4 * (C) Copyright Al Viro 2000, 2001
5 * Released under GPL v2.
7 * Based on code from fs/super.c, copyright Linus Torvalds and others.
11 #include <linux/config.h>
12 #include <linux/syscalls.h>
13 #include <linux/slab.h>
14 #include <linux/sched.h>
15 #include <linux/smp_lock.h>
16 #include <linux/init.h>
17 #include <linux/quotaops.h>
18 #include <linux/acct.h>
19 #include <linux/module.h>
20 #include <linux/seq_file.h>
21 #include <linux/namespace.h>
22 #include <linux/namei.h>
23 #include <linux/security.h>
24 #include <linux/mount.h>
25 #include <asm/uaccess.h>
26 #include <asm/unistd.h>
29 extern int __init
init_rootfs(void);
32 extern int __init
sysfs_init(void);
34 static inline int sysfs_init(void)
40 /* spinlock for vfsmount related operations, inplace of dcache_lock */
41 __cacheline_aligned_in_smp
DEFINE_SPINLOCK(vfsmount_lock
);
45 static struct list_head
*mount_hashtable
;
46 static int hash_mask __read_mostly
, hash_bits __read_mostly
;
47 static kmem_cache_t
*mnt_cache
;
48 static struct rw_semaphore namespace_sem
;
50 static inline unsigned long hash(struct vfsmount
*mnt
, struct dentry
*dentry
)
52 unsigned long tmp
= ((unsigned long)mnt
/ L1_CACHE_BYTES
);
53 tmp
+= ((unsigned long)dentry
/ L1_CACHE_BYTES
);
54 tmp
= tmp
+ (tmp
>> hash_bits
);
55 return tmp
& hash_mask
;
58 struct vfsmount
*alloc_vfsmnt(const char *name
)
60 struct vfsmount
*mnt
= kmem_cache_alloc(mnt_cache
, GFP_KERNEL
);
62 memset(mnt
, 0, sizeof(struct vfsmount
));
63 atomic_set(&mnt
->mnt_count
, 1);
64 INIT_LIST_HEAD(&mnt
->mnt_hash
);
65 INIT_LIST_HEAD(&mnt
->mnt_child
);
66 INIT_LIST_HEAD(&mnt
->mnt_mounts
);
67 INIT_LIST_HEAD(&mnt
->mnt_list
);
68 INIT_LIST_HEAD(&mnt
->mnt_expire
);
69 INIT_LIST_HEAD(&mnt
->mnt_share
);
70 INIT_LIST_HEAD(&mnt
->mnt_slave_list
);
71 INIT_LIST_HEAD(&mnt
->mnt_slave
);
73 int size
= strlen(name
) + 1;
74 char *newname
= kmalloc(size
, GFP_KERNEL
);
76 memcpy(newname
, name
, size
);
77 mnt
->mnt_devname
= newname
;
84 void free_vfsmnt(struct vfsmount
*mnt
)
86 kfree(mnt
->mnt_devname
);
87 kmem_cache_free(mnt_cache
, mnt
);
91 * find the first or last mount at @dentry on vfsmount @mnt depending on
92 * @dir. If @dir is set return the first mount else return the last mount.
94 struct vfsmount
*__lookup_mnt(struct vfsmount
*mnt
, struct dentry
*dentry
,
97 struct list_head
*head
= mount_hashtable
+ hash(mnt
, dentry
);
98 struct list_head
*tmp
= head
;
99 struct vfsmount
*p
, *found
= NULL
;
102 tmp
= dir
? tmp
->next
: tmp
->prev
;
106 p
= list_entry(tmp
, struct vfsmount
, mnt_hash
);
107 if (p
->mnt_parent
== mnt
&& p
->mnt_mountpoint
== dentry
) {
116 * lookup_mnt increments the ref count before returning
117 * the vfsmount struct.
119 struct vfsmount
*lookup_mnt(struct vfsmount
*mnt
, struct dentry
*dentry
)
121 struct vfsmount
*child_mnt
;
122 spin_lock(&vfsmount_lock
);
123 if ((child_mnt
= __lookup_mnt(mnt
, dentry
, 1)))
125 spin_unlock(&vfsmount_lock
);
129 static inline int check_mnt(struct vfsmount
*mnt
)
131 return mnt
->mnt_namespace
== current
->namespace;
134 static void touch_namespace(struct namespace *ns
)
138 wake_up_interruptible(&ns
->poll
);
142 static void __touch_namespace(struct namespace *ns
)
144 if (ns
&& ns
->event
!= event
) {
146 wake_up_interruptible(&ns
->poll
);
150 static void detach_mnt(struct vfsmount
*mnt
, struct nameidata
*old_nd
)
152 old_nd
->dentry
= mnt
->mnt_mountpoint
;
153 old_nd
->mnt
= mnt
->mnt_parent
;
154 mnt
->mnt_parent
= mnt
;
155 mnt
->mnt_mountpoint
= mnt
->mnt_root
;
156 list_del_init(&mnt
->mnt_child
);
157 list_del_init(&mnt
->mnt_hash
);
158 old_nd
->dentry
->d_mounted
--;
161 void mnt_set_mountpoint(struct vfsmount
*mnt
, struct dentry
*dentry
,
162 struct vfsmount
*child_mnt
)
164 child_mnt
->mnt_parent
= mntget(mnt
);
165 child_mnt
->mnt_mountpoint
= dget(dentry
);
169 static void attach_mnt(struct vfsmount
*mnt
, struct nameidata
*nd
)
171 mnt_set_mountpoint(nd
->mnt
, nd
->dentry
, mnt
);
172 list_add_tail(&mnt
->mnt_hash
, mount_hashtable
+
173 hash(nd
->mnt
, nd
->dentry
));
174 list_add_tail(&mnt
->mnt_child
, &nd
->mnt
->mnt_mounts
);
178 * the caller must hold vfsmount_lock
180 static void commit_tree(struct vfsmount
*mnt
)
182 struct vfsmount
*parent
= mnt
->mnt_parent
;
185 struct namespace *n
= parent
->mnt_namespace
;
187 BUG_ON(parent
== mnt
);
189 list_add_tail(&head
, &mnt
->mnt_list
);
190 list_for_each_entry(m
, &head
, mnt_list
)
191 m
->mnt_namespace
= n
;
192 list_splice(&head
, n
->list
.prev
);
194 list_add_tail(&mnt
->mnt_hash
, mount_hashtable
+
195 hash(parent
, mnt
->mnt_mountpoint
));
196 list_add_tail(&mnt
->mnt_child
, &parent
->mnt_mounts
);
200 static struct vfsmount
*next_mnt(struct vfsmount
*p
, struct vfsmount
*root
)
202 struct list_head
*next
= p
->mnt_mounts
.next
;
203 if (next
== &p
->mnt_mounts
) {
207 next
= p
->mnt_child
.next
;
208 if (next
!= &p
