4 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
6 * Swap reorganised 29.12.95, Stephen Tweedie.
7 * kswapd added: 7.1.96 sct
8 * Removed kswapd_ctl limits, and swap out as many pages as needed
9 * to bring the system back to freepages.high: 2.4.97, Rik van Riel.
10 * Zone aware kswapd started 02/00, Kanoj Sarcar (kanoj@sgi.com).
11 * Multiqueue VM started 5.8.00, Rik van Riel.
15 #include <linux/module.h>
16 #include <linux/slab.h>
17 #include <linux/kernel_stat.h>
18 #include <linux/swap.h>
19 #include <linux/pagemap.h>
20 #include <linux/init.h>
21 #include <linux/highmem.h>
22 #include <linux/file.h>
23 #include <linux/writeback.h>
24 #include <linux/blkdev.h>
25 #include <linux/buffer_head.h> /* for try_to_release_page(),
26 buffer_heads_over_limit */
27 #include <linux/mm_inline.h>
28 #include <linux/pagevec.h>
29 #include <linux/backing-dev.h>
30 #include <linux/rmap.h>
31 #include <linux/topology.h>
32 #include <linux/cpu.h>
33 #include <linux/cpuset.h>
34 #include <linux/notifier.h>
35 #include <linux/rwsem.h>
37 #include <asm/tlbflush.h>
38 #include <asm/div64.h>
40 #include <linux/swapops.h>
42 /* possible outcome of pageout() */
44 /* failed to write page out, page is locked */
46 /* move page to the active list, page is locked */
48 /* page has been sent to the disk successfully, page is unlocked */
50 /* page is clean and locked */
55 /* Ask refill_inactive_zone, or shrink_cache to scan this many pages */
56 unsigned long nr_to_scan
;
58 /* Incremented by the number of inactive pages that were scanned */
59 unsigned long nr_scanned
;
61 /* Incremented by the number of pages reclaimed */
62 unsigned long nr_reclaimed
;
64 unsigned long nr_mapped
; /* From page_state */
66 /* How many pages shrink_cache() should reclaim */
69 /* Ask shrink_caches, or shrink_zone to scan at this priority */
70 unsigned int priority
;
72 /* This context's GFP mask */
73 unsigned int gfp_mask
;
77 /* Can pages be swapped as part of reclaim? */
80 /* This context's SWAP_CLUSTER_MAX. If freeing memory for
81 * suspend, we effectively ignore SWAP_CLUSTER_MAX.
82 * In this context, it doesn't matter that we scan the
83 * whole list at once. */
88 * The list of shrinker callbacks used by to apply pressure to
93 struct list_head list
;
94 int seeks
; /* seeks to recreate an obj */
95 long nr
; /* objs pending delete */
98 #define lru_to_page(_head) (list_entry((_head)->prev, struct page, lru))
100 #ifdef ARCH_HAS_PREFETCH
101 #define prefetch_prev_lru_page(_page, _base, _field) \
103 if ((_page)->lru.prev != _base) { \
106 prev = lru_to_page(&(_page->lru)); \
107 prefetch(&prev->_field); \
111 #define prefetch_prev_lru_page(_page, _base, _field) do { } while (0)
114 #ifdef ARCH_HAS_PREFETCHW
115 #define prefetchw_prev_lru_page(_page, _base, _field) \
117 if ((_page)->lru.prev != _base) { \
120 prev = lru_to_page(&(_page->lru)); \
121 prefetchw(&prev->_field); \
125 #define prefetchw_prev_lru_page(_page, _base, _field) do { } while (0)
129 * From 0 .. 100. Higher means more swappy.
131 int vm_swappiness
= 60;
132 static long total_memory
;
134 static LIST_HEAD(shrinker_list
);
135 static DECLARE_RWSEM(shrinker_rwsem
);
138 * Add a shrinker callback to be called from the vm
140 struct shrinker
*set_shrinker(int seeks
, shrinker_t theshrinker
)
142 struct shrinker
*shrinker
;
144 shrinker
= kmalloc(sizeof(*shrinker
), GFP_KERNEL
);
146 shrinker
->shrinker
= theshrinker
;
147 shrinker
->seeks
= seeks
;
149 down_write(&shrinker_rwsem
);
150 list_add_tail(&shrinker
->list
, &shrinker_list
);
151 up_write(&shrinker_rwsem
);
155 EXPORT_SYMBOL(set_shrinker
);
160 void remove_shrinker(struct shrinker
*shrinker
)
162 down_write(&shrinker_rwsem
);
163 list_del(&shrinker
->list
);
164 up_write(&shrinker_rwsem
);
167 EXPORT_SYMBOL(remove_shrinker
);
169 #define SHRINK_BATCH 128
171 * Call the shrink functions to age shrinkable caches
173 * Here we assume it costs one seek to replace a lru page and that it also
174 * takes a seek to recreate a cache object. With this in mind we age equal
175 * percentages of the lru and ageable caches. This should balance the seeks
176 * generated by these structures.
178 * If the vm encounted mapped pages on the LRU it increase the pressure on
179 * slab to avoid swapping.
181 * We do weird things to avoid (scanned*seeks*entries) overflowing 32 bits.
183 * `lru_pages' represents the number of on-LRU pages in all the zones which
184 * are eligible for the caller's allocation attempt. It is used for balancing
185 * slab reclaim versus page reclaim.
