[PATCH] pi-futex: rt mutex futex api
[linux-2.6/mini2440.git] / kernel / rtmutex.c
blob3fc0f0680ca267fe5d43c7a3f258c920122df239
1 /*
2 * RT-Mutexes: simple blocking mutual exclusion locks with PI support
4 * started by Ingo Molnar and Thomas Gleixner.
6 * Copyright (C) 2004-2006 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
7 * Copyright (C) 2005-2006 Timesys Corp., Thomas Gleixner <tglx@timesys.com>
8 * Copyright (C) 2005 Kihon Technologies Inc., Steven Rostedt
9 * Copyright (C) 2006 Esben Nielsen
11 #include <linux/spinlock.h>
12 #include <linux/module.h>
13 #include <linux/sched.h>
14 #include <linux/timer.h>
16 #include "rtmutex_common.h"
18 #ifdef CONFIG_DEBUG_RT_MUTEXES
19 # include "rtmutex-debug.h"
20 #else
21 # include "rtmutex.h"
22 #endif
25 * lock->owner state tracking:
27 * lock->owner holds the task_struct pointer of the owner. Bit 0 and 1
28 * are used to keep track of the "owner is pending" and "lock has
29 * waiters" state.
31 * owner bit1 bit0
32 * NULL 0 0 lock is free (fast acquire possible)
33 * NULL 0 1 invalid state
34 * NULL 1 0 Transitional State*
35 * NULL 1 1 invalid state
36 * taskpointer 0 0 lock is held (fast release possible)
37 * taskpointer 0 1 task is pending owner
38 * taskpointer 1 0 lock is held and has waiters
39 * taskpointer 1 1 task is pending owner and lock has more waiters
41 * Pending ownership is assigned to the top (highest priority)
42 * waiter of the lock, when the lock is released. The thread is woken
43 * up and can now take the lock. Until the lock is taken (bit 0
44 * cleared) a competing higher priority thread can steal the lock
45 * which puts the woken up thread back on the waiters list.
47 * The fast atomic compare exchange based acquire and release is only
48 * possible when bit 0 and 1 of lock->owner are 0.
50 * (*) There's a small time where the owner can be NULL and the
51 * "lock has waiters" bit is set. This can happen when grabbing the lock.
52 * To prevent a cmpxchg of the owner releasing the lock, we need to set this
53 * bit before looking at the lock, hence the reason this is a transitional
54 * state.
57 static void
58 rt_mutex_set_owner(struct rt_mutex *lock, struct task_struct *owner,
59 unsigned long mask)
61 unsigned long val = (unsigned long)owner | mask;
63 if (rt_mutex_has_waiters(lock))
64 val |= RT_MUTEX_HAS_WAITERS;
66 lock->owner = (struct task_struct *)val;
69 static inline void clear_rt_mutex_waiters(struct rt_mutex *lock)
71 lock->owner = (struct task_struct *)
72 ((unsigned long)lock->owner & ~RT_MUTEX_HAS_WAITERS);
75 static void fixup_rt_mutex_waiters(struct rt_mutex *lock)
77 if (!rt_mutex_has_waiters(lock))
78 clear_rt_mutex_waiters(lock);
82 * We can speed up the acquire/release, if the architecture
83 * supports cmpxchg and if there's no debugging state to be set up
85 #if defined(__HAVE_ARCH_CMPXCHG) && !defined(CONFIG_DEBUG_RT_MUTEXES)
86 # define rt_mutex_cmpxchg(l,c,n) (cmpxchg(&l->owner, c, n) == c)
87 static inline void mark_rt_mutex_waiters(struct rt_mutex *lock)
89 unsigned long owner, *p = (unsigned long *) &lock->owner;
91 do {
92 owner = *p;
93 } while (cmpxchg(p, owner, owner | RT_MUTEX_HAS_WAITERS) != owner);
95 #else
96 # define rt_mutex_cmpxchg(l,c,n) (0)
97 static inline void mark_rt_mutex_waiters(struct rt_mutex *lock)
99 lock->owner = (struct task_struct *)
100 ((unsigned long)lock->owner | RT_MUTEX_HAS_WAITERS);
102 #endif
105 * Calculate task priority from the waiter list priority
107 * Return task->normal_prio when the waiter list is empty or when
108 * the waiter is not allowed to do priority boosting
110 int rt_mutex_getprio(struct task_struct *task)
112 if (likely(!task_has_pi_waiters(task)))
113 return task->normal_prio;
115 return min(task_top_pi_waiter(task)->pi_list_entry.prio,
116 task->normal_prio);
120 * Adjust the priority of a task, after its pi_waiters got modified.
