ACPICA: Use spinlock for acpi_{en|dis}able_gpe
[linux-2.6/mini2440.git] / security / selinux / avc.c
blobcb30c7e350b356c00a8d77dc5532ff20b6e5f62d
1 /*
2 * Implementation of the kernel access vector cache (AVC).
4 * Authors: Stephen Smalley, <sds@epoch.ncsc.mil>
5 * James Morris <jmorris@redhat.com>
7 * Update: KaiGai, Kohei <kaigai@ak.jp.nec.com>
8 * Replaced the avc_lock spinlock by RCU.
10 * Copyright (C) 2003 Red Hat, Inc., James Morris <jmorris@redhat.com>
12 * This program is free software; you can redistribute it and/or modify
13 * it under the terms of the GNU General Public License version 2,
14 * as published by the Free Software Foundation.
16 #include <linux/types.h>
17 #include <linux/stddef.h>
18 #include <linux/kernel.h>
19 #include <linux/slab.h>
20 #include <linux/fs.h>
21 #include <linux/dcache.h>
22 #include <linux/init.h>
23 #include <linux/skbuff.h>
24 #include <linux/percpu.h>
25 #include <net/sock.h>
26 #include <linux/un.h>
27 #include <net/af_unix.h>
28 #include <linux/ip.h>
29 #include <linux/audit.h>
30 #include <linux/ipv6.h>
31 #include <net/ipv6.h>
32 #include "avc.h"
33 #include "avc_ss.h"
35 static const struct av_perm_to_string av_perm_to_string[] = {
36 #define S_(c, v, s) { c, v, s },
37 #include "av_perm_to_string.h"
38 #undef S_
41 static const char *class_to_string[] = {
42 #define S_(s) s,
43 #include "class_to_string.h"
44 #undef S_
47 #define TB_(s) static const char *s[] = {
48 #define TE_(s) };
49 #define S_(s) s,
50 #include "common_perm_to_string.h"
51 #undef TB_
52 #undef TE_
53 #undef S_
55 static const struct av_inherit av_inherit[] = {
56 #define S_(c, i, b) { c, common_##i##_perm_to_string, b },
57 #include "av_inherit.h"
58 #undef S_
61 const struct selinux_class_perm selinux_class_perm = {
62 av_perm_to_string,
63 ARRAY_SIZE(av_perm_to_string),
64 class_to_string,
65 ARRAY_SIZE(class_to_string),
66 av_inherit,
67 ARRAY_SIZE(av_inherit)
70 #define AVC_CACHE_SLOTS 512
71 #define AVC_DEF_CACHE_THRESHOLD 512
72 #define AVC_CACHE_RECLAIM 16
74 #ifdef CONFIG_SECURITY_SELINUX_AVC_STATS
75 #define avc_cache_stats_incr(field) \
76 do { \
77 per_cpu(avc_cache_stats, get_cpu()).field++; \
78 put_cpu(); \
79 } while (0)
80 #else
81 #define avc_cache_stats_incr(field) do {} while (0)
82 #endif
84 struct avc_entry {
85 u32 ssid;
86 u32 tsid;
87 u16 tclass;
88 struct av_decision avd;
89 atomic_t used; /* used recently */
92 struct avc_node {
93 struct avc_entry ae;
94 struct list_head list;
95 struct rcu_head rhead;
98 struct avc_cache {
99 struct list_head slots[AVC_CACHE_SLOTS];
100 spinlock_t slots_lock[AVC_CACHE_SLOTS]; /* lock for writes */
101 atomic_t lru_hint; /* LRU hint for reclaim scan */
102 atomic_t active_nodes;
103 u32 latest_notif; /* latest revocation notification */
106 struct avc_callback_node {
107 int (*callback) (u32 event, u32 ssid, u32 tsid,
108 u16 tclass, u32 perms,
109 u32 *out_retained);
110 u32 events;
111 u32 ssid;
112 u32 tsid;
113 u16 tclass;
114 u32 perms;
115 struct avc_callback_node *next;
118 /* Exported via selinufs */
119 unsigned int avc_cache_threshold = AVC_DEF_CACHE_THRESHOLD;
121 #ifdef CONFIG_SECURITY_SELINUX_AVC_STATS
122 DEFINE_PER_CPU(struct avc_cache_stats, avc_cache_stats) = { 0 };
123 #endif
125 static struct avc_cache avc_cache;
126 static struct avc_callback_node *avc_callbacks;
127 static struct kmem_cache *avc_node_cachep;
129 static inline int avc_hash(u32 ssid, u32 tsid, u16 tclass)
131 return (ssid ^ (tsid<<2) ^ (tclass<<4)) & (AVC_CACHE_SLOTS - 1);
135 * avc_dump_av - Display an access vector in human-readable form.
