3 * Written by Mark Hemment, 1996/97.
4 * (markhe@nextd.demon.co.uk)
6 * kmem_cache_destroy() + some cleanup - 1999 Andrea Arcangeli
8 * Major cleanup, different bufctl logic, per-cpu arrays
9 * (c) 2000 Manfred Spraul
11 * Cleanup, make the head arrays unconditional, preparation for NUMA
12 * (c) 2002 Manfred Spraul
14 * An implementation of the Slab Allocator as described in outline in;
15 * UNIX Internals: The New Frontiers by Uresh Vahalia
16 * Pub: Prentice Hall ISBN 0-13-101908-2
17 * or with a little more detail in;
18 * The Slab Allocator: An Object-Caching Kernel Memory Allocator
19 * Jeff Bonwick (Sun Microsystems).
20 * Presented at: USENIX Summer 1994 Technical Conference
22 * The memory is organized in caches, one cache for each object type.
23 * (e.g. inode_cache, dentry_cache, buffer_head, vm_area_struct)
24 * Each cache consists out of many slabs (they are small (usually one
25 * page long) and always contiguous), and each slab contains multiple
26 * initialized objects.
28 * This means, that your constructor is used only for newly allocated
29 * slabs and you must pass objects with the same intializations to
32 * Each cache can only support one memory type (GFP_DMA, GFP_HIGHMEM,
33 * normal). If you need a special memory type, then must create a new
34 * cache for that memory type.
36 * In order to reduce fragmentation, the slabs are sorted in 3 groups:
37 * full slabs with 0 free objects
39 * empty slabs with no allocated objects
41 * If partial slabs exist, then new allocations come from these slabs,
42 * otherwise from empty slabs or new slabs are allocated.
44 * kmem_cache_destroy() CAN CRASH if you try to allocate from the cache
45 * during kmem_cache_destroy(). The caller must prevent concurrent allocs.
47 * Each cache has a short per-cpu head array, most allocs
48 * and frees go into that array, and if that array overflows, then 1/2
49 * of the entries in the array are given back into the global cache.
50 * The head array is strictly LIFO and should improve the cache hit rates.
51 * On SMP, it additionally reduces the spinlock operations.
53 * The c_cpuarray may not be read with enabled local interrupts -
54 * it's changed with a smp_call_function().
56 * SMP synchronization:
57 * constructors and destructors are called without any locking.
58 * Several members in kmem_cache_t and struct slab never change, they
59 * are accessed without any locking.
60 * The per-cpu arrays are never accessed from the wrong cpu, no locking,
61 * and local interrupts are disabled so slab code is preempt-safe.
62 * The non-constant members are protected with a per-cache irq spinlock.
64 * Many thanks to Mark Hemment, who wrote another per-cpu slab patch
65 * in 2000 - many ideas in the current implementation are derived from
68 * Further notes from the original documentation:
70 * 11 April '97. Started multi-threading - markhe
71 * The global cache-chain is protected by the semaphore 'cache_chain_sem'.
72 * The sem is only needed when accessing/extending the cache-chain, which
73 * can never happen inside an interrupt (kmem_cache_create(),
74 * kmem_cache_shrink() and kmem_cache_reap()).
76 * At present, each engine can be growing a cache. This should be blocked.
78 * 15 March 2005. NUMA slab allocator.
79 * Shai Fultheim <shai@scalex86.org>.
80 * Shobhit Dayal <shobhit@calsoftinc.com>
81 * Alok N Kataria <alokk@calsoftinc.com>
82 * Christoph Lameter <christoph@lameter.com>
84 * Modified the slab allocator to be node aware on NUMA systems.
85 * Each node has its own list of partial, free and full slabs.
86 * All object allocations for a node occur from node specific slab lists.
89 #include <linux/config.h>
90 #include <linux/slab.h>
92 #include <linux/swap.h>
93 #include <linux/cache.h>
94 #include <linux/interrupt.h>
95 #include <linux/init.h>
96 #include <linux/compiler.h>
97 #include <linux/seq_file.h>
98 #include <linux/notifier.h>
99 #include <linux/kallsyms.h>
100 #include <linux/cpu.h>
101 #include <linux/sysctl.h>
102 #include <linux/module.h>
103 #include <linux/rcupdate.h>
104 #include <linux/string.h>
105 #include <linux/nodemask.h>
107 #include <asm/uaccess.h>
108 #include <asm/cacheflush.h>
109 #include <asm/tlbflush.h>
110 #include <asm/page.h>
113 * DEBUG - 1 for kmem_cache_create() to honour; SLAB_DEBUG_INITIAL,
114 * SLAB_RED_ZONE & SLAB_POISON.
115 * 0 for faster, smaller code (especially in the critical paths).
117 * STATS - 1 to collect stats for /proc/slabinfo.
118 * 0 for faster, smaller code (especially in the critical paths).
120 * FORCED_DEBUG - 1 enables SLAB_RED_ZONE and SLAB_POISON (if possible)
123 #ifdef CONFIG_DEBUG_SLAB
126 #define FORCED_DEBUG 1
130 #define FORCED_DEBUG 0
133 /* Shouldn't this be in a header file somewhere? */
134 #define BYTES_PER_WORD sizeof(void *)
136 #ifndef cache_line_size
137 #define cache_line_size() L1_CACHE_BYTES
140 #ifndef ARCH_KMALLOC_MINALIGN
142 * Enforce a minimum alignment for the kmalloc caches.
143 * Usually, the kmalloc caches are cache_line_size() aligned, except when
144 * DEBUG and FORCED_DEBUG are enabled, then they are BYTES_PER_WORD aligned.
145 * Some archs want to perform DMA into kmalloc caches and need a guaranteed
146 * alignment larger than BYTES_PER_WORD. ARCH_KMALLOC_MINALIGN allows that.
147 * Note that this flag disables some debug features.
149 #define ARCH_KMALLOC_MINALIGN 0
152 #ifndef ARCH_SLAB_MINALIGN
154 * Enforce a minimum alignment for all caches.
155 * Intended for archs that get misalignment faults even for BYTES_PER_WORD
156 * aligned buffers. Includes ARCH_KMALLOC_MINALIGN.
157 * If possible: Do not enable this flag for CONFIG_DEBUG_SLAB, it disables
158 * some debug features.
160 #define ARCH_SLAB_MINALIGN 0
163 #ifndef ARCH_KMALLOC_FLAGS
164 #define ARCH_KMALLOC_FLAGS SLAB_HWCACHE_ALIGN
167 /* Legal flag mask for kmem_cache_create(). */
169 # define CREATE_MASK (SLAB_DEBUG_INITIAL | SLAB_RED_ZONE | \
170 SLAB_POISON | SLAB_HWCACHE_ALIGN | \
171 SLAB_NO_REAP | SLAB_CACHE_DMA | \
172 SLAB_MUST_HWCACHE_ALIGN | SLAB_STORE_USER | \
173 SLAB_RECLAIM_ACCOUNT | SLAB_PANIC | \
176 # define CREATE_MASK (SLAB_HWCACHE_ALIGN | SLAB_NO_REAP | \
177 SLAB_CACHE_DMA | SLAB_MUST_HWCACHE_ALIGN | \
178 SLAB_RECLAIM_ACCOUNT | SLAB_PANIC | \
185 * Bufctl's are used for linking objs within a slab
188 * This implementation relies on "struct page" for locating the cache &
189 * slab an object belongs to.
190 * This allows the bufctl structure to be small (one int), but limits
191 * the number of objects a slab (not a cache) can contain when off-slab
192 * bufctls are used. The limit is the size of the largest general cache
193 * that does not use off-slab slabs.
194 * For 32bit archs with 4 kB pages, is this 56.
195 * This is not serious, as it is only for large objects, when it is unwise
196 * to have too many per slab.
197 * Note: This limit can be raised by introducing a general cache whose size
198 * is less than 512 (PAGE_SIZE<<3), but greater than 256.
201 typedef unsigned int kmem_bufctl_t
;
202 #define BUFCTL_END (((kmem_bufctl_t)(~0U))-0)
203 #define BUFCTL_FREE (((kmem_bufctl_t)(~0U))-1)
204 #define SLAB_LIMIT (((kmem_bufctl_t)(~0U))-2)
206 /* Max number of objs-per-slab for caches which use off-slab slabs.
207 * Needed to avoid a possible looping condition in cache_grow().
209 static unsigned long offslab_limit
;
214 * Manages the objs in a slab. Placed either at the beginning of mem allocated
215 * for a slab, or allocated from an general cache.
216 * Slabs are chained into three list: fully used, partial, fully free slabs.
219 struct list_head list
;
220 unsigned long colouroff
;
221 void *s_mem
; /* including colour offset */
222 unsigned int inuse
; /* num of objs active in slab */
224 unsigned short nodeid
;
230 * slab_destroy on a SLAB_DESTROY_BY_RCU cache uses this structure to
231 * arrange for kmem_freepages to be called via RCU. This is useful if
232 * we need to approach a kernel structure obliquely, from its address
233 * obtained without the usual locking. We can lock the structure to
234 * stabilize it and check it's still at the given address, only if we
235 * can be sure that the memory has not been meanwhile reused for some
236 * other kind of object (which our subsystem's lock might corrupt).
238 * rcu_read_lock before reading the address, then rcu_read_unlock after
239 * taking the spinlock within the structure expected at that address.
241 * We assume struct slab_rcu can overlay struct slab when destroying.
244 struct rcu_head head
;
245 kmem_cache_t
*cachep
;
253 * - LIFO ordering, to hand out cache-warm objects from _alloc
254 * - reduce the number of linked list operations
255 * - reduce spinlock operations
257 * The limit is stored in the per-cpu structure to reduce the data cache
264 unsigned int batchcount
;
265 unsigned int touched
;
268 * Must have this definition in here for the proper
269 * alignment of array_cache. Also simplifies accessing
271 * [0] is for gcc 2.95. It should really be [].
275 /* bootstrap: The caches do not work without cpuarrays anymore,
276 * but the cpuarrays are allocated from the generic caches...
278 #define BOOT_CPUCACHE_ENTRIES 1
279 struct arraycache_init
{
280 struct array_cache cache
;
281 void *entries
[BOOT_CPUCACHE_ENTRIES
];
285 * The slab lists for all objects.
288 struct list_head slabs_partial
; /* partial list first, better asm code */
289 struct list_head slabs_full
;
290 struct list_head slabs_free
;
291 unsigned long free_objects
;
292 unsigned long next_reap
;
294 unsigned int free_limit
;
295 spinlock_t list_lock
;
296 struct array_cache
*shared
; /* shared per node */
297 struct array_cache
**alien
; /* on other nodes */
301 * Need this for bootstrapping a per node allocator.
303 #define NUM_INIT_LISTS (2 * MAX_NUMNODES + 1)
304 struct kmem_list3 __initdata initkmem_list3
[NUM_INIT_LISTS
];
305 #define CACHE_CACHE 0
307 #define SIZE_L3 (1 + MAX_NUMNODES)
310 * This function must be completely optimized away if
311 * a constant is passed to it. Mostly the same as
312 * what is in linux/slab.h except it returns an
315 static __always_inline
int index_of(const size_t size
)
317 if (__builtin_constant_p(size
)) {
325 #include "linux/kmalloc_sizes.h"
328 extern void __bad_size(void);
336 #define INDEX_AC index_of(sizeof(struct arraycache_init))
337 #define INDEX_L3 index_of(sizeof(struct kmem_list3))
339 static inline void kmem_list3_init(struct kmem_list3
*parent
)
341 INIT_LIST_HEAD(&parent
->slabs_full
);
342 INIT_LIST_HEAD(&parent
->slabs_partial
);
343 INIT_LIST_HEAD(&parent
->slabs_free
);
344 parent
->shared
= NULL
;
345 parent
->alien
= NULL
;
346 spin_lock_init(&parent
->list_lock
);
347 parent
->free_objects
= 0;
348 parent
->free_touched
= 0;
351 #define MAKE_LIST(cachep, listp, slab, nodeid) \
353 INIT_LIST_HEAD(listp); \
354 list_splice(&(cachep->nodelists[nodeid]->slab), listp); \
357 #define MAKE_ALL_LISTS(cachep, ptr, nodeid) \
359 MAKE_LIST((cachep), (&(ptr)->slabs_full), slabs_full, nodeid); \
360 MAKE_LIST((cachep), (&(ptr)->slabs_partial), slabs_partial, nodeid); \
361 MAKE_LIST((cachep), (&(ptr)->slabs_free), slabs_free, nodeid); \
371 /* 1) per-cpu data, touched during every alloc/free */
372 struct array_cache
*array
[NR_CPUS
];
373 unsigned int batchcount
;
376 unsigned int objsize
;
377 /* 2) touched by every alloc & free from the backend */
378 struct kmem_list3
*nodelists
[MAX_NUMNODES
];
379 unsigned int flags
; /* constant flags */
380 unsigned int num
; /* # of objs per slab */
383 /* 3) cache_grow/shrink */
384 /* order of pgs per slab (2^n) */
385 unsigned int gfporder
;
387 /* force GFP flags, e.g. GFP_DMA */
390 size_t colour
; /* cache colouring range */
391 unsigned int colour_off
; /* colour offset */
392 unsigned int colour_next
; /* cache colouring */
393 kmem_cache_t
*slabp_cache
;
394 unsigned int slab_size
;
395 unsigned int dflags
; /* dynamic flags */
397 /* constructor func */
398 void (*ctor
) (void *, kmem_cache_t
*, unsigned long);
400 /* de-constructor func */
401 void (*dtor
) (void *, kmem_cache_t
*, unsigned long);
403 /* 4) cache creation/removal */
405 struct list_head next
;
409 unsigned long num_active
;
410 unsigned long num_allocations
;
411 unsigned long high_mark
;
413 unsigned long reaped
;
414 unsigned long errors
;
415 unsigned long max_freeable
;
416 unsigned long node_allocs
;
417 unsigned long node_frees
;
429 #define CFLGS_OFF_SLAB (0x80000000UL)
430 #define OFF_SLAB(x) ((x)->flags & CFLGS_OFF_SLAB)
432 #define BATCHREFILL_LIMIT 16
433 /* Optimization question: fewer reaps means less
434 * probability for unnessary cpucache drain/refill cycles.
436 * OTOH the cpuarrays can contain lots of objects,
437 * which could lock up otherwise freeable slabs.