122 * This can be both boosting and unboosting. task->pi_lock must be held.
124 static void __rt_mutex_adjust_prio(struct task_struct *task)
126 int prio = rt_mutex_getprio(task);
128 if (task->prio != prio)
129 rt_mutex_setprio(task, prio);
133 * Adjust task priority (undo boosting). Called from the exit path of
134 * rt_mutex_slowunlock() and rt_mutex_slowlock().
136 * (Note: We do this outside of the protection of lock->wait_lock to
137 * allow the lock to be taken while or before we readjust the priority
138 * of task. We do not use the spin_xx_mutex() variants here as we are
139 * outside of the debug path.)
141 static void rt_mutex_adjust_prio(struct task_struct *task)
143 unsigned long flags;
145 spin_lock_irqsave(&task->pi_lock, flags);
146 __rt_mutex_adjust_prio(task);
147 spin_unlock_irqrestore(&task->pi_lock, flags);
151 * Max number of times we'll walk the boosting chain:
153 int max_lock_depth = 1024;
156 * Adjust the priority chain. Also used for deadlock detection.
157 * Decreases task's usage by one - may thus free the task.
158 * Returns 0 or -EDEADLK.
160 static int rt_mutex_adjust_prio_chain(task_t *task,
161 int deadlock_detect,
162 struct rt_mutex *orig_lock,
163 struct rt_mutex_waiter *orig_waiter
164 __IP_DECL__)
166 struct rt_mutex *lock;
167 struct rt_mutex_waiter *waiter, *top_waiter = orig_waiter;
168 int detect_deadlock, ret = 0, depth = 0;
169 unsigned long flags;
171 detect_deadlock = debug_rt_mutex_detect_deadlock(orig_waiter,
172 deadlock_detect);
175 * The (de)boosting is a step by step approach with a lot of
176 * pitfalls. We want this to be preemptible and we want hold a
177 * maximum of two locks per step. So we have to check
178 * carefully whether things change under us.
180 again:
181 if (++depth > max_lock_depth) {
182 static int prev_max;
185 * Print this only once. If the admin changes the limit,
186 * print a new message when reaching the limit again.
188 if (prev_max != max_lock_depth) {
189 prev_max = max_lock_depth;
190 printk(KERN_WARNING "Maximum lock depth %d reached "
191 "task: %s (%d)\n", max_lock_depth,
192 current->comm, current->pid);
194 put_task_struct(task);
196 return deadlock_detect ? -EDEADLK : 0;
198 retry:
200 * Task can not go away as we did a get_task() before !
202 spin_lock_irqsave(&task->pi_lock, flags);
204 waiter = task->pi_blocked_on;
206 * Check whether the end of the boosting chain has been
207 * reached or the state of the chain has changed while we
208 * dropped the locks.
210 if (!waiter || !waiter->task)
211 goto out_unlock_pi;
213 if (top_waiter && (!task_has_pi_waiters(task) ||
214 top_waiter != task_top_pi_waiter(task)))
215 goto out_unlock_pi;
218 * When deadlock detection is off then we check, if further
219 * priority adjustment is necessary.
