1 /* -*- mode: c; c-basic-offset: 8; -*-
2 * vim: noexpandtab sw=8 ts=8 sts=0:
6 * File open, close, extend, truncate
8 * Copyright (C) 2002, 2004 Oracle. All rights reserved.
10 * This program is free software; you can redistribute it and/or
11 * modify it under the terms of the GNU General Public
12 * License as published by the Free Software Foundation; either
13 * version 2 of the License, or (at your option) any later version.
15 * This program is distributed in the hope that it will be useful,
16 * but WITHOUT ANY WARRANTY; without even the implied warranty of
17 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
18 * General Public License for more details.
20 * You should have received a copy of the GNU General Public
21 * License along with this program; if not, write to the
22 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
23 * Boston, MA 021110-1307, USA.
26 #include <linux/capability.h>
28 #include <linux/types.h>
29 #include <linux/slab.h>
30 #include <linux/highmem.h>
31 #include <linux/pagemap.h>
32 #include <linux/uio.h>
33 #include <linux/sched.h>
34 #include <linux/splice.h>
35 #include <linux/mount.h>
36 #include <linux/writeback.h>
37 #include <linux/falloc.h>
39 #define MLOG_MASK_PREFIX ML_INODE
40 #include <cluster/masklog.h>
48 #include "extent_map.h"
58 #include "buffer_head_io.h"
60 static int ocfs2_sync_inode(struct inode
*inode
)
62 filemap_fdatawrite(inode
->i_mapping
);
63 return sync_mapping_buffers(inode
->i_mapping
);
66 static int ocfs2_file_open(struct inode
*inode
, struct file
*file
)
69 int mode
= file
->f_flags
;
70 struct ocfs2_inode_info
*oi
= OCFS2_I(inode
);
72 mlog_entry("(0x%p, 0x%p, '%.*s')\n", inode
, file
,
73 file
->f_path
.dentry
->d_name
.len
, file
->f_path
.dentry
->d_name
.name
);
75 spin_lock(&oi
->ip_lock
);
77 /* Check that the inode hasn't been wiped from disk by another
78 * node. If it hasn't then we're safe as long as we hold the
79 * spin lock until our increment of open count. */
80 if (OCFS2_I(inode
)->ip_flags
& OCFS2_INODE_DELETED
) {
81 spin_unlock(&oi
->ip_lock
);
88 oi
->ip_flags
|= OCFS2_INODE_OPEN_DIRECT
;
91 spin_unlock(&oi
->ip_lock
);
98 static int ocfs2_file_release(struct inode
*inode
, struct file
*file
)
100 struct ocfs2_inode_info
*oi
= OCFS2_I(inode
);
102 mlog_entry("(0x%p, 0x%p, '%.*s')\n", inode
, file
,
103 file
->f_path
.dentry
->d_name
.len
,
104 file
->f_path
.dentry
->d_name
.name
);
106 spin_lock(&oi
->ip_lock
);
107 if (!--oi
->ip_open_count
)
108 oi
->ip_flags
&= ~OCFS2_INODE_OPEN_DIRECT
;
109 spin_unlock(&oi
->ip_lock
);
116 static int ocfs2_sync_file(struct file
*file
,
117 struct dentry
*dentry
,
122 struct inode
*inode
= dentry
->d_inode
;
123 struct ocfs2_super
*osb
= OCFS2_SB(inode
->i_sb
);
125 mlog_entry("(0x%p, 0x%p, %d, '%.*s')\n", file
, dentry
, datasync
,
126 dentry
->d_name
.len
, dentry
->d_name
.name
);
128 err
= ocfs2_sync_inode(dentry
->d_inode
);
132 journal
= osb
->journal
->j_journal
;
133 err
= journal_force_commit(journal
);
138 return (err
< 0) ? -EIO
: 0;
141 int ocfs2_should_update_atime(struct inode
*inode
,
142 struct vfsmount
*vfsmnt
)
145 struct ocfs2_super
*osb
= OCFS2_SB(inode
->i_sb
);
147 if (ocfs2_is_hard_readonly(osb
) || ocfs2_is_soft_readonly(osb
))
150 if ((inode
->i_flags
& S_NOATIME
) ||
151 ((inode
->i_sb
->s_flags
& MS_NODIRATIME
) && S_ISDIR(inode
->i_mode
)))
155 * We can be called with no vfsmnt structure - NFSD will
158 * Note that our action here is different than touch_atime() -
159 * if we can't tell whether this is a noatime mount, then we
160 * don't know whether to trust the value of s_atime_quantum.