136 * @tclass: target security class
137 * @av: access vector
139 void avc_dump_av(struct audit_buffer *ab, u16 tclass, u32 av)
141 const char **common_pts = NULL;
142 u32 common_base = 0;
143 int i, i2, perm;
145 if (av == 0) {
146 audit_log_format(ab, " null");
147 return;
150 for (i = 0; i < ARRAY_SIZE(av_inherit); i++) {
151 if (av_inherit[i].tclass == tclass) {
152 common_pts = av_inherit[i].common_pts;
153 common_base = av_inherit[i].common_base;
154 break;
158 audit_log_format(ab, " {");
159 i = 0;
160 perm = 1;
161 while (perm < common_base) {
162 if (perm & av) {
163 audit_log_format(ab, " %s", common_pts[i]);
164 av &= ~perm;
166 i++;
167 perm <<= 1;
170 while (i < sizeof(av) * 8) {
171 if (perm & av) {
172 for (i2 = 0; i2 < ARRAY_SIZE(av_perm_to_string); i2++) {
173 if ((av_perm_to_string[i2].tclass == tclass) &&
174 (av_perm_to_string[i2].value == perm))
175 break;
177 if (i2 < ARRAY_SIZE(av_perm_to_string)) {
178 audit_log_format(ab, " %s",
179 av_perm_to_string[i2].name);
180 av &= ~perm;
183 i++;
184 perm <<= 1;
187 if (av)
188 audit_log_format(ab, " 0x%x", av);
190 audit_log_format(ab, " }");
194 * avc_dump_query - Display a SID pair and a class in human-readable form.
195 * @ssid: source security identifier
196 * @tsid: target security identifier
197 * @tclass: target security class
199 static void avc_dump_query(struct audit_buffer *ab, u32 ssid, u32 tsid, u16 tclass)
201 int rc;
202 char *scontext;
203 u32 scontext_len;
205 rc = security_sid_to_context(ssid, &scontext, &scontext_len);
206 if (rc)
207 audit_log_format(ab, "ssid=%d", ssid);
208 else {
209 audit_log_format(ab, "scontext=%s", scontext);
210 kfree(scontext);
213 rc = security_sid_to_context(tsid, &scontext, &scontext_len);
214 if (rc)
215 audit_log_format(ab, " tsid=%d", tsid);
216 else {
217 audit_log_format(ab, " tcontext=%s", scontext);
218 kfree(scontext);
221 BUG_ON(tclass >= ARRAY_SIZE(class_to_string) || !class_to_string[tclass]);
222 audit_log_format(ab, " tclass=%s", class_to_string[tclass]);
226 * avc_init - Initialize the AVC.
228 * Initialize the access vector cache.