->mnt_parent
->mnt_mounts
)
213 return list_entry(next
, struct vfsmount
, mnt_child
);
216 static struct vfsmount
*skip_mnt_tree(struct vfsmount
*p
)
218 struct list_head
*prev
= p
->mnt_mounts
.prev
;
219 while (prev
!= &p
->mnt_mounts
) {
220 p
= list_entry(prev
, struct vfsmount
, mnt_child
);
221 prev
= p
->mnt_mounts
.prev
;
226 static struct vfsmount
*clone_mnt(struct vfsmount
*old
, struct dentry
*root
,
229 struct super_block
*sb
= old
->mnt_sb
;
230 struct vfsmount
*mnt
= alloc_vfsmnt(old
->mnt_devname
);
233 mnt
->mnt_flags
= old
->mnt_flags
;
234 atomic_inc(&sb
->s_active
);
236 mnt
->mnt_root
= dget(root
);
237 mnt
->mnt_mountpoint
= mnt
->mnt_root
;
238 mnt
->mnt_parent
= mnt
;
240 if (flag
& CL_SLAVE
) {
241 list_add(&mnt
->mnt_slave
, &old
->mnt_slave_list
);
242 mnt
->mnt_master
= old
;
243 CLEAR_MNT_SHARED(mnt
);
245 if ((flag
& CL_PROPAGATION
) || IS_MNT_SHARED(old
))
246 list_add(&mnt
->mnt_share
, &old
->mnt_share
);
247 if (IS_MNT_SLAVE(old
))
248 list_add(&mnt
->mnt_slave
, &old
->mnt_slave
);
249 mnt
->mnt_master
= old
->mnt_master
;
251 if (flag
& CL_MAKE_SHARED
)
254 /* stick the duplicate mount on the same expiry list
255 * as the original if that was on one */
256 if (flag
& CL_EXPIRE
) {
257 spin_lock(&vfsmount_lock
);
258 if (!list_empty(&old
->mnt_expire
))
259 list_add(&mnt
->mnt_expire
, &old
->mnt_expire
);
260 spin_unlock(&vfsmount_lock
);
266 static inline void __mntput(struct vfsmount
*mnt
)
268 struct super_block
*sb
= mnt
->mnt_sb
;
271 deactivate_super(sb
);
274 void mntput_no_expire(struct vfsmount
*mnt
)
277 if (atomic_dec_and_lock(&mnt
->mnt_count
, &vfsmount_lock
)) {
278 if (likely(!mnt
->mnt_pinned
)) {
279 spin_unlock(&vfsmount_lock
);
283 atomic_add(mnt
->mnt_pinned
+ 1, &mnt
->mnt_count
);
285 spin_unlock(&vfsmount_lock
);
286 acct_auto_close_mnt(mnt
);
287 security_sb_umount_close(mnt
);
292 EXPORT_SYMBOL(mntput_no_expire
);
294 void mnt_pin(struct vfsmount
*mnt
)
296 spin_lock(&vfsmount_lock
);
298 spin_unlock(&vfsmount_lock
);
301 EXPORT_SYMBOL(mnt_pin
);
303 void mnt_unpin(struct vfsmount
*mnt
)
305 spin_lock(&vfsmount_lock
);
306 if (mnt
->mnt_pinned
) {
307 atomic_inc(&mnt
->mnt_count
);
310 spin_unlock(&vfsmount_lock
);
313 EXPORT_SYMBOL(mnt_unpin
);
316 static void *m_start(struct seq_file
*m
, loff_t
*pos
)
318 struct namespace *n
= m
->private;
322 down_read(&namespace_sem
);
323 list_for_each(p
, &n
->list
)
325 return list_entry(p
, struct vfsmount
, mnt_list
);
329 static void *m_next(struct seq_file
*m
, void *v
, loff_t
*pos
)
331 struct namespace *n
= m
->private;
332 struct list_head
*p
= ((struct vfsmount
*)v
)->mnt_list
.next
;
334 return p
== &n
->list
? NULL
: list_entry(p
, struct vfsmount
, mnt_list
);
337 static void m_stop(struct seq_file
*m
, void *v
)
339 up_read(&namespace_sem
);
342 static inline void mangle(struct seq_file
*m
, const char *s
)
344 seq_escape(m
, s
, " \t\n\\");
347 static int show_vfsmnt(struct seq_file
*m
, void *v
)
349 struct vfsmount
*mnt
= v
;
351 static struct proc_fs_info
{
355 { MS_SYNCHRONOUS
, ",sync" },
356 { MS_DIRSYNC
, ",dirsync" },
357 { MS_MANDLOCK
, ",mand" },
358 { MS_NOATIME
, ",noatime" },
359 { MS_NODIRATIME
, ",nodiratime" },
362 static struct proc_fs_info mnt_info
[] = {
363 { MNT_NOSUID
, ",nosuid" },
364 { MNT_NODEV
, ",nodev" },
365 { MNT_NOEXEC
, ",noexec" },
368 struct proc_fs_info
*fs_infop
;
370 mangle(m
, mnt
->mnt_devname
? mnt
->mnt_devname
: "none");
372 seq_path(m
, mnt
, mnt
->mnt_root
, " \t\n\\");
374 mangle(m
, mnt
->mnt_sb
->s_type
->name
);
375 seq_puts(m
, mnt
->mnt_sb
->s_flags
& MS_RDONLY
? " ro" : " rw");
376 for (fs_infop
= fs_info
; fs_infop
->flag
; fs_infop
++) {
377 if (mnt
->mnt_sb
->s_flags
& fs_infop
->flag
)
378 seq_puts(m
, fs_infop
->str
);
380 for (fs_infop
= mnt_info
; fs_infop
->flag
; fs_infop
++) {
381 if (mnt
->mnt_flags
& fs_infop
->flag
)
382 seq_puts(m
, fs_infop
->str
);
384 if (mnt
->mnt_sb
->s_op
->show_options
)
385 err
= mnt
->mnt_sb
->s_op
->show_options(m
, mnt
);
386 seq_puts(m
, " 0 0\n");
390 struct seq_operations mounts_op
= {
398 * may_umount_tree - check if a mount tree is busy
399 * @mnt: root of mount tree
401 * This is called to check if a tree of mounts has any
402 * open files, pwds, chroots or sub mounts that are
405 int may_umount_tree(struct vfsmount
*mnt
)
408 int minimum_refs
= 0;
411 spin_lock(&vfsmount_lock
);
412 for (p
= mnt
; p
; p
= next_mnt(p
, mnt
)) {
413 actual_refs
+= atomic_read(&p
->mnt_count
);
416 spin_unlock(&vfsmount_lock
);
418 if (actual_refs
> minimum_refs
)
424 EXPORT_SYMBOL(may_umount_tree
);
427 * may_umount - check if a mount point is busy
428 * @mnt: root of mount
430 * This is called to check if a mount point has any
431 * open files, pwds, chroots or sub mounts. If the
432 * mount has sub mounts this will return busy
433 * regardless of whether the sub mounts are busy.
