[PATCH] add uevent_helper control in /sys/kernel/
[linux-2.6/mini2440.git] / kernel / fork.c
blobfb8572a4229743baef22241dbab6ae8356f633c7
1 /*
2 * linux/kernel/fork.c
4 * Copyright (C) 1991, 1992 Linus Torvalds
5 */
7 /*
8 * 'fork.c' contains the help-routines for the 'fork' system call
9 * (see also entry.S and others).
10 * Fork is rather simple, once you get the hang of it, but the memory
11 * management can be a bitch. See 'mm/memory.c': 'copy_page_range()'
14 #include <linux/config.h>
15 #include <linux/slab.h>
16 #include <linux/init.h>
17 #include <linux/unistd.h>
18 #include <linux/smp_lock.h>
19 #include <linux/module.h>
20 #include <linux/vmalloc.h>
21 #include <linux/completion.h>
22 #include <linux/namespace.h>
23 #include <linux/personality.h>
24 #include <linux/mempolicy.h>
25 #include <linux/sem.h>
26 #include <linux/file.h>
27 #include <linux/key.h>
28 #include <linux/binfmts.h>
29 #include <linux/mman.h>
30 #include <linux/fs.h>
31 #include <linux/cpu.h>
32 #include <linux/cpuset.h>
33 #include <linux/security.h>
34 #include <linux/swap.h>
35 #include <linux/syscalls.h>
36 #include <linux/jiffies.h>
37 #include <linux/futex.h>
38 #include <linux/rcupdate.h>
39 #include <linux/ptrace.h>
40 #include <linux/mount.h>
41 #include <linux/audit.h>
42 #include <linux/profile.h>
43 #include <linux/rmap.h>
44 #include <linux/acct.h>
45 #include <linux/cn_proc.h>
47 #include <asm/pgtable.h>
48 #include <asm/pgalloc.h>
49 #include <asm/uaccess.h>
50 #include <asm/mmu_context.h>
51 #include <asm/cacheflush.h>
52 #include <asm/tlbflush.h>
55 * Protected counters by write_lock_irq(&tasklist_lock)
57 unsigned long total_forks; /* Handle normal Linux uptimes. */
58 int nr_threads; /* The idle threads do not count.. */
60 int max_threads; /* tunable limit on nr_threads */
62 DEFINE_PER_CPU(unsigned long, process_counts) = 0;
64 __cacheline_aligned DEFINE_RWLOCK(tasklist_lock); /* outer */
66 EXPORT_SYMBOL(tasklist_lock);
68 int nr_processes(void)
70 int cpu;
71 int total = 0;
73 for_each_online_cpu(cpu)
74 total += per_cpu(process_counts, cpu);
76 return total;
79 #ifndef __HAVE_ARCH_TASK_STRUCT_ALLOCATOR
80 # define alloc_task_struct() kmem_cache_alloc(task_struct_cachep, GFP_KERNEL)
81 # define free_task_struct(tsk) kmem_cache_free(task_struct_cachep, (tsk))
82 static kmem_cache_t *task_struct_cachep;
83 #endif
85 /* SLAB cache for signal_struct structures (tsk->signal) */
86 kmem_cache_t *signal_cachep;
88 /* SLAB cache for sighand_struct structures (tsk->sighand) */
89 kmem_cache_t *sighand_cachep;
91 /* SLAB cache for files_struct structures (tsk->files) */
92 kmem_cache_t *files_cachep;
94 /* SLAB cache for fs_struct structures (tsk->fs) */
95 kmem_cache_t *fs_cachep;
97 /* SLAB cache for vm_area_struct structures */
98 kmem_cache_t *vm_area_cachep;
100 /* SLAB cache for mm_struct structures (tsk->mm) */
101 static kmem_cache_t *mm_cachep;
103 void free_task(struct task_struct *tsk)
105 free_thread_info(tsk->thread_info);
106 free_task_struct(tsk);
108 EXPORT_SYMBOL(free_task);
110 void __put_task_struct(struct task_struct *tsk)
112 WARN_ON(!(tsk->exit_state & (EXIT_DEAD | EXIT_ZOMBIE)));
113 WARN_ON(atomic_read(&tsk->usage));
114 WARN_ON(tsk == current);
116 if (unlikely(tsk->audit_context))
117 audit_free(tsk);
118 security_task_free(tsk);
119 free_uid(tsk->user);
120 put_group_info(tsk->group_info);
122 if (!profile_handoff_task(tsk))
123 free_task(tsk);
126 void __init fork_init(unsigned long mempages)
128 #ifndef __HAVE_ARCH_TASK_STRUCT_ALLOCATOR
129 #ifndef ARCH_MIN_TASKALIGN
130 #define ARCH_MIN_TASKALIGN L1_CACHE_BYTES
131 #endif
132 /* create a slab on which task_structs can be allocated */
133 task_struct_cachep =
134 kmem_cache_create("task_struct", sizeof(struct task_struct),
135 ARCH_MIN_TASKALIGN, SLAB_PANIC, NULL, NULL);
136 #endif
139 * The default maximum number of threads is set to a safe
140 * value: the thread structures can take up at most half
141 * of memory.
