MIPS: Fix sign-extension bug in 32-bit kernel on 32-bit hardware.
[linux-2.6/mini2440.git] / fs / btrfs / ctree.c
bloba99f1c2a710d771a416b6b34b6199d0fe44178ca
1 /*
2 * Copyright (C) 2007,2008 Oracle. All rights reserved.
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
19 #include <linux/sched.h>
20 #include "ctree.h"
21 #include "disk-io.h"
22 #include "transaction.h"
23 #include "print-tree.h"
24 #include "locking.h"
26 static int split_node(struct btrfs_trans_handle *trans, struct btrfs_root
27 *root, struct btrfs_path *path, int level);
28 static int split_leaf(struct btrfs_trans_handle *trans, struct btrfs_root
29 *root, struct btrfs_key *ins_key,
30 struct btrfs_path *path, int data_size, int extend);
31 static int push_node_left(struct btrfs_trans_handle *trans,
32 struct btrfs_root *root, struct extent_buffer *dst,
33 struct extent_buffer *src, int empty);
34 static int balance_node_right(struct btrfs_trans_handle *trans,
35 struct btrfs_root *root,
36 struct extent_buffer *dst_buf,
37 struct extent_buffer *src_buf);
38 static int del_ptr(struct btrfs_trans_handle *trans, struct btrfs_root *root,
39 struct btrfs_path *path, int level, int slot);
41 struct btrfs_path *btrfs_alloc_path(void)
43 struct btrfs_path *path;
44 path = kmem_cache_zalloc(btrfs_path_cachep, GFP_NOFS);
45 if (path)
46 path->reada = 1;
47 return path;
51 * set all locked nodes in the path to blocking locks. This should
52 * be done before scheduling
54 noinline void btrfs_set_path_blocking(struct btrfs_path *p)
56 int i;
57 for (i = 0; i < BTRFS_MAX_LEVEL; i++) {
58 if (p->nodes[i] && p->locks[i])
59 btrfs_set_lock_blocking(p->nodes[i]);
64 * reset all the locked nodes in the patch to spinning locks.
66 * held is used to keep lockdep happy, when lockdep is enabled
67 * we set held to a blocking lock before we go around and
68 * retake all the spinlocks in the path. You can safely use NULL
69 * for held
71 noinline void btrfs_clear_path_blocking(struct btrfs_path *p,
72 struct extent_buffer *held)
74 int i;
76 #ifdef CONFIG_DEBUG_LOCK_ALLOC
77 /* lockdep really cares that we take all of these spinlocks
78 * in the right order. If any of the locks in the path are not
79 * currently blocking, it is going to complain. So, make really
80 * really sure by forcing the path to blocking before we clear
81 * the path blocking.
83 if (held)
84 btrfs_set_lock_blocking(held);
85 btrfs_set_path_blocking(p);
86 #endif
88 for (i = BTRFS_MAX_LEVEL - 1; i >= 0; i--) {
89 if (p->nodes[i] && p->locks[i])
90 btrfs_clear_lock_blocking(p->nodes[i]);
93 #ifdef CONFIG_DEBUG_LOCK_ALLOC
94 if (held)
95 btrfs_clear_lock_blocking(held);
96 #endif
99 /* this also releases the path */
100 void btrfs_free_path(struct btrfs_path *p)
102 btrfs_release_path(NULL, p);
103 kmem_cache_free(btrfs_path_cachep, p);
107 * path release drops references on the extent buffers in the path
108 * and it drops any locks held by this path
110 * It is safe to call this on paths that no locks or extent buffers held.
112 noinline void btrfs_release_path(struct btrfs_root *root, struct btrfs_path *p)
114 int i;
116 for (i = 0; i < BTRFS_MAX_LEVEL; i++) {
117 p->slots[i] = 0;
118 if (!p->nodes[i])
119 continue;
120 if (p->locks[i]) {
121 btrfs_tree_unlock(p->nodes[i]);
122 p->locks[i] = 0;
124 free_extent_buffer(p->nodes[i]);
125 p->nodes[i] = NULL;
130 * safely gets a reference on the root node of a tree. A lock
131 * is not taken, so a concurrent writer may put a different node
132 * at the root of the tree. See btrfs_lock_root_node for the
133 * looping required.
135 * The extent buffer returned by this has a reference taken, so
136 * it won't disappear. It may stop being the root of the tree
137 * at any time because there are no locks held.
139 struct extent_buffer *btrfs_root_node(struct btrfs_root *root)
141 struct extent_buffer *eb;
142 spin_lock(&root->node_lock);
143 eb = root->node;
144 extent_buffer_get(eb);
145 spin_unlock(&root->node_lock);
146 return eb;
149 /* loop around taking references on and locking the root node of the
150 * tree until you end up with a lock on the root. A locked buffer
151 * is returned, with a reference held.
153 struct extent_buffer *btrfs_lock_root_node(struct btrfs_root *root)
155 struct extent_buffer *eb;
157 while (1) {
158 eb = btrfs_root_node(root);
159 btrfs_tree_lock(eb);
161 spin_lock(&root->node_lock);
162 if (eb == root->node) {
163 spin_unlock(&root->node_lock);
164 break;
166 spin_unlock(&root->node_lock);
168 btrfs_tree_unlock(eb);
169 free_extent_buffer(eb);
171 return eb;
174 /* cowonly root (everything not a reference counted cow subvolume), just get
175 * put onto a simple dirty list. transaction.c walks this to make sure they
176 * get properly updated on disk.
178 static void add_root_to_dirty_list(struct btrfs_root *root)
180 if (root->track_dirty && list_empty(&root->dirty_list)) {
181 list_add(&root->dirty_list,
182 &root->fs_info->dirty_cowonly_roots);
187 * used by snapshot creation to make a copy of a root for a tree with
188 * a given objectid. The buffer with the new root node is returned in
189 * cow_ret, and this func returns zero on success or a negative error code.
191 int btrfs_copy_root(struct btrfs_trans_handle *trans,
192 struct btrfs_root *root,
193 struct extent_buffer *buf,
194 struct extent_buffer **cow_ret, u64 new_root_objectid)
196 struct extent_buffer *cow;
197 u32 nritems;
198 int ret = 0;
199 int level;
200 struct btrfs_root *new_root;
202 new_root = kmalloc(sizeof(*new_root), GFP_NOFS);
203 if (!new_root)
204 return -ENOMEM;
206 memcpy(new_root, root, sizeof(*new_root));
207 new_root->root_key.objectid = new_root_objectid;
209 WARN_ON(root->ref_cows && trans->transid !=
210 root->fs_info->running_transaction->transid);
211 WARN_ON(root->ref_cows && trans->transid != root->last_trans);
213 level = btrfs_header_level(buf);
214 nritems = btrfs_header_nritems(buf);
216 cow = btrfs_alloc_free_block(trans, new_root, buf->len, 0,
217 new_root_objectid, trans->transid,
218 level, buf->start, 0);
219 if (IS_ERR(cow)) {
220 kfree(new_root);
221 return PTR_ERR(cow);
224 copy_extent_buffer(cow, buf, 0, 0, cow->len);
225 btrfs_set_header_bytenr(cow, cow->start);
226 btrfs_set_header_generation(cow, trans->transid);
227 btrfs_set_header_owner(cow, new_root_objectid);
228 btrfs_clear_header_flag(cow, BTRFS_HEADER_FLAG_WRITTEN);
230 write_extent_buffer(cow, root->fs_info->fsid,
231 (unsigned long)btrfs_header_fsid(cow),
232 BTRFS_FSID_SIZE);
234 WARN_ON(btrfs_header_generation(buf) > trans->transid);
235 ret = btrfs_inc_ref(trans, new_root, buf, cow, NULL);
236 kfree(new_root);
238 if (ret)
239 return ret;
241 btrfs_mark_buffer_dirty(cow);
242 *cow_ret = cow;
243 return 0;
247 * does the dirty work in cow of a single block. The parent block (if
248 * supplied) is updated to point to the new cow copy. The new buffer is marked
249 * dirty and returned locked. If you modify the block it needs to be marked
250 * dirty again.
252 * search_start -- an allocation hint for the new block
254 * empty_size -- a hint that you plan on doing more cow. This is the size in
255 * bytes the allocator should try to find free next to the block it returns.
256 * This is just a hint and may be ignored by the allocator.
258 static noinline int __btrfs_cow_block(struct btrfs_trans_handle *trans,
259 struct btrfs_root *root,
260 struct extent_buffer *buf,
261 struct extent_buffer *parent, int parent_slot,
262 struct extent_buffer **cow_ret,
263 u64 search_start, u64 empty_size)
265 u64 parent_start;
266 struct extent_buffer *cow;
267 u32 nritems;
268 int ret = 0;
269 int level;
270 int unlock_orig = 0;
272 if (*cow_ret == buf)
273 unlock_orig = 1;
275 btrfs_assert_tree_locked(buf);
277 if (parent)
278 parent_start = parent->start;
279 else
280 parent_start = 0;
282 WARN_ON(root->ref_cows && trans->transid !=
283 root->fs_info->running_transaction->transid);
284 WARN_ON(root->ref_cows && trans->transid != root->last_trans);
286 level = btrfs_header_level(buf);
287 nritems = btrfs_header_nritems(buf);
289 cow = btrfs_alloc_free_block(trans, root, buf->len,
290 parent_start, root->root_key.objectid,
291 trans->transid, level,
292 search_start, empty_size);
293 if (IS_ERR(cow))
294 return PTR_ERR(cow);
296 /* cow is set to blocking by btrfs_init_new_buffer */
298 copy_extent_buffer(cow, buf, 0, 0, cow->len);
299 btrfs_set_header_bytenr(cow, cow->start);
300 btrfs_set_header_generation(cow, trans->transid);
301 btrfs_set_header_owner(cow, root->root_key.objectid);
302 btrfs_clear_header_flag(cow, BTRFS_HEADER_FLAG_WRITTEN);
304 write_extent_buffer(cow, root->fs_info->fsid,
305 (unsigned long)btrfs_header_fsid(cow),
306 BTRFS_FSID_SIZE);
308 WARN_ON(btrfs_header_generation(buf) > trans->transid);
309 if (btrfs_header_generation(buf) != trans->transid) {
310 u32 nr_extents;
311 ret = btrfs_inc_ref(trans, root, buf, cow, &nr_extents);
312 if (ret)
313 return ret;
315 ret = btrfs_cache_ref(trans, root, buf, nr_extents);
316 WARN_ON(ret);
317 } else if (btrfs_header_owner(buf) == BTRFS_TREE_RELOC_OBJECTID) {
319 * There are only two places that can drop reference to
320 * tree blocks owned by living reloc trees, one is here,
321 * the other place is btrfs_drop_subtree. In both places,
322 * we check reference count while tree block is locked.
323 * Furthermore, if reference count is one, it won't get
324 * increased by someone else.
326 u32 refs;
327 ret = btrfs_lookup_extent_ref(trans, root, buf->start,
328 buf->len, &refs);
329 BUG_ON(ret);
330 if (refs == 1) {
331 ret = btrfs_update_ref(trans, root, buf, cow,
332 0, nritems);
333 clean_tree_block(trans, root, buf);
334 } else {
335 ret = btrfs_inc_ref(trans, root, buf, cow, NULL);
337 BUG_ON(ret);
338 } else {
339 ret = btrfs_update_ref(trans, root, buf, cow, 0, nritems);
340 if (ret)
341 return ret;
342 clean_tree_block(trans, root, buf);
345 if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID) {
346 ret = btrfs_reloc_tree_cache_ref(trans, root, cow, buf->start);
347 WARN_ON(ret);
350 if (buf == root->node) {
351 WARN_ON(parent && parent != buf);
353 spin_lock(&root->node_lock);
354 root->node = cow;
355 extent_buffer_get(cow);
356 spin_unlock(&root->node_lock);
358 if (buf != root->commit_root) {
359 btrfs_free_extent(trans, root, buf->start,
360 buf->len, buf->start,
361 root->root_key.objectid,
362 btrfs_header_generation(buf),
363 level, 1);
365 free_extent_buffer(buf);
366 add_root_to_dirty_list(root);
367 } else {
368 btrfs_set_node_blockptr(parent, parent_slot,
369 cow->start);
370 WARN_ON(trans->transid == 0);
371 btrfs_set_node_ptr_generation(parent, parent_slot,
372 trans->transid);
373 btrfs_mark_buffer_dirty(parent);
374 WARN_ON(btrfs_header_generation(parent) != trans->transid);
375 btrfs_free_extent(trans, root, buf->start, buf->len,
376 parent_start, btrfs_header_owner(parent),
377 btrfs_header_generation(parent), level, 1);
379 if (unlock_orig)
380 btrfs_tree_unlock(buf);
381 free_extent_buffer(buf);
382 btrfs_mark_buffer_dirty(cow);
383 *cow_ret = cow;
384 return 0;
388 * cows a single block, see __btrfs_cow_block for the real work.
389 * This version of it has extra checks so that a block isn't cow'd more than
390 * once per transaction, as long as it hasn't been written yet
392 noinline int btrfs_cow_block(struct btrfs_trans_handle *trans,
393 struct btrfs_root *root, struct extent_buffer *buf,
394 struct extent_buffer *parent, int parent_slot,
395 struct extent_buffer **cow_ret)
397 u64 search_start;
398 int ret;
400 if (trans->transaction != root->fs_info->running_transaction) {
401 printk(KERN_CRIT "trans %llu running %llu\n",
402 (unsigned long long)trans->transid,
403 (unsigned long long)
404 root->fs_info->running_transaction->transid);
405 WARN_ON(1);
407 if (trans->transid != root->fs_info->generation) {
408 printk(KERN_CRIT "trans %llu running %llu\n",
409 (unsigned long long)trans->transid,
410 (unsigned long long)root->fs_info->generation);
411 WARN_ON(1);
414 if (btrfs_header_generation(buf) == trans->transid &&
415 btrfs_header_owner(buf) == root->root_key.objectid &&
416 !btrfs_header_flag(buf, BTRFS_HEADER_FLAG_WRITTEN)) {
417 *cow_ret = buf;
418 return 0;
421 search_start = buf->start & ~((u64)(1024 * 1024 * 1024) - 1);
423 if (parent)
424 btrfs_set_lock_blocking(parent);
425 btrfs_set_lock_blocking(buf);
427 ret = __btrfs_cow_block(trans, root, buf, parent,
428 parent_slot, cow_ret, search_start, 0);
429 return ret;
433 * helper function for defrag to decide if two blocks pointed to by a
434 * node are actually close by
436 static int close_blocks(u64 blocknr, u64 other, u32 blocksize)
438 if (blocknr < other && other - (blocknr + blocksize) < 32768)
439 return 1;
440 if (blocknr > other && blocknr - (other + blocksize) < 32768)
441 return 1;
442 return 0;
446 * compare two keys in a memcmp fashion
448 static int comp_keys(struct btrfs_disk_key *disk, struct btrfs_key *k2)
450 struct btrfs_key k1;
452 btrfs_disk_key_to_cpu(&k1, disk);
454 if (k1.objectid > k2->objectid)
455 return 1;
456 if (k1.objectid < k2->objectid)
457 return -1;
458 if (k1.type > k2->type)
459 return 1;
460 if (k1.type < k2->type)
461 return -1;
462 if (k1.offset > k2->offset)
463 return 1;
464 if (k1.offset < k2->offset)
465 return -1;
466 return 0;
470 * same as comp_keys only with two btrfs_key's
472 static int comp_cpu_keys(struct btrfs_key *k1, struct btrfs_key *k2)
474 if (k1->objectid > k2->objectid)
475 return 1;
476 if (k1->objectid < k2->objectid)
477 return -1;
478 if (k1->type > k2->type)
479 return 1;
480 if (k1->type < k2->type)
481 return -1;
482 if (k1->offset > k2->offset)
483 return 1;
484 if (k1->offset < k2->offset)
485 return -1;
486 return 0;
490 * this is used by the defrag code to go through all the
491 * leaves pointed to by a node and reallocate them so that
492 * disk order is close to key order
494 int btrfs_realloc_node(struct btrfs_trans_handle *trans,
495 struct btrfs_root *root, struct extent_buffer *parent,
496 int start_slot, int cache_only, u64 *last_ret,
497 struct btrfs_key *progress)
499 struct extent_buffer *cur;
500 u64 blocknr;
501 u64 gen;
502 u64 search_start = *last_ret;
503 u64 last_block = 0;
504 u64 other;
505 u32 parent_nritems;
506 int end_slot;
507 int i;
508 int err = 0;
509 int parent_level;
510 int uptodate;
511 u32 blocksize;
512 int progress_passed = 0;
513 struct btrfs_disk_key disk_key;
515 parent_level = btrfs_header_level(parent);
516 if (cache_only && parent_level != 1)
517 return 0;
519 if (trans->transaction != root->fs_info->running_transaction)
520 WARN_ON(1);
521 if (trans->transid != root->fs_info->generation)
522 WARN_ON(1);
524 parent_nritems = btrfs_header_nritems(parent);
525 blocksize = btrfs_level_size(root, parent_level - 1);
526 end_slot = parent_nritems;
528 if (parent_nritems == 1)
529 return 0;
531 btrfs_set_lock_blocking(parent);
533 for (i = start_slot; i < end_slot; i++) {
534 int close = 1;
536 if (!parent->map_token) {
537 map_extent_buffer(parent,
538 btrfs_node_key_ptr_offset(i),
539 sizeof(struct btrfs_key_ptr),
540 &parent->map_token, &parent->kaddr,
541 &parent->map_start, &parent->map_len,
542 KM_USER1);
544 btrfs_node_key(parent, &disk_key, i);
545 if (!progress_passed && comp_keys(&disk_key, progress) < 0)
546 continue;
548 progress_passed = 1;
549 blocknr = btrfs_node_blockptr(parent, i);
550 gen = btrfs_node_ptr_generation(parent, i);
551 if (last_block == 0)
552 last_block = blocknr;
554 if (i > 0) {
555 other = btrfs_node_blockptr(parent, i - 1);
556 close = close_blocks(blocknr, other, blocksize);
558 if (!close && i < end_slot - 2) {
559 other = btrfs_node_blockptr(parent, i + 1);
560 close = close_blocks(blocknr, other, blocksize);
562 if (close) {
563 last_block = blocknr;
564 continue;
566 if (parent->map_token) {
567 unmap_extent_buffer(parent, parent->map_token,
568 KM_USER1);
569 parent->map_token = NULL;
572 cur = btrfs_find_tree_block(root, blocknr, blocksize);
573 if (cur)
574 uptodate = btrfs_buffer_uptodate(cur, gen);
575 else
576 uptodate = 0;
577 if (!cur || !uptodate) {
578 if (cache_only) {
579 free_extent_buffer(cur);
580 continue;
582 if (!cur) {
583 cur = read_tree_block(root, blocknr,
584 blocksize, gen);
585 } else if (!uptodate) {
586 btrfs_read_buffer(cur, gen);
589 if (search_start == 0)
590 search_start = last_block;
592 btrfs_tree_lock(cur);
593 btrfs_set_lock_blocking(cur);
594 err = __btrfs_cow_block(trans, root, cur, parent, i,
595 &cur, search_start,
596 min(16 * blocksize,
597 (end_slot - i) * blocksize));
598 if (err) {
599 btrfs_tree_unlock(cur);
600 free_extent_buffer(cur);
601 break;
603 search_start = cur->start;
604 last_block = cur->start;
605 *last_ret = search_start;
606 btrfs_tree_unlock(cur);
607 free_extent_buffer(cur);
609 if (parent->map_token) {
610 unmap_extent_buffer(parent, parent->map_token,
611 KM_USER1);
612 parent->map_token = NULL;
614 return err;
618 * The leaf data grows from end-to-front in the node.
