USB: ehci: fix some ehci hangs and crashes
[linux-2.6/mini2440.git] / kernel / fork.c
blob7ce2ebe847964ecd0701c3c74c18994e3eebcf26
1 /*
2 * linux/kernel/fork.c
4 * Copyright (C) 1991, 1992 Linus Torvalds
5 */
7 /*
8 * 'fork.c' contains the help-routines for the 'fork' system call
9 * (see also entry.S and others).
10 * Fork is rather simple, once you get the hang of it, but the memory
11 * management can be a bitch. See 'mm/memory.c': 'copy_page_range()'
14 #include <linux/slab.h>
15 #include <linux/init.h>
16 #include <linux/unistd.h>
17 #include <linux/module.h>
18 #include <linux/vmalloc.h>
19 #include <linux/completion.h>
20 #include <linux/mnt_namespace.h>
21 #include <linux/personality.h>
22 #include <linux/mempolicy.h>
23 #include <linux/sem.h>
24 #include <linux/file.h>
25 #include <linux/fdtable.h>
26 #include <linux/iocontext.h>
27 #include <linux/key.h>
28 #include <linux/binfmts.h>
29 #include <linux/mman.h>
30 #include <linux/mmu_notifier.h>
31 #include <linux/fs.h>
32 #include <linux/nsproxy.h>
33 #include <linux/capability.h>
34 #include <linux/cpu.h>
35 #include <linux/cgroup.h>
36 #include <linux/security.h>
37 #include <linux/hugetlb.h>
38 #include <linux/swap.h>
39 #include <linux/syscalls.h>
40 #include <linux/jiffies.h>
41 #include <linux/tracehook.h>
42 #include <linux/futex.h>
43 #include <linux/task_io_accounting_ops.h>
44 #include <linux/rcupdate.h>
45 #include <linux/ptrace.h>
46 #include <linux/mount.h>
47 #include <linux/audit.h>
48 #include <linux/memcontrol.h>
49 #include <linux/profile.h>
50 #include <linux/rmap.h>
51 #include <linux/acct.h>
52 #include <linux/tsacct_kern.h>
53 #include <linux/cn_proc.h>
54 #include <linux/freezer.h>
55 #include <linux/delayacct.h>
56 #include <linux/taskstats_kern.h>
57 #include <linux/random.h>
58 #include <linux/tty.h>
59 #include <linux/proc_fs.h>
60 #include <linux/blkdev.h>
62 #include <asm/pgtable.h>
63 #include <asm/pgalloc.h>
64 #include <asm/uaccess.h>
65 #include <asm/mmu_context.h>
66 #include <asm/cacheflush.h>
67 #include <asm/tlbflush.h>
70 * Protected counters by write_lock_irq(&tasklist_lock)
72 unsigned long total_forks; /* Handle normal Linux uptimes. */
73 int nr_threads; /* The idle threads do not count.. */
75 int max_threads; /* tunable limit on nr_threads */
77 DEFINE_PER_CPU(unsigned long, process_counts) = 0;
79 __cacheline_aligned DEFINE_RWLOCK(tasklist_lock); /* outer */
81 int nr_processes(void)
83 int cpu;
84 int total = 0;
86 for_each_online_cpu(cpu)
87 total += per_cpu(process_counts, cpu);
89 return total;
92 #ifndef __HAVE_ARCH_TASK_STRUCT_ALLOCATOR
93 # define alloc_task_struct() kmem_cache_alloc(task_struct_cachep, GFP_KERNEL)
94 # define free_task_struct(tsk) kmem_cache_free(task_struct_cachep, (tsk))
95 static struct kmem_cache *task_struct_cachep;
96 #endif
98 #ifndef __HAVE_ARCH_THREAD_INFO_ALLOCATOR
99 static inline struct thread_info *alloc_thread_info(struct task_struct *tsk)
101 #ifdef CONFIG_DEBUG_STACK_USAGE
102 gfp_t mask = GFP_KERNEL | __GFP_ZERO;
103 #else
104 gfp_t mask = GFP_KERNEL;
105 #endif
106 return (struct thread_info *)__get_free_pages(mask, THREAD_SIZE_ORDER);
109 static inline void free_thread_info(struct thread_info *ti)
111 free_pages((unsigned long)ti, THREAD_SIZE_ORDER);
113 #endif
115 /* SLAB cache for signal_struct structures (tsk->signal) */
116 static struct kmem_cache *signal_cachep;
118 /* SLAB cache for sighand_struct structures (tsk->sighand) */
119 struct kmem_cache *sighand_cachep;
121 /* SLAB cache for files_struct structures (tsk->files) */
122 struct kmem_cache *files_cachep;
124 /* SLAB cache for fs_struct structures (tsk->fs) */
125 struct kmem_cache *fs_cachep;
127 /* SLAB cache for vm_area_struct structures */
128 struct kmem_cache *vm_area_cachep;
130 /* SLAB cache for mm_struct structures (tsk->mm) */
131 static struct kmem_cache *mm_cachep;
133 void free_task(struct task_struct *tsk)
135 prop_local_destroy_single(&tsk->dirties);
136 free_thread_info(tsk->stack);
137 rt_mutex_debug_task_free(tsk);
138 free_task_struct(tsk);
140 EXPORT_SYMBOL(free_task);
142 void __put_task_struct(struct task_struct *tsk)
144 WARN_ON(!tsk->exit_state);
145 WARN_ON(atomic_read(&tsk->usage));
146 WARN_ON(tsk == current);
148 security_task_free(tsk);
149 free_uid(tsk->user);
150 put_group_info(tsk->group_info);
151 delayacct_tsk_free(tsk);
153 if (!profile_handoff_task(tsk))
154 free_task(tsk);
158 * macro override instead of weak attribute alias, to workaround
159 * gcc 4.1.0 and 4.1.1 bugs with weak attribute and empty functions.
161 #ifndef arch_task_cache_init
162 #define arch_task_cache_init()
163 #endif
165 void __init fork_init(unsigned long mempages)
167 #ifndef __HAVE_ARCH_TASK_STRUCT_ALLOCATOR
168 #ifndef ARCH_MIN_TASKALIGN
169 #define ARCH_MIN_TASKALIGN L1_CACHE_BYTES
170 #endif
171 /* create a slab on which task_structs can be allocated */
172 task_struct_cachep =
173 kmem_cache_create("task_struct", sizeof(struct task_struct),
174 ARCH_MIN_TASKALIGN, SLAB_PANIC, NULL);
175 #endif
177 /* do the arch specific task caches init */
178 arch_task_cache_init();
181 * The default maximum number of threads is set to a safe
182 * value: the thread structures can take up at most half
183 * of memory.