230 void __init avc_init(void)
232 int i;
234 for (i = 0; i < AVC_CACHE_SLOTS; i++) {
235 INIT_LIST_HEAD(&avc_cache.slots[i]);
236 spin_lock_init(&avc_cache.slots_lock[i]);
238 atomic_set(&avc_cache.active_nodes, 0);
239 atomic_set(&avc_cache.lru_hint, 0);
241 avc_node_cachep = kmem_cache_create("avc_node", sizeof(struct avc_node),
242 0, SLAB_PANIC, NULL);
244 audit_log(current->audit_context, GFP_KERNEL, AUDIT_KERNEL, "AVC INITIALIZED\n");
247 int avc_get_hash_stats(char *page)
249 int i, chain_len, max_chain_len, slots_used;
250 struct avc_node *node;
252 rcu_read_lock();
254 slots_used = 0;
255 max_chain_len = 0;
256 for (i = 0; i < AVC_CACHE_SLOTS; i++) {
257 if (!list_empty(&avc_cache.slots[i])) {
258 slots_used++;
259 chain_len = 0;
260 list_for_each_entry_rcu(node, &avc_cache.slots[i], list)
261 chain_len++;
262 if (chain_len > max_chain_len)
263 max_chain_len = chain_len;
267 rcu_read_unlock();
269 return scnprintf(page, PAGE_SIZE, "entries: %d\nbuckets used: %d/%d\n"
270 "longest chain: %d\n",
271 atomic_read(&avc_cache.active_nodes),
272 slots_used, AVC_CACHE_SLOTS, max_chain_len);
275 static void avc_node_free(struct rcu_head *rhead)
277 struct avc_node *node = container_of(rhead, struct avc_node, rhead);
278 kmem_cache_free(avc_node_cachep, node);
279 avc_cache_stats_incr(frees);
282 static void avc_node_delete(struct avc_node *node)
284 list_del_rcu(&node->list);
285 call_rcu(&node->rhead, avc_node_free);
286 atomic_dec(&avc_cache.active_nodes);
289 static void avc_node_kill(struct avc_node *node)
291 kmem_cache_free(avc_node_cachep, node);
292 avc_cache_stats_incr(frees);
293 atomic_dec(&avc_cache.active_nodes);
296 static void avc_node_replace(struct avc_node *new, struct avc_node *old)
298 list_replace_rcu(&old->list, &new->list);
299 call_rcu(&old->rhead, avc_node_free);
300 atomic_dec(&avc_cache.active_nodes);
303 static inline int avc_reclaim_node(void)
305 struct avc_node *node;
306 int hvalue, try, ecx;
307 unsigned long flags;
309 for (try = 0, ecx = 0; try < AVC_CACHE_SLOTS; try++) {
310 hvalue = atomic_inc_return(&avc_cache.lru_hint) & (AVC_CACHE_SLOTS - 1);
312 if (!spin_trylock_irqsave(&avc_cache.slots_lock[hvalue], flags))
313 continue;
315 rcu_read_lock();
316 list_for_each_entry(node, &avc_cache.slots[hvalue], list) {
317 if (atomic_dec_and_test(&node->ae.used)) {
318 /* Recently Unused */
319 avc_node_delete(node);
320 avc_cache_stats_incr(reclaims);
321 ecx++;
322 if (ecx >= AVC_CACHE_RECLAIM) {
323 rcu_read_unlock();
324 spin_unlock_irqrestore(&avc_cache.slots_lock[hvalue], flags);
325 goto out;
329 rcu_read_unlock();
330 spin_unlock_irqrestore(&avc_cache.slots_lock[hvalue], flags);
332 out:
333 return ecx;
336 static struct avc_node *avc_alloc_node(void)
338 struct avc_node *node;
340 node = kmem_cache_zalloc(avc_node_cachep, GFP_ATOMIC);
341 if (!node)
342 goto out;
344 INIT_RCU_HEAD(&node->rhead);
345 INIT_LIST_HEAD(&node->list);
346 atomic_set(&node->ae.used, 1);
347 avc_cache_stats_incr(allocations);
349 if (atomic_inc_return(&avc_cache.active_nodes) > avc_cache_threshold)
350 avc_reclaim_node();
352 out:
353 return node;
356 static void avc_node_populate(struct avc_node *node, u32 ssid, u32 tsid, u16 tclass, struct avc_entry *ae)
358 node->ae.ssid = ssid;
359 node->ae.tsid = tsid;
360 node->ae.tclass = tclass;
361 memcpy(&node->ae.avd, &ae->avd, sizeof(node->ae.avd));
364 static inline struct avc_node *avc_search_node(u32 ssid, u32 tsid, u16 tclass)
366 struct avc_node *node, *ret = NULL;
367 int hvalue;
369 hvalue = avc_hash(ssid, tsid, tclass);
370 list_for_each_entry_rcu(node, &avc_cache.slots[hvalue], list) {
371 if (ssid == node->ae.ssid &&
372 tclass == node->ae.tclass &&
373 tsid == node->ae.tsid) {
374 ret = node;
375 break;
379 if (ret == NULL) {
380 /* cache miss */
381 goto out;
384 /* cache hit */
385 if (atomic_read(&ret->ae.used) != 1)
386 atomic_set(&ret->ae.used, 1);
387 out:
388 return ret;
392 * avc_lookup - Look up an AVC entry.