435 * Doesn't take quota and stuff into account. IOW, in some cases it will
436 * give false negatives. The main reason why it's here is that we need
437 * a non-destructive way to look for easily umountable filesystems.
439 int may_umount(struct vfsmount
*mnt
)
442 spin_lock(&vfsmount_lock
);
443 if (propagate_mount_busy(mnt
, 2))
445 spin_unlock(&vfsmount_lock
);
449 EXPORT_SYMBOL(may_umount
);
451 void release_mounts(struct list_head
*head
)
453 struct vfsmount
*mnt
;
454 while (!list_empty(head
)) {
455 mnt
= list_entry(head
->next
, struct vfsmount
, mnt_hash
);
456 list_del_init(&mnt
->mnt_hash
);
457 if (mnt
->mnt_parent
!= mnt
) {
458 struct dentry
*dentry
;
460 spin_lock(&vfsmount_lock
);
461 dentry
= mnt
->mnt_mountpoint
;
463 mnt
->mnt_mountpoint
= mnt
->mnt_root
;
464 mnt
->mnt_parent
= mnt
;
465 spin_unlock(&vfsmount_lock
);
473 void umount_tree(struct vfsmount
*mnt
, int propagate
, struct list_head
*kill
)
477 for (p
= mnt
; p
; p
= next_mnt(p
, mnt
)) {
478 list_del(&p
->mnt_hash
);
479 list_add(&p
->mnt_hash
, kill
);
483 propagate_umount(kill
);
485 list_for_each_entry(p
, kill
, mnt_hash
) {
486 list_del_init(&p
->mnt_expire
);
487 list_del_init(&p
->mnt_list
);
488 __touch_namespace(p
->mnt_namespace
);
489 p
->mnt_namespace
= NULL
;
490 list_del_init(&p
->mnt_child
);
491 if (p
->mnt_parent
!= p
)
492 mnt
->mnt_mountpoint
->d_mounted
--;
493 change_mnt_propagation(p
, MS_PRIVATE
);
497 static int do_umount(struct vfsmount
*mnt
, int flags
)
499 struct super_block
*sb
= mnt
->mnt_sb
;
501 LIST_HEAD(umount_list
);
503 retval
= security_sb_umount(mnt
, flags
);
508 * Allow userspace to request a mountpoint be expired rather than
509 * unmounting unconditionally. Unmount only happens if:
510 * (1) the mark is already set (the mark is cleared by mntput())
511 * (2) the usage count == 1 [parent vfsmount] + 1 [sys_umount]
513 if (flags
& MNT_EXPIRE
) {
514 if (mnt
== current
->fs
->rootmnt
||
515 flags
& (MNT_FORCE
| MNT_DETACH
))
518 if (atomic_read(&mnt
->mnt_count
) != 2)
521 if (!xchg(&mnt
->mnt_expiry_mark
, 1))
526 * If we may have to abort operations to get out of this
527 * mount, and they will themselves hold resources we must
528 * allow the fs to do things. In the Unix tradition of
529 * 'Gee thats tricky lets do it in userspace' the umount_begin
530 * might fail to complete on the first run through as other tasks
531 * must return, and the like. Thats for the mount program to worry
532 * about for the moment.
536 if ((flags
& MNT_FORCE
) && sb
->s_op
->umount_begin
)
537 sb
->s_op
->umount_begin(sb
);
541 * No sense to grab the lock for this test, but test itself looks
542 * somewhat bogus. Suggestions for better replacement?
543 * Ho-hum... In principle, we might treat that as umount + switch
544 * to rootfs. GC would eventually take care of the old vfsmount.
545 * Actually it makes sense, especially if rootfs would contain a
546 * /reboot - static binary that would close all descriptors and
547 * call reboot(9). Then init(8) could umount root and exec /reboot.
549 if (mnt
== current
->fs
->rootmnt
&& !(flags
& MNT_DETACH
)) {
551 * Special case for "unmounting" root ...
552 * we just try to remount it readonly.
554 down_write(&sb
->s_umount
);
555 if (!(sb
->s_flags
& MS_RDONLY
)) {
558 retval
= do_remount_sb(sb
, MS_RDONLY
, NULL
, 0);
561 up_write(&sb
->s_umount
);
565 down_write(&namespace_sem
);
566 spin_lock(&vfsmount_lock
);
570 if (flags
& MNT_DETACH
|| !propagate_mount_busy(mnt
, 2)) {
571 if (!list_empty(&mnt
->mnt_list
))
572 umount_tree(mnt
, 1, &umount_list
);
575 spin_unlock(&vfsmount_lock
);
577 security_sb_umount_busy(mnt
);
578 up_write(&namespace_sem
);
579 release_mounts(&umount_list
);
584 * Now umount can handle mount points as well as block devices.
585 * This is important for filesystems which use unnamed block devices.
587 * We now support a flag for forced unmount like the other 'big iron'
588 * unixes. Our API is identical to OSF/1 to avoid making a mess of AMD
591 asmlinkage
long sys_umount(char __user
* name
, int flags
)
596 retval
= __user_walk(name
, LOOKUP_FOLLOW
, &nd
);
600 if (nd
.dentry
!= nd
.mnt
->mnt_root
)
602 if (!check_mnt(nd
.mnt
))
606 if (!capable(CAP_SYS_ADMIN
))
609 retval
= do_umount(nd
.mnt
, flags
);
611 path_release_on_umount(&nd
);
616 #ifdef __ARCH_WANT_SYS_OLDUMOUNT
619 * The 2.0 compatible umount. No flags.