143 max_threads = mempages / (8 * THREAD_SIZE / PAGE_SIZE);
146 * we need to allow at least 20 threads to boot a system
148 if(max_threads < 20)
149 max_threads = 20;
151 init_task.signal->rlim[RLIMIT_NPROC].rlim_cur = max_threads/2;
152 init_task.signal->rlim[RLIMIT_NPROC].rlim_max = max_threads/2;
153 init_task.signal->rlim[RLIMIT_SIGPENDING] =
154 init_task.signal->rlim[RLIMIT_NPROC];
157 static struct task_struct *dup_task_struct(struct task_struct *orig)
159 struct task_struct *tsk;
160 struct thread_info *ti;
162 prepare_to_copy(orig);
164 tsk = alloc_task_struct();
165 if (!tsk)
166 return NULL;
168 ti = alloc_thread_info(tsk);
169 if (!ti) {
170 free_task_struct(tsk);
171 return NULL;
174 *tsk = *orig;
175 tsk->thread_info = ti;
176 setup_thread_stack(tsk, orig);
178 /* One for us, one for whoever does the "release_task()" (usually parent) */
179 atomic_set(&tsk->usage,2);
180 atomic_set(&tsk->fs_excl, 0);
181 return tsk;
184 #ifdef CONFIG_MMU
185 static inline int dup_mmap(struct mm_struct *mm, struct mm_struct *oldmm)
187 struct vm_area_struct *mpnt, *tmp, **pprev;
188 struct rb_node **rb_link, *rb_parent;
189 int retval;
190 unsigned long charge;
191 struct mempolicy *pol;
193 down_write(&oldmm->mmap_sem);
194 flush_cache_mm(oldmm);
195 down_write(&mm->mmap_sem);
197 mm->locked_vm = 0;
198 mm->mmap = NULL;
199 mm->mmap_cache = NULL;
200 mm->free_area_cache = oldmm->mmap_base;
201 mm->cached_hole_size = ~0UL;
202 mm->map_count = 0;
203 cpus_clear(mm->cpu_vm_mask);
204 mm->mm_rb = RB_ROOT;
205 rb_link = &mm->mm_rb.rb_node;
206 rb_parent = NULL;
207 pprev = &mm->mmap;
209 for (mpnt = oldmm->mmap; mpnt; mpnt = mpnt->vm_next) {
210 struct file *file;
212 if (mpnt->vm_flags & VM_DONTCOPY) {
213 long pages = vma_pages(mpnt);
214 mm->total_vm -= pages;
215 vm_stat_account(mm, mpnt->vm_flags, mpnt->vm_file,
216 -pages);
217 continue;
219 charge = 0;
220 if (mpnt->vm_flags & VM_ACCOUNT) {
221 unsigned int len = (mpnt->vm_end - mpnt->vm_start) >> PAGE_SHIFT;
222 if (security_vm_enough_memory(len))
223 goto fail_nomem;
224 charge = len;
226 tmp = kmem_cache_alloc(vm_area_cachep, SLAB_KERNEL);
227 if (!tmp)
228 goto fail_nomem;
229 *tmp = *mpnt;
230 pol = mpol_copy(vma_policy(mpnt));
231 retval = PTR_ERR(pol);
232 if (IS_ERR(pol))
233 goto fail_nomem_policy;
234 vma_set_policy(tmp, pol);
235 tmp->vm_flags &= ~VM_LOCKED;
236 tmp->vm_mm = mm;
237 tmp->vm_next = NULL;
238 anon_vma_link(tmp);
239 file = tmp->vm_file;
240 if (file) {
241 struct inode *inode = file->f_dentry->d_inode;
242 get_file(file);
243 if (tmp->vm_flags & VM_DENYWRITE)
244 atomic_dec(&inode->i_writecount);
246 /* insert tmp into the share list, just after mpnt */
247 spin_lock(&file->f_mapping->i_mmap_lock);
248 tmp->vm_truncate_count = mpnt->vm_truncate_count;
249 flush_dcache_mmap_lock(file->f_mapping);
250 vma_prio_tree_add(tmp, mpnt);
251 flush_dcache_mmap_unlock(file->f_mapping);
252 spin_unlock(&file->f_mapping->i_mmap_lock);
256 * Link in the new vma and copy the page table entries.
258 *pprev = tmp;
259 pprev = &tmp->vm_next;
261 __vma_link_rb(mm, tmp, rb_link, rb_parent);
262 rb_link = &tmp->vm_rb.rb_right;
263 rb_parent = &tmp->vm_rb;
265 mm->map_count++;
266 retval = copy_page_range(mm, oldmm, mpnt);
268 if (tmp->vm_ops && tmp->vm_ops->open)
269 tmp->vm_ops->open(tmp);
271 if (retval)
272 goto out;
274 retval = 0;
275 out:
276 up_write(&mm->mmap_sem);
277 flush_tlb_mm(oldmm);
278 up_write(&oldmm->mmap_sem);
279 return retval;
280 fail_nomem_policy:
281 kmem_cache_free(vm_area_cachep, tmp);
282 fail_nomem:
283 retval = -ENOMEM;
284 vm_unacct_memory(charge);
285 goto out;
288 static inline int mm_alloc_pgd(struct mm_struct * mm)
290 mm->pgd = pgd_alloc(mm);
291 if (unlikely(!mm->pgd))
292 return -ENOMEM;
293 return 0;
296 static inline void mm_free_pgd(struct mm_struct * mm)
298 pgd_free(mm->pgd);
300 #else
301 #define dup_mmap(mm, oldmm) (0)
302 #define mm_alloc_pgd(mm) (0)
303 #define mm_free_pgd(mm)
304 #endif /* CONFIG_MMU */
306 __cacheline_aligned_in_smp DEFINE_SPINLOCK(mmlist_lock);
308 #define allocate_mm() (kmem_cache_alloc(mm_cachep, SLAB_KERNEL))
309 #define free_mm(mm) (kmem_cache_free(mm_cachep, (mm)))
311 #include <linux/init_task.h>
313 static struct mm_struct * mm_init(struct mm_struct * mm)
315 atomic_set(&mm->mm_users, 1);
316 atomic_set(&mm->mm_count, 1);
317 init_rwsem(&mm->mmap_sem);
318 INIT_LIST_HEAD(&mm->mmlist);
319 mm->core_waiters = 0;
320 mm->nr_ptes = 0;
321 set_mm_counter(mm, file_rss, 0);
322 set_mm_counter(mm, anon_rss, 0);
323 spin_lock_init(&mm->page_table_lock);
324 rwlock_init(&mm->ioctx_list_lock);
325 mm->ioctx_list = NULL;
326 mm->free_area_cache = TASK_UNMAPPED_BASE;
327 mm->cached_hole_size = ~0UL;
329 if (likely(!mm_alloc_pgd(mm))) {
330 mm->def_flags = 0;
331 return mm;
333 free_mm(mm);
334 return NULL;
338 * Allocate and initialize an mm_struct.