221 if (!detect_deadlock && waiter->list_entry.prio == task->prio)
222 goto out_unlock_pi;
224 lock = waiter->lock;
225 if (!spin_trylock(&lock->wait_lock)) {
226 spin_unlock_irqrestore(&task->pi_lock, flags);
227 cpu_relax();
228 goto retry;
231 /* Deadlock detection */
232 if (lock == orig_lock || rt_mutex_owner(lock) == current) {
233 debug_rt_mutex_deadlock(deadlock_detect, orig_waiter, lock);
234 spin_unlock(&lock->wait_lock);
235 ret = deadlock_detect ? -EDEADLK : 0;
236 goto out_unlock_pi;
239 top_waiter = rt_mutex_top_waiter(lock);
241 /* Requeue the waiter */
242 plist_del(&waiter->list_entry, &lock->wait_list);
243 waiter->list_entry.prio = task->prio;
244 plist_add(&waiter->list_entry, &lock->wait_list);
246 /* Release the task */
247 spin_unlock_irqrestore(&task->pi_lock, flags);
248 put_task_struct(task);
250 /* Grab the next task */
251 task = rt_mutex_owner(lock);
252 spin_lock_irqsave(&task->pi_lock, flags);
254 if (waiter == rt_mutex_top_waiter(lock)) {
255 /* Boost the owner */
256 plist_del(&top_waiter->pi_list_entry, &task->pi_waiters);
257 waiter->pi_list_entry.prio = waiter->list_entry.prio;
258 plist_add(&waiter->pi_list_entry, &task->pi_waiters);
259 __rt_mutex_adjust_prio(task);
261 } else if (top_waiter == waiter) {
262 /* Deboost the owner */
263 plist_del(&waiter->pi_list_entry, &task->pi_waiters);
264 waiter = rt_mutex_top_waiter(lock);
265 waiter->pi_list_entry.prio = waiter->list_entry.prio;
266 plist_add(&waiter->pi_list_entry, &task->pi_waiters);
267 __rt_mutex_adjust_prio(task);
270 get_task_struct(task);
271 spin_unlock_irqrestore(&task->pi_lock, flags);
273 top_waiter = rt_mutex_top_waiter(lock);
274 spin_unlock(&lock->wait_lock);
276 if (!detect_deadlock && waiter != top_waiter)
277 goto out_put_task;
279 goto again;
281 out_unlock_pi:
282 spin_unlock_irqrestore(&task->pi_lock, flags);
283 out_put_task:
284 put_task_struct(task);
285 return ret;
289 * Optimization: check if we can steal the lock from the
290 * assigned pending owner [which might not have taken the
291 * lock yet]:
293 static inline int try_to_steal_lock(struct rt_mutex *lock)
295 struct task_struct *pendowner = rt_mutex_owner(lock);
296 struct rt_mutex_waiter *next;
297 unsigned long flags;
299 if (!rt_mutex_owner_pending(lock))
300 return 0;
302 if (pendowner == current)
303 return 1;
305 spin_lock_irqsave(&pendowner->pi_lock, flags);
306 if (current->prio >= pendowner->prio) {
307 spin_unlock_irqrestore(&pendowner->pi_lock, flags);
308 return 0;
312 * Check if a waiter is enqueued on the pending owners
313 * pi_waiters list. Remove it and readjust pending owners
314 * priority.
316 if (likely(!rt_mutex_has_waiters(lock))) {
317 spin_unlock_irqrestore(&pendowner->pi_lock, flags);
318 return 1;
321 /* No chain handling, pending owner is not blocked on anything: */
322 next = rt_mutex_top_waiter(lock);
323 plist_del(&next->pi_list_entry, &pendowner->pi_waiters);
324 __rt_mutex_adjust_prio(pendowner);
325 spin_unlock_irqrestore(&pendowner->pi_lock, flags);
328 * We are going to steal the lock and a waiter was
329 * enqueued on the pending owners pi_waiters queue. So
330 * we have to enqueue this waiter into
331 * current->pi_waiters list. This covers the case,
332 * where current is boosted because it holds another
333 * lock and gets unboosted because the booster is
334 * interrupted, so we would delay a waiter with higher
335 * priority as current->normal_prio.