621 asmlinkage
long sys_oldumount(char __user
* name
)
623 return sys_umount(name
, 0);
628 static int mount_is_safe(struct nameidata
*nd
)
630 if (capable(CAP_SYS_ADMIN
))
634 if (S_ISLNK(nd
->dentry
->d_inode
->i_mode
))
636 if (nd
->dentry
->d_inode
->i_mode
& S_ISVTX
) {
637 if (current
->uid
!= nd
->dentry
->d_inode
->i_uid
)
640 if (vfs_permission(nd
, MAY_WRITE
))
646 static int lives_below_in_same_fs(struct dentry
*d
, struct dentry
*dentry
)
651 if (d
== NULL
|| d
== d
->d_parent
)
657 struct vfsmount
*copy_tree(struct vfsmount
*mnt
, struct dentry
*dentry
,
660 struct vfsmount
*res
, *p
, *q
, *r
, *s
;
663 if (!(flag
& CL_COPY_ALL
) && IS_MNT_UNBINDABLE(mnt
))
666 res
= q
= clone_mnt(mnt
, dentry
, flag
);
669 q
->mnt_mountpoint
= mnt
->mnt_mountpoint
;
672 list_for_each_entry(r
, &mnt
->mnt_mounts
, mnt_child
) {
673 if (!lives_below_in_same_fs(r
->mnt_mountpoint
, dentry
))
676 for (s
= r
; s
; s
= next_mnt(s
, r
)) {
677 if (!(flag
& CL_COPY_ALL
) && IS_MNT_UNBINDABLE(s
)) {
678 s
= skip_mnt_tree(s
);
681 while (p
!= s
->mnt_parent
) {
687 nd
.dentry
= p
->mnt_mountpoint
;
688 q
= clone_mnt(p
, p
->mnt_root
, flag
);
691 spin_lock(&vfsmount_lock
);
692 list_add_tail(&q
->mnt_list
, &res
->mnt_list
);
694 spin_unlock(&vfsmount_lock
);
700 LIST_HEAD(umount_list
);
701 spin_lock(&vfsmount_lock
);
702 umount_tree(res
, 0, &umount_list
);
703 spin_unlock(&vfsmount_lock
);
704 release_mounts(&umount_list
);
710 * @source_mnt : mount tree to be attached
711 * @nd : place the mount tree @source_mnt is attached
712 * @parent_nd : if non-null, detach the source_mnt from its parent and
713 * store the parent mount and mountpoint dentry.
714 * (done when source_mnt is moved)
716 * NOTE: in the table below explains the semantics when a source mount
717 * of a given type is attached to a destination mount of a given type.
718 * ---------------------------------------------------------------------------
719 * | BIND MOUNT OPERATION |
720 * |**************************************************************************
721 * | source-->| shared | private | slave | unbindable |
725 * |**************************************************************************
726 * | shared | shared (++) | shared (+) | shared(+++)| invalid |
728 * |non-shared| shared (+) | private | slave (*) | invalid |
729 * ***************************************************************************
730 * A bind operation clones the source mount and mounts the clone on the
733 * (++) the cloned mount is propagated to all the mounts in the propagation
734 * tree of the destination mount and the cloned mount is added to
735 * the peer group of the source mount.
736 * (+) the cloned mount is created under the destination mount and is marked
737 * as shared. The cloned mount is added to the peer group of the source
739 * (+++) the mount is propagated to all the mounts in the propagation tree
740 * of the destination mount and the cloned mount is made slave
741 * of the same master as that of the source mount. The cloned mount
742 * is marked as 'shared and slave'.
743 * (*) the cloned mount is made a slave of the same master as that of the
746 * ---------------------------------------------------------------------------
747 * | MOVE MOUNT OPERATION |
748 * |**************************************************************************
749 * | source-->| shared | private | slave | unbindable |
753 * |**************************************************************************
754 * | shared | shared (+) | shared (+) | shared(+++) | invalid |
756 * |non-shared| shared (+*) | private | slave (*) | unbindable |
757 * ***************************************************************************
759 * (+) the mount is moved to the destination. And is then propagated to
760 * all the mounts in the propagation tree of the destination mount.
761 * (+*) the mount is moved to the destination.
762 * (+++) the mount is moved to the destination and is then propagated to
763 * all the mounts belonging to the destination mount's propagation tree.
764 * the mount is marked as 'shared and slave'.
765 * (*) the mount continues to be a slave at the new location.
767 * if the source mount is a tree, the operations explained above is
768 * applied to each mount in the tree.
769 * Must be called without spinlocks held, since this function can sleep
772 static int attach_recursive_mnt(struct vfsmount
*source_mnt
,
773 struct nameidata
*nd
, struct nameidata
*parent_nd
)
775 LIST_HEAD(tree_list
);
776 struct vfsmount
*dest_mnt
= nd
->mnt
;
777 struct dentry
*dest_dentry
= nd
->dentry
;
778 struct vfsmount
*child
, *p
;
780 if (propagate_mnt(dest_mnt
, dest_dentry
, source_mnt
, &tree_list
))
783 if (IS_MNT_SHARED(dest_mnt
)) {
784 for (p
= source_mnt
; p
; p
= next_mnt(p
, source_mnt
))
788 spin_lock(&vfsmount_lock
);
790 detach_mnt(source_mnt
, parent_nd
);
791 attach_mnt(source_mnt
, nd
);
792 touch_namespace(current
->namespace);
794 mnt_set_mountpoint(dest_mnt
, dest_dentry
, source_mnt
);
795 commit_tree(source_mnt
);
798 list_for_each_entry_safe(child
, p
, &tree_list
, mnt_hash
) {
799 list_del_init(&child
->mnt_hash
);
802 spin_unlock(&vfsmount_lock
);
806 static int graft_tree(struct vfsmount
*mnt
, struct nameidata
*nd
)
809 if (mnt
->mnt_sb
->s_flags
& MS_NOUSER
)
812 if (S_ISDIR(nd
->dentry
->d_inode
->i_mode
) !=
813 S_ISDIR(mnt
->mnt_root
->d_inode
->i_mode
))
817 down(&nd
->dentry
->d_inode
->i_sem
);
818 if (IS_DEADDIR(nd
->dentry
->d_inode
))
821 err
= security_sb_check_sb(mnt
, nd
);
826 if (IS_ROOT(nd
->dentry
) || !d_unhashed(nd
->dentry
))
827 err
= attach_recursive_mnt(mnt
, nd
, NULL
);
829 up(&nd
->dentry
->d_inode
->i_sem
);
831 security_sb_post_addmount(mnt
, nd
);
836 * recursively change the type of the mountpoint.
838 static int do_change_type(struct nameidata
*nd
, int flag
)
840 struct vfsmount
*m
, *mnt
= nd
->mnt
;
841 int recurse
= flag
& MS_REC
;
842 int type
= flag
& ~MS_REC
;
844 if (nd
->dentry
!= nd
->mnt
->mnt_root
)
847 down_write(&namespace_sem
);
848 spin_lock(&vfsmount_lock
);
849 for (m
= mnt
; m
; m
= (recurse
? next_mnt(m
, mnt
) : NULL
))
850 change_mnt_propagation(m
, type
);
851 spin_unlock(&vfsmount_lock
);
852 up_write(&namespace_sem
);
859 static int do_loopback(struct nameidata
*nd
, char *old_name
, int recurse
)
861 struct nameidata old_nd
;
862 struct vfsmount
*mnt
= NULL
;
863 int err
= mount_is_safe(nd
);
866 if (!old_name
|| !*old_name
)
868 err
= path_lookup(old_name
, LOOKUP_FOLLOW
, &old_nd
);
872 down_write(&namespace_sem
);
874 if (IS_MNT_UNBINDABLE(old_nd
.mnt
))
877 if (!check_mnt(nd
->mnt
) || !check_mnt(old_nd
.mnt
))
882 mnt
= copy_tree(old_nd
.mnt
, old_nd
.dentry
, 0);
884 mnt
= clone_mnt(old_nd
.mnt
, old_nd
.dentry
, 0);
889 err
= graft_tree(mnt
, nd
);
891 LIST_HEAD(umount_list
);
892 spin_lock(&vfsmount_lock
);
893 umount_tree(mnt
, 0, &umount_list
);
894 spin_unlock(&vfsmount_lock
);
895 release_mounts(&umount_list
);
899 up_write(&namespace_sem
);
900 path_release(&old_nd
);
905 * change filesystem flags. dir should be a physical root of filesystem.