165 if ((vfsmnt
->mnt_flags
& MNT_NOATIME
) ||
166 ((vfsmnt
->mnt_flags
& MNT_NODIRATIME
) && S_ISDIR(inode
->i_mode
)))
169 if (vfsmnt
->mnt_flags
& MNT_RELATIME
) {
170 if ((timespec_compare(&inode
->i_atime
, &inode
->i_mtime
) <= 0) ||
171 (timespec_compare(&inode
->i_atime
, &inode
->i_ctime
) <= 0))
178 if ((now
.tv_sec
- inode
->i_atime
.tv_sec
<= osb
->s_atime_quantum
))
184 int ocfs2_update_inode_atime(struct inode
*inode
,
185 struct buffer_head
*bh
)
188 struct ocfs2_super
*osb
= OCFS2_SB(inode
->i_sb
);
190 struct ocfs2_dinode
*di
= (struct ocfs2_dinode
*) bh
->b_data
;
194 handle
= ocfs2_start_trans(osb
, OCFS2_INODE_UPDATE_CREDITS
);
195 if (handle
== NULL
) {
201 ret
= ocfs2_journal_access(handle
, inode
, bh
,
202 OCFS2_JOURNAL_ACCESS_WRITE
);
209 * Don't use ocfs2_mark_inode_dirty() here as we don't always
210 * have i_mutex to guard against concurrent changes to other
213 inode
->i_atime
= CURRENT_TIME
;
214 di
->i_atime
= cpu_to_le64(inode
->i_atime
.tv_sec
);
215 di
->i_atime_nsec
= cpu_to_le32(inode
->i_atime
.tv_nsec
);
217 ret
= ocfs2_journal_dirty(handle
, bh
);
222 ocfs2_commit_trans(OCFS2_SB(inode
->i_sb
), handle
);
228 static int ocfs2_set_inode_size(handle_t
*handle
,
230 struct buffer_head
*fe_bh
,
236 i_size_write(inode
, new_i_size
);
237 inode
->i_blocks
= ocfs2_inode_sector_count(inode
);
238 inode
->i_ctime
= inode
->i_mtime
= CURRENT_TIME
;
240 status
= ocfs2_mark_inode_dirty(handle
, inode
, fe_bh
);
251 static int ocfs2_simple_size_update(struct inode
*inode
,
252 struct buffer_head
*di_bh
,
256 struct ocfs2_super
*osb
= OCFS2_SB(inode
->i_sb
);
257 handle_t
*handle
= NULL
;
259 handle
= ocfs2_start_trans(osb
, OCFS2_INODE_UPDATE_CREDITS
);
260 if (handle
== NULL
) {
266 ret
= ocfs2_set_inode_size(handle
, inode
, di_bh
,
271 ocfs2_commit_trans(osb
, handle
);
276 static int ocfs2_orphan_for_truncate(struct ocfs2_super
*osb
,
278 struct buffer_head
*fe_bh
,
283 struct ocfs2_dinode
*di
;
288 /* TODO: This needs to actually orphan the inode in this
291 handle
= ocfs2_start_trans(osb
, OCFS2_INODE_UPDATE_CREDITS
);
292 if (IS_ERR(handle
)) {
293 status
= PTR_ERR(handle
);
298 status
= ocfs2_journal_access(handle
, inode
, fe_bh
,
299 OCFS2_JOURNAL_ACCESS_WRITE
);
306 * Do this before setting i_size.
308 cluster_bytes
= ocfs2_align_bytes_to_clusters(inode
->i_sb
, new_i_size
);
309 status
= ocfs2_zero_range_for_truncate(inode
, handle
, new_i_size
,
316 i_size_write(inode
, new_i_size
);
317 inode
->i_blocks
= ocfs2_align_bytes_to_sectors(new_i_size
);
318 inode
->i_ctime
= inode
->i_mtime
= CURRENT_TIME
;
320 di
= (struct ocfs2_dinode
*) fe_bh
->b_data
;
321 di
->i_size
= cpu_to_le64(new_i_size
);
322 di
->i_ctime
= di
->i_mtime
= cpu_to_le64(inode
->i_ctime
.tv_sec
);
323 di
->i_ctime_nsec
= di
->i_mtime_nsec
= cpu_to_le32(inode
->i_ctime
.tv_nsec
);
325 status
= ocfs2_journal_dirty(handle
, fe_bh
);
330 ocfs2_commit_trans(osb
, handle
);
337 static int ocfs2_truncate_file(struct inode
*inode
,
338 struct buffer_head
*di_bh
,
342 struct ocfs2_dinode
*fe
= NULL
;
343 struct ocfs2_super
*osb
= OCFS2_SB(inode
->i_sb
);
344 struct ocfs2_truncate_context
*tc
= NULL
;
346 mlog_entry("(inode = %llu, new_i_size = %llu\n",
347 (unsigned long long)OCFS2_I(inode
)->ip_blkno
,
348 (unsigned long long)new_i_size
);
350 fe
= (struct ocfs2_dinode
*) di_bh
->b_data
;
351 if (!OCFS2_IS_VALID_DINODE(fe
)) {
352 OCFS2_RO_ON_INVALID_DINODE(inode
->i_sb
, fe
);
357 mlog_bug_on_msg(le64_to_cpu(fe
->i_size
) != i_size_read(inode
),
358 "Inode %llu, inode i_size = %lld != di "
359 "i_size = %llu, i_flags = 0x%x\n",
360 (unsigned long long)OCFS2_I(inode
)->ip_blkno
,
362 (unsigned long long)le64_to_cpu(fe
->i_size
),
363 le32_to_cpu(fe
->i_flags
));
365 if (new_i_size
> le64_to_cpu(fe
->i_size
)) {
366 mlog(0, "asked to truncate file with size (%llu) to size (%llu)!\n",
367 (unsigned long long)le64_to_cpu(fe
->i_size
),
368 (unsigned long long)new_i_size
);
374 mlog(0, "inode %llu, i_size = %llu, new_i_size = %llu\n",
375 (unsigned long long)le64_to_cpu(fe
->i_blkno
),
376 (unsigned long long)le64_to_cpu(fe
->i_size
),
377 (unsigned long long)new_i_size
);
379 /* lets handle the simple truncate cases before doing any more
380 * cluster locking. */
381 if (new_i_size
== le64_to_cpu(fe
->i_size
))
384 down_write(&OCFS2_I(inode
)->ip_alloc_sem
);
386 /* This forces other nodes to sync and drop their pages. Do
387 * this even if we have a truncate without allocation change -
388 * ocfs2 cluster sizes can be much greater than page size, so
389 * we have to truncate them anyway. */
390 status
= ocfs2_data_lock(inode
, 1);
392 up_write(&OCFS2_I(inode
)->ip_alloc_sem
);
398 unmap_mapping_range(inode
->i_mapping
, new_i_size
+ PAGE_SIZE
- 1, 0, 1);
399 truncate_inode_pages(inode
->i_mapping
, new_i_size
);
401 /* alright, we're going to need to do a full blown alloc size
402 * change. Orphan the inode so that recovery can complete the
403 * truncate if necessary. This does the task of marking
405 status
= ocfs2_orphan_for_truncate(osb
, inode
, di_bh
, new_i_size
);
408 goto bail_unlock_data
;
411 status
= ocfs2_prepare_truncate(osb
, inode
, di_bh
, &tc
);
414 goto bail_unlock_data
;
417 status
= ocfs2_commit_truncate(osb
, inode
, di_bh
, tc
);
420 goto bail_unlock_data
;
423 /* TODO: orphan dir cleanup here. */
425 ocfs2_data_unlock(inode
, 1);
427 up_write(&OCFS2_I(inode
)->ip_alloc_sem
);
436 * extend allocation only here.