185 max_threads = mempages / (8 * THREAD_SIZE / PAGE_SIZE);
188 * we need to allow at least 20 threads to boot a system
190 if(max_threads < 20)
191 max_threads = 20;
193 init_task.signal->rlim[RLIMIT_NPROC].rlim_cur = max_threads/2;
194 init_task.signal->rlim[RLIMIT_NPROC].rlim_max = max_threads/2;
195 init_task.signal->rlim[RLIMIT_SIGPENDING] =
196 init_task.signal->rlim[RLIMIT_NPROC];
199 int __attribute__((weak)) arch_dup_task_struct(struct task_struct *dst,
200 struct task_struct *src)
202 *dst = *src;
203 return 0;
206 static struct task_struct *dup_task_struct(struct task_struct *orig)
208 struct task_struct *tsk;
209 struct thread_info *ti;
210 int err;
212 prepare_to_copy(orig);
214 tsk = alloc_task_struct();
215 if (!tsk)
216 return NULL;
218 ti = alloc_thread_info(tsk);
219 if (!ti) {
220 free_task_struct(tsk);
221 return NULL;
224 err = arch_dup_task_struct(tsk, orig);
225 if (err)
226 goto out;
228 tsk->stack = ti;
230 err = prop_local_init_single(&tsk->dirties);
231 if (err)
232 goto out;
234 setup_thread_stack(tsk, orig);
236 #ifdef CONFIG_CC_STACKPROTECTOR
237 tsk->stack_canary = get_random_int();
238 #endif
240 /* One for us, one for whoever does the "release_task()" (usually parent) */
241 atomic_set(&tsk->usage,2);
242 atomic_set(&tsk->fs_excl, 0);
243 #ifdef CONFIG_BLK_DEV_IO_TRACE
244 tsk->btrace_seq = 0;
245 #endif
246 tsk->splice_pipe = NULL;
247 return tsk;
249 out:
250 free_thread_info(ti);
251 free_task_struct(tsk);
252 return NULL;
255 #ifdef CONFIG_MMU
256 static int dup_mmap(struct mm_struct *mm, struct mm_struct *oldmm)
258 struct vm_area_struct *mpnt, *tmp, **pprev;
259 struct rb_node **rb_link, *rb_parent;
260 int retval;
261 unsigned long charge;
262 struct mempolicy *pol;
264 down_write(&oldmm->mmap_sem);
265 flush_cache_dup_mm(oldmm);
267 * Not linked in yet - no deadlock potential:
269 down_write_nested(&mm->mmap_sem, SINGLE_DEPTH_NESTING);
271 mm->locked_vm = 0;
272 mm->mmap = NULL;
273 mm->mmap_cache = NULL;
274 mm->free_area_cache = oldmm->mmap_base;
275 mm->cached_hole_size = ~0UL;
276 mm->map_count = 0;
277 cpus_clear(mm->cpu_vm_mask);
278 mm->mm_rb = RB_ROOT;
279 rb_link = &mm->mm_rb.rb_node;
280 rb_parent = NULL;
281 pprev = &mm->mmap;
283 for (mpnt = oldmm->mmap; mpnt; mpnt = mpnt->vm_next) {
284 struct file *file;
286 if (mpnt->vm_flags & VM_DONTCOPY) {
287 long pages = vma_pages(mpnt);
288 mm->total_vm -= pages;
289 vm_stat_account(mm, mpnt->vm_flags, mpnt->vm_file,
290 -pages);
291 continue;
293 charge = 0;
294 if (mpnt->vm_flags & VM_ACCOUNT) {
295 unsigned int len = (mpnt->vm_end - mpnt->vm_start) >> PAGE_SHIFT;
296 if (security_vm_enough_memory(len))
297 goto fail_nomem;
298 charge = len;
300 tmp = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
301 if (!tmp)
302 goto fail_nomem;
303 *tmp = *mpnt;
304 pol = mpol_dup(vma_policy(mpnt));
305 retval = PTR_ERR(pol);
306 if (IS_ERR(pol))
307 goto fail_nomem_policy;
308 vma_set_policy(tmp, pol);
309 tmp->vm_flags &= ~VM_LOCKED;
310 tmp->vm_mm = mm;
311 tmp->vm_next = NULL;
312 anon_vma_link(tmp);
313 file = tmp->vm_file;
314 if (file) {
315 struct inode *inode = file->f_path.dentry->d_inode;
316 get_file(file);
317 if (tmp->vm_flags & VM_DENYWRITE)
318 atomic_dec(&inode->i_writecount);
320 /* insert tmp into the share list, just after mpnt */
321 spin_lock(&file->f_mapping->i_mmap_lock);
322 tmp->vm_truncate_count = mpnt->vm_truncate_count;
323 flush_dcache_mmap_lock(file->f_mapping);
324 vma_prio_tree_add(tmp, mpnt);
325 flush_dcache_mmap_unlock(file->f_mapping);
326 spin_unlock(&file->f_mapping->i_mmap_lock);
330 * Clear hugetlb-related page reserves for children. This only
331 * affects MAP_PRIVATE mappings. Faults generated by the child
332 * are not guaranteed to succeed, even if read-only
334 if (is_vm_hugetlb_page(tmp))
335 reset_vma_resv_huge_pages(tmp);
338 * Link in the new vma and copy the page table entries.
340 *pprev = tmp;
341 pprev = &tmp->vm_next;
343 __vma_link_rb(mm, tmp, rb_link, rb_parent);
344 rb_link = &tmp->vm_rb.rb_right;
345 rb_parent = &tmp->vm_rb;
347 mm->map_count++;
348 retval = copy_page_range(mm, oldmm, mpnt);
350 if (tmp->vm_ops && tmp->vm_ops->open)
351 tmp->vm_ops->open(tmp);
353 if (retval)
354 goto out;
356 /* a new mm has just been created */
357 arch_dup_mmap(oldmm, mm);
358 retval = 0;
359 out:
360 up_write(&mm->mmap_sem);
361 flush_tlb_mm(oldmm);
362 up_write(&oldmm->mmap_sem);
363 return retval;
364 fail_nomem_policy:
365 kmem_cache_free(vm_area_cachep, tmp);
366 fail_nomem:
367 retval = -ENOMEM;
368 vm_unacct_memory(charge);
369 goto out;
372 static inline int mm_alloc_pgd(struct mm_struct * mm)
374 mm->pgd = pgd_alloc(mm);
375 if (unlikely(!mm->pgd))
376 return -ENOMEM;
377 return 0;
380 static inline void mm_free_pgd(struct mm_struct * mm)
382 pgd_free(mm, mm->pgd);
384 #else
385 #define dup_mmap(mm, oldmm) (0)
386 #define mm_alloc_pgd(mm) (0)
387 #define mm_free_pgd(mm)
388 #endif /* CONFIG_MMU */
390 __cacheline_aligned_in_smp DEFINE_SPINLOCK(mmlist_lock);
392 #define allocate_mm() (kmem_cache_alloc(mm_cachep, GFP_KERNEL))
393 #define free_mm(mm) (kmem_cache_free(mm_cachep, (mm)))
395 #include <linux/init_task.h>
397 static struct mm_struct * mm_init(struct mm_struct * mm, struct task_struct *p)
399 atomic_set(&mm->mm_users, 1);
400 atomic_set(&mm->mm_count, 1);
401 init_rwsem(&mm->mmap_sem);
402 INIT_LIST_HEAD(&mm->mmlist);
403 mm->flags = (current->mm) ? current->mm->flags
404 : MMF_DUMP_FILTER_DEFAULT;
405 mm->core_state = NULL;
406 mm->nr_ptes = 0;
407 set_mm_counter(mm, file_rss, 0);
408 set_mm_counter(mm, anon_rss, 0);
409 spin_lock_init(&mm->page_table_lock);
410 rwlock_init(&mm->ioctx_list_lock);
411 mm->ioctx_list = NULL;
412 mm->free_area_cache = TASK_UNMAPPED_BASE;
413 mm->cached_hole_size = ~0UL;
414 mm_init_owner(mm, p);
416 if (likely(!mm_alloc_pgd(mm))) {
417 mm->def_flags = 0;
418 mmu_notifier_mm_init(mm);
419 return mm;
422 free_mm(mm);
423 return NULL;
427 * Allocate and initialize an mm_struct.