619 * this returns the address of the start of the last item,
620 * which is the stop of the leaf data stack
622 static inline unsigned int leaf_data_end(struct btrfs_root *root,
623 struct extent_buffer *leaf)
625 u32 nr = btrfs_header_nritems(leaf);
626 if (nr == 0)
627 return BTRFS_LEAF_DATA_SIZE(root);
628 return btrfs_item_offset_nr(leaf, nr - 1);
632 * extra debugging checks to make sure all the items in a key are
633 * well formed and in the proper order
635 static int check_node(struct btrfs_root *root, struct btrfs_path *path,
636 int level)
638 struct extent_buffer *parent = NULL;
639 struct extent_buffer *node = path->nodes[level];
640 struct btrfs_disk_key parent_key;
641 struct btrfs_disk_key node_key;
642 int parent_slot;
643 int slot;
644 struct btrfs_key cpukey;
645 u32 nritems = btrfs_header_nritems(node);
647 if (path->nodes[level + 1])
648 parent = path->nodes[level + 1];
650 slot = path->slots[level];
651 BUG_ON(nritems == 0);
652 if (parent) {
653 parent_slot = path->slots[level + 1];
654 btrfs_node_key(parent, &parent_key, parent_slot);
655 btrfs_node_key(node, &node_key, 0);
656 BUG_ON(memcmp(&parent_key, &node_key,
657 sizeof(struct btrfs_disk_key)));
658 BUG_ON(btrfs_node_blockptr(parent, parent_slot) !=
659 btrfs_header_bytenr(node));
661 BUG_ON(nritems > BTRFS_NODEPTRS_PER_BLOCK(root));
662 if (slot != 0) {
663 btrfs_node_key_to_cpu(node, &cpukey, slot - 1);
664 btrfs_node_key(node, &node_key, slot);
665 BUG_ON(comp_keys(&node_key, &cpukey) <= 0);
667 if (slot < nritems - 1) {
668 btrfs_node_key_to_cpu(node, &cpukey, slot + 1);
669 btrfs_node_key(node, &node_key, slot);
670 BUG_ON(comp_keys(&node_key, &cpukey) >= 0);
672 return 0;
676 * extra checking to make sure all the items in a leaf are
677 * well formed and in the proper order
679 static int check_leaf(struct btrfs_root *root, struct btrfs_path *path,
680 int level)
682 struct extent_buffer *leaf = path->nodes[level];
683 struct extent_buffer *parent = NULL;
684 int parent_slot;
685 struct btrfs_key cpukey;
686 struct btrfs_disk_key parent_key;
687 struct btrfs_disk_key leaf_key;
688 int slot = path->slots[0];
690 u32 nritems = btrfs_header_nritems(leaf);
692 if (path->nodes[level + 1])
693 parent = path->nodes[level + 1];
695 if (nritems == 0)
696 return 0;
698 if (parent) {
699 parent_slot = path->slots[level + 1];
700 btrfs_node_key(parent, &parent_key, parent_slot);
701 btrfs_item_key(leaf, &leaf_key, 0);
703 BUG_ON(memcmp(&parent_key, &leaf_key,
704 sizeof(struct btrfs_disk_key)));
705 BUG_ON(btrfs_node_blockptr(parent, parent_slot) !=
706 btrfs_header_bytenr(leaf));
708 if (slot != 0 && slot < nritems - 1) {
709 btrfs_item_key(leaf, &leaf_key, slot);
710 btrfs_item_key_to_cpu(leaf, &cpukey, slot - 1);
711 if (comp_keys(&leaf_key, &cpukey) <= 0) {
712 btrfs_print_leaf(root, leaf);
713 printk(KERN_CRIT "slot %d offset bad key\n", slot);
714 BUG_ON(1);
716 if (btrfs_item_offset_nr(leaf, slot - 1) !=
717 btrfs_item_end_nr(leaf, slot)) {
718 btrfs_print_leaf(root, leaf);
719 printk(KERN_CRIT "slot %d offset bad\n", slot);
720 BUG_ON(1);
723 if (slot < nritems - 1) {
724 btrfs_item_key(leaf, &leaf_key, slot);
725 btrfs_item_key_to_cpu(leaf, &cpukey, slot + 1);
726 BUG_ON(comp_keys(&leaf_key, &cpukey) >= 0);
727 if (btrfs_item_offset_nr(leaf, slot) !=
728 btrfs_item_end_nr(leaf, slot + 1)) {
729 btrfs_print_leaf(root, leaf);
730 printk(KERN_CRIT "slot %d offset bad\n", slot);
731 BUG_ON(1);
734 BUG_ON(btrfs_item_offset_nr(leaf, 0) +
735 btrfs_item_size_nr(leaf, 0) != BTRFS_LEAF_DATA_SIZE(root));
736 return 0;
739 static noinline int check_block(struct btrfs_root *root,
740 struct btrfs_path *path, int level)
742 return 0;
743 if (level == 0)
744 return check_leaf(root, path, level);
745 return check_node(root, path, level);
749 * search for key in the extent_buffer. The items start at offset p,
750 * and they are item_size apart. There are 'max' items in p.
752 * the slot in the array is returned via slot, and it points to
753 * the place where you would insert key if it is not found in
754 * the array.
756 * slot may point to max if the key is bigger than all of the keys
758 static noinline int generic_bin_search(struct extent_buffer *eb,
759 unsigned long p,
760 int item_size, struct btrfs_key *key,
761 int max, int *slot)
763 int low = 0;
764 int high = max;
765 int mid;
766 int ret;
767 struct btrfs_disk_key *tmp = NULL;
768 struct btrfs_disk_key unaligned;
769 unsigned long offset;
770 char *map_token = NULL;
771 char *kaddr = NULL;
772 unsigned long map_start = 0;
773 unsigned long map_len = 0;
774 int err;
776 while (low < high) {
777 mid = (low + high) / 2;
778 offset = p + mid * item_size;
780 if (!map_token || offset < map_start ||
781 (offset + sizeof(struct btrfs_disk_key)) >
782 map_start + map_len) {
783 if (map_token) {
784 unmap_extent_buffer(eb, map_token, KM_USER0);
785 map_token = NULL;
788 err = map_private_extent_buffer(eb, offset,
789 sizeof(struct btrfs_disk_key),
790 &map_token, &kaddr,
791 &map_start, &map_len, KM_USER0);
793 if (!err) {
794 tmp = (struct btrfs_disk_key *)(kaddr + offset -
795 map_start);
796 } else {
797 read_extent_buffer(eb, &unaligned,
798 offset, sizeof(unaligned));
799 tmp = &unaligned;
802 } else {
803 tmp = (struct btrfs_disk_key *)(kaddr + offset -
804 map_start);
806 ret = comp_keys(tmp, key);
808 if (ret < 0)
809 low = mid + 1;
810 else if (ret > 0)
811 high = mid;
812 else {
813 *slot = mid;
814 if (map_token)
815 unmap_extent_buffer(eb, map_token, KM_USER0);
816 return 0;
819 *slot = low;
820 if (map_token)
821 unmap_extent_buffer(eb, map_token, KM_USER0);
822 return 1;
826 * simple bin_search frontend that does the right thing for
827 * leaves vs nodes
829 static int bin_search(struct extent_buffer *eb, struct btrfs_key *key,
830 int level, int *slot)
832 if (level == 0) {
833 return generic_bin_search(eb,
834 offsetof(struct btrfs_leaf, items),
835 sizeof(struct btrfs_item),
836 key, btrfs_header_nritems(eb),
837 slot);
838 } else {
839 return generic_bin_search(eb,
840 offsetof(struct btrfs_node, ptrs),
841 sizeof(struct btrfs_key_ptr),
842 key, btrfs_header_nritems(eb),
843 slot);
845 return -1;
848 /* given a node and slot number, this reads the blocks it points to. The
849 * extent buffer is returned with a reference taken (but unlocked).
850 * NULL is returned on error.
852 static noinline struct extent_buffer *read_node_slot(struct btrfs_root *root,
853 struct extent_buffer *parent, int slot)
855 int level = btrfs_header_level(parent);
856 if (slot < 0)
857 return NULL;
858 if (slot >= btrfs_header_nritems(parent))
859 return NULL;
861 BUG_ON(level == 0);
863 return read_tree_block(root, btrfs_node_blockptr(parent, slot),
864 btrfs_level_size(root, level - 1),
865 btrfs_node_ptr_generation(parent, slot));
869 * node level balancing, used to make sure nodes are in proper order for
870 * item deletion. We balance from the top down, so we have to make sure
871 * that a deletion won't leave an node completely empty later on.
873 static noinline int balance_level(struct btrfs_trans_handle *trans,
874 struct btrfs_root *root,
875 struct btrfs_path *path, int level)
877 struct extent_buffer *right = NULL;
878 struct extent_buffer *mid;
879 struct extent_buffer *left = NULL;
880 struct extent_buffer *parent = NULL;
881 int ret = 0;
882 int wret;
883 int pslot;
884 int orig_slot = path->slots[level];
885 int err_on_enospc = 0;
886 u64 orig_ptr;
888 if (level == 0)
889 return 0;
891 mid = path->nodes[level];
893 WARN_ON(!path->locks[level]);
894 WARN_ON(btrfs_header_generation(mid) != trans->transid);
896 orig_ptr = btrfs_node_blockptr(mid, orig_slot);
898 if (level < BTRFS_MAX_LEVEL - 1)
899 parent = path->nodes[level + 1];
900 pslot = path->slots[level + 1];
903 * deal with the case where there is only one pointer in the root
904 * by promoting the node below to a root
906 if (!parent) {
907 struct extent_buffer *child;
909 if (btrfs_header_nritems(mid) != 1)
910 return 0;
912 /* promote the child to a root */
913 child = read_node_slot(root, mid, 0);
914 BUG_ON(!child);
915 btrfs_tree_lock(child);
916 btrfs_set_lock_blocking(child);
917 ret = btrfs_cow_block(trans, root, child, mid, 0, &child);
918 BUG_ON(ret);
920 spin_lock(&root->node_lock);
921 root->node = child;
922 spin_unlock(&root->node_lock);
924 ret = btrfs_update_extent_ref(trans, root, child->start,
925 child->len,
926 mid->start, child->start,
927 root->root_key.objectid,
928 trans->transid, level - 1);
929 BUG_ON(ret);
931 add_root_to_dirty_list(root);
932 btrfs_tree_unlock(child);
934 path->locks[level] = 0;
935 path->nodes[level] = NULL;
936 clean_tree_block(trans, root, mid);
937 btrfs_tree_unlock(mid);
938 /* once for the path */
939 free_extent_buffer(mid);
940 ret = btrfs_free_extent(trans, root, mid->start, mid->len,
941 mid->start, root->root_key.objectid,
942 btrfs_header_generation(mid),
943 level, 1);
944 /* once for the root ptr */
945 free_extent_buffer(mid);
946 return ret;
948 if (btrfs_header_nritems(mid) >
949 BTRFS_NODEPTRS_PER_BLOCK(root) / 4)
950 return 0;
952 if (trans->transaction->delayed_refs.flushing &&
953 btrfs_header_nritems(mid) > 2)
954 return 0;
956 if (btrfs_header_nritems(mid) < 2)
957 err_on_enospc = 1;
959 left = read_node_slot(root, parent, pslot - 1);
960 if (left) {
961 btrfs_tree_lock(left);
962 btrfs_set_lock_blocking(left);
963 wret = btrfs_cow_block(trans, root, left,
964 parent, pslot - 1, &left);
965 if (wret) {
966 ret = wret;
967 goto enospc;
970 right = read_node_slot(root, parent, pslot + 1);
971 if (right) {
972 btrfs_tree_lock(right);
973 btrfs_set_lock_blocking(right);
974 wret = btrfs_cow_block(trans, root, right,
975 parent, pslot + 1, &right);
976 if (wret) {
977 ret = wret;
978 goto enospc;
982 /* first, try to make some room in the middle buffer */
983 if (left) {
984 orig_slot += btrfs_header_nritems(left);
985 wret = push_node_left(trans, root, left, mid, 1);
986 if (wret < 0)
987 ret = wret;
988 if (btrfs_header_nritems(mid) < 2)
989 err_on_enospc = 1;
993 * then try to empty the right most buffer into the middle
995 if (right) {
996 wret = push_node_left(trans, root, mid, right, 1);
997 if (wret < 0 && wret != -ENOSPC)
998 ret = wret;
999 if (btrfs_header_nritems(right) == 0) {
1000 u64 bytenr = right->start;
1001 u64 generation = btrfs_header_generation(parent);
1002 u32 blocksize = right->len;
1004 clean_tree_block(trans, root, right);
1005 btrfs_tree_unlock(right);
1006 free_extent_buffer(right);
1007 right = NULL;
1008 wret = del_ptr(trans, root, path, level + 1, pslot +
1010 if (wret)
1011 ret = wret;
1012 wret = btrfs_free_extent(trans, root, bytenr,
1013 blocksize, parent->start,
1014 btrfs_header_owner(parent),
1015 generation, level, 1);
1016 if (wret)
1017 ret = wret;
1018 } else {
1019 struct btrfs_disk_key right_key;
1020 btrfs_node_key(right, &right_key, 0);
1021 btrfs_set_node_key(parent, &right_key, pslot + 1);
1022 btrfs_mark_buffer_dirty(parent);
1025 if (btrfs_header_nritems(mid) == 1) {
1027 * we're not allowed to leave a node with one item in the
1028 * tree during a delete. A deletion from lower in the tree
1029 * could try to delete the only pointer in this node.
1030 * So, pull some keys from the left.
1031 * There has to be a left pointer at this point because
1032 * otherwise we would have pulled some pointers from the
1033 * right
1035 BUG_ON(!left);
1036 wret = balance_node_right(trans, root, mid, left);
1037 if (wret < 0) {
1038 ret = wret;
1039 goto enospc;
1041 if (wret == 1) {
1042 wret = push_node_left(trans, root, left, mid, 1);
1043 if (wret < 0)
1044 ret = wret;
1046 BUG_ON(wret == 1);
1048 if (btrfs_header_nritems(mid) == 0) {
1049 /* we've managed to empty the middle node, drop it */
1050 u64 root_gen = btrfs_header_generation(parent);
1051 u64 bytenr = mid->start;
1052 u32 blocksize = mid->len;
1054 clean_tree_block(trans, root, mid);
1055 btrfs_tree_unlock(mid);
1056 free_extent_buffer(mid);
1057 mid = NULL;
1058 wret = del_ptr(trans, root, path, level + 1, pslot);
1059 if (wret)
1060 ret = wret;
1061 wret = btrfs_free_extent(trans, root, bytenr, blocksize,
1062 parent->start,
1063 btrfs_header_owner(parent),
1064 root_gen, level, 1);
1065 if (wret)
1066 ret = wret;
1067 } else {
1068 /* update the parent key to reflect our changes */
1069 struct btrfs_disk_key mid_key;
1070 btrfs_node_key(mid, &mid_key, 0);
1071 btrfs_set_node_key(parent, &mid_key, pslot);
1072 btrfs_mark_buffer_dirty(parent);
1075 /* update the path */
1076 if (left) {
1077 if (btrfs_header_nritems(left) > orig_slot) {
1078 extent_buffer_get(left);
1079 /* left was locked after cow */
1080 path->nodes[level] = left;
1081 path->slots[level + 1] -= 1;
1082 path->slots[level] = orig_slot;
1083 if (mid) {
1084 btrfs_tree_unlock(mid);
1085 free_extent_buffer(mid);
1087 } else {
1088 orig_slot -= btrfs_header_nritems(left);
1089 path->slots[level] = orig_slot;
1092 /* double check we haven't messed things up */
1093 check_block(root, path, level);
1094 if (orig_ptr !=
1095 btrfs_node_blockptr(path->nodes[level], path->slots[level]))
1096 BUG();
1097 enospc:
1098 if (right) {
1099 btrfs_tree_unlock(right);
1100 free_extent_buffer(right);
1102 if (left) {
1103 if (path->nodes[level] != left)
1104 btrfs_tree_unlock(left);
1105 free_extent_buffer(left);
1107 return ret;
1110 /* Node balancing for insertion. Here we only split or push nodes around
1111 * when they are completely full. This is also done top down, so we
1112 * have to be pessimistic.