437 * we'll update all the disk stuff, and oip->alloc_size
439 * expect stuff to be locked, a transaction started and enough data /
440 * metadata reservations in the contexts.
442 * Will return -EAGAIN, and a reason if a restart is needed.
443 * If passed in, *reason will always be set, even in error.
445 int ocfs2_do_extend_allocation(struct ocfs2_super
*osb
,
450 struct buffer_head
*fe_bh
,
452 struct ocfs2_alloc_context
*data_ac
,
453 struct ocfs2_alloc_context
*meta_ac
,
454 enum ocfs2_alloc_restarted
*reason_ret
)
458 struct ocfs2_dinode
*fe
= (struct ocfs2_dinode
*) fe_bh
->b_data
;
459 enum ocfs2_alloc_restarted reason
= RESTART_NONE
;
460 u32 bit_off
, num_bits
;
464 BUG_ON(!clusters_to_add
);
467 flags
= OCFS2_EXT_UNWRITTEN
;
469 free_extents
= ocfs2_num_free_extents(osb
, inode
, fe
);
470 if (free_extents
< 0) {
471 status
= free_extents
;
476 /* there are two cases which could cause us to EAGAIN in the
477 * we-need-more-metadata case:
478 * 1) we haven't reserved *any*
479 * 2) we are so fragmented, we've needed to add metadata too
481 if (!free_extents
&& !meta_ac
) {
482 mlog(0, "we haven't reserved any metadata!\n");
484 reason
= RESTART_META
;
486 } else if ((!free_extents
)
487 && (ocfs2_alloc_context_bits_left(meta_ac
)
488 < ocfs2_extend_meta_needed(fe
))) {
489 mlog(0, "filesystem is really fragmented...\n");
491 reason
= RESTART_META
;
495 status
= ocfs2_claim_clusters(osb
, handle
, data_ac
, 1,
496 &bit_off
, &num_bits
);
498 if (status
!= -ENOSPC
)
503 BUG_ON(num_bits
> clusters_to_add
);
505 /* reserve our write early -- insert_extent may update the inode */
506 status
= ocfs2_journal_access(handle
, inode
, fe_bh
,
507 OCFS2_JOURNAL_ACCESS_WRITE
);
513 block
= ocfs2_clusters_to_blocks(osb
->sb
, bit_off
);
514 mlog(0, "Allocating %u clusters at block %u for inode %llu\n",
515 num_bits
, bit_off
, (unsigned long long)OCFS2_I(inode
)->ip_blkno
);
516 status
= ocfs2_insert_extent(osb
, handle
, inode
, fe_bh
,
517 *logical_offset
, block
, num_bits
,
524 status
= ocfs2_journal_dirty(handle
, fe_bh
);
530 clusters_to_add
-= num_bits
;
531 *logical_offset
+= num_bits
;
533 if (clusters_to_add
) {
534 mlog(0, "need to alloc once more, clusters = %u, wanted = "
535 "%u\n", fe
->i_clusters
, clusters_to_add
);
537 reason
= RESTART_TRANS
;
543 *reason_ret
= reason
;
548 * For a given allocation, determine which allocators will need to be
549 * accessed, and lock them, reserving the appropriate number of bits.
551 * Sparse file systems call this from ocfs2_write_begin_nolock()
552 * and ocfs2_allocate_unwritten_extents().
554 * File systems which don't support holes call this from
555 * ocfs2_extend_allocation().
557 int ocfs2_lock_allocators(struct inode
*inode
, struct ocfs2_dinode
*di
,
558 u32 clusters_to_add
, u32 extents_to_split
,
559 struct ocfs2_alloc_context
**data_ac
,
560 struct ocfs2_alloc_context
**meta_ac
)
562 int ret
= 0, num_free_extents
;
563 unsigned int max_recs_needed
= clusters_to_add
+ 2 * extents_to_split
;
564 struct ocfs2_super
*osb
= OCFS2_SB(inode
->i_sb
);
570 BUG_ON(clusters_to_add
!= 0 && data_ac
== NULL
);
572 mlog(0, "extend inode %llu, i_size = %lld, di->i_clusters = %u, "
573 "clusters_to_add = %u, extents_to_split = %u\n",
574 (unsigned long long)OCFS2_I(inode
)->ip_blkno
, i_size_read(inode
),
575 le32_to_cpu(di
->i_clusters
), clusters_to_add
, extents_to_split
);
577 num_free_extents
= ocfs2_num_free_extents(osb
, inode
, di
);
578 if (num_free_extents
< 0) {
579 ret
= num_free_extents
;
585 * Sparse allocation file systems need to be more conservative
586 * with reserving room for expansion - the actual allocation
587 * happens while we've got a journal handle open so re-taking
588 * a cluster lock (because we ran out of room for another
589 * extent) will violate ordering rules.
591 * Most of the time we'll only be seeing this 1 cluster at a time
594 * Always lock for any unwritten extents - we might want to
595 * add blocks during a split.