906 * If you've mounted a non-root directory somewhere and want to do remount
907 * on it - tough luck.
909 static int do_remount(struct nameidata
*nd
, int flags
, int mnt_flags
,
913 struct super_block
*sb
= nd
->mnt
->mnt_sb
;
915 if (!capable(CAP_SYS_ADMIN
))
918 if (!check_mnt(nd
->mnt
))
921 if (nd
->dentry
!= nd
->mnt
->mnt_root
)
924 down_write(&sb
->s_umount
);
925 err
= do_remount_sb(sb
, flags
, data
, 0);
927 nd
->mnt
->mnt_flags
= mnt_flags
;
928 up_write(&sb
->s_umount
);
930 security_sb_post_remount(nd
->mnt
, flags
, data
);
934 static inline int tree_contains_unbindable(struct vfsmount
*mnt
)
937 for (p
= mnt
; p
; p
= next_mnt(p
, mnt
)) {
938 if (IS_MNT_UNBINDABLE(p
))
944 static int do_move_mount(struct nameidata
*nd
, char *old_name
)
946 struct nameidata old_nd
, parent_nd
;
949 if (!capable(CAP_SYS_ADMIN
))
951 if (!old_name
|| !*old_name
)
953 err
= path_lookup(old_name
, LOOKUP_FOLLOW
, &old_nd
);
957 down_write(&namespace_sem
);
958 while (d_mountpoint(nd
->dentry
) && follow_down(&nd
->mnt
, &nd
->dentry
))
961 if (!check_mnt(nd
->mnt
) || !check_mnt(old_nd
.mnt
))
965 down(&nd
->dentry
->d_inode
->i_sem
);
966 if (IS_DEADDIR(nd
->dentry
->d_inode
))
969 if (!IS_ROOT(nd
->dentry
) && d_unhashed(nd
->dentry
))
973 if (old_nd
.dentry
!= old_nd
.mnt
->mnt_root
)
976 if (old_nd
.mnt
== old_nd
.mnt
->mnt_parent
)
979 if (S_ISDIR(nd
->dentry
->d_inode
->i_mode
) !=
980 S_ISDIR(old_nd
.dentry
->d_inode
->i_mode
))
983 * Don't move a mount residing in a shared parent.
985 if (old_nd
.mnt
->mnt_parent
&& IS_MNT_SHARED(old_nd
.mnt
->mnt_parent
))
988 * Don't move a mount tree containing unbindable mounts to a destination
989 * mount which is shared.
991 if (IS_MNT_SHARED(nd
->mnt
) && tree_contains_unbindable(old_nd
.mnt
))
994 for (p
= nd
->mnt
; p
->mnt_parent
!= p
; p
= p
->mnt_parent
)
998 if ((err
= attach_recursive_mnt(old_nd
.mnt
, nd
, &parent_nd
)))
1001 spin_lock(&vfsmount_lock
);
1002 /* if the mount is moved, it should no longer be expire
1004 list_del_init(&old_nd
.mnt
->mnt_expire
);
1005 spin_unlock(&vfsmount_lock
);
1007 up(&nd
->dentry
->d_inode
->i_sem
);
1009 up_write(&namespace_sem
);
1011 path_release(&parent_nd
);
1012 path_release(&old_nd
);
1017 * create a new mount for userspace and request it to be added into the
1020 static int do_new_mount(struct nameidata
*nd
, char *type
, int flags
,
1021 int mnt_flags
, char *name
, void *data
)
1023 struct vfsmount
*mnt
;
1025 if (!type
|| !memchr(type
, 0, PAGE_SIZE
))
1028 /* we need capabilities... */
1029 if (!capable(CAP_SYS_ADMIN
))
1032 mnt
= do_kern_mount(type
, flags
, name
, data
);
1034 return PTR_ERR(mnt
);
1036 return do_add_mount(mnt
, nd
, mnt_flags
, NULL
);
1040 * add a mount into a namespace's mount tree
1041 * - provide the option of adding the new mount to an expiration list
1043 int do_add_mount(struct vfsmount
*newmnt
, struct nameidata
*nd
,
1044 int mnt_flags
, struct list_head
*fslist
)
1048 down_write(&namespace_sem
);
1049 /* Something was mounted here while we slept */
1050 while (d_mountpoint(nd
->dentry
) && follow_down(&nd
->mnt
, &nd
->dentry
))
1053 if (!check_mnt(nd
->mnt
))
1056 /* Refuse the same filesystem on the same mount point */
1058 if (nd
->mnt
->mnt_sb
== newmnt
->mnt_sb
&&
1059 nd
->mnt
->mnt_root
== nd
->dentry
)
1063 if (S_ISLNK(newmnt
->mnt_root
->d_inode
->i_mode
))
1066 newmnt
->mnt_flags
= mnt_flags
;
1067 if ((err
= graft_tree(newmnt
, nd
)))
1071 /* add to the specified expiration list */
1072 spin_lock(&vfsmount_lock
);
1073 list_add_tail(&newmnt
->mnt_expire
, fslist
);
1074 spin_unlock(&vfsmount_lock
);
1076 up_write(&namespace_sem
);
1080 up_write(&namespace_sem
);
1085 EXPORT_SYMBOL_GPL(do_add_mount
);
1087 static void expire_mount(struct vfsmount
*mnt
, struct list_head
*mounts
,
1088 struct list_head
*umounts
)
1090 spin_lock(&vfsmount_lock
);
1093 * Check if mount is still attached, if not, let whoever holds it deal
1096 if (mnt
->mnt_parent
== mnt
) {
1097 spin_unlock(&vfsmount_lock
);
1102 * Check that it is still dead: the count should now be 2 - as
1103 * contributed by the vfsmount parent and the mntget above
1105 if (!propagate_mount_busy(mnt
, 2)) {
1106 /* delete from the namespace */
1107 touch_namespace(mnt
->mnt_namespace
);
1108 list_del_init(&mnt
->mnt_list
);
1109 mnt
->mnt_namespace
= NULL
;
1110 umount_tree(mnt
, 1, umounts
);
1111 spin_unlock(&vfsmount_lock
);
1114 * Someone brought it back to life whilst we didn't have any
1115 * locks held so return it to the expiration list
1117 list_add_tail(&mnt
->mnt_expire
, mounts
);
1118 spin_unlock(&vfsmount_lock
);
1123 * process a list of expirable mountpoints with the intent of discarding any
1124 * mountpoints that aren't in use and haven't been touched since last we came
1127 void mark_mounts_for_expiry(struct list_head
*mounts
)
1129 struct namespace *namespace;
1130 struct vfsmount
*mnt
, *next
;
1131 LIST_HEAD(graveyard
);
1133 if (list_empty(mounts
))
1136 spin_lock(&vfsmount_lock
);
1138 /* extract from the expiration list every vfsmount that matches the
1139 * following criteria:
1140 * - only referenced by its parent vfsmount
1141 * - still marked for expiry (marked on the last call here; marks are
1142 * cleared by mntput())
1144 list_for_each_entry_safe(mnt
, next