393 * @ssid: source security identifier
394 * @tsid: target security identifier
395 * @tclass: target security class
396 * @requested: requested permissions, interpreted based on @tclass
398 * Look up an AVC entry that is valid for the
399 * @requested permissions between the SID pair
400 * (@ssid, @tsid), interpreting the permissions
401 * based on @tclass. If a valid AVC entry exists,
402 * then this function return the avc_node.
403 * Otherwise, this function returns NULL.
405 static struct avc_node *avc_lookup(u32 ssid, u32 tsid, u16 tclass, u32 requested)
407 struct avc_node *node;
409 avc_cache_stats_incr(lookups);
410 node = avc_search_node(ssid, tsid, tclass);
412 if (node && ((node->ae.avd.decided & requested) == requested)) {
413 avc_cache_stats_incr(hits);
414 goto out;
417 node = NULL;
418 avc_cache_stats_incr(misses);
419 out:
420 return node;
423 static int avc_latest_notif_update(int seqno, int is_insert)
425 int ret = 0;
426 static DEFINE_SPINLOCK(notif_lock);
427 unsigned long flag;
429 spin_lock_irqsave(&notif_lock, flag);
430 if (is_insert) {
431 if (seqno < avc_cache.latest_notif) {
432 printk(KERN_WARNING "SELinux: avc: seqno %d < latest_notif %d\n",
433 seqno, avc_cache.latest_notif);
434 ret = -EAGAIN;
436 } else {
437 if (seqno > avc_cache.latest_notif)
438 avc_cache.latest_notif = seqno;
440 spin_unlock_irqrestore(&notif_lock, flag);
442 return ret;
446 * avc_insert - Insert an AVC entry.
447 * @ssid: source security identifier
448 * @tsid: target security identifier
449 * @tclass: target security class
450 * @ae: AVC entry
452 * Insert an AVC entry for the SID pair
453 * (@ssid, @tsid) and class @tclass.
454 * The access vectors and the sequence number are
455 * normally provided by the security server in
456 * response to a security_compute_av() call. If the
457 * sequence number @ae->avd.seqno is not less than the latest
458 * revocation notification, then the function copies
459 * the access vectors into a cache entry, returns
460 * avc_node inserted. Otherwise, this function returns NULL.