340 struct mm_struct * mm_alloc(void)
342 struct mm_struct * mm;
344 mm = allocate_mm();
345 if (mm) {
346 memset(mm, 0, sizeof(*mm));
347 mm = mm_init(mm);
349 return mm;
353 * Called when the last reference to the mm
354 * is dropped: either by a lazy thread or by
355 * mmput. Free the page directory and the mm.
357 void fastcall __mmdrop(struct mm_struct *mm)
359 BUG_ON(mm == &init_mm);
360 mm_free_pgd(mm);
361 destroy_context(mm);
362 free_mm(mm);
366 * Decrement the use count and release all resources for an mm.
368 void mmput(struct mm_struct *mm)
370 if (atomic_dec_and_test(&mm->mm_users)) {
371 exit_aio(mm);
372 exit_mmap(mm);
373 if (!list_empty(&mm->mmlist)) {
374 spin_lock(&mmlist_lock);
375 list_del(&mm->mmlist);
376 spin_unlock(&mmlist_lock);
378 put_swap_token(mm);
379 mmdrop(mm);
382 EXPORT_SYMBOL_GPL(mmput);
385 * get_task_mm - acquire a reference to the task's mm
387 * Returns %NULL if the task has no mm. Checks PF_BORROWED_MM (meaning
388 * this kernel workthread has transiently adopted a user mm with use_mm,
389 * to do its AIO) is not set and if so returns a reference to it, after
390 * bumping up the use count. User must release the mm via mmput()
391 * after use. Typically used by /proc and ptrace.
393 struct mm_struct *get_task_mm(struct task_struct *task)
395 struct mm_struct *mm;
397 task_lock(task);
398 mm = task->mm;
399 if (mm) {
400 if (task->flags & PF_BORROWED_MM)
401 mm = NULL;
402 else
403 atomic_inc(&mm->mm_users);
405 task_unlock(task);
406 return mm;
408 EXPORT_SYMBOL_GPL(get_task_mm);
410 /* Please note the differences between mmput and mm_release.
411 * mmput is called whenever we stop holding onto a mm_struct,
412 * error success whatever.
414 * mm_release is called after a mm_struct has been removed
415 * from the current process.
417 * This difference is important for error handling, when we
418 * only half set up a mm_struct for a new process and need to restore
419 * the old one. Because we mmput the new mm_struct before
420 * restoring the old one. . .
421 * Eric Biederman 10 January 1998
423 void mm_release(struct task_struct *tsk, struct mm_struct *mm)
425 struct completion *vfork_done = tsk->vfork_done;
427 /* Get rid of any cached register state */
428 deactivate_mm(tsk, mm);
430 /* notify parent sleeping on vfork() */
431 if (vfork_done) {
432 tsk->vfork_done = NULL;
433 complete(vfork_done);
435 if (tsk->clear_child_tid && atomic_read(&mm->mm_users) > 1) {
436 u32 __user * tidptr = tsk->clear_child_tid;
437 tsk->clear_child_tid = NULL;
440 * We don't check the error code - if userspace has
441 * not set up a proper pointer then tough luck.
443 put_user(0, tidptr);
444 sys_futex(tidptr, FUTEX_WAKE, 1, NULL, NULL, 0);
448 static int copy_mm(unsigned long clone_flags, struct task_struct * tsk)
450 struct mm_struct * mm, *oldmm;
451 int retval;
453 tsk->min_flt = tsk->maj_flt = 0;
454 tsk->nvcsw = tsk->nivcsw = 0;
456 tsk->mm = NULL;
457 tsk->active_mm = NULL;
460 * Are we cloning a kernel thread?
462 * We need to steal a active VM for that..