429 struct mm_struct * mm_alloc(void)
431 struct mm_struct * mm;
433 mm = allocate_mm();
434 if (mm) {
435 memset(mm, 0, sizeof(*mm));
436 mm = mm_init(mm, current);
438 return mm;
442 * Called when the last reference to the mm
443 * is dropped: either by a lazy thread or by
444 * mmput. Free the page directory and the mm.
446 void __mmdrop(struct mm_struct *mm)
448 BUG_ON(mm == &init_mm);
449 mm_free_pgd(mm);
450 destroy_context(mm);
451 mmu_notifier_mm_destroy(mm);
452 free_mm(mm);
454 EXPORT_SYMBOL_GPL(__mmdrop);
457 * Decrement the use count and release all resources for an mm.
459 void mmput(struct mm_struct *mm)
461 might_sleep();
463 if (atomic_dec_and_test(&mm->mm_users)) {
464 exit_aio(mm);
465 exit_mmap(mm);
466 set_mm_exe_file(mm, NULL);
467 if (!list_empty(&mm->mmlist)) {
468 spin_lock(&mmlist_lock);
469 list_del(&mm->mmlist);
470 spin_unlock(&mmlist_lock);
472 put_swap_token(mm);
473 mmdrop(mm);
476 EXPORT_SYMBOL_GPL(mmput);
479 * get_task_mm - acquire a reference to the task's mm
481 * Returns %NULL if the task has no mm. Checks PF_KTHREAD (meaning
482 * this kernel workthread has transiently adopted a user mm with use_mm,
483 * to do its AIO) is not set and if so returns a reference to it, after
484 * bumping up the use count. User must release the mm via mmput()
485 * after use. Typically used by /proc and ptrace.
487 struct mm_struct *get_task_mm(struct task_struct *task)
489 struct mm_struct *mm;
491 task_lock(task);
492 mm = task->mm;
493 if (mm) {
494 if (task->flags & PF_KTHREAD)
495 mm = NULL;
496 else
497 atomic_inc(&mm->mm_users);
499 task_unlock(task);
500 return mm;
502 EXPORT_SYMBOL_GPL(get_task_mm);
504 /* Please note the differences between mmput and mm_release.
505 * mmput is called whenever we stop holding onto a mm_struct,
506 * error success whatever.
508 * mm_release is called after a mm_struct has been removed
509 * from the current process.
511 * This difference is important for error handling, when we
512 * only half set up a mm_struct for a new process and need to restore
513 * the old one. Because we mmput the new mm_struct before
514 * restoring the old one. . .
515 * Eric Biederman 10 January 1998
517 void mm_release(struct task_struct *tsk, struct mm_struct *mm)
519 struct completion *vfork_done = tsk->vfork_done;
521 /* Get rid of any cached register state */
522 deactivate_mm(tsk, mm);
524 /* notify parent sleeping on vfork() */
525 if (vfork_done) {
526 tsk->vfork_done = NULL;
527 complete(vfork_done);
531 * If we're exiting normally, clear a user-space tid field if
532 * requested. We leave this alone when dying by signal, to leave
533 * the value intact in a core dump, and to save the unnecessary
534 * trouble otherwise. Userland only wants this done for a sys_exit.
536 if (tsk->clear_child_tid
537 && !(tsk->flags & PF_SIGNALED)
538 && atomic_read(&mm->mm_users) > 1) {
539 u32 __user * tidptr = tsk->clear_child_tid;
540 tsk->clear_child_tid = NULL;
543 * We don't check the error code - if userspace has
544 * not set up a proper pointer then tough luck.
546 put_user(0, tidptr);
547 sys_futex(tidptr, FUTEX_WAKE, 1, NULL, NULL, 0);
552 * Allocate a new mm structure and copy contents from the
553 * mm structure of the passed in task structure.
555 struct mm_struct *dup_mm(struct task_struct *tsk)
557 struct mm_struct *mm, *oldmm = current->mm;
558 int err;
560 if (!oldmm)
561 return NULL;
563 mm = allocate_mm();
564 if (!mm)
565 goto fail_nomem;
567 memcpy(mm, oldmm, sizeof(*mm));
569 /* Initializing for Swap token stuff */
570 mm->token_priority = 0;
571 mm->last_interval = 0;
573 if (!mm_init(mm, tsk))
574 goto fail_nomem;
576 if (init_new_context(tsk, mm))
577 goto fail_nocontext;
579 dup_mm_exe_file(oldmm, mm);
581 err = dup_mmap(mm, oldmm);
582 if (err)
583 goto free_pt;
585 mm->hiwater_rss = get_mm_rss(mm);
586 mm->hiwater_vm = mm->total_vm;
588 return mm;
590 free_pt:
591 mmput(mm);
593 fail_nomem:
594 return NULL;
596 fail_nocontext:
598 * If init_new_context() failed, we cannot use mmput() to free the mm
599 * because it calls destroy_context()
601 mm_free_pgd(mm);
602 free_mm(mm);
603 return NULL;
606 static int copy_mm(unsigned long clone_flags, struct task_struct * tsk)
608 struct mm_struct * mm, *oldmm;
609 int retval;
611 tsk->min_flt = tsk->maj_flt = 0;
612 tsk->nvcsw = tsk->nivcsw = 0;
614 tsk->mm = NULL;
615 tsk->active_mm = NULL;
618 * Are we cloning a kernel thread?
620 * We need to steal a active VM for that..
622 oldmm = current->mm;
623 if (!oldmm)
624 return 0;
626 if (clone_flags & CLONE_VM) {
627 atomic_inc(&oldmm->mm_users);
628 mm = oldmm;
629 goto good_mm;
632 retval = -ENOMEM;
633 mm = dup_mm(tsk);
634 if (!mm)
635 goto fail_nomem;
637 good_mm:
638 /* Initializing for Swap token stuff */
639 mm->token_priority = 0;
640 mm->last_interval = 0;
642 tsk->mm = mm;
643 tsk->active_mm = mm;
644 return 0;
646 fail_nomem:
647 return retval;
650 static struct fs_struct *__copy_fs_struct(struct fs_struct *old)
652 struct fs_struct *fs = kmem_cache_alloc(fs_cachep, GFP_KERNEL);
653 /* We don't need to lock fs - think why ;-) */
654 if (fs) {
655 atomic_set(&fs->count, 1);
656 rwlock_init(&fs->lock);
657 fs->umask = old->umask;
658 read_lock(&old->lock);
659 fs->root = old->root;
660 path_get(&old->root);
661 fs->pwd = old->pwd;
662 path_get(&old->pwd);
663 read_unlock(&old->lock);
665 return fs;
668 struct fs_struct *copy_fs_struct(struct fs_struct *old)
670 return __copy_fs_struct(old);
673 EXPORT_SYMBOL_GPL(copy_fs_struct);
675 static int copy_fs(unsigned long clone_flags, struct task_struct *tsk)
677 if (clone_flags & CLONE_FS) {
678 atomic_inc(&current->fs->count);
679 return 0;
681 tsk->fs = __copy_fs_struct(current->fs);
682 if (!tsk->fs)
683 return -ENOMEM;
684 return 0;
687 static int copy_files(unsigned long clone_flags, struct task_struct * tsk)
689 struct files_struct *oldf, *newf;
690 int error = 0;
693 * A background process may not have any files ...