187 * Returns the number of slab objects which we shrunk.
189 static int shrink_slab(unsigned long scanned
, unsigned int gfp_mask
,
190 unsigned long lru_pages
)
192 struct shrinker
*shrinker
;
196 scanned
= SWAP_CLUSTER_MAX
;
198 if (!down_read_trylock(&shrinker_rwsem
))
199 return 1; /* Assume we'll be able to shrink next time */
201 list_for_each_entry(shrinker
, &shrinker_list
, list
) {
202 unsigned long long delta
;
203 unsigned long total_scan
;
205 delta
= (4 * scanned
) / shrinker
->seeks
;
206 delta
*= (*shrinker
->shrinker
)(0, gfp_mask
);
207 do_div(delta
, lru_pages
+ 1);
208 shrinker
->nr
+= delta
;
209 if (shrinker
->nr
< 0)
210 shrinker
->nr
= LONG_MAX
; /* It wrapped! */
212 total_scan
= shrinker
->nr
;
215 while (total_scan
>= SHRINK_BATCH
) {
216 long this_scan
= SHRINK_BATCH
;
220 nr_before
= (*shrinker
->shrinker
)(0, gfp_mask
);
221 shrink_ret
= (*shrinker
->shrinker
)(this_scan
, gfp_mask
);
222 if (shrink_ret
== -1)
224 if (shrink_ret
< nr_before
)
225 ret
+= nr_before
- shrink_ret
;
226 mod_page_state(slabs_scanned
, this_scan
);
227 total_scan
-= this_scan
;
232 shrinker
->nr
+= total_scan
;
234 up_read(&shrinker_rwsem
);
238 /* Called without lock on whether page is mapped, so answer is unstable */
239 static inline int page_mapping_inuse(struct page
*page
)
241 struct address_space
*mapping
;
243 /* Page is in somebody's page tables. */
244 if (page_mapped(page
))
247 /* Be more reluctant to reclaim swapcache than pagecache */
248 if (PageSwapCache(page
))
251 mapping
= page_mapping(page
);
255 /* File is mmap'd by somebody? */
256 return mapping_mapped(mapping
);
259 static inline int is_page_cache_freeable(struct page
*page
)
261 return page_count(page
) - !!PagePrivate(page
) == 2;
264 static int may_write_to_queue(struct backing_dev_info
*bdi
)
266 if (current_is_kswapd())
268 if (current_is_pdflush()) /* This is unlikely, but why not... */
270 if (!bdi_write_congested(bdi
))
272 if (bdi
== current
->backing_dev_info
)
278 * We detected a synchronous write error writing a page out. Probably
279 * -ENOSPC. We need to propagate that into the address_space for a subsequent
280 * fsync(), msync() or close().
282 * The tricky part is that after writepage we cannot touch the mapping: nothing
283 * prevents it from being freed up. But we have a ref on the page and once
284 * that page is locked, the mapping is pinned.
286 * We're allowed to run sleeping lock_page() here because we know the caller has
289 static void handle_write_error(struct address_space
*mapping
,
290 struct page
*page
, int error
)
293 if (page_mapping(page
) == mapping
) {
294 if (error
== -ENOSPC
)
295 set_bit(AS_ENOSPC
, &mapping
->flags
);
297 set_bit(AS_EIO
, &mapping
->flags
);
303 * pageout is called by shrink_list() for each dirty page. Calls ->writepage().
305 static pageout_t
pageout(struct page
*page
, struct address_space
*mapping
)
308 * If the page is dirty, only perform writeback if that write
309 * will be non-blocking. To prevent this allocation from being
310 * stalled by pagecache activity. But note that there may be
311 * stalls if we need to run get_block(). We could test
312 * PagePrivate for that.
314 * If this process is currently in generic_file_write() against
315 * this page's queue, we can perform writeback even if that
318 * If the page is swapcache, write it back even if that would
319 * block, for some throttling. This happens by accident, because
320 * swap_backing_dev_info is bust: it doesn't reflect the
321 * congestion state of the swapdevs. Easy to fix, if needed.
322 * See swapfile.c:page_queue_congested().
324 if (!is_page_cache_freeable(page
))
328 * Some data journaling orphaned pages can have
329 * page->mapping == NULL while being dirty with clean buffers.
331 if (PagePrivate(page
)) {
332 if (try_to_free_buffers(page
)) {
333 ClearPageDirty(page
);
334 printk("%s: orphaned page\n", __FUNCTION__
);
340 if (mapping
->a_ops
->writepage
== NULL
)
341 return PAGE_ACTIVATE
;
342 if (!may_write_to_queue(mapping
->backing_dev_info
))
345 if (clear_page_dirty_for_io(page
)) {
347 struct writeback_control wbc
= {
348 .sync_mode
= WB_SYNC_NONE
,
349 .nr_to_write
= SWAP_CLUSTER_MAX
,
354 SetPageReclaim(page
);
355 res
= mapping
->a_ops
->writepage(page
, &wbc
);
357 handle_write_error(mapping
, page
, res
);
358 if (res
== WRITEPAGE_ACTIVATE
) {
359 ClearPageReclaim(page
);
360 return PAGE_ACTIVATE
;
362 if (!PageWriteback(page
)) {
363 /* synchronous write or broken a_ops? */
364 ClearPageReclaim(page
);
374 * shrink_list adds the number of reclaimed pages to sc->nr_reclaimed
376 static int shrink_list(struct list_head
*page_list
, struct scan_control
*sc
)
378 LIST_HEAD(ret_pages
);
379 struct pagevec freed_pvec
;
385 pagevec_init(&freed_pvec
, 1);
386 while (!list_empty(page_list
)) {
387 struct address_space
*mapping
;
394 page
= lru_to_page(page_list
);
395 list_del(&page
->lru
);
397 if (TestSetPageLocked(page
))
400 BUG_ON(PageActive(page
));
403 /* Double the slab pressure for mapped and swapcache pages */
404 if (page_mapped(page
) || PageSwapCache(page
))
407 if (PageWriteback(page
))
410 referenced
= page_referenced(page
, 1, sc
->priority
<= 0);
411 /* In active use or really unfreeable? Activate it. */
412 if (referenced
&& page_mapping_inuse(page
))
413 goto activate_locked
;
417 * Anonymous process memory has backing store?