464 oldmm = current->mm;
465 if (!oldmm)
466 return 0;
468 if (clone_flags & CLONE_VM) {
469 atomic_inc(&oldmm->mm_users);
470 mm = oldmm;
471 goto good_mm;
474 retval = -ENOMEM;
475 mm = allocate_mm();
476 if (!mm)
477 goto fail_nomem;
479 /* Copy the current MM stuff.. */
480 memcpy(mm, oldmm, sizeof(*mm));
481 if (!mm_init(mm))
482 goto fail_nomem;
484 if (init_new_context(tsk,mm))
485 goto fail_nocontext;
487 retval = dup_mmap(mm, oldmm);
488 if (retval)
489 goto free_pt;
491 mm->hiwater_rss = get_mm_rss(mm);
492 mm->hiwater_vm = mm->total_vm;
494 good_mm:
495 tsk->mm = mm;
496 tsk->active_mm = mm;
497 return 0;
499 free_pt:
500 mmput(mm);
501 fail_nomem:
502 return retval;
504 fail_nocontext:
506 * If init_new_context() failed, we cannot use mmput() to free the mm
507 * because it calls destroy_context()
509 mm_free_pgd(mm);
510 free_mm(mm);
511 return retval;
514 static inline struct fs_struct *__copy_fs_struct(struct fs_struct *old)
516 struct fs_struct *fs = kmem_cache_alloc(fs_cachep, GFP_KERNEL);
517 /* We don't need to lock fs - think why ;-) */
518 if (fs) {
519 atomic_set(&fs->count, 1);
520 rwlock_init(&fs->lock);
521 fs->umask = old->umask;
522 read_lock(&old->lock);
523 fs->rootmnt = mntget(old->rootmnt);
524 fs->root = dget(old->root);
525 fs->pwdmnt = mntget(old->pwdmnt);
526 fs->pwd = dget(old->pwd);
527 if (old->altroot) {
528 fs->altrootmnt = mntget(old->altrootmnt);
529 fs->altroot = dget(old->altroot);
530 } else {
531 fs->altrootmnt = NULL;
532 fs->altroot = NULL;
534 read_unlock(&old->lock);
536 return fs;
539 struct fs_struct *copy_fs_struct(struct fs_struct *old)
541 return __copy_fs_struct(old);
544 EXPORT_SYMBOL_GPL(copy_fs_struct);
546 static inline int copy_fs(unsigned long clone_flags, struct task_struct * tsk)
548 if (clone_flags & CLONE_FS) {
549 atomic_inc(&current->fs->count);
550 return 0;
552 tsk->fs = __copy_fs_struct(current->fs);
553 if (!tsk->fs)
554 return -ENOMEM;
555 return 0;
558 static int count_open_files(struct fdtable *fdt)
560 int size = fdt->max_fdset;
561 int i;
563 /* Find the last open fd */
564 for (i = size/(8*sizeof(long)); i > 0; ) {
565 if (fdt->open_fds->fds_bits[--i])
566 break;
568 i = (i+1) * 8 * sizeof(long);
569 return i;
572 static struct files_struct *alloc_files(void)
574 struct files_struct *newf;
575 struct fdtable *fdt;
577 newf = kmem_cache_alloc(files_cachep, SLAB_KERNEL);
578 if (!newf)
579 goto out;
581 atomic_set(&newf->count, 1);
583 spin_lock_init(&newf->file_lock);
584 fdt = &newf->fdtab;
585 fdt->next_fd = 0;
586 fdt->max_fds = NR_OPEN_DEFAULT;
587 fdt->max_fdset = __FD_SETSIZE;
588 fdt->close_on_exec = &newf->close_on_exec_init;
589 fdt->open_fds = &newf->open_fds_init;
590 fdt->fd = &newf->fd_array[0];
591 INIT_RCU_HEAD(&fdt->rcu);
592 fdt->free_files = NULL;
593 fdt->next = NULL;
594 rcu_assign_pointer(newf->fdt, fdt);
595 out:
596 return newf;
599 static int copy_files(unsigned long clone_flags, struct task_struct * tsk)
601 struct files_struct *oldf, *newf;
602 struct file **old_fds, **new_fds;
603 int open_files, size, i, error = 0, expand;
604 struct fdtable *old_fdt, *new_fdt;
607 * A background process may not have any files ...
609 oldf = current->files;
610 if (!oldf)
611 goto out;
613 if (clone_flags & CLONE_FILES) {
614 atomic_inc(&oldf->count);
615 goto out;
619 * Note: we may be using current for both targets (See exec.c)
620 * This works because we cache current->files (old) as oldf. Don't
621 * break this.
623 tsk->files = NULL;
624 error = -ENOMEM;
625 newf = alloc_files();
626 if (!newf)
627 goto out;
629 spin_lock(&oldf->file_lock);
630 old_fdt = files_fdtable(oldf);
631 new_fdt = files_fdtable(newf);
632 size = old_fdt->max_fdset;
633 open_files = count_open_files(old_fdt);
634 expand = 0;
637 * Check whether we need to allocate a larger fd array or fd set.
638 * Note: we're not a clone task, so the open count won't change.
640 if (open_files > new_fdt->max_fdset) {
641 new_fdt->max_fdset = 0;
642 expand = 1;
644 if (open_files > new_fdt->max_fds) {
645 new_fdt->max_fds = 0;
646 expand = 1;
649 /* if the old fdset gets grown now, we'll only copy up to "size" fds */
650 if (expand) {
651 spin_unlock(&oldf->file_lock);
652 spin_lock(&newf->file_lock);
653 error = expand_files(newf, open_files-1);
654 spin_unlock(&newf->file_lock);
655 if (error < 0)
656 goto out_release;
657 new_fdt = files_fdtable(newf);
659 * Reacquire the oldf lock and a pointer to its fd table
660 * who knows it may have a new bigger fd table. We need
661 * the latest pointer.
663 spin_lock(&oldf->file_lock);
664 old_fdt = files_fdtable(oldf);
667 old_fds = old_fdt->fd;
668 new_fds = new_fdt->fd;
670 memcpy(new_fdt->open_fds->fds_bits, old_fdt->open_fds->fds_bits, open_files/8);
671 memcpy(new_fdt->close_on_exec->fds_bits, old_fdt->close_on_exec->fds_bits, open_files/8);
673 for (i = open_files; i != 0; i--) {
674 struct file *f = *old_fds++;
675 if (f) {
676 get_file(f);
677 } else {
679 * The fd may be claimed in the fd bitmap but not yet
680 * instantiated in the files array if a sibling thread
681 * is partway through open(). So make sure that this
682 * fd is available to the new process.