597 if (!num_free_extents
||
598 (ocfs2_sparse_alloc(osb
) && num_free_extents
< max_recs_needed
)) {
599 ret
= ocfs2_reserve_new_metadata(osb
, di
, meta_ac
);
607 if (clusters_to_add
== 0)
610 ret
= ocfs2_reserve_clusters(osb
, clusters_to_add
, data_ac
);
620 ocfs2_free_alloc_context(*meta_ac
);
625 * We cannot have an error and a non null *data_ac.
632 static int __ocfs2_extend_allocation(struct inode
*inode
, u32 logical_start
,
633 u32 clusters_to_add
, int mark_unwritten
)
636 int restart_func
= 0;
639 struct buffer_head
*bh
= NULL
;
640 struct ocfs2_dinode
*fe
= NULL
;
641 handle_t
*handle
= NULL
;
642 struct ocfs2_alloc_context
*data_ac
= NULL
;
643 struct ocfs2_alloc_context
*meta_ac
= NULL
;
644 enum ocfs2_alloc_restarted why
;
645 struct ocfs2_super
*osb
= OCFS2_SB(inode
->i_sb
);
647 mlog_entry("(clusters_to_add = %u)\n", clusters_to_add
);
650 * This function only exists for file systems which don't
653 BUG_ON(mark_unwritten
&& !ocfs2_sparse_alloc(osb
));
655 status
= ocfs2_read_block(osb
, OCFS2_I(inode
)->ip_blkno
, &bh
,
656 OCFS2_BH_CACHED
, inode
);
662 fe
= (struct ocfs2_dinode
*) bh
->b_data
;
663 if (!OCFS2_IS_VALID_DINODE(fe
)) {
664 OCFS2_RO_ON_INVALID_DINODE(inode
->i_sb
, fe
);
670 BUG_ON(le32_to_cpu(fe
->i_clusters
) != OCFS2_I(inode
)->ip_clusters
);
672 status
= ocfs2_lock_allocators(inode
, fe
, clusters_to_add
, 0, &data_ac
,
679 credits
= ocfs2_calc_extend_credits(osb
->sb
, fe
, clusters_to_add
);
680 handle
= ocfs2_start_trans(osb
, credits
);
681 if (IS_ERR(handle
)) {
682 status
= PTR_ERR(handle
);
688 restarted_transaction
:
689 /* reserve a write to the file entry early on - that we if we
690 * run out of credits in the allocation path, we can still
692 status
= ocfs2_journal_access(handle
, inode
, bh
,
693 OCFS2_JOURNAL_ACCESS_WRITE
);
699 prev_clusters
= OCFS2_I(inode
)->ip_clusters
;
701 status
= ocfs2_do_extend_allocation(osb
,
711 if ((status
< 0) && (status
!= -EAGAIN
)) {
712 if (status
!= -ENOSPC
)
717 status
= ocfs2_journal_dirty(handle
, bh
);
723 spin_lock(&OCFS2_I(inode
)->ip_lock
);
724 clusters_to_add
-= (OCFS2_I(inode
)->ip_clusters
- prev_clusters
);
725 spin_unlock(&OCFS2_I(inode
)->ip_lock
);
727 if (why
!= RESTART_NONE
&& clusters_to_add
) {
728 if (why
== RESTART_META
) {
729 mlog(0, "restarting function.\n");
732 BUG_ON(why
!= RESTART_TRANS
);
734 mlog(0, "restarting transaction.\n");
735 /* TODO: This can be more intelligent. */
736 credits
= ocfs2_calc_extend_credits(osb
->sb
,
739 status
= ocfs2_extend_trans(handle
, credits
);
741 /* handle still has to be committed at
747 goto restarted_transaction
;
751 mlog(0, "fe: i_clusters = %u, i_size=%llu\n",
752 le32_to_cpu(fe
->i_clusters
),
753 (unsigned long long)le64_to_cpu(fe
->i_size
));
754 mlog(0, "inode: ip_clusters=%u, i_size=%lld\n",
755 OCFS2_I(inode
)->ip_clusters
, i_size_read(inode
));
759 ocfs2_commit_trans(osb
, handle
);
763 ocfs2_free_alloc_context(data_ac
);
767 ocfs2_free_alloc_context(meta_ac
);
770 if ((!status
) && restart_func
) {
783 static int ocfs2_extend_allocation(struct inode
*inode
, u32 logical_start
,
784 u32 clusters_to_add
, int mark_unwritten
)
789 * The alloc sem blocks peope in read/write from reading our
790 * allocation until we're done changing it. We depend on
791 * i_mutex to block other extend/truncate calls while we're
794 down_write(&OCFS2_I(inode
)->ip_alloc_sem
);
795 ret
= __ocfs2_extend_allocation(inode
, logical_start
, clusters_to_add
,
797 up_write(&OCFS2_I(inode
)->ip_alloc_sem
);
802 /* Some parts of this taken from generic_cont_expand, which turned out
803 * to be too fragile to do exactly what we need without us having to
804 * worry about recursive locking in ->prepare_write() and
805 * ->commit_write(). */
806 static int ocfs2_write_zero_page(struct inode
*inode
,
809 struct address_space
*mapping
= inode
->i_mapping
;
813 handle_t
*handle
= NULL
;
816 offset
= (size
& (PAGE_CACHE_SIZE
-1)); /* Within page */
817 /* ugh. in prepare/commit_write, if from==to==start of block, we
818 ** skip the prepare. make sure we never send an offset for the start
821 if ((offset
& (inode
->i_sb
->s_blocksize
- 1)) == 0) {
824 index
= size
>> PAGE_CACHE_SHIFT
;
826 page
= grab_cache_page(mapping
, index
);
833 ret
= ocfs2_prepare_write_nolock(inode
, page
, offset
, offset
);
839 if (ocfs2_should_order_data(inode
)) {
840 handle
= ocfs2_start_walk_page_trans(inode
, page
, offset
,
842 if (IS_ERR(handle
)) {
843 ret
= PTR_ERR(handle
);
849 /* must not update i_size! */
850 ret
= block_commit_write(page
, offset
, offset
);
857 ocfs2_commit_trans(OCFS2_SB(inode
->i_sb
), handle
);
860 page_cache_release(page
);
865 static int ocfs2_zero_extend(struct inode
*inode
,
870 struct super_block
*sb
= inode
->i_sb
;
872 start_off
= ocfs2_align_bytes_to_blocks(sb
, i_size_read(inode
));
873 while (start_off
< zero_to_size
) {
874 ret
= ocfs2_write_zero_page(inode
, start_off
);
880 start_off
+= sb
->s_blocksize
;
883 * Very large extends have the potential to lock up
884 * the cpu for extended periods of time.