439 #define REAPTIMEOUT_CPUC (2*HZ)
440 #define REAPTIMEOUT_LIST3 (4*HZ)
443 #define STATS_INC_ACTIVE(x) ((x)->num_active++)
444 #define STATS_DEC_ACTIVE(x) ((x)->num_active--)
445 #define STATS_INC_ALLOCED(x) ((x)->num_allocations++)
446 #define STATS_INC_GROWN(x) ((x)->grown++)
447 #define STATS_INC_REAPED(x) ((x)->reaped++)
448 #define STATS_SET_HIGH(x) do { if ((x)->num_active > (x)->high_mark) \
449 (x)->high_mark = (x)->num_active; \
451 #define STATS_INC_ERR(x) ((x)->errors++)
452 #define STATS_INC_NODEALLOCS(x) ((x)->node_allocs++)
453 #define STATS_INC_NODEFREES(x) ((x)->node_frees++)
454 #define STATS_SET_FREEABLE(x, i) \
455 do { if ((x)->max_freeable < i) \
456 (x)->max_freeable = i; \
459 #define STATS_INC_ALLOCHIT(x) atomic_inc(&(x)->allochit)
460 #define STATS_INC_ALLOCMISS(x) atomic_inc(&(x)->allocmiss)
461 #define STATS_INC_FREEHIT(x) atomic_inc(&(x)->freehit)
462 #define STATS_INC_FREEMISS(x) atomic_inc(&(x)->freemiss)
464 #define STATS_INC_ACTIVE(x) do { } while (0)
465 #define STATS_DEC_ACTIVE(x) do { } while (0)
466 #define STATS_INC_ALLOCED(x) do { } while (0)
467 #define STATS_INC_GROWN(x) do { } while (0)
468 #define STATS_INC_REAPED(x) do { } while (0)
469 #define STATS_SET_HIGH(x) do { } while (0)
470 #define STATS_INC_ERR(x) do { } while (0)
471 #define STATS_INC_NODEALLOCS(x) do { } while (0)
472 #define STATS_INC_NODEFREES(x) do { } while (0)
473 #define STATS_SET_FREEABLE(x, i) \
476 #define STATS_INC_ALLOCHIT(x) do { } while (0)
477 #define STATS_INC_ALLOCMISS(x) do { } while (0)
478 #define STATS_INC_FREEHIT(x) do { } while (0)
479 #define STATS_INC_FREEMISS(x) do { } while (0)
483 /* Magic nums for obj red zoning.
484 * Placed in the first word before and the first word after an obj.
486 #define RED_INACTIVE 0x5A2CF071UL /* when obj is inactive */
487 #define RED_ACTIVE 0x170FC2A5UL /* when obj is active */
489 /* ...and for poisoning */
490 #define POISON_INUSE 0x5a /* for use-uninitialised poisoning */
491 #define POISON_FREE 0x6b /* for use-after-free poisoning */
492 #define POISON_END 0xa5 /* end-byte of poisoning */
494 /* memory layout of objects:
496 * 0 .. cachep->dbghead - BYTES_PER_WORD - 1: padding. This ensures that
497 * the end of an object is aligned with the end of the real
498 * allocation. Catches writes behind the end of the allocation.
499 * cachep->dbghead - BYTES_PER_WORD .. cachep->dbghead - 1:
501 * cachep->dbghead: The real object.
502 * cachep->objsize - 2* BYTES_PER_WORD: redzone word [BYTES_PER_WORD long]
503 * cachep->objsize - 1* BYTES_PER_WORD: last caller address [BYTES_PER_WORD long]
505 static int obj_dbghead(kmem_cache_t
*cachep
)
507 return cachep
->dbghead
;
510 static int obj_reallen(kmem_cache_t
*cachep
)
512 return cachep
->reallen
;
515 static unsigned long *dbg_redzone1(kmem_cache_t
*cachep
, void *objp
)
517 BUG_ON(!(cachep
->flags
& SLAB_RED_ZONE
));
518 return (unsigned long*) (objp
+obj_dbghead(cachep
)-BYTES_PER_WORD
);
521 static unsigned long *dbg_redzone2(kmem_cache_t
*cachep
, void *objp
)
523 BUG_ON(!(cachep
->flags
& SLAB_RED_ZONE
));
524 if (cachep
->flags
& SLAB_STORE_USER
)
525 return (unsigned long *)(objp
+ cachep
->objsize
-
527 return (unsigned long *)(objp
+ cachep
->objsize
- BYTES_PER_WORD
);
530 static void **dbg_userword(kmem_cache_t
*cachep
, void *objp
)
532 BUG_ON(!(cachep
->flags
& SLAB_STORE_USER
));
533 return (void **)(objp
+ cachep
->objsize
- BYTES_PER_WORD
);
538 #define obj_dbghead(x) 0
539 #define obj_reallen(cachep) (cachep->objsize)
540 #define dbg_redzone1(cachep, objp) ({BUG(); (unsigned long *)NULL;})
541 #define dbg_redzone2(cachep, objp) ({BUG(); (unsigned long *)NULL;})
542 #define dbg_userword(cachep, objp) ({BUG(); (void **)NULL;})
547 * Maximum size of an obj (in 2^order pages)
548 * and absolute limit for the gfp order.
550 #if defined(CONFIG_LARGE_ALLOCS)
551 #define MAX_OBJ_ORDER 13 /* up to 32Mb */
552 #define MAX_GFP_ORDER 13 /* up to 32Mb */
553 #elif defined(CONFIG_MMU)
554 #define MAX_OBJ_ORDER 5 /* 32 pages */
555 #define MAX_GFP_ORDER 5 /* 32 pages */
557 #define MAX_OBJ_ORDER 8 /* up to 1Mb */
558 #define MAX_GFP_ORDER 8 /* up to 1Mb */
562 * Do not go above this order unless 0 objects fit into the slab.
564 #define BREAK_GFP_ORDER_HI 1
565 #define BREAK_GFP_ORDER_LO 0
566 static int slab_break_gfp_order
= BREAK_GFP_ORDER_LO
;
568 /* Functions for storing/retrieving the cachep and or slab from the
569 * global 'mem_map'. These are used to find the slab an obj belongs to.
570 * With kfree(), these are used to find the cache which an obj belongs to.
572 static inline void page_set_cache(struct page
*page
, struct kmem_cache
*cache
)
574 page
->lru
.next
= (struct list_head
*)cache
;
577 static inline struct kmem_cache
*page_get_cache(struct page
*page
)
579 return (struct kmem_cache
*)page
->lru
.next
;
582 static inline void page_set_slab(struct page
*page
, struct slab
*slab
)
584 page
->lru
.prev
= (struct list_head
*)slab
;
587 static inline struct slab
*page_get_slab(struct page
*page
)
589 return (struct slab
*)page
->lru
.prev
;
592 /* These are the default caches for kmalloc. Custom caches can have other sizes. */
593 struct cache_sizes malloc_sizes
[] = {
594 #define CACHE(x) { .cs_size = (x) },
595 #include <linux/kmalloc_sizes.h>
599 EXPORT_SYMBOL(malloc_sizes
);
601 /* Must match cache_sizes above. Out of line to keep cache footprint low. */
607 static struct cache_names __initdata cache_names
[] = {
608 #define CACHE(x) { .name = "size-" #x, .name_dma = "size-" #x "(DMA)" },
609 #include <linux/kmalloc_sizes.h>
614 static struct arraycache_init initarray_cache __initdata
=
615 { {0, BOOT_CPUCACHE_ENTRIES
, 1, 0} };
616 static struct arraycache_init initarray_generic
=
617 { {0, BOOT_CPUCACHE_ENTRIES
, 1, 0} };
619 /* internal cache of cache description objs */
620 static kmem_cache_t cache_cache
= {
622 .limit
= BOOT_CPUCACHE_ENTRIES
,
624 .objsize
= sizeof(kmem_cache_t
),
625 .flags
= SLAB_NO_REAP
,
626 .spinlock
= SPIN_LOCK_UNLOCKED
,
627 .name
= "kmem_cache",
629 .reallen
= sizeof(kmem_cache_t
),
633 /* Guard access to the cache-chain. */
634 static struct semaphore cache_chain_sem
;
635 static struct list_head cache_chain
;
638 * vm_enough_memory() looks at this to determine how many
639 * slab-allocated pages are possibly freeable under pressure
641 * SLAB_RECLAIM_ACCOUNT turns this on per-slab
643 atomic_t slab_reclaim_pages
;
646 * chicken and egg problem: delay the per-cpu array allocation
647 * until the general caches are up.
656 static DEFINE_PER_CPU(struct work_struct
, reap_work
);
658 static void free_block(kmem_cache_t
*cachep
, void **objpp
, int len
, int node
);
659 static void enable_cpucache(kmem_cache_t
*cachep
);
660 static void cache_reap(void *unused
);
661 static int __node_shrink(kmem_cache_t
*cachep
, int node
);
663 static inline struct array_cache
*ac_data(kmem_cache_t
*cachep
)
665 return cachep
->array
[smp_processor_id()];
668 static inline kmem_cache_t
*__find_general_cachep(size_t size
, gfp_t gfpflags
)
670 struct cache_sizes
*csizep
= malloc_sizes
;
673 /* This happens if someone tries to call
674 * kmem_cache_create(), or __kmalloc(), before
675 * the generic caches are initialized.
677 BUG_ON(malloc_sizes
[INDEX_AC
].cs_cachep
== NULL
);
679 while (size
> csizep
->cs_size
)
683 * Really subtle: The last entry with cs->cs_size==ULONG_MAX
684 * has cs_{dma,}cachep==NULL. Thus no special case
685 * for large kmalloc calls required.
687 if (unlikely(gfpflags
& GFP_DMA
))
688 return csizep
->cs_dmacachep
;
689 return csizep
->cs_cachep
;
692 kmem_cache_t
*kmem_find_general_cachep(size_t size
, gfp_t gfpflags
)
694 return __find_general_cachep(size
, gfpflags
);
696 EXPORT_SYMBOL(kmem_find_general_cachep
);
698 /* Cal the num objs, wastage, and bytes left over for a given slab size. */
699 static void cache_estimate(unsigned long gfporder
, size_t size
, size_t align
,
700 int flags
, size_t *left_over
, unsigned int *num
)
703 size_t wastage
= PAGE_SIZE
<< gfporder
;
707 if (!(flags
& CFLGS_OFF_SLAB
)) {
708 base
= sizeof(struct slab
);
709 extra
= sizeof(kmem_bufctl_t
);
712 while (i
* size
+ ALIGN(base
+ i
* extra
, align
) <= wastage
)
722 wastage
-= ALIGN(base
+ i
* extra
, align
);
723 *left_over
= wastage
;
726 #define slab_error(cachep, msg) __slab_error(__FUNCTION__, cachep, msg)
728 static void __slab_error(const char *function
, kmem_cache_t
*cachep
, char *msg
)
730 printk(KERN_ERR
"slab error in %s(): cache `%s': %s\n",
731 function
, cachep
->name
, msg
);
736 * Initiate the reap timer running on the target CPU. We run at around 1 to 2Hz
737 * via the workqueue/eventd.
738 * Add the CPU number into the expiration time to minimize the possibility of
739 * the CPUs getting into lockstep and contending for the global cache chain
742 static void __devinit
start_cpu_timer(int cpu
)
744 struct work_struct
*reap_work
= &per_cpu(reap_work
, cpu
);
747 * When this gets called from do_initcalls via cpucache_init(),
748 * init_workqueues() has already run, so keventd will be setup
751 if (keventd_up() && reap_work
->func
== NULL
) {
752 INIT_WORK(reap_work
, cache_reap
, NULL
);
753 schedule_delayed_work_on(cpu
, reap_work
, HZ
+ 3 * cpu
);
757 static struct array_cache
*alloc_arraycache(int node
, int entries
,
760 int memsize
= sizeof(void *) * entries
+ sizeof(struct array_cache
);
761 struct array_cache
*nc
= NULL
;
763 nc
= kmalloc_node(memsize
, GFP_KERNEL
, node
);
767 nc
->batchcount
= batchcount
;
769 spin_lock_init(&nc
->lock
);
775 static inline struct array_cache
**alloc_alien_cache(int node
, int limit
)
777 struct array_cache
**ac_ptr
;
778 int memsize
= sizeof(void *) * MAX_NUMNODES
;
783 ac_ptr
= kmalloc_node(memsize
, GFP_KERNEL
, node
);
786 if (i
== node
|| !node_online(i
)) {
790 ac_ptr
[i
] = alloc_arraycache(node
, limit
, 0xbaadf00d);
792 for (i
--; i
<= 0; i
--)
802 static inline void free_alien_cache(struct array_cache
**ac_ptr
)
815 static inline void __drain_alien_cache(kmem_cache_t
*cachep
,
816 struct array_cache
*ac
, int node
)
818 struct kmem_list3
*rl3
= cachep
->nodelists
[node
];
821 spin_lock(&rl3
->list_lock
);
822 free_block(cachep
, ac
->entry
, ac
->avail
, node
);
824 spin_unlock(&rl3
->list_lock
);
828 static void drain_alien_cache(kmem_cache_t
*cachep
, struct kmem_list3
*l3
)
831 struct array_cache
*ac
;
834 for_each_online_node(i
) {
837 spin_lock_irqsave(&ac
->lock
, flags
);
838 __drain_alien_cache(cachep
, ac
, i
);
839 spin_unlock_irqrestore(&ac
->lock
, flags
);
844 #define alloc_alien_cache(node, limit) do { } while (0)
845 #define free_alien_cache(ac_ptr) do { } while (0)
846 #define drain_alien_cache(cachep, l3) do { } while (0)
849 static int __devinit
cpuup_callback(struct notifier_block
*nfb
,
850 unsigned long action
, void *hcpu
)
852 long cpu
= (long)hcpu
;
853 kmem_cache_t
*cachep
;
854 struct kmem_list3
*l3
= NULL
;
855 int node
= cpu_to_node(cpu
);
856 int memsize
= sizeof(struct kmem_list3
);
860 down(&cache_chain_sem
);
861 /* we need to do this right in the beginning since
862 * alloc_arraycache's are going to use this list.