695 oldf = current->files;
696 if (!oldf)
697 goto out;
699 if (clone_flags & CLONE_FILES) {
700 atomic_inc(&oldf->count);
701 goto out;
704 newf = dup_fd(oldf, &error);
705 if (!newf)
706 goto out;
708 tsk->files = newf;
709 error = 0;
710 out:
711 return error;
714 static int copy_io(unsigned long clone_flags, struct task_struct *tsk)
716 #ifdef CONFIG_BLOCK
717 struct io_context *ioc = current->io_context;
719 if (!ioc)
720 return 0;
722 * Share io context with parent, if CLONE_IO is set
724 if (clone_flags & CLONE_IO) {
725 tsk->io_context = ioc_task_link(ioc);
726 if (unlikely(!tsk->io_context))
727 return -ENOMEM;
728 } else if (ioprio_valid(ioc->ioprio)) {
729 tsk->io_context = alloc_io_context(GFP_KERNEL, -1);
730 if (unlikely(!tsk->io_context))
731 return -ENOMEM;
733 tsk->io_context->ioprio = ioc->ioprio;
735 #endif
736 return 0;
739 static int copy_sighand(unsigned long clone_flags, struct task_struct *tsk)
741 struct sighand_struct *sig;
743 if (clone_flags & (CLONE_SIGHAND | CLONE_THREAD)) {
744 atomic_inc(&current->sighand->count);
745 return 0;
747 sig = kmem_cache_alloc(sighand_cachep, GFP_KERNEL);
748 rcu_assign_pointer(tsk->sighand, sig);
749 if (!sig)
750 return -ENOMEM;
751 atomic_set(&sig->count, 1);
752 memcpy(sig->action, current->sighand->action, sizeof(sig->action));
753 return 0;
756 void __cleanup_sighand(struct sighand_struct *sighand)
758 if (atomic_dec_and_test(&sighand->count))
759 kmem_cache_free(sighand_cachep, sighand);
762 static int copy_signal(unsigned long clone_flags, struct task_struct *tsk)
764 struct signal_struct *sig;
765 int ret;
767 if (clone_flags & CLONE_THREAD) {
768 atomic_inc(&current->signal->count);
769 atomic_inc(&current->signal->live);
770 return 0;
772 sig = kmem_cache_alloc(signal_cachep, GFP_KERNEL);
773 tsk->signal = sig;
774 if (!sig)
775 return -ENOMEM;
777 ret = copy_thread_group_keys(tsk);
778 if (ret < 0) {
779 kmem_cache_free(signal_cachep, sig);
780 return ret;
783 atomic_set(&sig->count, 1);
784 atomic_set(&sig->live, 1);
785 init_waitqueue_head(&sig->wait_chldexit);
786 sig->flags = 0;
787 sig->group_exit_code = 0;
788 sig->group_exit_task = NULL;
789 sig->group_stop_count = 0;
790 sig->curr_target = tsk;
791 init_sigpending(&sig->shared_pending);
792 INIT_LIST_HEAD(&sig->posix_timers);
794 hrtimer_init(&sig->real_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
795 sig->it_real_incr.tv64 = 0;
796 sig->real_timer.function = it_real_fn;
798 sig->it_virt_expires = cputime_zero;
799 sig->it_virt_incr = cputime_zero;
800 sig->it_prof_expires = cputime_zero;
801 sig->it_prof_incr = cputime_zero;
803 sig->leader = 0; /* session leadership doesn't inherit */
804 sig->tty_old_pgrp = NULL;
806 sig->utime = sig->stime = sig->cutime = sig->cstime = cputime_zero;
807 sig->gtime = cputime_zero;
808 sig->cgtime = cputime_zero;
809 sig->nvcsw = sig->nivcsw = sig->cnvcsw = sig->cnivcsw = 0;
810 sig->min_flt = sig->maj_flt = sig->cmin_flt = sig->cmaj_flt = 0;
811 sig->inblock = sig->oublock = sig->cinblock = sig->coublock = 0;
812 task_io_accounting_init(&sig->ioac);
813 sig->sum_sched_runtime = 0;
814 INIT_LIST_HEAD(&sig->cpu_timers[0]);
815 INIT_LIST_HEAD(&sig->cpu_timers[1]);
816 INIT_LIST_HEAD(&sig->cpu_timers[2]);
817 taskstats_tgid_init(sig);
819 task_lock(current->group_leader);
820 memcpy(sig->rlim, current->signal->rlim, sizeof sig->rlim);
821 task_unlock(current->group_leader);
823 if (sig->rlim[RLIMIT_CPU].rlim_cur != RLIM_INFINITY) {
825 * New sole thread in the process gets an expiry time
826 * of the whole CPU time limit.
828 tsk->it_prof_expires =
829 secs_to_cputime(sig->rlim[RLIMIT_CPU].rlim_cur);
831 acct_init_pacct(&sig->pacct);
833 tty_audit_fork(sig);
835 return 0;
838 void __cleanup_signal(struct signal_struct *sig)
840 exit_thread_group_keys(sig);
841 kmem_cache_free(signal_cachep, sig);
844 static void cleanup_signal(struct task_struct *tsk)
846 struct signal_struct *sig = tsk->signal;
848 atomic_dec(&sig->live);
850 if (atomic_dec_and_test(&sig->count))
851 __cleanup_signal(sig);
854 static void copy_flags(unsigned long clone_flags, struct task_struct *p)
856 unsigned long new_flags = p->flags;
858 new_flags &= ~PF_SUPERPRIV;
859 new_flags |= PF_FORKNOEXEC;
860 new_flags |= PF_STARTING;
861 p->flags = new_flags;
862 clear_freeze_flag(p);
865 asmlinkage long sys_set_tid_address(int __user *tidptr)
867 current->clear_child_tid = tidptr;
869 return task_pid_vnr(current);
872 static void rt_mutex_init_task(struct task_struct *p)
874 spin_lock_init(&p->pi_lock);
875 #ifdef CONFIG_RT_MUTEXES
876 plist_head_init(&p->pi_waiters, &p->pi_lock);
877 p->pi_blocked_on = NULL;
878 #endif
881 #ifdef CONFIG_MM_OWNER
882 void mm_init_owner(struct mm_struct *mm, struct task_struct *p)
884 mm->owner = p;
886 #endif /* CONFIG_MM_OWNER */
889 * This creates a new process as a copy of the old one,
890 * but does not actually start it yet.
