2 * linux/fs/ext3/balloc.c
4 * Copyright (C) 1992, 1993, 1994, 1995
5 * Remy Card (card@masi.ibp.fr)
6 * Laboratoire MASI - Institut Blaise Pascal
7 * Universite Pierre et Marie Curie (Paris VI)
9 * Enhanced block allocation by Stephen Tweedie (sct@redhat.com), 1993
10 * Big-endian to little-endian byte-swapping/bitmaps by
11 * David S. Miller (davem@caip.rutgers.edu), 1995
14 #include <linux/config.h>
15 #include <linux/time.h>
17 #include <linux/jbd.h>
18 #include <linux/ext3_fs.h>
19 #include <linux/ext3_jbd.h>
20 #include <linux/quotaops.h>
21 #include <linux/buffer_head.h>
26 * balloc.c contains the blocks allocation and deallocation routines
30 * The free blocks are managed by bitmaps. A file system contains several
31 * blocks groups. Each group contains 1 bitmap block for blocks, 1 bitmap
32 * block for inodes, N blocks for the inode table and data blocks.
34 * The file system contains group descriptors which are located after the
35 * super block. Each descriptor contains the number of the bitmap block and
36 * the free blocks count in the block. The descriptors are loaded in memory
37 * when a file system is mounted (see ext3_read_super).
41 #define in_range(b, first, len) ((b) >= (first) && (b) <= (first) + (len) - 1)
43 struct ext3_group_desc
* ext3_get_group_desc(struct super_block
* sb
,
44 unsigned int block_group
,
45 struct buffer_head
** bh
)
47 unsigned long group_desc
;
49 struct ext3_group_desc
* desc
;
50 struct ext3_sb_info
*sbi
= EXT3_SB(sb
);
52 if (block_group
>= sbi
->s_groups_count
) {
53 ext3_error (sb
, "ext3_get_group_desc",
54 "block_group >= groups_count - "
55 "block_group = %d, groups_count = %lu",
56 block_group
, sbi
->s_groups_count
);
62 group_desc
= block_group
>> EXT3_DESC_PER_BLOCK_BITS(sb
);
63 offset
= block_group
& (EXT3_DESC_PER_BLOCK(sb
) - 1);
64 if (!sbi
->s_group_desc
[group_desc
]) {
65 ext3_error (sb
, "ext3_get_group_desc",
66 "Group descriptor not loaded - "
67 "block_group = %d, group_desc = %lu, desc = %lu",
68 block_group
, group_desc
, offset
);
72 desc
= (struct ext3_group_desc
*) sbi
->s_group_desc
[group_desc
]->b_data
;
74 *bh
= sbi
->s_group_desc
[group_desc
];
79 * Read the bitmap for a given block_group, reading into the specified
80 * slot in the superblock's bitmap cache.
82 * Return buffer_head on success or NULL in case of failure.
84 static struct buffer_head
*
85 read_block_bitmap(struct super_block
*sb
, unsigned int block_group
)
87 struct ext3_group_desc
* desc
;
88 struct buffer_head
* bh
= NULL
;
90 desc
= ext3_get_group_desc (sb
, block_group
, NULL
);
93 bh
= sb_bread(sb
, le32_to_cpu(desc
->bg_block_bitmap
));
95 ext3_error (sb
, "read_block_bitmap",
96 "Cannot read block bitmap - "
97 "block_group = %d, block_bitmap = %u",
98 block_group
, le32_to_cpu(desc
->bg_block_bitmap
));
103 * The reservation window structure operations
104 * --------------------------------------------
105 * Operations include:
106 * dump, find, add, remove, is_empty, find_next_reservable_window, etc.
108 * We use sorted double linked list for the per-filesystem reservation
109 * window list. (like in vm_region).
111 * Initially, we keep those small operations in the abstract functions,
112 * so later if we need a better searching tree than double linked-list,
113 * we could easily switch to that without changing too much
117 static void __rsv_window_dump(struct rb_root
*root
, int verbose
,
121 struct ext3_reserve_window_node
*rsv
, *prev
;
129 printk("Block Allocation Reservation Windows Map (%s):\n", fn
);
131 rsv
= list_entry(n
, struct ext3_reserve_window_node
, rsv_node
);
133 printk("reservation window 0x%p "
134 "start: %d, end: %d\n",
135 rsv
, rsv
->rsv_start
, rsv
->rsv_end
);
136 if (rsv
->rsv_start
&& rsv
->rsv_start
>= rsv
->rsv_end
) {
137 printk("Bad reservation %p (start >= end)\n",
141 if (prev
&& prev
->rsv_end
>= rsv
->rsv_start
) {
142 printk("Bad reservation %p (prev->end >= start)\n",
148 printk("Restarting reservation walk in verbose mode\n");
156 printk("Window map complete.\n");
160 #define rsv_window_dump(root, verbose) \
161 __rsv_window_dump((root), (verbose), __FUNCTION__)
163 #define rsv_window_dump(root, verbose) do {} while (0)
167 goal_in_my_reservation(struct ext3_reserve_window
*rsv
, int goal
,
168 unsigned int group
, struct super_block
* sb
)
170 unsigned long group_first_block
, group_last_block
;
172 group_first_block
= le32_to_cpu(EXT3_SB(sb
)->s_es
->s_first_data_block
) +
173 group
* EXT3_BLOCKS_PER_GROUP(sb
);
174 group_last_block
= group_first_block
+ EXT3_BLOCKS_PER_GROUP(sb
) - 1;
176 if ((rsv
->_rsv_start
> group_last_block
) ||
177 (rsv
->_rsv_end
< group_first_block
))
179 if ((goal
>= 0) && ((goal
+ group_first_block
< rsv
->_rsv_start
)
180 || (goal
+ group_first_block
> rsv
->_rsv_end
)))
186 * Find the reserved window which includes the goal, or the previous one
187 * if the goal is not in any window.
188 * Returns NULL if there are no windows or if all windows start after the goal.