684 FD_CLR(open_files - i, new_fdt->open_fds);
686 rcu_assign_pointer(*new_fds++, f);
688 spin_unlock(&oldf->file_lock);
690 /* compute the remainder to be cleared */
691 size = (new_fdt->max_fds - open_files) * sizeof(struct file *);
693 /* This is long word aligned thus could use a optimized version */
694 memset(new_fds, 0, size);
696 if (new_fdt->max_fdset > open_files) {
697 int left = (new_fdt->max_fdset-open_files)/8;
698 int start = open_files / (8 * sizeof(unsigned long));
700 memset(&new_fdt->open_fds->fds_bits[start], 0, left);
701 memset(&new_fdt->close_on_exec->fds_bits[start], 0, left);
704 tsk->files = newf;
705 error = 0;
706 out:
707 return error;
709 out_release:
710 free_fdset (new_fdt->close_on_exec, new_fdt->max_fdset);
711 free_fdset (new_fdt->open_fds, new_fdt->max_fdset);
712 free_fd_array(new_fdt->fd, new_fdt->max_fds);
713 kmem_cache_free(files_cachep, newf);
714 goto out;
718 * Helper to unshare the files of the current task.
719 * We don't want to expose copy_files internals to
720 * the exec layer of the kernel.
723 int unshare_files(void)
725 struct files_struct *files = current->files;
726 int rc;
728 if(!files)
729 BUG();
731 /* This can race but the race causes us to copy when we don't
732 need to and drop the copy */
733 if(atomic_read(&files->count) == 1)
735 atomic_inc(&files->count);
736 return 0;
738 rc = copy_files(0, current);
739 if(rc)
740 current->files = files;
741 return rc;
744 EXPORT_SYMBOL(unshare_files);
746 static inline int copy_sighand(unsigned long clone_flags, struct task_struct * tsk)
748 struct sighand_struct *sig;
750 if (clone_flags & (CLONE_SIGHAND | CLONE_THREAD)) {
751 atomic_inc(&current->sighand->count);
752 return 0;
754 sig = kmem_cache_alloc(sighand_cachep, GFP_KERNEL);
755 tsk->sighand = sig;
756 if (!sig)
757 return -ENOMEM;
758 spin_lock_init(&sig->siglock);
759 atomic_set(&sig->count, 1);
760 memcpy(sig->action, current->sighand->action, sizeof(sig->action));
761 return 0;
764 static inline int copy_signal(unsigned long clone_flags, struct task_struct * tsk)
766 struct signal_struct *sig;
767 int ret;
769 if (clone_flags & CLONE_THREAD) {
770 atomic_inc(&current->signal->count);
771 atomic_inc(&current->signal->live);
772 return 0;
774 sig = kmem_cache_alloc(signal_cachep, GFP_KERNEL);
775 tsk->signal = sig;
776 if (!sig)
777 return -ENOMEM;
779 ret = copy_thread_group_keys(tsk);
780 if (ret < 0) {
781 kmem_cache_free(signal_cachep, sig);
782 return ret;
785 atomic_set(&sig->count, 1);
786 atomic_set(&sig->live, 1);
787 init_waitqueue_head(&sig->wait_chldexit);
788 sig->flags = 0;
789 sig->group_exit_code = 0;
790 sig->group_exit_task = NULL;
791 sig->group_stop_count = 0;
792 sig->curr_target = NULL;
793 init_sigpending(&sig->shared_pending);
794 INIT_LIST_HEAD(&sig->posix_timers);
796 sig->it_real_value = sig->it_real_incr = 0;
797 sig->real_timer.function = it_real_fn;
798 sig->real_timer.data = (unsigned long) tsk;
799 init_timer(&sig->real_timer);
801 sig->it_virt_expires = cputime_zero;
802 sig->it_virt_incr = cputime_zero;
803 sig->it_prof_expires = cputime_zero;
804 sig->it_prof_incr = cputime_zero;
806 sig->tty = current->signal->tty;
807 sig->pgrp = process_group(current);
808 sig->session = current->signal->session;
809 sig->leader = 0; /* session leadership doesn't inherit */
810 sig->tty_old_pgrp = 0;
812 sig->utime = sig->stime = sig->cutime = sig->cstime = cputime_zero;
813 sig->nvcsw = sig->nivcsw = sig->cnvcsw = sig->cnivcsw = 0;
814 sig->min_flt = sig->maj_flt = sig->cmin_flt = sig->cmaj_flt = 0;
815 sig->sched_time = 0;
816 INIT_LIST_HEAD(&sig->cpu_timers[0]);
817 INIT_LIST_HEAD(&sig->cpu_timers[1]);
818 INIT_LIST_HEAD(&sig->cpu_timers[2]);
820 task_lock(current->group_leader);
821 memcpy(sig->rlim, current->signal->rlim, sizeof sig->rlim);
822 task_unlock(current->group_leader);
824 if (sig->rlim[RLIMIT_CPU].rlim_cur != RLIM_INFINITY) {
826 * New sole thread in the process gets an expiry time
827 * of the whole CPU time limit.
829 tsk->it_prof_expires =
830 secs_to_cputime(sig->rlim[RLIMIT_CPU].rlim_cur);
833 return 0;
836 static inline void copy_flags(unsigned long clone_flags, struct task_struct *p)
838 unsigned long new_flags = p->flags;
840 new_flags &= ~(PF_SUPERPRIV | PF_NOFREEZE);
841 new_flags |= PF_FORKNOEXEC;
842 if (!(clone_flags & CLONE_PTRACE))
843 p->ptrace = 0;
844 p->flags = new_flags;
847 asmlinkage long sys_set_tid_address(int __user *tidptr)
849 current->clear_child_tid = tidptr;
851 return current->pid;
855 * This creates a new process as a copy of the old one,
856 * but does not actually start it yet.
858 * It copies the registers, and all the appropriate
859 * parts of the process environment (as per the clone
860 * flags). The actual kick-off is left to the caller.