892 * It copies the registers, and all the appropriate
893 * parts of the process environment (as per the clone
894 * flags). The actual kick-off is left to the caller.
896 static struct task_struct *copy_process(unsigned long clone_flags,
897 unsigned long stack_start,
898 struct pt_regs *regs,
899 unsigned long stack_size,
900 int __user *child_tidptr,
901 struct pid *pid,
902 int trace)
904 int retval;
905 struct task_struct *p;
906 int cgroup_callbacks_done = 0;
908 if ((clone_flags & (CLONE_NEWNS|CLONE_FS)) == (CLONE_NEWNS|CLONE_FS))
909 return ERR_PTR(-EINVAL);
912 * Thread groups must share signals as well, and detached threads
913 * can only be started up within the thread group.
915 if ((clone_flags & CLONE_THREAD) && !(clone_flags & CLONE_SIGHAND))
916 return ERR_PTR(-EINVAL);
919 * Shared signal handlers imply shared VM. By way of the above,
920 * thread groups also imply shared VM. Blocking this case allows
921 * for various simplifications in other code.
923 if ((clone_flags & CLONE_SIGHAND) && !(clone_flags & CLONE_VM))
924 return ERR_PTR(-EINVAL);
926 retval = security_task_create(clone_flags);
927 if (retval)
928 goto fork_out;
930 retval = -ENOMEM;
931 p = dup_task_struct(current);
932 if (!p)
933 goto fork_out;
935 rt_mutex_init_task(p);
937 #ifdef CONFIG_PROVE_LOCKING
938 DEBUG_LOCKS_WARN_ON(!p->hardirqs_enabled);
939 DEBUG_LOCKS_WARN_ON(!p->softirqs_enabled);
940 #endif
941 retval = -EAGAIN;
942 if (atomic_read(&p->user->processes) >=
943 p->signal->rlim[RLIMIT_NPROC].rlim_cur) {
944 if (!capable(CAP_SYS_ADMIN) && !capable(CAP_SYS_RESOURCE) &&
945 p->user != current->nsproxy->user_ns->root_user)
946 goto bad_fork_free;
949 atomic_inc(&p->user->__count);
950 atomic_inc(&p->user->processes);
951 get_group_info(p->group_info);
954 * If multiple threads are within copy_process(), then this check
955 * triggers too late. This doesn't hurt, the check is only there
956 * to stop root fork bombs.
958 if (nr_threads >= max_threads)
959 goto bad_fork_cleanup_count;
961 if (!try_module_get(task_thread_info(p)->exec_domain->module))
962 goto bad_fork_cleanup_count;
964 if (p->binfmt && !try_module_get(p->binfmt->module))
965 goto bad_fork_cleanup_put_domain;
967 p->did_exec = 0;
968 delayacct_tsk_init(p); /* Must remain after dup_task_struct() */
969 copy_flags(clone_flags, p);
970 INIT_LIST_HEAD(&p->children);
971 INIT_LIST_HEAD(&p->sibling);
972 #ifdef CONFIG_PREEMPT_RCU
973 p->rcu_read_lock_nesting = 0;
974 p->rcu_flipctr_idx = 0;
975 #endif /* #ifdef CONFIG_PREEMPT_RCU */
976 p->vfork_done = NULL;
977 spin_lock_init(&p->alloc_lock);
979 clear_tsk_thread_flag(p, TIF_SIGPENDING);
980 init_sigpending(&p->pending);
982 p->utime = cputime_zero;
983 p->stime = cputime_zero;
984 p->gtime = cputime_zero;
985 p->utimescaled = cputime_zero;
986 p->stimescaled = cputime_zero;
987 p->prev_utime = cputime_zero;
988 p->prev_stime = cputime_zero;
990 #ifdef CONFIG_DETECT_SOFTLOCKUP
991 p->last_switch_count = 0;
992 p->last_switch_timestamp = 0;
993 #endif
995 task_io_accounting_init(&p->ioac);
996 acct_clear_integrals(p);
998 p->it_virt_expires = cputime_zero;
999 p->it_prof_expires = cputime_zero;
1000 p->it_sched_expires = 0;
1001 INIT_LIST_HEAD(&p->cpu_timers[0]);
1002 INIT_LIST_HEAD(&p->cpu_timers[1]);
1003 INIT_LIST_HEAD(&p->cpu_timers[2]);
1005 p->lock_depth = -1; /* -1 = no lock */
1006 do_posix_clock_monotonic_gettime(&p->start_time);
1007 p->real_start_time = p->start_time;
1008 monotonic_to_bootbased(&p->real_start_time);
1009 #ifdef CONFIG_SECURITY
1010 p->security = NULL;
1011 #endif
1012 p->cap_bset = current->cap_bset;
1013 p->io_context = NULL;
1014 p->audit_context = NULL;
1015 cgroup_fork(p);
1016 #ifdef CONFIG_NUMA
1017 p->mempolicy = mpol_dup(p->mempolicy);
1018 if (IS_ERR(p->mempolicy)) {
1019 retval = PTR_ERR(p->mempolicy);
1020 p->mempolicy = NULL;
1021 goto bad_fork_cleanup_cgroup;
1023 mpol_fix_fork_child_flag(p);
1024 #endif
1025 #ifdef CONFIG_TRACE_IRQFLAGS
1026 p->irq_events = 0;
1027 #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
1028 p->hardirqs_enabled = 1;
1029 #else
1030 p->hardirqs_enabled = 0;
1031 #endif
1032 p->hardirq_enable_ip = 0;
1033 p->hardirq_enable_event = 0;
1034 p->hardirq_disable_ip = _THIS_IP_;
1035 p->hardirq_disable_event = 0;
1036 p->softirqs_enabled = 1;
1037 p->softirq_enable_ip = _THIS_IP_;
1038 p->softirq_enable_event = 0;
1039 p->softirq_disable_ip = 0;
1040 p->softirq_disable_event = 0;
1041 p->hardirq_context = 0;
1042 p->softirq_context = 0;
1043 #endif
1044 #ifdef CONFIG_LOCKDEP
1045 p->lockdep_depth = 0; /* no locks held yet */
1046 p->curr_chain_key = 0;
1047 p->lockdep_recursion = 0;
1048 #endif
1050 #ifdef CONFIG_DEBUG_MUTEXES
1051 p->blocked_on = NULL; /* not blocked yet */
1052 #endif
1054 /* Perform scheduler related setup. Assign this task to a CPU. */
1055 sched_fork(p, clone_flags);
1057 if ((retval = security_task_alloc(p)))
1058 goto bad_fork_cleanup_policy;
1059 if ((retval = audit_alloc(p)))
1060 goto bad_fork_cleanup_security;
1061 /* copy all the process information */
1062 if ((retval = copy_semundo(clone_flags, p)))
1063 goto bad_fork_cleanup_audit;
1064 if ((retval = copy_files(clone_flags, p)))
1065 goto bad_fork_cleanup_semundo;
1066 if ((retval = copy_fs(clone_flags, p)))
1067 goto bad_fork_cleanup_files;
1068 if ((retval = copy_sighand(clone_flags, p)))
1069 goto bad_fork_cleanup_fs;
1070 if ((retval = copy_signal(clone_flags, p)))
1071 goto bad_fork_cleanup_sighand;
1072 if ((retval = copy_mm(clone_flags, p)))
1073 goto bad_fork_cleanup_signal;
1074 if ((retval = copy_keys(clone_flags, p)))
1075 goto bad_fork_cleanup_mm;
1076 if ((retval = copy_namespaces(clone_flags, p)))
1077 goto bad_fork_cleanup_keys;
1078 if ((retval = copy_io(clone_flags, p)))
1079 goto bad_fork_cleanup_namespaces;
1080 retval = copy_thread(0, clone_flags, stack_start, stack_size, p, regs);
1081 if (retval)
1082 goto bad_fork_cleanup_io;
1084 if (pid != &init_struct_pid) {
1085 retval = -ENOMEM;
1086 pid = alloc_pid(task_active_pid_ns(p));
1087 if (!pid)
1088 goto bad_fork_cleanup_io;
1090 if (clone_flags & CLONE_NEWPID) {
1091 retval = pid_ns_prepare_proc(task_active_pid_ns(p));
1092 if (retval < 0)
1093 goto bad_fork_free_pid;
1097 p->pid = pid_nr(pid);
1098 p->tgid = p->pid;
1099 if (clone_flags & CLONE_THREAD)
1100 p->tgid = current->tgid;
1102 if (current->nsproxy != p->nsproxy) {
1103 retval = ns_cgroup_clone(p, pid);
1104 if (retval)
1105 goto bad_fork_free_pid;
1108 p->set_child_tid = (clone_flags & CLONE_CHILD_SETTID) ? child_tidptr : NULL;
1110 * Clear TID on mm_release()?