894 * A tail_to_skip value > 0 indicates that we're being called from
895 * ocfs2_file_aio_write(). This has the following implications:
897 * - we don't want to update i_size
898 * - di_bh will be NULL, which is fine because it's only used in the
899 * case where we want to update i_size.
900 * - ocfs2_zero_extend() will then only be filling the hole created
901 * between i_size and the start of the write.
903 static int ocfs2_extend_file(struct inode
*inode
,
904 struct buffer_head
*di_bh
,
909 u32 clusters_to_add
= 0;
911 BUG_ON(!tail_to_skip
&& !di_bh
);
913 /* setattr sometimes calls us like this. */
917 if (i_size_read(inode
) == new_i_size
)
919 BUG_ON(new_i_size
< i_size_read(inode
));
921 if (ocfs2_sparse_alloc(OCFS2_SB(inode
->i_sb
))) {
922 BUG_ON(tail_to_skip
!= 0);
923 goto out_update_size
;
926 clusters_to_add
= ocfs2_clusters_for_bytes(inode
->i_sb
, new_i_size
) -
927 OCFS2_I(inode
)->ip_clusters
;
930 * protect the pages that ocfs2_zero_extend is going to be
931 * pulling into the page cache.. we do this before the
932 * metadata extend so that we don't get into the situation
933 * where we've extended the metadata but can't get the data
936 ret
= ocfs2_data_lock(inode
, 1);
942 if (clusters_to_add
) {
943 ret
= ocfs2_extend_allocation(inode
,
944 OCFS2_I(inode
)->ip_clusters
,
953 * Call this even if we don't add any clusters to the tree. We
954 * still need to zero the area between the old i_size and the
957 ret
= ocfs2_zero_extend(inode
, (u64
)new_i_size
- tail_to_skip
);
965 /* We're being called from ocfs2_setattr() which wants
966 * us to update i_size */
967 ret
= ocfs2_simple_size_update(inode
, di_bh
, new_i_size
);
973 if (!ocfs2_sparse_alloc(OCFS2_SB(inode
->i_sb
)))
974 ocfs2_data_unlock(inode
, 1);
980 int ocfs2_setattr(struct dentry
*dentry
, struct iattr
*attr
)
982 int status
= 0, size_change
;
983 struct inode
*inode
= dentry
->d_inode
;
984 struct super_block
*sb
= inode
->i_sb
;
985 struct ocfs2_super
*osb
= OCFS2_SB(sb
);
986 struct buffer_head
*bh
= NULL
;
987 handle_t
*handle
= NULL
;
989 mlog_entry("(0x%p, '%.*s')\n", dentry
,
990 dentry
->d_name
.len
, dentry
->d_name
.name
);
992 if (attr
->ia_valid
& ATTR_MODE
)
993 mlog(0, "mode change: %d\n", attr
->ia_mode
);
994 if (attr
->ia_valid
& ATTR_UID
)
995 mlog(0, "uid change: %d\n", attr
->ia_uid
);
996 if (attr
->ia_valid
& ATTR_GID
)
997 mlog(0, "gid change: %d\n", attr
->ia_gid
);
998 if (attr
->ia_valid
& ATTR_SIZE
)
999 mlog(0, "size change...\n");
1000 if (attr
->ia_valid
& (ATTR_ATIME
| ATTR_MTIME
| ATTR_CTIME
))
1001 mlog(0, "time change...\n");
1003 #define OCFS2_VALID_ATTRS (ATTR_ATIME | ATTR_MTIME | ATTR_CTIME | ATTR_SIZE \
1004 | ATTR_GID | ATTR_UID | ATTR_MODE)
1005 if (!(attr
->ia_valid
& OCFS2_VALID_ATTRS
)) {
1006 mlog(0, "can't handle attrs: 0x%x\n", attr
->ia_valid
);
1010 status
= inode_change_ok(inode
, attr
);
1014 size_change
= S_ISREG(inode
->i_mode
) && attr
->ia_valid
& ATTR_SIZE
;
1016 status
= ocfs2_rw_lock(inode
, 1);
1023 status
= ocfs2_meta_lock(inode
, &bh
, 1);
1025 if (status
!= -ENOENT
)
1027 goto bail_unlock_rw
;
1030 if (size_change
&& attr
->ia_size
!= i_size_read(inode
)) {
1031 if (attr
->ia_size
> sb
->s_maxbytes
) {
1036 if (i_size_read(inode
) > attr
->ia_size
)
1037 status
= ocfs2_truncate_file(inode
, bh
, attr
->ia_size
);
1039 status
= ocfs2_extend_file(inode
, bh
, attr
->ia_size
, 0);
1041 if (status
!= -ENOSPC
)
1048 handle
= ocfs2_start_trans(osb
, OCFS2_INODE_UPDATE_CREDITS
);
1049 if (IS_ERR(handle
)) {
1050 status
= PTR_ERR(handle
);
1056 * This will intentionally not wind up calling vmtruncate(),
1057 * since all the work for a size change has been done above.