190 static struct ext3_reserve_window_node
*
191 search_reserve_window(struct rb_root
*root
, unsigned long goal
)
193 struct rb_node
*n
= root
->rb_node
;
194 struct ext3_reserve_window_node
*rsv
;
200 rsv
= rb_entry(n
, struct ext3_reserve_window_node
, rsv_node
);
202 if (goal
< rsv
->rsv_start
)
204 else if (goal
> rsv
->rsv_end
)
210 * We've fallen off the end of the tree: the goal wasn't inside
211 * any particular node. OK, the previous node must be to one
212 * side of the interval containing the goal. If it's the RHS,
213 * we need to back up one.
215 if (rsv
->rsv_start
> goal
) {
216 n
= rb_prev(&rsv
->rsv_node
);
217 rsv
= rb_entry(n
, struct ext3_reserve_window_node
, rsv_node
);
222 void ext3_rsv_window_add(struct super_block
*sb
,
223 struct ext3_reserve_window_node
*rsv
)
225 struct rb_root
*root
= &EXT3_SB(sb
)->s_rsv_window_root
;
226 struct rb_node
*node
= &rsv
->rsv_node
;
227 unsigned int start
= rsv
->rsv_start
;
229 struct rb_node
** p
= &root
->rb_node
;
230 struct rb_node
* parent
= NULL
;
231 struct ext3_reserve_window_node
*this;
236 this = rb_entry(parent
, struct ext3_reserve_window_node
, rsv_node
);
238 if (start
< this->rsv_start
)
240 else if (start
> this->rsv_end
)
246 rb_link_node(node
, parent
, p
);
247 rb_insert_color(node
, root
);
250 static void rsv_window_remove(struct super_block
*sb
,
251 struct ext3_reserve_window_node
*rsv
)
253 rsv
->rsv_start
= EXT3_RESERVE_WINDOW_NOT_ALLOCATED
;
254 rsv
->rsv_end
= EXT3_RESERVE_WINDOW_NOT_ALLOCATED
;
255 rsv
->rsv_alloc_hit
= 0;
256 rb_erase(&rsv
->rsv_node
, &EXT3_SB(sb
)->s_rsv_window_root
);
259 static inline int rsv_is_empty(struct ext3_reserve_window
*rsv
)
261 /* a valid reservation end block could not be 0 */
262 return (rsv
->_rsv_end
== EXT3_RESERVE_WINDOW_NOT_ALLOCATED
);
264 void ext3_init_block_alloc_info(struct inode
*inode
)
266 struct ext3_inode_info
*ei
= EXT3_I(inode
);
267 struct ext3_block_alloc_info
*block_i
= ei
->i_block_alloc_info
;
268 struct super_block
*sb
= inode
->i_sb
;
270 block_i
= kmalloc(sizeof(*block_i
), GFP_NOFS
);
272 struct ext3_reserve_window_node
*rsv
= &block_i
->rsv_window_node
;
274 rsv
->rsv_start
= EXT3_RESERVE_WINDOW_NOT_ALLOCATED
;
275 rsv
->rsv_end
= EXT3_RESERVE_WINDOW_NOT_ALLOCATED
;
278 * if filesystem is mounted with NORESERVATION, the goal
279 * reservation window size is set to zero to indicate
280 * block reservation is off
282 if (!test_opt(sb
, RESERVATION
))
283 rsv
->rsv_goal_size
= 0;
285 rsv
->rsv_goal_size
= EXT3_DEFAULT_RESERVE_BLOCKS
;
286 rsv
->rsv_alloc_hit
= 0;
287 block_i
->last_alloc_logical_block
= 0;
288 block_i
->last_alloc_physical_block
= 0;
290 ei
->i_block_alloc_info
= block_i
;
293 void ext3_discard_reservation(struct inode
*inode
)
295 struct ext3_inode_info
*ei
= EXT3_I(inode
);
296 struct ext3_block_alloc_info
*block_i
= ei
->i_block_alloc_info
;
297 struct ext3_reserve_window_node
*rsv
;
298 spinlock_t
*rsv_lock
= &EXT3_SB(inode
->i_sb
)->s_rsv_window_lock
;
303 rsv
= &block_i
->rsv_window_node
;
304 if (!rsv_is_empty(&rsv
->rsv_window
)) {
306 if (!rsv_is_empty(&rsv
->rsv_window
))
307 rsv_window_remove(inode
->i_sb
, rsv
);
308 spin_unlock(rsv_lock
);
312 /* Free given blocks, update quota and i_blocks field */
313 void ext3_free_blocks_sb(handle_t
*handle
, struct super_block
*sb
,
314 unsigned long block
, unsigned long count
,
315 int *pdquot_freed_blocks
)
317 struct buffer_head
*bitmap_bh
= NULL
;
318 struct buffer_head
*gd_bh
;
319 unsigned long block_group
;
322 unsigned long overflow
;
323 struct ext3_group_desc
* desc
;
324 struct ext3_super_block
* es
;
325 struct ext3_sb_info
*sbi
;
327 unsigned group_freed
;
329 *pdquot_freed_blocks
= 0;
332 if (block
< le32_to_cpu(es
->s_first_data_block
) ||
333 block
+ count
< block
||
334 block
+ count
> le32_to_cpu(es
->s_blocks_count
)) {
335 ext3_error (sb
, "ext3_free_blocks",
336 "Freeing blocks not in datazone - "
337 "block = %lu, count = %lu", block
, count
);
341 ext3_debug ("freeing block(s) %lu-%lu\n", block
, block
+ count
- 1);
345 block_group
= (block
- le32_to_cpu(es
->s_first_data_block
)) /
346 EXT3_BLOCKS_PER_GROUP(sb
);
347 bit
= (block
- le32_to_cpu(es
->s_first_data_block
)) %
348 EXT3_BLOCKS_PER_GROUP(sb
);
350 * Check to see if we are freeing blocks across a group
353 if (bit
+ count
> EXT3_BLOCKS_PER_GROUP(sb
)) {
354 overflow
= bit
+ count
- EXT3_BLOCKS_PER_GROUP(sb
);
358 bitmap_bh
= read_block_bitmap(sb
, block_group
);
361 desc
= ext3_get_group_desc (sb
, block_group
, &gd_bh
);
365 if (in_range (le32_to_cpu(desc
->bg_block_bitmap
), block
, count
) ||
366 in_range (le32_to_cpu(desc
->bg_inode_bitmap
), block
, count
) ||
367 in_range (block
, le32_to_cpu(desc
->bg_inode_table
),
368 sbi
->s_itb_per_group
) ||
369 in_range (block
+ count
- 1, le32_to_cpu(desc
->bg_inode_table
),
370 sbi
->s_itb_per_group
))
371 ext3_error (sb
, "ext3_free_blocks",
372 "Freeing blocks in system zones - "
373 "Block = %lu, count = %lu",
377 * We are about to start releasing blocks in the bitmap,
378 * so we need undo access.