462 static struct avc_node *avc_insert(u32 ssid, u32 tsid, u16 tclass, struct avc_entry *ae)
464 struct avc_node *pos, *node = NULL;
465 int hvalue;
466 unsigned long flag;
468 if (avc_latest_notif_update(ae->avd.seqno, 1))
469 goto out;
471 node = avc_alloc_node();
472 if (node) {
473 hvalue = avc_hash(ssid, tsid, tclass);
474 avc_node_populate(node, ssid, tsid, tclass, ae);
476 spin_lock_irqsave(&avc_cache.slots_lock[hvalue], flag);
477 list_for_each_entry(pos, &avc_cache.slots[hvalue], list) {
478 if (pos->ae.ssid == ssid &&
479 pos->ae.tsid == tsid &&
480 pos->ae.tclass == tclass) {
481 avc_node_replace(node, pos);
482 goto found;
485 list_add_rcu(&node->list, &avc_cache.slots[hvalue]);
486 found:
487 spin_unlock_irqrestore(&avc_cache.slots_lock[hvalue], flag);
489 out:
490 return node;
493 static inline void avc_print_ipv6_addr(struct audit_buffer *ab,
494 struct in6_addr *addr, __be16 port,
495 char *name1, char *name2)
497 if (!ipv6_addr_any(addr))
498 audit_log_format(ab, " %s=" NIP6_FMT, name1, NIP6(*addr));
499 if (port)
500 audit_log_format(ab, " %s=%d", name2, ntohs(port));
503 static inline void avc_print_ipv4_addr(struct audit_buffer *ab, __be32 addr,
504 __be16 port, char *name1, char *name2)
506 if (addr)
507 audit_log_format(ab, " %s=" NIPQUAD_FMT, name1, NIPQUAD(addr));
508 if (port)
509 audit_log_format(ab, " %s=%d", name2, ntohs(port));
513 * avc_audit - Audit the granting or denial of permissions.
514 * @ssid: source security identifier
515 * @tsid: target security identifier
516 * @tclass: target security class
517 * @requested: requested permissions
518 * @avd: access vector decisions
519 * @result: result from avc_has_perm_noaudit
520 * @a: auxiliary audit data
522 * Audit the granting or denial of permissions in accordance
523 * with the policy. This function is typically called by
524 * avc_has_perm() after a permission check, but can also be
525 * called directly by callers who use avc_has_perm_noaudit()
526 * in order to separate the permission check from the auditing.
527 * For example, this separation is useful when the permission check must
528 * be performed under a lock, to allow the lock to be released
529 * before calling the auditing code.
531 void avc_audit(u32 ssid, u32 tsid,
532 u16 tclass, u32 requested,
533 struct av_decision *avd, int result, struct avc_audit_data *a)
535 struct task_struct *tsk = current;
536 struct inode *inode = NULL;
537 u32 denied, audited;
538 struct audit_buffer *ab;
540 denied = requested & ~avd->allowed;
541 if (denied) {
542 audited = denied;
543 if (!(audited & avd->auditdeny))
544 return;
545 } else if (result) {
546 audited = denied = requested;
547 } else {
548 audited = requested;
549 if (!(audited & avd->auditallow))
550 return;
553 ab = audit_log_start(current->audit_context, GFP_ATOMIC, AUDIT_AVC);
554 if (!ab)
555 return; /* audit_panic has been called */
556 audit_log_format(ab, "avc: %s ", denied ? "denied" : "granted");
557 avc_dump_av(ab, tclass, audited);
558 audit_log_format(ab, " for ");
559 if (a && a->tsk)
560 tsk = a->tsk;
561 if (tsk && tsk->pid) {
562 audit_log_format(ab, " pid=%d comm=", tsk->pid);
563 audit_log_untrustedstring(ab, tsk->comm);
565 if (a) {
566 switch (a->type) {
567 case AVC_AUDIT_DATA_IPC:
568 audit_log_format(ab, " key=%d", a->u.ipc_id);
569 break;