, mounts
, mnt_expire
) {
1145 if (!xchg(&mnt
->mnt_expiry_mark
, 1) ||
1146 atomic_read(&mnt
->mnt_count
) != 1)
1150 list_move(&mnt
->mnt_expire
, &graveyard
);
1154 * go through the vfsmounts we've just consigned to the graveyard to
1155 * - check that they're still dead
1156 * - delete the vfsmount from the appropriate namespace under lock
1157 * - dispose of the corpse
1159 while (!list_empty(&graveyard
)) {
1161 mnt
= list_entry(graveyard
.next
, struct vfsmount
, mnt_expire
);
1162 list_del_init(&mnt
->mnt_expire
);
1164 /* don't do anything if the namespace is dead - all the
1165 * vfsmounts from it are going away anyway */
1166 namespace = mnt
->mnt_namespace
;
1167 if (!namespace || !namespace->root
)
1169 get_namespace(namespace);
1171 spin_unlock(&vfsmount_lock
);
1172 down_write(&namespace_sem
);
1173 expire_mount(mnt
, mounts
, &umounts
);
1174 up_write(&namespace_sem
);
1175 release_mounts(&umounts
);
1177 put_namespace(namespace);
1178 spin_lock(&vfsmount_lock
);
1181 spin_unlock(&vfsmount_lock
);
1184 EXPORT_SYMBOL_GPL(mark_mounts_for_expiry
);
1187 * Some copy_from_user() implementations do not return the exact number of
1188 * bytes remaining to copy on a fault. But copy_mount_options() requires that.
1189 * Note that this function differs from copy_from_user() in that it will oops
1190 * on bad values of `to', rather than returning a short copy.
1192 static long exact_copy_from_user(void *to
, const void __user
* from
,
1196 const char __user
*f
= from
;
1199 if (!access_ok(VERIFY_READ
, from
, n
))
1203 if (__get_user(c
, f
)) {
1214 int copy_mount_options(const void __user
* data
, unsigned long *where
)
1224 if (!(page
= __get_free_page(GFP_KERNEL
)))
1227 /* We only care that *some* data at the address the user
1228 * gave us is valid. Just in case, we'll zero
1229 * the remainder of the page.
1231 /* copy_from_user cannot cross TASK_SIZE ! */
1232 size
= TASK_SIZE
- (unsigned long)data
;
1233 if (size
> PAGE_SIZE
)
1236 i
= size
- exact_copy_from_user((void *)page
, data
, size
);
1242 memset((char *)page
+ i
, 0, PAGE_SIZE
- i
);
1248 * Flags is a 32-bit value that allows up to 31 non-fs dependent flags to
1249 * be given to the mount() call (ie: read-only, no-dev, no-suid etc).
1251 * data is a (void *) that can point to any structure up to
1252 * PAGE_SIZE-1 bytes, which can contain arbitrary fs-dependent
1253 * information (or be NULL).
1255 * Pre-0.97 versions of mount() didn't have a flags word.
1256 * When the flags word was introduced its top half was required
1257 * to have the magic value 0xC0ED, and this remained so until 2.4.0-test9.
1258 * Therefore, if this magic number is present, it carries no information
1259 * and must be discarded.
1261 long do_mount(char *dev_name
, char *dir_name
, char *type_page
,
1262 unsigned long flags
, void *data_page
)
1264 struct nameidata nd
;
1269 if ((flags
& MS_MGC_MSK
) == MS_MGC_VAL
)
1270 flags
&= ~MS_MGC_MSK
;
1272 /* Basic sanity checks */
1274 if (!dir_name
|| !*dir_name
|| !memchr(dir_name
, 0, PAGE_SIZE
))
1276 if (dev_name
&& !memchr(dev_name
, 0, PAGE_SIZE
))
1280 ((char *)data_page
)[PAGE_SIZE
- 1] = 0;
1282 /* Separate the per-mountpoint flags */
1283 if (flags
& MS_NOSUID
)
1284 mnt_flags
|= MNT_NOSUID
;
1285 if (flags
& MS_NODEV
)
1286 mnt_flags
|= MNT_NODEV
;
1287 if (flags
& MS_NOEXEC
)
1288 mnt_flags
|= MNT_NOEXEC
;
1289 flags
&= ~(MS_NOSUID
| MS_NOEXEC
| MS_NODEV
| MS_ACTIVE
);
1291 /* ... and get the mountpoint */
1292 retval
= path_lookup(dir_name
, LOOKUP_FOLLOW
, &nd
);
1296 retval
= security_sb_mount(dev_name
, &nd
, type_page
, flags
, data_page
);
1300 if (flags
& MS_REMOUNT
)
1301 retval
= do_remount(&nd
, flags
& ~MS_REMOUNT
, mnt_flags
,
1303 else if (flags
& MS_BIND
)
1304 retval
= do_loopback(&nd
, dev_name
, flags
& MS_REC
);
1305 else if (flags
& (MS_SHARED
| MS_PRIVATE
| MS_SLAVE
| MS_UNBINDABLE
))
1306 retval
= do_change_type(&nd
, flags
);
1307 else if (flags
& MS_MOVE
)
1308 retval
= do_move_mount(&nd
, dev_name
);
1310 retval
= do_new_mount(&nd
, type_page
, flags
, mnt_flags
,
1311 dev_name
, data_page
);
1317 int copy_namespace(int flags
, struct task_struct
*tsk
)
1319 struct namespace *namespace = tsk
->namespace;
1320 struct namespace *new_ns
;
1321 struct vfsmount
*rootmnt
= NULL
, *pwdmnt
= NULL
, *altrootmnt
= NULL
;
1322 struct fs_struct
*fs
= tsk
->fs
;
1323 struct vfsmount
*p
, *q
;
1328 get_namespace(namespace);
1330 if (!(flags
& CLONE_NEWNS
))
1333 if (!capable(CAP_SYS_ADMIN
)) {
1334 put_namespace(namespace);
1338 new_ns
= kmalloc(sizeof(struct namespace), GFP_KERNEL
);
1342 atomic_set(&new_ns
->count
, 1);
1343 INIT_LIST_HEAD(&new_ns
->list
);
1344 init_waitqueue_head(&new_ns
->poll
);
1347 down_write(&namespace_sem
);
1348 /* First pass: copy the tree topology */
1349 new_ns
->root
= copy_tree(namespace->root
, namespace->root
->mnt_root
,
1350 CL_COPY_ALL
| CL_EXPIRE
);
1351 if (!new_ns
->root
) {
1352 up_write(&namespace_sem
);
1356 spin_lock(&vfsmount_lock
);
1357 list_add_tail(&new_ns
->list
, &new_ns
->root
->mnt_list
);
1358 spin_unlock(&vfsmount_lock
);
1361 * Second pass: switch the tsk->fs->* elements and mark new vfsmounts
1362 * as belonging to new namespace. We have already acquired a private
1363 * fs_struct, so tsk->fs->lock is not needed.