418 * Try to allocate it some swap space here.
420 if (PageAnon(page
) && !PageSwapCache(page
) && sc
->may_swap
) {
421 if (!add_to_swap(page
))
422 goto activate_locked
;
424 #endif /* CONFIG_SWAP */
426 mapping
= page_mapping(page
);
427 may_enter_fs
= (sc
->gfp_mask
& __GFP_FS
) ||
428 (PageSwapCache(page
) && (sc
->gfp_mask
& __GFP_IO
));
431 * The page is mapped into the page tables of one or more
432 * processes. Try to unmap it here.
434 if (page_mapped(page
) && mapping
) {
435 switch (try_to_unmap(page
)) {
437 goto activate_locked
;
441 ; /* try to free the page below */
445 if (PageDirty(page
)) {
450 if (laptop_mode
&& !sc
->may_writepage
)
453 /* Page is dirty, try to write it out here */
454 switch(pageout(page
, mapping
)) {
458 goto activate_locked
;
460 if (PageWriteback(page
) || PageDirty(page
))
463 * A synchronous write - probably a ramdisk. Go
464 * ahead and try to reclaim the page.
466 if (TestSetPageLocked(page
))
468 if (PageDirty(page
) || PageWriteback(page
))
470 mapping
= page_mapping(page
);
472 ; /* try to free the page below */
477 * If the page has buffers, try to free the buffer mappings
478 * associated with this page. If we succeed we try to free
481 * We do this even if the page is PageDirty().
482 * try_to_release_page() does not perform I/O, but it is
483 * possible for a page to have PageDirty set, but it is actually
484 * clean (all its buffers are clean). This happens if the
485 * buffers were written out directly, with submit_bh(). ext3
486 * will do this, as well as the blockdev mapping.
487 * try_to_release_page() will discover that cleanness and will
488 * drop the buffers and mark the page clean - it can be freed.
490 * Rarely, pages can have buffers and no ->mapping. These are
491 * the pages which were not successfully invalidated in
492 * truncate_complete_page(). We try to drop those buffers here
493 * and if that worked, and the page is no longer mapped into
494 * process address space (page_count == 1) it can be freed.
495 * Otherwise, leave the page on the LRU so it is swappable.
497 if (PagePrivate(page
)) {
498 if (!try_to_release_page(page
, sc
->gfp_mask
))
499 goto activate_locked
;
500 if (!mapping
&& page_count(page
) == 1)
505 goto keep_locked
; /* truncate got there first */
507 write_lock_irq(&mapping
->tree_lock
);
510 * The non-racy check for busy page. It is critical to check
511 * PageDirty _after_ making sure that the page is freeable and
512 * not in use by anybody. (pagecache + us == 2)
514 if (page_count(page
) != 2 || PageDirty(page
)) {
515 write_unlock_irq(&mapping
->tree_lock
);
520 if (PageSwapCache(page
)) {
521 swp_entry_t swap
= { .val
= page
->private };
522 __delete_from_swap_cache(page
);
523 write_unlock_irq(&mapping
->tree_lock
);
525 __put_page(page
); /* The pagecache ref */
528 #endif /* CONFIG_SWAP */
530 __remove_from_page_cache(page
);
531 write_unlock_irq(&mapping
->tree_lock
);
537 if (!pagevec_add(&freed_pvec
, page
))
538 __pagevec_release_nonlru(&freed_pvec
);
547 list_add(&page
->lru
, &ret_pages
);
548 BUG_ON(PageLRU(page
));
550 list_splice(&ret_pages
, page_list
);
551 if (pagevec_count(&freed_pvec
))
552 __pagevec_release_nonlru(&freed_pvec
);
553 mod_page_state(pgactivate
, pgactivate
);
554 sc
->nr_reclaimed
+= reclaimed
;
559 * zone->lru_lock is heavily contended. Some of the functions that
560 * shrink the lists perform better by taking out a batch of pages
561 * and working on them outside the LRU lock.
563 * For pagecache intensive workloads, this function is the hottest
564 * spot in the kernel (apart from copy_*_user functions).
566 * Appropriate locks must be held before calling this function.
568 * @nr_to_scan: The number of pages to look through on the list.
569 * @src: The LRU list to pull pages off.
570 * @dst: The temp list to put pages on to.
571 * @scanned: The number of pages that were scanned.
573 * returns how many pages were moved onto *@dst.