570 case AVC_AUDIT_DATA_CAP:
571 audit_log_format(ab, " capability=%d", a->u.cap);
572 break;
573 case AVC_AUDIT_DATA_FS:
574 if (a->u.fs.path.dentry) {
575 struct dentry *dentry = a->u.fs.path.dentry;
576 if (a->u.fs.path.mnt) {
577 audit_log_d_path(ab, "path=",
578 &a->u.fs.path);
579 } else {
580 audit_log_format(ab, " name=");
581 audit_log_untrustedstring(ab, dentry->d_name.name);
583 inode = dentry->d_inode;
584 } else if (a->u.fs.inode) {
585 struct dentry *dentry;
586 inode = a->u.fs.inode;
587 dentry = d_find_alias(inode);
588 if (dentry) {
589 audit_log_format(ab, " name=");
590 audit_log_untrustedstring(ab, dentry->d_name.name);
591 dput(dentry);
594 if (inode)
595 audit_log_format(ab, " dev=%s ino=%lu",
596 inode->i_sb->s_id,
597 inode->i_ino);
598 break;
599 case AVC_AUDIT_DATA_NET:
600 if (a->u.net.sk) {
601 struct sock *sk = a->u.net.sk;
602 struct unix_sock *u;
603 int len = 0;
604 char *p = NULL;
606 switch (sk->sk_family) {
607 case AF_INET: {
608 struct inet_sock *inet = inet_sk(sk);
610 avc_print_ipv4_addr(ab, inet->rcv_saddr,
611 inet->sport,
612 "laddr", "lport");
613 avc_print_ipv4_addr(ab, inet->daddr,
614 inet->dport,
615 "faddr", "fport");
616 break;
618 case AF_INET6: {
619 struct inet_sock *inet = inet_sk(sk);
620 struct ipv6_pinfo *inet6 = inet6_sk(sk);
622 avc_print_ipv6_addr(ab, &inet6->rcv_saddr,
623 inet->sport,
624 "laddr", "lport");
625 avc_print_ipv6_addr(ab, &inet6->daddr,
626 inet->dport,
627 "faddr", "fport");
628 break;
630 case AF_UNIX:
631 u = unix_sk(sk);
632 if (u->dentry) {
633 struct path path = {
634 .dentry = u->dentry,
635 .mnt = u->mnt
637 audit_log_d_path(ab, "path=",
638 &path);
639 break;
641 if (!u->addr)
642 break;
643 len = u->addr->len-sizeof(short);
644 p = &u->addr->name->sun_path[0];
645 audit_log_format(ab, " path=");
646 if (*p)
647 audit_log_untrustedstring(ab, p);
648 else
649 audit_log_n_hex(ab, p, len);
650 break;
654 switch (a->u.net.family) {
655 case AF_INET:
656 avc_print_ipv4_addr(ab, a->u.net.v4info.saddr,
657 a->u.net.sport,
658 "saddr", "src");
659 avc_print_ipv4_addr(ab, a->u.net.v4info.daddr,
660 a->u.net.dport,
661 "daddr", "dest");
662 break;
663 case AF_INET6:
664 avc_print_ipv6_addr(ab, &a->u.net.v6info.saddr,
665 a->u.net.sport,
666 "saddr", "src");
667 avc_print_ipv6_addr(ab, &a->u.net.v6info.daddr,
668 a->u.net.dport,
669 "daddr", "dest");
670 break;
672 if (a->u.net.netif > 0) {
673 struct net_device *dev;
675 /* NOTE: we always use init's namespace */
676 dev = dev_get_by_index(&init_net,
677 a->u.net.netif);
678 if (dev) {
679 audit_log_format(ab, " netif=%s",
680 dev->name);
681 dev_put(dev);
684 break;
687 audit_log_format(ab, " ");
688 avc_dump_query(ab, ssid, tsid, tclass);
689 audit_log_end(ab);
693 * avc_add_callback - Register a callback for security events.
694 * @callback: callback function
695 * @events: security events
696 * @ssid: source security identifier or %SECSID_WILD
697 * @tsid: target security identifier or %SECSID_WILD
698 * @tclass: target security class
699 * @perms: permissions
701 * Register a callback function for events in the set @events
702 * related to the SID pair (@ssid, @tsid) and
703 * and the permissions @perms, interpreting
704 * @perms based on @tclass. Returns %0 on success or
705 * -%ENOMEM if insufficient memory exists to add the callback.
