2 * Copyright (C) 2007,2008 Oracle. All rights reserved.
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
19 #include <linux/sched.h>
22 #include "transaction.h"
23 #include "print-tree.h"
26 static int split_node(struct btrfs_trans_handle
*trans
, struct btrfs_root
27 *root
, struct btrfs_path
*path
, int level
);
28 static int split_leaf(struct btrfs_trans_handle
*trans
, struct btrfs_root
29 *root
, struct btrfs_key
*ins_key
,
30 struct btrfs_path
*path
, int data_size
, int extend
);
31 static int push_node_left(struct btrfs_trans_handle
*trans
,
32 struct btrfs_root
*root
, struct extent_buffer
*dst
,
33 struct extent_buffer
*src
, int empty
);
34 static int balance_node_right(struct btrfs_trans_handle
*trans
,
35 struct btrfs_root
*root
,
36 struct extent_buffer
*dst_buf
,
37 struct extent_buffer
*src_buf
);
38 static int del_ptr(struct btrfs_trans_handle
*trans
, struct btrfs_root
*root
,
39 struct btrfs_path
*path
, int level
, int slot
);
41 struct btrfs_path
*btrfs_alloc_path(void)
43 struct btrfs_path
*path
;
44 path
= kmem_cache_zalloc(btrfs_path_cachep
, GFP_NOFS
);
51 * set all locked nodes in the path to blocking locks. This should
52 * be done before scheduling
54 noinline
void btrfs_set_path_blocking(struct btrfs_path
*p
)
57 for (i
= 0; i
< BTRFS_MAX_LEVEL
; i
++) {
58 if (p
->nodes
[i
] && p
->locks
[i
])
59 btrfs_set_lock_blocking(p
->nodes
[i
]);
64 * reset all the locked nodes in the patch to spinning locks.
66 * held is used to keep lockdep happy, when lockdep is enabled
67 * we set held to a blocking lock before we go around and
68 * retake all the spinlocks in the path. You can safely use NULL
71 noinline
void btrfs_clear_path_blocking(struct btrfs_path
*p
,
72 struct extent_buffer
*held
)
76 #ifdef CONFIG_DEBUG_LOCK_ALLOC
77 /* lockdep really cares that we take all of these spinlocks
78 * in the right order. If any of the locks in the path are not
79 * currently blocking, it is going to complain. So, make really
80 * really sure by forcing the path to blocking before we clear
84 btrfs_set_lock_blocking(held
);
85 btrfs_set_path_blocking(p
);
88 for (i
= BTRFS_MAX_LEVEL
- 1; i
>= 0; i
--) {
89 if (p
->nodes
[i
] && p
->locks
[i
])
90 btrfs_clear_lock_blocking(p
->nodes
[i
]);
93 #ifdef CONFIG_DEBUG_LOCK_ALLOC
95 btrfs_clear_lock_blocking(held
);
99 /* this also releases the path */
100 void btrfs_free_path(struct btrfs_path
*p
)
102 btrfs_release_path(NULL
, p
);
103 kmem_cache_free(btrfs_path_cachep
, p
);
107 * path release drops references on the extent buffers in the path
108 * and it drops any locks held by this path
110 * It is safe to call this on paths that no locks or extent buffers held.
112 noinline
void btrfs_release_path(struct btrfs_root
*root
, struct btrfs_path
*p
)
116 for (i
= 0; i
< BTRFS_MAX_LEVEL
; i
++) {
121 btrfs_tree_unlock(p
->nodes
[i
]);
124 free_extent_buffer(p
->nodes
[i
]);
130 * safely gets a reference on the root node of a tree. A lock
131 * is not taken, so a concurrent writer may put a different node
132 * at the root of the tree. See btrfs_lock_root_node for the
135 * The extent buffer returned by this has a reference taken, so
136 * it won't disappear. It may stop being the root of the tree
137 * at any time because there are no locks held.
139 struct extent_buffer
*btrfs_root_node(struct btrfs_root
*root
)
141 struct extent_buffer
*eb
;
142 spin_lock(&root
->node_lock
);
144 extent_buffer_get(eb
);
145 spin_unlock(&root
->node_lock
);
149 /* loop around taking references on and locking the root node of the
150 * tree until you end up with a lock on the root. A locked buffer
151 * is returned, with a reference held.
153 struct extent_buffer
*btrfs_lock_root_node(struct btrfs_root
*root
)
155 struct extent_buffer
*eb
;
158 eb
= btrfs_root_node(root
);
161 spin_lock(&root
->node_lock
);
162 if (eb
== root
->node
) {
163 spin_unlock(&root
->node_lock
);
166 spin_unlock(&root
->node_lock
);
168 btrfs_tree_unlock(eb
);
169 free_extent_buffer(eb
);
174 /* cowonly root (everything not a reference counted cow subvolume), just get
175 * put onto a simple dirty list. transaction.c walks this to make sure they
176 * get properly updated on disk.
178 static void add_root_to_dirty_list(struct btrfs_root
*root
)
180 if (root
->track_dirty
&& list_empty(&root
->dirty_list
)) {
181 list_add(&root
->dirty_list
,
182 &root
->fs_info
->dirty_cowonly_roots
);
187 * used by snapshot creation to make a copy of a root for a tree with
188 * a given objectid. The buffer with the new root node is returned in
189 * cow_ret, and this func returns zero on success or a negative error code.
191 int btrfs_copy_root(struct btrfs_trans_handle
*trans
,
192 struct btrfs_root
*root
,
193 struct extent_buffer
*buf
,
194 struct extent_buffer
**cow_ret
, u64 new_root_objectid
)
196 struct extent_buffer
*cow
;
200 struct btrfs_root
*new_root
;
202 new_root
= kmalloc(sizeof(*new_root
), GFP_NOFS
);
206 memcpy(new_root
, root
, sizeof(*new_root
));
207 new_root
->root_key
.objectid
= new_root_objectid
;
209 WARN_ON(root
->ref_cows
&& trans
->transid
!=
210 root
->fs_info
->running_transaction
->transid
);
211 WARN_ON(root
->ref_cows
&& trans
->transid
!= root
->last_trans
);
213 level
= btrfs_header_level(buf
);
214 nritems
= btrfs_header_nritems(buf
);
216 cow
= btrfs_alloc_free_block(trans
, new_root
, buf
->len
, 0,
217 new_root_objectid
, trans
->transid
,
218 level
, buf
->start
, 0);
224 copy_extent_buffer(cow
, buf
, 0, 0, cow
->len
);
225 btrfs_set_header_bytenr(cow
, cow
->start
);
226 btrfs_set_header_generation(cow
, trans
->transid
);
227 btrfs_set_header_owner(cow
, new_root_objectid
);
228 btrfs_clear_header_flag(cow
, BTRFS_HEADER_FLAG_WRITTEN
);
230 write_extent_buffer(cow
, root
->fs_info
->fsid
,
231 (unsigned long)btrfs_header_fsid(cow
),
234 WARN_ON(btrfs_header_generation(buf
) > trans
->transid
);
235 ret
= btrfs_inc_ref(trans
, new_root
, buf
, cow
, NULL
);
241 btrfs_mark_buffer_dirty(cow
);
247 * does the dirty work in cow of a single block. The parent block (if
248 * supplied) is updated to point to the new cow copy. The new buffer is marked
249 * dirty and returned locked. If you modify the block it needs to be marked
252 * search_start -- an allocation hint for the new block
254 * empty_size -- a hint that you plan on doing more cow. This is the size in
255 * bytes the allocator should try to find free next to the block it returns.
256 * This is just a hint and may be ignored by the allocator.
258 static noinline
int __btrfs_cow_block(struct btrfs_trans_handle
*trans
,
259 struct btrfs_root
*root
,
260 struct extent_buffer
*buf
,
261 struct extent_buffer
*parent
, int parent_slot
,
262 struct extent_buffer
**cow_ret
,
263 u64 search_start
, u64 empty_size
)
266 struct extent_buffer
*cow
;
275 btrfs_assert_tree_locked(buf
);
278 parent_start
= parent
->start
;
282 WARN_ON(root
->ref_cows
&& trans
->transid
!=
283 root
->fs_info
->running_transaction
->transid
);
284 WARN_ON(root
->ref_cows
&& trans
->transid
!= root
->last_trans
);
286 level
= btrfs_header_level(buf
);
287 nritems
= btrfs_header_nritems(buf
);
289 cow
= btrfs_alloc_free_block(trans
, root
, buf
->len
,
290 parent_start
, root
->root_key
.objectid
,
291 trans
->transid
, level
,
292 search_start
, empty_size
);
296 /* cow is set to blocking by btrfs_init_new_buffer */
298 copy_extent_buffer(cow
, buf
, 0, 0, cow
->len
);
299 btrfs_set_header_bytenr(cow
, cow
->start
);
300 btrfs_set_header_generation(cow
, trans
->transid
);
301 btrfs_set_header_owner(cow
, root
->root_key
.objectid
);
302 btrfs_clear_header_flag(cow
, BTRFS_HEADER_FLAG_WRITTEN
);
304 write_extent_buffer(cow
, root
->fs_info
->fsid
,
305 (unsigned long)btrfs_header_fsid(cow
),
308 WARN_ON(btrfs_header_generation(buf
) > trans
->transid
);
309 if (btrfs_header_generation(buf
) != trans
->transid
) {
311 ret
= btrfs_inc_ref(trans
, root
, buf
, cow
, &nr_extents
);
315 ret
= btrfs_cache_ref(trans
, root
, buf
, nr_extents
);
317 } else if (btrfs_header_owner(buf
) == BTRFS_TREE_RELOC_OBJECTID
) {
319 * There are only two places that can drop reference to
320 * tree blocks owned by living reloc trees, one is here,
321 * the other place is btrfs_drop_subtree. In both places,
322 * we check reference count while tree block is locked.
323 * Furthermore, if reference count is one, it won't get
324 * increased by someone else.
327 ret
= btrfs_lookup_extent_ref(trans
, root
, buf
->start
,
331 ret
= btrfs_update_ref(trans
, root
, buf
, cow
,
333 clean_tree_block(trans
, root
, buf
);
335 ret
= btrfs_inc_ref(trans
, root
, buf
, cow
, NULL
);
339 ret
= btrfs_update_ref(trans
, root
, buf
, cow
, 0, nritems
);
342 clean_tree_block(trans
, root
, buf
);
345 if (root
->root_key
.objectid
== BTRFS_TREE_RELOC_OBJECTID
) {
346 ret
= btrfs_reloc_tree_cache_ref(trans
, root
, cow
, buf
->start
);
350 if (buf
== root
->node
) {
351 WARN_ON(parent
&& parent
!= buf
);
353 spin_lock(&root
->node_lock
);
355 extent_buffer_get(cow
);
356 spin_unlock(&root
->node_lock
);
358 if (buf
!= root
->commit_root
) {
359 btrfs_free_extent(trans
, root
, buf
->start
,
360 buf
->len
, buf
->start
,
361 root
->root_key
.objectid
,
362 btrfs_header_generation(buf
),
365 free_extent_buffer(buf
);
366 add_root_to_dirty_list(root
);
368 btrfs_set_node_blockptr(parent
, parent_slot
,
370 WARN_ON(trans
->transid
== 0);
371 btrfs_set_node_ptr_generation(parent
, parent_slot
,
373 btrfs_mark_buffer_dirty(parent
);
374 WARN_ON(btrfs_header_generation(parent
) != trans
->transid
);
375 btrfs_free_extent(trans
, root
, buf
->start
, buf
->len
,
376 parent_start
, btrfs_header_owner(parent
),
377 btrfs_header_generation(parent
), level
, 1);
380 btrfs_tree_unlock(buf
);
381 free_extent_buffer(buf
);
382 btrfs_mark_buffer_dirty(cow
);
388 * cows a single block, see __btrfs_cow_block for the real work.
389 * This version of it has extra checks so that a block isn't cow'd more than
390 * once per transaction, as long as it hasn't been written yet
392 noinline
int btrfs_cow_block(struct btrfs_trans_handle
*trans
,
393 struct btrfs_root
*root
, struct extent_buffer
*buf
,
394 struct extent_buffer
*parent
, int parent_slot
,
395 struct extent_buffer
**cow_ret
)
400 if (trans
->transaction
!= root
->fs_info
->running_transaction
) {
401 printk(KERN_CRIT
"trans %llu running %llu\n",
402 (unsigned long long)trans
->transid
,
404 root
->fs_info
->running_transaction
->transid
);
407 if (trans
->transid
!= root
->fs_info
->generation
) {
408 printk(KERN_CRIT
"trans %llu running %llu\n",
409 (unsigned long long)trans
->transid
,
410 (unsigned long long)root
->fs_info
->generation
);
414 if (btrfs_header_generation(buf
) == trans
->transid
&&
415 btrfs_header_owner(buf
) == root
->root_key
.objectid
&&
416 !btrfs_header_flag(buf
, BTRFS_HEADER_FLAG_WRITTEN
)) {
421 search_start
= buf
->start
& ~((u64
)(1024 * 1024 * 1024) - 1);
424 btrfs_set_lock_blocking(parent
);
425 btrfs_set_lock_blocking(buf
);
427 ret
= __btrfs_cow_block(trans
, root
, buf
, parent
,
428 parent_slot
, cow_ret
, search_start
, 0);
433 * helper function for defrag to decide if two blocks pointed to by a
434 * node are actually close by
436 static int close_blocks(u64 blocknr
, u64 other
, u32 blocksize
)
438 if (blocknr
< other
&& other
- (blocknr
+ blocksize
) < 32768)
440 if (blocknr
> other
&& blocknr
- (other
+ blocksize
) < 32768)
446 * compare two keys in a memcmp fashion
448 static int comp_keys(struct btrfs_disk_key
*disk
, struct btrfs_key
*k2
)
452 btrfs_disk_key_to_cpu(&k1
, disk
);
454 if (k1
.objectid
> k2
->objectid
)
456 if (k1
.objectid
< k2
->objectid
)
458 if (k1
.type
> k2
->type
)
460 if (k1
.type
< k2
->type
)
462 if (k1
.offset
> k2
->offset
)
464 if (k1
.offset
< k2
->offset
)
470 * same as comp_keys only with two btrfs_key's
472 static int comp_cpu_keys(struct btrfs_key
*k1
, struct btrfs_key
*k2
)
474 if (k1
->objectid
> k2
->objectid
)
476 if (k1
->objectid
< k2
->objectid
)
478 if (k1
->type
> k2
->type
)
480 if (k1
->type
< k2
->type
)
482 if (k1
->offset
> k2
->offset
)
484 if (k1
->offset
< k2
->offset
)
490 * this is used by the defrag code to go through all the
491 * leaves pointed to by a node and reallocate them so that
492 * disk order is close to key order
494 int btrfs_realloc_node(struct btrfs_trans_handle
*trans
,
495 struct btrfs_root
*root
, struct extent_buffer
*parent
,
496 int start_slot
, int cache_only
, u64
*last_ret
,
497 struct btrfs_key
*progress
)
499 struct extent_buffer
*cur
;
502 u64 search_start
= *last_ret
;
512 int progress_passed
= 0;
513 struct btrfs_disk_key disk_key
;
515 parent_level
= btrfs_header_level(parent
);
516 if (cache_only
&& parent_level
!= 1)
519 if (trans
->transaction
!= root
->fs_info
->running_transaction
)
521 if (trans
->transid
!= root
->fs_info
->generation
)
524 parent_nritems
= btrfs_header_nritems(parent
);
525 blocksize
= btrfs_level_size(root
, parent_level
- 1);
526 end_slot
= parent_nritems
;
528 if (parent_nritems
== 1)
531 btrfs_set_lock_blocking(parent
);
533 for (i
= start_slot
; i
< end_slot
; i
++) {
536 if (!parent
->map_token
) {
537 map_extent_buffer(parent
,
538 btrfs_node_key_ptr_offset(i
),
539 sizeof(struct btrfs_key_ptr
),
540 &parent
->map_token
, &parent
->kaddr
,
541 &parent
->map_start
, &parent
->map_len
,
544 btrfs_node_key(parent
, &disk_key
, i
);
545 if (!progress_passed
&& comp_keys(&disk_key
, progress
) < 0)
549 blocknr
= btrfs_node_blockptr(parent
, i
);
550 gen
= btrfs_node_ptr_generation(parent
, i
);
552 last_block
= blocknr
;
555 other
= btrfs_node_blockptr(parent
, i
- 1);
556 close
= close_blocks(blocknr
, other
, blocksize
);
558 if (!close
&& i
< end_slot
- 2) {
559 other
= btrfs_node_blockptr(parent
, i
+ 1);
560 close
= close_blocks(blocknr
, other
, blocksize
);
563 last_block
= blocknr
;
566 if (parent
->map_token
) {
567 unmap_extent_buffer(parent
, parent
->map_token
,
569 parent
->map_token
= NULL
;
572 cur
= btrfs_find_tree_block(root
, blocknr
, blocksize
);
574 uptodate
= btrfs_buffer_uptodate(cur
, gen
);
577 if (!cur
|| !uptodate
) {
579 free_extent_buffer(cur
);
583 cur
= read_tree_block(root
, blocknr
,
585 } else if (!uptodate
) {
586 btrfs_read_buffer(cur
, gen
);
589 if (search_start
== 0)
590 search_start
= last_block
;
592 btrfs_tree_lock(cur
);
593 btrfs_set_lock_blocking(cur
);
594 err
= __btrfs_cow_block(trans
, root
, cur
, parent
, i
,
597 (end_slot
- i
) * blocksize
));
599 btrfs_tree_unlock(cur
);
600 free_extent_buffer(cur
);
603 search_start
= cur
->start
;
604 last_block
= cur
->start
;
605 *last_ret
= search_start
;
606 btrfs_tree_unlock(cur
);
607 free_extent_buffer(cur
);
609 if (parent
->map_token
) {
610 unmap_extent_buffer(parent
, parent
->map_token
,
612 parent
->map_token
= NULL
;
618 * The leaf data grows from end-to-front in the node.