575 static int isolate_lru_pages(int nr_to_scan
, struct list_head
*src
,
576 struct list_head
*dst
, int *scanned
)
582 while (scan
++ < nr_to_scan
&& !list_empty(src
)) {
583 page
= lru_to_page(src
);
584 prefetchw_prev_lru_page(page
, src
, flags
);
586 if (!TestClearPageLRU(page
))
588 list_del(&page
->lru
);
589 if (get_page_testone(page
)) {
591 * It is being freed elsewhere
595 list_add(&page
->lru
, src
);
598 list_add(&page
->lru
, dst
);
608 * shrink_cache() adds the number of pages reclaimed to sc->nr_reclaimed
610 static void shrink_cache(struct zone
*zone
, struct scan_control
*sc
)
612 LIST_HEAD(page_list
);
614 int max_scan
= sc
->nr_to_scan
;
616 pagevec_init(&pvec
, 1);
619 spin_lock_irq(&zone
->lru_lock
);
620 while (max_scan
> 0) {
626 nr_taken
= isolate_lru_pages(sc
->swap_cluster_max
,
627 &zone
->inactive_list
,
628 &page_list
, &nr_scan
);
629 zone
->nr_inactive
-= nr_taken
;
630 zone
->pages_scanned
+= nr_scan
;
631 spin_unlock_irq(&zone
->lru_lock
);
637 if (current_is_kswapd())
638 mod_page_state_zone(zone
, pgscan_kswapd
, nr_scan
);
640 mod_page_state_zone(zone
, pgscan_direct
, nr_scan
);
641 nr_freed
= shrink_list(&page_list
, sc
);
642 if (current_is_kswapd())
643 mod_page_state(kswapd_steal
, nr_freed
);
644 mod_page_state_zone(zone
, pgsteal
, nr_freed
);
645 sc
->nr_to_reclaim
-= nr_freed
;
647 spin_lock_irq(&zone
->lru_lock
);
649 * Put back any unfreeable pages.
651 while (!list_empty(&page_list
)) {
652 page
= lru_to_page(&page_list
);
653 if (TestSetPageLRU(page
))
655 list_del(&page
->lru
);
656 if (PageActive(page
))
657 add_page_to_active_list(zone
, page
);
659 add_page_to_inactive_list(zone
, page
);
660 if (!pagevec_add(&pvec
, page
)) {
661 spin_unlock_irq(&zone
->lru_lock
);
662 __pagevec_release(&pvec
);
663 spin_lock_irq(&zone
->lru_lock
);
667 spin_unlock_irq(&zone
->lru_lock
);
669 pagevec_release(&pvec
);
673 * This moves pages from the active list to the inactive list.
675 * We move them the other way if the page is referenced by one or more
676 * processes, from rmap.
678 * If the pages are mostly unmapped, the processing is fast and it is
679 * appropriate to hold zone->lru_lock across the whole operation. But if
680 * the pages are mapped, the processing is slow (page_referenced()) so we
681 * should drop zone->lru_lock around each page. It's impossible to balance
682 * this, so instead we remove the pages from the LRU while processing them.
683 * It is safe to rely on PG_active against the non-LRU pages in here because
684 * nobody will play with that bit on a non-LRU page.
686 * The downside is that we have to touch page->_count against each page.
687 * But we had to alter page->flags anyway.
690 refill_inactive_zone(struct zone
*zone
, struct scan_control
*sc
)
693 int pgdeactivate
= 0;
695 int nr_pages
= sc
->nr_to_scan
;
696 LIST_HEAD(l_hold
); /* The pages which were snipped off */
697 LIST_HEAD(l_inactive
); /* Pages to go onto the inactive_list */
698 LIST_HEAD(l_active
); /* Pages to go onto the active_list */
701 int reclaim_mapped
= 0;
707 spin_lock_irq(&zone
->lru_lock
);
708 pgmoved
= isolate_lru_pages(nr_pages
, &zone
->active_list
,
709 &l_hold
, &pgscanned
);
710 zone
->pages_scanned
+= pgscanned
;
711 zone
->nr_active
-= pgmoved
;
712 spin_unlock_irq(&zone
->lru_lock
);
715 * `distress' is a measure of how much trouble we're having reclaiming
716 * pages. 0 -> no problems. 100 -> great trouble.
718 distress
= 100 >> zone
->prev_priority
;
721 * The point of this algorithm is to decide when to start reclaiming
722 * mapped memory instead of just pagecache. Work out how much memory
725 mapped_ratio
= (sc
->nr_mapped
* 100) / total_memory
;
728 * Now decide how much we really want to unmap some pages. The mapped
729 * ratio is downgraded - just because there's a lot of mapped memory
730 * doesn't necessarily mean that page reclaim isn't succeeding.
732 * The distress ratio is important - we don't want to start going oom.
734 * A 100% value of vm_swappiness overrides this algorithm altogether.
736 swap_tendency
= mapped_ratio
/ 2 + distress
+ vm_swappiness
;
739 * Now use this metric to decide whether to start moving mapped memory
740 * onto the inactive list.