707 int avc_add_callback(int (*callback)(u32 event, u32 ssid, u32 tsid,
708 u16 tclass, u32 perms,
709 u32 *out_retained),
710 u32 events, u32 ssid, u32 tsid,
711 u16 tclass, u32 perms)
713 struct avc_callback_node *c;
714 int rc = 0;
716 c = kmalloc(sizeof(*c), GFP_ATOMIC);
717 if (!c) {
718 rc = -ENOMEM;
719 goto out;
722 c->callback = callback;
723 c->events = events;
724 c->ssid = ssid;
725 c->tsid = tsid;
726 c->perms = perms;
727 c->next = avc_callbacks;
728 avc_callbacks = c;
729 out:
730 return rc;
733 static inline int avc_sidcmp(u32 x, u32 y)
735 return (x == y || x == SECSID_WILD || y == SECSID_WILD);
739 * avc_update_node Update an AVC entry
740 * @event : Updating event
741 * @perms : Permission mask bits
742 * @ssid,@tsid,@tclass : identifier of an AVC entry
744 * if a valid AVC entry doesn't exist,this function returns -ENOENT.
745 * if kmalloc() called internal returns NULL, this function returns -ENOMEM.
746 * otherwise, this function update the AVC entry. The original AVC-entry object
747 * will release later by RCU.
749 static int avc_update_node(u32 event, u32 perms, u32 ssid, u32 tsid, u16 tclass)
751 int hvalue, rc = 0;
752 unsigned long flag;
753 struct avc_node *pos, *node, *orig = NULL;
755 node = avc_alloc_node();
756 if (!node) {
757 rc = -ENOMEM;
758 goto out;
761 /* Lock the target slot */
762 hvalue = avc_hash(ssid, tsid, tclass);
763 spin_lock_irqsave(&avc_cache.slots_lock[hvalue], flag);
765 list_for_each_entry(pos, &avc_cache.slots[hvalue], list) {
766 if (ssid == pos->ae.ssid &&
767 tsid == pos->ae.tsid &&
768 tclass == pos->ae.tclass){
769 orig = pos;
770 break;
774 if (!orig) {
775 rc = -ENOENT;
776 avc_node_kill(node);
777 goto out_unlock;
781 * Copy and replace original node.
784 avc_node_populate(node, ssid, tsid, tclass, &orig->ae);
786 switch (event) {
787 case AVC_CALLBACK_GRANT:
788 node->ae.avd.allowed |= perms;
789 break;
790 case AVC_CALLBACK_TRY_REVOKE:
791 case AVC_CALLBACK_REVOKE:
792 node->ae.avd.allowed &= ~perms;
793 break;
794 case AVC_CALLBACK_AUDITALLOW_ENABLE:
795 node->ae.avd.auditallow |= perms;
796 break;
797 case AVC_CALLBACK_AUDITALLOW_DISABLE:
798 node->ae.avd.auditallow &= ~perms;
799 break;
800 case AVC_CALLBACK_AUDITDENY_ENABLE:
801 node->ae.avd.auditdeny |= perms;
802 break;
803 case AVC_CALLBACK_AUDITDENY_DISABLE:
804 node->ae.avd.auditdeny &= ~perms;
805 break;
807 avc_node_replace(node, orig);
808 out_unlock:
809 spin_unlock_irqrestore(&avc_cache.slots_lock[hvalue], flag);
810 out:
811 return rc;
815 * avc_ss_reset - Flush the cache and revalidate migrated permissions.
816 * @seqno: policy sequence number
818 int avc_ss_reset(u32 seqno)
820 struct avc_callback_node *c;
821 int i, rc = 0, tmprc;
822 unsigned long flag;
823 struct avc_node *node;
825 for (i = 0; i < AVC_CACHE_SLOTS; i++) {
826 spin_lock_irqsave(&avc_cache.slots_lock[i], flag);
828 * With preemptable RCU, the outer spinlock does not
829 * prevent RCU grace periods from ending.