1114 static noinline int push_nodes_for_insert(struct btrfs_trans_handle *trans,
1115 struct btrfs_root *root,
1116 struct btrfs_path *path, int level)
1118 struct extent_buffer *right = NULL;
1119 struct extent_buffer *mid;
1120 struct extent_buffer *left = NULL;
1121 struct extent_buffer *parent = NULL;
1122 int ret = 0;
1123 int wret;
1124 int pslot;
1125 int orig_slot = path->slots[level];
1126 u64 orig_ptr;
1128 if (level == 0)
1129 return 1;
1131 mid = path->nodes[level];
1132 WARN_ON(btrfs_header_generation(mid) != trans->transid);
1133 orig_ptr = btrfs_node_blockptr(mid, orig_slot);
1135 if (level < BTRFS_MAX_LEVEL - 1)
1136 parent = path->nodes[level + 1];
1137 pslot = path->slots[level + 1];
1139 if (!parent)
1140 return 1;
1142 left = read_node_slot(root, parent, pslot - 1);
1144 /* first, try to make some room in the middle buffer */
1145 if (left) {
1146 u32 left_nr;
1148 btrfs_tree_lock(left);
1149 btrfs_set_lock_blocking(left);
1151 left_nr = btrfs_header_nritems(left);
1152 if (left_nr >= BTRFS_NODEPTRS_PER_BLOCK(root) - 1) {
1153 wret = 1;
1154 } else {
1155 ret = btrfs_cow_block(trans, root, left, parent,
1156 pslot - 1, &left);
1157 if (ret)
1158 wret = 1;
1159 else {
1160 wret = push_node_left(trans, root,
1161 left, mid, 0);
1164 if (wret < 0)
1165 ret = wret;
1166 if (wret == 0) {
1167 struct btrfs_disk_key disk_key;
1168 orig_slot += left_nr;
1169 btrfs_node_key(mid, &disk_key, 0);
1170 btrfs_set_node_key(parent, &disk_key, pslot);
1171 btrfs_mark_buffer_dirty(parent);
1172 if (btrfs_header_nritems(left) > orig_slot) {
1173 path->nodes[level] = left;
1174 path->slots[level + 1] -= 1;
1175 path->slots[level] = orig_slot;
1176 btrfs_tree_unlock(mid);
1177 free_extent_buffer(mid);
1178 } else {
1179 orig_slot -=
1180 btrfs_header_nritems(left);
1181 path->slots[level] = orig_slot;
1182 btrfs_tree_unlock(left);
1183 free_extent_buffer(left);
1185 return 0;
1187 btrfs_tree_unlock(left);
1188 free_extent_buffer(left);
1190 right = read_node_slot(root, parent, pslot + 1);
1193 * then try to empty the right most buffer into the middle
1195 if (right) {
1196 u32 right_nr;
1198 btrfs_tree_lock(right);
1199 btrfs_set_lock_blocking(right);
1201 right_nr = btrfs_header_nritems(right);
1202 if (right_nr >= BTRFS_NODEPTRS_PER_BLOCK(root) - 1) {
1203 wret = 1;
1204 } else {
1205 ret = btrfs_cow_block(trans, root, right,
1206 parent, pslot + 1,
1207 &right);
1208 if (ret)
1209 wret = 1;
1210 else {
1211 wret = balance_node_right(trans, root,
1212 right, mid);
1215 if (wret < 0)
1216 ret = wret;
1217 if (wret == 0) {
1218 struct btrfs_disk_key disk_key;
1220 btrfs_node_key(right, &disk_key, 0);
1221 btrfs_set_node_key(parent, &disk_key, pslot + 1);
1222 btrfs_mark_buffer_dirty(parent);
1224 if (btrfs_header_nritems(mid) <= orig_slot) {
1225 path->nodes[level] = right;
1226 path->slots[level + 1] += 1;
1227 path->slots[level] = orig_slot -
1228 btrfs_header_nritems(mid);
1229 btrfs_tree_unlock(mid);
1230 free_extent_buffer(mid);
1231 } else {
1232 btrfs_tree_unlock(right);
1233 free_extent_buffer(right);
1235 return 0;
1237 btrfs_tree_unlock(right);
1238 free_extent_buffer(right);
1240 return 1;
1244 * readahead one full node of leaves, finding things that are close
1245 * to the block in 'slot', and triggering ra on them.
1247 static void reada_for_search(struct btrfs_root *root,
1248 struct btrfs_path *path,
1249 int level, int slot, u64 objectid)
1251 struct extent_buffer *node;
1252 struct btrfs_disk_key disk_key;
1253 u32 nritems;
1254 u64 search;
1255 u64 target;
1256 u64 nread = 0;
1257 int direction = path->reada;
1258 struct extent_buffer *eb;
1259 u32 nr;
1260 u32 blocksize;
1261 u32 nscan = 0;
1263 if (level != 1)
1264 return;
1266 if (!path->nodes[level])
1267 return;
1269 node = path->nodes[level];
1271 search = btrfs_node_blockptr(node, slot);
1272 blocksize = btrfs_level_size(root, level - 1);
1273 eb = btrfs_find_tree_block(root, search, blocksize);
1274 if (eb) {
1275 free_extent_buffer(eb);
1276 return;
1279 target = search;
1281 nritems = btrfs_header_nritems(node);
1282 nr = slot;
1283 while (1) {
1284 if (direction < 0) {
1285 if (nr == 0)
1286 break;
1287 nr--;
1288 } else if (direction > 0) {
1289 nr++;
1290 if (nr >= nritems)
1291 break;
1293 if (path->reada < 0 && objectid) {
1294 btrfs_node_key(node, &disk_key, nr);
1295 if (btrfs_disk_key_objectid(&disk_key) != objectid)
1296 break;
1298 search = btrfs_node_blockptr(node, nr);
1299 if ((search <= target && target - search <= 65536) ||
1300 (search > target && search - target <= 65536)) {
1301 readahead_tree_block(root, search, blocksize,
1302 btrfs_node_ptr_generation(node, nr));
1303 nread += blocksize;
1305 nscan++;
1306 if ((nread > 65536 || nscan > 32))
1307 break;
1312 * returns -EAGAIN if it had to drop the path, or zero if everything was in
1313 * cache
1315 static noinline int reada_for_balance(struct btrfs_root *root,
1316 struct btrfs_path *path, int level)
1318 int slot;
1319 int nritems;
1320 struct extent_buffer *parent;
1321 struct extent_buffer *eb;
1322 u64 gen;
1323 u64 block1 = 0;
1324 u64 block2 = 0;
1325 int ret = 0;
1326 int blocksize;
1328 parent = path->nodes[level + 1];
1329 if (!parent)
1330 return 0;
1332 nritems = btrfs_header_nritems(parent);
1333 slot = path->slots[level + 1];
1334 blocksize = btrfs_level_size(root, level);
1336 if (slot > 0) {
1337 block1 = btrfs_node_blockptr(parent, slot - 1);
1338 gen = btrfs_node_ptr_generation(parent, slot - 1);
1339 eb = btrfs_find_tree_block(root, block1, blocksize);
1340 if (eb && btrfs_buffer_uptodate(eb, gen))
1341 block1 = 0;
1342 free_extent_buffer(eb);
1344 if (slot + 1 < nritems) {
1345 block2 = btrfs_node_blockptr(parent, slot + 1);
1346 gen = btrfs_node_ptr_generation(parent, slot + 1);
1347 eb = btrfs_find_tree_block(root, block2, blocksize);
1348 if (eb && btrfs_buffer_uptodate(eb, gen))
1349 block2 = 0;
1350 free_extent_buffer(eb);
1352 if (block1 || block2) {
1353 ret = -EAGAIN;
1355 /* release the whole path */
1356 btrfs_release_path(root, path);
1358 /* read the blocks */
1359 if (block1)
1360 readahead_tree_block(root, block1, blocksize, 0);
1361 if (block2)
1362 readahead_tree_block(root, block2, blocksize, 0);
1364 if (block1) {
1365 eb = read_tree_block(root, block1, blocksize, 0);
1366 free_extent_buffer(eb);
1368 if (block2) {
1369 eb = read_tree_block(root, block2, blocksize, 0);
1370 free_extent_buffer(eb);
1373 return ret;
1378 * when we walk down the tree, it is usually safe to unlock the higher layers
1379 * in the tree. The exceptions are when our path goes through slot 0, because
1380 * operations on the tree might require changing key pointers higher up in the
1381 * tree.
1383 * callers might also have set path->keep_locks, which tells this code to keep
1384 * the lock if the path points to the last slot in the block. This is part of
1385 * walking through the tree, and selecting the next slot in the higher block.
1387 * lowest_unlock sets the lowest level in the tree we're allowed to unlock. so
1388 * if lowest_unlock is 1, level 0 won't be unlocked
1390 static noinline void unlock_up(struct btrfs_path *path, int level,
1391 int lowest_unlock)
1393 int i;
1394 int skip_level = level;
1395 int no_skips = 0;
1396 struct extent_buffer *t;
1398 for (i = level; i < BTRFS_MAX_LEVEL; i++) {
1399 if (!path->nodes[i])
1400 break;
1401 if (!path->locks[i])
1402 break;
1403 if (!no_skips && path->slots[i] == 0) {
1404 skip_level = i + 1;
1405 continue;
1407 if (!no_skips && path->keep_locks) {
1408 u32 nritems;
1409 t = path->nodes[i];
1410 nritems = btrfs_header_nritems(t);
1411 if (nritems < 1 || path->slots[i] >= nritems - 1) {
1412 skip_level = i + 1;
1413 continue;
1416 if (skip_level < i && i >= lowest_unlock)
1417 no_skips = 1;
1419 t = path->nodes[i];
1420 if (i >= lowest_unlock && i > skip_level && path->locks[i]) {
1421 btrfs_tree_unlock(t);
1422 path->locks[i] = 0;
1428 * This releases any locks held in the path starting at level and
1429 * going all the way up to the root.
1431 * btrfs_search_slot will keep the lock held on higher nodes in a few
1432 * corner cases, such as COW of the block at slot zero in the node. This
1433 * ignores those rules, and it should only be called when there are no
1434 * more updates to be done higher up in the tree.
1436 noinline void btrfs_unlock_up_safe(struct btrfs_path *path, int level)
1438 int i;
1440 if (path->keep_locks || path->lowest_level)
1441 return;
1443 for (i = level; i < BTRFS_MAX_LEVEL; i++) {
1444 if (!path->nodes[i])
1445 continue;
1446 if (!path->locks[i])
1447 continue;
1448 btrfs_tree_unlock(path->nodes[i]);
1449 path->locks[i] = 0;
1454 * helper function for btrfs_search_slot. The goal is to find a block
1455 * in cache without setting the path to blocking. If we find the block
1456 * we return zero and the path is unchanged.
1458 * If we can't find the block, we set the path blocking and do some
1459 * reada. -EAGAIN is returned and the search must be repeated.
1461 static int
1462 read_block_for_search(struct btrfs_trans_handle *trans,
1463 struct btrfs_root *root, struct btrfs_path *p,
1464 struct extent_buffer **eb_ret, int level, int slot,
1465 struct btrfs_key *key)
1467 u64 blocknr;
1468 u64 gen;
1469 u32 blocksize;
1470 struct extent_buffer *b = *eb_ret;
1471 struct extent_buffer *tmp;
1473 blocknr = btrfs_node_blockptr(b, slot);
1474 gen = btrfs_node_ptr_generation(b, slot);
1475 blocksize = btrfs_level_size(root, level - 1);
1477 tmp = btrfs_find_tree_block(root, blocknr, blocksize);
1478 if (tmp && btrfs_buffer_uptodate(tmp, gen)) {
1479 *eb_ret = tmp;
1480 return 0;
1484 * reduce lock contention at high levels
1485 * of the btree by dropping locks before
1486 * we read.
1488 btrfs_unlock_up_safe(p, level + 1);
1489 btrfs_set_path_blocking(p);
1491 if (tmp)
1492 free_extent_buffer(tmp);
1493 if (p->reada)
1494 reada_for_search(root, p, level, slot, key->objectid);
1496 btrfs_release_path(NULL, p);
1497 tmp = read_tree_block(root, blocknr, blocksize, gen);
1498 if (tmp)
1499 free_extent_buffer(tmp);
1500 return -EAGAIN;
1504 * helper function for btrfs_search_slot. This does all of the checks
1505 * for node-level blocks and does any balancing required based on
1506 * the ins_len.
1508 * If no extra work was required, zero is returned. If we had to
1509 * drop the path, -EAGAIN is returned and btrfs_search_slot must
1510 * start over
1512 static int
1513 setup_nodes_for_search(struct btrfs_trans_handle *trans,
1514 struct btrfs_root *root, struct btrfs_path *p,
1515 struct extent_buffer *b, int level, int ins_len)
1517 int ret;
1518 if ((p->search_for_split || ins_len > 0) && btrfs_header_nritems(b) >=
1519 BTRFS_NODEPTRS_PER_BLOCK(root) - 3) {
1520 int sret;
1522 sret = reada_for_balance(root, p, level);
1523 if (sret)
1524 goto again;
1526 btrfs_set_path_blocking(p);
1527 sret = split_node(trans, root, p, level);
1528 btrfs_clear_path_blocking(p, NULL);
1530 BUG_ON(sret > 0);
1531 if (sret) {
1532 ret = sret;
1533 goto done;
1535 b = p->nodes[level];
1536 } else if (ins_len < 0 && btrfs_header_nritems(b) <
1537 BTRFS_NODEPTRS_PER_BLOCK(root) / 4) {
1538 int sret;
1540 sret = reada_for_balance(root, p, level);
1541 if (sret)
1542 goto again;
1544 btrfs_set_path_blocking(p);
1545 sret = balance_level(trans, root, p, level);
1546 btrfs_clear_path_blocking(p, NULL);
1548 if (sret) {
1549 ret = sret;
1550 goto done;
1552 b = p->nodes[level];
1553 if (!b) {
1554 btrfs_release_path(NULL, p);
1555 goto again;
1557 BUG_ON(btrfs_header_nritems(b) == 1);
1559 return 0;
1561 again:
1562 ret = -EAGAIN;
1563 done:
1564 return ret;
1568 * look for key in the tree. path is filled in with nodes along the way
1569 * if key is found, we return zero and you can find the item in the leaf
1570 * level of the path (level 0)
1572 * If the key isn't found, the path points to the slot where it should
1573 * be inserted, and 1 is returned. If there are other errors during the
1574 * search a negative error number is returned.
1576 * if ins_len > 0, nodes and leaves will be split as we walk down the
1577 * tree. if ins_len < 0, nodes will be merged as we walk down the tree (if
1578 * possible)
1580 int btrfs_search_slot(struct btrfs_trans_handle *trans, struct btrfs_root
1581 *root, struct btrfs_key *key, struct btrfs_path *p, int
1582 ins_len, int cow)
1584 struct extent_buffer *b;
1585 int slot;
1586 int ret;
1587 int level;
1588 int lowest_unlock = 1;
1589 u8 lowest_level = 0;
1591 lowest_level = p->lowest_level;
1592 WARN_ON(lowest_level && ins_len > 0);
1593 WARN_ON(p->nodes[0] != NULL);
1595 if (ins_len < 0)
1596 lowest_unlock = 2;
1598 again:
1599 if (p->skip_locking)
1600 b = btrfs_root_node(root);
1601 else
1602 b = btrfs_lock_root_node(root);
1604 while (b) {
1605 level = btrfs_header_level(b);
1608 * setup the path here so we can release it under lock
1609 * contention with the cow code
1611 p->nodes[level] = b;
1612 if (!p->skip_locking)
1613 p->locks[level] = 1;
1615 if (cow) {
1616 int wret;
1619 * if we don't really need to cow this block
1620 * then we don't want to set the path blocking,
1621 * so we test it here
1623 if (btrfs_header_generation(b) == trans->transid &&
1624 btrfs_header_owner(b) == root->root_key.objectid &&
1625 !btrfs_header_flag(b, BTRFS_HEADER_FLAG_WRITTEN)) {
1626 goto cow_done;
1628 btrfs_set_path_blocking(p);
1630 wret = btrfs_cow_block(trans, root, b,
1631 p->nodes[level + 1],
1632 p->slots[level + 1], &b);
1633 if (wret) {
1634 free_extent_buffer(b);
1635 ret = wret;
1636 goto done;
1639 cow_done:
1640 BUG_ON(!cow && ins_len);
1641 if (level != btrfs_header_level(b))
1642 WARN_ON(1);
1643 level = btrfs_header_level(b);
1645 p->nodes[level] = b;
1646 if (!p->skip_locking)
1647 p->locks[level] = 1;
1649 btrfs_clear_path_blocking(p, NULL);
1652 * we have a lock on b and as long as we aren't changing
1653 * the tree, there is no way to for the items in b to change.
1654 * It is safe to drop the lock on our parent before we
1655 * go through the expensive btree search on b.
1657 * If cow is true, then we might be changing slot zero,
1658 * which may require changing the parent. So, we can't
1659 * drop the lock until after we know which slot we're
1660 * operating on.