862 static task_t *copy_process(unsigned long clone_flags,
863 unsigned long stack_start,
864 struct pt_regs *regs,
865 unsigned long stack_size,
866 int __user *parent_tidptr,
867 int __user *child_tidptr,
868 int pid)
870 int retval;
871 struct task_struct *p = NULL;
873 if ((clone_flags & (CLONE_NEWNS|CLONE_FS)) == (CLONE_NEWNS|CLONE_FS))
874 return ERR_PTR(-EINVAL);
877 * Thread groups must share signals as well, and detached threads
878 * can only be started up within the thread group.
880 if ((clone_flags & CLONE_THREAD) && !(clone_flags & CLONE_SIGHAND))
881 return ERR_PTR(-EINVAL);
884 * Shared signal handlers imply shared VM. By way of the above,
885 * thread groups also imply shared VM. Blocking this case allows
886 * for various simplifications in other code.
888 if ((clone_flags & CLONE_SIGHAND) && !(clone_flags & CLONE_VM))
889 return ERR_PTR(-EINVAL);
891 retval = security_task_create(clone_flags);
892 if (retval)
893 goto fork_out;
895 retval = -ENOMEM;
896 p = dup_task_struct(current);
897 if (!p)
898 goto fork_out;
900 retval = -EAGAIN;
901 if (atomic_read(&p->user->processes) >=
902 p->signal->rlim[RLIMIT_NPROC].rlim_cur) {
903 if (!capable(CAP_SYS_ADMIN) && !capable(CAP_SYS_RESOURCE) &&
904 p->user != &root_user)
905 goto bad_fork_free;
908 atomic_inc(&p->user->__count);
909 atomic_inc(&p->user->processes);
910 get_group_info(p->group_info);
913 * If multiple threads are within copy_process(), then this check
914 * triggers too late. This doesn't hurt, the check is only there
915 * to stop root fork bombs.
917 if (nr_threads >= max_threads)
918 goto bad_fork_cleanup_count;
920 if (!try_module_get(task_thread_info(p)->exec_domain->module))
921 goto bad_fork_cleanup_count;
923 if (p->binfmt && !try_module_get(p->binfmt->module))
924 goto bad_fork_cleanup_put_domain;
926 p->did_exec = 0;
927 copy_flags(clone_flags, p);
928 p->pid = pid;
929 retval = -EFAULT;
930 if (clone_flags & CLONE_PARENT_SETTID)
931 if (put_user(p->pid, parent_tidptr))
932 goto bad_fork_cleanup;
934 p->proc_dentry = NULL;
936 INIT_LIST_HEAD(&p->children);
937 INIT_LIST_HEAD(&p->sibling);
938 p->vfork_done = NULL;
939 spin_lock_init(&p->alloc_lock);
940 spin_lock_init(&p->proc_lock);
942 clear_tsk_thread_flag(p, TIF_SIGPENDING);
943 init_sigpending(&p->pending);
945 p->utime = cputime_zero;
946 p->stime = cputime_zero;
947 p->sched_time = 0;
948 p->rchar = 0; /* I/O counter: bytes read */
949 p->wchar = 0; /* I/O counter: bytes written */
950 p->syscr = 0; /* I/O counter: read syscalls */
951 p->syscw = 0; /* I/O counter: write syscalls */
952 acct_clear_integrals(p);
954 p->it_virt_expires = cputime_zero;
955 p->it_prof_expires = cputime_zero;
956 p->it_sched_expires = 0;
957 INIT_LIST_HEAD(&p->cpu_timers[0]);
958 INIT_LIST_HEAD(&p->cpu_timers[1]);
959 INIT_LIST_HEAD(&p->cpu_timers[2]);
961 p->lock_depth = -1; /* -1 = no lock */
962 do_posix_clock_monotonic_gettime(&p->start_time);
963 p->security = NULL;
964 p->io_context = NULL;
965 p->io_wait = NULL;
966 p->audit_context = NULL;
967 #ifdef CONFIG_NUMA
968 p->mempolicy = mpol_copy(p->mempolicy);
969 if (IS_ERR(p->mempolicy)) {
970 retval = PTR_ERR(p->mempolicy);
971 p->mempolicy = NULL;
972 goto bad_fork_cleanup;
974 #endif
976 p->tgid = p->pid;
977 if (clone_flags & CLONE_THREAD)
978 p->tgid = current->tgid;
980 if ((retval = security_task_alloc(p)))
981 goto bad_fork_cleanup_policy;
982 if ((retval = audit_alloc(p)))
983 goto bad_fork_cleanup_security;
984 /* copy all the process information */
985 if ((retval = copy_semundo(clone_flags, p)))
986 goto bad_fork_cleanup_audit;
987 if ((retval = copy_files(clone_flags, p)))
988 goto bad_fork_cleanup_semundo;
989 if ((retval = copy_fs(clone_flags, p)))
990 goto bad_fork_cleanup_files;
991 if ((retval = copy_sighand(clone_flags, p)))
992 goto bad_fork_cleanup_fs;
993 if ((retval = copy_signal(clone_flags, p)))
994 goto bad_fork_cleanup_sighand;
995 if ((retval = copy_mm(clone_flags, p)))
996 goto bad_fork_cleanup_signal;
997 if ((retval = copy_keys(clone_flags, p)))
998 goto bad_fork_cleanup_mm;
999 if ((retval = copy_namespace(clone_flags, p)))
1000 goto bad_fork_cleanup_keys;
1001 retval = copy_thread(0, clone_flags, stack_start, stack_size, p, regs);
1002 if (retval)
1003 goto bad_fork_cleanup_namespace;
1005 p->set_child_tid = (clone_flags & CLONE_CHILD_SETTID) ? child_tidptr : NULL;
1007 * Clear TID on mm_release()?