380 /* @@@ check errors */
381 BUFFER_TRACE(bitmap_bh
, "getting undo access");
382 err
= ext3_journal_get_undo_access(handle
, bitmap_bh
);
387 * We are about to modify some metadata. Call the journal APIs
388 * to unshare ->b_data if a currently-committing transaction is
391 BUFFER_TRACE(gd_bh
, "get_write_access");
392 err
= ext3_journal_get_write_access(handle
, gd_bh
);
396 jbd_lock_bh_state(bitmap_bh
);
398 for (i
= 0, group_freed
= 0; i
< count
; i
++) {
400 * An HJ special. This is expensive...
402 #ifdef CONFIG_JBD_DEBUG
403 jbd_unlock_bh_state(bitmap_bh
);
405 struct buffer_head
*debug_bh
;
406 debug_bh
= sb_find_get_block(sb
, block
+ i
);
408 BUFFER_TRACE(debug_bh
, "Deleted!");
409 if (!bh2jh(bitmap_bh
)->b_committed_data
)
410 BUFFER_TRACE(debug_bh
,
411 "No commited data in bitmap");
412 BUFFER_TRACE2(debug_bh
, bitmap_bh
, "bitmap");
416 jbd_lock_bh_state(bitmap_bh
);
418 if (need_resched()) {
419 jbd_unlock_bh_state(bitmap_bh
);
421 jbd_lock_bh_state(bitmap_bh
);
423 /* @@@ This prevents newly-allocated data from being
424 * freed and then reallocated within the same
427 * Ideally we would want to allow that to happen, but to
428 * do so requires making journal_forget() capable of
429 * revoking the queued write of a data block, which
430 * implies blocking on the journal lock. *forget()
431 * cannot block due to truncate races.
433 * Eventually we can fix this by making journal_forget()
434 * return a status indicating whether or not it was able
435 * to revoke the buffer. On successful revoke, it is
436 * safe not to set the allocation bit in the committed
437 * bitmap, because we know that there is no outstanding
438 * activity on the buffer any more and so it is safe to
441 BUFFER_TRACE(bitmap_bh
, "set in b_committed_data");
442 J_ASSERT_BH(bitmap_bh
,
443 bh2jh(bitmap_bh
)->b_committed_data
!= NULL
);
444 ext3_set_bit_atomic(sb_bgl_lock(sbi
, block_group
), bit
+ i
,
445 bh2jh(bitmap_bh
)->b_committed_data
);
448 * We clear the bit in the bitmap after setting the committed
449 * data bit, because this is the reverse order to that which
450 * the allocator uses.
452 BUFFER_TRACE(bitmap_bh
, "clear bit");
453 if (!ext3_clear_bit_atomic(sb_bgl_lock(sbi
, block_group
),
454 bit
+ i
, bitmap_bh
->b_data
)) {
455 jbd_unlock_bh_state(bitmap_bh
);
456 ext3_error(sb
, __FUNCTION__
,
457 "bit already cleared for block %lu", block
+ i
);
458 jbd_lock_bh_state(bitmap_bh
);
459 BUFFER_TRACE(bitmap_bh
, "bit already cleared");
464 jbd_unlock_bh_state(bitmap_bh
);
466 spin_lock(sb_bgl_lock(sbi
, block_group
));
467 desc
->bg_free_blocks_count
=
468 cpu_to_le16(le16_to_cpu(desc
->bg_free_blocks_count
) +
470 spin_unlock(sb_bgl_lock(sbi
, block_group
));
471 percpu_counter_mod(&sbi
->s_freeblocks_counter
, count
);
473 /* We dirtied the bitmap block */
474 BUFFER_TRACE(bitmap_bh
, "dirtied bitmap block");
475 err
= ext3_journal_dirty_metadata(handle
, bitmap_bh
);
477 /* And the group descriptor block */
478 BUFFER_TRACE(gd_bh
, "dirtied group descriptor block");
479 ret
= ext3_journal_dirty_metadata(handle
, gd_bh
);
481 *pdquot_freed_blocks
+= group_freed
;
483 if (overflow
&& !err
) {
491 ext3_std_error(sb
, err
);
495 /* Free given blocks, update quota and i_blocks field */
496 void ext3_free_blocks(handle_t
*handle
, struct inode
*inode
,
497 unsigned long block
, unsigned long count
)
499 struct super_block
* sb
;
500 int dquot_freed_blocks
;
504 printk ("ext3_free_blocks: nonexistent device");
507 ext3_free_blocks_sb(handle
, sb
, block
, count
, &dquot_freed_blocks
);
508 if (dquot_freed_blocks
)
509 DQUOT_FREE_BLOCK(inode
, dquot_freed_blocks
);
514 * For ext3 allocations, we must not reuse any blocks which are
515 * allocated in the bitmap buffer's "last committed data" copy. This
516 * prevents deletes from freeing up the page for reuse until we have
517 * committed the delete transaction.
519 * If we didn't do this, then deleting something and reallocating it as
520 * data would allow the old block to be overwritten before the
521 * transaction committed (because we force data to disk before commit).
522 * This would lead to corruption if we crashed between overwriting the
523 * data and committing the delete.