337 * Note: in the rare case of a SCHED_OTHER task changing
338 * its priority and thus stealing the lock, next->task
339 * might be current:
341 if (likely(next->task != current)) {
342 spin_lock_irqsave(&current->pi_lock, flags);
343 plist_add(&next->pi_list_entry, &current->pi_waiters);
344 __rt_mutex_adjust_prio(current);
345 spin_unlock_irqrestore(&current->pi_lock, flags);
347 return 1;
351 * Try to take an rt-mutex
353 * This fails
354 * - when the lock has a real owner
355 * - when a different pending owner exists and has higher priority than current
357 * Must be called with lock->wait_lock held.
359 static int try_to_take_rt_mutex(struct rt_mutex *lock __IP_DECL__)
362 * We have to be careful here if the atomic speedups are
363 * enabled, such that, when
364 * - no other waiter is on the lock
365 * - the lock has been released since we did the cmpxchg
366 * the lock can be released or taken while we are doing the
367 * checks and marking the lock with RT_MUTEX_HAS_WAITERS.
369 * The atomic acquire/release aware variant of
370 * mark_rt_mutex_waiters uses a cmpxchg loop. After setting
371 * the WAITERS bit, the atomic release / acquire can not
372 * happen anymore and lock->wait_lock protects us from the
373 * non-atomic case.
375 * Note, that this might set lock->owner =
376 * RT_MUTEX_HAS_WAITERS in the case the lock is not contended
377 * any more. This is fixed up when we take the ownership.
378 * This is the transitional state explained at the top of this file.
380 mark_rt_mutex_waiters(lock);
382 if (rt_mutex_owner(lock) && !try_to_steal_lock(lock))
383 return 0;
385 /* We got the lock. */
386 debug_rt_mutex_lock(lock __IP__);
388 rt_mutex_set_owner(lock, current, 0);
390 rt_mutex_deadlock_account_lock(lock, current);
392 return 1;
396 * Task blocks on lock.
398 * Prepare waiter and propagate pi chain
400 * This must be called with lock->wait_lock held.
402 static int task_blocks_on_rt_mutex(struct rt_mutex *lock,
403 struct rt_mutex_waiter *waiter,
404 int detect_deadlock
405 __IP_DECL__)
407 struct rt_mutex_waiter *top_waiter = waiter;
408 task_t *owner = rt_mutex_owner(lock);
409 int boost = 0, res;
410 unsigned long flags;
412 spin_lock_irqsave(&current->pi_lock, flags);
413 __rt_mutex_adjust_prio(current);
414 waiter->task = current;
415 waiter->lock = lock;
416 plist_node_init(&waiter->list_entry, current->prio);
417 plist_node_init(&waiter->pi_list_entry, current->prio);
419 /* Get the top priority waiter on the lock */
420 if (rt_mutex_has_waiters(lock))
421 top_waiter = rt_mutex_top_waiter(lock);
422 plist_add(&waiter->list_entry, &lock->wait_list);
424 current->pi_blocked_on = waiter;
426 spin_unlock_irqrestore(&current->pi_lock, flags);
428 if (waiter == rt_mutex_top_waiter(lock)) {
429 spin_lock_irqsave(&owner->pi_lock, flags);
430 plist_del(&top_waiter->pi_list_entry, &owner->pi_waiters);
431 plist_add(&waiter->pi_list_entry, &owner->pi_waiters);
433 __rt_mutex_adjust_prio(owner);
434 if (owner->pi_blocked_on) {
435 boost = 1;
436 get_task_struct(owner);
438 spin_unlock_irqrestore(&owner->pi_lock, flags);
440 else if (debug_rt_mutex_detect_deadlock(waiter, detect_deadlock)) {
441 spin_lock_irqsave(&owner->pi_lock, flags);
442 if (owner->pi_blocked_on) {
443 boost = 1;
444 get_task_struct(owner);
446 spin_unlock_irqrestore(&owner->pi_lock, flags);
448 if (!boost)
449 return 0;
451 spin_unlock(&lock->wait_lock);
453 res = rt_mutex_adjust_prio_chain(owner, detect_deadlock, lock,
454 waiter __IP__);
456 spin_lock(&lock->wait_lock);
458 return res;
462 * Wake up the next waiter on the lock.