863 * kmalloc_node allows us to add the slab to the right
864 * kmem_list3 and not this cpu's kmem_list3
867 list_for_each_entry(cachep
, &cache_chain
, next
) {
868 /* setup the size64 kmemlist for cpu before we can
869 * begin anything. Make sure some other cpu on this
870 * node has not already allocated this
872 if (!cachep
->nodelists
[node
]) {
873 if (!(l3
= kmalloc_node(memsize
,
877 l3
->next_reap
= jiffies
+ REAPTIMEOUT_LIST3
+
878 ((unsigned long)cachep
) % REAPTIMEOUT_LIST3
;
880 cachep
->nodelists
[node
] = l3
;
883 spin_lock_irq(&cachep
->nodelists
[node
]->list_lock
);
884 cachep
->nodelists
[node
]->free_limit
=
885 (1 + nr_cpus_node(node
)) *
886 cachep
->batchcount
+ cachep
->num
;
887 spin_unlock_irq(&cachep
->nodelists
[node
]->list_lock
);
890 /* Now we can go ahead with allocating the shared array's
892 list_for_each_entry(cachep
, &cache_chain
, next
) {
893 struct array_cache
*nc
;
895 nc
= alloc_arraycache(node
, cachep
->limit
,
899 cachep
->array
[cpu
] = nc
;
901 l3
= cachep
->nodelists
[node
];
904 if (!(nc
= alloc_arraycache(node
,
910 /* we are serialised from CPU_DEAD or
911 CPU_UP_CANCELLED by the cpucontrol lock */
915 up(&cache_chain_sem
);
918 start_cpu_timer(cpu
);
920 #ifdef CONFIG_HOTPLUG_CPU
923 case CPU_UP_CANCELED
:
924 down(&cache_chain_sem
);
926 list_for_each_entry(cachep
, &cache_chain
, next
) {
927 struct array_cache
*nc
;
930 mask
= node_to_cpumask(node
);
931 spin_lock_irq(&cachep
->spinlock
);
932 /* cpu is dead; no one can alloc from it. */
933 nc
= cachep
->array
[cpu
];
934 cachep
->array
[cpu
] = NULL
;
935 l3
= cachep
->nodelists
[node
];
940 spin_lock(&l3
->list_lock
);
942 /* Free limit for this kmem_list3 */
943 l3
->free_limit
-= cachep
->batchcount
;
945 free_block(cachep
, nc
->entry
, nc
->avail
, node
);
947 if (!cpus_empty(mask
)) {
948 spin_unlock(&l3
->list_lock
);
953 free_block(cachep
, l3
->shared
->entry
,
954 l3
->shared
->avail
, node
);
959 drain_alien_cache(cachep
, l3
);
960 free_alien_cache(l3
->alien
);
964 /* free slabs belonging to this node */
965 if (__node_shrink(cachep
, node
)) {
966 cachep
->nodelists
[node
] = NULL
;
967 spin_unlock(&l3
->list_lock
);
970 spin_unlock(&l3
->list_lock
);
973 spin_unlock_irq(&cachep
->spinlock
);
976 up(&cache_chain_sem
);
982 up(&cache_chain_sem
);
986 static struct notifier_block cpucache_notifier
= { &cpuup_callback
, NULL
, 0 };
989 * swap the static kmem_list3 with kmalloced memory
991 static void init_list(kmem_cache_t
*cachep
, struct kmem_list3
*list
, int nodeid
)
993 struct kmem_list3
*ptr
;
995 BUG_ON(cachep
->nodelists
[nodeid
] != list
);
996 ptr
= kmalloc_node(sizeof(struct kmem_list3
), GFP_KERNEL
, nodeid
);
1000 memcpy(ptr
, list
, sizeof(struct kmem_list3
));
1001 MAKE_ALL_LISTS(cachep
, ptr
, nodeid
);
1002 cachep
->nodelists
[nodeid
] = ptr
;
1007 * Called after the gfp() functions have been enabled, and before smp_init().
1009 void __init
kmem_cache_init(void)
1012 struct cache_sizes
*sizes
;
1013 struct cache_names
*names
;
1016 for (i
= 0; i
< NUM_INIT_LISTS
; i
++) {
1017 kmem_list3_init(&initkmem_list3
[i
]);
1018 if (i
< MAX_NUMNODES
)
1019 cache_cache
.nodelists
[i
] = NULL
;
1023 * Fragmentation resistance on low memory - only use bigger
1024 * page orders on machines with more than 32MB of memory.
1026 if (num_physpages
> (32 << 20) >> PAGE_SHIFT
)
1027 slab_break_gfp_order
= BREAK_GFP_ORDER_HI
;
1029 /* Bootstrap is tricky, because several objects are allocated
1030 * from caches that do not exist yet:
1031 * 1) initialize the cache_cache cache: it contains the kmem_cache_t
1032 * structures of all caches, except cache_cache itself: cache_cache
1033 * is statically allocated.
1034 * Initially an __init data area is used for the head array and the
1035 * kmem_list3 structures, it's replaced with a kmalloc allocated
1036 * array at the end of the bootstrap.
1037 * 2) Create the first kmalloc cache.
1038 * The kmem_cache_t for the new cache is allocated normally.
1039 * An __init data area is used for the head array.
1040 * 3) Create the remaining kmalloc caches, with minimally sized
1042 * 4) Replace the __init data head arrays for cache_cache and the first
1043 * kmalloc cache with kmalloc allocated arrays.
1044 * 5) Replace the __init data for kmem_list3 for cache_cache and
1045 * the other cache's with kmalloc allocated memory.
1046 * 6) Resize the head arrays of the kmalloc caches to their final sizes.
1049 /* 1) create the cache_cache */
1050 init_MUTEX(&cache_chain_sem
);
1051 INIT_LIST_HEAD(&cache_chain
);
1052 list_add(&cache_cache
.next
, &cache_chain
);
1053 cache_cache
.colour_off
= cache_line_size();
1054 cache_cache
.array
[smp_processor_id()] = &initarray_cache
.cache
;
1055 cache_cache
.nodelists
[numa_node_id()] = &initkmem_list3
[CACHE_CACHE
];
1057 cache_cache
.objsize
= ALIGN(cache_cache
.objsize
, cache_line_size());
1059 cache_estimate(0, cache_cache
.objsize
, cache_line_size(), 0,
1060 &left_over
, &cache_cache
.num
);
1061 if (!cache_cache
.num
)
1064 cache_cache
.colour
= left_over
/ cache_cache
.colour_off
;
1065 cache_cache
.colour_next
= 0;
1066 cache_cache
.slab_size
= ALIGN(cache_cache
.num
* sizeof(kmem_bufctl_t
) +
1067 sizeof(struct slab
), cache_line_size());
1069 /* 2+3) create the kmalloc caches */
1070 sizes
= malloc_sizes
;
1071 names
= cache_names
;
1073 /* Initialize the caches that provide memory for the array cache
1074 * and the kmem_list3 structures first.
1075 * Without this, further allocations will bug
1078 sizes
[INDEX_AC
].cs_cachep
= kmem_cache_create(names
[INDEX_AC
].name
,
1079 sizes
[INDEX_AC
].cs_size
,
1080 ARCH_KMALLOC_MINALIGN
,
1081 (ARCH_KMALLOC_FLAGS
|
1082 SLAB_PANIC
), NULL
, NULL
);
1084 if (INDEX_AC
!= INDEX_L3
)
1085 sizes
[INDEX_L3
].cs_cachep
=
1086 kmem_cache_create(names
[INDEX_L3
].name
,
1087 sizes
[INDEX_L3
].cs_size
,
1088 ARCH_KMALLOC_MINALIGN
,
1089 (ARCH_KMALLOC_FLAGS
| SLAB_PANIC
), NULL
,
1092 while (sizes
->cs_size
!= ULONG_MAX
) {
1094 * For performance, all the general caches are L1 aligned.
1095 * This should be particularly beneficial on SMP boxes, as it
1096 * eliminates "false sharing".
1097 * Note for systems short on memory removing the alignment will
1098 * allow tighter packing of the smaller caches.
1100 if (!sizes
->cs_cachep
)
1101 sizes
->cs_cachep
= kmem_cache_create(names
->name
,
1103 ARCH_KMALLOC_MINALIGN
,
1108 /* Inc off-slab bufctl limit until the ceiling is hit. */
1109 if (!(OFF_SLAB(sizes
->cs_cachep
))) {
1110 offslab_limit
= sizes
->cs_size
- sizeof(struct slab
);
1111 offslab_limit
/= sizeof(kmem_bufctl_t
);
1114 sizes
->cs_dmacachep
= kmem_cache_create(names
->name_dma
,
1116 ARCH_KMALLOC_MINALIGN
,
1117 (ARCH_KMALLOC_FLAGS
|
1125 /* 4) Replace the bootstrap head arrays */
1129 ptr
= kmalloc(sizeof(struct arraycache_init
), GFP_KERNEL
);
1131 local_irq_disable();
1132 BUG_ON(ac_data(&cache_cache
) != &initarray_cache
.cache
);
1133 memcpy(ptr
, ac_data(&cache_cache
),
1134 sizeof(struct arraycache_init
));
1135 cache_cache
.array
[smp_processor_id()] = ptr
;
1138 ptr
= kmalloc(sizeof(struct arraycache_init
), GFP_KERNEL
);
1140 local_irq_disable();
1141 BUG_ON(ac_data(malloc_sizes
[INDEX_AC
].cs_cachep
)
1142 != &initarray_generic
.cache
);
1143 memcpy(ptr
, ac_data(malloc_sizes
[INDEX_AC
].cs_cachep
),
1144 sizeof(struct arraycache_init
));
1145 malloc_sizes
[INDEX_AC
].cs_cachep
->array
[smp_processor_id()] =
1149 /* 5) Replace the bootstrap kmem_list3's */
1152 /* Replace the static kmem_list3 structures for the boot cpu */
1153 init_list(&cache_cache
, &initkmem_list3
[CACHE_CACHE
],
1156 for_each_online_node(node
) {
1157 init_list(malloc_sizes
[INDEX_AC
].cs_cachep
,
1158 &initkmem_list3
[SIZE_AC
+ node
], node
);
1160 if (INDEX_AC
!= INDEX_L3
) {
1161 init_list(malloc_sizes
[INDEX_L3
].cs_cachep
,
1162 &initkmem_list3
[SIZE_L3
+ node
],
1168 /* 6) resize the head arrays to their final sizes */
1170 kmem_cache_t
*cachep
;
1171 down(&cache_chain_sem
);
1172 list_for_each_entry(cachep
, &cache_chain
, next
)
1173 enable_cpucache(cachep
);
1174 up(&cache_chain_sem
);
1178 g_cpucache_up
= FULL
;
1180 /* Register a cpu startup notifier callback
1181 * that initializes ac_data for all new cpus
1183 register_cpu_notifier(&cpucache_notifier
);
1185 /* The reap timers are started later, with a module init call:
1186 * That part of the kernel is not yet operational.
1190 static int __init
cpucache_init(void)
1195 * Register the timers that return unneeded
1198 for_each_online_cpu(cpu
)
1199 start_cpu_timer(cpu
);
1204 __initcall(cpucache_init
);
1207 * Interface to system's page allocator. No need to hold the cache-lock.
1209 * If we requested dmaable memory, we will get it. Even if we
1210 * did not request dmaable memory, we might get it, but that
1211 * would be relatively rare and ignorable.
1213 static void *kmem_getpages(kmem_cache_t
*cachep
, gfp_t flags
, int nodeid
)
1219 flags
|= cachep
->gfpflags
;
1220 page
= alloc_pages_node(nodeid
, flags
, cachep
->gfporder
);
1223 addr
= page_address(page
);
1225 i
= (1 << cachep
->gfporder
);
1226 if (cachep
->flags
& SLAB_RECLAIM_ACCOUNT
)
1227 atomic_add(i
, &slab_reclaim_pages
);
1228 add_page_state(nr_slab
, i
);
1237 * Interface to system's page release.
1239 static void kmem_freepages(kmem_cache_t
*cachep
, void *addr
)
1241 unsigned long i
= (1 << cachep
->gfporder
);
1242 struct page
*page
= virt_to_page(addr
);
1243 const unsigned long nr_freed
= i
;
1246 if (!TestClearPageSlab(page
))
1250 sub_page_state(nr_slab
, nr_freed
);
1251 if (current
->reclaim_state
)
1252 current
->reclaim_state
->reclaimed_slab
+= nr_freed
;
1253 free_pages((unsigned long)addr
, cachep
->gfporder
);
1254 if (cachep
->flags
& SLAB_RECLAIM_ACCOUNT
)
1255 atomic_sub(1 << cachep
->gfporder
, &slab_reclaim_pages
);
1258 static void kmem_rcu_free(struct rcu_head
*head
)
1260 struct slab_rcu
*slab_rcu
= (struct slab_rcu
*)head
;
1261 kmem_cache_t
*cachep
= slab_rcu
->cachep
;
1263 kmem_freepages(cachep
, slab_rcu
->addr
);
1264 if (OFF_SLAB(cachep
))
1265 kmem_cache_free(cachep
->slabp_cache
, slab_rcu
);
1270 #ifdef CONFIG_DEBUG_PAGEALLOC
1271 static void store_stackinfo(kmem_cache_t
*cachep
, unsigned long *addr
,
1272 unsigned long caller
)
1274 int size
= obj_reallen(cachep
);
1276 addr
= (unsigned long *)&((char *)addr
)[obj_dbghead(cachep
)];
1278 if (size
< 5 * sizeof(unsigned long))
1281 *addr
++ = 0x12345678;
1283 *addr
++ = smp_processor_id();
1284 size
-= 3 * sizeof(unsigned long);
1286 unsigned long *sptr
= &caller
;
1287 unsigned long svalue
;
1289 while (!kstack_end(sptr
)) {
1291 if (kernel_text_address(svalue
)) {
1293 size
-= sizeof(unsigned long);
1294 if (size
<= sizeof(unsigned long))
1300 *addr
++ = 0x87654321;
1304 static void poison_obj(kmem_cache_t
*cachep
, void *addr
, unsigned char val
)
1306 int size
= obj_reallen(cachep
);
1307 addr
= &((char *)addr
)[obj_dbghead(cachep
)];
1309 memset(addr
, val
, size
);
1310 *(unsigned char *)(addr
+ size
- 1) = POISON_END
;
1313 static void dump_line(char *data
, int offset
, int limit
)
1316 printk(KERN_ERR
"%03x:", offset
);
1317 for (i
= 0; i
< limit
; i
++) {
1318 printk(" %02x", (unsigned char)data
[offset
+ i
]);
1326 static void print_objinfo(kmem_cache_t
*cachep
, void *objp
, int lines
)
1331 if (cachep
->flags
& SLAB_RED_ZONE
) {
1332 printk(KERN_ERR
"Redzone: 0x%lx/0x%lx.\n",
1333 *dbg_redzone1(cachep
, objp
),
1334 *dbg_redzone2(cachep
, objp
));
1337 if (cachep
->flags
& SLAB_STORE_USER
) {
1338 printk(KERN_ERR
"Last user: [<%p>]",
1339 *dbg_userword(cachep
, objp
));
1340 print_symbol("(%s)",
1341 (unsigned long)*dbg_userword(cachep
, objp
));
1344 realobj
= (char *)objp
+ obj_dbghead(cachep
);
1345 size
= obj_reallen(cachep
);
1346 for (i
= 0; i
< size
&& lines
; i
+= 16, lines
--) {
1349 if (i
+ limit
> size
)
1351 dump_line(realobj
, i
, limit
);
1355 static void check_poison_obj(kmem_cache_t
*cachep
, void *objp
)
1361 realobj
= (char *)objp
+ obj_dbghead(cachep
);
1362 size
= obj_reallen(cachep
);
1364 for (i
= 0; i
< size
; i
++) {
1365 char exp
= POISON_FREE
;
1368 if (realobj
[i
] != exp
) {
1374 "Slab corruption: start=%p, len=%d\n",
1376 print_objinfo(cachep
, objp
, 0);
1378 /* Hexdump the affected line */
1381 if (i
+ limit
> size
)
1383 dump_line(realobj
, i
, limit
);
1386 /* Limit to 5 lines */
1392 /* Print some data about the neighboring objects, if they
1395 struct slab
*slabp
= page_get_slab(virt_to_page(objp
));
1398 objnr
= (objp
- slabp
->s_mem
) / cachep
->objsize
;
1400 objp
= slabp
->s_mem
+ (objnr
- 1) * cachep
->objsize
;
1401 realobj
= (char *)objp
+ obj_dbghead(cachep
);
1402 printk(KERN_ERR
"Prev obj: start=%p, len=%d\n",
1404 print_objinfo(cachep
, objp
, 2);
1406 if (objnr
+ 1 < cachep
->num
) {
1407 objp
= slabp
->s_mem
+ (objnr
+ 1) * cachep
->objsize
;
1408 realobj
= (char *)objp
+ obj_dbghead(cachep
);
1409 printk(KERN_ERR
"Next obj: start=%p, len=%d\n",
1411 print_objinfo(cachep
, objp
, 2);
1417 /* Destroy all the objs in a slab, and release the mem back to the system.