525 * @@@ We may want to make this allocation behaviour conditional on
526 * data-writes at some point, and disable it for metadata allocations or
529 static int ext3_test_allocatable(int nr
, struct buffer_head
*bh
)
532 struct journal_head
*jh
= bh2jh(bh
);
534 if (ext3_test_bit(nr
, bh
->b_data
))
537 jbd_lock_bh_state(bh
);
538 if (!jh
->b_committed_data
)
541 ret
= !ext3_test_bit(nr
, jh
->b_committed_data
);
542 jbd_unlock_bh_state(bh
);
547 bitmap_search_next_usable_block(int start
, struct buffer_head
*bh
,
551 struct journal_head
*jh
= bh2jh(bh
);
554 * The bitmap search --- search forward alternately through the actual
555 * bitmap and the last-committed copy until we find a bit free in
558 while (start
< maxblocks
) {
559 next
= ext3_find_next_zero_bit(bh
->b_data
, maxblocks
, start
);
560 if (next
>= maxblocks
)
562 if (ext3_test_allocatable(next
, bh
))
564 jbd_lock_bh_state(bh
);
565 if (jh
->b_committed_data
)
566 start
= ext3_find_next_zero_bit(jh
->b_committed_data
,
568 jbd_unlock_bh_state(bh
);
574 * Find an allocatable block in a bitmap. We honour both the bitmap and
575 * its last-committed copy (if that exists), and perform the "most
576 * appropriate allocation" algorithm of looking for a free block near
577 * the initial goal; then for a free byte somewhere in the bitmap; then
578 * for any free bit in the bitmap.
581 find_next_usable_block(int start
, struct buffer_head
*bh
, int maxblocks
)
588 * The goal was occupied; search forward for a free
589 * block within the next XX blocks.
591 * end_goal is more or less random, but it has to be
592 * less than EXT3_BLOCKS_PER_GROUP. Aligning up to the
593 * next 64-bit boundary is simple..
595 int end_goal
= (start
+ 63) & ~63;
596 if (end_goal
> maxblocks
)
597 end_goal
= maxblocks
;
598 here
= ext3_find_next_zero_bit(bh
->b_data
, end_goal
, start
);
599 if (here
< end_goal
&& ext3_test_allocatable(here
, bh
))
601 ext3_debug("Bit not found near goal\n");
608 p
= ((char *)bh
->b_data
) + (here
>> 3);
609 r
= memscan(p
, 0, (maxblocks
- here
+ 7) >> 3);
610 next
= (r
- ((char *)bh
->b_data
)) << 3;
612 if (next
< maxblocks
&& next
>= start
&& ext3_test_allocatable(next
, bh
))
616 * The bitmap search --- search forward alternately through the actual
617 * bitmap and the last-committed copy until we find a bit free in
620 here
= bitmap_search_next_usable_block(here
, bh
, maxblocks
);
625 * We think we can allocate this block in this bitmap. Try to set the bit.
626 * If that succeeds then check that nobody has allocated and then freed the
627 * block since we saw that is was not marked in b_committed_data. If it _was_
628 * allocated and freed then clear the bit in the bitmap again and return
632 claim_block(spinlock_t
*lock
, int block
, struct buffer_head
*bh
)
634 struct journal_head
*jh
= bh2jh(bh
);
637 if (ext3_set_bit_atomic(lock
, block
, bh
->b_data
))
639 jbd_lock_bh_state(bh
);
640 if (jh
->b_committed_data
&& ext3_test_bit(block
,jh
->b_committed_data
)) {
641 ext3_clear_bit_atomic(lock
, block
, bh
->b_data
);
646 jbd_unlock_bh_state(bh
);
651 * If we failed to allocate the desired block then we may end up crossing to a
652 * new bitmap. In that case we must release write access to the old one via
653 * ext3_journal_release_buffer(), else we'll run out of credits.
656 ext3_try_to_allocate(struct super_block
*sb
, handle_t
*handle
, int group
,
657 struct buffer_head
*bitmap_bh
, int goal
, struct ext3_reserve_window
*my_rsv
)
659 int group_first_block
, start
, end
;
661 /* we do allocation within the reservation window if we have a window */
664 le32_to_cpu(EXT3_SB(sb
)->s_es
->s_first_data_block
) +
665 group
* EXT3_BLOCKS_PER_GROUP(sb
);
666 if (my_rsv
->_rsv_start
>= group_first_block
)
667 start
= my_rsv
->_rsv_start
- group_first_block
;
669 /* reservation window cross group boundary */
671 end
= my_rsv
->_rsv_end
- group_first_block
+ 1;
672 if (end
> EXT3_BLOCKS_PER_GROUP(sb
))
673 /* reservation window crosses group boundary */
674 end
= EXT3_BLOCKS_PER_GROUP(sb
);
675 if ((start
<= goal
) && (goal
< end
))
684 end
= EXT3_BLOCKS_PER_GROUP(sb
);
687 BUG_ON(start
> EXT3_BLOCKS_PER_GROUP(sb
));
690 if (goal
< 0 || !ext3_test_allocatable(goal
, bitmap_bh
)) {
691 goal
= find_next_usable_block(start
, bitmap_bh
, end
);
697 for (i
= 0; i
< 7 && goal
> start
&&
698 ext3_test_allocatable(goal
- 1,
706 if (!claim_block(sb_bgl_lock(EXT3_SB(sb
), group
), goal
, bitmap_bh
)) {
708 * The block was allocated by another thread, or it was
709 * allocated and then freed by another thread
723 * find_next_reservable_window():
724 * find a reservable space within the given range.
725 * It does not allocate the reservation window for now:
726 * alloc_new_reservation() will do the work later.
728 * @search_head: the head of the searching list;
729 * This is not necessarily the list head of the whole filesystem
731 * We have both head and start_block to assist the search
732 * for the reservable space. The list starts from head,
733 * but we will shift to the place where start_block is,
734 * then start from there, when looking for a reservable space.
736 * @size: the target new reservation window size
738 * @group_first_block: the first block we consider to start
739 * the real search from
742 * the maximum block number that our goal reservable space
743 * could start from. This is normally the last block in this
744 * group. The search will end when we found the start of next
745 * possible reservable space is out of this boundary.