464 * Remove the top waiter from the current tasks waiter list and from
465 * the lock waiter list. Set it as pending owner. Then wake it up.
467 * Called with lock->wait_lock held.
469 static void wakeup_next_waiter(struct rt_mutex *lock)
471 struct rt_mutex_waiter *waiter;
472 struct task_struct *pendowner;
473 unsigned long flags;
475 spin_lock_irqsave(&current->pi_lock, flags);
477 waiter = rt_mutex_top_waiter(lock);
478 plist_del(&waiter->list_entry, &lock->wait_list);
481 * Remove it from current->pi_waiters. We do not adjust a
482 * possible priority boost right now. We execute wakeup in the
483 * boosted mode and go back to normal after releasing
484 * lock->wait_lock.
486 plist_del(&waiter->pi_list_entry, &current->pi_waiters);
487 pendowner = waiter->task;
488 waiter->task = NULL;
490 rt_mutex_set_owner(lock, pendowner, RT_MUTEX_OWNER_PENDING);
492 spin_unlock_irqrestore(&current->pi_lock, flags);
495 * Clear the pi_blocked_on variable and enqueue a possible
496 * waiter into the pi_waiters list of the pending owner. This
497 * prevents that in case the pending owner gets unboosted a
498 * waiter with higher priority than pending-owner->normal_prio
499 * is blocked on the unboosted (pending) owner.
501 spin_lock_irqsave(&pendowner->pi_lock, flags);
503 WARN_ON(!pendowner->pi_blocked_on);
504 WARN_ON(pendowner->pi_blocked_on != waiter);
505 WARN_ON(pendowner->pi_blocked_on->lock != lock);
507 pendowner->pi_blocked_on = NULL;
509 if (rt_mutex_has_waiters(lock)) {
510 struct rt_mutex_waiter *next;
512 next = rt_mutex_top_waiter(lock);
513 plist_add(&next->pi_list_entry, &pendowner->pi_waiters);
515 spin_unlock_irqrestore(&pendowner->pi_lock, flags);
517 wake_up_process(pendowner);
521 * Remove a waiter from a lock
523 * Must be called with lock->wait_lock held
525 static void remove_waiter(struct rt_mutex *lock,
526 struct rt_mutex_waiter *waiter __IP_DECL__)
528 int first = (waiter == rt_mutex_top_waiter(lock));
529 int boost = 0;
530 task_t *owner = rt_mutex_owner(lock);
531 unsigned long flags;
533 spin_lock_irqsave(&current->pi_lock, flags);
534 plist_del(&waiter->list_entry, &lock->wait_list);
535 waiter->task = NULL;
536 current->pi_blocked_on = NULL;
537 spin_unlock_irqrestore(&current->pi_lock, flags);
539 if (first && owner != current) {
541 spin_lock_irqsave(&owner->pi_lock, flags);
543 plist_del(&waiter->pi_list_entry, &owner->pi_waiters);
545 if (rt_mutex_has_waiters(lock)) {
546 struct rt_mutex_waiter *next;
548 next = rt_mutex_top_waiter(lock);
549 plist_add(&next->pi_list_entry, &owner->pi_waiters);
551 __rt_mutex_adjust_prio(owner);
553 if (owner->pi_blocked_on) {
554 boost = 1;
555 get_task_struct(owner);
557 spin_unlock_irqrestore(&owner->pi_lock, flags);
560 WARN_ON(!plist_node_empty(&waiter->pi_list_entry));
562 if (!boost)
563 return;
565 spin_unlock(&lock->wait_lock);
567 rt_mutex_adjust_prio_chain(owner, 0, lock, NULL __IP__);
569 spin_lock(&lock->wait_lock);
573 * Slow path lock function:
575 static int __sched
576 rt_mutex_slowlock(struct rt_mutex *lock, int state,
577 struct hrtimer_sleeper *timeout,
578 int detect_deadlock __IP_DECL__)
580 struct rt_mutex_waiter waiter;
581 int ret = 0;
583 debug_rt_mutex_init_waiter(&waiter);
584 waiter.task = NULL;
586 spin_lock(&lock->wait_lock);
588 /* Try to acquire the lock again: */
589 if (try_to_take_rt_mutex(lock __IP__)) {
590 spin_unlock(&lock->wait_lock);
591 return 0;
594 set_current_state(state);
596 /* Setup the timer, when timeout != NULL */
597 if (unlikely(timeout))
598 hrtimer_start(&timeout->timer, timeout->timer.expires,
599 HRTIMER_ABS);
601 for (;;) {
602 /* Try to acquire the lock: */
603 if (try_to_take_rt_mutex(lock __IP__))
604 break;
607 * TASK_INTERRUPTIBLE checks for signals and
608 * timeout. Ignored otherwise.