742 if (swap_tendency
>= 100)
745 while (!list_empty(&l_hold
)) {
747 page
= lru_to_page(&l_hold
);
748 list_del(&page
->lru
);
749 if (page_mapped(page
)) {
750 if (!reclaim_mapped
||
751 (total_swap_pages
== 0 && PageAnon(page
)) ||
752 page_referenced(page
, 0, sc
->priority
<= 0)) {
753 list_add(&page
->lru
, &l_active
);
757 list_add(&page
->lru
, &l_inactive
);
760 pagevec_init(&pvec
, 1);
762 spin_lock_irq(&zone
->lru_lock
);
763 while (!list_empty(&l_inactive
)) {
764 page
= lru_to_page(&l_inactive
);
765 prefetchw_prev_lru_page(page
, &l_inactive
, flags
);
766 if (TestSetPageLRU(page
))
768 if (!TestClearPageActive(page
))
770 list_move(&page
->lru
, &zone
->inactive_list
);
772 if (!pagevec_add(&pvec
, page
)) {
773 zone
->nr_inactive
+= pgmoved
;
774 spin_unlock_irq(&zone
->lru_lock
);
775 pgdeactivate
+= pgmoved
;
777 if (buffer_heads_over_limit
)
778 pagevec_strip(&pvec
);
779 __pagevec_release(&pvec
);
780 spin_lock_irq(&zone
->lru_lock
);
783 zone
->nr_inactive
+= pgmoved
;
784 pgdeactivate
+= pgmoved
;
785 if (buffer_heads_over_limit
) {
786 spin_unlock_irq(&zone
->lru_lock
);
787 pagevec_strip(&pvec
);
788 spin_lock_irq(&zone
->lru_lock
);
792 while (!list_empty(&l_active
)) {
793 page
= lru_to_page(&l_active
);
794 prefetchw_prev_lru_page(page
, &l_active
, flags
);
795 if (TestSetPageLRU(page
))
797 BUG_ON(!PageActive(page
));
798 list_move(&page
->lru
, &zone
->active_list
);
800 if (!pagevec_add(&pvec
, page
)) {
801 zone
->nr_active
+= pgmoved
;
803 spin_unlock_irq(&zone
->lru_lock
);
804 __pagevec_release(&pvec
);
805 spin_lock_irq(&zone
->lru_lock
);
808 zone
->nr_active
+= pgmoved
;
809 spin_unlock_irq(&zone
->lru_lock
);
810 pagevec_release(&pvec
);
812 mod_page_state_zone(zone
, pgrefill
, pgscanned
);
813 mod_page_state(pgdeactivate
, pgdeactivate
);
817 * This is a basic per-zone page freer. Used by both kswapd and direct reclaim.
820 shrink_zone(struct zone
*zone
, struct scan_control
*sc
)
822 unsigned long nr_active
;
823 unsigned long nr_inactive
;
825 atomic_inc(&zone
->reclaim_in_progress
);
828 * Add one to `nr_to_scan' just to make sure that the kernel will
829 * slowly sift through the active list.
831 zone
->nr_scan_active
+= (zone
->nr_active
>> sc
->priority
) + 1;
832 nr_active
= zone
->nr_scan_active
;
833 if (nr_active
>= sc
->swap_cluster_max
)
834 zone
->nr_scan_active
= 0;
838 zone
->nr_scan_inactive
+= (zone
->nr_inactive
>> sc
->priority
) + 1;
839 nr_inactive
= zone
->nr_scan_inactive
;
840 if (nr_inactive
>= sc
->swap_cluster_max
)
841 zone
->nr_scan_inactive
= 0;
845 sc
->nr_to_reclaim
= sc
->swap_cluster_max
;
847 while (nr_active
|| nr_inactive
) {
849 sc
->nr_to_scan
= min(nr_active
,
850 (unsigned long)sc
->swap_cluster_max
);
851 nr_active
-= sc
->nr_to_scan
;
852 refill_inactive_zone(zone
, sc
);
856 sc
->nr_to_scan
= min(nr_inactive
,
857 (unsigned long)sc
->swap_cluster_max
);
858 nr_inactive
-= sc
->nr_to_scan
;
859 shrink_cache(zone
, sc
);
860 if (sc
->nr_to_reclaim
<= 0)
865 throttle_vm_writeout();
867 atomic_dec(&zone
->reclaim_in_progress
);
871 * This is the direct reclaim path, for page-allocating processes. We only
872 * try to reclaim pages from zones which will satisfy the caller's allocation
875 * We reclaim from a zone even if that zone is over pages_high. Because:
876 * a) The caller may be trying to free *extra* pages to satisfy a higher-order
878 * b) The zones may be over pages_high but they must go *over* pages_high to
879 * satisfy the `incremental min' zone defense algorithm.
881 * Returns the number of reclaimed pages.
883 * If a zone is deemed to be full of pinned pages then just give it a light
884 * scan then give up on it.
887 shrink_caches(struct zone
**zones
, struct scan_control
*sc
)
891 for (i
= 0; zones
[i
] != NULL
; i
++) {
892 struct zone
*zone
= zones
[i
];
894 if (zone
->present_pages
== 0)
897 if (!cpuset_zone_allowed(zone
))
900 zone
->temp_priority
= sc
->priority
;
901 if (zone
->prev_priority
> sc
->priority
)
902 zone
->prev_priority
= sc
->priority
;
904 if (zone
->all_unreclaimable
&& sc
->priority
!= DEF_PRIORITY
)
905 continue; /* Let kswapd poll it */
907 shrink_zone(zone
, sc
);
912 * This is the main entry point to direct page reclaim.
914 * If a full scan of the inactive list fails to free enough memory then we
915 * are "out of memory" and something needs to be killed.