1662 if (!cow)
1663 btrfs_unlock_up_safe(p, level + 1);
1665 ret = check_block(root, p, level);
1666 if (ret) {
1667 ret = -1;
1668 goto done;
1671 ret = bin_search(b, key, level, &slot);
1673 if (level != 0) {
1674 if (ret && slot > 0)
1675 slot -= 1;
1676 p->slots[level] = slot;
1677 ret = setup_nodes_for_search(trans, root, p, b, level,
1678 ins_len);
1679 if (ret == -EAGAIN)
1680 goto again;
1681 else if (ret)
1682 goto done;
1683 b = p->nodes[level];
1684 slot = p->slots[level];
1686 unlock_up(p, level, lowest_unlock);
1688 /* this is only true while dropping a snapshot */
1689 if (level == lowest_level) {
1690 ret = 0;
1691 goto done;
1694 ret = read_block_for_search(trans, root, p,
1695 &b, level, slot, key);
1696 if (ret == -EAGAIN)
1697 goto again;
1699 if (!p->skip_locking) {
1700 int lret;
1702 btrfs_clear_path_blocking(p, NULL);
1703 lret = btrfs_try_spin_lock(b);
1705 if (!lret) {
1706 btrfs_set_path_blocking(p);
1707 btrfs_tree_lock(b);
1708 btrfs_clear_path_blocking(p, b);
1711 } else {
1712 p->slots[level] = slot;
1713 if (ins_len > 0 &&
1714 btrfs_leaf_free_space(root, b) < ins_len) {
1715 int sret;
1717 btrfs_set_path_blocking(p);
1718 sret = split_leaf(trans, root, key,
1719 p, ins_len, ret == 0);
1720 btrfs_clear_path_blocking(p, NULL);
1722 BUG_ON(sret > 0);
1723 if (sret) {
1724 ret = sret;
1725 goto done;
1728 if (!p->search_for_split)
1729 unlock_up(p, level, lowest_unlock);
1730 goto done;
1733 ret = 1;
1734 done:
1736 * we don't really know what they plan on doing with the path
1737 * from here on, so for now just mark it as blocking
1739 if (!p->leave_spinning)
1740 btrfs_set_path_blocking(p);
1741 return ret;
1744 int btrfs_merge_path(struct btrfs_trans_handle *trans,
1745 struct btrfs_root *root,
1746 struct btrfs_key *node_keys,
1747 u64 *nodes, int lowest_level)
1749 struct extent_buffer *eb;
1750 struct extent_buffer *parent;
1751 struct btrfs_key key;
1752 u64 bytenr;
1753 u64 generation;
1754 u32 blocksize;
1755 int level;
1756 int slot;
1757 int key_match;
1758 int ret;
1760 eb = btrfs_lock_root_node(root);
1761 ret = btrfs_cow_block(trans, root, eb, NULL, 0, &eb);
1762 BUG_ON(ret);
1764 btrfs_set_lock_blocking(eb);
1766 parent = eb;
1767 while (1) {
1768 level = btrfs_header_level(parent);
1769 if (level == 0 || level <= lowest_level)
1770 break;
1772 ret = bin_search(parent, &node_keys[lowest_level], level,
1773 &slot);
1774 if (ret && slot > 0)
1775 slot--;
1777 bytenr = btrfs_node_blockptr(parent, slot);
1778 if (nodes[level - 1] == bytenr)
1779 break;
1781 blocksize = btrfs_level_size(root, level - 1);
1782 generation = btrfs_node_ptr_generation(parent, slot);
1783 btrfs_node_key_to_cpu(eb, &key, slot);
1784 key_match = !memcmp(&key, &node_keys[level - 1], sizeof(key));
1786 if (generation == trans->transid) {
1787 eb = read_tree_block(root, bytenr, blocksize,
1788 generation);
1789 btrfs_tree_lock(eb);
1790 btrfs_set_lock_blocking(eb);
1794 * if node keys match and node pointer hasn't been modified
1795 * in the running transaction, we can merge the path. for
1796 * blocks owened by reloc trees, the node pointer check is
1797 * skipped, this is because these blocks are fully controlled
1798 * by the space balance code, no one else can modify them.
1800 if (!nodes[level - 1] || !key_match ||
1801 (generation == trans->transid &&
1802 btrfs_header_owner(eb) != BTRFS_TREE_RELOC_OBJECTID)) {
1803 if (level == 1 || level == lowest_level + 1) {
1804 if (generation == trans->transid) {
1805 btrfs_tree_unlock(eb);
1806 free_extent_buffer(eb);
1808 break;
1811 if (generation != trans->transid) {
1812 eb = read_tree_block(root, bytenr, blocksize,
1813 generation);
1814 btrfs_tree_lock(eb);
1815 btrfs_set_lock_blocking(eb);
1818 ret = btrfs_cow_block(trans, root, eb, parent, slot,
1819 &eb);
1820 BUG_ON(ret);
1822 if (root->root_key.objectid ==
1823 BTRFS_TREE_RELOC_OBJECTID) {
1824 if (!nodes[level - 1]) {
1825 nodes[level - 1] = eb->start;
1826 memcpy(&node_keys[level - 1], &key,
1827 sizeof(node_keys[0]));
1828 } else {
1829 WARN_ON(1);
1833 btrfs_tree_unlock(parent);
1834 free_extent_buffer(parent);
1835 parent = eb;
1836 continue;
1839 btrfs_set_node_blockptr(parent, slot, nodes[level - 1]);
1840 btrfs_set_node_ptr_generation(parent, slot, trans->transid);
1841 btrfs_mark_buffer_dirty(parent);
1843 ret = btrfs_inc_extent_ref(trans, root,
1844 nodes[level - 1],
1845 blocksize, parent->start,
1846 btrfs_header_owner(parent),
1847 btrfs_header_generation(parent),
1848 level - 1);
1849 BUG_ON(ret);
1852 * If the block was created in the running transaction,
1853 * it's possible this is the last reference to it, so we
1854 * should drop the subtree.
1856 if (generation == trans->transid) {
1857 ret = btrfs_drop_subtree(trans, root, eb, parent);
1858 BUG_ON(ret);
1859 btrfs_tree_unlock(eb);
1860 free_extent_buffer(eb);
1861 } else {
1862 ret = btrfs_free_extent(trans, root, bytenr,
1863 blocksize, parent->start,
1864 btrfs_header_owner(parent),
1865 btrfs_header_generation(parent),
1866 level - 1, 1);
1867 BUG_ON(ret);
1869 break;
1871 btrfs_tree_unlock(parent);
1872 free_extent_buffer(parent);
1873 return 0;
1877 * adjust the pointers going up the tree, starting at level
1878 * making sure the right key of each node is points to 'key'.
1879 * This is used after shifting pointers to the left, so it stops
1880 * fixing up pointers when a given leaf/node is not in slot 0 of the
1881 * higher levels
1883 * If this fails to write a tree block, it returns -1, but continues
1884 * fixing up the blocks in ram so the tree is consistent.
1886 static int fixup_low_keys(struct btrfs_trans_handle *trans,
1887 struct btrfs_root *root, struct btrfs_path *path,
1888 struct btrfs_disk_key *key, int level)
1890 int i;
1891 int ret = 0;
1892 struct extent_buffer *t;
1894 for (i = level; i < BTRFS_MAX_LEVEL; i++) {
1895 int tslot = path->slots[i];
1896 if (!path->nodes[i])
1897 break;
1898 t = path->nodes[i];
1899 btrfs_set_node_key(t, key, tslot);
1900 btrfs_mark_buffer_dirty(path->nodes[i]);
1901 if (tslot != 0)
1902 break;
1904 return ret;
1908 * update item key.
1910 * This function isn't completely safe. It's the caller's responsibility
1911 * that the new key won't break the order
1913 int btrfs_set_item_key_safe(struct btrfs_trans_handle *trans,
1914 struct btrfs_root *root, struct btrfs_path *path,
1915 struct btrfs_key *new_key)
1917 struct btrfs_disk_key disk_key;
1918 struct extent_buffer *eb;
1919 int slot;
1921 eb = path->nodes[0];
1922 slot = path->slots[0];
1923 if (slot > 0) {
1924 btrfs_item_key(eb, &disk_key, slot - 1);
1925 if (comp_keys(&disk_key, new_key) >= 0)
1926 return -1;
1928 if (slot < btrfs_header_nritems(eb) - 1) {
1929 btrfs_item_key(eb, &disk_key, slot + 1);
1930 if (comp_keys(&disk_key, new_key) <= 0)
1931 return -1;
1934 btrfs_cpu_key_to_disk(&disk_key, new_key);
1935 btrfs_set_item_key(eb, &disk_key, slot);
1936 btrfs_mark_buffer_dirty(eb);
1937 if (slot == 0)
1938 fixup_low_keys(trans, root, path, &disk_key, 1);
1939 return 0;
1943 * try to push data from one node into the next node left in the
1944 * tree.
1946 * returns 0 if some ptrs were pushed left, < 0 if there was some horrible
1947 * error, and > 0 if there was no room in the left hand block.
1949 static int push_node_left(struct btrfs_trans_handle *trans,
1950 struct btrfs_root *root, struct extent_buffer *dst,
1951 struct extent_buffer *src, int empty)
1953 int push_items = 0;
1954 int src_nritems;
1955 int dst_nritems;
1956 int ret = 0;
1958 src_nritems = btrfs_header_nritems(src);
1959 dst_nritems = btrfs_header_nritems(dst);
1960 push_items = BTRFS_NODEPTRS_PER_BLOCK(root) - dst_nritems;
1961 WARN_ON(btrfs_header_generation(src) != trans->transid);
1962 WARN_ON(btrfs_header_generation(dst) != trans->transid);
1964 if (!empty && src_nritems <= 8)
1965 return 1;
1967 if (push_items <= 0)
1968 return 1;
1970 if (empty) {
1971 push_items = min(src_nritems, push_items);
1972 if (push_items < src_nritems) {
1973 /* leave at least 8 pointers in the node if
1974 * we aren't going to empty it
1976 if (src_nritems - push_items < 8) {
1977 if (push_items <= 8)
1978 return 1;
1979 push_items -= 8;
1982 } else
1983 push_items = min(src_nritems - 8, push_items);
1985 copy_extent_buffer(dst, src,
1986 btrfs_node_key_ptr_offset(dst_nritems),
1987 btrfs_node_key_ptr_offset(0),
1988 push_items * sizeof(struct btrfs_key_ptr));
1990 if (push_items < src_nritems) {
1991 memmove_extent_buffer(src, btrfs_node_key_ptr_offset(0),
1992 btrfs_node_key_ptr_offset(push_items),
1993 (src_nritems - push_items) *
1994 sizeof(struct btrfs_key_ptr));
1996 btrfs_set_header_nritems(src, src_nritems - push_items);
1997 btrfs_set_header_nritems(dst, dst_nritems + push_items);
1998 btrfs_mark_buffer_dirty(src);
1999 btrfs_mark_buffer_dirty(dst);
2001 ret = btrfs_update_ref(trans, root, src, dst, dst_nritems, push_items);
2002 BUG_ON(ret);
2004 return ret;
2008 * try to push data from one node into the next node right in the
2009 * tree.
2011 * returns 0 if some ptrs were pushed, < 0 if there was some horrible
2012 * error, and > 0 if there was no room in the right hand block.
2014 * this will only push up to 1/2 the contents of the left node over
2016 static int balance_node_right(struct btrfs_trans_handle *trans,
2017 struct btrfs_root *root,
2018 struct extent_buffer *dst,
2019 struct extent_buffer *src)
2021 int push_items = 0;
2022 int max_push;
2023 int src_nritems;
2024 int dst_nritems;
2025 int ret = 0;
2027 WARN_ON(btrfs_header_generation(src) != trans->transid);
2028 WARN_ON(btrfs_header_generation(dst) != trans->transid);
2030 src_nritems = btrfs_header_nritems(src);
2031 dst_nritems = btrfs_header_nritems(dst);
2032 push_items = BTRFS_NODEPTRS_PER_BLOCK(root) - dst_nritems;
2033 if (push_items <= 0)
2034 return 1;
2036 if (src_nritems < 4)
2037 return 1;
2039 max_push = src_nritems / 2 + 1;
2040 /* don't try to empty the node */
2041 if (max_push >= src_nritems)
2042 return 1;
2044 if (max_push < push_items)
2045 push_items = max_push;
2047 memmove_extent_buffer(dst, btrfs_node_key_ptr_offset(push_items),
2048 btrfs_node_key_ptr_offset(0),
2049 (dst_nritems) *
2050 sizeof(struct btrfs_key_ptr));
2052 copy_extent_buffer(dst, src,
2053 btrfs_node_key_ptr_offset(0),
2054 btrfs_node_key_ptr_offset(src_nritems - push_items),
2055 push_items * sizeof(struct btrfs_key_ptr));
2057 btrfs_set_header_nritems(src, src_nritems - push_items);
2058 btrfs_set_header_nritems(dst, dst_nritems + push_items);
2060 btrfs_mark_buffer_dirty(src);
2061 btrfs_mark_buffer_dirty(dst);
2063 ret = btrfs_update_ref(trans, root, src, dst, 0, push_items);
2064 BUG_ON(ret);
2066 return ret;
2070 * helper function to insert a new root level in the tree.
2071 * A new node is allocated, and a single item is inserted to
2072 * point to the existing root
2074 * returns zero on success or < 0 on failure.
2076 static noinline int insert_new_root(struct btrfs_trans_handle *trans,
2077 struct btrfs_root *root,
2078 struct btrfs_path *path, int level)
2080 u64 lower_gen;
2081 struct extent_buffer *lower;
2082 struct extent_buffer *c;
2083 struct extent_buffer *old;
2084 struct btrfs_disk_key lower_key;
2085 int ret;
2087 BUG_ON(path->nodes[level]);
2088 BUG_ON(path->nodes[level-1] != root->node);
2090 lower = path->nodes[level-1];
2091 if (level == 1)
2092 btrfs_item_key(lower, &lower_key, 0);
2093 else
2094 btrfs_node_key(lower, &lower_key, 0);
2096 c = btrfs_alloc_free_block(trans, root, root->nodesize, 0,
2097 root->root_key.objectid, trans->transid,
2098 level, root->node->start, 0);
2099 if (IS_ERR(c))
2100 return PTR_ERR(c);
2102 memset_extent_buffer(c, 0, 0, root->nodesize);
2103 btrfs_set_header_nritems(c, 1);
2104 btrfs_set_header_level(c, level);
2105 btrfs_set_header_bytenr(c, c->start);
2106 btrfs_set_header_generation(c, trans->transid);
2107 btrfs_set_header_owner(c, root->root_key.objectid);
2109 write_extent_buffer(c, root->fs_info->fsid,
2110 (unsigned long)btrfs_header_fsid(c),
2111 BTRFS_FSID_SIZE);
2113 write_extent_buffer(c, root->fs_info->chunk_tree_uuid,
2114 (unsigned long)btrfs_header_chunk_tree_uuid(c),
2115 BTRFS_UUID_SIZE);
2117 btrfs_set_node_key(c, &lower_key, 0);
2118 btrfs_set_node_blockptr(c, 0, lower->start);
2119 lower_gen = btrfs_header_generation(lower);
2120 WARN_ON(lower_gen != trans->transid);
2122 btrfs_set_node_ptr_generation(c, 0, lower_gen);
2124 btrfs_mark_buffer_dirty(c);
2126 spin_lock(&root->node_lock);
2127 old = root->node;
2128 root->node = c;
2129 spin_unlock(&root->node_lock);
2131 ret = btrfs_update_extent_ref(trans, root, lower->start,
2132 lower->len, lower->start, c->start,
2133 root->root_key.objectid,
2134 trans->transid, level - 1);
2135 BUG_ON(ret);
2137 /* the super has an extra ref to root->node */
2138 free_extent_buffer(old);
2140 add_root_to_dirty_list(root);
2141 extent_buffer_get(c);
2142 path->nodes[level] = c;
2143 path->locks[level] = 1;
2144 path->slots[level] = 0;
2145 return 0;
2149 * worker function to insert a single pointer in a node.
2150 * the node should have enough room for the pointer already
2152 * slot and level indicate where you want the key to go, and
2153 * blocknr is the block the key points to.
2155 * returns zero on success and < 0 on any error
2157 static int insert_ptr(struct btrfs_trans_handle *trans, struct btrfs_root
2158 *root, struct btrfs_path *path, struct btrfs_disk_key
2159 *key, u64 bytenr, int slot, int level)
2161 struct extent_buffer *lower;
2162 int nritems;
2164 BUG_ON(!path->nodes[level]);
2165 lower = path->nodes[level];
2166 nritems = btrfs_header_nritems(lower);
2167 BUG_ON(slot > nritems);
2168 if (nritems == BTRFS_NODEPTRS_PER_BLOCK(root))
2169 BUG();
2170 if (slot != nritems) {
2171 memmove_extent_buffer(lower,
2172 btrfs_node_key_ptr_offset(slot + 1),
2173 btrfs_node_key_ptr_offset(slot),
2174 (nritems - slot) * sizeof(struct btrfs_key_ptr));
2176 btrfs_set_node_key(lower, key, slot);
2177 btrfs_set_node_blockptr(lower, slot, bytenr);
2178 WARN_ON(trans->transid == 0);
2179 btrfs_set_node_ptr_generation(lower, slot, trans->transid);
2180 btrfs_set_header_nritems(lower, nritems + 1);
2181 btrfs_mark_buffer_dirty(lower);
2182 return 0;
2186 * split the node at the specified level in path in two.
2187 * The path is corrected to point to the appropriate node after the split
2189 * Before splitting this tries to make some room in the node by pushing
2190 * left and right, if either one works, it returns right away.