1418 * Before calling the slab must have been unlinked from the cache.
1419 * The cache-lock is not held/needed.
1421 static void slab_destroy(kmem_cache_t
*cachep
, struct slab
*slabp
)
1423 void *addr
= slabp
->s_mem
- slabp
->colouroff
;
1427 for (i
= 0; i
< cachep
->num
; i
++) {
1428 void *objp
= slabp
->s_mem
+ cachep
->objsize
* i
;
1430 if (cachep
->flags
& SLAB_POISON
) {
1431 #ifdef CONFIG_DEBUG_PAGEALLOC
1432 if ((cachep
->objsize
% PAGE_SIZE
) == 0
1433 && OFF_SLAB(cachep
))
1434 kernel_map_pages(virt_to_page(objp
),
1435 cachep
->objsize
/ PAGE_SIZE
,
1438 check_poison_obj(cachep
, objp
);
1440 check_poison_obj(cachep
, objp
);
1443 if (cachep
->flags
& SLAB_RED_ZONE
) {
1444 if (*dbg_redzone1(cachep
, objp
) != RED_INACTIVE
)
1445 slab_error(cachep
, "start of a freed object "
1447 if (*dbg_redzone2(cachep
, objp
) != RED_INACTIVE
)
1448 slab_error(cachep
, "end of a freed object "
1451 if (cachep
->dtor
&& !(cachep
->flags
& SLAB_POISON
))
1452 (cachep
->dtor
) (objp
+ obj_dbghead(cachep
), cachep
, 0);
1457 for (i
= 0; i
< cachep
->num
; i
++) {
1458 void *objp
= slabp
->s_mem
+ cachep
->objsize
* i
;
1459 (cachep
->dtor
) (objp
, cachep
, 0);
1464 if (unlikely(cachep
->flags
& SLAB_DESTROY_BY_RCU
)) {
1465 struct slab_rcu
*slab_rcu
;
1467 slab_rcu
= (struct slab_rcu
*)slabp
;
1468 slab_rcu
->cachep
= cachep
;
1469 slab_rcu
->addr
= addr
;
1470 call_rcu(&slab_rcu
->head
, kmem_rcu_free
);
1472 kmem_freepages(cachep
, addr
);
1473 if (OFF_SLAB(cachep
))
1474 kmem_cache_free(cachep
->slabp_cache
, slabp
);
1478 /* For setting up all the kmem_list3s for cache whose objsize is same
1479 as size of kmem_list3. */
1480 static inline void set_up_list3s(kmem_cache_t
*cachep
, int index
)
1484 for_each_online_node(node
) {
1485 cachep
->nodelists
[node
] = &initkmem_list3
[index
+ node
];
1486 cachep
->nodelists
[node
]->next_reap
= jiffies
+
1488 ((unsigned long)cachep
) % REAPTIMEOUT_LIST3
;
1493 * calculate_slab_order - calculate size (page order) of slabs and the number
1494 * of objects per slab.
1496 * This could be made much more intelligent. For now, try to avoid using
1497 * high order pages for slabs. When the gfp() functions are more friendly
1498 * towards high-order requests, this should be changed.
1500 static inline size_t calculate_slab_order(kmem_cache_t
*cachep
, size_t size
,
1501 size_t align
, gfp_t flags
)
1503 size_t left_over
= 0;
1505 for (;; cachep
->gfporder
++) {
1509 if (cachep
->gfporder
> MAX_GFP_ORDER
) {
1514 cache_estimate(cachep
->gfporder
, size
, align
, flags
,
1518 /* More than offslab_limit objects will cause problems */
1519 if (flags
& CFLGS_OFF_SLAB
&& cachep
->num
> offslab_limit
)
1523 left_over
= remainder
;
1526 * Large number of objects is good, but very large slabs are
1527 * currently bad for the gfp()s.
1529 if (cachep
->gfporder
>= slab_break_gfp_order
)
1532 if ((left_over
* 8) <= (PAGE_SIZE
<< cachep
->gfporder
))
1533 /* Acceptable internal fragmentation */
1540 * kmem_cache_create - Create a cache.
1541 * @name: A string which is used in /proc/slabinfo to identify this cache.
1542 * @size: The size of objects to be created in this cache.
1543 * @align: The required alignment for the objects.
1544 * @flags: SLAB flags
1545 * @ctor: A constructor for the objects.
1546 * @dtor: A destructor for the objects.
1548 * Returns a ptr to the cache on success, NULL on failure.
1549 * Cannot be called within a int, but can be interrupted.
1550 * The @ctor is run when new pages are allocated by the cache
1551 * and the @dtor is run before the pages are handed back.
1553 * @name must be valid until the cache is destroyed. This implies that
1554 * the module calling this has to destroy the cache before getting
1559 * %SLAB_POISON - Poison the slab with a known test pattern (a5a5a5a5)
1560 * to catch references to uninitialised memory.
1562 * %SLAB_RED_ZONE - Insert `Red' zones around the allocated memory to check
1563 * for buffer overruns.
1565 * %SLAB_NO_REAP - Don't automatically reap this cache when we're under
1568 * %SLAB_HWCACHE_ALIGN - Align the objects in this cache to a hardware
1569 * cacheline. This can be beneficial if you're counting cycles as closely
1573 kmem_cache_create (const char *name
, size_t size
, size_t align
,
1574 unsigned long flags
, void (*ctor
)(void*, kmem_cache_t
*, unsigned long),
1575 void (*dtor
)(void*, kmem_cache_t
*, unsigned long))
1577 size_t left_over
, slab_size
, ralign
;
1578 kmem_cache_t
*cachep
= NULL
;
1579 struct list_head
*p
;
1582 * Sanity checks... these are all serious usage bugs.
1586 (size
< BYTES_PER_WORD
) ||
1587 (size
> (1 << MAX_OBJ_ORDER
) * PAGE_SIZE
) || (dtor
&& !ctor
)) {
1588 printk(KERN_ERR
"%s: Early error in slab %s\n",
1589 __FUNCTION__
, name
);
1593 down(&cache_chain_sem
);
1595 list_for_each(p
, &cache_chain
) {
1596 kmem_cache_t
*pc
= list_entry(p
, kmem_cache_t
, next
);
1597 mm_segment_t old_fs
= get_fs();
1602 * This happens when the module gets unloaded and doesn't
1603 * destroy its slab cache and no-one else reuses the vmalloc
1604 * area of the module. Print a warning.
1607 res
= __get_user(tmp
, pc
->name
);
1610 printk("SLAB: cache with size %d has lost its name\n",
1615 if (!strcmp(pc
->name
, name
)) {
1616 printk("kmem_cache_create: duplicate cache %s\n", name
);
1623 WARN_ON(strchr(name
, ' ')); /* It confuses parsers */
1624 if ((flags
& SLAB_DEBUG_INITIAL
) && !ctor
) {
1625 /* No constructor, but inital state check requested */
1626 printk(KERN_ERR
"%s: No con, but init state check "
1627 "requested - %s\n", __FUNCTION__
, name
);
1628 flags
&= ~SLAB_DEBUG_INITIAL
;
1632 * Enable redzoning and last user accounting, except for caches with
1633 * large objects, if the increased size would increase the object size
1634 * above the next power of two: caches with object sizes just above a
1635 * power of two have a significant amount of internal fragmentation.
1638 || fls(size
- 1) == fls(size
- 1 + 3 * BYTES_PER_WORD
)))
1639 flags
|= SLAB_RED_ZONE
| SLAB_STORE_USER
;
1640 if (!(flags
& SLAB_DESTROY_BY_RCU
))
1641 flags
|= SLAB_POISON
;
1643 if (flags
& SLAB_DESTROY_BY_RCU
)
1644 BUG_ON(flags
& SLAB_POISON
);
1646 if (flags
& SLAB_DESTROY_BY_RCU
)
1650 * Always checks flags, a caller might be expecting debug
1651 * support which isn't available.
1653 if (flags
& ~CREATE_MASK
)
1656 /* Check that size is in terms of words. This is needed to avoid
1657 * unaligned accesses for some archs when redzoning is used, and makes
1658 * sure any on-slab bufctl's are also correctly aligned.
1660 if (size
& (BYTES_PER_WORD
- 1)) {
1661 size
+= (BYTES_PER_WORD
- 1);
1662 size
&= ~(BYTES_PER_WORD
- 1);
1665 /* calculate out the final buffer alignment: */
1666 /* 1) arch recommendation: can be overridden for debug */
1667 if (flags
& SLAB_HWCACHE_ALIGN
) {
1668 /* Default alignment: as specified by the arch code.
1669 * Except if an object is really small, then squeeze multiple
1670 * objects into one cacheline.
1672 ralign
= cache_line_size();
1673 while (size
<= ralign
/ 2)
1676 ralign
= BYTES_PER_WORD
;
1678 /* 2) arch mandated alignment: disables debug if necessary */
1679 if (ralign
< ARCH_SLAB_MINALIGN
) {
1680 ralign
= ARCH_SLAB_MINALIGN
;
1681 if (ralign
> BYTES_PER_WORD
)
1682 flags
&= ~(SLAB_RED_ZONE
| SLAB_STORE_USER
);
1684 /* 3) caller mandated alignment: disables debug if necessary */
1685 if (ralign
< align
) {
1687 if (ralign
> BYTES_PER_WORD
)
1688 flags
&= ~(SLAB_RED_ZONE
| SLAB_STORE_USER
);
1690 /* 4) Store it. Note that the debug code below can reduce
1691 * the alignment to BYTES_PER_WORD.
1695 /* Get cache's description obj. */
1696 cachep
= (kmem_cache_t
*) kmem_cache_alloc(&cache_cache
, SLAB_KERNEL
);
1699 memset(cachep
, 0, sizeof(kmem_cache_t
));
1702 cachep
->reallen
= size
;
1704 if (flags
& SLAB_RED_ZONE
) {
1705 /* redzoning only works with word aligned caches */
1706 align
= BYTES_PER_WORD
;
1708 /* add space for red zone words */
1709 cachep
->dbghead
+= BYTES_PER_WORD
;
1710 size
+= 2 * BYTES_PER_WORD
;
1712 if (flags
& SLAB_STORE_USER
) {
1713 /* user store requires word alignment and
1714 * one word storage behind the end of the real
1717 align
= BYTES_PER_WORD
;
1718 size
+= BYTES_PER_WORD
;
1720 #if FORCED_DEBUG && defined(CONFIG_DEBUG_PAGEALLOC)
1721 if (size
>= malloc_sizes
[INDEX_L3
+ 1].cs_size
1722 && cachep
->reallen
> cache_line_size() && size
< PAGE_SIZE
) {
1723 cachep
->dbghead
+= PAGE_SIZE
- size
;
1729 /* Determine if the slab management is 'on' or 'off' slab. */
1730 if (size
>= (PAGE_SIZE
>> 3))
1732 * Size is large, assume best to place the slab management obj
1733 * off-slab (should allow better packing of objs).
1735 flags
|= CFLGS_OFF_SLAB
;
1737 size
= ALIGN(size
, align
);
1739 if ((flags
& SLAB_RECLAIM_ACCOUNT
) && size
<= PAGE_SIZE
) {
1741 * A VFS-reclaimable slab tends to have most allocations
1742 * as GFP_NOFS and we really don't want to have to be allocating
1743 * higher-order pages when we are unable to shrink dcache.
1745 cachep
->gfporder
= 0;
1746 cache_estimate(cachep
->gfporder
, size
, align
, flags
,
1747 &left_over
, &cachep
->num
);
1749 left_over
= calculate_slab_order(cachep
, size
, align
, flags
);
1752 printk("kmem_cache_create: couldn't create cache %s.\n", name
);
1753 kmem_cache_free(&cache_cache
, cachep
);
1757 slab_size
= ALIGN(cachep
->num
* sizeof(kmem_bufctl_t
)
1758 + sizeof(struct slab
), align
);
1761 * If the slab has been placed off-slab, and we have enough space then
1762 * move it on-slab. This is at the expense of any extra colouring.