746 * This could handle the cross boundary reservation window
749 * basically we search from the given range, rather than the whole
750 * reservation double linked list, (start_block, last_block)
751 * to find a free region that is of my size and has not
755 static int find_next_reservable_window(
756 struct ext3_reserve_window_node
*search_head
,
757 struct ext3_reserve_window_node
*my_rsv
,
758 struct super_block
* sb
, int start_block
,
761 struct rb_node
*next
;
762 struct ext3_reserve_window_node
*rsv
, *prev
;
764 int size
= my_rsv
->rsv_goal_size
;
766 /* TODO: make the start of the reservation window byte-aligned */
767 /* cur = *start_block & ~7;*/
774 if (cur
<= rsv
->rsv_end
)
775 cur
= rsv
->rsv_end
+ 1;
778 * in the case we could not find a reservable space
779 * that is what is expected, during the re-search, we could
780 * remember what's the largest reservable space we could have
781 * and return that one.
783 * For now it will fail if we could not find the reservable
784 * space with expected-size (or more)...
786 if (cur
> last_block
)
787 return -1; /* fail */
790 next
= rb_next(&rsv
->rsv_node
);
791 rsv
= list_entry(next
,struct ext3_reserve_window_node
,rsv_node
);
794 * Reached the last reservation, we can just append to the
800 if (cur
+ size
<= rsv
->rsv_start
) {
802 * Found a reserveable space big enough. We could
803 * have a reservation across the group boundary here
809 * we come here either :
810 * when we reach the end of the whole list,
811 * and there is empty reservable space after last entry in the list.
812 * append it to the end of the list.
814 * or we found one reservable space in the middle of the list,
815 * return the reservation window that we could append to.
819 if ((prev
!= my_rsv
) && (!rsv_is_empty(&my_rsv
->rsv_window
)))
820 rsv_window_remove(sb
, my_rsv
);
823 * Let's book the whole avaliable window for now. We will check the
824 * disk bitmap later and then, if there are free blocks then we adjust
825 * the window size if it's larger than requested.
826 * Otherwise, we will remove this node from the tree next time
827 * call find_next_reservable_window.
829 my_rsv
->rsv_start
= cur
;
830 my_rsv
->rsv_end
= cur
+ size
- 1;
831 my_rsv
->rsv_alloc_hit
= 0;
834 ext3_rsv_window_add(sb
, my_rsv
);
840 * alloc_new_reservation()--allocate a new reservation window
842 * To make a new reservation, we search part of the filesystem
843 * reservation list (the list that inside the group). We try to
844 * allocate a new reservation window near the allocation goal,
845 * or the beginning of the group, if there is no goal.
847 * We first find a reservable space after the goal, then from
848 * there, we check the bitmap for the first free block after
849 * it. If there is no free block until the end of group, then the
850 * whole group is full, we failed. Otherwise, check if the free
851 * block is inside the expected reservable space, if so, we
853 * If the first free block is outside the reservable space, then
854 * start from the first free block, we search for next available
857 * on succeed, a new reservation will be found and inserted into the list
858 * It contains at least one free block, and it does not overlap with other
859 * reservation windows.
861 * failed: we failed to find a reservation window in this group
863 * @rsv: the reservation
865 * @goal: The goal (group-relative). It is where the search for a
866 * free reservable space should start from.
867 * if we have a goal(goal >0 ), then start from there,
868 * no goal(goal = -1), we start from the first block
871 * @sb: the super block
872 * @group: the group we are trying to allocate in
873 * @bitmap_bh: the block group block bitmap
876 static int alloc_new_reservation(struct ext3_reserve_window_node
*my_rsv
,
877 int goal
, struct super_block
*sb
,
878 unsigned int group
, struct buffer_head
*bitmap_bh
)
880 struct ext3_reserve_window_node
*search_head
;
881 int group_first_block
, group_end_block
, start_block
;
882 int first_free_block
;
883 struct rb_root
*fs_rsv_root
= &EXT3_SB(sb
)->s_rsv_window_root
;
886 spinlock_t
*rsv_lock
= &EXT3_SB(sb
)->s_rsv_window_lock
;
888 group_first_block
= le32_to_cpu(EXT3_SB(sb
)->s_es
->s_first_data_block
) +
889 group
* EXT3_BLOCKS_PER_GROUP(sb
);
890 group_end_block
= group_first_block
+ EXT3_BLOCKS_PER_GROUP(sb
) - 1;
893 start_block
= group_first_block
;
895 start_block
= goal
+ group_first_block
;
897 size
= my_rsv
->rsv_goal_size
;
899 if (!rsv_is_empty(&my_rsv
->rsv_window
)) {
901 * if the old reservation is cross group boundary
902 * and if the goal is inside the old reservation window,
903 * we will come here when we just failed to allocate from
904 * the first part of the window. We still have another part
905 * that belongs to the next group. In this case, there is no
906 * point to discard our window and try to allocate a new one
907 * in this group(which will fail). we should
908 * keep the reservation window, just simply move on.
910 * Maybe we could shift the start block of the reservation
911 * window to the first block of next group.
914 if ((my_rsv
->rsv_start
<= group_end_block
) &&
915 (my_rsv
->rsv_end
> group_end_block
) &&
916 (start_block
>= my_rsv
->rsv_start
))
919 if ((my_rsv
->rsv_alloc_hit
>
920 (my_rsv
->rsv_end
- my_rsv
->rsv_start
+ 1) / 2)) {
922 * if we previously allocation hit ration is greater than half
923 * we double the size of reservation window next time
924 * otherwise keep the same
927 if (size
> EXT3_MAX_RESERVE_BLOCKS
)
928 size
= EXT3_MAX_RESERVE_BLOCKS
;
929 my_rsv
->rsv_goal_size
= size
;
935 * shift the search start to the window near the goal block
937 search_head
= search_reserve_window(fs_rsv_root
, start_block
);
940 * find_next_reservable_window() simply finds a reservable window
941 * inside the given range(start_block, group_end_block).
943 * To make sure the reservation window has a free bit inside it, we
944 * need to check the bitmap after we found a reservable window.