610 if (unlikely(state == TASK_INTERRUPTIBLE)) {
611 /* Signal pending? */
612 if (signal_pending(current))
613 ret = -EINTR;
614 if (timeout && !timeout->task)
615 ret = -ETIMEDOUT;
616 if (ret)
617 break;
621 * waiter.task is NULL the first time we come here and
622 * when we have been woken up by the previous owner
623 * but the lock got stolen by a higher prio task.
625 if (!waiter.task) {
626 ret = task_blocks_on_rt_mutex(lock, &waiter,
627 detect_deadlock __IP__);
629 * If we got woken up by the owner then start loop
630 * all over without going into schedule to try
631 * to get the lock now:
633 if (unlikely(!waiter.task))
634 continue;
636 if (unlikely(ret))
637 break;
639 spin_unlock(&lock->wait_lock);
641 debug_rt_mutex_print_deadlock(&waiter);
643 if (waiter.task)
644 schedule_rt_mutex(lock);
646 spin_lock(&lock->wait_lock);
647 set_current_state(state);
650 set_current_state(TASK_RUNNING);
652 if (unlikely(waiter.task))
653 remove_waiter(lock, &waiter __IP__);
656 * try_to_take_rt_mutex() sets the waiter bit
657 * unconditionally. We might have to fix that up.
659 fixup_rt_mutex_waiters(lock);
661 spin_unlock(&lock->wait_lock);
663 /* Remove pending timer: */
664 if (unlikely(timeout))
665 hrtimer_cancel(&timeout->timer);
668 * Readjust priority, when we did not get the lock. We might
669 * have been the pending owner and boosted. Since we did not
670 * take the lock, the PI boost has to go.
672 if (unlikely(ret))
673 rt_mutex_adjust_prio(current);
675 debug_rt_mutex_free_waiter(&waiter);
677 return ret;
681 * Slow path try-lock function:
683 static inline int
684 rt_mutex_slowtrylock(struct rt_mutex *lock __IP_DECL__)
686 int ret = 0;
688 spin_lock(&lock->wait_lock);
690 if (likely(rt_mutex_owner(lock) != current)) {
692 ret = try_to_take_rt_mutex(lock __IP__);
694 * try_to_take_rt_mutex() sets the lock waiters
695 * bit unconditionally. Clean this up.
697 fixup_rt_mutex_waiters(lock);
700 spin_unlock(&lock->wait_lock);
702 return ret;
706 * Slow path to release a rt-mutex:
708 static void __sched
709 rt_mutex_slowunlock(struct rt_mutex *lock)
711 spin_lock(&lock->wait_lock);
713 debug_rt_mutex_unlock(lock);
715 rt_mutex_deadlock_account_unlock(current);
717 if (!rt_mutex_has_waiters(lock)) {
718 lock->owner = NULL;
719 spin_unlock(&lock->wait_lock);
720 return;
723 wakeup_next_waiter(lock);
725 spin_unlock(&lock->wait_lock);
727 /* Undo pi boosting if necessary: */
728 rt_mutex_adjust_prio(current);
732 * debug aware fast / slowpath lock,trylock,unlock
734 * The atomic acquire/release ops are compiled away, when either the
735 * architecture does not support cmpxchg or when debugging is enabled.