1058 * Otherwise, we could get into problems with truncate as
1059 * ip_alloc_sem is used there to protect against i_size
1062 status
= inode_setattr(inode
, attr
);
1068 status
= ocfs2_mark_inode_dirty(handle
, inode
, bh
);
1073 ocfs2_commit_trans(osb
, handle
);
1075 ocfs2_meta_unlock(inode
, 1);
1078 ocfs2_rw_unlock(inode
, 1);
1087 int ocfs2_getattr(struct vfsmount
*mnt
,
1088 struct dentry
*dentry
,
1091 struct inode
*inode
= dentry
->d_inode
;
1092 struct super_block
*sb
= dentry
->d_inode
->i_sb
;
1093 struct ocfs2_super
*osb
= sb
->s_fs_info
;
1098 err
= ocfs2_inode_revalidate(dentry
);
1105 generic_fillattr(inode
, stat
);
1107 /* We set the blksize from the cluster size for performance */
1108 stat
->blksize
= osb
->s_clustersize
;
1116 int ocfs2_permission(struct inode
*inode
, int mask
, struct nameidata
*nd
)
1122 ret
= ocfs2_meta_lock(inode
, NULL
, 0);
1129 ret
= generic_permission(inode
, mask
, NULL
);
1131 ocfs2_meta_unlock(inode
, 0);
1137 static int __ocfs2_write_remove_suid(struct inode
*inode
,
1138 struct buffer_head
*bh
)
1142 struct ocfs2_super
*osb
= OCFS2_SB(inode
->i_sb
);
1143 struct ocfs2_dinode
*di
;
1145 mlog_entry("(Inode %llu, mode 0%o)\n",
1146 (unsigned long long)OCFS2_I(inode
)->ip_blkno
, inode
->i_mode
);
1148 handle
= ocfs2_start_trans(osb
, OCFS2_INODE_UPDATE_CREDITS
);
1149 if (handle
== NULL
) {
1155 ret
= ocfs2_journal_access(handle
, inode
, bh
,
1156 OCFS2_JOURNAL_ACCESS_WRITE
);
1162 inode
->i_mode
&= ~S_ISUID
;
1163 if ((inode
->i_mode
& S_ISGID
) && (inode
->i_mode
& S_IXGRP
))
1164 inode
->i_mode
&= ~S_ISGID
;
1166 di
= (struct ocfs2_dinode
*) bh
->b_data
;
1167 di
->i_mode
= cpu_to_le16(inode
->i_mode
);
1169 ret
= ocfs2_journal_dirty(handle
, bh
);
1174 ocfs2_commit_trans(osb
, handle
);
1181 * Will look for holes and unwritten extents in the range starting at
1182 * pos for count bytes (inclusive).
1184 static int ocfs2_check_range_for_holes(struct inode
*inode
, loff_t pos
,
1188 unsigned int extent_flags
;
1189 u32 cpos
, clusters
, extent_len
, phys_cpos
;
1190 struct super_block
*sb
= inode
->i_sb
;
1192 cpos
= pos
>> OCFS2_SB(sb
)->s_clustersize_bits
;
1193 clusters
= ocfs2_clusters_for_bytes(sb
, pos
+ count
) - cpos
;
1196 ret
= ocfs2_get_clusters(inode
, cpos
, &phys_cpos
, &extent_len
,
1203 if (phys_cpos
== 0 || (extent_flags
& OCFS2_EXT_UNWRITTEN
)) {
1208 if (extent_len
> clusters
)
1209 extent_len
= clusters
;
1211 clusters
-= extent_len
;
1218 static int ocfs2_write_remove_suid(struct inode
*inode
)
1221 struct buffer_head
*bh
= NULL
;
1222 struct ocfs2_inode_info
*oi
= OCFS2_I(inode
);
1224 ret
= ocfs2_read_block(OCFS2_SB(inode
->i_sb
),
1225 oi
->ip_blkno
, &bh
, OCFS2_BH_CACHED
, inode
);
1231 ret
= __ocfs2_write_remove_suid(inode
, bh
);
1238 * Allocate enough extents to cover the region starting at byte offset
1239 * start for len bytes. Existing extents are skipped, any extents
1240 * added are marked as "unwritten".
1242 static int ocfs2_allocate_unwritten_extents(struct inode
*inode
,
1246 u32 cpos
, phys_cpos
, clusters
, alloc_size
;
1249 * We consider both start and len to be inclusive.
1251 cpos
= start
>> OCFS2_SB(inode
->i_sb
)->s_clustersize_bits
;
1252 clusters
= ocfs2_clusters_for_bytes(inode
->i_sb
, start
+ len
);
1256 ret
= ocfs2_get_clusters(inode
, cpos
, &phys_cpos
,
1264 * Hole or existing extent len can be arbitrary, so
1265 * cap it to our own allocation request.
1267 if (alloc_size
> clusters
)
1268 alloc_size
= clusters
;
1272 * We already have an allocation at this
1273 * region so we can safely skip it.