947 ret
= find_next_reservable_window(search_head
, my_rsv
, sb
,
948 start_block
, group_end_block
);
951 if (!rsv_is_empty(&my_rsv
->rsv_window
))
952 rsv_window_remove(sb
, my_rsv
);
953 spin_unlock(rsv_lock
);
958 * On success, find_next_reservable_window() returns the
959 * reservation window where there is a reservable space after it.
960 * Before we reserve this reservable space, we need
961 * to make sure there is at least a free block inside this region.
963 * searching the first free bit on the block bitmap and copy of
964 * last committed bitmap alternatively, until we found a allocatable
965 * block. Search start from the start block of the reservable space
968 spin_unlock(rsv_lock
);
969 first_free_block
= bitmap_search_next_usable_block(
970 my_rsv
->rsv_start
- group_first_block
,
971 bitmap_bh
, group_end_block
- group_first_block
+ 1);
973 if (first_free_block
< 0) {
975 * no free block left on the bitmap, no point
976 * to reserve the space. return failed.
979 if (!rsv_is_empty(&my_rsv
->rsv_window
))
980 rsv_window_remove(sb
, my_rsv
);
981 spin_unlock(rsv_lock
);
982 return -1; /* failed */
985 start_block
= first_free_block
+ group_first_block
;
987 * check if the first free block is within the
988 * free space we just reserved
990 if (start_block
>= my_rsv
->rsv_start
&& start_block
< my_rsv
->rsv_end
)
991 return 0; /* success */
993 * if the first free bit we found is out of the reservable space
994 * continue search for next reservable space,
995 * start from where the free block is,
996 * we also shift the list head to where we stopped last time
998 search_head
= my_rsv
;
1004 * This is the main function used to allocate a new block and its reservation
1007 * Each time when a new block allocation is need, first try to allocate from
1008 * its own reservation. If it does not have a reservation window, instead of
1009 * looking for a free bit on bitmap first, then look up the reservation list to
1010 * see if it is inside somebody else's reservation window, we try to allocate a
1011 * reservation window for it starting from the goal first. Then do the block
1012 * allocation within the reservation window.
1014 * This will avoid keeping on searching the reservation list again and
1015 * again when somebody is looking for a free block (without
1016 * reservation), and there are lots of free blocks, but they are all
1019 * We use a sorted double linked list for the per-filesystem reservation list.
1020 * The insert, remove and find a free space(non-reserved) operations for the
1021 * sorted double linked list should be fast.
1025 ext3_try_to_allocate_with_rsv(struct super_block
*sb
, handle_t
*handle
,
1026 unsigned int group
, struct buffer_head
*bitmap_bh
,
1027 int goal
, struct ext3_reserve_window_node
* my_rsv
,
1030 unsigned long group_first_block
;
1037 * Make sure we use undo access for the bitmap, because it is critical
1038 * that we do the frozen_data COW on bitmap buffers in all cases even
1039 * if the buffer is in BJ_Forget state in the committing transaction.
1041 BUFFER_TRACE(bitmap_bh
, "get undo access for new block");
1042 fatal
= ext3_journal_get_undo_access(handle
, bitmap_bh
);
1049 * we don't deal with reservation when
1050 * filesystem is mounted without reservation
1051 * or the file is not a regular file
1052 * or last attempt to allocate a block with reservation turned on failed
1054 if (my_rsv
== NULL
) {
1055 ret
= ext3_try_to_allocate(sb
, handle
, group
, bitmap_bh
, goal
, NULL
);
1059 * goal is a group relative block number (if there is a goal)
1060 * 0 < goal < EXT3_BLOCKS_PER_GROUP(sb)
1061 * first block is a filesystem wide block number
1062 * first block is the block number of the first block in this group
1064 group_first_block
= le32_to_cpu(EXT3_SB(sb
)->s_es
->s_first_data_block
) +
1065 group
* EXT3_BLOCKS_PER_GROUP(sb
);
1068 * Basically we will allocate a new block from inode's reservation
1071 * We need to allocate a new reservation window, if:
1072 * a) inode does not have a reservation window; or
1073 * b) last attempt to allocate a block from existing reservation
1075 * c) we come here with a goal and with a reservation window
1077 * We do not need to allocate a new reservation window if we come here
1078 * at the beginning with a goal and the goal is inside the window, or
1079 * we don't have a goal but already have a reservation window.
1080 * then we could go to allocate from the reservation window directly.
1083 if (rsv_is_empty(&my_rsv
->rsv_window
) || (ret
< 0) ||
1084 !goal_in_my_reservation(&my_rsv
->rsv_window
, goal
, group
, sb
)) {
1085 ret
= alloc_new_reservation(my_rsv
, goal
, sb
,
1090 if (!goal_in_my_reservation(&my_rsv
->rsv_window
, goal
, group
, sb
))
1093 if ((my_rsv
->rsv_start
>= group_first_block
+ EXT3_BLOCKS_PER_GROUP(sb
))
1094 || (my_rsv
->rsv_end
< group_first_block
))
1096 ret
= ext3_try_to_allocate(sb
, handle
, group
, bitmap_bh
, goal
,
1097 &my_rsv
->rsv_window
);
1099 my_rsv
->rsv_alloc_hit
++;
1100 break; /* succeed */
1105 BUFFER_TRACE(bitmap_bh
, "journal_dirty_metadata for "
1107 fatal
= ext3_journal_dirty_metadata(handle
, bitmap_bh
);
1115 BUFFER_TRACE(bitmap_bh
, "journal_release_buffer");
1116 ext3_journal_release_buffer(handle
, bitmap_bh
);
1120 static int ext3_has_free_blocks(struct ext3_sb_info
*sbi
)
1122 int free_blocks
, root_blocks
;
1124 free_blocks
= percpu_counter_read_positive(&sbi
->s_freeblocks_counter
);
1125 root_blocks
= le32_to_cpu(sbi
->s_es
->s_r_blocks_count
);
1126 if (free_blocks
< root_blocks
+ 1 && !capable(CAP_SYS_RESOURCE
) &&
1127 sbi
->s_resuid
!= current
->fsuid
&&
1128 (sbi
->s_resgid
== 0 || !in_group_p (sbi
->s_resgid
))) {
1135 * ext3_should_retry_alloc() is called when ENOSPC is returned, and if
1136 * it is profitable to retry the operation, this function will wait
1137 * for the current or commiting transaction to complete, and then
1140 int ext3_should_retry_alloc(struct super_block
*sb
, int *retries
)
1142 if (!ext3_has_free_blocks(EXT3_SB(sb
)) || (*retries
)++ > 3)
1145 jbd_debug(1, "%s: retrying operation after ENOSPC\n", sb
->s_id
);
1147 return journal_force_commit_nested(EXT3_SB(sb
)->s_journal
);
1151 * ext3_new_block uses a goal block to assist allocation. If the goal is
1152 * free, or there is a free block within 32 blocks of the goal, that block
1153 * is allocated. Otherwise a forward search is made for a free block; within
1154 * each block group the search first looks for an entire free byte in the block
1155 * bitmap, and then for any free bit if that fails.