737 static inline int
738 rt_mutex_fastlock(struct rt_mutex *lock, int state,
739 int detect_deadlock,
740 int (*slowfn)(struct rt_mutex *lock, int state,
741 struct hrtimer_sleeper *timeout,
742 int detect_deadlock __IP_DECL__))
744 if (!detect_deadlock && likely(rt_mutex_cmpxchg(lock, NULL, current))) {
745 rt_mutex_deadlock_account_lock(lock, current);
746 return 0;
747 } else
748 return slowfn(lock, state, NULL, detect_deadlock __RET_IP__);
751 static inline int
752 rt_mutex_timed_fastlock(struct rt_mutex *lock, int state,
753 struct hrtimer_sleeper *timeout, int detect_deadlock,
754 int (*slowfn)(struct rt_mutex *lock, int state,
755 struct hrtimer_sleeper *timeout,
756 int detect_deadlock __IP_DECL__))
758 if (!detect_deadlock && likely(rt_mutex_cmpxchg(lock, NULL, current))) {
759 rt_mutex_deadlock_account_lock(lock, current);
760 return 0;
761 } else
762 return slowfn(lock, state, timeout, detect_deadlock __RET_IP__);
765 static inline int
766 rt_mutex_fasttrylock(struct rt_mutex *lock,
767 int (*slowfn)(struct rt_mutex *lock __IP_DECL__))
769 if (likely(rt_mutex_cmpxchg(lock, NULL, current))) {
770 rt_mutex_deadlock_account_lock(lock, current);
771 return 1;
773 return slowfn(lock __RET_IP__);
776 static inline void
777 rt_mutex_fastunlock(struct rt_mutex *lock,
778 void (*slowfn)(struct rt_mutex *lock))
780 if (likely(rt_mutex_cmpxchg(lock, current, NULL)))
781 rt_mutex_deadlock_account_unlock(current);
782 else
783 slowfn(lock);
787 * rt_mutex_lock - lock a rt_mutex
789 * @lock: the rt_mutex to be locked
791 void __sched rt_mutex_lock(struct rt_mutex *lock)
793 might_sleep();
795 rt_mutex_fastlock(lock, TASK_UNINTERRUPTIBLE, 0, rt_mutex_slowlock);
797 EXPORT_SYMBOL_GPL(rt_mutex_lock);
800 * rt_mutex_lock_interruptible - lock a rt_mutex interruptible
802 * @lock: the rt_mutex to be locked
803 * @detect_deadlock: deadlock detection on/off
805 * Returns:
806 * 0 on success
807 * -EINTR when interrupted by a signal
808 * -EDEADLK when the lock would deadlock (when deadlock detection is on)
810 int __sched rt_mutex_lock_interruptible(struct rt_mutex *lock,
811 int detect_deadlock)
813 might_sleep();
815 return rt_mutex_fastlock(lock, TASK_INTERRUPTIBLE,
816 detect_deadlock, rt_mutex_slowlock);
818 EXPORT_SYMBOL_GPL(rt_mutex_lock_interruptible);
821 * rt_mutex_lock_interruptible_ktime - lock a rt_mutex interruptible
822 * the timeout structure is provided
823 * by the caller
825 * @lock: the rt_mutex to be locked
826 * @timeout: timeout structure or NULL (no timeout)
827 * @detect_deadlock: deadlock detection on/off
829 * Returns:
830 * 0 on success
831 * -EINTR when interrupted by a signal
832 * -ETIMEOUT when the timeout expired
833 * -EDEADLK when the lock would deadlock (when deadlock detection is on)
836 rt_mutex_timed_lock(struct rt_mutex *lock, struct hrtimer_sleeper *timeout,
837 int detect_deadlock)
839 might_sleep();
841 return rt_mutex_timed_fastlock(lock, TASK_INTERRUPTIBLE, timeout,