1009 p->clear_child_tid = (clone_flags & CLONE_CHILD_CLEARTID) ? child_tidptr: NULL;
1012 * Syscall tracing should be turned off in the child regardless
1013 * of CLONE_PTRACE.
1015 clear_tsk_thread_flag(p, TIF_SYSCALL_TRACE);
1016 #ifdef TIF_SYSCALL_EMU
1017 clear_tsk_thread_flag(p, TIF_SYSCALL_EMU);
1018 #endif
1020 /* Our parent execution domain becomes current domain
1021 These must match for thread signalling to apply */
1023 p->parent_exec_id = p->self_exec_id;
1025 /* ok, now we should be set up.. */
1026 p->exit_signal = (clone_flags & CLONE_THREAD) ? -1 : (clone_flags & CSIGNAL);
1027 p->pdeath_signal = 0;
1028 p->exit_state = 0;
1031 * Ok, make it visible to the rest of the system.
1032 * We dont wake it up yet.
1034 p->group_leader = p;
1035 INIT_LIST_HEAD(&p->ptrace_children);
1036 INIT_LIST_HEAD(&p->ptrace_list);
1038 /* Perform scheduler related setup. Assign this task to a CPU. */
1039 sched_fork(p, clone_flags);
1041 /* Need tasklist lock for parent etc handling! */
1042 write_lock_irq(&tasklist_lock);
1045 * The task hasn't been attached yet, so its cpus_allowed mask will
1046 * not be changed, nor will its assigned CPU.
1048 * The cpus_allowed mask of the parent may have changed after it was
1049 * copied first time - so re-copy it here, then check the child's CPU
1050 * to ensure it is on a valid CPU (and if not, just force it back to
1051 * parent's CPU). This avoids alot of nasty races.
1053 p->cpus_allowed = current->cpus_allowed;
1054 if (unlikely(!cpu_isset(task_cpu(p), p->cpus_allowed) ||
1055 !cpu_online(task_cpu(p))))
1056 set_task_cpu(p, smp_processor_id());
1059 * Check for pending SIGKILL! The new thread should not be allowed
1060 * to slip out of an OOM kill. (or normal SIGKILL.)
1062 if (sigismember(&current->pending.signal, SIGKILL)) {
1063 write_unlock_irq(&tasklist_lock);
1064 retval = -EINTR;
1065 goto bad_fork_cleanup_namespace;
1068 /* CLONE_PARENT re-uses the old parent */
1069 if (clone_flags & (CLONE_PARENT|CLONE_THREAD))
1070 p->real_parent = current->real_parent;
1071 else
1072 p->real_parent = current;
1073 p->parent = p->real_parent;
1075 if (clone_flags & CLONE_THREAD) {
1076 spin_lock(&current->sighand->siglock);
1078 * Important: if an exit-all has been started then
1079 * do not create this new thread - the whole thread
1080 * group is supposed to exit anyway.
1082 if (current->signal->flags & SIGNAL_GROUP_EXIT) {
1083 spin_unlock(&current->sighand->siglock);
1084 write_unlock_irq(&tasklist_lock);
1085 retval = -EAGAIN;
1086 goto bad_fork_cleanup_namespace;
1088 p->group_leader = current->group_leader;
1090 if (current->signal->group_stop_count > 0) {
1092 * There is an all-stop in progress for the group.
1093 * We ourselves will stop as soon as we check signals.
1094 * Make the new thread part of that group stop too.
1096 current->signal->group_stop_count++;
1097 set_tsk_thread_flag(p, TIF_SIGPENDING);
1100 if (!cputime_eq(current->signal->it_virt_expires,
1101 cputime_zero) ||
1102 !cputime_eq(current->signal->it_prof_expires,
1103 cputime_zero) ||
1104 current->signal->rlim[RLIMIT_CPU].rlim_cur != RLIM_INFINITY ||
1105 !list_empty(&current->signal->cpu_timers[0]) ||
1106 !list_empty(&current->signal->cpu_timers[1]) ||
1107 !list_empty(&current->signal->cpu_timers[2])) {
1109 * Have child wake up on its first tick to check
1110 * for process CPU timers.