1278 ret
= __ocfs2_extend_allocation(inode
, cpos
, alloc_size
, 1);
1287 clusters
-= alloc_size
;
1295 static int __ocfs2_remove_inode_range(struct inode
*inode
,
1296 struct buffer_head
*di_bh
,
1297 u32 cpos
, u32 phys_cpos
, u32 len
,
1298 struct ocfs2_cached_dealloc_ctxt
*dealloc
)
1301 u64 phys_blkno
= ocfs2_clusters_to_blocks(inode
->i_sb
, phys_cpos
);
1302 struct ocfs2_super
*osb
= OCFS2_SB(inode
->i_sb
);
1303 struct inode
*tl_inode
= osb
->osb_tl_inode
;
1305 struct ocfs2_alloc_context
*meta_ac
= NULL
;
1306 struct ocfs2_dinode
*di
= (struct ocfs2_dinode
*)di_bh
->b_data
;
1308 ret
= ocfs2_lock_allocators(inode
, di
, 0, 1, NULL
, &meta_ac
);
1314 mutex_lock(&tl_inode
->i_mutex
);
1316 if (ocfs2_truncate_log_needs_flush(osb
)) {
1317 ret
= __ocfs2_flush_truncate_log(osb
);
1324 handle
= ocfs2_start_trans(osb
, OCFS2_REMOVE_EXTENT_CREDITS
);
1325 if (handle
== NULL
) {
1331 ret
= ocfs2_journal_access(handle
, inode
, di_bh
,
1332 OCFS2_JOURNAL_ACCESS_WRITE
);
1338 ret
= ocfs2_remove_extent(inode
, di_bh
, cpos
, len
, handle
, meta_ac
,
1345 OCFS2_I(inode
)->ip_clusters
-= len
;
1346 di
->i_clusters
= cpu_to_le32(OCFS2_I(inode
)->ip_clusters
);
1348 ret
= ocfs2_journal_dirty(handle
, di_bh
);
1354 ret
= ocfs2_truncate_log_append(osb
, handle
, phys_blkno
, len
);
1359 ocfs2_commit_trans(osb
, handle
);
1361 mutex_unlock(&tl_inode
->i_mutex
);
1364 ocfs2_free_alloc_context(meta_ac
);
1370 * Truncate a byte range, avoiding pages within partial clusters. This
1371 * preserves those pages for the zeroing code to write to.
1373 static void ocfs2_truncate_cluster_pages(struct inode
*inode
, u64 byte_start
,
1376 struct ocfs2_super
*osb
= OCFS2_SB(inode
->i_sb
);
1378 struct address_space
*mapping
= inode
->i_mapping
;
1380 start
= (loff_t
)ocfs2_align_bytes_to_clusters(inode
->i_sb
, byte_start
);
1381 end
= byte_start
+ byte_len
;
1382 end
= end
& ~(osb
->s_clustersize
- 1);
1385 unmap_mapping_range(mapping
, start
, end
- start
, 0);
1386 truncate_inode_pages_range(mapping
, start
, end
- 1);
1390 static int ocfs2_zero_partial_clusters(struct inode
*inode
,
1394 u64 tmpend
, end
= start
+ len
;
1395 struct ocfs2_super
*osb
= OCFS2_SB(inode
->i_sb
);
1396 unsigned int csize
= osb
->s_clustersize
;
1400 * The "start" and "end" values are NOT necessarily part of
1401 * the range whose allocation is being deleted. Rather, this
1402 * is what the user passed in with the request. We must zero
1403 * partial clusters here. There's no need to worry about
1404 * physical allocation - the zeroing code knows to skip holes.
1406 mlog(0, "byte start: %llu, end: %llu\n",
1407 (unsigned long long)start
, (unsigned long long)end
);
1410 * If both edges are on a cluster boundary then there's no
1411 * zeroing required as the region is part of the allocation to
1414 if ((start
& (csize
- 1)) == 0 && (end
& (csize
- 1)) == 0)
1417 handle
= ocfs2_start_trans(osb
, OCFS2_INODE_UPDATE_CREDITS
);
1418 if (handle
== NULL
) {
1425 * We want to get the byte offset of the end of the 1st cluster.
1427 tmpend
= (u64
)osb
->s_clustersize
+ (start
& ~(osb
->s_clustersize
- 1));
1431 mlog(0, "1st range: start: %llu, tmpend: %llu\n",
1432 (unsigned long long)start
, (unsigned long long)tmpend
);
1434 ret
= ocfs2_zero_range_for_truncate(inode
, handle
, start
, tmpend
);
1440 * This may make start and end equal, but the zeroing
1441 * code will skip any work in that case so there's no
1442 * need to catch it up here.