1112 p->clear_child_tid = (clone_flags & CLONE_CHILD_CLEARTID) ? child_tidptr: NULL;
1113 #ifdef CONFIG_FUTEX
1114 p->robust_list = NULL;
1115 #ifdef CONFIG_COMPAT
1116 p->compat_robust_list = NULL;
1117 #endif
1118 INIT_LIST_HEAD(&p->pi_state_list);
1119 p->pi_state_cache = NULL;
1120 #endif
1122 * sigaltstack should be cleared when sharing the same VM
1124 if ((clone_flags & (CLONE_VM|CLONE_VFORK)) == CLONE_VM)
1125 p->sas_ss_sp = p->sas_ss_size = 0;
1128 * Syscall tracing should be turned off in the child regardless
1129 * of CLONE_PTRACE.
1131 clear_tsk_thread_flag(p, TIF_SYSCALL_TRACE);
1132 #ifdef TIF_SYSCALL_EMU
1133 clear_tsk_thread_flag(p, TIF_SYSCALL_EMU);
1134 #endif
1135 clear_all_latency_tracing(p);
1137 /* Our parent execution domain becomes current domain
1138 These must match for thread signalling to apply */
1139 p->parent_exec_id = p->self_exec_id;
1141 /* ok, now we should be set up.. */
1142 p->exit_signal = (clone_flags & CLONE_THREAD) ? -1 : (clone_flags & CSIGNAL);
1143 p->pdeath_signal = 0;
1144 p->exit_state = 0;
1147 * Ok, make it visible to the rest of the system.
1148 * We dont wake it up yet.
1150 p->group_leader = p;
1151 INIT_LIST_HEAD(&p->thread_group);
1153 /* Now that the task is set up, run cgroup callbacks if
1154 * necessary. We need to run them before the task is visible
1155 * on the tasklist. */
1156 cgroup_fork_callbacks(p);
1157 cgroup_callbacks_done = 1;
1159 /* Need tasklist lock for parent etc handling! */
1160 write_lock_irq(&tasklist_lock);
1163 * The task hasn't been attached yet, so its cpus_allowed mask will
1164 * not be changed, nor will its assigned CPU.
1166 * The cpus_allowed mask of the parent may have changed after it was
1167 * copied first time - so re-copy it here, then check the child's CPU
1168 * to ensure it is on a valid CPU (and if not, just force it back to
1169 * parent's CPU). This avoids alot of nasty races.
1171 p->cpus_allowed = current->cpus_allowed;
1172 p->rt.nr_cpus_allowed = current->rt.nr_cpus_allowed;
1173 if (unlikely(!cpu_isset(task_cpu(p), p->cpus_allowed) ||
1174 !cpu_online(task_cpu(p))))
1175 set_task_cpu(p, smp_processor_id());
1177 /* CLONE_PARENT re-uses the old parent */
1178 if (clone_flags & (CLONE_PARENT|CLONE_THREAD))
1179 p->real_parent = current->real_parent;
1180 else
1181 p->real_parent = current;
1183 spin_lock(&current->sighand->siglock);
1186 * Process group and session signals need to be delivered to just the
1187 * parent before the fork or both the parent and the child after the
1188 * fork. Restart if a signal comes in before we add the new process to
1189 * it's process group.
1190 * A fatal signal pending means that current will exit, so the new
1191 * thread can't slip out of an OOM kill (or normal SIGKILL).
1193 recalc_sigpending();
1194 if (signal_pending(current)) {
1195 spin_unlock(&current->sighand->siglock);
1196 write_unlock_irq(&tasklist_lock);
1197 retval = -ERESTARTNOINTR;
1198 goto bad_fork_free_pid;
1201 if (clone_flags & CLONE_THREAD) {
1202 p->group_leader = current->group_leader;
1203 list_add_tail_rcu(&p->thread_group, &p->group_leader->thread_group);
1205 if (!cputime_eq(current->signal->it_virt_expires,
1206 cputime_zero) ||
1207 !cputime_eq(current->signal->it_prof_expires,
1208 cputime_zero) ||
1209 current->signal->rlim[RLIMIT_CPU].rlim_cur != RLIM_INFINITY ||
1210 !list_empty(&current->signal->cpu_timers[0]) ||
1211 !list_empty(&current->signal->cpu_timers[1]) ||
1212 !list_empty(&current->signal->cpu_timers[2])) {
1214 * Have child wake up on its first tick to check
1215 * for process CPU timers.