619 * this returns the address of the start of the last item,
620 * which is the stop of the leaf data stack
622 static inline unsigned int leaf_data_end(struct btrfs_root
*root
,
623 struct extent_buffer
*leaf
)
625 u32 nr
= btrfs_header_nritems(leaf
);
627 return BTRFS_LEAF_DATA_SIZE(root
);
628 return btrfs_item_offset_nr(leaf
, nr
- 1);
632 * extra debugging checks to make sure all the items in a key are
633 * well formed and in the proper order
635 static int check_node(struct btrfs_root
*root
, struct btrfs_path
*path
,
638 struct extent_buffer
*parent
= NULL
;
639 struct extent_buffer
*node
= path
->nodes
[level
];
640 struct btrfs_disk_key parent_key
;
641 struct btrfs_disk_key node_key
;
644 struct btrfs_key cpukey
;
645 u32 nritems
= btrfs_header_nritems(node
);
647 if (path
->nodes
[level
+ 1])
648 parent
= path
->nodes
[level
+ 1];
650 slot
= path
->slots
[level
];
651 BUG_ON(nritems
== 0);
653 parent_slot
= path
->slots
[level
+ 1];
654 btrfs_node_key(parent
, &parent_key
, parent_slot
);
655 btrfs_node_key(node
, &node_key
, 0);
656 BUG_ON(memcmp(&parent_key
, &node_key
,
657 sizeof(struct btrfs_disk_key
)));
658 BUG_ON(btrfs_node_blockptr(parent
, parent_slot
) !=
659 btrfs_header_bytenr(node
));
661 BUG_ON(nritems
> BTRFS_NODEPTRS_PER_BLOCK(root
));
663 btrfs_node_key_to_cpu(node
, &cpukey
, slot
- 1);
664 btrfs_node_key(node
, &node_key
, slot
);
665 BUG_ON(comp_keys(&node_key
, &cpukey
) <= 0);
667 if (slot
< nritems
- 1) {
668 btrfs_node_key_to_cpu(node
, &cpukey
, slot
+ 1);
669 btrfs_node_key(node
, &node_key
, slot
);
670 BUG_ON(comp_keys(&node_key
, &cpukey
) >= 0);
676 * extra checking to make sure all the items in a leaf are
677 * well formed and in the proper order
679 static int check_leaf(struct btrfs_root
*root
, struct btrfs_path
*path
,
682 struct extent_buffer
*leaf
= path
->nodes
[level
];
683 struct extent_buffer
*parent
= NULL
;
685 struct btrfs_key cpukey
;
686 struct btrfs_disk_key parent_key
;
687 struct btrfs_disk_key leaf_key
;
688 int slot
= path
->slots
[0];
690 u32 nritems
= btrfs_header_nritems(leaf
);
692 if (path
->nodes
[level
+ 1])
693 parent
= path
->nodes
[level
+ 1];
699 parent_slot
= path
->slots
[level
+ 1];
700 btrfs_node_key(parent
, &parent_key
, parent_slot
);
701 btrfs_item_key(leaf
, &leaf_key
, 0);
703 BUG_ON(memcmp(&parent_key
, &leaf_key
,
704 sizeof(struct btrfs_disk_key
)));
705 BUG_ON(btrfs_node_blockptr(parent
, parent_slot
) !=
706 btrfs_header_bytenr(leaf
));
708 if (slot
!= 0 && slot
< nritems
- 1) {
709 btrfs_item_key(leaf
, &leaf_key
, slot
);
710 btrfs_item_key_to_cpu(leaf
, &cpukey
, slot
- 1);
711 if (comp_keys(&leaf_key
, &cpukey
) <= 0) {
712 btrfs_print_leaf(root
, leaf
);
713 printk(KERN_CRIT
"slot %d offset bad key\n", slot
);
716 if (btrfs_item_offset_nr(leaf
, slot
- 1) !=
717 btrfs_item_end_nr(leaf
, slot
)) {
718 btrfs_print_leaf(root
, leaf
);
719 printk(KERN_CRIT
"slot %d offset bad\n", slot
);
723 if (slot
< nritems
- 1) {
724 btrfs_item_key(leaf
, &leaf_key
, slot
);
725 btrfs_item_key_to_cpu(leaf
, &cpukey
, slot
+ 1);
726 BUG_ON(comp_keys(&leaf_key
, &cpukey
) >= 0);
727 if (btrfs_item_offset_nr(leaf
, slot
) !=
728 btrfs_item_end_nr(leaf
, slot
+ 1)) {
729 btrfs_print_leaf(root
, leaf
);
730 printk(KERN_CRIT
"slot %d offset bad\n", slot
);
734 BUG_ON(btrfs_item_offset_nr(leaf
, 0) +
735 btrfs_item_size_nr(leaf
, 0) != BTRFS_LEAF_DATA_SIZE(root
));
739 static noinline
int check_block(struct btrfs_root
*root
,
740 struct btrfs_path
*path
, int level
)
744 return check_leaf(root
, path
, level
);
745 return check_node(root
, path
, level
);
749 * search for key in the extent_buffer. The items start at offset p,
750 * and they are item_size apart. There are 'max' items in p.
752 * the slot in the array is returned via slot, and it points to
753 * the place where you would insert key if it is not found in
756 * slot may point to max if the key is bigger than all of the keys
758 static noinline
int generic_bin_search(struct extent_buffer
*eb
,
760 int item_size
, struct btrfs_key
*key
,
767 struct btrfs_disk_key
*tmp
= NULL
;
768 struct btrfs_disk_key unaligned
;
769 unsigned long offset
;
770 char *map_token
= NULL
;
772 unsigned long map_start
= 0;
773 unsigned long map_len
= 0;
777 mid
= (low
+ high
) / 2;
778 offset
= p
+ mid
* item_size
;
780 if (!map_token
|| offset
< map_start
||
781 (offset
+ sizeof(struct btrfs_disk_key
)) >
782 map_start
+ map_len
) {
784 unmap_extent_buffer(eb
, map_token
, KM_USER0
);
788 err
= map_private_extent_buffer(eb
, offset
,
789 sizeof(struct btrfs_disk_key
),
791 &map_start
, &map_len
, KM_USER0
);
794 tmp
= (struct btrfs_disk_key
*)(kaddr
+ offset
-
797 read_extent_buffer(eb
, &unaligned
,
798 offset
, sizeof(unaligned
));
803 tmp
= (struct btrfs_disk_key
*)(kaddr
+ offset
-
806 ret
= comp_keys(tmp
, key
);
815 unmap_extent_buffer(eb
, map_token
, KM_USER0
);
821 unmap_extent_buffer(eb
, map_token
, KM_USER0
);
826 * simple bin_search frontend that does the right thing for
829 static int bin_search(struct extent_buffer
*eb
, struct btrfs_key
*key
,
830 int level
, int *slot
)
833 return generic_bin_search(eb
,
834 offsetof(struct btrfs_leaf
, items
),
835 sizeof(struct btrfs_item
),
836 key
, btrfs_header_nritems(eb
),
839 return generic_bin_search(eb
,
840 offsetof(struct btrfs_node
, ptrs
),
841 sizeof(struct btrfs_key_ptr
),
842 key
, btrfs_header_nritems(eb
),
848 /* given a node and slot number, this reads the blocks it points to. The
849 * extent buffer is returned with a reference taken (but unlocked).
850 * NULL is returned on error.
852 static noinline
struct extent_buffer
*read_node_slot(struct btrfs_root
*root
,
853 struct extent_buffer
*parent
, int slot
)
855 int level
= btrfs_header_level(parent
);
858 if (slot
>= btrfs_header_nritems(parent
))
863 return read_tree_block(root
, btrfs_node_blockptr(parent
, slot
),
864 btrfs_level_size(root
, level
- 1),
865 btrfs_node_ptr_generation(parent
, slot
));
869 * node level balancing, used to make sure nodes are in proper order for
870 * item deletion. We balance from the top down, so we have to make sure
871 * that a deletion won't leave an node completely empty later on.
873 static noinline
int balance_level(struct btrfs_trans_handle
*trans
,
874 struct btrfs_root
*root
,
875 struct btrfs_path
*path
, int level
)
877 struct extent_buffer
*right
= NULL
;
878 struct extent_buffer
*mid
;
879 struct extent_buffer
*left
= NULL
;
880 struct extent_buffer
*parent
= NULL
;
884 int orig_slot
= path
->slots
[level
];
885 int err_on_enospc
= 0;
891 mid
= path
->nodes
[level
];
893 WARN_ON(!path
->locks
[level
]);
894 WARN_ON(btrfs_header_generation(mid
) != trans
->transid
);
896 orig_ptr
= btrfs_node_blockptr(mid
, orig_slot
);
898 if (level
< BTRFS_MAX_LEVEL
- 1)
899 parent
= path
->nodes
[level
+ 1];
900 pslot
= path
->slots
[level
+ 1];
903 * deal with the case where there is only one pointer in the root
904 * by promoting the node below to a root
907 struct extent_buffer
*child
;
909 if (btrfs_header_nritems(mid
) != 1)
912 /* promote the child to a root */
913 child
= read_node_slot(root
, mid
, 0);
915 btrfs_tree_lock(child
);
916 btrfs_set_lock_blocking(child
);
917 ret
= btrfs_cow_block(trans
, root
, child
, mid
, 0, &child
);
920 spin_lock(&root
->node_lock
);
922 spin_unlock(&root
->node_lock
);
924 ret
= btrfs_update_extent_ref(trans
, root
, child
->start
,
926 mid
->start
, child
->start
,
927 root
->root_key
.objectid
,
928 trans
->transid
, level
- 1);
931 add_root_to_dirty_list(root
);
932 btrfs_tree_unlock(child
);
934 path
->locks
[level
] = 0;
935 path
->nodes
[level
] = NULL
;
936 clean_tree_block(trans
, root
, mid
);
937 btrfs_tree_unlock(mid
);
938 /* once for the path */
939 free_extent_buffer(mid
);
940 ret
= btrfs_free_extent(trans
, root
, mid
->start
, mid
->len
,
941 mid
->start
, root
->root_key
.objectid
,
942 btrfs_header_generation(mid
),
944 /* once for the root ptr */
945 free_extent_buffer(mid
);
948 if (btrfs_header_nritems(mid
) >
949 BTRFS_NODEPTRS_PER_BLOCK(root
) / 4)
952 if (trans
->transaction
->delayed_refs
.flushing
&&
953 btrfs_header_nritems(mid
) > 2)
956 if (btrfs_header_nritems(mid
) < 2)
959 left
= read_node_slot(root
, parent
, pslot
- 1);
961 btrfs_tree_lock(left
);
962 btrfs_set_lock_blocking(left
);
963 wret
= btrfs_cow_block(trans
, root
, left
,
964 parent
, pslot
- 1, &left
);
970 right
= read_node_slot(root
, parent
, pslot
+ 1);
972 btrfs_tree_lock(right
);
973 btrfs_set_lock_blocking(right
);
974 wret
= btrfs_cow_block(trans
, root
, right
,
975 parent
, pslot
+ 1, &right
);
982 /* first, try to make some room in the middle buffer */
984 orig_slot
+= btrfs_header_nritems(left
);
985 wret
= push_node_left(trans
, root
, left
, mid
, 1);
988 if (btrfs_header_nritems(mid
) < 2)
993 * then try to empty the right most buffer into the middle
996 wret
= push_node_left(trans
, root
, mid
, right
, 1);
997 if (wret
< 0 && wret
!= -ENOSPC
)
999 if (btrfs_header_nritems(right
) == 0) {
1000 u64 bytenr
= right
->start
;
1001 u64 generation
= btrfs_header_generation(parent
);
1002 u32 blocksize
= right
->len
;
1004 clean_tree_block(trans
, root
, right
);
1005 btrfs_tree_unlock(right
);
1006 free_extent_buffer(right
);
1008 wret
= del_ptr(trans
, root
, path
, level
+ 1, pslot
+
1012 wret
= btrfs_free_extent(trans
, root
, bytenr
,
1013 blocksize
, parent
->start
,
1014 btrfs_header_owner(parent
),
1015 generation
, level
, 1);
1019 struct btrfs_disk_key right_key
;
1020 btrfs_node_key(right
, &right_key
, 0);
1021 btrfs_set_node_key(parent
, &right_key
, pslot
+ 1);
1022 btrfs_mark_buffer_dirty(parent
);
1025 if (btrfs_header_nritems(mid
) == 1) {
1027 * we're not allowed to leave a node with one item in the
1028 * tree during a delete. A deletion from lower in the tree
1029 * could try to delete the only pointer in this node.
1030 * So, pull some keys from the left.
1031 * There has to be a left pointer at this point because
1032 * otherwise we would have pulled some pointers from the
1036 wret
= balance_node_right(trans
, root
, mid
, left
);
1042 wret
= push_node_left(trans
, root
, left
, mid
, 1);
1048 if (btrfs_header_nritems(mid
) == 0) {
1049 /* we've managed to empty the middle node, drop it */
1050 u64 root_gen
= btrfs_header_generation(parent
);
1051 u64 bytenr
= mid
->start
;
1052 u32 blocksize
= mid
->len
;
1054 clean_tree_block(trans
, root
, mid
);
1055 btrfs_tree_unlock(mid
);
1056 free_extent_buffer(mid
);
1058 wret
= del_ptr(trans
, root
, path
, level
+ 1, pslot
);
1061 wret
= btrfs_free_extent(trans
, root
, bytenr
, blocksize
,
1063 btrfs_header_owner(parent
),
1064 root_gen
, level
, 1);
1068 /* update the parent key to reflect our changes */
1069 struct btrfs_disk_key mid_key
;
1070 btrfs_node_key(mid
, &mid_key
, 0);
1071 btrfs_set_node_key(parent
, &mid_key
, pslot
);
1072 btrfs_mark_buffer_dirty(parent
);
1075 /* update the path */
1077 if (btrfs_header_nritems(left
) > orig_slot
) {
1078 extent_buffer_get(left
);
1079 /* left was locked after cow */
1080 path
->nodes
[level
] = left
;
1081 path
->slots
[level
+ 1] -= 1;
1082 path
->slots
[level
] = orig_slot
;
1084 btrfs_tree_unlock(mid
);
1085 free_extent_buffer(mid
);
1088 orig_slot
-= btrfs_header_nritems(left
);
1089 path
->slots
[level
] = orig_slot
;
1092 /* double check we haven't messed things up */
1093 check_block(root
, path
, level
);
1095 btrfs_node_blockptr(path
->nodes
[level
], path
->slots
[level
]))
1099 btrfs_tree_unlock(right
);
1100 free_extent_buffer(right
);
1103 if (path
->nodes
[level
] != left
)
1104 btrfs_tree_unlock(left
);
1105 free_extent_buffer(left
);
1110 /* Node balancing for insertion. Here we only split or push nodes around
1111 * when they are completely full. This is also done top down, so we
1112 * have to be pessimistic.