1365 p
= namespace->root
;
1368 q
->mnt_namespace
= new_ns
;
1370 if (p
== fs
->rootmnt
) {
1372 fs
->rootmnt
= mntget(q
);
1374 if (p
== fs
->pwdmnt
) {
1376 fs
->pwdmnt
= mntget(q
);
1378 if (p
== fs
->altrootmnt
) {
1380 fs
->altrootmnt
= mntget(q
);
1383 p
= next_mnt(p
, namespace->root
);
1384 q
= next_mnt(q
, new_ns
->root
);
1386 up_write(&namespace_sem
);
1388 tsk
->namespace = new_ns
;
1397 put_namespace(namespace);
1401 put_namespace(namespace);
1405 asmlinkage
long sys_mount(char __user
* dev_name
, char __user
* dir_name
,
1406 char __user
* type
, unsigned long flags
,
1410 unsigned long data_page
;
1411 unsigned long type_page
;
1412 unsigned long dev_page
;
1415 retval
= copy_mount_options(type
, &type_page
);
1419 dir_page
= getname(dir_name
);
1420 retval
= PTR_ERR(dir_page
);
1421 if (IS_ERR(dir_page
))
1424 retval
= copy_mount_options(dev_name
, &dev_page
);
1428 retval
= copy_mount_options(data
, &data_page
);
1433 retval
= do_mount((char *)dev_page
, dir_page
, (char *)type_page
,
1434 flags
, (void *)data_page
);
1436 free_page(data_page
);
1439 free_page(dev_page
);
1443 free_page(type_page
);
1448 * Replace the fs->{rootmnt,root} with {mnt,dentry}. Put the old values.
1449 * It can block. Requires the big lock held.
1451 void set_fs_root(struct fs_struct
*fs
, struct vfsmount
*mnt
,
1452 struct dentry
*dentry
)
1454 struct dentry
*old_root
;
1455 struct vfsmount
*old_rootmnt
;
1456 write_lock(&fs
->lock
);
1457 old_root
= fs
->root
;
1458 old_rootmnt
= fs
->rootmnt
;
1459 fs
->rootmnt
= mntget(mnt
);
1460 fs
->root
= dget(dentry
);
1461 write_unlock(&fs
->lock
);
1464 mntput(old_rootmnt
);
1469 * Replace the fs->{pwdmnt,pwd} with {mnt,dentry}. Put the old values.
1470 * It can block. Requires the big lock held.
1472 void set_fs_pwd(struct fs_struct
*fs
, struct vfsmount
*mnt
,
1473 struct dentry
*dentry
)
1475 struct dentry
*old_pwd
;
1476 struct vfsmount
*old_pwdmnt
;
1478 write_lock(&fs
->lock
);
1480 old_pwdmnt
= fs
->pwdmnt
;
1481 fs
->pwdmnt
= mntget(mnt
);
1482 fs
->pwd
= dget(dentry
);
1483 write_unlock(&fs
->lock
);
1491 static void chroot_fs_refs(struct nameidata
*old_nd
, struct nameidata
*new_nd
)
1493 struct task_struct
*g
, *p
;
1494 struct fs_struct
*fs
;
1496 read_lock(&tasklist_lock
);
1497 do_each_thread(g
, p
) {
1501 atomic_inc(&fs
->count
);
1503 if (fs
->root
== old_nd
->dentry
1504 && fs
->rootmnt
== old_nd
->mnt
)
1505 set_fs_root(fs
, new_nd
->mnt
, new_nd
->dentry
);
1506 if (fs
->pwd
== old_nd
->dentry
1507 && fs
->pwdmnt
== old_nd
->mnt
)
1508 set_fs_pwd(fs
, new_nd
->mnt
, new_nd
->dentry
);
1512 } while_each_thread(g
, p
);
1513 read_unlock(&tasklist_lock
);
1517 * pivot_root Semantics:
1518 * Moves the root file system of the current process to the directory put_old,
1519 * makes new_root as the new root file system of the current process, and sets
1520 * root/cwd of all processes which had them on the current root to new_root.
1523 * The new_root and put_old must be directories, and must not be on the
1524 * same file system as the current process root. The put_old must be
1525 * underneath new_root, i.e. adding a non-zero number of /.. to the string
1526 * pointed to by put_old must yield the same directory as new_root. No other
1527 * file system may be mounted on put_old. After all, new_root is a mountpoint.
1529 * Also, the current root cannot be on the 'rootfs' (initial ramfs) filesystem.
1530 * See Documentation/filesystems/ramfs-rootfs-initramfs.txt for alternatives
1531 * in this situation.
1534 * - we don't move root/cwd if they are not at the root (reason: if something
1535 * cared enough to change them, it's probably wrong to force them elsewhere)
1536 * - it's okay to pick a root that isn't the root of a file system, e.g.