1156 * This function also updates quota and i_blocks field.
1158 int ext3_new_block(handle_t
*handle
, struct inode
*inode
,
1159 unsigned long goal
, int *errp
)
1161 struct buffer_head
*bitmap_bh
= NULL
;
1162 struct buffer_head
*gdp_bh
;
1166 int bgi
; /* blockgroup iteration index */
1169 int performed_allocation
= 0;
1171 struct super_block
*sb
;
1172 struct ext3_group_desc
*gdp
;
1173 struct ext3_super_block
*es
;
1174 struct ext3_sb_info
*sbi
;
1175 struct ext3_reserve_window_node
*my_rsv
= NULL
;
1176 struct ext3_block_alloc_info
*block_i
;
1177 unsigned short windowsz
= 0;
1179 static int goal_hits
, goal_attempts
;
1181 unsigned long ngroups
;
1186 printk("ext3_new_block: nonexistent device");
1191 * Check quota for allocation of this block.
1193 if (DQUOT_ALLOC_BLOCK(inode
, 1)) {
1199 es
= EXT3_SB(sb
)->s_es
;
1200 ext3_debug("goal=%lu.\n", goal
);
1202 * Allocate a block from reservation only when
1203 * filesystem is mounted with reservation(default,-o reservation), and
1204 * it's a regular file, and
1205 * the desired window size is greater than 0 (One could use ioctl
1206 * command EXT3_IOC_SETRSVSZ to set the window size to 0 to turn off
1207 * reservation on that particular file)
1209 block_i
= EXT3_I(inode
)->i_block_alloc_info
;
1210 if (block_i
&& ((windowsz
= block_i
->rsv_window_node
.rsv_goal_size
) > 0))
1211 my_rsv
= &block_i
->rsv_window_node
;
1213 if (!ext3_has_free_blocks(sbi
)) {
1219 * First, test whether the goal block is free.
1221 if (goal
< le32_to_cpu(es
->s_first_data_block
) ||
1222 goal
>= le32_to_cpu(es
->s_blocks_count
))
1223 goal
= le32_to_cpu(es
->s_first_data_block
);
1224 group_no
= (goal
- le32_to_cpu(es
->s_first_data_block
)) /
1225 EXT3_BLOCKS_PER_GROUP(sb
);
1226 gdp
= ext3_get_group_desc(sb
, group_no
, &gdp_bh
);
1230 goal_group
= group_no
;
1232 free_blocks
= le16_to_cpu(gdp
->bg_free_blocks_count
);
1234 * if there is not enough free blocks to make a new resevation
1235 * turn off reservation for this allocation
1237 if (my_rsv
&& (free_blocks
< windowsz
)
1238 && (rsv_is_empty(&my_rsv
->rsv_window
)))
1241 if (free_blocks
> 0) {
1242 ret_block
= ((goal
- le32_to_cpu(es
->s_first_data_block
)) %
1243 EXT3_BLOCKS_PER_GROUP(sb
));
1244 bitmap_bh
= read_block_bitmap(sb
, group_no
);
1247 ret_block
= ext3_try_to_allocate_with_rsv(sb
, handle
, group_no
,
1248 bitmap_bh
, ret_block
, my_rsv
, &fatal
);
1255 ngroups
= EXT3_SB(sb
)->s_groups_count
;
1259 * Now search the rest of the groups. We assume that
1260 * i and gdp correctly point to the last group visited.
1262 for (bgi
= 0; bgi
< ngroups
; bgi
++) {
1264 if (group_no
>= ngroups
)
1266 gdp
= ext3_get_group_desc(sb
, group_no
, &gdp_bh
);
1271 free_blocks
= le16_to_cpu(gdp
->bg_free_blocks_count
);
1273 * skip this group if the number of
1274 * free blocks is less than half of the reservation
1277 if (free_blocks
<= (windowsz
/2))
1281 bitmap_bh
= read_block_bitmap(sb
, group_no
);
1284 ret_block
= ext3_try_to_allocate_with_rsv(sb
, handle
, group_no
,
1285 bitmap_bh
, -1, my_rsv
, &fatal
);
1292 * We may end up a bogus ealier ENOSPC error due to
1293 * filesystem is "full" of reservations, but
1294 * there maybe indeed free blocks avaliable on disk
1295 * In this case, we just forget about the reservations
1296 * just do block allocation as without reservations.