842 detect_deadlock, rt_mutex_slowlock);
844 EXPORT_SYMBOL_GPL(rt_mutex_timed_lock);
847 * rt_mutex_trylock - try to lock a rt_mutex
849 * @lock: the rt_mutex to be locked
851 * Returns 1 on success and 0 on contention
853 int __sched rt_mutex_trylock(struct rt_mutex *lock)
855 return rt_mutex_fasttrylock(lock, rt_mutex_slowtrylock);
857 EXPORT_SYMBOL_GPL(rt_mutex_trylock);
860 * rt_mutex_unlock - unlock a rt_mutex
862 * @lock: the rt_mutex to be unlocked
864 void __sched rt_mutex_unlock(struct rt_mutex *lock)
866 rt_mutex_fastunlock(lock, rt_mutex_slowunlock);
868 EXPORT_SYMBOL_GPL(rt_mutex_unlock);
870 /***
871 * rt_mutex_destroy - mark a mutex unusable
872 * @lock: the mutex to be destroyed
874 * This function marks the mutex uninitialized, and any subsequent
875 * use of the mutex is forbidden. The mutex must not be locked when
876 * this function is called.
878 void rt_mutex_destroy(struct rt_mutex *lock)
880 WARN_ON(rt_mutex_is_locked(lock));
881 #ifdef CONFIG_DEBUG_RT_MUTEXES
882 lock->magic = NULL;
883 #endif
886 EXPORT_SYMBOL_GPL(rt_mutex_destroy);
889 * __rt_mutex_init - initialize the rt lock
891 * @lock: the rt lock to be initialized
893 * Initialize the rt lock to unlocked state.
895 * Initializing of a locked rt lock is not allowed
897 void __rt_mutex_init(struct rt_mutex *lock, const char *name)
899 lock->owner = NULL;
900 spin_lock_init(&lock->wait_lock);
901 plist_head_init(&lock->wait_list, &lock->wait_lock);
903 debug_rt_mutex_init(lock, name);
905 EXPORT_SYMBOL_GPL(__rt_mutex_init);
908 * rt_mutex_init_proxy_locked - initialize and lock a rt_mutex on behalf of a
909 * proxy owner
911 * @lock: the rt_mutex to be locked
912 * @proxy_owner:the task to set as owner
914 * No locking. Caller has to do serializing itself
915 * Special API call for PI-futex support
917 void rt_mutex_init_proxy_locked(struct rt_mutex *lock,
918 struct task_struct *proxy_owner)
920 __rt_mutex_init(lock, NULL);
921 debug_rt_mutex_proxy_lock(lock, proxy_owner __RET_IP__);
922 rt_mutex_set_owner(lock, proxy_owner, 0);
923 rt_mutex_deadlock_account_lock(lock, proxy_owner);
927 * rt_mutex_proxy_unlock - release a lock on behalf of owner
929 * @lock: the rt_mutex to be locked
931 * No locking. Caller has to do serializing itself
932 * Special API call for PI-futex support
934 void rt_mutex_proxy_unlock(struct rt_mutex *lock,
935 struct task_struct *proxy_owner)
937 debug_rt_mutex_proxy_unlock(lock);
938 rt_mutex_set_owner(lock, NULL, 0);
939 rt_mutex_deadlock_account_unlock(proxy_owner);
943 * rt_mutex_next_owner - return the next owner of the lock
945 * @lock: the rt lock query
947 * Returns the next owner of the lock or NULL
949 * Caller has to serialize against other accessors to the lock
950 * itself.
952 * Special API call for PI-futex support
954 struct task_struct *rt_mutex_next_owner(struct rt_mutex *lock)
956 if (!rt_mutex_has_waiters(lock))
957 return NULL;
959 return rt_mutex_top_waiter(lock)->task;