1114 static noinline
int push_nodes_for_insert(struct btrfs_trans_handle
*trans
,
1115 struct btrfs_root
*root
,
1116 struct btrfs_path
*path
, int level
)
1118 struct extent_buffer
*right
= NULL
;
1119 struct extent_buffer
*mid
;
1120 struct extent_buffer
*left
= NULL
;
1121 struct extent_buffer
*parent
= NULL
;
1125 int orig_slot
= path
->slots
[level
];
1131 mid
= path
->nodes
[level
];
1132 WARN_ON(btrfs_header_generation(mid
) != trans
->transid
);
1133 orig_ptr
= btrfs_node_blockptr(mid
, orig_slot
);
1135 if (level
< BTRFS_MAX_LEVEL
- 1)
1136 parent
= path
->nodes
[level
+ 1];
1137 pslot
= path
->slots
[level
+ 1];
1142 left
= read_node_slot(root
, parent
, pslot
- 1);
1144 /* first, try to make some room in the middle buffer */
1148 btrfs_tree_lock(left
);
1149 btrfs_set_lock_blocking(left
);
1151 left_nr
= btrfs_header_nritems(left
);
1152 if (left_nr
>= BTRFS_NODEPTRS_PER_BLOCK(root
) - 1) {
1155 ret
= btrfs_cow_block(trans
, root
, left
, parent
,
1160 wret
= push_node_left(trans
, root
,
1167 struct btrfs_disk_key disk_key
;
1168 orig_slot
+= left_nr
;
1169 btrfs_node_key(mid
, &disk_key
, 0);
1170 btrfs_set_node_key(parent
, &disk_key
, pslot
);
1171 btrfs_mark_buffer_dirty(parent
);
1172 if (btrfs_header_nritems(left
) > orig_slot
) {
1173 path
->nodes
[level
] = left
;
1174 path
->slots
[level
+ 1] -= 1;
1175 path
->slots
[level
] = orig_slot
;
1176 btrfs_tree_unlock(mid
);
1177 free_extent_buffer(mid
);
1180 btrfs_header_nritems(left
);
1181 path
->slots
[level
] = orig_slot
;
1182 btrfs_tree_unlock(left
);
1183 free_extent_buffer(left
);
1187 btrfs_tree_unlock(left
);
1188 free_extent_buffer(left
);
1190 right
= read_node_slot(root
, parent
, pslot
+ 1);
1193 * then try to empty the right most buffer into the middle
1198 btrfs_tree_lock(right
);
1199 btrfs_set_lock_blocking(right
);
1201 right_nr
= btrfs_header_nritems(right
);
1202 if (right_nr
>= BTRFS_NODEPTRS_PER_BLOCK(root
) - 1) {
1205 ret
= btrfs_cow_block(trans
, root
, right
,
1211 wret
= balance_node_right(trans
, root
,
1218 struct btrfs_disk_key disk_key
;
1220 btrfs_node_key(right
, &disk_key
, 0);
1221 btrfs_set_node_key(parent
, &disk_key
, pslot
+ 1);
1222 btrfs_mark_buffer_dirty(parent
);
1224 if (btrfs_header_nritems(mid
) <= orig_slot
) {
1225 path
->nodes
[level
] = right
;
1226 path
->slots
[level
+ 1] += 1;
1227 path
->slots
[level
] = orig_slot
-
1228 btrfs_header_nritems(mid
);
1229 btrfs_tree_unlock(mid
);
1230 free_extent_buffer(mid
);
1232 btrfs_tree_unlock(right
);
1233 free_extent_buffer(right
);
1237 btrfs_tree_unlock(right
);
1238 free_extent_buffer(right
);
1244 * readahead one full node of leaves, finding things that are close
1245 * to the block in 'slot', and triggering ra on them.
1247 static void reada_for_search(struct btrfs_root
*root
,
1248 struct btrfs_path
*path
,
1249 int level
, int slot
, u64 objectid
)
1251 struct extent_buffer
*node
;
1252 struct btrfs_disk_key disk_key
;
1257 int direction
= path
->reada
;
1258 struct extent_buffer
*eb
;
1266 if (!path
->nodes
[level
])
1269 node
= path
->nodes
[level
];
1271 search
= btrfs_node_blockptr(node
, slot
);
1272 blocksize
= btrfs_level_size(root
, level
- 1);
1273 eb
= btrfs_find_tree_block(root
, search
, blocksize
);
1275 free_extent_buffer(eb
);
1281 nritems
= btrfs_header_nritems(node
);
1284 if (direction
< 0) {
1288 } else if (direction
> 0) {
1293 if (path
->reada
< 0 && objectid
) {
1294 btrfs_node_key(node
, &disk_key
, nr
);
1295 if (btrfs_disk_key_objectid(&disk_key
) != objectid
)
1298 search
= btrfs_node_blockptr(node
, nr
);
1299 if ((search
<= target
&& target
- search
<= 65536) ||
1300 (search
> target
&& search
- target
<= 65536)) {
1301 readahead_tree_block(root
, search
, blocksize
,
1302 btrfs_node_ptr_generation(node
, nr
));
1306 if ((nread
> 65536 || nscan
> 32))
1312 * returns -EAGAIN if it had to drop the path, or zero if everything was in
1315 static noinline
int reada_for_balance(struct btrfs_root
*root
,
1316 struct btrfs_path
*path
, int level
)
1320 struct extent_buffer
*parent
;
1321 struct extent_buffer
*eb
;
1328 parent
= path
->nodes
[level
+ 1];
1332 nritems
= btrfs_header_nritems(parent
);
1333 slot
= path
->slots
[level
+ 1];
1334 blocksize
= btrfs_level_size(root
, level
);
1337 block1
= btrfs_node_blockptr(parent
, slot
- 1);
1338 gen
= btrfs_node_ptr_generation(parent
, slot
- 1);
1339 eb
= btrfs_find_tree_block(root
, block1
, blocksize
);
1340 if (eb
&& btrfs_buffer_uptodate(eb
, gen
))
1342 free_extent_buffer(eb
);
1344 if (slot
+ 1 < nritems
) {
1345 block2
= btrfs_node_blockptr(parent
, slot
+ 1);
1346 gen
= btrfs_node_ptr_generation(parent
, slot
+ 1);
1347 eb
= btrfs_find_tree_block(root
, block2
, blocksize
);
1348 if (eb
&& btrfs_buffer_uptodate(eb
, gen
))
1350 free_extent_buffer(eb
);
1352 if (block1
|| block2
) {
1355 /* release the whole path */
1356 btrfs_release_path(root
, path
);
1358 /* read the blocks */
1360 readahead_tree_block(root
, block1
, blocksize
, 0);
1362 readahead_tree_block(root
, block2
, blocksize
, 0);
1365 eb
= read_tree_block(root
, block1
, blocksize
, 0);
1366 free_extent_buffer(eb
);
1369 eb
= read_tree_block(root
, block2
, blocksize
, 0);
1370 free_extent_buffer(eb
);
1378 * when we walk down the tree, it is usually safe to unlock the higher layers
1379 * in the tree. The exceptions are when our path goes through slot 0, because
1380 * operations on the tree might require changing key pointers higher up in the
1383 * callers might also have set path->keep_locks, which tells this code to keep
1384 * the lock if the path points to the last slot in the block. This is part of
1385 * walking through the tree, and selecting the next slot in the higher block.
1387 * lowest_unlock sets the lowest level in the tree we're allowed to unlock. so
1388 * if lowest_unlock is 1, level 0 won't be unlocked
1390 static noinline
void unlock_up(struct btrfs_path
*path
, int level
,
1394 int skip_level
= level
;
1396 struct extent_buffer
*t
;
1398 for (i
= level
; i
< BTRFS_MAX_LEVEL
; i
++) {
1399 if (!path
->nodes
[i
])
1401 if (!path
->locks
[i
])
1403 if (!no_skips
&& path
->slots
[i
] == 0) {
1407 if (!no_skips
&& path
->keep_locks
) {
1410 nritems
= btrfs_header_nritems(t
);
1411 if (nritems
< 1 || path
->slots
[i
] >= nritems
- 1) {
1416 if (skip_level
< i
&& i
>= lowest_unlock
)
1420 if (i
>= lowest_unlock
&& i
> skip_level
&& path
->locks
[i
]) {
1421 btrfs_tree_unlock(t
);
1428 * This releases any locks held in the path starting at level and
1429 * going all the way up to the root.
1431 * btrfs_search_slot will keep the lock held on higher nodes in a few
1432 * corner cases, such as COW of the block at slot zero in the node. This
1433 * ignores those rules, and it should only be called when there are no
1434 * more updates to be done higher up in the tree.
1436 noinline
void btrfs_unlock_up_safe(struct btrfs_path
*path
, int level
)
1440 if (path
->keep_locks
|| path
->lowest_level
)
1443 for (i
= level
; i
< BTRFS_MAX_LEVEL
; i
++) {
1444 if (!path
->nodes
[i
])
1446 if (!path
->locks
[i
])
1448 btrfs_tree_unlock(path
->nodes
[i
]);
1454 * helper function for btrfs_search_slot. The goal is to find a block
1455 * in cache without setting the path to blocking. If we find the block
1456 * we return zero and the path is unchanged.
1458 * If we can't find the block, we set the path blocking and do some
1459 * reada. -EAGAIN is returned and the search must be repeated.
1462 read_block_for_search(struct btrfs_trans_handle
*trans
,
1463 struct btrfs_root
*root
, struct btrfs_path
*p
,
1464 struct extent_buffer
**eb_ret
, int level
, int slot
,
1465 struct btrfs_key
*key
)
1470 struct extent_buffer
*b
= *eb_ret
;
1471 struct extent_buffer
*tmp
;
1473 blocknr
= btrfs_node_blockptr(b
, slot
);
1474 gen
= btrfs_node_ptr_generation(b
, slot
);
1475 blocksize
= btrfs_level_size(root
, level
- 1);
1477 tmp
= btrfs_find_tree_block(root
, blocknr
, blocksize
);
1478 if (tmp
&& btrfs_buffer_uptodate(tmp
, gen
)) {
1484 * reduce lock contention at high levels
1485 * of the btree by dropping locks before
1488 btrfs_unlock_up_safe(p
, level
+ 1);
1489 btrfs_set_path_blocking(p
);
1492 free_extent_buffer(tmp
);
1494 reada_for_search(root
, p
, level
, slot
, key
->objectid
);
1496 btrfs_release_path(NULL
, p
);
1497 tmp
= read_tree_block(root
, blocknr
, blocksize
, gen
);
1499 free_extent_buffer(tmp
);
1504 * helper function for btrfs_search_slot. This does all of the checks
1505 * for node-level blocks and does any balancing required based on
1508 * If no extra work was required, zero is returned. If we had to
1509 * drop the path, -EAGAIN is returned and btrfs_search_slot must
1513 setup_nodes_for_search(struct btrfs_trans_handle
*trans
,
1514 struct btrfs_root
*root
, struct btrfs_path
*p
,
1515 struct extent_buffer
*b
, int level
, int ins_len
)
1518 if ((p
->search_for_split
|| ins_len
> 0) && btrfs_header_nritems(b
) >=
1519 BTRFS_NODEPTRS_PER_BLOCK(root
) - 3) {
1522 sret
= reada_for_balance(root
, p
, level
);
1526 btrfs_set_path_blocking(p
);
1527 sret
= split_node(trans
, root
, p
, level
);
1528 btrfs_clear_path_blocking(p
, NULL
);
1535 b
= p
->nodes
[level
];
1536 } else if (ins_len
< 0 && btrfs_header_nritems(b
) <
1537 BTRFS_NODEPTRS_PER_BLOCK(root
) / 4) {
1540 sret
= reada_for_balance(root
, p
, level
);
1544 btrfs_set_path_blocking(p
);
1545 sret
= balance_level(trans
, root
, p
, level
);
1546 btrfs_clear_path_blocking(p
, NULL
);
1552 b
= p
->nodes
[level
];
1554 btrfs_release_path(NULL
, p
);
1557 BUG_ON(btrfs_header_nritems(b
) == 1);
1568 * look for key in the tree. path is filled in with nodes along the way
1569 * if key is found, we return zero and you can find the item in the leaf
1570 * level of the path (level 0)
1572 * If the key isn't found, the path points to the slot where it should
1573 * be inserted, and 1 is returned. If there are other errors during the
1574 * search a negative error number is returned.
1576 * if ins_len > 0, nodes and leaves will be split as we walk down the
1577 * tree. if ins_len < 0, nodes will be merged as we walk down the tree (if
1580 int btrfs_search_slot(struct btrfs_trans_handle
*trans
, struct btrfs_root
1581 *root
, struct btrfs_key
*key
, struct btrfs_path
*p
, int
1584 struct extent_buffer
*b
;
1588 int lowest_unlock
= 1;
1589 u8 lowest_level
= 0;
1591 lowest_level
= p
->lowest_level
;
1592 WARN_ON(lowest_level
&& ins_len
> 0);
1593 WARN_ON(p
->nodes
[0] != NULL
);
1599 if (p
->skip_locking
)
1600 b
= btrfs_root_node(root
);
1602 b
= btrfs_lock_root_node(root
);
1605 level
= btrfs_header_level(b
);
1608 * setup the path here so we can release it under lock
1609 * contention with the cow code
1611 p
->nodes
[level
] = b
;
1612 if (!p
->skip_locking
)
1613 p
->locks
[level
] = 1;
1619 * if we don't really need to cow this block
1620 * then we don't want to set the path blocking,
1621 * so we test it here
1623 if (btrfs_header_generation(b
) == trans
->transid
&&
1624 btrfs_header_owner(b
) == root
->root_key
.objectid
&&
1625 !btrfs_header_flag(b
, BTRFS_HEADER_FLAG_WRITTEN
)) {
1628 btrfs_set_path_blocking(p
);
1630 wret
= btrfs_cow_block(trans
, root
, b
,
1631 p
->nodes
[level
+ 1],
1632 p
->slots
[level
+ 1], &b
);
1634 free_extent_buffer(b
);
1640 BUG_ON(!cow
&& ins_len
);
1641 if (level
!= btrfs_header_level(b
))
1643 level
= btrfs_header_level(b
);
1645 p
->nodes
[level
] = b
;
1646 if (!p
->skip_locking
)
1647 p
->locks
[level
] = 1;
1649 btrfs_clear_path_blocking(p
, NULL
);
1652 * we have a lock on b and as long as we aren't changing
1653 * the tree, there is no way to for the items in b to change.
1654 * It is safe to drop the lock on our parent before we
1655 * go through the expensive btree search on b.
