free(efip
);
156 efip
->efi_flags
|= XFS_EFI_COMMITTED
;
157 spin_unlock(&mp
->m_ail_lock
);
162 * Efi items have no locking or pushing. However, since EFIs are
163 * pulled from the AIL when their corresponding EFDs are committed
164 * to disk, their situation is very similar to being pinned. Return
165 * XFS_ITEM_PINNED so that the caller will eventually flush the log.
166 * This should help in getting the EFI out of the AIL.
170 xfs_efi_item_trylock(xfs_efi_log_item_t
*efip
)
172 return XFS_ITEM_PINNED
;
176 * Efi items have no locking, so just return.
180 xfs_efi_item_unlock(xfs_efi_log_item_t
*efip
)
182 if (efip
->efi_item
.li_flags
& XFS_LI_ABORTED
)
183 xfs_efi_item_free(efip
);
188 * The EFI is logged only once and cannot be moved in the log, so
189 * simply return the lsn at which it's been logged. The canceled
190 * flag is not paid any attention here. Checking for that is delayed
191 * until the EFI is unpinned.
195 xfs_efi_item_committed(xfs_efi_log_item_t
*efip
, xfs_lsn_t lsn
)
201 * There isn't much you can do to push on an efi item. It is simply
202 * stuck waiting for all of its corresponding efd items to be
207 xfs_efi_item_push(xfs_efi_log_item_t
*efip
)
213 * The EFI dependency tracking op doesn't do squat. It can't because
214 * it doesn't know where the free extent is coming from. The dependency
215 * tracking has to be handled by the "enclosing" metadata object. For
216 * example, for inodes, the inode is locked throughout the extent freeing
217 * so the dependency should be recorded there.
221 xfs_efi_item_committing(xfs_efi_log_item_t
*efip
, xfs_lsn_t lsn
)
227 * This is the ops vector shared by all efi log items.
229 static struct xfs_item_ops xfs_efi_item_ops
= {
230 .iop_size
= (uint(*)(xfs_log_item_t
*))xfs_efi_item_size
,
231 .iop_format
= (void(*)(xfs_log_item_t
*, xfs_log_iovec_t
*))
233 .iop_pin
= (void(*)(xfs_log_item_t
*))xfs_efi_item_pin
,
234 .iop_unpin
= (void(*)(xfs_log_item_t
*, int))xfs_efi_item_unpin
,
235 .iop_unpin_remove
= (void(*)(xfs_log_item_t
*, xfs_trans_t
*))
236 xfs_efi_item_unpin_remove
,
237 .iop_trylock
= (uint(*)(xfs_log_item_t
*))xfs_efi_item_trylock
,
238 .iop_unlock
= (void(*)(xfs_log_item_t
*))xfs_efi_item_unlock
,
239 .iop_committed
= (xfs_lsn_t(*)(xfs_log_item_t
*, xfs_lsn_t
))
240 xfs_efi_item_committed
,
241 .iop_push
= (void(*)(xfs_log_item_t
*))xfs_efi_item_push
,
243 .iop_committing
= (void(*)(xfs_log_item_t
*, xfs_lsn_t
))
244 xfs_efi_item_committing
249 * Allocate and initialize an efi item with the given number of extents.
252 xfs_efi_init(xfs_mount_t
*mp
,
256 xfs_efi_log_item_t
*efip
;
259 ASSERT(nextents
> 0);
260 if (nextents
> XFS_EFI_MAX_FAST_EXTENTS
) {
261 size
= (uint
)(sizeof(xfs_efi_log_item_t
) +
262 ((nextents
- 1) * sizeof(xfs_extent_t
)));
263 efip
= (xfs_efi_log_item_t
*)kmem_zalloc(size
, KM_SLEEP
);
265 efip
= (xfs_efi_log_item_t
*)kmem_zone_zalloc(xfs_efi_zone
,
269 efip
->efi_item
.li_type
= XFS_LI_EFI
;
270 efip
->efi_item
.li_ops
= &xfs_efi_item_ops
;
271 efip
->efi_item
.li_mountp
= mp
;
272 efip
->efi_format
.efi_nextents
= nextents
;
273 efip
->efi_format
.efi_id
= (__psint_t
)(void*)efip
;
279 * Copy an EFI format buffer from the given buf, and into the destination
280 * EFI format structure.
281 * The given buffer can be in 32 bit or 64 bit form (which has different padding),
282 * one of which will be the native format for this kernel.
283 * It will handle the conversion of formats if necessary.