1764 if (flags
& CFLGS_OFF_SLAB
&& left_over
>= slab_size
) {
1765 flags
&= ~CFLGS_OFF_SLAB
;
1766 left_over
-= slab_size
;
1769 if (flags
& CFLGS_OFF_SLAB
) {
1770 /* really off slab. No need for manual alignment */
1772 cachep
->num
* sizeof(kmem_bufctl_t
) + sizeof(struct slab
);
1775 cachep
->colour_off
= cache_line_size();
1776 /* Offset must be a multiple of the alignment. */
1777 if (cachep
->colour_off
< align
)
1778 cachep
->colour_off
= align
;
1779 cachep
->colour
= left_over
/ cachep
->colour_off
;
1780 cachep
->slab_size
= slab_size
;
1781 cachep
->flags
= flags
;
1782 cachep
->gfpflags
= 0;
1783 if (flags
& SLAB_CACHE_DMA
)
1784 cachep
->gfpflags
|= GFP_DMA
;
1785 spin_lock_init(&cachep
->spinlock
);
1786 cachep
->objsize
= size
;
1788 if (flags
& CFLGS_OFF_SLAB
)
1789 cachep
->slabp_cache
= kmem_find_general_cachep(slab_size
, 0u);
1790 cachep
->ctor
= ctor
;
1791 cachep
->dtor
= dtor
;
1792 cachep
->name
= name
;
1794 /* Don't let CPUs to come and go */
1797 if (g_cpucache_up
== FULL
) {
1798 enable_cpucache(cachep
);
1800 if (g_cpucache_up
== NONE
) {
1801 /* Note: the first kmem_cache_create must create
1802 * the cache that's used by kmalloc(24), otherwise
1803 * the creation of further caches will BUG().
1805 cachep
->array
[smp_processor_id()] =
1806 &initarray_generic
.cache
;
1808 /* If the cache that's used by
1809 * kmalloc(sizeof(kmem_list3)) is the first cache,
1810 * then we need to set up all its list3s, otherwise
1811 * the creation of further caches will BUG().
1813 set_up_list3s(cachep
, SIZE_AC
);
1814 if (INDEX_AC
== INDEX_L3
)
1815 g_cpucache_up
= PARTIAL_L3
;
1817 g_cpucache_up
= PARTIAL_AC
;
1819 cachep
->array
[smp_processor_id()] =
1820 kmalloc(sizeof(struct arraycache_init
), GFP_KERNEL
);
1822 if (g_cpucache_up
== PARTIAL_AC
) {
1823 set_up_list3s(cachep
, SIZE_L3
);
1824 g_cpucache_up
= PARTIAL_L3
;
1827 for_each_online_node(node
) {
1829 cachep
->nodelists
[node
] =
1831 (struct kmem_list3
),
1833 BUG_ON(!cachep
->nodelists
[node
]);
1834 kmem_list3_init(cachep
->
1839 cachep
->nodelists
[numa_node_id()]->next_reap
=
1840 jiffies
+ REAPTIMEOUT_LIST3
+
1841 ((unsigned long)cachep
) % REAPTIMEOUT_LIST3
;
1843 BUG_ON(!ac_data(cachep
));
1844 ac_data(cachep
)->avail
= 0;
1845 ac_data(cachep
)->limit
= BOOT_CPUCACHE_ENTRIES
;
1846 ac_data(cachep
)->batchcount
= 1;
1847 ac_data(cachep
)->touched
= 0;
1848 cachep
->batchcount
= 1;
1849 cachep
->limit
= BOOT_CPUCACHE_ENTRIES
;
1852 /* cache setup completed, link it into the list */
1853 list_add(&cachep
->next
, &cache_chain
);
1854 unlock_cpu_hotplug();
1856 if (!cachep
&& (flags
& SLAB_PANIC
))
1857 panic("kmem_cache_create(): failed to create slab `%s'\n",
1859 up(&cache_chain_sem
);
1862 EXPORT_SYMBOL(kmem_cache_create
);
1865 static void check_irq_off(void)
1867 BUG_ON(!irqs_disabled());
1870 static void check_irq_on(void)
1872 BUG_ON(irqs_disabled());
1875 static void check_spinlock_acquired(kmem_cache_t
*cachep
)
1879 assert_spin_locked(&cachep
->nodelists
[numa_node_id()]->list_lock
);
1883 static inline void check_spinlock_acquired_node(kmem_cache_t
*cachep
, int node
)
1887 assert_spin_locked(&cachep
->nodelists
[node
]->list_lock
);
1892 #define check_irq_off() do { } while(0)
1893 #define check_irq_on() do { } while(0)
1894 #define check_spinlock_acquired(x) do { } while(0)
1895 #define check_spinlock_acquired_node(x, y) do { } while(0)
1899 * Waits for all CPUs to execute func().
1901 static void smp_call_function_all_cpus(void (*func
)(void *arg
), void *arg
)
1906 local_irq_disable();
1910 if (smp_call_function(func
, arg
, 1, 1))
1916 static void drain_array_locked(kmem_cache_t
*cachep
, struct array_cache
*ac
,
1917 int force
, int node
);
1919 static void do_drain(void *arg
)
1921 kmem_cache_t
*cachep
= (kmem_cache_t
*) arg
;
1922 struct array_cache
*ac
;
1923 int node
= numa_node_id();
1926 ac
= ac_data(cachep
);
1927 spin_lock(&cachep
->nodelists
[node
]->list_lock
);
1928 free_block(cachep
, ac
->entry
, ac
->avail
, node
);
1929 spin_unlock(&cachep
->nodelists
[node
]->list_lock
);
1933 static void drain_cpu_caches(kmem_cache_t
*cachep
)
1935 struct kmem_list3
*l3
;
1938 smp_call_function_all_cpus(do_drain
, cachep
);
1940 spin_lock_irq(&cachep
->spinlock
);
1941 for_each_online_node(node
) {
1942 l3
= cachep
->nodelists
[node
];
1944 spin_lock(&l3
->list_lock
);
1945 drain_array_locked(cachep
, l3
->shared
, 1, node
);
1946 spin_unlock(&l3
->list_lock
);
1948 drain_alien_cache(cachep
, l3
);
1951 spin_unlock_irq(&cachep
->spinlock
);
1954 static int __node_shrink(kmem_cache_t
*cachep
, int node
)
1957 struct kmem_list3
*l3
= cachep
->nodelists
[node
];
1961 struct list_head
*p
;
1963 p
= l3
->slabs_free
.prev
;
1964 if (p
== &l3
->slabs_free
)
1967 slabp
= list_entry(l3
->slabs_free
.prev
, struct slab
, list
);
1972 list_del(&slabp
->list
);
1974 l3
->free_objects
-= cachep
->num
;
1975 spin_unlock_irq(&l3
->list_lock
);
1976 slab_destroy(cachep
, slabp
);
1977 spin_lock_irq(&l3
->list_lock
);
1979 ret
= !list_empty(&l3
->slabs_full
) || !list_empty(&l3
->slabs_partial
);
1983 static int __cache_shrink(kmem_cache_t
*cachep
)
1986 struct kmem_list3
*l3
;
1988 drain_cpu_caches(cachep
);
1991 for_each_online_node(i
) {
1992 l3
= cachep
->nodelists
[i
];
1994 spin_lock_irq(&l3
->list_lock
);
1995 ret
+= __node_shrink(cachep
, i
);
1996 spin_unlock_irq(&l3
->list_lock
);
1999 return (ret
? 1 : 0);
2003 * kmem_cache_shrink - Shrink a cache.
2004 * @cachep: The cache to shrink.
2006 * Releases as many slabs as possible for a cache.
2007 * To help debugging, a zero exit status indicates all slabs were released.
2009 int kmem_cache_shrink(kmem_cache_t
*cachep
)
2011 if (!cachep
|| in_interrupt())
2014 return __cache_shrink(cachep
);
2016 EXPORT_SYMBOL(kmem_cache_shrink
);
2019 * kmem_cache_destroy - delete a cache
2020 * @cachep: the cache to destroy
2022 * Remove a kmem_cache_t object from the slab cache.
2023 * Returns 0 on success.
2025 * It is expected this function will be called by a module when it is
2026 * unloaded. This will remove the cache completely, and avoid a duplicate
2027 * cache being allocated each time a module is loaded and unloaded, if the
2028 * module doesn't have persistent in-kernel storage across loads and unloads.
2030 * The cache must be empty before calling this function.
2032 * The caller must guarantee that noone will allocate memory from the cache
2033 * during the kmem_cache_destroy().
2035 int kmem_cache_destroy(kmem_cache_t
*cachep
)
2038 struct kmem_list3
*l3
;
2040 if (!cachep
|| in_interrupt())
2043 /* Don't let CPUs to come and go */
2046 /* Find the cache in the chain of caches. */
2047 down(&cache_chain_sem
);
2049 * the chain is never empty, cache_cache is never destroyed
2051 list_del(&cachep
->next
);
2052 up(&cache_chain_sem
);
2054 if (__cache_shrink(cachep
)) {
2055 slab_error(cachep
, "Can't free all objects");
2056 down(&cache_chain_sem
);
2057 list_add(&cachep
->next
, &cache_chain
);
2058 up(&cache_chain_sem
);
2059 unlock_cpu_hotplug();
2063 if (unlikely(cachep
->flags
& SLAB_DESTROY_BY_RCU
))
2066 for_each_online_cpu(i
)
2067 kfree(cachep
->array
[i
]);
2069 /* NUMA: free the list3 structures */
2070 for_each_online_node(i
) {
2071 if ((l3
= cachep
->nodelists
[i
])) {
2073 free_alien_cache(l3
->alien
);
2077 kmem_cache_free(&cache_cache
, cachep
);
2079 unlock_cpu_hotplug();
2083 EXPORT_SYMBOL(kmem_cache_destroy
);
2085 /* Get the memory for a slab management obj. */
2086 static struct slab
*alloc_slabmgmt(kmem_cache_t
*cachep
, void *objp
,
2087 int colour_off
, gfp_t local_flags
)
2091 if (OFF_SLAB(cachep
)) {
2092 /* Slab management obj is off-slab. */
2093 slabp
= kmem_cache_alloc(cachep
->slabp_cache
, local_flags
);
2097 slabp
= objp
+ colour_off
;
2098 colour_off
+= cachep
->slab_size
;
2101 slabp
->colouroff
= colour_off
;
2102 slabp
->s_mem
= objp
+ colour_off
;
2107 static inline kmem_bufctl_t
*slab_bufctl(struct slab
*slabp
)
2109 return (kmem_bufctl_t
*) (slabp
+ 1);
2112 static void cache_init_objs(kmem_cache_t
*cachep
,
2113 struct slab
*slabp
, unsigned long ctor_flags
)
2117 for (i
= 0; i
< cachep
->num
; i
++) {
2118 void *objp
= slabp
->s_mem
+ cachep
->objsize
* i
;
2120 /* need to poison the objs? */
2121 if (cachep
->flags
& SLAB_POISON
)
2122 poison_obj(cachep
, objp
, POISON_FREE
);
2123 if (cachep
->flags
& SLAB_STORE_USER
)
2124 *dbg_userword(cachep
, objp
) = NULL
;
2126 if (cachep
->flags
& SLAB_RED_ZONE
) {
2127 *dbg_redzone1(cachep
, objp
) = RED_INACTIVE
;
2128 *dbg_redzone2(cachep
, objp
) = RED_INACTIVE
;
2131 * Constructors are not allowed to allocate memory from
2132 * the same cache which they are a constructor for.
2133 * Otherwise, deadlock. They must also be threaded.
2135 if (cachep
->ctor
&& !(cachep
->flags
& SLAB_POISON
))
2136 cachep
->ctor(objp
+ obj_dbghead(cachep
), cachep
,
2139 if (cachep
->flags
& SLAB_RED_ZONE
) {
2140 if (*dbg_redzone2(cachep
, objp
) != RED_INACTIVE
)
2141 slab_error(cachep
, "constructor overwrote the"
2142 " end of an object");
2143 if (*dbg_redzone1(cachep
, objp
) != RED_INACTIVE
)
2144 slab_error(cachep
, "constructor overwrote the"
2145 " start of an object");
2147 if ((cachep
->objsize
% PAGE_SIZE
) == 0 && OFF_SLAB(cachep
)
2148 && cachep
->flags
& SLAB_POISON
)
2149 kernel_map_pages(virt_to_page(objp
),
2150 cachep
->objsize
/ PAGE_SIZE
, 0);
2153 cachep
->ctor(objp
, cachep
, ctor_flags
);
2155 slab_bufctl(slabp
)[i
] = i
+ 1;
2157 slab_bufctl(slabp
)[i
- 1] = BUFCTL_END
;
2161 static void kmem_flagcheck(kmem_cache_t
*cachep
, gfp_t flags
)
2163 if (flags
& SLAB_DMA
) {
2164 if (!(cachep
->gfpflags
& GFP_DMA
))
2167 if (cachep
->gfpflags
& GFP_DMA
)
2172 static void set_slab_attr(kmem_cache_t
*cachep
, struct slab
*slabp
, void *objp
)
2177 /* Nasty!!!!!! I hope this is OK. */
2178 i
= 1 << cachep
->gfporder
;
2179 page
= virt_to_page(objp
);
2181 page_set_cache(page
, cachep
);
2182 page_set_slab(page
, slabp
);
2188 * Grow (by 1) the number of slabs within a cache. This is called by
2189 * kmem_cache_alloc() when there are no active objs left in a cache.
2191 static int cache_grow(kmem_cache_t
*cachep
, gfp_t flags
, int nodeid
)
2197 unsigned long ctor_flags
;
2198 struct kmem_list3
*l3
;
2200 /* Be lazy and only check for valid flags here,
2201 * keeping it out of the critical path in kmem_cache_alloc().
2203 if (flags
& ~(SLAB_DMA
| SLAB_LEVEL_MASK
| SLAB_NO_GROW
))
2205 if (flags
& SLAB_NO_GROW
)
2208 ctor_flags
= SLAB_CTOR_CONSTRUCTOR
;
2209 local_flags
= (flags
& SLAB_LEVEL_MASK
);
2210 if (!(local_flags
& __GFP_WAIT
))
2212 * Not allowed to sleep. Need to tell a constructor about
2213 * this - it might need to know...
2215 ctor_flags
|= SLAB_CTOR_ATOMIC
;
2217 /* About to mess with non-constant members - lock. */
2219 spin_lock(&cachep
->spinlock
);
2221 /* Get colour for the slab, and cal the next value. */
2222 offset
= cachep
->colour_next
;
2223 cachep
->colour_next
++;
2224 if (cachep
->colour_next
>= cachep
->colour
)
2225 cachep
->colour_next
= 0;
2226 offset
*= cachep
->colour_off
;
2228 spin_unlock(&cachep
->spinlock
);
2231 if (local_flags
& __GFP_WAIT
)
2235 * The test for missing atomic flag is performed here, rather than
2236 * the more obvious place, simply to reduce the critical path length
2237 * in kmem_cache_alloc(). If a caller is seriously mis-behaving they
2238 * will eventually be caught here (where it matters).
2240 kmem_flagcheck(cachep
, flags
);
2242 /* Get mem for the objs.