1657 * If cow is true, then we might be changing slot zero,
1658 * which may require changing the parent. So, we can't
1659 * drop the lock until after we know which slot we're
1663 btrfs_unlock_up_safe(p
, level
+ 1);
1665 ret
= check_block(root
, p
, level
);
1671 ret
= bin_search(b
, key
, level
, &slot
);
1674 if (ret
&& slot
> 0)
1676 p
->slots
[level
] = slot
;
1677 ret
= setup_nodes_for_search(trans
, root
, p
, b
, level
,
1683 b
= p
->nodes
[level
];
1684 slot
= p
->slots
[level
];
1686 unlock_up(p
, level
, lowest_unlock
);
1688 /* this is only true while dropping a snapshot */
1689 if (level
== lowest_level
) {
1694 ret
= read_block_for_search(trans
, root
, p
,
1695 &b
, level
, slot
, key
);
1699 if (!p
->skip_locking
) {
1702 btrfs_clear_path_blocking(p
, NULL
);
1703 lret
= btrfs_try_spin_lock(b
);
1706 btrfs_set_path_blocking(p
);
1708 btrfs_clear_path_blocking(p
, b
);
1712 p
->slots
[level
] = slot
;
1714 btrfs_leaf_free_space(root
, b
) < ins_len
) {
1717 btrfs_set_path_blocking(p
);
1718 sret
= split_leaf(trans
, root
, key
,
1719 p
, ins_len
, ret
== 0);
1720 btrfs_clear_path_blocking(p
, NULL
);
1728 if (!p
->search_for_split
)
1729 unlock_up(p
, level
, lowest_unlock
);
1736 * we don't really know what they plan on doing with the path
1737 * from here on, so for now just mark it as blocking
1739 if (!p
->leave_spinning
)
1740 btrfs_set_path_blocking(p
);
1744 int btrfs_merge_path(struct btrfs_trans_handle
*trans
,
1745 struct btrfs_root
*root
,
1746 struct btrfs_key
*node_keys
,
1747 u64
*nodes
, int lowest_level
)
1749 struct extent_buffer
*eb
;
1750 struct extent_buffer
*parent
;
1751 struct btrfs_key key
;
1760 eb
= btrfs_lock_root_node(root
);
1761 ret
= btrfs_cow_block(trans
, root
, eb
, NULL
, 0, &eb
);
1764 btrfs_set_lock_blocking(eb
);
1768 level
= btrfs_header_level(parent
);
1769 if (level
== 0 || level
<= lowest_level
)
1772 ret
= bin_search(parent
, &node_keys
[lowest_level
], level
,
1774 if (ret
&& slot
> 0)
1777 bytenr
= btrfs_node_blockptr(parent
, slot
);
1778 if (nodes
[level
- 1] == bytenr
)
1781 blocksize
= btrfs_level_size(root
, level
- 1);
1782 generation
= btrfs_node_ptr_generation(parent
, slot
);
1783 btrfs_node_key_to_cpu(eb
, &key
, slot
);
1784 key_match
= !memcmp(&key
, &node_keys
[level
- 1], sizeof(key
));
1786 if (generation
== trans
->transid
) {
1787 eb
= read_tree_block(root
, bytenr
, blocksize
,
1789 btrfs_tree_lock(eb
);
1790 btrfs_set_lock_blocking(eb
);
1794 * if node keys match and node pointer hasn't been modified
1795 * in the running transaction, we can merge the path. for
1796 * blocks owened by reloc trees, the node pointer check is
1797 * skipped, this is because these blocks are fully controlled
1798 * by the space balance code, no one else can modify them.
1800 if (!nodes
[level
- 1] || !key_match
||
1801 (generation
== trans
->transid
&&
1802 btrfs_header_owner(eb
) != BTRFS_TREE_RELOC_OBJECTID
)) {
1803 if (level
== 1 || level
== lowest_level
+ 1) {
1804 if (generation
== trans
->transid
) {
1805 btrfs_tree_unlock(eb
);
1806 free_extent_buffer(eb
);
1811 if (generation
!= trans
->transid
) {
1812 eb
= read_tree_block(root
, bytenr
, blocksize
,
1814 btrfs_tree_lock(eb
);
1815 btrfs_set_lock_blocking(eb
);
1818 ret
= btrfs_cow_block(trans
, root
, eb
, parent
, slot
,
1822 if (root
->root_key
.objectid
==
1823 BTRFS_TREE_RELOC_OBJECTID
) {
1824 if (!nodes
[level
- 1]) {
1825 nodes
[level
- 1] = eb
->start
;
1826 memcpy(&node_keys
[level
- 1], &key
,
1827 sizeof(node_keys
[0]));
1833 btrfs_tree_unlock(parent
);
1834 free_extent_buffer(parent
);
1839 btrfs_set_node_blockptr(parent
, slot
, nodes
[level
- 1]);
1840 btrfs_set_node_ptr_generation(parent
, slot
, trans
->transid
);
1841 btrfs_mark_buffer_dirty(parent
);
1843 ret
= btrfs_inc_extent_ref(trans
, root
,
1845 blocksize
, parent
->start
,
1846 btrfs_header_owner(parent
),
1847 btrfs_header_generation(parent
),
1852 * If the block was created in the running transaction,
1853 * it's possible this is the last reference to it, so we
1854 * should drop the subtree.
1856 if (generation
== trans
->transid
) {
1857 ret
= btrfs_drop_subtree(trans
, root
, eb
, parent
);
1859 btrfs_tree_unlock(eb
);
1860 free_extent_buffer(eb
);
1862 ret
= btrfs_free_extent(trans
, root
, bytenr
,
1863 blocksize
, parent
->start
,
1864 btrfs_header_owner(parent
),
1865 btrfs_header_generation(parent
),
1871 btrfs_tree_unlock(parent
);
1872 free_extent_buffer(parent
);
1877 * adjust the pointers going up the tree, starting at level
1878 * making sure the right key of each node is points to 'key'.
1879 * This is used after shifting pointers to the left, so it stops
1880 * fixing up pointers when a given leaf/node is not in slot 0 of the
1883 * If this fails to write a tree block, it returns -1, but continues
1884 * fixing up the blocks in ram so the tree is consistent.
1886 static int fixup_low_keys(struct btrfs_trans_handle
*trans
,
1887 struct btrfs_root
*root
, struct btrfs_path
*path
,
1888 struct btrfs_disk_key
*key
, int level
)
1892 struct extent_buffer
*t
;
1894 for (i
= level
; i
< BTRFS_MAX_LEVEL
; i
++) {
1895 int tslot
= path
->slots
[i
];
1896 if (!path
->nodes
[i
])
1899 btrfs_set_node_key(t
, key
, tslot
);
1900 btrfs_mark_buffer_dirty(path
->nodes
[i
]);
1910 * This function isn't completely safe. It's the caller's responsibility
1911 * that the new key won't break the order
1913 int btrfs_set_item_key_safe(struct btrfs_trans_handle
*trans
,
1914 struct btrfs_root
*root
, struct btrfs_path
*path
,
1915 struct btrfs_key
*new_key
)
1917 struct btrfs_disk_key disk_key
;
1918 struct extent_buffer
*eb
;
1921 eb
= path
->nodes
[0];
1922 slot
= path
->slots
[0];
1924 btrfs_item_key(eb
, &disk_key
, slot
- 1);
1925 if (comp_keys(&disk_key
, new_key
) >= 0)
1928 if (slot
< btrfs_header_nritems(eb
) - 1) {
1929 btrfs_item_key(eb
, &disk_key
, slot
+ 1);
1930 if (comp_keys(&disk_key
, new_key
) <= 0)
1934 btrfs_cpu_key_to_disk(&disk_key
, new_key
);
1935 btrfs_set_item_key(eb
, &disk_key
, slot
);
1936 btrfs_mark_buffer_dirty(eb
);
1938 fixup_low_keys(trans
, root
, path
, &disk_key
, 1);
1943 * try to push data from one node into the next node left in the
1946 * returns 0 if some ptrs were pushed left, < 0 if there was some horrible
1947 * error, and > 0 if there was no room in the left hand block.
1949 static int push_node_left(struct btrfs_trans_handle
*trans
,
1950 struct btrfs_root
*root
, struct extent_buffer
*dst
,
1951 struct extent_buffer
*src
, int empty
)
1958 src_nritems
= btrfs_header_nritems(src
);
1959 dst_nritems
= btrfs_header_nritems(dst
);
1960 push_items
= BTRFS_NODEPTRS_PER_BLOCK(root
) - dst_nritems
;
1961 WARN_ON(btrfs_header_generation(src
) != trans
->transid
);
1962 WARN_ON(btrfs_header_generation(dst
) != trans
->transid
);
1964 if (!empty
&& src_nritems
<= 8)
1967 if (push_items
<= 0)
1971 push_items
= min(src_nritems
, push_items
);
1972 if (push_items
< src_nritems
) {
1973 /* leave at least 8 pointers in the node if
1974 * we aren't going to empty it
1976 if (src_nritems
- push_items
< 8) {
1977 if (push_items
<= 8)
1983 push_items
= min(src_nritems
- 8, push_items
);
1985 copy_extent_buffer(dst
, src
,
1986 btrfs_node_key_ptr_offset(dst_nritems
),
1987 btrfs_node_key_ptr_offset(0),
1988 push_items
* sizeof(struct btrfs_key_ptr
));
1990 if (push_items
< src_nritems
) {
1991 memmove_extent_buffer(src
, btrfs_node_key_ptr_offset(0),
1992 btrfs_node_key_ptr_offset(push_items
),
1993 (src_nritems
- push_items
) *
1994 sizeof(struct btrfs_key_ptr
));
1996 btrfs_set_header_nritems(src
, src_nritems
- push_items
);
1997 btrfs_set_header_nritems(dst
, dst_nritems
+ push_items
);
1998 btrfs_mark_buffer_dirty(src
);
1999 btrfs_mark_buffer_dirty(dst
);
2001 ret
= btrfs_update_ref(trans
, root
, src
, dst
, dst_nritems
, push_items
);
2008 * try to push data from one node into the next node right in the
2011 * returns 0 if some ptrs were pushed, < 0 if there was some horrible
2012 * error, and > 0 if there was no room in the right hand block.
2014 * this will only push up to 1/2 the contents of the left node over
2016 static int balance_node_right(struct btrfs_trans_handle
*trans
,
2017 struct btrfs_root
*root
,
2018 struct extent_buffer
*dst
,
2019 struct extent_buffer
*src
)
2027 WARN_ON(btrfs_header_generation(src
) != trans
->transid
);
2028 WARN_ON(btrfs_header_generation(dst
) != trans
->transid
);
2030 src_nritems
= btrfs_header_nritems(src
);
2031 dst_nritems
= btrfs_header_nritems(dst
);
2032 push_items
= BTRFS_NODEPTRS_PER_BLOCK(root
) - dst_nritems
;
2033 if (push_items
<= 0)
2036 if (src_nritems
< 4)
2039 max_push
= src_nritems
/ 2 + 1;
2040 /* don't try to empty the node */
2041 if (max_push
>= src_nritems
)
2044 if (max_push
< push_items
)
2045 push_items
= max_push
;
2047 memmove_extent_buffer(dst
, btrfs_node_key_ptr_offset(push_items
),
2048 btrfs_node_key_ptr_offset(0),
2050 sizeof(struct btrfs_key_ptr
));
2052 copy_extent_buffer(dst
, src
,
2053 btrfs_node_key_ptr_offset(0),
2054 btrfs_node_key_ptr_offset(src_nritems
- push_items
),
2055 push_items
* sizeof(struct btrfs_key_ptr
));
2057 btrfs_set_header_nritems(src
, src_nritems
- push_items
);
2058 btrfs_set_header_nritems(dst
, dst_nritems
+ push_items
);
2060 btrfs_mark_buffer_dirty(src
);
2061 btrfs_mark_buffer_dirty(dst
);
2063 ret
= btrfs_update_ref(trans
, root
, src
, dst
, 0, push_items
);
2070 * helper function to insert a new root level in the tree.
2071 * A new node is allocated, and a single item is inserted to
2072 * point to the existing root
2074 * returns zero on success or < 0 on failure.
2076 static noinline
int insert_new_root(struct btrfs_trans_handle
*trans
,
2077 struct btrfs_root
*root
,
2078 struct btrfs_path
*path
, int level
)
2081 struct extent_buffer
*lower
;
2082 struct extent_buffer
*c
;
2083 struct extent_buffer
*old
;
2084 struct btrfs_disk_key lower_key
;
2087 BUG_ON(path
->nodes
[level
]);
2088 BUG_ON(path
->nodes
[level
-1] != root
->node
);
2090 lower
= path
->nodes
[level
-1];
2092 btrfs_item_key(lower
, &lower_key
, 0);
2094 btrfs_node_key(lower
, &lower_key
, 0);
2096 c
= btrfs_alloc_free_block(trans
, root
, root
->nodesize
, 0,
2097 root
->root_key
.objectid
, trans
->transid
,
2098 level
, root
->node
->start
, 0);
2102 memset_extent_buffer(c
, 0, 0, root
->nodesize
);
2103 btrfs_set_header_nritems(c
, 1);
2104 btrfs_set_header_level(c
, level
);
2105 btrfs_set_header_bytenr(c
, c
->start
);
2106 btrfs_set_header_generation(c
, trans
->transid
);
2107 btrfs_set_header_owner(c
, root
->root_key
.objectid
);
2109 write_extent_buffer(c
, root
->fs_info
->fsid
,
2110 (unsigned long)btrfs_header_fsid(c
),
2113 write_extent_buffer(c
, root
->fs_info
->chunk_tree_uuid
,
2114 (unsigned long)btrfs_header_chunk_tree_uuid(c
),
2117 btrfs_set_node_key(c
, &lower_key
, 0);
2118 btrfs_set_node_blockptr(c
, 0, lower
->start
);
2119 lower_gen
= btrfs_header_generation(lower
);
2120 WARN_ON(lower_gen
!= trans
->transid
);
2122 btrfs_set_node_ptr_generation(c
, 0, lower_gen
);
2124 btrfs_mark_buffer_dirty(c
);
2126 spin_lock(&root
->node_lock
);
2129 spin_unlock(&root
->node_lock
);
2131 ret
= btrfs_update_extent_ref(trans
, root
, lower
->start
,
2132 lower
->len
, lower
->start
, c
->start
,
2133 root
->root_key
.objectid
,
2134 trans
->transid
, level
- 1);
2137 /* the super has an extra ref to root->node */
2138 free_extent_buffer(old
);
2140 add_root_to_dirty_list(root
);
2141 extent_buffer_get(c
);
2142 path
->nodes
[level
] = c
;
2143 path
->locks
[level
] = 1;
2144 path
->slots
[level
] = 0;
2149 * worker function to insert a single pointer in a node.
2150 * the node should have enough room for the pointer already
2152 * slot and level indicate where you want the key to go, and
2153 * blocknr is the block the key points to.
2155 * returns zero on success and < 0 on any error
2157 static int insert_ptr(struct btrfs_trans_handle
*trans
, struct btrfs_root
2158 *root
, struct btrfs_path
*path
, struct btrfs_disk_key
2159 *key
, u64 bytenr
, int slot
, int level
)
2161 struct extent_buffer
*lower
;
2164 BUG_ON(!path
->nodes
[level
]);
2165 lower
= path
->nodes
[level
];
2166 nritems
= btrfs_header_nritems(lower
);
2167 BUG_ON(slot
> nritems
);
2168 if (nritems
== BTRFS_NODEPTRS_PER_BLOCK(root
))
2170 if (slot
!= nritems
) {
2171 memmove_extent_buffer(lower
,
2172 btrfs_node_key_ptr_offset(slot
+ 1),
2173 btrfs_node_key_ptr_offset(slot
),
2174 (nritems
- slot
) * sizeof(struct btrfs_key_ptr
));
2176 btrfs_set_node_key(lower
, key
, slot
);
2177 btrfs_set_node_blockptr(lower
, slot
, bytenr
);
2178 WARN_ON(trans
->transid
== 0);
2179 btrfs_set_node_ptr_generation(lower
, slot
, trans
->transid
);
2180 btrfs_set_header_nritems(lower
, nritems
+ 1);
2181 btrfs_mark_buffer_dirty(lower
);
2186 * split the node at the specified level in path in two.
2187 * The path is corrected to point to the appropriate node after the split
2189 * Before splitting this tries to make some room in the node by pushing
2190 * left and right, if either one works, it returns right away.