2192 * returns 0 on success and < 0 on failure
2194 static noinline int split_node(struct btrfs_trans_handle *trans,
2195 struct btrfs_root *root,
2196 struct btrfs_path *path, int level)
2198 struct extent_buffer *c;
2199 struct extent_buffer *split;
2200 struct btrfs_disk_key disk_key;
2201 int mid;
2202 int ret;
2203 int wret;
2204 u32 c_nritems;
2206 c = path->nodes[level];
2207 WARN_ON(btrfs_header_generation(c) != trans->transid);
2208 if (c == root->node) {
2209 /* trying to split the root, lets make a new one */
2210 ret = insert_new_root(trans, root, path, level + 1);
2211 if (ret)
2212 return ret;
2213 } else if (!trans->transaction->delayed_refs.flushing) {
2214 ret = push_nodes_for_insert(trans, root, path, level);
2215 c = path->nodes[level];
2216 if (!ret && btrfs_header_nritems(c) <
2217 BTRFS_NODEPTRS_PER_BLOCK(root) - 3)
2218 return 0;
2219 if (ret < 0)
2220 return ret;
2223 c_nritems = btrfs_header_nritems(c);
2225 split = btrfs_alloc_free_block(trans, root, root->nodesize,
2226 path->nodes[level + 1]->start,
2227 root->root_key.objectid,
2228 trans->transid, level, c->start, 0);
2229 if (IS_ERR(split))
2230 return PTR_ERR(split);
2232 btrfs_set_header_flags(split, btrfs_header_flags(c));
2233 btrfs_set_header_level(split, btrfs_header_level(c));
2234 btrfs_set_header_bytenr(split, split->start);
2235 btrfs_set_header_generation(split, trans->transid);
2236 btrfs_set_header_owner(split, root->root_key.objectid);
2237 btrfs_set_header_flags(split, 0);
2238 write_extent_buffer(split, root->fs_info->fsid,
2239 (unsigned long)btrfs_header_fsid(split),
2240 BTRFS_FSID_SIZE);
2241 write_extent_buffer(split, root->fs_info->chunk_tree_uuid,
2242 (unsigned long)btrfs_header_chunk_tree_uuid(split),
2243 BTRFS_UUID_SIZE);
2245 mid = (c_nritems + 1) / 2;
2247 copy_extent_buffer(split, c,
2248 btrfs_node_key_ptr_offset(0),
2249 btrfs_node_key_ptr_offset(mid),
2250 (c_nritems - mid) * sizeof(struct btrfs_key_ptr));
2251 btrfs_set_header_nritems(split, c_nritems - mid);
2252 btrfs_set_header_nritems(c, mid);
2253 ret = 0;
2255 btrfs_mark_buffer_dirty(c);
2256 btrfs_mark_buffer_dirty(split);
2258 btrfs_node_key(split, &disk_key, 0);
2259 wret = insert_ptr(trans, root, path, &disk_key, split->start,
2260 path->slots[level + 1] + 1,
2261 level + 1);
2262 if (wret)
2263 ret = wret;
2265 ret = btrfs_update_ref(trans, root, c, split, 0, c_nritems - mid);
2266 BUG_ON(ret);
2268 if (path->slots[level] >= mid) {
2269 path->slots[level] -= mid;
2270 btrfs_tree_unlock(c);
2271 free_extent_buffer(c);
2272 path->nodes[level] = split;
2273 path->slots[level + 1] += 1;
2274 } else {
2275 btrfs_tree_unlock(split);
2276 free_extent_buffer(split);
2278 return ret;
2282 * how many bytes are required to store the items in a leaf. start
2283 * and nr indicate which items in the leaf to check. This totals up the
2284 * space used both by the item structs and the item data
2286 static int leaf_space_used(struct extent_buffer *l, int start, int nr)
2288 int data_len;
2289 int nritems = btrfs_header_nritems(l);
2290 int end = min(nritems, start + nr) - 1;
2292 if (!nr)
2293 return 0;
2294 data_len = btrfs_item_end_nr(l, start);
2295 data_len = data_len - btrfs_item_offset_nr(l, end);
2296 data_len += sizeof(struct btrfs_item) * nr;
2297 WARN_ON(data_len < 0);
2298 return data_len;
2302 * The space between the end of the leaf items and
2303 * the start of the leaf data. IOW, how much room
2304 * the leaf has left for both items and data
2306 noinline int btrfs_leaf_free_space(struct btrfs_root *root,
2307 struct extent_buffer *leaf)
2309 int nritems = btrfs_header_nritems(leaf);
2310 int ret;
2311 ret = BTRFS_LEAF_DATA_SIZE(root) - leaf_space_used(leaf, 0, nritems);
2312 if (ret < 0) {
2313 printk(KERN_CRIT "leaf free space ret %d, leaf data size %lu, "
2314 "used %d nritems %d\n",
2315 ret, (unsigned long) BTRFS_LEAF_DATA_SIZE(root),
2316 leaf_space_used(leaf, 0, nritems), nritems);
2318 return ret;
2321 static noinline int __push_leaf_right(struct btrfs_trans_handle *trans,
2322 struct btrfs_root *root,
2323 struct btrfs_path *path,
2324 int data_size, int empty,
2325 struct extent_buffer *right,
2326 int free_space, u32 left_nritems)
2328 struct extent_buffer *left = path->nodes[0];
2329 struct extent_buffer *upper = path->nodes[1];
2330 struct btrfs_disk_key disk_key;
2331 int slot;
2332 u32 i;
2333 int push_space = 0;
2334 int push_items = 0;
2335 struct btrfs_item *item;
2336 u32 nr;
2337 u32 right_nritems;
2338 u32 data_end;
2339 u32 this_item_size;
2340 int ret;
2342 if (empty)
2343 nr = 0;
2344 else
2345 nr = 1;
2347 if (path->slots[0] >= left_nritems)
2348 push_space += data_size;
2350 slot = path->slots[1];
2351 i = left_nritems - 1;
2352 while (i >= nr) {
2353 item = btrfs_item_nr(left, i);
2355 if (!empty && push_items > 0) {
2356 if (path->slots[0] > i)
2357 break;
2358 if (path->slots[0] == i) {
2359 int space = btrfs_leaf_free_space(root, left);
2360 if (space + push_space * 2 > free_space)
2361 break;
2365 if (path->slots[0] == i)
2366 push_space += data_size;
2368 if (!left->map_token) {
2369 map_extent_buffer(left, (unsigned long)item,
2370 sizeof(struct btrfs_item),
2371 &left->map_token, &left->kaddr,
2372 &left->map_start, &left->map_len,
2373 KM_USER1);
2376 this_item_size = btrfs_item_size(left, item);
2377 if (this_item_size + sizeof(*item) + push_space > free_space)
2378 break;
2380 push_items++;
2381 push_space += this_item_size + sizeof(*item);
2382 if (i == 0)
2383 break;
2384 i--;
2386 if (left->map_token) {
2387 unmap_extent_buffer(left, left->map_token, KM_USER1);
2388 left->map_token = NULL;
2391 if (push_items == 0)
2392 goto out_unlock;
2394 if (!empty && push_items == left_nritems)
2395 WARN_ON(1);
2397 /* push left to right */
2398 right_nritems = btrfs_header_nritems(right);
2400 push_space = btrfs_item_end_nr(left, left_nritems - push_items);
2401 push_space -= leaf_data_end(root, left);
2403 /* make room in the right data area */
2404 data_end = leaf_data_end(root, right);
2405 memmove_extent_buffer(right,
2406 btrfs_leaf_data(right) + data_end - push_space,
2407 btrfs_leaf_data(right) + data_end,
2408 BTRFS_LEAF_DATA_SIZE(root) - data_end);
2410 /* copy from the left data area */
2411 copy_extent_buffer(right, left, btrfs_leaf_data(right) +
2412 BTRFS_LEAF_DATA_SIZE(root) - push_space,
2413 btrfs_leaf_data(left) + leaf_data_end(root, left),
2414 push_space);
2416 memmove_extent_buffer(right, btrfs_item_nr_offset(push_items),
2417 btrfs_item_nr_offset(0),
2418 right_nritems * sizeof(struct btrfs_item));
2420 /* copy the items from left to right */
2421 copy_extent_buffer(right, left, btrfs_item_nr_offset(0),
2422 btrfs_item_nr_offset(left_nritems - push_items),
2423 push_items * sizeof(struct btrfs_item));
2425 /* update the item pointers */
2426 right_nritems += push_items;
2427 btrfs_set_header_nritems(right, right_nritems);
2428 push_space = BTRFS_LEAF_DATA_SIZE(root);
2429 for (i = 0; i < right_nritems; i++) {
2430 item = btrfs_item_nr(right, i);
2431 if (!right->map_token) {
2432 map_extent_buffer(right, (unsigned long)item,
2433 sizeof(struct btrfs_item),
2434 &right->map_token, &right->kaddr,
2435 &right->map_start, &right->map_len,
2436 KM_USER1);
2438 push_space -= btrfs_item_size(right, item);
2439 btrfs_set_item_offset(right, item, push_space);
2442 if (right->map_token) {
2443 unmap_extent_buffer(right, right->map_token, KM_USER1);
2444 right->map_token = NULL;
2446 left_nritems -= push_items;
2447 btrfs_set_header_nritems(left, left_nritems);
2449 if (left_nritems)
2450 btrfs_mark_buffer_dirty(left);
2451 btrfs_mark_buffer_dirty(right);
2453 ret = btrfs_update_ref(trans, root, left, right, 0, push_items);
2454 BUG_ON(ret);
2456 btrfs_item_key(right, &disk_key, 0);
2457 btrfs_set_node_key(upper, &disk_key, slot + 1);
2458 btrfs_mark_buffer_dirty(upper);
2460 /* then fixup the leaf pointer in the path */
2461 if (path->slots[0] >= left_nritems) {
2462 path->slots[0] -= left_nritems;
2463 if (btrfs_header_nritems(path->nodes[0]) == 0)
2464 clean_tree_block(trans, root, path->nodes[0]);
2465 btrfs_tree_unlock(path->nodes[0]);
2466 free_extent_buffer(path->nodes[0]);
2467 path->nodes[0] = right;
2468 path->slots[1] += 1;
2469 } else {
2470 btrfs_tree_unlock(right);
2471 free_extent_buffer(right);
2473 return 0;
2475 out_unlock:
2476 btrfs_tree_unlock(right);
2477 free_extent_buffer(right);
2478 return 1;
2482 * push some data in the path leaf to the right, trying to free up at
2483 * least data_size bytes. returns zero if the push worked, nonzero otherwise
2485 * returns 1 if the push failed because the other node didn't have enough
2486 * room, 0 if everything worked out and < 0 if there were major errors.
2488 static int push_leaf_right(struct btrfs_trans_handle *trans, struct btrfs_root
2489 *root, struct btrfs_path *path, int data_size,
2490 int empty)
2492 struct extent_buffer *left = path->nodes[0];
2493 struct extent_buffer *right;
2494 struct extent_buffer *upper;
2495 int slot;
2496 int free_space;
2497 u32 left_nritems;
2498 int ret;
2500 if (!path->nodes[1])
2501 return 1;
2503 slot = path->slots[1];
2504 upper = path->nodes[1];
2505 if (slot >= btrfs_header_nritems(upper) - 1)
2506 return 1;
2508 btrfs_assert_tree_locked(path->nodes[1]);
2510 right = read_node_slot(root, upper, slot + 1);
2511 btrfs_tree_lock(right);
2512 btrfs_set_lock_blocking(right);
2514 free_space = btrfs_leaf_free_space(root, right);
2515 if (free_space < data_size)
2516 goto out_unlock;
2518 /* cow and double check */
2519 ret = btrfs_cow_block(trans, root, right, upper,
2520 slot + 1, &right);
2521 if (ret)
2522 goto out_unlock;
2524 free_space = btrfs_leaf_free_space(root, right);
2525 if (free_space < data_size)
2526 goto out_unlock;
2528 left_nritems = btrfs_header_nritems(left);
2529 if (left_nritems == 0)
2530 goto out_unlock;
2532 return __push_leaf_right(trans, root, path, data_size, empty,
2533 right, free_space, left_nritems);
2534 out_unlock:
2535 btrfs_tree_unlock(right);
2536 free_extent_buffer(right);
2537 return 1;
2541 * push some data in the path leaf to the left, trying to free up at
2542 * least data_size bytes. returns zero if the push worked, nonzero otherwise
2544 static noinline int __push_leaf_left(struct btrfs_trans_handle *trans,
2545 struct btrfs_root *root,
2546 struct btrfs_path *path, int data_size,
2547 int empty, struct extent_buffer *left,
2548 int free_space, int right_nritems)
2550 struct btrfs_disk_key disk_key;
2551 struct extent_buffer *right = path->nodes[0];
2552 int slot;
2553 int i;
2554 int push_space = 0;
2555 int push_items = 0;
2556 struct btrfs_item *item;
2557 u32 old_left_nritems;
2558 u32 nr;
2559 int ret = 0;
2560 int wret;
2561 u32 this_item_size;
2562 u32 old_left_item_size;
2564 slot = path->slots[1];
2566 if (empty)
2567 nr = right_nritems;
2568 else
2569 nr = right_nritems - 1;
2571 for (i = 0; i < nr; i++) {
2572 item = btrfs_item_nr(right, i);
2573 if (!right->map_token) {
2574 map_extent_buffer(right, (unsigned long)item,
2575 sizeof(struct btrfs_item),
2576 &right->map_token, &right->kaddr,
2577 &right->map_start, &right->map_len,
2578 KM_USER1);
2581 if (!empty && push_items > 0) {
2582 if (path->slots[0] < i)
2583 break;
2584 if (path->slots[0] == i) {
2585 int space = btrfs_leaf_free_space(root, right);
2586 if (space + push_space * 2 > free_space)
2587 break;
2591 if (path->slots[0] == i)
2592 push_space += data_size;
2594 this_item_size = btrfs_item_size(right, item);
2595 if (this_item_size + sizeof(*item) + push_space > free_space)
2596 break;
2598 push_items++;
2599 push_space += this_item_size + sizeof(*item);
2602 if (right->map_token) {
2603 unmap_extent_buffer(right, right->map_token, KM_USER1);
2604 right->map_token = NULL;
2607 if (push_items == 0) {
2608 ret = 1;
2609 goto out;
2611 if (!empty && push_items == btrfs_header_nritems(right))
2612 WARN_ON(1);
2614 /* push data from right to left */
2615 copy_extent_buffer(left, right,
2616 btrfs_item_nr_offset(btrfs_header_nritems(left)),
2617 btrfs_item_nr_offset(0),
2618 push_items * sizeof(struct btrfs_item));
2620 push_space = BTRFS_LEAF_DATA_SIZE(root) -
2621 btrfs_item_offset_nr(right, push_items - 1);
2623 copy_extent_buffer(left, right, btrfs_leaf_data(left) +
2624 leaf_data_end(root, left) - push_space,
2625 btrfs_leaf_data(right) +
2626 btrfs_item_offset_nr(right, push_items - 1),
2627 push_space);
2628 old_left_nritems = btrfs_header_nritems(left);
2629 BUG_ON(old_left_nritems <= 0);
2631 old_left_item_size = btrfs_item_offset_nr(left, old_left_nritems - 1);
2632 for (i = old_left_nritems; i < old_left_nritems + push_items; i++) {
2633 u32 ioff;
2635 item = btrfs_item_nr(left, i);
2636 if (!left->map_token) {
2637 map_extent_buffer(left, (unsigned long)item,
2638 sizeof(struct btrfs_item),
2639 &left->map_token, &left->kaddr,
2640 &left->map_start, &left->map_len,
2641 KM_USER1);
2644 ioff = btrfs_item_offset(left, item);
2645 btrfs_set_item_offset(left, item,
2646 ioff - (BTRFS_LEAF_DATA_SIZE(root) - old_left_item_size));
2648 btrfs_set_header_nritems(left, old_left_nritems + push_items);
2649 if (left->map_token) {
2650 unmap_extent_buffer(left, left->map_token, KM_USER1);
2651 left->map_token = NULL;
2654 /* fixup right node */
2655 if (push_items > right_nritems) {
2656 printk(KERN_CRIT "push items %d nr %u\n", push_items,
2657 right_nritems);
2658 WARN_ON(1);
2661 if (push_items < right_nritems) {
2662 push_space = btrfs_item_offset_nr(right, push_items - 1) -
2663 leaf_data_end(root, right);
2664 memmove_extent_buffer(right, btrfs_leaf_data(right) +
2665 BTRFS_LEAF_DATA_SIZE(root) - push_space,
2666 btrfs_leaf_data(right) +
2667 leaf_data_end(root, right), push_space);
2669 memmove_extent_buffer(right, btrfs_item_nr_offset(0),
2670 btrfs_item_nr_offset(push_items),
2671 (btrfs_header_nritems(right) - push_items) *
2672 sizeof(struct btrfs_item));
2674 right_nritems -= push_items;
2675 btrfs_set_header_nritems(right, right_nritems);
2676 push_space = BTRFS_LEAF_DATA_SIZE(root);
2677 for (i = 0; i < right_nritems; i++) {
2678 item = btrfs_item_nr(right, i);
2680 if (!right->map_token) {
2681 map_extent_buffer(right, (unsigned long)item,
2682 sizeof(struct btrfs_item),
2683 &right->map_token, &right->kaddr,
2684 &right->map_start, &right->map_len,
2685 KM_USER1);
2688 push_space = push_space - btrfs_item_size(right, item);
2689 btrfs_set_item_offset(right, item, push_space);
2691 if (right->map_token) {
2692 unmap_extent_buffer(right, right->map_token, KM_USER1);
2693 right->map_token = NULL;
2696 btrfs_mark_buffer_dirty(left);
2697 if (right_nritems)
2698 btrfs_mark_buffer_dirty(right);
2700 ret = btrfs_update_ref(trans, root, right, left,
2701 old_left_nritems, push_items);
2702 BUG_ON(ret);
2704 btrfs_item_key(right, &disk_key, 0);
2705 wret = fixup_low_keys(trans, root, path, &disk_key, 1);
2706 if (wret)
2707 ret = wret;
2709 /* then fixup the leaf pointer in the path */
2710 if (path->slots[0] < push_items) {
2711 path->slots[0] += old_left_nritems;
2712 if (btrfs_header_nritems(path->nodes[0]) == 0)
2713 clean_tree_block(trans, root, path->nodes[0]);
2714 btrfs_tree_unlock(path->nodes[0]);
2715 free_extent_buffer(path->nodes[0]);
2716 path->nodes[0] = left;
2717 path->slots[1] -= 1;
2718 } else {
2719 btrfs_tree_unlock(left);
2720 free_extent_buffer(left);
2721 path->slots[0] -= push_items;
2723 BUG_ON(path->slots[0] < 0);
2724 return ret;
2725 out:
2726 btrfs_tree_unlock(left);
2727 free_extent_buffer(left);
2728 return ret;
2732 * push some data in the path leaf to the left, trying to free up at
2733 * least data_size bytes. returns zero if the push worked, nonzero otherwise
2735 static int push_leaf_left(struct btrfs_trans_handle *trans, struct btrfs_root
2736 *root, struct btrfs_path *path, int data_size,
2737 int empty)
2739 struct extent_buffer *right = path->nodes[0];
2740 struct extent_buffer *left;
2741 int slot;
2742 int free_space;
2743 u32 right_nritems;
2744 int ret = 0;
2746 slot = path->slots[1];
2747 if (slot == 0)
2748 return 1;
2749 if (!path->nodes[1])
2750 return 1;
2752 right_nritems = btrfs_header_nritems(right);
2753 if (right_nritems == 0)
2754 return 1;
2756 btrfs_assert_tree_locked(path->nodes[1]);
2758 left = read_node_slot(root, path->nodes[1], slot - 1);
2759 btrfs_tree_lock(left);
2760 btrfs_set_lock_blocking(left);
2762 free_space = btrfs_leaf_free_space(root, left);
2763 if (free_space < data_size) {
2764 ret = 1;
2765 goto out;
2768 /* cow and double check */
2769 ret = btrfs_cow_block(trans, root, left,
2770 path->nodes[1], slot - 1, &left);
2771 if (ret) {
2772 /* we hit -ENOSPC, but it isn't fatal here */
2773 ret = 1;
2774 goto out;
2777 free_space = btrfs_leaf_free_space(root, left);
2778 if (free_space < data_size) {
2779 ret = 1;
2780 goto out;
2783 return __push_leaf_left(trans, root, path, data_size,
2784 empty, left, free_space, right_nritems);
2785 out:
2786 btrfs_tree_unlock(left);
2787 free_extent_buffer(left);
2788 return ret;
2792 * split the path's leaf in two, making sure there is at least data_size
2793 * available for the resulting leaf level of the path.