2243 * Attempt to allocate a physical page from 'nodeid',
2245 if (!(objp
= kmem_getpages(cachep
, flags
, nodeid
)))
2248 /* Get slab management. */
2249 if (!(slabp
= alloc_slabmgmt(cachep
, objp
, offset
, local_flags
)))
2252 slabp
->nodeid
= nodeid
;
2253 set_slab_attr(cachep
, slabp
, objp
);
2255 cache_init_objs(cachep
, slabp
, ctor_flags
);
2257 if (local_flags
& __GFP_WAIT
)
2258 local_irq_disable();
2260 l3
= cachep
->nodelists
[nodeid
];
2261 spin_lock(&l3
->list_lock
);
2263 /* Make slab active. */
2264 list_add_tail(&slabp
->list
, &(l3
->slabs_free
));
2265 STATS_INC_GROWN(cachep
);
2266 l3
->free_objects
+= cachep
->num
;
2267 spin_unlock(&l3
->list_lock
);
2270 kmem_freepages(cachep
, objp
);
2272 if (local_flags
& __GFP_WAIT
)
2273 local_irq_disable();
2280 * Perform extra freeing checks:
2281 * - detect bad pointers.
2282 * - POISON/RED_ZONE checking
2283 * - destructor calls, for caches with POISON+dtor
2285 static void kfree_debugcheck(const void *objp
)
2289 if (!virt_addr_valid(objp
)) {
2290 printk(KERN_ERR
"kfree_debugcheck: out of range ptr %lxh.\n",
2291 (unsigned long)objp
);
2294 page
= virt_to_page(objp
);
2295 if (!PageSlab(page
)) {
2296 printk(KERN_ERR
"kfree_debugcheck: bad ptr %lxh.\n",
2297 (unsigned long)objp
);
2302 static void *cache_free_debugcheck(kmem_cache_t
*cachep
, void *objp
,
2309 objp
-= obj_dbghead(cachep
);
2310 kfree_debugcheck(objp
);
2311 page
= virt_to_page(objp
);
2313 if (page_get_cache(page
) != cachep
) {
2315 "mismatch in kmem_cache_free: expected cache %p, got %p\n",
2316 page_get_cache(page
), cachep
);
2317 printk(KERN_ERR
"%p is %s.\n", cachep
, cachep
->name
);
2318 printk(KERN_ERR
"%p is %s.\n", page_get_cache(page
),
2319 page_get_cache(page
)->name
);
2322 slabp
= page_get_slab(page
);
2324 if (cachep
->flags
& SLAB_RED_ZONE
) {
2325 if (*dbg_redzone1(cachep
, objp
) != RED_ACTIVE
2326 || *dbg_redzone2(cachep
, objp
) != RED_ACTIVE
) {
2328 "double free, or memory outside"
2329 " object was overwritten");
2331 "%p: redzone 1: 0x%lx, redzone 2: 0x%lx.\n",
2332 objp
, *dbg_redzone1(cachep
, objp
),
2333 *dbg_redzone2(cachep
, objp
));
2335 *dbg_redzone1(cachep
, objp
) = RED_INACTIVE
;
2336 *dbg_redzone2(cachep
, objp
) = RED_INACTIVE
;
2338 if (cachep
->flags
& SLAB_STORE_USER
)
2339 *dbg_userword(cachep
, objp
) = caller
;
2341 objnr
= (objp
- slabp
->s_mem
) / cachep
->objsize
;
2343 BUG_ON(objnr
>= cachep
->num
);
2344 BUG_ON(objp
!= slabp
->s_mem
+ objnr
* cachep
->objsize
);
2346 if (cachep
->flags
& SLAB_DEBUG_INITIAL
) {
2347 /* Need to call the slab's constructor so the
2348 * caller can perform a verify of its state (debugging).
2349 * Called without the cache-lock held.
2351 cachep
->ctor(objp
+ obj_dbghead(cachep
),
2352 cachep
, SLAB_CTOR_CONSTRUCTOR
| SLAB_CTOR_VERIFY
);
2354 if (cachep
->flags
& SLAB_POISON
&& cachep
->dtor
) {
2355 /* we want to cache poison the object,
2356 * call the destruction callback
2358 cachep
->dtor(objp
+ obj_dbghead(cachep
), cachep
, 0);
2360 if (cachep
->flags
& SLAB_POISON
) {
2361 #ifdef CONFIG_DEBUG_PAGEALLOC
2362 if ((cachep
->objsize
% PAGE_SIZE
) == 0 && OFF_SLAB(cachep
)) {
2363 store_stackinfo(cachep
, objp
, (unsigned long)caller
);
2364 kernel_map_pages(virt_to_page(objp
),
2365 cachep
->objsize
/ PAGE_SIZE
, 0);
2367 poison_obj(cachep
, objp
, POISON_FREE
);
2370 poison_obj(cachep
, objp
, POISON_FREE
);
2376 static void check_slabp(kmem_cache_t
*cachep
, struct slab
*slabp
)
2381 /* Check slab's freelist to see if this obj is there. */
2382 for (i
= slabp
->free
; i
!= BUFCTL_END
; i
= slab_bufctl(slabp
)[i
]) {
2384 if (entries
> cachep
->num
|| i
>= cachep
->num
)
2387 if (entries
!= cachep
->num
- slabp
->inuse
) {
2390 "slab: Internal list corruption detected in cache '%s'(%d), slabp %p(%d). Hexdump:\n",
2391 cachep
->name
, cachep
->num
, slabp
, slabp
->inuse
);
2393 i
< sizeof(slabp
) + cachep
->num
* sizeof(kmem_bufctl_t
);
2396 printk("\n%03x:", i
);
2397 printk(" %02x", ((unsigned char *)slabp
)[i
]);
2404 #define kfree_debugcheck(x) do { } while(0)
2405 #define cache_free_debugcheck(x,objp,z) (objp)
2406 #define check_slabp(x,y) do { } while(0)
2409 static void *cache_alloc_refill(kmem_cache_t
*cachep
, gfp_t flags
)
2412 struct kmem_list3
*l3
;
2413 struct array_cache
*ac
;
2416 ac
= ac_data(cachep
);
2418 batchcount
= ac
->batchcount
;
2419 if (!ac
->touched
&& batchcount
> BATCHREFILL_LIMIT
) {
2420 /* if there was little recent activity on this
2421 * cache, then perform only a partial refill.
2422 * Otherwise we could generate refill bouncing.
2424 batchcount
= BATCHREFILL_LIMIT
;
2426 l3
= cachep
->nodelists
[numa_node_id()];
2428 BUG_ON(ac
->avail
> 0 || !l3
);
2429 spin_lock(&l3
->list_lock
);
2432 struct array_cache
*shared_array
= l3
->shared
;
2433 if (shared_array
->avail
) {
2434 if (batchcount
> shared_array
->avail
)
2435 batchcount
= shared_array
->avail
;
2436 shared_array
->avail
-= batchcount
;
2437 ac
->avail
= batchcount
;
2439 &(shared_array
->entry
[shared_array
->avail
]),
2440 sizeof(void *) * batchcount
);
2441 shared_array
->touched
= 1;
2445 while (batchcount
> 0) {
2446 struct list_head
*entry
;
2448 /* Get slab alloc is to come from. */
2449 entry
= l3
->slabs_partial
.next
;
2450 if (entry
== &l3
->slabs_partial
) {
2451 l3
->free_touched
= 1;
2452 entry
= l3
->slabs_free
.next
;
2453 if (entry
== &l3
->slabs_free
)
2457 slabp
= list_entry(entry
, struct slab
, list
);
2458 check_slabp(cachep
, slabp
);
2459 check_spinlock_acquired(cachep
);
2460 while (slabp
->inuse
< cachep
->num
&& batchcount
--) {
2462 STATS_INC_ALLOCED(cachep
);
2463 STATS_INC_ACTIVE(cachep
);
2464 STATS_SET_HIGH(cachep
);
2466 /* get obj pointer */
2467 ac
->entry
[ac
->avail
++] = slabp
->s_mem
+
2468 slabp
->free
* cachep
->objsize
;
2471 next
= slab_bufctl(slabp
)[slabp
->free
];
2473 slab_bufctl(slabp
)[slabp
->free
] = BUFCTL_FREE
;
2474 WARN_ON(numa_node_id() != slabp
->nodeid
);
2478 check_slabp(cachep
, slabp
);
2480 /* move slabp to correct slabp list: */
2481 list_del(&slabp
->list
);
2482 if (slabp
->free
== BUFCTL_END
)
2483 list_add(&slabp
->list
, &l3
->slabs_full
);
2485 list_add(&slabp
->list
, &l3
->slabs_partial
);
2489 l3
->free_objects
-= ac
->avail
;
2491 spin_unlock(&l3
->list_lock
);
2493 if (unlikely(!ac
->avail
)) {
2495 x
= cache_grow(cachep
, flags
, numa_node_id());
2497 // cache_grow can reenable interrupts, then ac could change.
2498 ac
= ac_data(cachep
);
2499 if (!x
&& ac
->avail
== 0) // no objects in sight? abort
2502 if (!ac
->avail
) // objects refilled by interrupt?
2506 return ac
->entry
[--ac
->avail
];
2510 cache_alloc_debugcheck_before(kmem_cache_t
*cachep
, gfp_t flags
)
2512 might_sleep_if(flags
& __GFP_WAIT
);
2514 kmem_flagcheck(cachep
, flags
);
2519 static void *cache_alloc_debugcheck_after(kmem_cache_t
*cachep
, gfp_t flags
,
2520 void *objp
, void *caller
)
2524 if (cachep
->flags
& SLAB_POISON
) {
2525 #ifdef CONFIG_DEBUG_PAGEALLOC
2526 if ((cachep
->objsize
% PAGE_SIZE
) == 0 && OFF_SLAB(cachep
))
2527 kernel_map_pages(virt_to_page(objp
),
2528 cachep
->objsize
/ PAGE_SIZE
, 1);
2530 check_poison_obj(cachep
, objp
);
2532 check_poison_obj(cachep
, objp
);
2534 poison_obj(cachep
, objp
, POISON_INUSE
);
2536 if (cachep
->flags
& SLAB_STORE_USER
)
2537 *dbg_userword(cachep
, objp
) = caller
;
2539 if (cachep
->flags
& SLAB_RED_ZONE
) {
2540 if (*dbg_redzone1(cachep
, objp
) != RED_INACTIVE
2541 || *dbg_redzone2(cachep
, objp
) != RED_INACTIVE
) {
2543 "double free, or memory outside"
2544 " object was overwritten");
2546 "%p: redzone 1: 0x%lx, redzone 2: 0x%lx.\n",
2547 objp
, *dbg_redzone1(cachep
, objp
),
2548 *dbg_redzone2(cachep
, objp
));
2550 *dbg_redzone1(cachep
, objp
) = RED_ACTIVE
;
2551 *dbg_redzone2(cachep
, objp
) = RED_ACTIVE
;
2553 objp
+= obj_dbghead(cachep
);
2554 if (cachep
->ctor
&& cachep
->flags
& SLAB_POISON
) {
2555 unsigned long ctor_flags
= SLAB_CTOR_CONSTRUCTOR
;
2557 if (!(flags
& __GFP_WAIT
))
2558 ctor_flags
|= SLAB_CTOR_ATOMIC
;
2560 cachep
->ctor(objp
, cachep
, ctor_flags
);
2565 #define cache_alloc_debugcheck_after(a,b,objp,d) (objp)
2568 static inline void *____cache_alloc(kmem_cache_t
*cachep
, gfp_t flags
)
2571 struct array_cache
*ac
;
2574 ac
= ac_data(cachep
);
2575 if (likely(ac
->avail
)) {
2576 STATS_INC_ALLOCHIT(cachep
);
2578 objp
= ac
->entry
[--ac
->avail
];
2580 STATS_INC_ALLOCMISS(cachep
);
2581 objp
= cache_alloc_refill(cachep
, flags
);
2586 static inline void *__cache_alloc(kmem_cache_t
*cachep
, gfp_t flags
)
2588 unsigned long save_flags
;
2591 cache_alloc_debugcheck_before(cachep
, flags
);
2593 local_irq_save(save_flags
);
2594 objp
= ____cache_alloc(cachep
, flags
);
2595 local_irq_restore(save_flags
);
2596 objp
= cache_alloc_debugcheck_after(cachep
, flags
, objp
,
2597 __builtin_return_address(0));
2604 * A interface to enable slab creation on nodeid
2606 static void *__cache_alloc_node(kmem_cache_t
*cachep
, gfp_t flags
, int nodeid
)
2608 struct list_head
*entry
;
2610 struct kmem_list3
*l3
;
2615 l3
= cachep
->nodelists
[nodeid
];
2619 spin_lock(&l3
->list_lock
);
2620 entry
= l3
->slabs_partial
.next
;
2621 if (entry
== &l3
->slabs_partial
) {
2622 l3
->free_touched
= 1;
2623 entry
= l3
->slabs_free
.next
;
2624 if (entry
== &l3
->slabs_free
)
2628 slabp
= list_entry(entry
, struct slab
, list
);
2629 check_spinlock_acquired_node(cachep
, nodeid
);
2630 check_slabp(cachep
, slabp
);
2632 STATS_INC_NODEALLOCS(cachep
);
2633 STATS_INC_ACTIVE(cachep
);
2634 STATS_SET_HIGH(cachep
);
2636 BUG_ON(slabp
->inuse
== cachep
->num
);
2638 /* get obj pointer */
2639 obj
= slabp
->s_mem
+ slabp
->free
* cachep
->objsize
;
2641 next
= slab_bufctl(slabp
)[slabp
->free
];
2643 slab_bufctl(slabp
)[slabp
->free
] = BUFCTL_FREE
;
2646 check_slabp(cachep
, slabp
);
2648 /* move slabp to correct slabp list: */
2649 list_del(&slabp
->list
);
2651 if (slabp
->free
== BUFCTL_END
) {
2652 list_add(&slabp
->list
, &l3
->slabs_full
);
2654 list_add(&slabp
->list
, &l3
->slabs_partial
);
2657 spin_unlock(&l3
->list_lock
);
2661 spin_unlock(&l3
->list_lock
);
2662 x
= cache_grow(cachep
, flags
, nodeid
);
2674 * Caller needs to acquire correct kmem_list's list_lock
2676 static void free_block(kmem_cache_t
*cachep
, void **objpp
, int nr_objects
,
2680 struct kmem_list3
*l3
;
2682 for (i
= 0; i
< nr_objects
; i
++) {
2683 void *objp
= objpp
[i
];
2687 slabp
= page_get_slab(virt_to_page(objp
));
2688 l3
= cachep
->nodelists
[node
];
2689 list_del(&slabp
->list
);
2690 objnr
= (objp
- slabp
->s_mem
) / cachep
->objsize
;
2691 check_spinlock_acquired_node(cachep
, node
);
2692 check_slabp(cachep
, slabp
);
2695 /* Verify that the slab belongs to the intended node */
2696 WARN_ON(slabp
->nodeid
!= node
);
2698 if (slab_bufctl(slabp
)[objnr
] != BUFCTL_FREE
) {
2699 printk(KERN_ERR
"slab: double free detected in cache "
2700 "'%s', objp %p\n", cachep
->name
, objp
);
2704 slab_bufctl(slabp
)[objnr
] = slabp
->free
;
2705 slabp
->free
= objnr
;
2706 STATS_DEC_ACTIVE(cachep
);
2709 check_slabp(cachep
, slabp
);
2711 /* fixup slab chains */
2712 if (slabp
->inuse
== 0) {
2713 if (l3
->free_objects
> l3
->free_limit
) {
2714 l3
->free_objects
-= cachep
->num
;
2715 slab_destroy(cachep
, slabp
);
2717 list_add(&slabp
->list
, &l3
->slabs_free
);
2720 /* Unconditionally move a slab to the end of the
2721 * partial list on free - maximum time for the
2722 * other objects to be freed, too.