1112 p->it_prof_expires = jiffies_to_cputime(1);
1115 spin_unlock(&current->sighand->siglock);
1119 * inherit ioprio
1121 p->ioprio = current->ioprio;
1123 SET_LINKS(p);
1124 if (unlikely(p->ptrace & PT_PTRACED))
1125 __ptrace_link(p, current->parent);
1127 attach_pid(p, PIDTYPE_PID, p->pid);
1128 attach_pid(p, PIDTYPE_TGID, p->tgid);
1129 if (thread_group_leader(p)) {
1130 attach_pid(p, PIDTYPE_PGID, process_group(p));
1131 attach_pid(p, PIDTYPE_SID, p->signal->session);
1132 if (p->pid)
1133 __get_cpu_var(process_counts)++;
1136 if (!current->signal->tty && p->signal->tty)
1137 p->signal->tty = NULL;
1139 nr_threads++;
1140 total_forks++;
1141 write_unlock_irq(&tasklist_lock);
1142 proc_fork_connector(p);
1143 cpuset_fork(p);
1144 retval = 0;
1146 fork_out:
1147 if (retval)
1148 return ERR_PTR(retval);
1149 return p;
1151 bad_fork_cleanup_namespace:
1152 exit_namespace(p);
1153 bad_fork_cleanup_keys:
1154 exit_keys(p);
1155 bad_fork_cleanup_mm:
1156 if (p->mm)
1157 mmput(p->mm);
1158 bad_fork_cleanup_signal:
1159 exit_signal(p);
1160 bad_fork_cleanup_sighand:
1161 exit_sighand(p);
1162 bad_fork_cleanup_fs:
1163 exit_fs(p); /* blocking */
1164 bad_fork_cleanup_files:
1165 exit_files(p); /* blocking */
1166 bad_fork_cleanup_semundo:
1167 exit_sem(p);
1168 bad_fork_cleanup_audit:
1169 audit_free(p);
1170 bad_fork_cleanup_security:
1171 security_task_free(p);
1172 bad_fork_cleanup_policy:
1173 #ifdef CONFIG_NUMA
1174 mpol_free(p->mempolicy);
1175 #endif
1176 bad_fork_cleanup:
1177 if (p->binfmt)
1178 module_put(p->binfmt->module);
1179 bad_fork_cleanup_put_domain:
1180 module_put(task_thread_info(p)->exec_domain->module);
1181 bad_fork_cleanup_count:
1182 put_group_info(p->group_info);
1183 atomic_dec(&p->user->processes);
1184 free_uid(p->user);
1185 bad_fork_free:
1186 free_task(p);
1187 goto fork_out;
1190 struct pt_regs * __devinit __attribute__((weak)) idle_regs(struct pt_regs *regs)
1192 memset(regs, 0, sizeof(struct pt_regs));
1193 return regs;
1196 task_t * __devinit fork_idle(int cpu)
1198 task_t *task;
1199 struct pt_regs regs;
1201 task = copy_process(CLONE_VM, 0, idle_regs(&regs), 0, NULL, NULL, 0);
1202 if (!task)
1203 return ERR_PTR(-ENOMEM);
1204 init_idle(task, cpu);
1205 unhash_process(task);
1206 return task;
1209 static inline int fork_traceflag (unsigned clone_flags)
1211 if (clone_flags & CLONE_UNTRACED)
1212 return 0;
1213 else if (clone_flags & CLONE_VFORK) {
1214 if (current->ptrace & PT_TRACE_VFORK)
1215 return PTRACE_EVENT_VFORK;
1216 } else if ((clone_flags & CSIGNAL) != SIGCHLD) {
1217 if (current->ptrace & PT_TRACE_CLONE)
1218 return PTRACE_EVENT_CLONE;
1219 } else if (current->ptrace & PT_TRACE_FORK)
1220 return PTRACE_EVENT_FORK;
1222 return 0;
1226 * Ok, this is the main fork-routine.
1228 * It copies the process, and if successful kick-starts
1229 * it and waits for it to finish using the VM if required.
1231 long do_fork(unsigned long clone_flags,
1232 unsigned long stack_start,
1233 struct pt_regs *regs,
1234 unsigned long stack_size,
1235 int __user *parent_tidptr,
1236 int __user *child_tidptr)
1238 struct task_struct *p;
1239 int trace = 0;
1240 long pid = alloc_pidmap();
1242 if (pid < 0)
1243 return -EAGAIN;
1244 if (unlikely(current->ptrace)) {
1245 trace = fork_traceflag (clone_flags);
1246 if (trace)
1247 clone_flags |= CLONE_PTRACE;
1250 p = copy_process(clone_flags, stack_start, regs, stack_size, parent_tidptr, child_tidptr, pid);
1252 * Do this prior waking up the new thread - the thread pointer
1253 * might get invalid after that point, if the thread exits quickly.
1255 if (!IS_ERR(p)) {
1256 struct completion vfork;
1258 if (clone_flags & CLONE_VFORK) {
1259 p->vfork_done = &vfork;
1260 init_completion(&vfork);
1263 if ((p->ptrace & PT_PTRACED) || (clone_flags & CLONE_STOPPED)) {
1265 * We'll start up with an immediate SIGSTOP.
1267 sigaddset(&p->pending.signal, SIGSTOP);
1268 set_tsk_thread_flag(p, TIF_SIGPENDING);
1271 if (!(clone_flags & CLONE_STOPPED))
1272 wake_up_new_task(p, clone_flags);
1273 else
1274 p->state = TASK_STOPPED;
1276 if (unlikely (trace)) {
1277 current->ptrace_message = pid;
1278 ptrace_notify ((trace << 8) | SIGTRAP);
1281 if (clone_flags & CLONE_VFORK) {
1282 wait_for_completion(&vfork);
1283 if (unlikely (current->ptrace & PT_TRACE_VFORK_DONE))
1284 ptrace_notify ((PTRACE_EVENT_VFORK_DONE << 8) | SIGTRAP);
1286 } else {
1287 free_pidmap(pid);
1288 pid = PTR_ERR(p);
1290 return pid;
1293 void __init proc_caches_init(void)
1295 sighand_cachep = kmem_cache_create("sighand_cache",
1296 sizeof(struct sighand_struct), 0,
1297 SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL, NULL);
1298 signal_cachep = kmem_cache_create("signal_cache",
1299 sizeof(struct signal_struct), 0,
1300 SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL, NULL);
1301 files_cachep = kmem_cache_create("files_cache",
1302 sizeof(struct files_struct), 0,
1303 SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL, NULL);
1304 fs_cachep = kmem_cache_create("fs_cache",
1305 sizeof(struct fs_struct), 0,
1306 SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL, NULL);
1307 vm_area_cachep = kmem_cache_create("vm_area_struct",
1308 sizeof(struct vm_area_struct), 0,
1309 SLAB_PANIC, NULL, NULL);
1310 mm_cachep = kmem_cache_create("mm_struct",
1311 sizeof(struct mm_struct), 0,
1312 SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL, NULL);