286 xfs_efi_copy_format(xfs_log_iovec_t
*buf
, xfs_efi_log_format_t
*dst_efi_fmt
)
288 xfs_efi_log_format_t
*src_efi_fmt
= (xfs_efi_log_format_t
*)buf
->i_addr
;
290 uint len
= sizeof(xfs_efi_log_format_t
) +
291 (src_efi_fmt
->efi_nextents
- 1) * sizeof(xfs_extent_t
);
292 uint len32
= sizeof(xfs_efi_log_format_32_t
) +
293 (src_efi_fmt
->efi_nextents
- 1) * sizeof(xfs_extent_32_t
);
294 uint len64
= sizeof(xfs_efi_log_format_64_t
) +
295 (src_efi_fmt
->efi_nextents
- 1) * sizeof(xfs_extent_64_t
);
297 if (buf
->i_len
== len
) {
298 memcpy((char *)dst_efi_fmt
, (char*)src_efi_fmt
, len
);
300 } else if (buf
->i_len
== len32
) {
301 xfs_efi_log_format_32_t
*src_efi_fmt_32
=
302 (xfs_efi_log_format_32_t
*)buf
->i_addr
;
304 dst_efi_fmt
->efi_type
= src_efi_fmt_32
->efi_type
;
305 dst_efi_fmt
->efi_size
= src_efi_fmt_32
->efi_size
;
306 dst_efi_fmt
->efi_nextents
= src_efi_fmt_32
->efi_nextents
;
307 dst_efi_fmt
->efi_id
= src_efi_fmt_32
->efi_id
;
308 for (i
= 0; i
< dst_efi_fmt
->efi_nextents
; i
++) {
309 dst_efi_fmt
->efi_extents
[i
].ext_start
=
310 src_efi_fmt_32
->efi_extents
[i
].ext_start
;
311 dst_efi_fmt
->efi_extents
[i
].ext_len
=
312 src_efi_fmt_32
->efi_extents
[i
].ext_len
;
315 } else if (buf
->i_len
== len64
) {
316 xfs_efi_log_format_64_t
*src_efi_fmt_64
=
317 (xfs_efi_log_format_64_t
*)buf
->i_addr
;
319 dst_efi_fmt
->efi_type
= src_efi_fmt_64
->efi_type
;
320 dst_efi_fmt
->efi_size
= src_efi_fmt_64
->efi_size
;
321 dst_efi_fmt
->efi_nextents
= src_efi_fmt_64
->efi_nextents
;
322 dst_efi_fmt
->efi_id
= src_efi_fmt_64
->efi_id
;
323 for (i
= 0; i
< dst_efi_fmt
->efi_nextents
; i
++) {
324 dst_efi_fmt
->efi_extents
[i
].ext_start
=
325 src_efi_fmt_64
->efi_extents
[i
].ext_start
;
326 dst_efi_fmt
->efi_extents
[i
].ext_len
=
327 src_efi_fmt_64
->efi_extents
[i
].ext_len
;
335 * This is called by the efd item code below to release references to
336 * the given efi item. Each efd calls this with the number of
337 * extents that it has logged, and when the sum of these reaches
338 * the total number of extents logged by this efi item we can free
341 * Freeing the efi item requires that we remove it from the AIL.
342 * We'll use the AIL lock to protect our counters as well as
343 * the removal from the AIL.
346 xfs_efi_release(xfs_efi_log_item_t
*efip
,
352 mp
= efip
->efi_item
.li_mountp
;
353 ASSERT(efip
->efi_next_extent
> 0);
354 ASSERT(efip
->efi_flags
& XFS_EFI_COMMITTED
);
356 spin_lock(&mp
->m_ail_lock
);
357 ASSERT(efip
->efi_next_extent
>= nextents
);
358 efip
->efi_next_extent
-= nextents
;
359 extents_left
= efip
->efi_next_extent
;
360 if (extents_left
== 0) {
362 * xfs_trans_delete_ail() drops the AIL lock.
364 xfs_trans_delete_ail(mp
, (xfs_log_item_t
*)efip
);
365 xfs_efi_item_free(efip
);
367 spin_unlock(&mp
->m_ail_lock
);
372 xfs_efd_item_free(xfs_efd_log_item_t
*efdp
)
374 int nexts
= efdp
->efd_format
.efd_nextents
;
376 if (nexts
> XFS_EFD_MAX_FAST_EXTENTS
) {
377 kmem_free(efdp
, sizeof(xfs_efd_log_item_t
) +
378 (nexts
- 1) * sizeof(xfs_extent_t
));
380 kmem_zone_free(xfs_efd_zone
, efdp
);
385 * This returns the number of iovecs needed to log the given efd item.
386 * We only need 1 iovec for an efd item. It just logs the efd_log_format
391 xfs_efd_item_size(xfs_efd_log_item_t
*efdp
)
397 * This is called to fill in the vector of log iovecs for the
398 * given efd log item. We use only 1 iovec, and we point that
399 * at the efd_log_format structure embedded in the efd item.
400 * It is at this point that we assert that all of the extent
401 * slots in the efd item have been filled.
404 xfs_efd_item_format(xfs_efd_log_item_t
*efdp
,
405 xfs_log_iovec_t
*log_vector
)
409 ASSERT(efdp
->efd_next_extent
== efdp
->efd_format
.efd_nextents
);
411 efdp
->efd_format
.efd_type
= XFS_LI_EFD
;
413 size
= sizeof(xfs_efd_log_format_t
);
414 size
+= (efdp
->efd_format
.efd_nextents
- 1) * sizeof(xfs_extent_t
);
415 efdp
->efd_format
.efd_size
= 1;
417 log_vector
->i_addr
= (xfs_caddr_t
)&(efdp
->efd_format
);
418 log_vector
->i_len
= size
;
419 XLOG_VEC_SET_TYPE(log_vector
, XLOG_REG_TYPE_EFD_FORMAT
);
420 ASSERT(size
>= sizeof(xfs_efd_log_format_t
));
425 * Pinning has no meaning for an efd item, so just return.