2192 * returns 0 on success and < 0 on failure
2194 static noinline
int split_node(struct btrfs_trans_handle
*trans
,
2195 struct btrfs_root
*root
,
2196 struct btrfs_path
*path
, int level
)
2198 struct extent_buffer
*c
;
2199 struct extent_buffer
*split
;
2200 struct btrfs_disk_key disk_key
;
2206 c
= path
->nodes
[level
];
2207 WARN_ON(btrfs_header_generation(c
) != trans
->transid
);
2208 if (c
== root
->node
) {
2209 /* trying to split the root, lets make a new one */
2210 ret
= insert_new_root(trans
, root
, path
, level
+ 1);
2213 } else if (!trans
->transaction
->delayed_refs
.flushing
) {
2214 ret
= push_nodes_for_insert(trans
, root
, path
, level
);
2215 c
= path
->nodes
[level
];
2216 if (!ret
&& btrfs_header_nritems(c
) <
2217 BTRFS_NODEPTRS_PER_BLOCK(root
) - 3)
2223 c_nritems
= btrfs_header_nritems(c
);
2225 split
= btrfs_alloc_free_block(trans
, root
, root
->nodesize
,
2226 path
->nodes
[level
+ 1]->start
,
2227 root
->root_key
.objectid
,
2228 trans
->transid
, level
, c
->start
, 0);
2230 return PTR_ERR(split
);
2232 btrfs_set_header_flags(split
, btrfs_header_flags(c
));
2233 btrfs_set_header_level(split
, btrfs_header_level(c
));
2234 btrfs_set_header_bytenr(split
, split
->start
);
2235 btrfs_set_header_generation(split
, trans
->transid
);
2236 btrfs_set_header_owner(split
, root
->root_key
.objectid
);
2237 btrfs_set_header_flags(split
, 0);
2238 write_extent_buffer(split
, root
->fs_info
->fsid
,
2239 (unsigned long)btrfs_header_fsid(split
),
2241 write_extent_buffer(split
, root
->fs_info
->chunk_tree_uuid
,
2242 (unsigned long)btrfs_header_chunk_tree_uuid(split
),
2245 mid
= (c_nritems
+ 1) / 2;
2247 copy_extent_buffer(split
, c
,
2248 btrfs_node_key_ptr_offset(0),
2249 btrfs_node_key_ptr_offset(mid
),
2250 (c_nritems
- mid
) * sizeof(struct btrfs_key_ptr
));
2251 btrfs_set_header_nritems(split
, c_nritems
- mid
);
2252 btrfs_set_header_nritems(c
, mid
);
2255 btrfs_mark_buffer_dirty(c
);
2256 btrfs_mark_buffer_dirty(split
);
2258 btrfs_node_key(split
, &disk_key
, 0);
2259 wret
= insert_ptr(trans
, root
, path
, &disk_key
, split
->start
,
2260 path
->slots
[level
+ 1] + 1,
2265 ret
= btrfs_update_ref(trans
, root
, c
, split
, 0, c_nritems
- mid
);
2268 if (path
->slots
[level
] >= mid
) {
2269 path
->slots
[level
] -= mid
;
2270 btrfs_tree_unlock(c
);
2271 free_extent_buffer(c
);
2272 path
->nodes
[level
] = split
;
2273 path
->slots
[level
+ 1] += 1;
2275 btrfs_tree_unlock(split
);
2276 free_extent_buffer(split
);
2282 * how many bytes are required to store the items in a leaf. start
2283 * and nr indicate which items in the leaf to check. This totals up the
2284 * space used both by the item structs and the item data
2286 static int leaf_space_used(struct extent_buffer
*l
, int start
, int nr
)
2289 int nritems
= btrfs_header_nritems(l
);
2290 int end
= min(nritems
, start
+ nr
) - 1;
2294 data_len
= btrfs_item_end_nr(l
, start
);
2295 data_len
= data_len
- btrfs_item_offset_nr(l
, end
);
2296 data_len
+= sizeof(struct btrfs_item
) * nr
;
2297 WARN_ON(data_len
< 0);
2302 * The space between the end of the leaf items and
2303 * the start of the leaf data. IOW, how much room
2304 * the leaf has left for both items and data
2306 noinline
int btrfs_leaf_free_space(struct btrfs_root
*root
,
2307 struct extent_buffer
*leaf
)
2309 int nritems
= btrfs_header_nritems(leaf
);
2311 ret
= BTRFS_LEAF_DATA_SIZE(root
) - leaf_space_used(leaf
, 0, nritems
);
2313 printk(KERN_CRIT
"leaf free space ret %d, leaf data size %lu, "
2314 "used %d nritems %d\n",
2315 ret
, (unsigned long) BTRFS_LEAF_DATA_SIZE(root
),
2316 leaf_space_used(leaf
, 0, nritems
), nritems
);
2321 static noinline
int __push_leaf_right(struct btrfs_trans_handle
*trans
,
2322 struct btrfs_root
*root
,
2323 struct btrfs_path
*path
,
2324 int data_size
, int empty
,
2325 struct extent_buffer
*right
,
2326 int free_space
, u32 left_nritems
)
2328 struct extent_buffer
*left
= path
->nodes
[0];
2329 struct extent_buffer
*upper
= path
->nodes
[1];
2330 struct btrfs_disk_key disk_key
;
2335 struct btrfs_item
*item
;
2347 if (path
->slots
[0] >= left_nritems
)
2348 push_space
+= data_size
;
2350 slot
= path
->slots
[1];
2351 i
= left_nritems
- 1;
2353 item
= btrfs_item_nr(left
, i
);
2355 if (!empty
&& push_items
> 0) {
2356 if (path
->slots
[0] > i
)
2358 if (path
->slots
[0] == i
) {
2359 int space
= btrfs_leaf_free_space(root
, left
);
2360 if (space
+ push_space
* 2 > free_space
)
2365 if (path
->slots
[0] == i
)
2366 push_space
+= data_size
;
2368 if (!left
->map_token
) {
2369 map_extent_buffer(left
, (unsigned long)item
,
2370 sizeof(struct btrfs_item
),
2371 &left
->map_token
, &left
->kaddr
,
2372 &left
->map_start
, &left
->map_len
,
2376 this_item_size
= btrfs_item_size(left
, item
);
2377 if (this_item_size
+ sizeof(*item
) + push_space
> free_space
)
2381 push_space
+= this_item_size
+ sizeof(*item
);
2386 if (left
->map_token
) {
2387 unmap_extent_buffer(left
, left
->map_token
, KM_USER1
);
2388 left
->map_token
= NULL
;
2391 if (push_items
== 0)
2394 if (!empty
&& push_items
== left_nritems
)
2397 /* push left to right */
2398 right_nritems
= btrfs_header_nritems(right
);
2400 push_space
= btrfs_item_end_nr(left
, left_nritems
- push_items
);
2401 push_space
-= leaf_data_end(root
, left
);
2403 /* make room in the right data area */
2404 data_end
= leaf_data_end(root
, right
);
2405 memmove_extent_buffer(right
,
2406 btrfs_leaf_data(right
) + data_end
- push_space
,
2407 btrfs_leaf_data(right
) + data_end
,
2408 BTRFS_LEAF_DATA_SIZE(root
) - data_end
);
2410 /* copy from the left data area */
2411 copy_extent_buffer(right
, left
, btrfs_leaf_data(right
) +
2412 BTRFS_LEAF_DATA_SIZE(root
) - push_space
,
2413 btrfs_leaf_data(left
) + leaf_data_end(root
, left
),
2416 memmove_extent_buffer(right
, btrfs_item_nr_offset(push_items
),
2417 btrfs_item_nr_offset(0),
2418 right_nritems
* sizeof(struct btrfs_item
));
2420 /* copy the items from left to right */
2421 copy_extent_buffer(right
, left
, btrfs_item_nr_offset(0),
2422 btrfs_item_nr_offset(left_nritems
- push_items
),
2423 push_items
* sizeof(struct btrfs_item
));
2425 /* update the item pointers */
2426 right_nritems
+= push_items
;
2427 btrfs_set_header_nritems(right
, right_nritems
);
2428 push_space
= BTRFS_LEAF_DATA_SIZE(root
);
2429 for (i
= 0; i
< right_nritems
; i
++) {
2430 item
= btrfs_item_nr(right
, i
);
2431 if (!right
->map_token
) {
2432 map_extent_buffer(right
, (unsigned long)item
,
2433 sizeof(struct btrfs_item
),
2434 &right
->map_token
, &right
->kaddr
,
2435 &right
->map_start
, &right
->map_len
,
2438 push_space
-= btrfs_item_size(right
, item
);
2439 btrfs_set_item_offset(right
, item
, push_space
);
2442 if (right
->map_token
) {
2443 unmap_extent_buffer(right
, right
->map_token
, KM_USER1
);
2444 right
->map_token
= NULL
;
2446 left_nritems
-= push_items
;
2447 btrfs_set_header_nritems(left
, left_nritems
);
2450 btrfs_mark_buffer_dirty(left
);
2451 btrfs_mark_buffer_dirty(right
);
2453 ret
= btrfs_update_ref(trans
, root
, left
, right
, 0, push_items
);
2456 btrfs_item_key(right
, &disk_key
, 0);
2457 btrfs_set_node_key(upper
, &disk_key
, slot
+ 1);
2458 btrfs_mark_buffer_dirty(upper
);
2460 /* then fixup the leaf pointer in the path */
2461 if (path
->slots
[0] >= left_nritems
) {
2462 path
->slots
[0] -= left_nritems
;
2463 if (btrfs_header_nritems(path
->nodes
[0]) == 0)
2464 clean_tree_block(trans
, root
, path
->nodes
[0]);
2465 btrfs_tree_unlock(path
->nodes
[0]);
2466 free_extent_buffer(path
->nodes
[0]);
2467 path
->nodes
[0] = right
;
2468 path
->slots
[1] += 1;
2470 btrfs_tree_unlock(right
);
2471 free_extent_buffer(right
);
2476 btrfs_tree_unlock(right
);
2477 free_extent_buffer(right
);
2482 * push some data in the path leaf to the right, trying to free up at
2483 * least data_size bytes. returns zero if the push worked, nonzero otherwise
2485 * returns 1 if the push failed because the other node didn't have enough
2486 * room, 0 if everything worked out and < 0 if there were major errors.
2488 static int push_leaf_right(struct btrfs_trans_handle
*trans
, struct btrfs_root
2489 *root
, struct btrfs_path
*path
, int data_size
,
2492 struct extent_buffer
*left
= path
->nodes
[0];
2493 struct extent_buffer
*right
;
2494 struct extent_buffer
*upper
;
2500 if (!path
->nodes
[1])
2503 slot
= path
->slots
[1];
2504 upper
= path
->nodes
[1];
2505 if (slot
>= btrfs_header_nritems(upper
) - 1)
2508 btrfs_assert_tree_locked(path
->nodes
[1]);
2510 right
= read_node_slot(root
, upper
, slot
+ 1);
2511 btrfs_tree_lock(right
);
2512 btrfs_set_lock_blocking(right
);
2514 free_space
= btrfs_leaf_free_space(root
, right
);
2515 if (free_space
< data_size
)
2518 /* cow and double check */
2519 ret
= btrfs_cow_block(trans
, root
, right
, upper
,
2524 free_space
= btrfs_leaf_free_space(root
, right
);
2525 if (free_space
< data_size
)
2528 left_nritems
= btrfs_header_nritems(left
);
2529 if (left_nritems
== 0)
2532 return __push_leaf_right(trans
, root
, path
, data_size
, empty
,
2533 right
, free_space
, left_nritems
);
2535 btrfs_tree_unlock(right
);
2536 free_extent_buffer(right
);
2541 * push some data in the path leaf to the left, trying to free up at
2542 * least data_size bytes. returns zero if the push worked, nonzero otherwise
2544 static noinline
int __push_leaf_left(struct btrfs_trans_handle
*trans
,
2545 struct btrfs_root
*root
,
2546 struct btrfs_path
*path
, int data_size
,
2547 int empty
, struct extent_buffer
*left
,
2548 int free_space
, int right_nritems
)
2550 struct btrfs_disk_key disk_key
;
2551 struct extent_buffer
*right
= path
->nodes
[0];
2556 struct btrfs_item
*item
;
2557 u32 old_left_nritems
;
2562 u32 old_left_item_size
;
2564 slot
= path
->slots
[1];
2569 nr
= right_nritems
- 1;
2571 for (i
= 0; i
< nr
; i
++) {
2572 item
= btrfs_item_nr(right
, i
);
2573 if (!right
->map_token
) {
2574 map_extent_buffer(right
, (unsigned long)item
,
2575 sizeof(struct btrfs_item
),
2576 &right
->map_token
, &right
->kaddr
,
2577 &right
->map_start
, &right
->map_len
,
2581 if (!empty
&& push_items
> 0) {
2582 if (path
->slots
[0] < i
)
2584 if (path
->slots
[0] == i
) {
2585 int space
= btrfs_leaf_free_space(root
, right
);
2586 if (space
+ push_space
* 2 > free_space
)
2591 if (path
->slots
[0] == i
)
2592 push_space
+= data_size
;
2594 this_item_size
= btrfs_item_size(right
, item
);
2595 if (this_item_size
+ sizeof(*item
) + push_space
> free_space
)
2599 push_space
+= this_item_size
+ sizeof(*item
);
2602 if (right
->map_token
) {
2603 unmap_extent_buffer(right
, right
->map_token
, KM_USER1
);
2604 right
->map_token
= NULL
;
2607 if (push_items
== 0) {
2611 if (!empty
&& push_items
== btrfs_header_nritems(right
))
2614 /* push data from right to left */
2615 copy_extent_buffer(left
, right
,
2616 btrfs_item_nr_offset(btrfs_header_nritems(left
)),
2617 btrfs_item_nr_offset(0),
2618 push_items
* sizeof(struct btrfs_item
));
2620 push_space
= BTRFS_LEAF_DATA_SIZE(root
) -
2621 btrfs_item_offset_nr(right
, push_items
- 1);
2623 copy_extent_buffer(left
, right
, btrfs_leaf_data(left
) +
2624 leaf_data_end(root
, left
) - push_space
,
2625 btrfs_leaf_data(right
) +
2626 btrfs_item_offset_nr(right
, push_items
- 1),
2628 old_left_nritems
= btrfs_header_nritems(left
);
2629 BUG_ON(old_left_nritems
<= 0);
2631 old_left_item_size
= btrfs_item_offset_nr(left
, old_left_nritems
- 1);
2632 for (i
= old_left_nritems
; i
< old_left_nritems
+ push_items
; i
++) {
2635 item
= btrfs_item_nr(left
, i
);
2636 if (!left
->map_token
) {
2637 map_extent_buffer(left
, (unsigned long)item
,
2638 sizeof(struct btrfs_item
),
2639 &left
->map_token
, &left
->kaddr
,
2640 &left
->map_start
, &left
->map_len
,
2644 ioff
= btrfs_item_offset(left
, item
);
2645 btrfs_set_item_offset(left
, item
,
2646 ioff
- (BTRFS_LEAF_DATA_SIZE(root
) - old_left_item_size
));
2648 btrfs_set_header_nritems(left
, old_left_nritems
+ push_items
);
2649 if (left
->map_token
) {
2650 unmap_extent_buffer(left
, left
->map_token
, KM_USER1
);
2651 left
->map_token
= NULL
;
2654 /* fixup right node */
2655 if (push_items
> right_nritems
) {
2656 printk(KERN_CRIT
"push items %d nr %u\n", push_items
,
2661 if (push_items
< right_nritems
) {
2662 push_space
= btrfs_item_offset_nr(right
, push_items
- 1) -
2663 leaf_data_end(root
, right
);
2664 memmove_extent_buffer(right
, btrfs_leaf_data(right
) +
2665 BTRFS_LEAF_DATA_SIZE(root
) - push_space
,
2666 btrfs_leaf_data(right
) +
2667 leaf_data_end(root
, right
), push_space
);
2669 memmove_extent_buffer(right
, btrfs_item_nr_offset(0),
2670 btrfs_item_nr_offset(push_items
),
2671 (btrfs_header_nritems(right
) - push_items
) *
2672 sizeof(struct btrfs_item
));
2674 right_nritems
-= push_items
;
2675 btrfs_set_header_nritems(right
, right_nritems
);
2676 push_space
= BTRFS_LEAF_DATA_SIZE(root
);
2677 for (i
= 0; i
< right_nritems
; i
++) {
2678 item
= btrfs_item_nr(right
, i
);
2680 if (!right
->map_token
) {
2681 map_extent_buffer(right
, (unsigned long)item
,
2682 sizeof(struct btrfs_item
),
2683 &right
->map_token
, &right
->kaddr
,
2684 &right
->map_start
, &right
->map_len
,
2688 push_space
= push_space
- btrfs_item_size(right
, item
);
2689 btrfs_set_item_offset(right
, item
, push_space
);
2691 if (right
->map_token
) {
2692 unmap_extent_buffer(right
, right
->map_token
, KM_USER1
);
2693 right
->map_token
= NULL
;
2696 btrfs_mark_buffer_dirty(left
);
2698 btrfs_mark_buffer_dirty(right
);
2700 ret
= btrfs_update_ref(trans
, root
, right
, left
,
2701 old_left_nritems
, push_items
);
2704 btrfs_item_key(right
, &disk_key
, 0);
2705 wret
= fixup_low_keys(trans
, root
, path
, &disk_key
, 1);
2709 /* then fixup the leaf pointer in the path */
2710 if (path
->slots
[0] < push_items
) {
2711 path
->slots
[0] += old_left_nritems
;
2712 if (btrfs_header_nritems(path
->nodes
[0]) == 0)
2713 clean_tree_block(trans
, root
, path
->nodes
[0]);
2714 btrfs_tree_unlock(path
->nodes
[0]);
2715 free_extent_buffer(path
->nodes
[0]);
2716 path
->nodes
[0] = left
;
2717 path
->slots
[1] -= 1;
2719 btrfs_tree_unlock(left
);
2720 free_extent_buffer(left
);
2721 path
->slots
[0] -= push_items
;
2723 BUG_ON(path
->slots
[0] < 0);
2726 btrfs_tree_unlock(left
);
2727 free_extent_buffer(left
);
2732 * push some data in the path leaf to the left, trying to free up at
2733 * least data_size bytes. returns zero if the push worked, nonzero otherwise
2735 static int push_leaf_left(struct btrfs_trans_handle
*trans
, struct btrfs_root
2736 *root
, struct btrfs_path
*path
, int data_size
,
2739 struct extent_buffer
*right
= path
->nodes
[0];
2740 struct extent_buffer
*left
;
2746 slot
= path
->slots
[1];
2749 if (!path
->nodes
[1])
2752 right_nritems
= btrfs_header_nritems(right
);
2753 if (right_nritems
== 0)
2756 btrfs_assert_tree_locked(path
->nodes
[1]);
2758 left
= read_node_slot(root
, path
->nodes
[1], slot
- 1);
2759 btrfs_tree_lock(left
);
2760 btrfs_set_lock_blocking(left
);
2762 free_space
= btrfs_leaf_free_space(root
, left
);
2763 if (free_space
< data_size
) {
2768 /* cow and double check */
2769 ret
= btrfs_cow_block(trans
, root
, left
,
2770 path
->nodes
[1], slot
- 1, &left
);
2772 /* we hit -ENOSPC, but it isn't fatal here */
2777 free_space
= btrfs_leaf_free_space(root
, left
);
2778 if (free_space
< data_size
) {
2783 return __push_leaf_left(trans
, root
, path
, data_size
,
2784 empty
, left
, free_space
, right_nritems
);
2786 btrfs_tree_unlock(left
);
2787 free_extent_buffer(left
);
2792 * split the path's leaf in two, making sure there is at least data_size
2793 * available for the resulting leaf level of the path.