1217 p->it_prof_expires = jiffies_to_cputime(1);
1221 if (likely(p->pid)) {
1222 list_add_tail(&p->sibling, &p->real_parent->children);
1223 tracehook_finish_clone(p, clone_flags, trace);
1225 if (thread_group_leader(p)) {
1226 if (clone_flags & CLONE_NEWPID)
1227 p->nsproxy->pid_ns->child_reaper = p;
1229 p->signal->leader_pid = pid;
1230 p->signal->tty = current->signal->tty;
1231 set_task_pgrp(p, task_pgrp_nr(current));
1232 set_task_session(p, task_session_nr(current));
1233 attach_pid(p, PIDTYPE_PGID, task_pgrp(current));
1234 attach_pid(p, PIDTYPE_SID, task_session(current));
1235 list_add_tail_rcu(&p->tasks, &init_task.tasks);
1236 __get_cpu_var(process_counts)++;
1238 attach_pid(p, PIDTYPE_PID, pid);
1239 nr_threads++;
1242 total_forks++;
1243 spin_unlock(&current->sighand->siglock);
1244 write_unlock_irq(&tasklist_lock);
1245 proc_fork_connector(p);
1246 cgroup_post_fork(p);
1247 return p;
1249 bad_fork_free_pid:
1250 if (pid != &init_struct_pid)
1251 free_pid(pid);
1252 bad_fork_cleanup_io:
1253 put_io_context(p->io_context);
1254 bad_fork_cleanup_namespaces:
1255 exit_task_namespaces(p);
1256 bad_fork_cleanup_keys:
1257 exit_keys(p);
1258 bad_fork_cleanup_mm:
1259 if (p->mm)
1260 mmput(p->mm);
1261 bad_fork_cleanup_signal:
1262 cleanup_signal(p);
1263 bad_fork_cleanup_sighand:
1264 __cleanup_sighand(p->sighand);
1265 bad_fork_cleanup_fs:
1266 exit_fs(p); /* blocking */
1267 bad_fork_cleanup_files:
1268 exit_files(p); /* blocking */
1269 bad_fork_cleanup_semundo:
1270 exit_sem(p);
1271 bad_fork_cleanup_audit:
1272 audit_free(p);
1273 bad_fork_cleanup_security:
1274 security_task_free(p);
1275 bad_fork_cleanup_policy:
1276 #ifdef CONFIG_NUMA
1277 mpol_put(p->mempolicy);
1278 bad_fork_cleanup_cgroup:
1279 #endif
1280 cgroup_exit(p, cgroup_callbacks_done);
1281 delayacct_tsk_free(p);
1282 if (p->binfmt)
1283 module_put(p->binfmt->module);
1284 bad_fork_cleanup_put_domain:
1285 module_put(task_thread_info(p)->exec_domain->module);
1286 bad_fork_cleanup_count:
1287 put_group_info(p->group_info);
1288 atomic_dec(&p->user->processes);
1289 free_uid(p->user);
1290 bad_fork_free:
1291 free_task(p);
1292 fork_out:
1293 return ERR_PTR(retval);
1296 noinline struct pt_regs * __cpuinit __attribute__((weak)) idle_regs(struct pt_regs *regs)
1298 memset(regs, 0, sizeof(struct pt_regs));
1299 return regs;
1302 struct task_struct * __cpuinit fork_idle(int cpu)
1304 struct task_struct *task;
1305 struct pt_regs regs;
1307 task = copy_process(CLONE_VM, 0, idle_regs(&regs), 0, NULL,
1308 &init_struct_pid, 0);
1309 if (!IS_ERR(task))
1310 init_idle(task, cpu);
1312 return task;
1316 * Ok, this is the main fork-routine.
1318 * It copies the process, and if successful kick-starts
1319 * it and waits for it to finish using the VM if required.
1321 long do_fork(unsigned long clone_flags,
1322 unsigned long stack_start,
1323 struct pt_regs *regs,
1324 unsigned long stack_size,
1325 int __user *parent_tidptr,
1326 int __user *child_tidptr)
1328 struct task_struct *p;
1329 int trace = 0;
1330 long nr;
1333 * We hope to recycle these flags after 2.6.26
1335 if (unlikely(clone_flags & CLONE_STOPPED)) {
1336 static int __read_mostly count = 100;
1338 if (count > 0 && printk_ratelimit()) {
1339 char comm[TASK_COMM_LEN];
1341 count--;
1342 printk(KERN_INFO "fork(): process `%s' used deprecated "
1343 "clone flags 0x%lx\n",
1344 get_task_comm(comm, current),
1345 clone_flags & CLONE_STOPPED);
1350 * When called from kernel_thread, don't do user tracing stuff.
1352 if (likely(user_mode(regs)))
1353 trace = tracehook_prepare_clone(clone_flags);
1355 p = copy_process(clone_flags, stack_start, regs, stack_size,
1356 child_tidptr, NULL, trace);
1358 * Do this prior waking up the new thread - the thread pointer
1359 * might get invalid after that point, if the thread exits quickly.
1361 if (!IS_ERR(p)) {
1362 struct completion vfork;
1364 nr = task_pid_vnr(p);
1366 if (clone_flags & CLONE_PARENT_SETTID)
1367 put_user(nr, parent_tidptr);
1369 if (clone_flags & CLONE_VFORK) {
1370 p->vfork_done = &vfork;
1371 init_completion(&vfork);
1374 tracehook_report_clone(trace, regs, clone_flags, nr, p);
1377 * We set PF_STARTING at creation in case tracing wants to
1378 * use this to distinguish a fully live task from one that
1379 * hasn't gotten to tracehook_report_clone() yet. Now we
1380 * clear it and set the child going.
1382 p->flags &= ~PF_STARTING;
1384 if (unlikely(clone_flags & CLONE_STOPPED)) {
1386 * We'll start up with an immediate SIGSTOP.
1388 sigaddset(&p->pending.signal, SIGSTOP);
1389 set_tsk_thread_flag(p, TIF_SIGPENDING);
1390 __set_task_state(p, TASK_STOPPED);
1391 } else {
1392 wake_up_new_task(p, clone_flags);
1395 tracehook_report_clone_complete(trace, regs,
1396 clone_flags, nr, p);
1398 if (clone_flags & CLONE_VFORK) {
1399 freezer_do_not_count();
1400 wait_for_completion(&vfork);
1401 freezer_count();
1402 tracehook_report_vfork_done(p, nr);
1404 } else {
1405 nr = PTR_ERR(p);
1407 return nr;
1410 #ifndef ARCH_MIN_MMSTRUCT_ALIGN
1411 #define ARCH_MIN_MMSTRUCT_ALIGN 0
1412 #endif
1414 static void sighand_ctor(void *data)
1416 struct sighand_struct *sighand = data;
1418 spin_lock_init(&sighand->siglock);
1419 init_waitqueue_head(&sighand->signalfd_wqh);
1422 void __init proc_caches_init(void)
1424 sighand_cachep = kmem_cache_create("sighand_cache",
1425 sizeof(struct sighand_struct), 0,
1426 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_DESTROY_BY_RCU,
1427 sighand_ctor);
1428 signal_cachep = kmem_cache_create("signal_cache",
1429 sizeof(struct signal_struct), 0,
1430 SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL);
1431 files_cachep = kmem_cache_create("files_cache",
1432 sizeof(struct files_struct), 0,
1433 SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL);
1434 fs_cachep = kmem_cache_create("fs_cache",
1435 sizeof(struct fs_struct), 0,
1436 SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL);
1437 vm_area_cachep = kmem_cache_create("vm_area_struct",
1438 sizeof(struct vm_area_struct), 0,
1439 SLAB_PANIC, NULL);
1440 mm_cachep = kmem_cache_create("mm_struct",
1441 sizeof(struct mm_struct), ARCH_MIN_MMSTRUCT_ALIGN,
1442 SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL);
1446 * Check constraints on flags passed to the unshare system call and
1447 * force unsharing of additional process context as appropriate.
1449 static void check_unshare_flags(unsigned long *flags_ptr)
1452 * If unsharing a thread from a thread group, must also
1453 * unshare vm.
1455 if (*flags_ptr & CLONE_THREAD)
1456 *flags_ptr |= CLONE_VM;
1459 * If unsharing vm, must also unshare signal handlers.