429 xfs_efd_item_pin(xfs_efd_log_item_t
*efdp
)
436 * Since pinning has no meaning for an efd item, unpinning does
441 xfs_efd_item_unpin(xfs_efd_log_item_t
*efdp
, int stale
)
448 xfs_efd_item_unpin_remove(xfs_efd_log_item_t
*efdp
, xfs_trans_t
*tp
)
454 * Efd items have no locking, so just return success.
458 xfs_efd_item_trylock(xfs_efd_log_item_t
*efdp
)
460 return XFS_ITEM_LOCKED
;
464 * Efd items have no locking or pushing, so return failure
465 * so that the caller doesn't bother with us.
469 xfs_efd_item_unlock(xfs_efd_log_item_t
*efdp
)
471 if (efdp
->efd_item
.li_flags
& XFS_LI_ABORTED
)
472 xfs_efd_item_free(efdp
);
477 * When the efd item is committed to disk, all we need to do
478 * is delete our reference to our partner efi item and then
479 * free ourselves. Since we're freeing ourselves we must
480 * return -1 to keep the transaction code from further referencing
485 xfs_efd_item_committed(xfs_efd_log_item_t
*efdp
, xfs_lsn_t lsn
)
488 * If we got a log I/O error, it's always the case that the LR with the
489 * EFI got unpinned and freed before the EFD got aborted.
491 if ((efdp
->efd_item
.li_flags
& XFS_LI_ABORTED
) == 0)
492 xfs_efi_release(efdp
->efd_efip
, efdp
->efd_format
.efd_nextents
);
494 xfs_efd_item_free(efdp
);
495 return (xfs_lsn_t
)-1;
499 * There isn't much you can do to push on an efd item. It is simply
500 * stuck waiting for the log to be flushed to disk.
504 xfs_efd_item_push(xfs_efd_log_item_t
*efdp
)
510 * The EFD dependency tracking op doesn't do squat. It can't because
511 * it doesn't know where the free extent is coming from. The dependency
512 * tracking has to be handled by the "enclosing" metadata object. For
513 * example, for inodes, the inode is locked throughout the extent freeing
514 * so the dependency should be recorded there.
518 xfs_efd_item_committing(xfs_efd_log_item_t
*efip
, xfs_lsn_t lsn
)
524 * This is the ops vector shared by all efd log items.
526 static struct xfs_item_ops xfs_efd_item_ops
= {
527 .iop_size
= (uint(*)(xfs_log_item_t
*))xfs_efd_item_size
,
528 .iop_format
= (void(*)(xfs_log_item_t
*, xfs_log_iovec_t
*))
530 .iop_pin
= (void(*)(xfs_log_item_t
*))xfs_efd_item_pin
,
531 .iop_unpin
= (void(*)(xfs_log_item_t
*, int))xfs_efd_item_unpin
,
532 .iop_unpin_remove
= (void(*)(xfs_log_item_t
*, xfs_trans_t
*))
533 xfs_efd_item_unpin_remove
,
534 .iop_trylock
= (uint(*)(xfs_log_item_t
*))xfs_efd_item_trylock
,
535 .iop_unlock
= (void(*)(xfs_log_item_t
*))xfs_efd_item_unlock
,
536 .iop_committed
= (xfs_lsn_t(*)(xfs_log_item_t
*, xfs_lsn_t
))
537 xfs_efd_item_committed
,
538 .iop_push
= (void(*)(xfs_log_item_t
*))xfs_efd_item_push
,
540 .iop_committing
= (void(*)(xfs_log_item_t
*, xfs_lsn_t
))
541 xfs_efd_item_committing
546 * Allocate and initialize an efd item with the given number of extents.
549 xfs_efd_init(xfs_mount_t
*mp
,
550 xfs_efi_log_item_t
*efip
,
554 xfs_efd_log_item_t
*efdp
;
557 ASSERT(nextents
> 0);
558 if (nextents
> XFS_EFD_MAX_FAST_EXTENTS
) {
559 size
= (uint
)(sizeof(xfs_efd_log_item_t
) +
560 ((nextents
- 1) * sizeof(xfs_extent_t
)));
561 efdp
= (xfs_efd_log_item_t
*)kmem_zalloc(size
, KM_SLEEP
);
563 efdp
= (xfs_efd_log_item_t
*)kmem_zone_zalloc(xfs_efd_zone
,
567 efdp
->efd_item
.li_type
= XFS_LI_EFD
;
568 efdp
->efd_item
.li_ops
= &xfs_efd_item_ops
;
569 efdp
->efd_item
.li_mountp
= mp
;
570 efdp
->efd_efip
= efip
;
571 efdp
->efd_format
.efd_nextents
= nextents
;
572 efdp
->efd_format
.efd_efi_id
= efip
->efi_format
.efi_id
;