2795 * returns 0 if all went well and < 0 on failure.
2797 static noinline int copy_for_split(struct btrfs_trans_handle *trans,
2798 struct btrfs_root *root,
2799 struct btrfs_path *path,
2800 struct extent_buffer *l,
2801 struct extent_buffer *right,
2802 int slot, int mid, int nritems)
2804 int data_copy_size;
2805 int rt_data_off;
2806 int i;
2807 int ret = 0;
2808 int wret;
2809 struct btrfs_disk_key disk_key;
2811 nritems = nritems - mid;
2812 btrfs_set_header_nritems(right, nritems);
2813 data_copy_size = btrfs_item_end_nr(l, mid) - leaf_data_end(root, l);
2815 copy_extent_buffer(right, l, btrfs_item_nr_offset(0),
2816 btrfs_item_nr_offset(mid),
2817 nritems * sizeof(struct btrfs_item));
2819 copy_extent_buffer(right, l,
2820 btrfs_leaf_data(right) + BTRFS_LEAF_DATA_SIZE(root) -
2821 data_copy_size, btrfs_leaf_data(l) +
2822 leaf_data_end(root, l), data_copy_size);
2824 rt_data_off = BTRFS_LEAF_DATA_SIZE(root) -
2825 btrfs_item_end_nr(l, mid);
2827 for (i = 0; i < nritems; i++) {
2828 struct btrfs_item *item = btrfs_item_nr(right, i);
2829 u32 ioff;
2831 if (!right->map_token) {
2832 map_extent_buffer(right, (unsigned long)item,
2833 sizeof(struct btrfs_item),
2834 &right->map_token, &right->kaddr,
2835 &right->map_start, &right->map_len,
2836 KM_USER1);
2839 ioff = btrfs_item_offset(right, item);
2840 btrfs_set_item_offset(right, item, ioff + rt_data_off);
2843 if (right->map_token) {
2844 unmap_extent_buffer(right, right->map_token, KM_USER1);
2845 right->map_token = NULL;
2848 btrfs_set_header_nritems(l, mid);
2849 ret = 0;
2850 btrfs_item_key(right, &disk_key, 0);
2851 wret = insert_ptr(trans, root, path, &disk_key, right->start,
2852 path->slots[1] + 1, 1);
2853 if (wret)
2854 ret = wret;
2856 btrfs_mark_buffer_dirty(right);
2857 btrfs_mark_buffer_dirty(l);
2858 BUG_ON(path->slots[0] != slot);
2860 ret = btrfs_update_ref(trans, root, l, right, 0, nritems);
2861 BUG_ON(ret);
2863 if (mid <= slot) {
2864 btrfs_tree_unlock(path->nodes[0]);
2865 free_extent_buffer(path->nodes[0]);
2866 path->nodes[0] = right;
2867 path->slots[0] -= mid;
2868 path->slots[1] += 1;
2869 } else {
2870 btrfs_tree_unlock(right);
2871 free_extent_buffer(right);
2874 BUG_ON(path->slots[0] < 0);
2876 return ret;
2880 * split the path's leaf in two, making sure there is at least data_size
2881 * available for the resulting leaf level of the path.
2883 * returns 0 if all went well and < 0 on failure.
2885 static noinline int split_leaf(struct btrfs_trans_handle *trans,
2886 struct btrfs_root *root,
2887 struct btrfs_key *ins_key,
2888 struct btrfs_path *path, int data_size,
2889 int extend)
2891 struct extent_buffer *l;
2892 u32 nritems;
2893 int mid;
2894 int slot;
2895 struct extent_buffer *right;
2896 int ret = 0;
2897 int wret;
2898 int double_split;
2899 int num_doubles = 0;
2901 /* first try to make some room by pushing left and right */
2902 if (data_size && ins_key->type != BTRFS_DIR_ITEM_KEY &&
2903 !trans->transaction->delayed_refs.flushing) {
2904 wret = push_leaf_right(trans, root, path, data_size, 0);
2905 if (wret < 0)
2906 return wret;
2907 if (wret) {
2908 wret = push_leaf_left(trans, root, path, data_size, 0);
2909 if (wret < 0)
2910 return wret;
2912 l = path->nodes[0];
2914 /* did the pushes work? */
2915 if (btrfs_leaf_free_space(root, l) >= data_size)
2916 return 0;
2919 if (!path->nodes[1]) {
2920 ret = insert_new_root(trans, root, path, 1);
2921 if (ret)
2922 return ret;
2924 again:
2925 double_split = 0;
2926 l = path->nodes[0];
2927 slot = path->slots[0];
2928 nritems = btrfs_header_nritems(l);
2929 mid = (nritems + 1) / 2;
2931 right = btrfs_alloc_free_block(trans, root, root->leafsize,
2932 path->nodes[1]->start,
2933 root->root_key.objectid,
2934 trans->transid, 0, l->start, 0);
2935 if (IS_ERR(right)) {
2936 BUG_ON(1);
2937 return PTR_ERR(right);
2940 memset_extent_buffer(right, 0, 0, sizeof(struct btrfs_header));
2941 btrfs_set_header_bytenr(right, right->start);
2942 btrfs_set_header_generation(right, trans->transid);
2943 btrfs_set_header_owner(right, root->root_key.objectid);
2944 btrfs_set_header_level(right, 0);
2945 write_extent_buffer(right, root->fs_info->fsid,
2946 (unsigned long)btrfs_header_fsid(right),
2947 BTRFS_FSID_SIZE);
2949 write_extent_buffer(right, root->fs_info->chunk_tree_uuid,
2950 (unsigned long)btrfs_header_chunk_tree_uuid(right),
2951 BTRFS_UUID_SIZE);
2953 if (mid <= slot) {
2954 if (nritems == 1 ||
2955 leaf_space_used(l, mid, nritems - mid) + data_size >
2956 BTRFS_LEAF_DATA_SIZE(root)) {
2957 if (slot >= nritems) {
2958 struct btrfs_disk_key disk_key;
2960 btrfs_cpu_key_to_disk(&disk_key, ins_key);
2961 btrfs_set_header_nritems(right, 0);
2962 wret = insert_ptr(trans, root, path,
2963 &disk_key, right->start,
2964 path->slots[1] + 1, 1);
2965 if (wret)
2966 ret = wret;
2968 btrfs_tree_unlock(path->nodes[0]);
2969 free_extent_buffer(path->nodes[0]);
2970 path->nodes[0] = right;
2971 path->slots[0] = 0;
2972 path->slots[1] += 1;
2973 btrfs_mark_buffer_dirty(right);
2974 return ret;
2976 mid = slot;
2977 if (mid != nritems &&
2978 leaf_space_used(l, mid, nritems - mid) +
2979 data_size > BTRFS_LEAF_DATA_SIZE(root)) {
2980 double_split = 1;
2983 } else {
2984 if (leaf_space_used(l, 0, mid) + data_size >
2985 BTRFS_LEAF_DATA_SIZE(root)) {
2986 if (!extend && data_size && slot == 0) {
2987 struct btrfs_disk_key disk_key;
2989 btrfs_cpu_key_to_disk(&disk_key, ins_key);
2990 btrfs_set_header_nritems(right, 0);
2991 wret = insert_ptr(trans, root, path,
2992 &disk_key,
2993 right->start,
2994 path->slots[1], 1);
2995 if (wret)
2996 ret = wret;
2997 btrfs_tree_unlock(path->nodes[0]);
2998 free_extent_buffer(path->nodes[0]);
2999 path->nodes[0] = right;
3000 path->slots[0] = 0;
3001 if (path->slots[1] == 0) {
3002 wret = fixup_low_keys(trans, root,
3003 path, &disk_key, 1);
3004 if (wret)
3005 ret = wret;
3007 btrfs_mark_buffer_dirty(right);
3008 return ret;
3009 } else if ((extend || !data_size) && slot == 0) {
3010 mid = 1;
3011 } else {
3012 mid = slot;
3013 if (mid != nritems &&
3014 leaf_space_used(l, mid, nritems - mid) +
3015 data_size > BTRFS_LEAF_DATA_SIZE(root)) {
3016 double_split = 1;
3022 ret = copy_for_split(trans, root, path, l, right, slot, mid, nritems);
3023 BUG_ON(ret);
3025 if (double_split) {
3026 BUG_ON(num_doubles != 0);
3027 num_doubles++;
3028 goto again;
3031 return ret;
3035 * This function splits a single item into two items,
3036 * giving 'new_key' to the new item and splitting the
3037 * old one at split_offset (from the start of the item).
3039 * The path may be released by this operation. After
3040 * the split, the path is pointing to the old item. The
3041 * new item is going to be in the same node as the old one.
3043 * Note, the item being split must be smaller enough to live alone on
3044 * a tree block with room for one extra struct btrfs_item
3046 * This allows us to split the item in place, keeping a lock on the
3047 * leaf the entire time.
3049 int btrfs_split_item(struct btrfs_trans_handle *trans,
3050 struct btrfs_root *root,
3051 struct btrfs_path *path,
3052 struct btrfs_key *new_key,
3053 unsigned long split_offset)
3055 u32 item_size;
3056 struct extent_buffer *leaf;
3057 struct btrfs_key orig_key;
3058 struct btrfs_item *item;
3059 struct btrfs_item *new_item;
3060 int ret = 0;
3061 int slot;
3062 u32 nritems;
3063 u32 orig_offset;
3064 struct btrfs_disk_key disk_key;
3065 char *buf;
3067 leaf = path->nodes[0];
3068 btrfs_item_key_to_cpu(leaf, &orig_key, path->slots[0]);
3069 if (btrfs_leaf_free_space(root, leaf) >= sizeof(struct btrfs_item))
3070 goto split;
3072 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
3073 btrfs_release_path(root, path);
3075 path->search_for_split = 1;
3076 path->keep_locks = 1;
3078 ret = btrfs_search_slot(trans, root, &orig_key, path, 0, 1);
3079 path->search_for_split = 0;
3081 /* if our item isn't there or got smaller, return now */
3082 if (ret != 0 || item_size != btrfs_item_size_nr(path->nodes[0],
3083 path->slots[0])) {
3084 path->keep_locks = 0;
3085 return -EAGAIN;
3088 btrfs_set_path_blocking(path);
3089 ret = split_leaf(trans, root, &orig_key, path,
3090 sizeof(struct btrfs_item), 1);
3091 path->keep_locks = 0;
3092 BUG_ON(ret);
3094 btrfs_unlock_up_safe(path, 1);
3095 leaf = path->nodes[0];
3096 BUG_ON(btrfs_leaf_free_space(root, leaf) < sizeof(struct btrfs_item));
3098 split:
3100 * make sure any changes to the path from split_leaf leave it
3101 * in a blocking state
3103 btrfs_set_path_blocking(path);
3105 item = btrfs_item_nr(leaf, path->slots[0]);
3106 orig_offset = btrfs_item_offset(leaf, item);
3107 item_size = btrfs_item_size(leaf, item);
3109 buf = kmalloc(item_size, GFP_NOFS);
3110 read_extent_buffer(leaf, buf, btrfs_item_ptr_offset(leaf,
3111 path->slots[0]), item_size);
3112 slot = path->slots[0] + 1;
3113 leaf = path->nodes[0];
3115 nritems = btrfs_header_nritems(leaf);
3117 if (slot != nritems) {
3118 /* shift the items */
3119 memmove_extent_buffer(leaf, btrfs_item_nr_offset(slot + 1),
3120 btrfs_item_nr_offset(slot),
3121 (nritems - slot) * sizeof(struct btrfs_item));
3125 btrfs_cpu_key_to_disk(&disk_key, new_key);
3126 btrfs_set_item_key(leaf, &disk_key, slot);
3128 new_item = btrfs_item_nr(leaf, slot);
3130 btrfs_set_item_offset(leaf, new_item, orig_offset);
3131 btrfs_set_item_size(leaf, new_item, item_size - split_offset);
3133 btrfs_set_item_offset(leaf, item,
3134 orig_offset + item_size - split_offset);
3135 btrfs_set_item_size(leaf, item, split_offset);
3137 btrfs_set_header_nritems(leaf, nritems + 1);
3139 /* write the data for the start of the original item */
3140 write_extent_buffer(leaf, buf,
3141 btrfs_item_ptr_offset(leaf, path->slots[0]),
3142 split_offset);
3144 /* write the data for the new item */
3145 write_extent_buffer(leaf, buf + split_offset,
3146 btrfs_item_ptr_offset(leaf, slot),
3147 item_size - split_offset);
3148 btrfs_mark_buffer_dirty(leaf);
3150 ret = 0;
3151 if (btrfs_leaf_free_space(root, leaf) < 0) {
3152 btrfs_print_leaf(root, leaf);
3153 BUG();
3155 kfree(buf);
3156 return ret;
3160 * make the item pointed to by the path smaller. new_size indicates
3161 * how small to make it, and from_end tells us if we just chop bytes
3162 * off the end of the item or if we shift the item to chop bytes off
3163 * the front.