1461 if (*flags_ptr & CLONE_VM)
1462 *flags_ptr |= CLONE_SIGHAND;
1465 * If unsharing signal handlers and the task was created
1466 * using CLONE_THREAD, then must unshare the thread
1468 if ((*flags_ptr & CLONE_SIGHAND) &&
1469 (atomic_read(&current->signal->count) > 1))
1470 *flags_ptr |= CLONE_THREAD;
1473 * If unsharing namespace, must also unshare filesystem information.
1475 if (*flags_ptr & CLONE_NEWNS)
1476 *flags_ptr |= CLONE_FS;
1480 * Unsharing of tasks created with CLONE_THREAD is not supported yet
1482 static int unshare_thread(unsigned long unshare_flags)
1484 if (unshare_flags & CLONE_THREAD)
1485 return -EINVAL;
1487 return 0;
1491 * Unshare the filesystem structure if it is being shared
1493 static int unshare_fs(unsigned long unshare_flags, struct fs_struct **new_fsp)
1495 struct fs_struct *fs = current->fs;
1497 if ((unshare_flags & CLONE_FS) &&
1498 (fs && atomic_read(&fs->count) > 1)) {
1499 *new_fsp = __copy_fs_struct(current->fs);
1500 if (!*new_fsp)
1501 return -ENOMEM;
1504 return 0;
1508 * Unsharing of sighand is not supported yet
1510 static int unshare_sighand(unsigned long unshare_flags, struct sighand_struct **new_sighp)
1512 struct sighand_struct *sigh = current->sighand;
1514 if ((unshare_flags & CLONE_SIGHAND) && atomic_read(&sigh->count) > 1)
1515 return -EINVAL;
1516 else
1517 return 0;
1521 * Unshare vm if it is being shared
1523 static int unshare_vm(unsigned long unshare_flags, struct mm_struct **new_mmp)
1525 struct mm_struct *mm = current->mm;
1527 if ((unshare_flags & CLONE_VM) &&
1528 (mm && atomic_read(&mm->mm_users) > 1)) {
1529 return -EINVAL;
1532 return 0;
1536 * Unshare file descriptor table if it is being shared
1538 static int unshare_fd(unsigned long unshare_flags, struct files_struct **new_fdp)
1540 struct files_struct *fd = current->files;
1541 int error = 0;
1543 if ((unshare_flags & CLONE_FILES) &&
1544 (fd && atomic_read(&fd->count) > 1)) {
1545 *new_fdp = dup_fd(fd, &error);
1546 if (!*new_fdp)
1547 return error;
1550 return 0;
1554 * unshare allows a process to 'unshare' part of the process
1555 * context which was originally shared using clone. copy_*
1556 * functions used by do_fork() cannot be used here directly
1557 * because they modify an inactive task_struct that is being
1558 * constructed. Here we are modifying the current, active,
1559 * task_struct.
1561 asmlinkage long sys_unshare(unsigned long unshare_flags)
1563 int err = 0;
1564 struct fs_struct *fs, *new_fs = NULL;
1565 struct sighand_struct *new_sigh = NULL;
1566 struct mm_struct *mm, *new_mm = NULL, *active_mm = NULL;
1567 struct files_struct *fd, *new_fd = NULL;
1568 struct nsproxy *new_nsproxy = NULL;
1569 int do_sysvsem = 0;
1571 check_unshare_flags(&unshare_flags);
1573 /* Return -EINVAL for all unsupported flags */
1574 err = -EINVAL;
1575 if (unshare_flags & ~(CLONE_THREAD|CLONE_FS|CLONE_NEWNS|CLONE_SIGHAND|
1576 CLONE_VM|CLONE_FILES|CLONE_SYSVSEM|
1577 CLONE_NEWUTS|CLONE_NEWIPC|CLONE_NEWUSER|
1578 CLONE_NEWNET))
1579 goto bad_unshare_out;
1582 * CLONE_NEWIPC must also detach from the undolist: after switching
1583 * to a new ipc namespace, the semaphore arrays from the old
1584 * namespace are unreachable.
1586 if (unshare_flags & (CLONE_NEWIPC|CLONE_SYSVSEM))
1587 do_sysvsem = 1;
1588 if ((err = unshare_thread(unshare_flags)))
1589 goto bad_unshare_out;
1590 if ((err = unshare_fs(unshare_flags, &new_fs)))
1591 goto bad_unshare_cleanup_thread;
1592 if ((err = unshare_sighand(unshare_flags, &new_sigh)))
1593 goto bad_unshare_cleanup_fs;
1594 if ((err = unshare_vm(unshare_flags, &new_mm)))
1595 goto bad_unshare_cleanup_sigh;
1596 if ((err = unshare_fd(unshare_flags, &new_fd)))
1597 goto bad_unshare_cleanup_vm;
1598 if ((err = unshare_nsproxy_namespaces(unshare_flags, &new_nsproxy,
1599 new_fs)))
1600 goto bad_unshare_cleanup_fd;
1602 if (new_fs || new_mm || new_fd || do_sysvsem || new_nsproxy) {
1603 if (do_sysvsem) {
1605 * CLONE_SYSVSEM is equivalent to sys_exit().
1607 exit_sem(current);
1610 if (new_nsproxy) {
1611 switch_task_namespaces(current, new_nsproxy);
1612 new_nsproxy = NULL;
1615 task_lock(current);
1617 if (new_fs) {
1618 fs = current->fs;
1619 current->fs = new_fs;
1620 new_fs = fs;
1623 if (new_mm) {
1624 mm = current->mm;
1625 active_mm = current->active_mm;
1626 current->mm = new_mm;
1627 current->active_mm = new_mm;
1628 activate_mm(active_mm, new_mm);
1629 new_mm = mm;
1632 if (new_fd) {
1633 fd = current->files;
1634 current->files = new_fd;
1635 new_fd = fd;
1638 task_unlock(current);
1641 if (new_nsproxy)
1642 put_nsproxy(new_nsproxy);
1644 bad_unshare_cleanup_fd:
1645 if (new_fd)
1646 put_files_struct(new_fd);
1648 bad_unshare_cleanup_vm:
1649 if (new_mm)
1650 mmput(new_mm);
1652 bad_unshare_cleanup_sigh:
1653 if (new_sigh)
1654 if (atomic_dec_and_test(&new_sigh->count))
1655 kmem_cache_free(sighand_cachep, new_sigh);
1657 bad_unshare_cleanup_fs:
1658 if (new_fs)
1659 put_fs_struct(new_fs);
1661 bad_unshare_cleanup_thread:
1662 bad_unshare_out:
1663 return err;
1667 * Helper to unshare the files of the current task.
1668 * We don't want to expose copy_files internals to
1669 * the exec layer of the kernel.
1672 int unshare_files(struct files_struct **displaced)
1674 struct task_struct *task = current;
1675 struct files_struct *copy = NULL;
1676 int error;
1678 error = unshare_fd(CLONE_FILES, &copy);
1679 if (error || !copy) {
1680 *displaced = NULL;
1681 return error;
1683 *displaced = task->files;
1684 task_lock(task);
1685 task->files = copy;
1686 task_unlock(task);
1687 return 0;