2795 * returns 0 if all went well and < 0 on failure.
2797 static noinline
int copy_for_split(struct btrfs_trans_handle
*trans
,
2798 struct btrfs_root
*root
,
2799 struct btrfs_path
*path
,
2800 struct extent_buffer
*l
,
2801 struct extent_buffer
*right
,
2802 int slot
, int mid
, int nritems
)
2809 struct btrfs_disk_key disk_key
;
2811 nritems
= nritems
- mid
;
2812 btrfs_set_header_nritems(right
, nritems
);
2813 data_copy_size
= btrfs_item_end_nr(l
, mid
) - leaf_data_end(root
, l
);
2815 copy_extent_buffer(right
, l
, btrfs_item_nr_offset(0),
2816 btrfs_item_nr_offset(mid
),
2817 nritems
* sizeof(struct btrfs_item
));
2819 copy_extent_buffer(right
, l
,
2820 btrfs_leaf_data(right
) + BTRFS_LEAF_DATA_SIZE(root
) -
2821 data_copy_size
, btrfs_leaf_data(l
) +
2822 leaf_data_end(root
, l
), data_copy_size
);
2824 rt_data_off
= BTRFS_LEAF_DATA_SIZE(root
) -
2825 btrfs_item_end_nr(l
, mid
);
2827 for (i
= 0; i
< nritems
; i
++) {
2828 struct btrfs_item
*item
= btrfs_item_nr(right
, i
);
2831 if (!right
->map_token
) {
2832 map_extent_buffer(right
, (unsigned long)item
,
2833 sizeof(struct btrfs_item
),
2834 &right
->map_token
, &right
->kaddr
,
2835 &right
->map_start
, &right
->map_len
,
2839 ioff
= btrfs_item_offset(right
, item
);
2840 btrfs_set_item_offset(right
, item
, ioff
+ rt_data_off
);
2843 if (right
->map_token
) {
2844 unmap_extent_buffer(right
, right
->map_token
, KM_USER1
);
2845 right
->map_token
= NULL
;
2848 btrfs_set_header_nritems(l
, mid
);
2850 btrfs_item_key(right
, &disk_key
, 0);
2851 wret
= insert_ptr(trans
, root
, path
, &disk_key
, right
->start
,
2852 path
->slots
[1] + 1, 1);
2856 btrfs_mark_buffer_dirty(right
);
2857 btrfs_mark_buffer_dirty(l
);
2858 BUG_ON(path
->slots
[0] != slot
);
2860 ret
= btrfs_update_ref(trans
, root
, l
, right
, 0, nritems
);
2864 btrfs_tree_unlock(path
->nodes
[0]);
2865 free_extent_buffer(path
->nodes
[0]);
2866 path
->nodes
[0] = right
;
2867 path
->slots
[0] -= mid
;
2868 path
->slots
[1] += 1;
2870 btrfs_tree_unlock(right
);
2871 free_extent_buffer(right
);
2874 BUG_ON(path
->slots
[0] < 0);
2880 * split the path's leaf in two, making sure there is at least data_size
2881 * available for the resulting leaf level of the path.
2883 * returns 0 if all went well and < 0 on failure.
2885 static noinline
int split_leaf(struct btrfs_trans_handle
*trans
,
2886 struct btrfs_root
*root
,
2887 struct btrfs_key
*ins_key
,
2888 struct btrfs_path
*path
, int data_size
,
2891 struct extent_buffer
*l
;
2895 struct extent_buffer
*right
;
2899 int num_doubles
= 0;
2901 /* first try to make some room by pushing left and right */
2902 if (data_size
&& ins_key
->type
!= BTRFS_DIR_ITEM_KEY
&&
2903 !trans
->transaction
->delayed_refs
.flushing
) {
2904 wret
= push_leaf_right(trans
, root
, path
, data_size
, 0);
2908 wret
= push_leaf_left(trans
, root
, path
, data_size
, 0);
2914 /* did the pushes work? */
2915 if (btrfs_leaf_free_space(root
, l
) >= data_size
)
2919 if (!path
->nodes
[1]) {
2920 ret
= insert_new_root(trans
, root
, path
, 1);
2927 slot
= path
->slots
[0];
2928 nritems
= btrfs_header_nritems(l
);
2929 mid
= (nritems
+ 1) / 2;
2931 right
= btrfs_alloc_free_block(trans
, root
, root
->leafsize
,
2932 path
->nodes
[1]->start
,
2933 root
->root_key
.objectid
,
2934 trans
->transid
, 0, l
->start
, 0);
2935 if (IS_ERR(right
)) {
2937 return PTR_ERR(right
);
2940 memset_extent_buffer(right
, 0, 0, sizeof(struct btrfs_header
));
2941 btrfs_set_header_bytenr(right
, right
->start
);
2942 btrfs_set_header_generation(right
, trans
->transid
);
2943 btrfs_set_header_owner(right
, root
->root_key
.objectid
);
2944 btrfs_set_header_level(right
, 0);
2945 write_extent_buffer(right
, root
->fs_info
->fsid
,
2946 (unsigned long)btrfs_header_fsid(right
),
2949 write_extent_buffer(right
, root
->fs_info
->chunk_tree_uuid
,
2950 (unsigned long)btrfs_header_chunk_tree_uuid(right
),
2955 leaf_space_used(l
, mid
, nritems
- mid
) + data_size
>
2956 BTRFS_LEAF_DATA_SIZE(root
)) {
2957 if (slot
>= nritems
) {
2958 struct btrfs_disk_key disk_key
;
2960 btrfs_cpu_key_to_disk(&disk_key
, ins_key
);
2961 btrfs_set_header_nritems(right
, 0);
2962 wret
= insert_ptr(trans
, root
, path
,
2963 &disk_key
, right
->start
,
2964 path
->slots
[1] + 1, 1);
2968 btrfs_tree_unlock(path
->nodes
[0]);
2969 free_extent_buffer(path
->nodes
[0]);
2970 path
->nodes
[0] = right
;
2972 path
->slots
[1] += 1;
2973 btrfs_mark_buffer_dirty(right
);
2977 if (mid
!= nritems
&&
2978 leaf_space_used(l
, mid
, nritems
- mid
) +
2979 data_size
> BTRFS_LEAF_DATA_SIZE(root
)) {
2984 if (leaf_space_used(l
, 0, mid
) + data_size
>
2985 BTRFS_LEAF_DATA_SIZE(root
)) {
2986 if (!extend
&& data_size
&& slot
== 0) {
2987 struct btrfs_disk_key disk_key
;
2989 btrfs_cpu_key_to_disk(&disk_key
, ins_key
);
2990 btrfs_set_header_nritems(right
, 0);
2991 wret
= insert_ptr(trans
, root
, path
,
2997 btrfs_tree_unlock(path
->nodes
[0]);
2998 free_extent_buffer(path
->nodes
[0]);
2999 path
->nodes
[0] = right
;
3001 if (path
->slots
[1] == 0) {
3002 wret
= fixup_low_keys(trans
, root
,
3003 path
, &disk_key
, 1);
3007 btrfs_mark_buffer_dirty(right
);
3009 } else if ((extend
|| !data_size
) && slot
== 0) {
3013 if (mid
!= nritems
&&
3014 leaf_space_used(l
, mid
, nritems
- mid
) +
3015 data_size
> BTRFS_LEAF_DATA_SIZE(root
)) {
3022 ret
= copy_for_split(trans
, root
, path
, l
, right
, slot
, mid
, nritems
);
3026 BUG_ON(num_doubles
!= 0);
3035 * This function splits a single item into two items,
3036 * giving 'new_key' to the new item and splitting the
3037 * old one at split_offset (from the start of the item).
3039 * The path may be released by this operation. After
3040 * the split, the path is pointing to the old item. The
3041 * new item is going to be in the same node as the old one.
3043 * Note, the item being split must be smaller enough to live alone on
3044 * a tree block with room for one extra struct btrfs_item
3046 * This allows us to split the item in place, keeping a lock on the
3047 * leaf the entire time.
3049 int btrfs_split_item(struct btrfs_trans_handle
*trans
,
3050 struct btrfs_root
*root
,
3051 struct btrfs_path
*path
,
3052 struct btrfs_key
*new_key
,
3053 unsigned long split_offset
)
3056 struct extent_buffer
*leaf
;
3057 struct btrfs_key orig_key
;
3058 struct btrfs_item
*item
;
3059 struct btrfs_item
*new_item
;
3064 struct btrfs_disk_key disk_key
;
3067 leaf
= path
->nodes
[0];
3068 btrfs_item_key_to_cpu(leaf
, &orig_key
, path
->slots
[0]);
3069 if (btrfs_leaf_free_space(root
, leaf
) >= sizeof(struct btrfs_item
))
3072 item_size
= btrfs_item_size_nr(leaf
, path
->slots
[0]);
3073 btrfs_release_path(root
, path
);
3075 path
->search_for_split
= 1;
3076 path
->keep_locks
= 1;
3078 ret
= btrfs_search_slot(trans
, root
, &orig_key
, path
, 0, 1);
3079 path
->search_for_split
= 0;
3081 /* if our item isn't there or got smaller, return now */
3082 if (ret
!= 0 || item_size
!= btrfs_item_size_nr(path
->nodes
[0],
3084 path
->keep_locks
= 0;
3088 btrfs_set_path_blocking(path
);
3089 ret
= split_leaf(trans
, root
, &orig_key
, path
,
3090 sizeof(struct btrfs_item
), 1);
3091 path
->keep_locks
= 0;
3094 btrfs_unlock_up_safe(path
, 1);
3095 leaf
= path
->nodes
[0];
3096 BUG_ON(btrfs_leaf_free_space(root
, leaf
) < sizeof(struct btrfs_item
));
3100 * make sure any changes to the path from split_leaf leave it
3101 * in a blocking state
3103 btrfs_set_path_blocking(path
);
3105 item
= btrfs_item_nr(leaf
, path
->slots
[0]);
3106 orig_offset
= btrfs_item_offset(leaf
, item
);
3107 item_size
= btrfs_item_size(leaf
, item
);
3109 buf
= kmalloc(item_size
, GFP_NOFS
);
3110 read_extent_buffer(leaf
, buf
, btrfs_item_ptr_offset(leaf
,
3111 path
->slots
[0]), item_size
);
3112 slot
= path
->slots
[0] + 1;
3113 leaf
= path
->nodes
[0];
3115 nritems
= btrfs_header_nritems(leaf
);
3117 if (slot
!= nritems
) {
3118 /* shift the items */
3119 memmove_extent_buffer(leaf
, btrfs_item_nr_offset(slot
+ 1),
3120 btrfs_item_nr_offset(slot
),
3121 (nritems
- slot
) * sizeof(struct btrfs_item
));
3125 btrfs_cpu_key_to_disk(&disk_key
, new_key
);
3126 btrfs_set_item_key(leaf
, &disk_key
, slot
);
3128 new_item
= btrfs_item_nr(leaf
, slot
);
3130 btrfs_set_item_offset(leaf
, new_item
, orig_offset
);
3131 btrfs_set_item_size(leaf
, new_item
, item_size
- split_offset
);
3133 btrfs_set_item_offset(leaf
, item
,
3134 orig_offset
+ item_size
- split_offset
);
3135 btrfs_set_item_size(leaf
, item
, split_offset
);
3137 btrfs_set_header_nritems(leaf
, nritems
+ 1);
3139 /* write the data for the start of the original item */
3140 write_extent_buffer(leaf
, buf
,
3141 btrfs_item_ptr_offset(leaf
, path
->slots
[0]),
3144 /* write the data for the new item */
3145 write_extent_buffer(leaf
, buf
+ split_offset
,
3146 btrfs_item_ptr_offset(leaf
, slot
),
3147 item_size
- split_offset
);
3148 btrfs_mark_buffer_dirty(leaf
);
3151 if (btrfs_leaf_free_space(root
, leaf
) < 0) {
3152 btrfs_print_leaf(root
, leaf
);
3160 * make the item pointed to by the path smaller. new_size indicates
3161 * how small to make it, and from_end tells us if we just chop bytes
3162 * off the end of the item or if we shift the item to chop bytes off
3165 int btrfs_truncate_item(struct btrfs_trans_handle
*trans
,
3166 struct btrfs_root
*root
,
3167 struct btrfs_path
*path
,
3168 u32 new_size
, int from_end
)
3173 struct extent_buffer
*leaf
;
3174 struct btrfs_item
*item
;
3176 unsigned int data_end
;
3177 unsigned int old_data_start
;
3178 unsigned int old_size
;
3179 unsigned int size_diff
;
3182 slot_orig
= path
->slots
[0];
3183 leaf
= path
->nodes
[0];
3184 slot
= path
->slots
[0];
3186 old_size
= btrfs_item_size_nr(leaf
, slot
);
3187 if (old_size
== new_size
)
3190 nritems
= btrfs_header_nritems(leaf
);
3191 data_end
= leaf_data_end(root
, leaf
);
3193 old_data_start
= btrfs_item_offset_nr(leaf
, slot
);
3195 size_diff
= old_size
- new_size
;
3198 BUG_ON(slot
>= nritems
);
3201 * item0..itemN ... dataN.offset..dataN.size .. data0.size
3203 /* first correct the data pointers */
3204 for (i
= slot
; i
< nritems
; i
++) {
3206 item
= btrfs_item_nr(leaf
, i
);
3208 if (!leaf
->map_token
) {
3209 map_extent_buffer(leaf
, (unsigned long)item
,
3210 sizeof(struct btrfs_item
),
3211 &leaf
->map_token
, &leaf
->kaddr
,
3212 &leaf
->map_start
, &leaf
->map_len
,
3216 ioff
= btrfs_item_offset(leaf
, item
);
3217 btrfs_set_item_offset(leaf
, item
, ioff
+ size_diff
);
3220 if (leaf
->map_token
) {
3221 unmap_extent_buffer(leaf
, leaf
->map_token
, KM_USER1
);
3222 leaf
->map_token
= NULL
;
3225 /* shift the data */
3227 memmove_extent_buffer(leaf
, btrfs_leaf_data(leaf
) +
3228 data_end
+ size_diff
, btrfs_leaf_data(leaf
) +
3229 data_end
, old_data_start
+ new_size
- data_end
);
3231 struct btrfs_disk_key disk_key
;
3234 btrfs_item_key(leaf
, &disk_key
, slot
);
3236 if (btrfs_disk_key_type(&disk_key
) == BTRFS_EXTENT_DATA_KEY
) {
3238 struct btrfs_file_extent_item
*fi
;
3240 fi
= btrfs_item_ptr(leaf
, slot
,
3241 struct btrfs_file_extent_item
);
3242 fi
= (struct btrfs_file_extent_item
*)(
3243 (unsigned long)fi
- size_diff
);
3245 if (btrfs_file_extent_type(leaf
, fi
) ==
3246 BTRFS_FILE_EXTENT_INLINE
) {
3247 ptr
= btrfs_item_ptr_offset(leaf
, slot
);
3248 memmove_extent_buffer(leaf
, ptr
,
3250 offsetof(struct btrfs_file_extent_item
,
3255 memmove_extent_buffer(leaf
, btrfs_leaf_data(leaf
) +
3256 data_end
+ size_diff
, btrfs_leaf_data(leaf
) +
3257 data_end
, old_data_start
- data_end
);
3259 offset
= btrfs_disk_key_offset(&disk_key
);
3260 btrfs_set_disk_key_offset(&disk_key
, offset
+ size_diff
);
3261 btrfs_set_item_key(leaf
, &disk_key
, slot
);
3263 fixup_low_keys(trans
, root
, path
, &disk_key
, 1);
3266 item
= btrfs_item_nr(leaf
, slot
);
3267 btrfs_set_item_size(leaf
, item
, new_size
);
3268 btrfs_mark_buffer_dirty(leaf
);
3271 if (btrfs_leaf_free_space(root
, leaf
) < 0) {
3272 btrfs_print_leaf(root
, leaf
);
3279 * make the item pointed to by the path bigger, data_size is the new size.