1300 group_no
= goal_group
;
1303 /* No space left on the device */
1309 ext3_debug("using block group %d(%d)\n",
1310 group_no
, gdp
->bg_free_blocks_count
);
1312 BUFFER_TRACE(gdp_bh
, "get_write_access");
1313 fatal
= ext3_journal_get_write_access(handle
, gdp_bh
);
1317 target_block
= ret_block
+ group_no
* EXT3_BLOCKS_PER_GROUP(sb
)
1318 + le32_to_cpu(es
->s_first_data_block
);
1320 if (target_block
== le32_to_cpu(gdp
->bg_block_bitmap
) ||
1321 target_block
== le32_to_cpu(gdp
->bg_inode_bitmap
) ||
1322 in_range(target_block
, le32_to_cpu(gdp
->bg_inode_table
),
1323 EXT3_SB(sb
)->s_itb_per_group
))
1324 ext3_error(sb
, "ext3_new_block",
1325 "Allocating block in system zone - "
1326 "block = %u", target_block
);
1328 performed_allocation
= 1;
1330 #ifdef CONFIG_JBD_DEBUG
1332 struct buffer_head
*debug_bh
;
1334 /* Record bitmap buffer state in the newly allocated block */
1335 debug_bh
= sb_find_get_block(sb
, target_block
);
1337 BUFFER_TRACE(debug_bh
, "state when allocated");
1338 BUFFER_TRACE2(debug_bh
, bitmap_bh
, "bitmap state");
1342 jbd_lock_bh_state(bitmap_bh
);
1343 spin_lock(sb_bgl_lock(sbi
, group_no
));
1344 if (buffer_jbd(bitmap_bh
) && bh2jh(bitmap_bh
)->b_committed_data
) {
1345 if (ext3_test_bit(ret_block
,
1346 bh2jh(bitmap_bh
)->b_committed_data
)) {
1347 printk("%s: block was unexpectedly set in "
1348 "b_committed_data\n", __FUNCTION__
);
1351 ext3_debug("found bit %d\n", ret_block
);
1352 spin_unlock(sb_bgl_lock(sbi
, group_no
));
1353 jbd_unlock_bh_state(bitmap_bh
);
1356 /* ret_block was blockgroup-relative. Now it becomes fs-relative */
1357 ret_block
= target_block
;
1359 if (ret_block
>= le32_to_cpu(es
->s_blocks_count
)) {
1360 ext3_error(sb
, "ext3_new_block",
1361 "block(%d) >= blocks count(%d) - "
1362 "block_group = %d, es == %p ", ret_block
,
1363 le32_to_cpu(es
->s_blocks_count
), group_no
, es
);
1368 * It is up to the caller to add the new buffer to a journal
1369 * list of some description. We don't know in advance whether
1370 * the caller wants to use it as metadata or data.
1372 ext3_debug("allocating block %d. Goal hits %d of %d.\n",
1373 ret_block
, goal_hits
, goal_attempts
);
1375 spin_lock(sb_bgl_lock(sbi
, group_no
));
1376 gdp
->bg_free_blocks_count
=
1377 cpu_to_le16(le16_to_cpu(gdp
->bg_free_blocks_count
) - 1);
1378 spin_unlock(sb_bgl_lock(sbi
, group_no
));
1379 percpu_counter_mod(&sbi
->s_freeblocks_counter
, -1);
1381 BUFFER_TRACE(gdp_bh
, "journal_dirty_metadata for group descriptor");
1382 err
= ext3_journal_dirty_metadata(handle
, gdp_bh
);
1399 ext3_std_error(sb
, fatal
);
1402 * Undo the block allocation
1404 if (!performed_allocation
)
1405 DQUOT_FREE_BLOCK(inode
, 1);
1410 unsigned long ext3_count_free_blocks(struct super_block
*sb
)
1412 unsigned long desc_count
;
1413 struct ext3_group_desc
*gdp
;
1415 unsigned long ngroups
= EXT3_SB(sb
)->s_groups_count
;
1417 struct ext3_super_block
*es
;
1418 unsigned long bitmap_count
, x
;
1419 struct buffer_head
*bitmap_bh
= NULL
;
1421 es
= EXT3_SB(sb
)->s_es
;
1427 for (i
= 0; i
< ngroups
; i
++) {
1428 gdp
= ext3_get_group_desc(sb
, i
, NULL
);
1431 desc_count
+= le16_to_cpu(gdp
->bg_free_blocks_count
);
1433 bitmap_bh
= read_block_bitmap(sb
, i
);
1434 if (bitmap_bh
== NULL
)
1437 x
= ext3_count_free(bitmap_bh
, sb
->s_blocksize
);
1438 printk("group %d: stored = %d, counted = %lu\n",
1439 i
, le16_to_cpu(gdp
->bg_free_blocks_count
), x
);
1443 printk("ext3_count_free_blocks: stored = %u, computed = %lu, %lu\n",
1444 le32_to_cpu(es
->s_free_blocks_count
), desc_count
, bitmap_count
);
1445 return bitmap_count
;
1449 for (i
= 0; i
< ngroups
; i
++) {
1450 gdp
= ext3_get_group_desc(sb
, i
, NULL
);
1453 desc_count
+= le16_to_cpu(gdp
->bg_free_blocks_count
);
1461 block_in_use(unsigned long block
, struct super_block
*sb
, unsigned char *map
)
1463 return ext3_test_bit ((block
-
1464 le32_to_cpu(EXT3_SB(sb
)->s_es
->s_first_data_block
)) %
1465 EXT3_BLOCKS_PER_GROUP(sb
), map
);
1468 static inline int test_root(int a
, int b
)
1477 static int ext3_group_sparse(int group
)
1483 return (test_root(group
, 7) || test_root(group
, 5) ||
1484 test_root(group
, 3));
1488 * ext3_bg_has_super - number of blocks used by the superblock in group
1489 * @sb: superblock for filesystem
1490 * @group: group number to check
1492 * Return the number of blocks used by the superblock (primary or backup)
1493 * in this group. Currently this will be only 0 or 1.
1495 int ext3_bg_has_super(struct super_block
*sb
, int group
)
1497 if (EXT3_HAS_RO_COMPAT_FEATURE(sb
,EXT3_FEATURE_RO_COMPAT_SPARSE_SUPER
)&&
1498 !ext3_group_sparse(group
))
1504 * ext3_bg_num_gdb - number of blocks used by the group table in group
1505 * @sb: superblock for filesystem
1506 * @group: group number to check
1508 * Return the number of blocks used by the group descriptor table
1509 * (primary or backup) in this group. In the future there may be a
1510 * different number of descriptor blocks in each group.
1512 unsigned long ext3_bg_num_gdb(struct super_block
*sb
, int group
)
1514 if (EXT3_HAS_RO_COMPAT_FEATURE(sb
,EXT3_FEATURE_RO_COMPAT_SPARSE_SUPER
)&&
1515 !ext3_group_sparse(group
))
1517 return EXT3_SB(sb
)->s_gdb_count
;