917 * If the caller is !__GFP_FS then the probability of a failure is reasonably
918 * high - the zone may be full of dirty or under-writeback pages, which this
919 * caller can't do much about. We kick pdflush and take explicit naps in the
920 * hope that some of these pages can be written. But if the allocating task
921 * holds filesystem locks which prevent writeout this might not work, and the
922 * allocation attempt will fail.
924 int try_to_free_pages(struct zone
**zones
, unsigned int gfp_mask
)
928 int total_scanned
= 0, total_reclaimed
= 0;
929 struct reclaim_state
*reclaim_state
= current
->reclaim_state
;
930 struct scan_control sc
;
931 unsigned long lru_pages
= 0;
934 sc
.gfp_mask
= gfp_mask
;
935 sc
.may_writepage
= 0;
938 inc_page_state(allocstall
);
940 for (i
= 0; zones
[i
] != NULL
; i
++) {
941 struct zone
*zone
= zones
[i
];
943 if (!cpuset_zone_allowed(zone
))
946 zone
->temp_priority
= DEF_PRIORITY
;
947 lru_pages
+= zone
->nr_active
+ zone
->nr_inactive
;
950 for (priority
= DEF_PRIORITY
; priority
>= 0; priority
--) {
951 sc
.nr_mapped
= read_page_state(nr_mapped
);
954 sc
.priority
= priority
;
955 sc
.swap_cluster_max
= SWAP_CLUSTER_MAX
;
956 shrink_caches(zones
, &sc
);
957 shrink_slab(sc
.nr_scanned
, gfp_mask
, lru_pages
);
959 sc
.nr_reclaimed
+= reclaim_state
->reclaimed_slab
;
960 reclaim_state
->reclaimed_slab
= 0;
962 total_scanned
+= sc
.nr_scanned
;
963 total_reclaimed
+= sc
.nr_reclaimed
;
964 if (total_reclaimed
>= sc
.swap_cluster_max
) {
970 * Try to write back as many pages as we just scanned. This
971 * tends to cause slow streaming writers to write data to the
972 * disk smoothly, at the dirtying rate, which is nice. But
973 * that's undesirable in laptop mode, where we *want* lumpy
974 * writeout. So in laptop mode, write out the whole world.
976 if (total_scanned
> sc
.swap_cluster_max
+ sc
.swap_cluster_max
/2) {
977 wakeup_pdflush(laptop_mode
? 0 : total_scanned
);
978 sc
.may_writepage
= 1;
981 /* Take a nap, wait for some writeback to complete */
982 if (sc
.nr_scanned
&& priority
< DEF_PRIORITY
- 2)
983 blk_congestion_wait(WRITE
, HZ
/10);
986 for (i
= 0; zones
[i
] != 0; i
++) {
987 struct zone
*zone
= zones
[i
];
989 if (!cpuset_zone_allowed(zone
))
992 zone
->prev_priority
= zone
->temp_priority
;
998 * For kswapd, balance_pgdat() will work across all this node's zones until
999 * they are all at pages_high.
1001 * If `nr_pages' is non-zero then it is the number of pages which are to be
1002 * reclaimed, regardless of the zone occupancies. This is a software suspend
1005 * Returns the number of pages which were actually freed.
1007 * There is special handling here for zones which are full of pinned pages.
1008 * This can happen if the pages are all mlocked, or if they are all used by
1009 * device drivers (say, ZONE_DMA). Or if they are all in use by hugetlb.
1010 * What we do is to detect the case where all pages in the zone have been
1011 * scanned twice and there has been zero successful reclaim. Mark the zone as
1012 * dead and from now on, only perform a short scan. Basically we're polling
1013 * the zone for when the problem goes away.
1015 * kswapd scans the zones in the highmem->normal->dma direction. It skips
1016 * zones which have free_pages > pages_high, but once a zone is found to have
1017 * free_pages <= pages_high, we scan that zone and the lower zones regardless
1018 * of the number of free pages in the lower zones. This interoperates with
1019 * the page allocator fallback scheme to ensure that aging of pages is balanced
1022 static int balance_pgdat(pg_data_t
*pgdat
, int nr_pages
, int order
)
1024 int to_free
= nr_pages
;
1028 int total_scanned
, total_reclaimed
;
1029 struct reclaim_state
*reclaim_state
= current
->reclaim_state
;
1030 struct scan_control sc
;
1034 total_reclaimed
= 0;
1035 sc
.gfp_mask
= GFP_KERNEL
;
1036 sc
.may_writepage
= 0;
1038 sc
.nr_mapped
= read_page_state(nr_mapped
);
1040 inc_page_state(pageoutrun
);
1042 for (i
= 0; i
< pgdat
->nr_zones
; i
++) {
1043 struct zone
*zone
= pgdat
->node_zones
+ i
;
1045 zone
->temp_priority
= DEF_PRIORITY
;
1048 for (priority
= DEF_PRIORITY
; priority
>= 0; priority
--) {
1049 int end_zone
= 0; /* Inclusive. 0 = ZONE_DMA */
1050 unsigned long lru_pages
= 0;
1054 if (nr_pages
== 0) {
1056 * Scan in the highmem->dma direction for the highest
1057 * zone which needs scanning
1059 for (i
= pgdat
->nr_zones
- 1; i
>= 0; i
--) {
1060 struct zone
*zone
= pgdat
->node_zones
+ i
;
1062 if (zone
->present_pages
== 0)
1065 if (zone
->all_unreclaimable
&&
1066 priority
!= DEF_PRIORITY
)
1069 if (!zone_watermark_ok(zone
, order
,
1070 zone
->pages_high
, 0, 0, 0)) {
1077 end_zone
= pgdat
->nr_zones
- 1;
1080 for (i
= 0; i
<= end_zone
; i
++) {
1081 struct zone
*zone
= pgdat
->node_zones
+ i
;
1083 lru_pages
+= zone
->nr_active
+ zone
->nr_inactive
;
1087 * Now scan the zone in the dma->highmem direction, stopping
1088 * at the last zone which needs scanning.