3165 int btrfs_truncate_item(struct btrfs_trans_handle *trans,
3166 struct btrfs_root *root,
3167 struct btrfs_path *path,
3168 u32 new_size, int from_end)
3170 int ret = 0;
3171 int slot;
3172 int slot_orig;
3173 struct extent_buffer *leaf;
3174 struct btrfs_item *item;
3175 u32 nritems;
3176 unsigned int data_end;
3177 unsigned int old_data_start;
3178 unsigned int old_size;
3179 unsigned int size_diff;
3180 int i;
3182 slot_orig = path->slots[0];
3183 leaf = path->nodes[0];
3184 slot = path->slots[0];
3186 old_size = btrfs_item_size_nr(leaf, slot);
3187 if (old_size == new_size)
3188 return 0;
3190 nritems = btrfs_header_nritems(leaf);
3191 data_end = leaf_data_end(root, leaf);
3193 old_data_start = btrfs_item_offset_nr(leaf, slot);
3195 size_diff = old_size - new_size;
3197 BUG_ON(slot < 0);
3198 BUG_ON(slot >= nritems);
3201 * item0..itemN ... dataN.offset..dataN.size .. data0.size
3203 /* first correct the data pointers */
3204 for (i = slot; i < nritems; i++) {
3205 u32 ioff;
3206 item = btrfs_item_nr(leaf, i);
3208 if (!leaf->map_token) {
3209 map_extent_buffer(leaf, (unsigned long)item,
3210 sizeof(struct btrfs_item),
3211 &leaf->map_token, &leaf->kaddr,
3212 &leaf->map_start, &leaf->map_len,
3213 KM_USER1);
3216 ioff = btrfs_item_offset(leaf, item);
3217 btrfs_set_item_offset(leaf, item, ioff + size_diff);
3220 if (leaf->map_token) {
3221 unmap_extent_buffer(leaf, leaf->map_token, KM_USER1);
3222 leaf->map_token = NULL;
3225 /* shift the data */
3226 if (from_end) {
3227 memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) +
3228 data_end + size_diff, btrfs_leaf_data(leaf) +
3229 data_end, old_data_start + new_size - data_end);
3230 } else {
3231 struct btrfs_disk_key disk_key;
3232 u64 offset;
3234 btrfs_item_key(leaf, &disk_key, slot);
3236 if (btrfs_disk_key_type(&disk_key) == BTRFS_EXTENT_DATA_KEY) {
3237 unsigned long ptr;
3238 struct btrfs_file_extent_item *fi;
3240 fi = btrfs_item_ptr(leaf, slot,
3241 struct btrfs_file_extent_item);
3242 fi = (struct btrfs_file_extent_item *)(
3243 (unsigned long)fi - size_diff);
3245 if (btrfs_file_extent_type(leaf, fi) ==
3246 BTRFS_FILE_EXTENT_INLINE) {
3247 ptr = btrfs_item_ptr_offset(leaf, slot);
3248 memmove_extent_buffer(leaf, ptr,
3249 (unsigned long)fi,
3250 offsetof(struct btrfs_file_extent_item,
3251 disk_bytenr));
3255 memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) +
3256 data_end + size_diff, btrfs_leaf_data(leaf) +
3257 data_end, old_data_start - data_end);
3259 offset = btrfs_disk_key_offset(&disk_key);
3260 btrfs_set_disk_key_offset(&disk_key, offset + size_diff);
3261 btrfs_set_item_key(leaf, &disk_key, slot);
3262 if (slot == 0)
3263 fixup_low_keys(trans, root, path, &disk_key, 1);
3266 item = btrfs_item_nr(leaf, slot);
3267 btrfs_set_item_size(leaf, item, new_size);
3268 btrfs_mark_buffer_dirty(leaf);
3270 ret = 0;
3271 if (btrfs_leaf_free_space(root, leaf) < 0) {
3272 btrfs_print_leaf(root, leaf);
3273 BUG();
3275 return ret;
3279 * make the item pointed to by the path bigger, data_size is the new size.
3281 int btrfs_extend_item(struct btrfs_trans_handle *trans,
3282 struct btrfs_root *root, struct btrfs_path *path,
3283 u32 data_size)
3285 int ret = 0;
3286 int slot;
3287 int slot_orig;
3288 struct extent_buffer *leaf;
3289 struct btrfs_item *item;
3290 u32 nritems;
3291 unsigned int data_end;
3292 unsigned int old_data;
3293 unsigned int old_size;
3294 int i;
3296 slot_orig = path->slots[0];
3297 leaf = path->nodes[0];
3299 nritems = btrfs_header_nritems(leaf);
3300 data_end = leaf_data_end(root, leaf);
3302 if (btrfs_leaf_free_space(root, leaf) < data_size) {
3303 btrfs_print_leaf(root, leaf);
3304 BUG();
3306 slot = path->slots[0];
3307 old_data = btrfs_item_end_nr(leaf, slot);
3309 BUG_ON(slot < 0);
3310 if (slot >= nritems) {
3311 btrfs_print_leaf(root, leaf);
3312 printk(KERN_CRIT "slot %d too large, nritems %d\n",
3313 slot, nritems);
3314 BUG_ON(1);
3318 * item0..itemN ... dataN.offset..dataN.size .. data0.size
3320 /* first correct the data pointers */
3321 for (i = slot; i < nritems; i++) {
3322 u32 ioff;
3323 item = btrfs_item_nr(leaf, i);
3325 if (!leaf->map_token) {
3326 map_extent_buffer(leaf, (unsigned long)item,
3327 sizeof(struct btrfs_item),
3328 &leaf->map_token, &leaf->kaddr,
3329 &leaf->map_start, &leaf->map_len,
3330 KM_USER1);
3332 ioff = btrfs_item_offset(leaf, item);
3333 btrfs_set_item_offset(leaf, item, ioff - data_size);
3336 if (leaf->map_token) {
3337 unmap_extent_buffer(leaf, leaf->map_token, KM_USER1);
3338 leaf->map_token = NULL;
3341 /* shift the data */
3342 memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) +
3343 data_end - data_size, btrfs_leaf_data(leaf) +
3344 data_end, old_data - data_end);
3346 data_end = old_data;
3347 old_size = btrfs_item_size_nr(leaf, slot);
3348 item = btrfs_item_nr(leaf, slot);
3349 btrfs_set_item_size(leaf, item, old_size + data_size);
3350 btrfs_mark_buffer_dirty(leaf);
3352 ret = 0;
3353 if (btrfs_leaf_free_space(root, leaf) < 0) {
3354 btrfs_print_leaf(root, leaf);
3355 BUG();
3357 return ret;
3361 * Given a key and some data, insert items into the tree.
3362 * This does all the path init required, making room in the tree if needed.
3363 * Returns the number of keys that were inserted.
3365 int btrfs_insert_some_items(struct btrfs_trans_handle *trans,
3366 struct btrfs_root *root,
3367 struct btrfs_path *path,
3368 struct btrfs_key *cpu_key, u32 *data_size,
3369 int nr)
3371 struct extent_buffer *leaf;
3372 struct btrfs_item *item;
3373 int ret = 0;
3374 int slot;
3375 int i;
3376 u32 nritems;
3377 u32 total_data = 0;
3378 u32 total_size = 0;
3379 unsigned int data_end;
3380 struct btrfs_disk_key disk_key;
3381 struct btrfs_key found_key;
3383 for (i = 0; i < nr; i++) {
3384 if (total_size + data_size[i] + sizeof(struct btrfs_item) >
3385 BTRFS_LEAF_DATA_SIZE(root)) {
3386 break;
3387 nr = i;
3389 total_data += data_size[i];
3390 total_size += data_size[i] + sizeof(struct btrfs_item);
3392 BUG_ON(nr == 0);
3394 ret = btrfs_search_slot(trans, root, cpu_key, path, total_size, 1);
3395 if (ret == 0)
3396 return -EEXIST;
3397 if (ret < 0)
3398 goto out;
3400 leaf = path->nodes[0];
3402 nritems = btrfs_header_nritems(leaf);
3403 data_end = leaf_data_end(root, leaf);
3405 if (btrfs_leaf_free_space(root, leaf) < total_size) {
3406 for (i = nr; i >= 0; i--) {
3407 total_data -= data_size[i];
3408 total_size -= data_size[i] + sizeof(struct btrfs_item);
3409 if (total_size < btrfs_leaf_free_space(root, leaf))
3410 break;
3412 nr = i;
3415 slot = path->slots[0];
3416 BUG_ON(slot < 0);
3418 if (slot != nritems) {
3419 unsigned int old_data = btrfs_item_end_nr(leaf, slot);
3421 item = btrfs_item_nr(leaf, slot);
3422 btrfs_item_key_to_cpu(leaf, &found_key, slot);
3424 /* figure out how many keys we can insert in here */
3425 total_data = data_size[0];
3426 for (i = 1; i < nr; i++) {
3427 if (comp_cpu_keys(&found_key, cpu_key + i) <= 0)
3428 break;
3429 total_data += data_size[i];
3431 nr = i;
3433 if (old_data < data_end) {
3434 btrfs_print_leaf(root, leaf);
3435 printk(KERN_CRIT "slot %d old_data %d data_end %d\n",
3436 slot, old_data, data_end);
3437 BUG_ON(1);
3440 * item0..itemN ... dataN.offset..dataN.size .. data0.size
3442 /* first correct the data pointers */
3443 WARN_ON(leaf->map_token);
3444 for (i = slot; i < nritems; i++) {
3445 u32 ioff;
3447 item = btrfs_item_nr(leaf, i);
3448 if (!leaf->map_token) {
3449 map_extent_buffer(leaf, (unsigned long)item,
3450 sizeof(struct btrfs_item),
3451 &leaf->map_token, &leaf->kaddr,
3452 &leaf->map_start, &leaf->map_len,
3453 KM_USER1);
3456 ioff = btrfs_item_offset(leaf, item);
3457 btrfs_set_item_offset(leaf, item, ioff - total_data);
3459 if (leaf->map_token) {
3460 unmap_extent_buffer(leaf, leaf->map_token, KM_USER1);
3461 leaf->map_token = NULL;
3464 /* shift the items */
3465 memmove_extent_buffer(leaf, btrfs_item_nr_offset(slot + nr),
3466 btrfs_item_nr_offset(slot),
3467 (nritems - slot) * sizeof(struct btrfs_item));
3469 /* shift the data */
3470 memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) +
3471 data_end - total_data, btrfs_leaf_data(leaf) +
3472 data_end, old_data - data_end);
3473 data_end = old_data;
3474 } else {
3476 * this sucks but it has to be done, if we are inserting at
3477 * the end of the leaf only insert 1 of the items, since we
3478 * have no way of knowing whats on the next leaf and we'd have
3479 * to drop our current locks to figure it out
3481 nr = 1;
3484 /* setup the item for the new data */
3485 for (i = 0; i < nr; i++) {
3486 btrfs_cpu_key_to_disk(&disk_key, cpu_key + i);
3487 btrfs_set_item_key(leaf, &disk_key, slot + i);
3488 item = btrfs_item_nr(leaf, slot + i);
3489 btrfs_set_item_offset(leaf, item, data_end - data_size[i]);
3490 data_end -= data_size[i];
3491 btrfs_set_item_size(leaf, item, data_size[i]);
3493 btrfs_set_header_nritems(leaf, nritems + nr);
3494 btrfs_mark_buffer_dirty(leaf);
3496 ret = 0;
3497 if (slot == 0) {
3498 btrfs_cpu_key_to_disk(&disk_key, cpu_key);
3499 ret = fixup_low_keys(trans, root, path, &disk_key, 1);
3502 if (btrfs_leaf_free_space(root, leaf) < 0) {
3503 btrfs_print_leaf(root, leaf);
3504 BUG();
3506 out:
3507 if (!ret)
3508 ret = nr;
3509 return ret;
3513 * this is a helper for btrfs_insert_empty_items, the main goal here is
3514 * to save stack depth by doing the bulk of the work in a function
3515 * that doesn't call btrfs_search_slot
3517 static noinline_for_stack int
3518 setup_items_for_insert(struct btrfs_trans_handle *trans,
3519 struct btrfs_root *root, struct btrfs_path *path,
3520 struct btrfs_key *cpu_key, u32 *data_size,
3521 u32 total_data, u32 total_size, int nr)
3523 struct btrfs_item *item;
3524 int i;
3525 u32 nritems;
3526 unsigned int data_end;
3527 struct btrfs_disk_key disk_key;
3528 int ret;
3529 struct extent_buffer *leaf;
3530 int slot;
3532 leaf = path->nodes[0];
3533 slot = path->slots[0];
3535 nritems = btrfs_header_nritems(leaf);
3536 data_end = leaf_data_end(root, leaf);
3538 if (btrfs_leaf_free_space(root, leaf) < total_size) {
3539 btrfs_print_leaf(root, leaf);
3540 printk(KERN_CRIT "not enough freespace need %u have %d\n",
3541 total_size, btrfs_leaf_free_space(root, leaf));
3542 BUG();
3545 if (slot != nritems) {
3546 unsigned int old_data = btrfs_item_end_nr(leaf, slot);
3548 if (old_data < data_end) {
3549 btrfs_print_leaf(root, leaf);
3550 printk(KERN_CRIT "slot %d old_data %d data_end %d\n",
3551 slot, old_data, data_end);
3552 BUG_ON(1);
3555 * item0..itemN ... dataN.offset..dataN.size .. data0.size
3557 /* first correct the data pointers */
3558 WARN_ON(leaf->map_token);
3559 for (i = slot; i < nritems; i++) {
3560 u32 ioff;
3562 item = btrfs_item_nr(leaf, i);
3563 if (!leaf->map_token) {
3564 map_extent_buffer(leaf, (unsigned long)item,
3565 sizeof(struct btrfs_item),
3566 &leaf->map_token, &leaf->kaddr,
3567 &leaf->map_start, &leaf->map_len,
3568 KM_USER1);
3571 ioff = btrfs_item_offset(leaf, item);
3572 btrfs_set_item_offset(leaf, item, ioff - total_data);
3574 if (leaf->map_token) {
3575 unmap_extent_buffer(leaf, leaf->map_token, KM_USER1);
3576 leaf->map_token = NULL;
3579 /* shift the items */
3580 memmove_extent_buffer(leaf, btrfs_item_nr_offset(slot + nr),
3581 btrfs_item_nr_offset(slot),
3582 (nritems - slot) * sizeof(struct btrfs_item));
3584 /* shift the data */
3585 memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) +
3586 data_end - total_data, btrfs_leaf_data(leaf) +
3587 data_end, old_data - data_end);
3588 data_end = old_data;
3591 /* setup the item for the new data */
3592 for (i = 0; i < nr; i++) {
3593 btrfs_cpu_key_to_disk(&disk_key, cpu_key + i);
3594 btrfs_set_item_key(leaf, &disk_key, slot + i);
3595 item = btrfs_item_nr(leaf, slot + i);
3596 btrfs_set_item_offset(leaf, item, data_end - data_size[i]);
3597 data_end -= data_size[i];
3598 btrfs_set_item_size(leaf, item, data_size[i]);
3601 btrfs_set_header_nritems(leaf, nritems + nr);
3603 ret = 0;
3604 if (slot == 0) {
3605 struct btrfs_disk_key disk_key;
3606 btrfs_cpu_key_to_disk(&disk_key, cpu_key);
3607 ret = fixup_low_keys(trans, root, path, &disk_key, 1);
3609 btrfs_unlock_up_safe(path, 1);
3610 btrfs_mark_buffer_dirty(leaf);
3612 if (btrfs_leaf_free_space(root, leaf) < 0) {
3613 btrfs_print_leaf(root, leaf);
3614 BUG();
3616 return ret;
3620 * Given a key and some data, insert items into the tree.
3621 * This does all the path init required, making room in the tree if needed.
3623 int btrfs_insert_empty_items(struct btrfs_trans_handle *trans,
3624 struct btrfs_root *root,
3625 struct btrfs_path *path,
3626 struct btrfs_key *cpu_key, u32 *data_size,
3627 int nr)
3629 struct extent_buffer *leaf;
3630 int ret = 0;
3631 int slot;
3632 int i;
3633 u32 total_size = 0;
3634 u32 total_data = 0;
3636 for (i = 0; i < nr; i++)
3637 total_data += data_size[i];
3639 total_size = total_data + (nr * sizeof(struct btrfs_item));
3640 ret = btrfs_search_slot(trans, root, cpu_key, path, total_size, 1);
3641 if (ret == 0)
3642 return -EEXIST;
3643 if (ret < 0)
3644 goto out;
3646 leaf = path->nodes[0];
3647 slot = path->slots[0];
3648 BUG_ON(slot < 0);
3650 ret = setup_items_for_insert(trans, root, path, cpu_key, data_size,
3651 total_data, total_size, nr);
3653 out:
3654 return ret;
3658 * Given a key and some data, insert an item into the tree.
3659 * This does all the path init required, making room in the tree if needed.
3661 int btrfs_insert_item(struct btrfs_trans_handle *trans, struct btrfs_root
3662 *root, struct btrfs_key *cpu_key, void *data, u32
3663 data_size)
3665 int ret = 0;
3666 struct btrfs_path *path;
3667 struct extent_buffer *leaf;
3668 unsigned long ptr;
3670 path = btrfs_alloc_path();
3671 BUG_ON(!path);
3672 ret = btrfs_insert_empty_item(trans, root, path, cpu_key, data_size);
3673 if (!ret) {
3674 leaf = path->nodes[0];
3675 ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
3676 write_extent_buffer(leaf, data, ptr, data_size);
3677 btrfs_mark_buffer_dirty(leaf);
3679 btrfs_free_path(path);
3680 return ret;
3684 * delete the pointer from a given node.
3686 * the tree should have been previously balanced so the deletion does not
3687 * empty a node.
3689 static int del_ptr(struct btrfs_trans_handle *trans, struct btrfs_root *root,
3690 struct btrfs_path *path, int level, int slot)
3692 struct extent_buffer *parent = path->nodes[level];
3693 u32 nritems;
3694 int ret = 0;
3695 int wret;
3697 nritems = btrfs_header_nritems(parent);
3698 if (slot != nritems - 1) {
3699 memmove_extent_buffer(parent,
3700 btrfs_node_key_ptr_offset(slot),
3701 btrfs_node_key_ptr_offset(slot + 1),
3702 sizeof(struct btrfs_key_ptr) *
3703 (nritems - slot - 1));
3705 nritems--;
3706 btrfs_set_header_nritems(parent, nritems);
3707 if (nritems == 0 && parent == root->node) {
3708 BUG_ON(btrfs_header_level(root->node) != 1);
3709 /* just turn the root into a leaf and break */
3710 btrfs_set_header_level(root->node, 0);
3711 } else if (slot == 0) {
3712 struct btrfs_disk_key disk_key;
3714 btrfs_node_key(parent, &disk_key, 0);
3715 wret = fixup_low_keys(trans, root, path, &disk_key, level + 1);
3716 if (wret)
3717 ret = wret;
3719 btrfs_mark_buffer_dirty(parent);
3720 return ret;
3724 * a helper function to delete the leaf pointed to by path->slots[1] and
3725 * path->nodes[1]. bytenr is the node block pointer, but since the callers
3726 * already know it, it is faster to have them pass it down than to
3727 * read it out of the node again.
3729 * This deletes the pointer in path->nodes[1] and frees the leaf
3730 * block extent. zero is returned if it all worked out, < 0 otherwise.
3732 * The path must have already been setup for deleting the leaf, including
3733 * all the proper balancing. path->nodes[1] must be locked.