1537 * /nfs/my_root where /nfs is the mount point. It must be a mountpoint,
1538 * though, so you may need to say mount --bind /nfs/my_root /nfs/my_root
1541 asmlinkage
long sys_pivot_root(const char __user
* new_root
,
1542 const char __user
* put_old
)
1544 struct vfsmount
*tmp
;
1545 struct nameidata new_nd
, old_nd
, parent_nd
, root_parent
, user_nd
;
1548 if (!capable(CAP_SYS_ADMIN
))
1553 error
= __user_walk(new_root
, LOOKUP_FOLLOW
| LOOKUP_DIRECTORY
,
1558 if (!check_mnt(new_nd
.mnt
))
1561 error
= __user_walk(put_old
, LOOKUP_FOLLOW
| LOOKUP_DIRECTORY
, &old_nd
);
1565 error
= security_sb_pivotroot(&old_nd
, &new_nd
);
1567 path_release(&old_nd
);
1571 read_lock(¤t
->fs
->lock
);
1572 user_nd
.mnt
= mntget(current
->fs
->rootmnt
);
1573 user_nd
.dentry
= dget(current
->fs
->root
);
1574 read_unlock(¤t
->fs
->lock
);
1575 down_write(&namespace_sem
);
1576 down(&old_nd
.dentry
->d_inode
->i_sem
);
1578 if (IS_MNT_SHARED(old_nd
.mnt
) ||
1579 IS_MNT_SHARED(new_nd
.mnt
->mnt_parent
) ||
1580 IS_MNT_SHARED(user_nd
.mnt
->mnt_parent
))
1582 if (!check_mnt(user_nd
.mnt
))
1585 if (IS_DEADDIR(new_nd
.dentry
->d_inode
))
1587 if (d_unhashed(new_nd
.dentry
) && !IS_ROOT(new_nd
.dentry
))
1589 if (d_unhashed(old_nd
.dentry
) && !IS_ROOT(old_nd
.dentry
))
1592 if (new_nd
.mnt
== user_nd
.mnt
|| old_nd
.mnt
== user_nd
.mnt
)
1593 goto out2
; /* loop, on the same file system */
1595 if (user_nd
.mnt
->mnt_root
!= user_nd
.dentry
)
1596 goto out2
; /* not a mountpoint */
1597 if (user_nd
.mnt
->mnt_parent
== user_nd
.mnt
)
1598 goto out2
; /* not attached */
1599 if (new_nd
.mnt
->mnt_root
!= new_nd
.dentry
)
1600 goto out2
; /* not a mountpoint */
1601 if (new_nd
.mnt
->mnt_parent
== new_nd
.mnt
)
1602 goto out2
; /* not attached */
1603 tmp
= old_nd
.mnt
; /* make sure we can reach put_old from new_root */
1604 spin_lock(&vfsmount_lock
);
1605 if (tmp
!= new_nd
.mnt
) {
1607 if (tmp
->mnt_parent
== tmp
)
1608 goto out3
; /* already mounted on put_old */
1609 if (tmp
->mnt_parent
== new_nd
.mnt
)
1611 tmp
= tmp
->mnt_parent
;
1613 if (!is_subdir(tmp
->mnt_mountpoint
, new_nd
.dentry
))
1615 } else if (!is_subdir(old_nd
.dentry
, new_nd
.dentry
))
1617 detach_mnt(new_nd
.mnt
, &parent_nd
);
1618 detach_mnt(user_nd
.mnt
, &root_parent
);
1619 attach_mnt(user_nd
.mnt
, &old_nd
); /* mount old root on put_old */
1620 attach_mnt(new_nd
.mnt
, &root_parent
); /* mount new_root on / */
1621 touch_namespace(current
->namespace);
1622 spin_unlock(&vfsmount_lock
);
1623 chroot_fs_refs(&user_nd
, &new_nd
);
1624 security_sb_post_pivotroot(&user_nd
, &new_nd
);
1626 path_release(&root_parent
);
1627 path_release(&parent_nd
);
1629 up(&old_nd
.dentry
->d_inode
->i_sem
);
1630 up_write(&namespace_sem
);
1631 path_release(&user_nd
);
1632 path_release(&old_nd
);
1634 path_release(&new_nd
);
1639 spin_unlock(&vfsmount_lock
);
1643 static void __init
init_mount_tree(void)
1645 struct vfsmount
*mnt
;
1646 struct namespace *namespace;
1647 struct task_struct
*g
, *p
;
1649 mnt
= do_kern_mount("rootfs", 0, "rootfs", NULL
);
1651 panic("Can't create rootfs");
1652 namespace = kmalloc(sizeof(*namespace), GFP_KERNEL
);
1654 panic("Can't allocate initial namespace");
1655 atomic_set(&namespace->count
, 1);
1656 INIT_LIST_HEAD(&namespace->list
);
1657 init_waitqueue_head(&namespace->poll
);
1658 namespace->event
= 0;
1659 list_add(&mnt
->mnt_list
, &namespace->list
);
1660 namespace->root
= mnt
;
1661 mnt
->mnt_namespace
= namespace;
1663 init_task
.namespace = namespace;
1664 read_lock(&tasklist_lock
);
1665 do_each_thread(g
, p
) {
1666 get_namespace(namespace);
1667 p
->namespace = namespace;
1668 } while_each_thread(g
, p
);
1669 read_unlock(&tasklist_lock
);
1671 set_fs_pwd(current
->fs
, namespace->root
, namespace->root
->mnt_root
);
1672 set_fs_root(current
->fs
, namespace->root
, namespace->root
->mnt_root
);
1675 void __init
mnt_init(unsigned long mempages
)
1677 struct list_head
*d
;
1678 unsigned int nr_hash
;
1681 init_rwsem(&namespace_sem
);
1683 mnt_cache
= kmem_cache_create("mnt_cache", sizeof(struct vfsmount
),
1684 0, SLAB_HWCACHE_ALIGN
| SLAB_PANIC
, NULL
, NULL
);
1686 mount_hashtable
= (struct list_head
*)__get_free_page(GFP_ATOMIC
);
1688 if (!mount_hashtable
)
1689 panic("Failed to allocate mount hash table\n");
1692 * Find the power-of-two list-heads that can fit into the allocation..
1693 * We don't guarantee that "sizeof(struct list_head)" is necessarily
1696 nr_hash
= PAGE_SIZE
/ sizeof(struct list_head
);
1700 } while ((nr_hash
>> hash_bits
) != 0);
1704 * Re-calculate the actual number of entries and the mask
1705 * from the number of bits we can fit.
1707 nr_hash
= 1UL << hash_bits
;
1708 hash_mask
= nr_hash
- 1;
1710 printk("Mount-cache hash table entries: %d\n", nr_hash
);
1712 /* And initialize the newly allocated array */
1713 d
= mount_hashtable
;
1725 void __put_namespace(struct namespace *namespace)
1727 struct vfsmount
*root
= namespace->root
;
1728 LIST_HEAD(umount_list
);
1729 namespace->root
= NULL
;
1730 spin_unlock(&vfsmount_lock
);
1731 down_write(&namespace_sem
);
1732 spin_lock(&vfsmount_lock
);
1733 umount_tree(root
, 0, &umount_list
);
1734 spin_unlock(&vfsmount_lock
);
1735 up_write(&namespace_sem
);
1736 release_mounts(&umount_list
);