1090 * We do this because the page allocator works in the opposite
1091 * direction. This prevents the page allocator from allocating
1092 * pages behind kswapd's direction of progress, which would
1093 * cause too much scanning of the lower zones.
1095 for (i
= 0; i
<= end_zone
; i
++) {
1096 struct zone
*zone
= pgdat
->node_zones
+ i
;
1099 if (zone
->present_pages
== 0)
1102 if (zone
->all_unreclaimable
&& priority
!= DEF_PRIORITY
)
1105 if (nr_pages
== 0) { /* Not software suspend */
1106 if (!zone_watermark_ok(zone
, order
,
1107 zone
->pages_high
, end_zone
, 0, 0))
1110 zone
->temp_priority
= priority
;
1111 if (zone
->prev_priority
> priority
)
1112 zone
->prev_priority
= priority
;
1114 sc
.nr_reclaimed
= 0;
1115 sc
.priority
= priority
;
1116 sc
.swap_cluster_max
= nr_pages
? nr_pages
: SWAP_CLUSTER_MAX
;
1117 atomic_inc(&zone
->reclaim_in_progress
);
1118 shrink_zone(zone
, &sc
);
1119 atomic_dec(&zone
->reclaim_in_progress
);
1120 reclaim_state
->reclaimed_slab
= 0;
1121 nr_slab
= shrink_slab(sc
.nr_scanned
, GFP_KERNEL
,
1123 sc
.nr_reclaimed
+= reclaim_state
->reclaimed_slab
;
1124 total_reclaimed
+= sc
.nr_reclaimed
;
1125 total_scanned
+= sc
.nr_scanned
;
1126 if (zone
->all_unreclaimable
)
1128 if (nr_slab
== 0 && zone
->pages_scanned
>=
1129 (zone
->nr_active
+ zone
->nr_inactive
) * 4)
1130 zone
->all_unreclaimable
= 1;
1132 * If we've done a decent amount of scanning and
1133 * the reclaim ratio is low, start doing writepage
1134 * even in laptop mode
1136 if (total_scanned
> SWAP_CLUSTER_MAX
* 2 &&
1137 total_scanned
> total_reclaimed
+total_reclaimed
/2)
1138 sc
.may_writepage
= 1;
1140 if (nr_pages
&& to_free
> total_reclaimed
)
1141 continue; /* swsusp: need to do more work */
1143 break; /* kswapd: all done */
1145 * OK, kswapd is getting into trouble. Take a nap, then take
1146 * another pass across the zones.
1148 if (total_scanned
&& priority
< DEF_PRIORITY
- 2)
1149 blk_congestion_wait(WRITE
, HZ
/10);
1152 * We do this so kswapd doesn't build up large priorities for
1153 * example when it is freeing in parallel with allocators. It
1154 * matches the direct reclaim path behaviour in terms of impact
1155 * on zone->*_priority.
1157 if ((total_reclaimed
>= SWAP_CLUSTER_MAX
) && (!nr_pages
))
1161 for (i
= 0; i
< pgdat
->nr_zones
; i
++) {
1162 struct zone
*zone
= pgdat
->node_zones
+ i
;
1164 zone
->prev_priority
= zone
->temp_priority
;
1166 if (!all_zones_ok
) {
1171 return total_reclaimed
;
1175 * The background pageout daemon, started as a kernel thread
1176 * from the init process.
1178 * This basically trickles out pages so that we have _some_
1179 * free memory available even if there is no other activity
1180 * that frees anything up. This is needed for things like routing
1181 * etc, where we otherwise might have all activity going on in
1182 * asynchronous contexts that cannot page things out.
1184 * If there are applications that are active memory-allocators
1185 * (most normal use), this basically shouldn't matter.
1187 static int kswapd(void *p
)
1189 unsigned long order
;
1190 pg_data_t
*pgdat
= (pg_data_t
*)p
;
1191 struct task_struct
*tsk
= current
;
1193 struct reclaim_state reclaim_state
= {
1194 .reclaimed_slab
= 0,
1198 daemonize("kswapd%d", pgdat
->node_id
);
1199 cpumask
= node_to_cpumask(pgdat
->node_id
);
1200 if (!cpus_empty(cpumask
))
1201 set_cpus_allowed(tsk
, cpumask
);
1202 current
->reclaim_state
= &reclaim_state
;
1205 * Tell the memory management that we're a "memory allocator",
1206 * and that if we need more memory we should get access to it
1207 * regardless (see "__alloc_pages()"). "kswapd" should
1208 * never get caught in the normal page freeing logic.