3735 noinline int btrfs_del_leaf(struct btrfs_trans_handle *trans,
3736 struct btrfs_root *root,
3737 struct btrfs_path *path, u64 bytenr)
3739 int ret;
3740 u64 root_gen = btrfs_header_generation(path->nodes[1]);
3741 u64 parent_start = path->nodes[1]->start;
3742 u64 parent_owner = btrfs_header_owner(path->nodes[1]);
3744 ret = del_ptr(trans, root, path, 1, path->slots[1]);
3745 if (ret)
3746 return ret;
3749 * btrfs_free_extent is expensive, we want to make sure we
3750 * aren't holding any locks when we call it
3752 btrfs_unlock_up_safe(path, 0);
3754 ret = btrfs_free_extent(trans, root, bytenr,
3755 btrfs_level_size(root, 0),
3756 parent_start, parent_owner,
3757 root_gen, 0, 1);
3758 return ret;
3761 * delete the item at the leaf level in path. If that empties
3762 * the leaf, remove it from the tree
3764 int btrfs_del_items(struct btrfs_trans_handle *trans, struct btrfs_root *root,
3765 struct btrfs_path *path, int slot, int nr)
3767 struct extent_buffer *leaf;
3768 struct btrfs_item *item;
3769 int last_off;
3770 int dsize = 0;
3771 int ret = 0;
3772 int wret;
3773 int i;
3774 u32 nritems;
3776 leaf = path->nodes[0];
3777 last_off = btrfs_item_offset_nr(leaf, slot + nr - 1);
3779 for (i = 0; i < nr; i++)
3780 dsize += btrfs_item_size_nr(leaf, slot + i);
3782 nritems = btrfs_header_nritems(leaf);
3784 if (slot + nr != nritems) {
3785 int data_end = leaf_data_end(root, leaf);
3787 memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) +
3788 data_end + dsize,
3789 btrfs_leaf_data(leaf) + data_end,
3790 last_off - data_end);
3792 for (i = slot + nr; i < nritems; i++) {
3793 u32 ioff;
3795 item = btrfs_item_nr(leaf, i);
3796 if (!leaf->map_token) {
3797 map_extent_buffer(leaf, (unsigned long)item,
3798 sizeof(struct btrfs_item),
3799 &leaf->map_token, &leaf->kaddr,
3800 &leaf->map_start, &leaf->map_len,
3801 KM_USER1);
3803 ioff = btrfs_item_offset(leaf, item);
3804 btrfs_set_item_offset(leaf, item, ioff + dsize);
3807 if (leaf->map_token) {
3808 unmap_extent_buffer(leaf, leaf->map_token, KM_USER1);
3809 leaf->map_token = NULL;
3812 memmove_extent_buffer(leaf, btrfs_item_nr_offset(slot),
3813 btrfs_item_nr_offset(slot + nr),
3814 sizeof(struct btrfs_item) *
3815 (nritems - slot - nr));
3817 btrfs_set_header_nritems(leaf, nritems - nr);
3818 nritems -= nr;
3820 /* delete the leaf if we've emptied it */
3821 if (nritems == 0) {
3822 if (leaf == root->node) {
3823 btrfs_set_header_level(leaf, 0);
3824 } else {
3825 ret = btrfs_del_leaf(trans, root, path, leaf->start);
3826 BUG_ON(ret);
3828 } else {
3829 int used = leaf_space_used(leaf, 0, nritems);
3830 if (slot == 0) {
3831 struct btrfs_disk_key disk_key;
3833 btrfs_item_key(leaf, &disk_key, 0);
3834 wret = fixup_low_keys(trans, root, path,
3835 &disk_key, 1);
3836 if (wret)
3837 ret = wret;
3840 /* delete the leaf if it is mostly empty */
3841 if (used < BTRFS_LEAF_DATA_SIZE(root) / 4 &&
3842 !trans->transaction->delayed_refs.flushing) {
3843 /* push_leaf_left fixes the path.
3844 * make sure the path still points to our leaf
3845 * for possible call to del_ptr below
3847 slot = path->slots[1];
3848 extent_buffer_get(leaf);
3850 btrfs_set_path_blocking(path);
3851 wret = push_leaf_left(trans, root, path, 1, 1);
3852 if (wret < 0 && wret != -ENOSPC)
3853 ret = wret;
3855 if (path->nodes[0] == leaf &&
3856 btrfs_header_nritems(leaf)) {
3857 wret = push_leaf_right(trans, root, path, 1, 1);
3858 if (wret < 0 && wret != -ENOSPC)
3859 ret = wret;
3862 if (btrfs_header_nritems(leaf) == 0) {
3863 path->slots[1] = slot;
3864 ret = btrfs_del_leaf(trans, root, path,
3865 leaf->start);
3866 BUG_ON(ret);
3867 free_extent_buffer(leaf);
3868 } else {
3869 /* if we're still in the path, make sure
3870 * we're dirty. Otherwise, one of the
3871 * push_leaf functions must have already
3872 * dirtied this buffer
3874 if (path->nodes[0] == leaf)
3875 btrfs_mark_buffer_dirty(leaf);
3876 free_extent_buffer(leaf);
3878 } else {
3879 btrfs_mark_buffer_dirty(leaf);
3882 return ret;
3886 * search the tree again to find a leaf with lesser keys
3887 * returns 0 if it found something or 1 if there are no lesser leaves.
3888 * returns < 0 on io errors.
3890 * This may release the path, and so you may lose any locks held at the
3891 * time you call it.
3893 int btrfs_prev_leaf(struct btrfs_root *root, struct btrfs_path *path)
3895 struct btrfs_key key;
3896 struct btrfs_disk_key found_key;
3897 int ret;
3899 btrfs_item_key_to_cpu(path->nodes[0], &key, 0);
3901 if (key.offset > 0)
3902 key.offset--;
3903 else if (key.type > 0)
3904 key.type--;
3905 else if (key.objectid > 0)
3906 key.objectid--;
3907 else
3908 return 1;
3910 btrfs_release_path(root, path);
3911 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
3912 if (ret < 0)
3913 return ret;
3914 btrfs_item_key(path->nodes[0], &found_key, 0);
3915 ret = comp_keys(&found_key, &key);
3916 if (ret < 0)
3917 return 0;
3918 return 1;
3922 * A helper function to walk down the tree starting at min_key, and looking
3923 * for nodes or leaves that are either in cache or have a minimum
3924 * transaction id. This is used by the btree defrag code, and tree logging
3926 * This does not cow, but it does stuff the starting key it finds back
3927 * into min_key, so you can call btrfs_search_slot with cow=1 on the
3928 * key and get a writable path.
3930 * This does lock as it descends, and path->keep_locks should be set
3931 * to 1 by the caller.
3933 * This honors path->lowest_level to prevent descent past a given level
3934 * of the tree.
3936 * min_trans indicates the oldest transaction that you are interested
3937 * in walking through. Any nodes or leaves older than min_trans are
3938 * skipped over (without reading them).
3940 * returns zero if something useful was found, < 0 on error and 1 if there
3941 * was nothing in the tree that matched the search criteria.
3943 int btrfs_search_forward(struct btrfs_root *root, struct btrfs_key *min_key,
3944 struct btrfs_key *max_key,
3945 struct btrfs_path *path, int cache_only,
3946 u64 min_trans)
3948 struct extent_buffer *cur;
3949 struct btrfs_key found_key;
3950 int slot;
3951 int sret;
3952 u32 nritems;
3953 int level;
3954 int ret = 1;
3956 WARN_ON(!path->keep_locks);
3957 again:
3958 cur = btrfs_lock_root_node(root);
3959 level = btrfs_header_level(cur);
3960 WARN_ON(path->nodes[level]);
3961 path->nodes[level] = cur;
3962 path->locks[level] = 1;
3964 if (btrfs_header_generation(cur) < min_trans) {
3965 ret = 1;
3966 goto out;
3968 while (1) {
3969 nritems = btrfs_header_nritems(cur);
3970 level = btrfs_header_level(cur);
3971 sret = bin_search(cur, min_key, level, &slot);
3973 /* at the lowest level, we're done, setup the path and exit */
3974 if (level == path->lowest_level) {
3975 if (slot >= nritems)
3976 goto find_next_key;
3977 ret = 0;
3978 path->slots[level] = slot;
3979 btrfs_item_key_to_cpu(cur, &found_key, slot);
3980 goto out;
3982 if (sret && slot > 0)
3983 slot--;
3985 * check this node pointer against the cache_only and
3986 * min_trans parameters. If it isn't in cache or is too
3987 * old, skip to the next one.
3989 while (slot < nritems) {
3990 u64 blockptr;
3991 u64 gen;
3992 struct extent_buffer *tmp;
3993 struct btrfs_disk_key disk_key;
3995 blockptr = btrfs_node_blockptr(cur, slot);
3996 gen = btrfs_node_ptr_generation(cur, slot);
3997 if (gen < min_trans) {
3998 slot++;
3999 continue;
4001 if (!cache_only)
4002 break;
4004 if (max_key) {
4005 btrfs_node_key(cur, &disk_key, slot);
4006 if (comp_keys(&disk_key, max_key) >= 0) {
4007 ret = 1;
4008 goto out;
4012 tmp = btrfs_find_tree_block(root, blockptr,
4013 btrfs_level_size(root, level - 1));
4015 if (tmp && btrfs_buffer_uptodate(tmp, gen)) {
4016 free_extent_buffer(tmp);
4017 break;
4019 if (tmp)
4020 free_extent_buffer(tmp);
4021 slot++;
4023 find_next_key:
4025 * we didn't find a candidate key in this node, walk forward
4026 * and find another one
4028 if (slot >= nritems) {
4029 path->slots[level] = slot;
4030 btrfs_set_path_blocking(path);
4031 sret = btrfs_find_next_key(root, path, min_key, level,
4032 cache_only, min_trans);
4033 if (sret == 0) {
4034 btrfs_release_path(root, path);
4035 goto again;
4036 } else {
4037 goto out;
4040 /* save our key for returning back */
4041 btrfs_node_key_to_cpu(cur, &found_key, slot);
4042 path->slots[level] = slot;
4043 if (level == path->lowest_level) {
4044 ret = 0;
4045 unlock_up(path, level, 1);
4046 goto out;
4048 btrfs_set_path_blocking(path);
4049 cur = read_node_slot(root, cur, slot);
4051 btrfs_tree_lock(cur);
4053 path->locks[level - 1] = 1;
4054 path->nodes[level - 1] = cur;
4055 unlock_up(path, level, 1);
4056 btrfs_clear_path_blocking(path, NULL);
4058 out:
4059 if (ret == 0)
4060 memcpy(min_key, &found_key, sizeof(found_key));
4061 btrfs_set_path_blocking(path);
4062 return ret;
4066 * this is similar to btrfs_next_leaf, but does not try to preserve
4067 * and fixup the path. It looks for and returns the next key in the
4068 * tree based on the current path and the cache_only and min_trans
4069 * parameters.
4071 * 0 is returned if another key is found, < 0 if there are any errors
4072 * and 1 is returned if there are no higher keys in the tree
4074 * path->keep_locks should be set to 1 on the search made before
4075 * calling this function.
4077 int btrfs_find_next_key(struct btrfs_root *root, struct btrfs_path *path,
4078 struct btrfs_key *key, int lowest_level,
4079 int cache_only, u64 min_trans)
4081 int level = lowest_level;
4082 int slot;
4083 struct extent_buffer *c;
4085 WARN_ON(!path->keep_locks);
4086 while (level < BTRFS_MAX_LEVEL) {
4087 if (!path->nodes[level])
4088 return 1;
4090 slot = path->slots[level] + 1;
4091 c = path->nodes[level];
4092 next:
4093 if (slot >= btrfs_header_nritems(c)) {
4094 level++;
4095 if (level == BTRFS_MAX_LEVEL)
4096 return 1;
4097 continue;
4099 if (level == 0)
4100 btrfs_item_key_to_cpu(c, key, slot);
4101 else {
4102 u64 blockptr = btrfs_node_blockptr(c, slot);
4103 u64 gen = btrfs_node_ptr_generation(c, slot);
4105 if (cache_only) {
4106 struct extent_buffer *cur;
4107 cur = btrfs_find_tree_block(root, blockptr,
4108 btrfs_level_size(root, level - 1));
4109 if (!cur || !btrfs_buffer_uptodate(cur, gen)) {
4110 slot++;
4111 if (cur)
4112 free_extent_buffer(cur);
4113 goto next;
4115 free_extent_buffer(cur);
4117 if (gen < min_trans) {
4118 slot++;
4119 goto next;
4121 btrfs_node_key_to_cpu(c, key, slot);
4123 return 0;
4125 return 1;
4129 * search the tree again to find a leaf with greater keys
4130 * returns 0 if it found something or 1 if there are no greater leaves.
4131 * returns < 0 on io errors.
4133 int btrfs_next_leaf(struct btrfs_root *root, struct btrfs_path *path)
4135 int slot;
4136 int level;
4137 struct extent_buffer *c;
4138 struct extent_buffer *next;
4139 struct btrfs_key key;
4140 u32 nritems;
4141 int ret;
4142 int old_spinning = path->leave_spinning;
4143 int force_blocking = 0;
4145 nritems = btrfs_header_nritems(path->nodes[0]);
4146 if (nritems == 0)
4147 return 1;
4150 * we take the blocks in an order that upsets lockdep. Using
4151 * blocking mode is the only way around it.
4153 #ifdef CONFIG_DEBUG_LOCK_ALLOC
4154 force_blocking = 1;
4155 #endif
4157 btrfs_item_key_to_cpu(path->nodes[0], &key, nritems - 1);
4158 again:
4159 level = 1;
4160 next = NULL;
4161 btrfs_release_path(root, path);
4163 path->keep_locks = 1;
4165 if (!force_blocking)
4166 path->leave_spinning = 1;
4168 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
4169 path->keep_locks = 0;
4171 if (ret < 0)
4172 return ret;
4174 nritems = btrfs_header_nritems(path->nodes[0]);
4176 * by releasing the path above we dropped all our locks. A balance
4177 * could have added more items next to the key that used to be
4178 * at the very end of the block. So, check again here and
4179 * advance the path if there are now more items available.
4181 if (nritems > 0 && path->slots[0] < nritems - 1) {
4182 path->slots[0]++;
4183 ret = 0;
4184 goto done;
4187 while (level < BTRFS_MAX_LEVEL) {
4188 if (!path->nodes[level]) {
4189 ret = 1;
4190 goto done;
4193 slot = path->slots[level] + 1;
4194 c = path->nodes[level];
4195 if (slot >= btrfs_header_nritems(c)) {
4196 level++;
4197 if (level == BTRFS_MAX_LEVEL) {
4198 ret = 1;
4199 goto done;
4201 continue;
4204 if (next) {
4205 btrfs_tree_unlock(next);
4206 free_extent_buffer(next);
4209 next = c;
4210 ret = read_block_for_search(NULL, root, path, &next, level,
4211 slot, &key);
4212 if (ret == -EAGAIN)
4213 goto again;
4215 if (!path->skip_locking) {
4216 ret = btrfs_try_spin_lock(next);
4217 if (!ret) {
4218 btrfs_set_path_blocking(path);
4219 btrfs_tree_lock(next);
4220 if (!force_blocking)
4221 btrfs_clear_path_blocking(path, next);
4223 if (force_blocking)
4224 btrfs_set_lock_blocking(next);
4226 break;
4228 path->slots[level] = slot;
4229 while (1) {
4230 level--;
4231 c = path->nodes[level];
4232 if (path->locks[level])
4233 btrfs_tree_unlock(c);
4235 free_extent_buffer(c);
4236 path->nodes[level] = next;
4237 path->slots[level] = 0;
4238 if (!path->skip_locking)
4239 path->locks[level] = 1;
4241 if (!level)
4242 break;
4244 ret = read_block_for_search(NULL, root, path, &next, level,
4245 0, &key);
4246 if (ret == -EAGAIN)
4247 goto again;
4249 if (!path->skip_locking) {
4250 btrfs_assert_tree_locked(path->nodes[level]);
4251 ret = btrfs_try_spin_lock(next);
4252 if (!ret) {
4253 btrfs_set_path_blocking(path);
4254 btrfs_tree_lock(next);
4255 if (!force_blocking)
4256 btrfs_clear_path_blocking(path, next);
4258 if (force_blocking)
4259 btrfs_set_lock_blocking(next);
4262 ret = 0;
4263 done:
4264 unlock_up(path, 0, 1);
4265 path->leave_spinning = old_spinning;
4266 if (!old_spinning)
4267 btrfs_set_path_blocking(path);
4269 return ret;
4273 * this uses btrfs_prev_leaf to walk backwards in the tree, and keeps
4274 * searching until it gets past min_objectid or finds an item of 'type'
4276 * returns 0 if something is found, 1 if nothing was found and < 0 on error
4278 int btrfs_previous_item(struct btrfs_root *root,
4279 struct btrfs_path *path, u64 min_objectid,
4280 int type)
4282 struct btrfs_key found_key;
4283 struct extent_buffer *leaf;
4284 u32 nritems;
4285 int ret;
4287 while (1) {
4288 if (path->slots[0] == 0) {
4289 btrfs_set_path_blocking(path);
4290 ret = btrfs_prev_leaf(root, path);
4291 if (ret != 0)
4292 return ret;
4293 } else {
4294 path->slots[0]--;
4296 leaf = path->nodes[0];
4297 nritems = btrfs_header_nritems(leaf);
4298 if (nritems == 0)
4299 return 1;
4300 if (path->slots[0] == nritems)
4301 path->slots[0]--;
4303 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
4304 if (found_key.type == type)
4305 return 0;
4306 if (found_key.objectid < min_objectid)
4307 break;
4308 if (found_key.objectid == min_objectid &&
4309 found_key.type < type)
4310 break;
4312 return 1;