831 rcu_read_lock();
832 list_for_each_entry(node, &avc_cache.slots[i], list)
833 avc_node_delete(node);
834 rcu_read_unlock();
835 spin_unlock_irqrestore(&avc_cache.slots_lock[i], flag);
838 for (c = avc_callbacks; c; c = c->next) {
839 if (c->events & AVC_CALLBACK_RESET) {
840 tmprc = c->callback(AVC_CALLBACK_RESET,
841 0, 0, 0, 0, NULL);
842 /* save the first error encountered for the return
843 value and continue processing the callbacks */
844 if (!rc)
845 rc = tmprc;
849 avc_latest_notif_update(seqno, 0);
850 return rc;
854 * avc_has_perm_noaudit - Check permissions but perform no auditing.
855 * @ssid: source security identifier
856 * @tsid: target security identifier
857 * @tclass: target security class
858 * @requested: requested permissions, interpreted based on @tclass
859 * @flags: AVC_STRICT or 0
860 * @avd: access vector decisions
862 * Check the AVC to determine whether the @requested permissions are granted
863 * for the SID pair (@ssid, @tsid), interpreting the permissions
864 * based on @tclass, and call the security server on a cache miss to obtain
865 * a new decision and add it to the cache. Return a copy of the decisions
866 * in @avd. Return %0 if all @requested permissions are granted,
867 * -%EACCES if any permissions are denied, or another -errno upon
868 * other errors. This function is typically called by avc_has_perm(),
869 * but may also be called directly to separate permission checking from
870 * auditing, e.g. in cases where a lock must be held for the check but
871 * should be released for the auditing.
873 int avc_has_perm_noaudit(u32 ssid, u32 tsid,
874 u16 tclass, u32 requested,
875 unsigned flags,
876 struct av_decision *avd)
878 struct avc_node *node;
879 struct avc_entry entry, *p_ae;
880 int rc = 0;
881 u32 denied;
883 BUG_ON(!requested);
885 rcu_read_lock();
887 node = avc_lookup(ssid, tsid, tclass, requested);
888 if (!node) {
889 rcu_read_unlock();
890 rc = security_compute_av(ssid, tsid, tclass, requested, &entry.avd);
891 if (rc)
892 goto out;
893 rcu_read_lock();
894 node = avc_insert(ssid, tsid, tclass, &entry);
897 p_ae = node ? &node->ae : &entry;
899 if (avd)
900 memcpy(avd, &p_ae->avd, sizeof(*avd));
902 denied = requested & ~(p_ae->avd.allowed);
904 if (denied) {
905 if (flags & AVC_STRICT)
906 rc = -EACCES;
907 else if (!selinux_enforcing || security_permissive_sid(ssid))
908 avc_update_node(AVC_CALLBACK_GRANT, requested, ssid,
909 tsid, tclass);
910 else
911 rc = -EACCES;
914 rcu_read_unlock();
915 out:
916 return rc;
920 * avc_has_perm - Check permissions and perform any appropriate auditing.
921 * @ssid: source security identifier
922 * @tsid: target security identifier
923 * @tclass: target security class
924 * @requested: requested permissions, interpreted based on @tclass
925 * @auditdata: auxiliary audit data
927 * Check the AVC to determine whether the @requested permissions are granted
928 * for the SID pair (@ssid, @tsid), interpreting the permissions
929 * based on @tclass, and call the security server on a cache miss to obtain
930 * a new decision and add it to the cache. Audit the granting or denial of
931 * permissions in accordance with the policy. Return %0 if all @requested
932 * permissions are granted, -%EACCES if any permissions are denied, or
933 * another -errno upon other errors.
935 int avc_has_perm(u32 ssid, u32 tsid, u16 tclass,
936 u32 requested, struct avc_audit_data *auditdata)
938 struct av_decision avd;
939 int rc;
941 rc = avc_has_perm_noaudit(ssid, tsid, tclass, requested, 0, &avd);
942 avc_audit(ssid, tsid, tclass, requested, &avd, rc, auditdata);
943 return rc;
946 u32 avc_policy_seqno(void)
948 return avc_cache.latest_notif;