2724 list_add_tail(&slabp
->list
, &l3
->slabs_partial
);
2729 static void cache_flusharray(kmem_cache_t
*cachep
, struct array_cache
*ac
)
2732 struct kmem_list3
*l3
;
2733 int node
= numa_node_id();
2735 batchcount
= ac
->batchcount
;
2737 BUG_ON(!batchcount
|| batchcount
> ac
->avail
);
2740 l3
= cachep
->nodelists
[node
];
2741 spin_lock(&l3
->list_lock
);
2743 struct array_cache
*shared_array
= l3
->shared
;
2744 int max
= shared_array
->limit
- shared_array
->avail
;
2746 if (batchcount
> max
)
2748 memcpy(&(shared_array
->entry
[shared_array
->avail
]),
2749 ac
->entry
, sizeof(void *) * batchcount
);
2750 shared_array
->avail
+= batchcount
;
2755 free_block(cachep
, ac
->entry
, batchcount
, node
);
2760 struct list_head
*p
;
2762 p
= l3
->slabs_free
.next
;
2763 while (p
!= &(l3
->slabs_free
)) {
2766 slabp
= list_entry(p
, struct slab
, list
);
2767 BUG_ON(slabp
->inuse
);
2772 STATS_SET_FREEABLE(cachep
, i
);
2775 spin_unlock(&l3
->list_lock
);
2776 ac
->avail
-= batchcount
;
2777 memmove(ac
->entry
, &(ac
->entry
[batchcount
]),
2778 sizeof(void *) * ac
->avail
);
2783 * Release an obj back to its cache. If the obj has a constructed
2784 * state, it must be in this state _before_ it is released.
2786 * Called with disabled ints.
2788 static inline void __cache_free(kmem_cache_t
*cachep
, void *objp
)
2790 struct array_cache
*ac
= ac_data(cachep
);
2793 objp
= cache_free_debugcheck(cachep
, objp
, __builtin_return_address(0));
2795 /* Make sure we are not freeing a object from another
2796 * node to the array cache on this cpu.
2801 slabp
= page_get_slab(virt_to_page(objp
));
2802 if (unlikely(slabp
->nodeid
!= numa_node_id())) {
2803 struct array_cache
*alien
= NULL
;
2804 int nodeid
= slabp
->nodeid
;
2805 struct kmem_list3
*l3
=
2806 cachep
->nodelists
[numa_node_id()];
2808 STATS_INC_NODEFREES(cachep
);
2809 if (l3
->alien
&& l3
->alien
[nodeid
]) {
2810 alien
= l3
->alien
[nodeid
];
2811 spin_lock(&alien
->lock
);
2812 if (unlikely(alien
->avail
== alien
->limit
))
2813 __drain_alien_cache(cachep
,
2815 alien
->entry
[alien
->avail
++] = objp
;
2816 spin_unlock(&alien
->lock
);
2818 spin_lock(&(cachep
->nodelists
[nodeid
])->
2820 free_block(cachep
, &objp
, 1, nodeid
);
2821 spin_unlock(&(cachep
->nodelists
[nodeid
])->
2828 if (likely(ac
->avail
< ac
->limit
)) {
2829 STATS_INC_FREEHIT(cachep
);
2830 ac
->entry
[ac
->avail
++] = objp
;
2833 STATS_INC_FREEMISS(cachep
);
2834 cache_flusharray(cachep
, ac
);
2835 ac
->entry
[ac
->avail
++] = objp
;
2840 * kmem_cache_alloc - Allocate an object
2841 * @cachep: The cache to allocate from.
2842 * @flags: See kmalloc().
2844 * Allocate an object from this cache. The flags are only relevant
2845 * if the cache has no available objects.
2847 void *kmem_cache_alloc(kmem_cache_t
*cachep
, gfp_t flags
)
2849 return __cache_alloc(cachep
, flags
);
2851 EXPORT_SYMBOL(kmem_cache_alloc
);
2854 * kmem_ptr_validate - check if an untrusted pointer might
2856 * @cachep: the cache we're checking against
2857 * @ptr: pointer to validate
2859 * This verifies that the untrusted pointer looks sane:
2860 * it is _not_ a guarantee that the pointer is actually
2861 * part of the slab cache in question, but it at least
2862 * validates that the pointer can be dereferenced and
2863 * looks half-way sane.
2865 * Currently only used for dentry validation.
2867 int fastcall
kmem_ptr_validate(kmem_cache_t
*cachep
, void *ptr
)
2869 unsigned long addr
= (unsigned long)ptr
;
2870 unsigned long min_addr
= PAGE_OFFSET
;
2871 unsigned long align_mask
= BYTES_PER_WORD
- 1;
2872 unsigned long size
= cachep
->objsize
;
2875 if (unlikely(addr
< min_addr
))
2877 if (unlikely(addr
> (unsigned long)high_memory
- size
))
2879 if (unlikely(addr
& align_mask
))
2881 if (unlikely(!kern_addr_valid(addr
)))
2883 if (unlikely(!kern_addr_valid(addr
+ size
- 1)))
2885 page
= virt_to_page(ptr
);
2886 if (unlikely(!PageSlab(page
)))
2888 if (unlikely(page_get_cache(page
) != cachep
))
2897 * kmem_cache_alloc_node - Allocate an object on the specified node
2898 * @cachep: The cache to allocate from.
2899 * @flags: See kmalloc().
2900 * @nodeid: node number of the target node.
2902 * Identical to kmem_cache_alloc, except that this function is slow
2903 * and can sleep. And it will allocate memory on the given node, which
2904 * can improve the performance for cpu bound structures.
2905 * New and improved: it will now make sure that the object gets
2906 * put on the correct node list so that there is no false sharing.
2908 void *kmem_cache_alloc_node(kmem_cache_t
*cachep
, gfp_t flags
, int nodeid
)
2910 unsigned long save_flags
;
2914 return __cache_alloc(cachep
, flags
);
2916 if (unlikely(!cachep
->nodelists
[nodeid
])) {
2917 /* Fall back to __cache_alloc if we run into trouble */
2919 "slab: not allocating in inactive node %d for cache %s\n",
2920 nodeid
, cachep
->name
);
2921 return __cache_alloc(cachep
, flags
);
2924 cache_alloc_debugcheck_before(cachep
, flags
);
2925 local_irq_save(save_flags
);
2926 if (nodeid
== numa_node_id())
2927 ptr
= ____cache_alloc(cachep
, flags
);
2929 ptr
= __cache_alloc_node(cachep
, flags
, nodeid
);
2930 local_irq_restore(save_flags
);
2932 cache_alloc_debugcheck_after(cachep
, flags
, ptr
,
2933 __builtin_return_address(0));
2937 EXPORT_SYMBOL(kmem_cache_alloc_node
);
2939 void *kmalloc_node(size_t size
, gfp_t flags
, int node
)
2941 kmem_cache_t
*cachep
;
2943 cachep
= kmem_find_general_cachep(size
, flags
);
2944 if (unlikely(cachep
== NULL
))
2946 return kmem_cache_alloc_node(cachep
, flags
, node
);
2948 EXPORT_SYMBOL(kmalloc_node
);
2952 * kmalloc - allocate memory
2953 * @size: how many bytes of memory are required.
2954 * @flags: the type of memory to allocate.
2956 * kmalloc is the normal method of allocating memory
2959 * The @flags argument may be one of:
2961 * %GFP_USER - Allocate memory on behalf of user. May sleep.
2963 * %GFP_KERNEL - Allocate normal kernel ram. May sleep.
2965 * %GFP_ATOMIC - Allocation will not sleep. Use inside interrupt handlers.
2967 * Additionally, the %GFP_DMA flag may be set to indicate the memory
2968 * must be suitable for DMA. This can mean different things on different
2969 * platforms. For example, on i386, it means that the memory must come
2970 * from the first 16MB.
2972 void *__kmalloc(size_t size
, gfp_t flags
)
2974 kmem_cache_t
*cachep
;
2976 /* If you want to save a few bytes .text space: replace
2978 * Then kmalloc uses the uninlined functions instead of the inline
2981 cachep
= __find_general_cachep(size
, flags
);
2982 if (unlikely(cachep
== NULL
))
2984 return __cache_alloc(cachep
, flags
);
2986 EXPORT_SYMBOL(__kmalloc
);
2990 * __alloc_percpu - allocate one copy of the object for every present
2991 * cpu in the system, zeroing them.
2992 * Objects should be dereferenced using the per_cpu_ptr macro only.
2994 * @size: how many bytes of memory are required.
2996 void *__alloc_percpu(size_t size
)
2999 struct percpu_data
*pdata
= kmalloc(sizeof(*pdata
), GFP_KERNEL
);
3005 * Cannot use for_each_online_cpu since a cpu may come online
3006 * and we have no way of figuring out how to fix the array
3007 * that we have allocated then....
3010 int node
= cpu_to_node(i
);
3012 if (node_online(node
))
3013 pdata
->ptrs
[i
] = kmalloc_node(size
, GFP_KERNEL
, node
);
3015 pdata
->ptrs
[i
] = kmalloc(size
, GFP_KERNEL
);
3017 if (!pdata
->ptrs
[i
])
3019 memset(pdata
->ptrs
[i
], 0, size
);
3022 /* Catch derefs w/o wrappers */
3023 return (void *)(~(unsigned long)pdata
);
3027 if (!cpu_possible(i
))
3029 kfree(pdata
->ptrs
[i
]);
3034 EXPORT_SYMBOL(__alloc_percpu
);
3038 * kmem_cache_free - Deallocate an object
3039 * @cachep: The cache the allocation was from.
3040 * @objp: The previously allocated object.
3042 * Free an object which was previously allocated from this
3045 void kmem_cache_free(kmem_cache_t
*cachep
, void *objp
)
3047 unsigned long flags
;
3049 local_irq_save(flags
);
3050 __cache_free(cachep
, objp
);
3051 local_irq_restore(flags
);
3053 EXPORT_SYMBOL(kmem_cache_free
);
3056 * kfree - free previously allocated memory
3057 * @objp: pointer returned by kmalloc.
3059 * If @objp is NULL, no operation is performed.
3061 * Don't free memory not originally allocated by kmalloc()
3062 * or you will run into trouble.
3064 void kfree(const void *objp
)
3067 unsigned long flags
;
3069 if (unlikely(!objp
))
3071 local_irq_save(flags
);
3072 kfree_debugcheck(objp
);
3073 c
= page_get_cache(virt_to_page(objp
));
3074 mutex_debug_check_no_locks_freed(objp
, obj_reallen(c
));
3075 __cache_free(c
, (void *)objp
);
3076 local_irq_restore(flags
);
3078 EXPORT_SYMBOL(kfree
);
3082 * free_percpu - free previously allocated percpu memory
3083 * @objp: pointer returned by alloc_percpu.
3085 * Don't free memory not originally allocated by alloc_percpu()
3086 * The complemented objp is to check for that.
3088 void free_percpu(const void *objp
)
3091 struct percpu_data
*p
= (struct percpu_data
*)(~(unsigned long)objp
);
3094 * We allocate for all cpus so we cannot use for online cpu here.
3100 EXPORT_SYMBOL(free_percpu
);
3103 unsigned int kmem_cache_size(kmem_cache_t
*cachep
)
3105 return obj_reallen(cachep
);
3107 EXPORT_SYMBOL(kmem_cache_size
);
3109 const char *kmem_cache_name(kmem_cache_t
*cachep
)
3111 return cachep
->name
;
3113 EXPORT_SYMBOL_GPL(kmem_cache_name
);
3116 * This initializes kmem_list3 for all nodes.