3281 int btrfs_extend_item(struct btrfs_trans_handle
*trans
,
3282 struct btrfs_root
*root
, struct btrfs_path
*path
,
3288 struct extent_buffer
*leaf
;
3289 struct btrfs_item
*item
;
3291 unsigned int data_end
;
3292 unsigned int old_data
;
3293 unsigned int old_size
;
3296 slot_orig
= path
->slots
[0];
3297 leaf
= path
->nodes
[0];
3299 nritems
= btrfs_header_nritems(leaf
);
3300 data_end
= leaf_data_end(root
, leaf
);
3302 if (btrfs_leaf_free_space(root
, leaf
) < data_size
) {
3303 btrfs_print_leaf(root
, leaf
);
3306 slot
= path
->slots
[0];
3307 old_data
= btrfs_item_end_nr(leaf
, slot
);
3310 if (slot
>= nritems
) {
3311 btrfs_print_leaf(root
, leaf
);
3312 printk(KERN_CRIT
"slot %d too large, nritems %d\n",
3318 * item0..itemN ... dataN.offset..dataN.size .. data0.size
3320 /* first correct the data pointers */
3321 for (i
= slot
; i
< nritems
; i
++) {
3323 item
= btrfs_item_nr(leaf
, i
);
3325 if (!leaf
->map_token
) {
3326 map_extent_buffer(leaf
, (unsigned long)item
,
3327 sizeof(struct btrfs_item
),
3328 &leaf
->map_token
, &leaf
->kaddr
,
3329 &leaf
->map_start
, &leaf
->map_len
,
3332 ioff
= btrfs_item_offset(leaf
, item
);
3333 btrfs_set_item_offset(leaf
, item
, ioff
- data_size
);
3336 if (leaf
->map_token
) {
3337 unmap_extent_buffer(leaf
, leaf
->map_token
, KM_USER1
);
3338 leaf
->map_token
= NULL
;
3341 /* shift the data */
3342 memmove_extent_buffer(leaf
, btrfs_leaf_data(leaf
) +
3343 data_end
- data_size
, btrfs_leaf_data(leaf
) +
3344 data_end
, old_data
- data_end
);
3346 data_end
= old_data
;
3347 old_size
= btrfs_item_size_nr(leaf
, slot
);
3348 item
= btrfs_item_nr(leaf
, slot
);
3349 btrfs_set_item_size(leaf
, item
, old_size
+ data_size
);
3350 btrfs_mark_buffer_dirty(leaf
);
3353 if (btrfs_leaf_free_space(root
, leaf
) < 0) {
3354 btrfs_print_leaf(root
, leaf
);
3361 * Given a key and some data, insert items into the tree.
3362 * This does all the path init required, making room in the tree if needed.
3363 * Returns the number of keys that were inserted.
3365 int btrfs_insert_some_items(struct btrfs_trans_handle
*trans
,
3366 struct btrfs_root
*root
,
3367 struct btrfs_path
*path
,
3368 struct btrfs_key
*cpu_key
, u32
*data_size
,
3371 struct extent_buffer
*leaf
;
3372 struct btrfs_item
*item
;
3379 unsigned int data_end
;
3380 struct btrfs_disk_key disk_key
;
3381 struct btrfs_key found_key
;
3383 for (i
= 0; i
< nr
; i
++) {
3384 if (total_size
+ data_size
[i
] + sizeof(struct btrfs_item
) >
3385 BTRFS_LEAF_DATA_SIZE(root
)) {
3389 total_data
+= data_size
[i
];
3390 total_size
+= data_size
[i
] + sizeof(struct btrfs_item
);
3394 ret
= btrfs_search_slot(trans
, root
, cpu_key
, path
, total_size
, 1);
3400 leaf
= path
->nodes
[0];
3402 nritems
= btrfs_header_nritems(leaf
);
3403 data_end
= leaf_data_end(root
, leaf
);
3405 if (btrfs_leaf_free_space(root
, leaf
) < total_size
) {
3406 for (i
= nr
; i
>= 0; i
--) {
3407 total_data
-= data_size
[i
];
3408 total_size
-= data_size
[i
] + sizeof(struct btrfs_item
);
3409 if (total_size
< btrfs_leaf_free_space(root
, leaf
))
3415 slot
= path
->slots
[0];
3418 if (slot
!= nritems
) {
3419 unsigned int old_data
= btrfs_item_end_nr(leaf
, slot
);
3421 item
= btrfs_item_nr(leaf
, slot
);
3422 btrfs_item_key_to_cpu(leaf
, &found_key
, slot
);
3424 /* figure out how many keys we can insert in here */
3425 total_data
= data_size
[0];
3426 for (i
= 1; i
< nr
; i
++) {
3427 if (comp_cpu_keys(&found_key
, cpu_key
+ i
) <= 0)
3429 total_data
+= data_size
[i
];
3433 if (old_data
< data_end
) {
3434 btrfs_print_leaf(root
, leaf
);
3435 printk(KERN_CRIT
"slot %d old_data %d data_end %d\n",
3436 slot
, old_data
, data_end
);
3440 * item0..itemN ... dataN.offset..dataN.size .. data0.size
3442 /* first correct the data pointers */
3443 WARN_ON(leaf
->map_token
);
3444 for (i
= slot
; i
< nritems
; i
++) {
3447 item
= btrfs_item_nr(leaf
, i
);
3448 if (!leaf
->map_token
) {
3449 map_extent_buffer(leaf
, (unsigned long)item
,
3450 sizeof(struct btrfs_item
),
3451 &leaf
->map_token
, &leaf
->kaddr
,
3452 &leaf
->map_start
, &leaf
->map_len
,
3456 ioff
= btrfs_item_offset(leaf
, item
);
3457 btrfs_set_item_offset(leaf
, item
, ioff
- total_data
);
3459 if (leaf
->map_token
) {
3460 unmap_extent_buffer(leaf
, leaf
->map_token
, KM_USER1
);
3461 leaf
->map_token
= NULL
;
3464 /* shift the items */
3465 memmove_extent_buffer(leaf
, btrfs_item_nr_offset(slot
+ nr
),
3466 btrfs_item_nr_offset(slot
),
3467 (nritems
- slot
) * sizeof(struct btrfs_item
));
3469 /* shift the data */
3470 memmove_extent_buffer(leaf
, btrfs_leaf_data(leaf
) +
3471 data_end
- total_data
, btrfs_leaf_data(leaf
) +
3472 data_end
, old_data
- data_end
);
3473 data_end
= old_data
;
3476 * this sucks but it has to be done, if we are inserting at
3477 * the end of the leaf only insert 1 of the items, since we
3478 * have no way of knowing whats on the next leaf and we'd have
3479 * to drop our current locks to figure it out
3484 /* setup the item for the new data */
3485 for (i
= 0; i
< nr
; i
++) {
3486 btrfs_cpu_key_to_disk(&disk_key
, cpu_key
+ i
);
3487 btrfs_set_item_key(leaf
, &disk_key
, slot
+ i
);
3488 item
= btrfs_item_nr(leaf
, slot
+ i
);
3489 btrfs_set_item_offset(leaf
, item
, data_end
- data_size
[i
]);
3490 data_end
-= data_size
[i
];
3491 btrfs_set_item_size(leaf
, item
, data_size
[i
]);
3493 btrfs_set_header_nritems(leaf
, nritems
+ nr
);
3494 btrfs_mark_buffer_dirty(leaf
);
3498 btrfs_cpu_key_to_disk(&disk_key
, cpu_key
);
3499 ret
= fixup_low_keys(trans
, root
, path
, &disk_key
, 1);
3502 if (btrfs_leaf_free_space(root
, leaf
) < 0) {
3503 btrfs_print_leaf(root
, leaf
);
3513 * this is a helper for btrfs_insert_empty_items, the main goal here is
3514 * to save stack depth by doing the bulk of the work in a function
3515 * that doesn't call btrfs_search_slot
3517 static noinline_for_stack
int
3518 setup_items_for_insert(struct btrfs_trans_handle
*trans
,
3519 struct btrfs_root
*root
, struct btrfs_path
*path
,
3520 struct btrfs_key
*cpu_key
, u32
*data_size
,
3521 u32 total_data
, u32 total_size
, int nr
)
3523 struct btrfs_item
*item
;
3526 unsigned int data_end
;
3527 struct btrfs_disk_key disk_key
;
3529 struct extent_buffer
*leaf
;
3532 leaf
= path
->nodes
[0];
3533 slot
= path
->slots
[0];
3535 nritems
= btrfs_header_nritems(leaf
);
3536 data_end
= leaf_data_end(root
, leaf
);
3538 if (btrfs_leaf_free_space(root
, leaf
) < total_size
) {
3539 btrfs_print_leaf(root
, leaf
);
3540 printk(KERN_CRIT
"not enough freespace need %u have %d\n",
3541 total_size
, btrfs_leaf_free_space(root
, leaf
));
3545 if (slot
!= nritems
) {
3546 unsigned int old_data
= btrfs_item_end_nr(leaf
, slot
);
3548 if (old_data
< data_end
) {
3549 btrfs_print_leaf(root
, leaf
);
3550 printk(KERN_CRIT
"slot %d old_data %d data_end %d\n",
3551 slot
, old_data
, data_end
);
3555 * item0..itemN ... dataN.offset..dataN.size .. data0.size
3557 /* first correct the data pointers */
3558 WARN_ON(leaf
->map_token
);
3559 for (i
= slot
; i
< nritems
; i
++) {
3562 item
= btrfs_item_nr(leaf
, i
);
3563 if (!leaf
->map_token
) {
3564 map_extent_buffer(leaf
, (unsigned long)item
,
3565 sizeof(struct btrfs_item
),
3566 &leaf
->map_token
, &leaf
->kaddr
,
3567 &leaf
->map_start
, &leaf
->map_len
,
3571 ioff
= btrfs_item_offset(leaf
, item
);
3572 btrfs_set_item_offset(leaf
, item
, ioff
- total_data
);
3574 if (leaf
->map_token
) {
3575 unmap_extent_buffer(leaf
, leaf
->map_token
, KM_USER1
);
3576 leaf
->map_token
= NULL
;
3579 /* shift the items */
3580 memmove_extent_buffer(leaf
, btrfs_item_nr_offset(slot
+ nr
),
3581 btrfs_item_nr_offset(slot
),
3582 (nritems
- slot
) * sizeof(struct btrfs_item
));
3584 /* shift the data */
3585 memmove_extent_buffer(leaf
, btrfs_leaf_data(leaf
) +
3586 data_end
- total_data
, btrfs_leaf_data(leaf
) +
3587 data_end
, old_data
- data_end
);
3588 data_end
= old_data
;
3591 /* setup the item for the new data */
3592 for (i
= 0; i
< nr
; i
++) {
3593 btrfs_cpu_key_to_disk(&disk_key
, cpu_key
+ i
);
3594 btrfs_set_item_key(leaf
, &disk_key
, slot
+ i
);
3595 item
= btrfs_item_nr(leaf
, slot
+ i
);
3596 btrfs_set_item_offset(leaf
, item
, data_end
- data_size
[i
]);
3597 data_end
-= data_size
[i
];
3598 btrfs_set_item_size(leaf
, item
, data_size
[i
]);
3601 btrfs_set_header_nritems(leaf
, nritems
+ nr
);
3605 struct btrfs_disk_key disk_key
;
3606 btrfs_cpu_key_to_disk(&disk_key
, cpu_key
);
3607 ret
= fixup_low_keys(trans
, root
, path
, &disk_key
, 1);
3609 btrfs_unlock_up_safe(path
, 1);
3610 btrfs_mark_buffer_dirty(leaf
);
3612 if (btrfs_leaf_free_space(root
, leaf
) < 0) {
3613 btrfs_print_leaf(root
, leaf
);
3620 * Given a key and some data, insert items into the tree.
3621 * This does all the path init required, making room in the tree if needed.
3623 int btrfs_insert_empty_items(struct btrfs_trans_handle
*trans
,
3624 struct btrfs_root
*root
,
3625 struct btrfs_path
*path
,
3626 struct btrfs_key
*cpu_key
, u32
*data_size
,
3629 struct extent_buffer
*leaf
;
3636 for (i
= 0; i
< nr
; i
++)
3637 total_data
+= data_size
[i
];
3639 total_size
= total_data
+ (nr
* sizeof(struct btrfs_item
));
3640 ret
= btrfs_search_slot(trans
, root
, cpu_key
, path
, total_size
, 1);
3646 leaf
= path
->nodes
[0];
3647 slot
= path
->slots
[0];
3650 ret
= setup_items_for_insert(trans
, root
, path
, cpu_key
, data_size
,
3651 total_data
, total_size
, nr
);
3658 * Given a key and some data, insert an item into the tree.
3659 * This does all the path init required, making room in the tree if needed.
3661 int btrfs_insert_item(struct btrfs_trans_handle
*trans
, struct btrfs_root
3662 *root
, struct btrfs_key
*cpu_key
, void *data
, u32
3666 struct btrfs_path
*path
;
3667 struct extent_buffer
*leaf
;
3670 path
= btrfs_alloc_path();
3672 ret
= btrfs_insert_empty_item(trans
, root
, path
, cpu_key
, data_size
);
3674 leaf
= path
->nodes
[0];
3675 ptr
= btrfs_item_ptr_offset(leaf
, path
->slots
[0]);
3676 write_extent_buffer(leaf
, data
, ptr
, data_size
);
3677 btrfs_mark_buffer_dirty(leaf
);
3679 btrfs_free_path(path
);
3684 * delete the pointer from a given node.
3686 * the tree should have been previously balanced so the deletion does not
3689 static int del_ptr(struct btrfs_trans_handle
*trans
, struct btrfs_root
*root
,
3690 struct btrfs_path
*path
, int level
, int slot
)
3692 struct extent_buffer
*parent
= path
->nodes
[level
];
3697 nritems
= btrfs_header_nritems(parent
);
3698 if (slot
!= nritems
- 1) {
3699 memmove_extent_buffer(parent
,
3700 btrfs_node_key_ptr_offset(slot
),
3701 btrfs_node_key_ptr_offset(slot
+ 1),
3702 sizeof(struct btrfs_key_ptr
) *
3703 (nritems
- slot
- 1));
3706 btrfs_set_header_nritems(parent
, nritems
);
3707 if (nritems
== 0 && parent
== root
->node
) {
3708 BUG_ON(btrfs_header_level(root
->node
) != 1);
3709 /* just turn the root into a leaf and break */
3710 btrfs_set_header_level(root
->node
, 0);
3711 } else if (slot
== 0) {
3712 struct btrfs_disk_key disk_key
;
3714 btrfs_node_key(parent
, &disk_key
, 0);
3715 wret
= fixup_low_keys(trans
, root
, path
, &disk_key
, level
+ 1);
3719 btrfs_mark_buffer_dirty(parent
);
3724 * a helper function to delete the leaf pointed to by path->slots[1] and
3725 * path->nodes[1]. bytenr is the node block pointer, but since the callers
3726 * already know it, it is faster to have them pass it down than to
3727 * read it out of the node again.