1210 * (Kswapd normally doesn't need memory anyway, but sometimes
1211 * you need a small amount of memory in order to be able to
1212 * page out something else, and this flag essentially protects
1213 * us from recursively trying to free more memory as we're
1214 * trying to free the first piece of memory in the first place).
1216 tsk
->flags
|= PF_MEMALLOC
|PF_KSWAPD
;
1220 unsigned long new_order
;
1224 prepare_to_wait(&pgdat
->kswapd_wait
, &wait
, TASK_INTERRUPTIBLE
);
1225 new_order
= pgdat
->kswapd_max_order
;
1226 pgdat
->kswapd_max_order
= 0;
1227 if (order
< new_order
) {
1229 * Don't sleep if someone wants a larger 'order'
1235 order
= pgdat
->kswapd_max_order
;
1237 finish_wait(&pgdat
->kswapd_wait
, &wait
);
1239 balance_pgdat(pgdat
, 0, order
);
1245 * A zone is low on free memory, so wake its kswapd task to service it.
1247 void wakeup_kswapd(struct zone
*zone
, int order
)
1251 if (zone
->present_pages
== 0)
1254 pgdat
= zone
->zone_pgdat
;
1255 if (zone_watermark_ok(zone
, order
, zone
->pages_low
, 0, 0, 0))
1257 if (pgdat
->kswapd_max_order
< order
)
1258 pgdat
->kswapd_max_order
= order
;
1259 if (!cpuset_zone_allowed(zone
))
1261 if (!waitqueue_active(&zone
->zone_pgdat
->kswapd_wait
))
1263 wake_up_interruptible(&zone
->zone_pgdat
->kswapd_wait
);
1268 * Try to free `nr_pages' of memory, system-wide. Returns the number of freed
1271 int shrink_all_memory(int nr_pages
)
1274 int nr_to_free
= nr_pages
;
1276 struct reclaim_state reclaim_state
= {
1277 .reclaimed_slab
= 0,
1280 current
->reclaim_state
= &reclaim_state
;
1281 for_each_pgdat(pgdat
) {
1283 freed
= balance_pgdat(pgdat
, nr_to_free
, 0);
1285 nr_to_free
-= freed
;
1286 if (nr_to_free
<= 0)
1289 current
->reclaim_state
= NULL
;
1294 #ifdef CONFIG_HOTPLUG_CPU
1295 /* It's optimal to keep kswapds on the same CPUs as their memory, but
1296 not required for correctness. So if the last cpu in a node goes
1297 away, we get changed to run anywhere: as the first one comes back,
1298 restore their cpu bindings. */
1299 static int __devinit
cpu_callback(struct notifier_block
*nfb
,
1300 unsigned long action
,
1306 if (action
== CPU_ONLINE
) {
1307 for_each_pgdat(pgdat
) {
1308 mask
= node_to_cpumask(pgdat
->node_id
);
1309 if (any_online_cpu(mask
) != NR_CPUS
)
1310 /* One of our CPUs online: restore mask */
1311 set_cpus_allowed(pgdat
->kswapd
, mask
);
1316 #endif /* CONFIG_HOTPLUG_CPU */
1318 static int __init
kswapd_init(void)
1322 for_each_pgdat(pgdat
)
1324 = find_task_by_pid(kernel_thread(kswapd
, pgdat
, CLONE_KERNEL
));
1325 total_memory
= nr_free_pagecache_pages();
1326 hotcpu_notifier(cpu_callback
, 0);
1330 module_init(kswapd_init
)
1334 * Try to free up some pages from this zone through reclaim.
1336 int zone_reclaim(struct zone
*zone
, unsigned int gfp_mask
, unsigned int order
)
1338 struct scan_control sc
;
1339 int nr_pages
= 1 << order
;
1340 int total_reclaimed
= 0;
1342 /* The reclaim may sleep, so don't do it if sleep isn't allowed */
1343 if (!(gfp_mask
& __GFP_WAIT
))
1345 if (zone
->all_unreclaimable
)
1348 sc
.gfp_mask
= gfp_mask
;
1349 sc
.may_writepage
= 0;
1351 sc
.nr_mapped
= read_page_state(nr_mapped
);
1353 sc
.nr_reclaimed
= 0;
1354 /* scan at the highest priority */
1357 if (nr_pages
> SWAP_CLUSTER_MAX
)
1358 sc
.swap_cluster_max
= nr_pages
;
1360 sc
.swap_cluster_max
= SWAP_CLUSTER_MAX
;
1362 /* Don't reclaim the zone if there are other reclaimers active */
1363 if (atomic_read(&zone
->reclaim_in_progress
) > 0)
1366 shrink_zone(zone
, &sc
);
1367 total_reclaimed
= sc
.nr_reclaimed
;
1370 return total_reclaimed
;
1373 asmlinkage
long sys_set_zone_reclaim(unsigned int node
, unsigned int zone
,
1379 if (!capable(CAP_SYS_ADMIN
))
1382 if (node
>= MAX_NUMNODES
|| !node_online(node
))
1385 /* This will break if we ever add more zones */
1386 if (!(zone
& (1<<ZONE_DMA
|1<<ZONE_NORMAL
|1<<ZONE_HIGHMEM
)))
1389 for (i
= 0; i
< MAX_NR_ZONES
; i
++) {
1393 z
= &NODE_DATA(node
)->node_zones
[i
];
1396 z
->reclaim_pages
= 1;
1398 z
->reclaim_pages
= 0;