3118 static int alloc_kmemlist(kmem_cache_t
*cachep
)
3121 struct kmem_list3
*l3
;
3124 for_each_online_node(node
) {
3125 struct array_cache
*nc
= NULL
, *new;
3126 struct array_cache
**new_alien
= NULL
;
3128 if (!(new_alien
= alloc_alien_cache(node
, cachep
->limit
)))
3131 if (!(new = alloc_arraycache(node
, (cachep
->shared
*
3132 cachep
->batchcount
),
3135 if ((l3
= cachep
->nodelists
[node
])) {
3137 spin_lock_irq(&l3
->list_lock
);
3139 if ((nc
= cachep
->nodelists
[node
]->shared
))
3140 free_block(cachep
, nc
->entry
, nc
->avail
, node
);
3143 if (!cachep
->nodelists
[node
]->alien
) {
3144 l3
->alien
= new_alien
;
3147 l3
->free_limit
= (1 + nr_cpus_node(node
)) *
3148 cachep
->batchcount
+ cachep
->num
;
3149 spin_unlock_irq(&l3
->list_lock
);
3151 free_alien_cache(new_alien
);
3154 if (!(l3
= kmalloc_node(sizeof(struct kmem_list3
),
3158 kmem_list3_init(l3
);
3159 l3
->next_reap
= jiffies
+ REAPTIMEOUT_LIST3
+
3160 ((unsigned long)cachep
) % REAPTIMEOUT_LIST3
;
3162 l3
->alien
= new_alien
;
3163 l3
->free_limit
= (1 + nr_cpus_node(node
)) *
3164 cachep
->batchcount
+ cachep
->num
;
3165 cachep
->nodelists
[node
] = l3
;
3173 struct ccupdate_struct
{
3174 kmem_cache_t
*cachep
;
3175 struct array_cache
*new[NR_CPUS
];
3178 static void do_ccupdate_local(void *info
)
3180 struct ccupdate_struct
*new = (struct ccupdate_struct
*)info
;
3181 struct array_cache
*old
;
3184 old
= ac_data(new->cachep
);
3186 new->cachep
->array
[smp_processor_id()] = new->new[smp_processor_id()];
3187 new->new[smp_processor_id()] = old
;
3190 static int do_tune_cpucache(kmem_cache_t
*cachep
, int limit
, int batchcount
,
3193 struct ccupdate_struct
new;
3196 memset(&new.new, 0, sizeof(new.new));
3197 for_each_online_cpu(i
) {
3199 alloc_arraycache(cpu_to_node(i
), limit
, batchcount
);
3201 for (i
--; i
>= 0; i
--)
3206 new.cachep
= cachep
;
3208 smp_call_function_all_cpus(do_ccupdate_local
, (void *)&new);
3211 spin_lock_irq(&cachep
->spinlock
);
3212 cachep
->batchcount
= batchcount
;
3213 cachep
->limit
= limit
;
3214 cachep
->shared
= shared
;
3215 spin_unlock_irq(&cachep
->spinlock
);
3217 for_each_online_cpu(i
) {
3218 struct array_cache
*ccold
= new.new[i
];
3221 spin_lock_irq(&cachep
->nodelists
[cpu_to_node(i
)]->list_lock
);
3222 free_block(cachep
, ccold
->entry
, ccold
->avail
, cpu_to_node(i
));
3223 spin_unlock_irq(&cachep
->nodelists
[cpu_to_node(i
)]->list_lock
);
3227 err
= alloc_kmemlist(cachep
);
3229 printk(KERN_ERR
"alloc_kmemlist failed for %s, error %d.\n",
3230 cachep
->name
, -err
);
3236 static void enable_cpucache(kmem_cache_t
*cachep
)
3241 /* The head array serves three purposes:
3242 * - create a LIFO ordering, i.e. return objects that are cache-warm
3243 * - reduce the number of spinlock operations.
3244 * - reduce the number of linked list operations on the slab and
3245 * bufctl chains: array operations are cheaper.
3246 * The numbers are guessed, we should auto-tune as described by
3249 if (cachep
->objsize
> 131072)
3251 else if (cachep
->objsize
> PAGE_SIZE
)
3253 else if (cachep
->objsize
> 1024)
3255 else if (cachep
->objsize
> 256)
3260 /* Cpu bound tasks (e.g. network routing) can exhibit cpu bound
3261 * allocation behaviour: Most allocs on one cpu, most free operations
3262 * on another cpu. For these cases, an efficient object passing between
3263 * cpus is necessary. This is provided by a shared array. The array
3264 * replaces Bonwick's magazine layer.
3265 * On uniprocessor, it's functionally equivalent (but less efficient)
3266 * to a larger limit. Thus disabled by default.
3270 if (cachep
->objsize
<= PAGE_SIZE
)
3275 /* With debugging enabled, large batchcount lead to excessively
3276 * long periods with disabled local interrupts. Limit the
3282 err
= do_tune_cpucache(cachep
, limit
, (limit
+ 1) / 2, shared
);
3284 printk(KERN_ERR
"enable_cpucache failed for %s, error %d.\n",
3285 cachep
->name
, -err
);
3288 static void drain_array_locked(kmem_cache_t
*cachep
, struct array_cache
*ac
,
3289 int force
, int node
)
3293 check_spinlock_acquired_node(cachep
, node
);
3294 if (ac
->touched
&& !force
) {
3296 } else if (ac
->avail
) {
3297 tofree
= force
? ac
->avail
: (ac
->limit
+ 4) / 5;
3298 if (tofree
> ac
->avail
) {
3299 tofree
= (ac
->avail
+ 1) / 2;
3301 free_block(cachep
, ac
->entry
, tofree
, node
);
3302 ac
->avail
-= tofree
;
3303 memmove(ac
->entry
, &(ac
->entry
[tofree
]),
3304 sizeof(void *) * ac
->avail
);
3309 * cache_reap - Reclaim memory from caches.
3310 * @unused: unused parameter
3312 * Called from workqueue/eventd every few seconds.
3314 * - clear the per-cpu caches for this CPU.
3315 * - return freeable pages to the main free memory pool.
3317 * If we cannot acquire the cache chain semaphore then just give up - we'll
3318 * try again on the next iteration.
3320 static void cache_reap(void *unused
)
3322 struct list_head
*walk
;
3323 struct kmem_list3
*l3
;
3325 if (down_trylock(&cache_chain_sem
)) {
3326 /* Give up. Setup the next iteration. */
3327 schedule_delayed_work(&__get_cpu_var(reap_work
),
3332 list_for_each(walk
, &cache_chain
) {
3333 kmem_cache_t
*searchp
;
3334 struct list_head
*p
;
3338 searchp
= list_entry(walk
, kmem_cache_t
, next
);
3340 if (searchp
->flags
& SLAB_NO_REAP
)
3345 l3
= searchp
->nodelists
[numa_node_id()];
3347 drain_alien_cache(searchp
, l3
);
3348 spin_lock_irq(&l3
->list_lock
);
3350 drain_array_locked(searchp
, ac_data(searchp
), 0,
3353 if (time_after(l3
->next_reap
, jiffies
))
3356 l3
->next_reap
= jiffies
+ REAPTIMEOUT_LIST3
;
3359 drain_array_locked(searchp
, l3
->shared
, 0,
3362 if (l3
->free_touched
) {
3363 l3
->free_touched
= 0;
3368 (l3
->free_limit
+ 5 * searchp
->num
-
3369 1) / (5 * searchp
->num
);
3371 p
= l3
->slabs_free
.next
;
3372 if (p
== &(l3
->slabs_free
))
3375 slabp
= list_entry(p
, struct slab
, list
);
3376 BUG_ON(slabp
->inuse
);
3377 list_del(&slabp
->list
);
3378 STATS_INC_REAPED(searchp
);
3380 /* Safe to drop the lock. The slab is no longer
3381 * linked to the cache.
3382 * searchp cannot disappear, we hold
3385 l3
->free_objects
-= searchp
->num
;
3386 spin_unlock_irq(&l3
->list_lock
);
3387 slab_destroy(searchp
, slabp
);
3388 spin_lock_irq(&l3
->list_lock
);
3389 } while (--tofree
> 0);
3391 spin_unlock_irq(&l3
->list_lock
);
3396 up(&cache_chain_sem
);
3397 drain_remote_pages();
3398 /* Setup the next iteration */
3399 schedule_delayed_work(&__get_cpu_var(reap_work
), REAPTIMEOUT_CPUC
);
3402 #ifdef CONFIG_PROC_FS
3404 static void print_slabinfo_header(struct seq_file
*m
)
3407 * Output format version, so at least we can change it
3408 * without _too_ many complaints.
3411 seq_puts(m
, "slabinfo - version: 2.1 (statistics)\n");
3413 seq_puts(m
, "slabinfo - version: 2.1\n");
3415 seq_puts(m
, "# name <active_objs> <num_objs> <objsize> "
3416 "<objperslab> <pagesperslab>");
3417 seq_puts(m
, " : tunables <limit> <batchcount> <sharedfactor>");
3418 seq_puts(m
, " : slabdata <active_slabs> <num_slabs> <sharedavail>");
3420 seq_puts(m
, " : globalstat <listallocs> <maxobjs> <grown> <reaped> "
3421 "<error> <maxfreeable> <nodeallocs> <remotefrees>");
3422 seq_puts(m
, " : cpustat <allochit> <allocmiss> <freehit> <freemiss>");
3427 static void *s_start(struct seq_file
*m
, loff_t
*pos
)
3430 struct list_head
*p
;
3432 down(&cache_chain_sem
);
3434 print_slabinfo_header(m
);
3435 p
= cache_chain
.next
;
3438 if (p
== &cache_chain
)
3441 return list_entry(p
, kmem_cache_t
, next
);
3444 static void *s_next(struct seq_file
*m
, void *p
, loff_t
*pos
)
3446 kmem_cache_t
*cachep
= p
;
3448 return cachep
->next
.next
== &cache_chain
? NULL
3449 : list_entry(cachep
->next
.next
, kmem_cache_t
, next
);
3452 static void s_stop(struct seq_file
*m
, void *p
)
3454 up(&cache_chain_sem
);
3457 static int s_show(struct seq_file
*m
, void *p
)
3459 kmem_cache_t
*cachep
= p
;
3460 struct list_head
*q
;
3462 unsigned long active_objs
;
3463 unsigned long num_objs
;
3464 unsigned long active_slabs
= 0;
3465 unsigned long num_slabs
, free_objects
= 0, shared_avail
= 0;
3469 struct kmem_list3
*l3
;
3472 spin_lock_irq(&cachep
->spinlock
);
3475 for_each_online_node(node
) {
3476 l3
= cachep
->nodelists
[node
];
3480 spin_lock(&l3
->list_lock
);
3482 list_for_each(q
, &l3
->slabs_full
) {
3483 slabp
= list_entry(q
, struct slab
, list
);
3484 if (slabp
->inuse
!= cachep
->num
&& !error
)
3485 error
= "slabs_full accounting error";
3486 active_objs
+= cachep
->num
;
3489 list_for_each(q
, &l3
->slabs_partial
) {
3490 slabp
= list_entry(q
, struct slab
, list
);
3491 if (slabp
->inuse
== cachep
->num
&& !error
)
3492 error
= "slabs_partial inuse accounting error";
3493 if (!slabp
->inuse
&& !error
)
3494 error
= "slabs_partial/inuse accounting error";
3495 active_objs
+= slabp
->inuse
;
3498 list_for_each(q
, &l3
->slabs_free
) {
3499 slabp
= list_entry(q
, struct slab
, list
);
3500 if (slabp
->inuse
&& !error
)
3501 error
= "slabs_free/inuse accounting error";
3504 free_objects
+= l3
->free_objects
;
3505 shared_avail
+= l3
->shared
->avail
;
3507 spin_unlock(&l3
->list_lock
);
3509 num_slabs
+= active_slabs
;
3510 num_objs
= num_slabs
* cachep
->num
;
3511 if (num_objs
- active_objs
!= free_objects
&& !error
)
3512 error
= "free_objects accounting error";
3514 name
= cachep
->name
;
3516 printk(KERN_ERR
"slab: cache %s error: %s\n", name
, error
);
3518 seq_printf(m
, "%-17s %6lu %6lu %6u %4u %4d",
3519 name
, active_objs
, num_objs
, cachep
->objsize
,
3520 cachep
->num
, (1 << cachep
->gfporder
));
3521 seq_printf(m
, " : tunables %4u %4u %4u",
3522 cachep
->limit
, cachep
->batchcount
, cachep
->shared
);
3523 seq_printf(m
, " : slabdata %6lu %6lu %6lu",
3524 active_slabs
, num_slabs
, shared_avail
);
3527 unsigned long high
= cachep
->high_mark
;
3528 unsigned long allocs
= cachep
->num_allocations
;
3529 unsigned long grown
= cachep
->grown
;
3530 unsigned long reaped
= cachep
->reaped
;
3531 unsigned long errors
= cachep
->errors
;
3532 unsigned long max_freeable
= cachep
->max_freeable
;
3533 unsigned long node_allocs
= cachep
->node_allocs
;
3534 unsigned long node_frees
= cachep
->node_frees
;
3536 seq_printf(m
, " : globalstat %7lu %6lu %5lu %4lu \
3537 %4lu %4lu %4lu %4lu", allocs
, high
, grown
, reaped
, errors
, max_freeable
, node_allocs
, node_frees
);
3541 unsigned long allochit
= atomic_read(&cachep
->allochit
);
3542 unsigned long allocmiss
= atomic_read(&cachep
->allocmiss
);
3543 unsigned long freehit
= atomic_read(&cachep
->freehit
);
3544 unsigned long freemiss
= atomic_read(&cachep
->freemiss
);
3546 seq_printf(m
, " : cpustat %6lu %6lu %6lu %6lu",
3547 allochit
, allocmiss
, freehit
, freemiss
);
3551 spin_unlock_irq(&cachep
->spinlock
);
3556 * slabinfo_op - iterator that generates /proc/slabinfo
3565 * num-pages-per-slab
3566 * + further values on SMP and with statistics enabled
3569 struct seq_operations slabinfo_op
= {
3576 #define MAX_SLABINFO_WRITE 128
3578 * slabinfo_write - Tuning for the slab allocator
3580 * @buffer: user buffer
3581 * @count: data length
3584 ssize_t
slabinfo_write(struct file
*file
, const char __user
* buffer
,
3585 size_t count
, loff_t
*ppos
)
3587 char kbuf
[MAX_SLABINFO_WRITE
+ 1], *tmp
;
3588 int limit
, batchcount
, shared
, res
;
3589 struct list_head
*p
;
3591 if (count
> MAX_SLABINFO_WRITE
)
3593 if (copy_from_user(&kbuf
, buffer
, count
))
3595 kbuf
[MAX_SLABINFO_WRITE
] = '\0';
3597 tmp
= strchr(kbuf
, ' ');
3602 if (sscanf(tmp
, " %d %d %d", &limit
, &batchcount
, &shared
) != 3)
3605 /* Find the cache in the chain of caches. */
3606 down(&cache_chain_sem
);
3608 list_for_each(p
, &cache_chain
) {
3609 kmem_cache_t
*cachep
= list_entry(p
, kmem_cache_t
, next
);
3611 if (!strcmp(cachep
->name
, kbuf
)) {
3614 batchcount
> limit
|| shared
< 0) {
3617 res
= do_tune_cpucache(cachep
, limit
,
3618 batchcount
, shared
);
3623 up(&cache_chain_sem
);
3631 * ksize - get the actual amount of memory allocated for a given object
3632 * @objp: Pointer to the object
3634 * kmalloc may internally round up allocations and return more memory
3635 * than requested. ksize() can be used to determine the actual amount of
3636 * memory allocated. The caller may use this additional memory, even though
3637 * a smaller amount of memory was initially specified with the kmalloc call.
3638 * The caller must guarantee that objp points to a valid object previously
3639 * allocated with either kmalloc() or kmem_cache_alloc(). The object
3640 * must not be freed during the duration of the call.
3642 unsigned int ksize(const void *objp
)
3644 if (unlikely(objp
== NULL
))
3647 return obj_reallen(page_get_cache(virt_to_page(objp
)));