3729 * This deletes the pointer in path->nodes[1] and frees the leaf
3730 * block extent. zero is returned if it all worked out, < 0 otherwise.
3732 * The path must have already been setup for deleting the leaf, including
3733 * all the proper balancing. path->nodes[1] must be locked.
3735 noinline
int btrfs_del_leaf(struct btrfs_trans_handle
*trans
,
3736 struct btrfs_root
*root
,
3737 struct btrfs_path
*path
, u64 bytenr
)
3740 u64 root_gen
= btrfs_header_generation(path
->nodes
[1]);
3741 u64 parent_start
= path
->nodes
[1]->start
;
3742 u64 parent_owner
= btrfs_header_owner(path
->nodes
[1]);
3744 ret
= del_ptr(trans
, root
, path
, 1, path
->slots
[1]);
3749 * btrfs_free_extent is expensive, we want to make sure we
3750 * aren't holding any locks when we call it
3752 btrfs_unlock_up_safe(path
, 0);
3754 ret
= btrfs_free_extent(trans
, root
, bytenr
,
3755 btrfs_level_size(root
, 0),
3756 parent_start
, parent_owner
,
3761 * delete the item at the leaf level in path. If that empties
3762 * the leaf, remove it from the tree
3764 int btrfs_del_items(struct btrfs_trans_handle
*trans
, struct btrfs_root
*root
,
3765 struct btrfs_path
*path
, int slot
, int nr
)
3767 struct extent_buffer
*leaf
;
3768 struct btrfs_item
*item
;
3776 leaf
= path
->nodes
[0];
3777 last_off
= btrfs_item_offset_nr(leaf
, slot
+ nr
- 1);
3779 for (i
= 0; i
< nr
; i
++)
3780 dsize
+= btrfs_item_size_nr(leaf
, slot
+ i
);
3782 nritems
= btrfs_header_nritems(leaf
);
3784 if (slot
+ nr
!= nritems
) {
3785 int data_end
= leaf_data_end(root
, leaf
);
3787 memmove_extent_buffer(leaf
, btrfs_leaf_data(leaf
) +
3789 btrfs_leaf_data(leaf
) + data_end
,
3790 last_off
- data_end
);
3792 for (i
= slot
+ nr
; i
< nritems
; i
++) {
3795 item
= btrfs_item_nr(leaf
, i
);
3796 if (!leaf
->map_token
) {
3797 map_extent_buffer(leaf
, (unsigned long)item
,
3798 sizeof(struct btrfs_item
),
3799 &leaf
->map_token
, &leaf
->kaddr
,
3800 &leaf
->map_start
, &leaf
->map_len
,
3803 ioff
= btrfs_item_offset(leaf
, item
);
3804 btrfs_set_item_offset(leaf
, item
, ioff
+ dsize
);
3807 if (leaf
->map_token
) {
3808 unmap_extent_buffer(leaf
, leaf
->map_token
, KM_USER1
);
3809 leaf
->map_token
= NULL
;
3812 memmove_extent_buffer(leaf
, btrfs_item_nr_offset(slot
),
3813 btrfs_item_nr_offset(slot
+ nr
),
3814 sizeof(struct btrfs_item
) *
3815 (nritems
- slot
- nr
));
3817 btrfs_set_header_nritems(leaf
, nritems
- nr
);
3820 /* delete the leaf if we've emptied it */
3822 if (leaf
== root
->node
) {
3823 btrfs_set_header_level(leaf
, 0);
3825 ret
= btrfs_del_leaf(trans
, root
, path
, leaf
->start
);
3829 int used
= leaf_space_used(leaf
, 0, nritems
);
3831 struct btrfs_disk_key disk_key
;
3833 btrfs_item_key(leaf
, &disk_key
, 0);
3834 wret
= fixup_low_keys(trans
, root
, path
,
3840 /* delete the leaf if it is mostly empty */
3841 if (used
< BTRFS_LEAF_DATA_SIZE(root
) / 4 &&
3842 !trans
->transaction
->delayed_refs
.flushing
) {
3843 /* push_leaf_left fixes the path.
3844 * make sure the path still points to our leaf
3845 * for possible call to del_ptr below
3847 slot
= path
->slots
[1];
3848 extent_buffer_get(leaf
);
3850 btrfs_set_path_blocking(path
);
3851 wret
= push_leaf_left(trans
, root
, path
, 1, 1);
3852 if (wret
< 0 && wret
!= -ENOSPC
)
3855 if (path
->nodes
[0] == leaf
&&
3856 btrfs_header_nritems(leaf
)) {
3857 wret
= push_leaf_right(trans
, root
, path
, 1, 1);
3858 if (wret
< 0 && wret
!= -ENOSPC
)
3862 if (btrfs_header_nritems(leaf
) == 0) {
3863 path
->slots
[1] = slot
;
3864 ret
= btrfs_del_leaf(trans
, root
, path
,
3867 free_extent_buffer(leaf
);
3869 /* if we're still in the path, make sure
3870 * we're dirty. Otherwise, one of the
3871 * push_leaf functions must have already
3872 * dirtied this buffer
3874 if (path
->nodes
[0] == leaf
)
3875 btrfs_mark_buffer_dirty(leaf
);
3876 free_extent_buffer(leaf
);
3879 btrfs_mark_buffer_dirty(leaf
);
3886 * search the tree again to find a leaf with lesser keys
3887 * returns 0 if it found something or 1 if there are no lesser leaves.
3888 * returns < 0 on io errors.
3890 * This may release the path, and so you may lose any locks held at the
3893 int btrfs_prev_leaf(struct btrfs_root
*root
, struct btrfs_path
*path
)
3895 struct btrfs_key key
;
3896 struct btrfs_disk_key found_key
;
3899 btrfs_item_key_to_cpu(path
->nodes
[0], &key
, 0);
3903 else if (key
.type
> 0)
3905 else if (key
.objectid
> 0)
3910 btrfs_release_path(root
, path
);
3911 ret
= btrfs_search_slot(NULL
, root
, &key
, path
, 0, 0);
3914 btrfs_item_key(path
->nodes
[0], &found_key
, 0);
3915 ret
= comp_keys(&found_key
, &key
);
3922 * A helper function to walk down the tree starting at min_key, and looking
3923 * for nodes or leaves that are either in cache or have a minimum
3924 * transaction id. This is used by the btree defrag code, and tree logging
3926 * This does not cow, but it does stuff the starting key it finds back
3927 * into min_key, so you can call btrfs_search_slot with cow=1 on the
3928 * key and get a writable path.
3930 * This does lock as it descends, and path->keep_locks should be set
3931 * to 1 by the caller.
3933 * This honors path->lowest_level to prevent descent past a given level
3936 * min_trans indicates the oldest transaction that you are interested
3937 * in walking through. Any nodes or leaves older than min_trans are
3938 * skipped over (without reading them).
3940 * returns zero if something useful was found, < 0 on error and 1 if there
3941 * was nothing in the tree that matched the search criteria.
3943 int btrfs_search_forward(struct btrfs_root
*root
, struct btrfs_key
*min_key
,
3944 struct btrfs_key
*max_key
,
3945 struct btrfs_path
*path
, int cache_only
,
3948 struct extent_buffer
*cur
;
3949 struct btrfs_key found_key
;
3956 WARN_ON(!path
->keep_locks
);
3958 cur
= btrfs_lock_root_node(root
);
3959 level
= btrfs_header_level(cur
);
3960 WARN_ON(path
->nodes
[level
]);
3961 path
->nodes
[level
] = cur
;
3962 path
->locks
[level
] = 1;
3964 if (btrfs_header_generation(cur
) < min_trans
) {
3969 nritems
= btrfs_header_nritems(cur
);
3970 level
= btrfs_header_level(cur
);
3971 sret
= bin_search(cur
, min_key
, level
, &slot
);
3973 /* at the lowest level, we're done, setup the path and exit */
3974 if (level
== path
->lowest_level
) {
3975 if (slot
>= nritems
)
3978 path
->slots
[level
] = slot
;
3979 btrfs_item_key_to_cpu(cur
, &found_key
, slot
);
3982 if (sret
&& slot
> 0)
3985 * check this node pointer against the cache_only and
3986 * min_trans parameters. If it isn't in cache or is too
3987 * old, skip to the next one.
3989 while (slot
< nritems
) {
3992 struct extent_buffer
*tmp
;
3993 struct btrfs_disk_key disk_key
;
3995 blockptr
= btrfs_node_blockptr(cur
, slot
);
3996 gen
= btrfs_node_ptr_generation(cur
, slot
);
3997 if (gen
< min_trans
) {
4005 btrfs_node_key(cur
, &disk_key
, slot
);
4006 if (comp_keys(&disk_key
, max_key
) >= 0) {
4012 tmp
= btrfs_find_tree_block(root
, blockptr
,
4013 btrfs_level_size(root
, level
- 1));
4015 if (tmp
&& btrfs_buffer_uptodate(tmp
, gen
)) {
4016 free_extent_buffer(tmp
);
4020 free_extent_buffer(tmp
);
4025 * we didn't find a candidate key in this node, walk forward
4026 * and find another one
4028 if (slot
>= nritems
) {
4029 path
->slots
[level
] = slot
;
4030 btrfs_set_path_blocking(path
);
4031 sret
= btrfs_find_next_key(root
, path
, min_key
, level
,
4032 cache_only
, min_trans
);
4034 btrfs_release_path(root
, path
);
4040 /* save our key for returning back */
4041 btrfs_node_key_to_cpu(cur
, &found_key
, slot
);
4042 path
->slots
[level
] = slot
;
4043 if (level
== path
->lowest_level
) {
4045 unlock_up(path
, level
, 1);
4048 btrfs_set_path_blocking(path
);
4049 cur
= read_node_slot(root
, cur
, slot
);
4051 btrfs_tree_lock(cur
);
4053 path
->locks
[level
- 1] = 1;
4054 path
->nodes
[level
- 1] = cur
;
4055 unlock_up(path
, level
, 1);
4056 btrfs_clear_path_blocking(path
, NULL
);
4060 memcpy(min_key
, &found_key
, sizeof(found_key
));
4061 btrfs_set_path_blocking(path
);
4066 * this is similar to btrfs_next_leaf, but does not try to preserve
4067 * and fixup the path. It looks for and returns the next key in the
4068 * tree based on the current path and the cache_only and min_trans
4071 * 0 is returned if another key is found, < 0 if there are any errors
4072 * and 1 is returned if there are no higher keys in the tree
4074 * path->keep_locks should be set to 1 on the search made before
4075 * calling this function.
4077 int btrfs_find_next_key(struct btrfs_root
*root
, struct btrfs_path
*path
,
4078 struct btrfs_key
*key
, int lowest_level
,
4079 int cache_only
, u64 min_trans
)
4081 int level
= lowest_level
;
4083 struct extent_buffer
*c
;
4085 WARN_ON(!path
->keep_locks
);
4086 while (level
< BTRFS_MAX_LEVEL
) {
4087 if (!path
->nodes
[level
])
4090 slot
= path
->slots
[level
] + 1;
4091 c
= path
->nodes
[level
];
4093 if (slot
>= btrfs_header_nritems(c
)) {
4095 if (level
== BTRFS_MAX_LEVEL
)
4100 btrfs_item_key_to_cpu(c
, key
, slot
);
4102 u64 blockptr
= btrfs_node_blockptr(c
, slot
);
4103 u64 gen
= btrfs_node_ptr_generation(c
, slot
);
4106 struct extent_buffer
*cur
;
4107 cur
= btrfs_find_tree_block(root
, blockptr
,
4108 btrfs_level_size(root
, level
- 1));
4109 if (!cur
|| !btrfs_buffer_uptodate(cur
, gen
)) {
4112 free_extent_buffer(cur
);
4115 free_extent_buffer(cur
);
4117 if (gen
< min_trans
) {
4121 btrfs_node_key_to_cpu(c
, key
, slot
);
4129 * search the tree again to find a leaf with greater keys
4130 * returns 0 if it found something or 1 if there are no greater leaves.
4131 * returns < 0 on io errors.
4133 int btrfs_next_leaf(struct btrfs_root
*root
, struct btrfs_path
*path
)
4137 struct extent_buffer
*c
;
4138 struct extent_buffer
*next
;
4139 struct btrfs_key key
;
4142 int old_spinning
= path
->leave_spinning
;
4143 int force_blocking
= 0;
4145 nritems
= btrfs_header_nritems(path
->nodes
[0]);
4150 * we take the blocks in an order that upsets lockdep. Using
4151 * blocking mode is the only way around it.
4153 #ifdef CONFIG_DEBUG_LOCK_ALLOC
4157 btrfs_item_key_to_cpu(path
->nodes
[0], &key
, nritems
- 1);
4161 btrfs_release_path(root
, path
);
4163 path
->keep_locks
= 1;
4165 if (!force_blocking
)
4166 path
->leave_spinning
= 1;
4168 ret
= btrfs_search_slot(NULL
, root
, &key
, path
, 0, 0);
4169 path
->keep_locks
= 0;
4174 nritems
= btrfs_header_nritems(path
->nodes
[0]);
4176 * by releasing the path above we dropped all our locks. A balance
4177 * could have added more items next to the key that used to be
4178 * at the very end of the block. So, check again here and
4179 * advance the path if there are now more items available.
4181 if (nritems
> 0 && path
->slots
[0] < nritems
- 1) {
4187 while (level
< BTRFS_MAX_LEVEL
) {
4188 if (!path
->nodes
[level
]) {
4193 slot
= path
->slots
[level
] + 1;
4194 c
= path
->nodes
[level
];
4195 if (slot
>= btrfs_header_nritems(c
)) {
4197 if (level
== BTRFS_MAX_LEVEL
) {
4205 btrfs_tree_unlock(next
);
4206 free_extent_buffer(next
);
4210 ret
= read_block_for_search(NULL
, root
, path
, &next
, level
,
4215 if (!path
->skip_locking
) {
4216 ret
= btrfs_try_spin_lock(next
);
4218 btrfs_set_path_blocking(path
);
4219 btrfs_tree_lock(next
);
4220 if (!force_blocking
)
4221 btrfs_clear_path_blocking(path
, next
);
4224 btrfs_set_lock_blocking(next
);
4228 path
->slots
[level
] = slot
;
4231 c
= path
->nodes
[level
];
4232 if (path
->locks
[level
])
4233 btrfs_tree_unlock(c
);
4235 free_extent_buffer(c
);
4236 path
->nodes
[level
] = next
;
4237 path
->slots
[level
] = 0;
4238 if (!path
->skip_locking
)
4239 path
->locks
[level
] = 1;
4244 ret
= read_block_for_search(NULL
, root
, path
, &next
, level
,
4249 if (!path
->skip_locking
) {
4250 btrfs_assert_tree_locked(path
->nodes
[level
]);
4251 ret
= btrfs_try_spin_lock(next
);
4253 btrfs_set_path_blocking(path
);
4254 btrfs_tree_lock(next
);
4255 if (!force_blocking
)
4256 btrfs_clear_path_blocking(path
, next
);
4259 btrfs_set_lock_blocking(next
);
4264 unlock_up(path
, 0, 1);
4265 path
->leave_spinning
= old_spinning
;
4267 btrfs_set_path_blocking(path
);
4273 * this uses btrfs_prev_leaf to walk backwards in the tree, and keeps
4274 * searching until it gets past min_objectid or finds an item of 'type'
4276 * returns 0 if something is found, 1 if nothing was found and < 0 on error
4278 int btrfs_previous_item(struct btrfs_root
*root
,
4279 struct btrfs_path
*path
, u64 min_objectid
,
4282 struct btrfs_key found_key
;
4283 struct extent_buffer
*leaf
;
4288 if (path
->slots
[0] == 0) {
4289 btrfs_set_path_blocking(path
);
4290 ret
= btrfs_prev_leaf(root
, path
);
4296 leaf
= path
->nodes
[0];
4297 nritems
= btrfs_header_nritems(leaf
);
4300 if (path
->slots
[0] == nritems
)
4303 btrfs_item_key_to_cpu(leaf
, &found_key
, path
->slots
[0]);
4304 if (found_key
.type
== type
)
4306 if (found_key
.objectid
< min_objectid
)
4308 if (found_key
.objectid
== min_objectid
&&
4309 found_key
.type
< type
)