1444 start
= end
& ~(osb
->s_clustersize
- 1);
1446 mlog(0, "2nd range: start: %llu, end: %llu\n",
1447 (unsigned long long)start
, (unsigned long long)end
);
1449 ret
= ocfs2_zero_range_for_truncate(inode
, handle
, start
, end
);
1454 ocfs2_commit_trans(osb
, handle
);
1459 static int ocfs2_remove_inode_range(struct inode
*inode
,
1460 struct buffer_head
*di_bh
, u64 byte_start
,
1464 u32 trunc_start
, trunc_len
, cpos
, phys_cpos
, alloc_size
;
1465 struct ocfs2_super
*osb
= OCFS2_SB(inode
->i_sb
);
1466 struct ocfs2_cached_dealloc_ctxt dealloc
;
1468 ocfs2_init_dealloc_ctxt(&dealloc
);
1473 trunc_start
= ocfs2_clusters_for_bytes(osb
->sb
, byte_start
);
1474 trunc_len
= (byte_start
+ byte_len
) >> osb
->s_clustersize_bits
;
1475 if (trunc_len
>= trunc_start
)
1476 trunc_len
-= trunc_start
;
1480 mlog(0, "Inode: %llu, start: %llu, len: %llu, cstart: %u, clen: %u\n",
1481 (unsigned long long)OCFS2_I(inode
)->ip_blkno
,
1482 (unsigned long long)byte_start
,
1483 (unsigned long long)byte_len
, trunc_start
, trunc_len
);
1485 ret
= ocfs2_zero_partial_clusters(inode
, byte_start
, byte_len
);
1493 ret
= ocfs2_get_clusters(inode
, cpos
, &phys_cpos
,
1500 if (alloc_size
> trunc_len
)
1501 alloc_size
= trunc_len
;
1503 /* Only do work for non-holes */
1504 if (phys_cpos
!= 0) {
1505 ret
= __ocfs2_remove_inode_range(inode
, di_bh
, cpos
,
1506 phys_cpos
, alloc_size
,
1515 trunc_len
-= alloc_size
;
1518 ocfs2_truncate_cluster_pages(inode
, byte_start
, byte_len
);
1521 ocfs2_schedule_truncate_log_flush(osb
, 1);
1522 ocfs2_run_deallocs(osb
, &dealloc
);
1528 * Parts of this function taken from xfs_change_file_space()
1530 static int __ocfs2_change_file_space(struct file
*file
, struct inode
*inode
,
1531 loff_t f_pos
, unsigned int cmd
,
1532 struct ocfs2_space_resv
*sr
,
1538 struct ocfs2_super
*osb
= OCFS2_SB(inode
->i_sb
);
1539 struct buffer_head
*di_bh
= NULL
;
1541 unsigned long long max_off
= inode
->i_sb
->s_maxbytes
;
1543 if (ocfs2_is_hard_readonly(osb
) || ocfs2_is_soft_readonly(osb
))
1546 mutex_lock(&inode
->i_mutex
);
1549 * This prevents concurrent writes on other nodes
1551 ret
= ocfs2_rw_lock(inode
, 1);
1557 ret
= ocfs2_meta_lock(inode
, &di_bh
, 1);
1563 if (inode
->i_flags
& (S_IMMUTABLE
|S_APPEND
)) {
1565 goto out_meta_unlock
;
1568 switch (sr
->l_whence
) {
1569 case 0: /*SEEK_SET*/
1571 case 1: /*SEEK_CUR*/
1572 sr
->l_start
+= f_pos
;
1574 case 2: /*SEEK_END*/
1575 sr
->l_start
+= i_size_read(inode
);
1579 goto out_meta_unlock
;
1583 llen
= sr
->l_len
> 0 ? sr
->l_len
- 1 : sr
->l_len
;
1586 || sr
->l_start
> max_off
1587 || (sr
->l_start
+ llen
) < 0
1588 || (sr
->l_start
+ llen
) > max_off
) {
1590 goto out_meta_unlock
;
1592 size
= sr
->l_start
+ sr
->l_len
;
1594 if (cmd
== OCFS2_IOC_RESVSP
|| cmd
== OCFS2_IOC_RESVSP64
) {
1595 if (sr
->l_len
<= 0) {
1597 goto out_meta_unlock
;
1601 if (file
&& should_remove_suid(file
->f_path
.dentry
)) {
1602 ret
= __ocfs2_write_remove_suid(inode
, di_bh
);
1605 goto out_meta_unlock
;
1609 down_write(&OCFS2_I(inode
)->ip_alloc_sem
);
1611 case OCFS2_IOC_RESVSP
:
1612 case OCFS2_IOC_RESVSP64
:
1614 * This takes unsigned offsets, but the signed ones we
1615 * pass have been checked against overflow above.
1617 ret
= ocfs2_allocate_unwritten_extents(inode
, sr
->l_start
,
1620 case OCFS2_IOC_UNRESVSP
:
1621 case OCFS2_IOC_UNRESVSP64
:
1622 ret
= ocfs2_remove_inode_range(inode
, di_bh
, sr
->l_start
,
1628 up_write(&OCFS2_I(inode
)->ip_alloc_sem
);
1631 goto out_meta_unlock
;
1635 * We update c/mtime for these changes
1637 handle
= ocfs2_start_trans(osb
, OCFS2_INODE_UPDATE_CREDITS
);
1638 if (IS_ERR(handle
)) {
1639 ret
= PTR_ERR(handle
);
1641 goto out_meta_unlock
;
1644 if (change_size
&& i_size_read(inode
) < size
)
1645 i_size_write(inode
, size
);
1647 inode
->i_ctime
= inode
->i_mtime
= CURRENT_TIME
;
1648 ret
= ocfs2_mark_inode_dirty(handle
, inode
, di_bh
);
1652 ocfs2_commit_trans(osb
, handle
);
1656 ocfs2_meta_unlock(inode
, 1);
1658 ocfs2_rw_unlock(inode
, 1);
1660 mutex_unlock(&inode
->i_mutex
);
1665 int ocfs2_change_file_space(struct file
*file
, unsigned int cmd
,
1666 struct ocfs2_space_resv
*sr
)
1668 struct inode
*inode
= file
->f_path
.dentry
->d_inode
;
1669 struct ocfs2_super
*osb
= OCFS2_SB(inode
->i_sb
);;
1671 if ((cmd
== OCFS2_IOC_RESVSP
|| cmd
== OCFS2_IOC_RESVSP64
) &&
1672 !ocfs2_writes_unwritten_extents(osb
))
1674 else if ((cmd
== OCFS2_IOC_UNRESVSP
|| cmd
== OCFS2_IOC_UNRESVSP64
) &&
1675 !ocfs2_sparse_alloc(osb
))
1678 if (!S_ISREG(inode
->i_mode
))
1681 if (!(file
->f_mode
& FMODE_WRITE
))
1684 return __ocfs2_change_file_space(file
, inode
, file
->f_pos
, cmd
, sr
, 0);
1687 static long ocfs2_fallocate(struct inode
*inode
, int mode
, loff_t offset
,
1690 struct ocfs2_super
*osb
= OCFS2_SB(inode
->i_sb
);
1691 struct ocfs2_space_resv sr
;
1692 int change_size
= 1;
1694 if (!ocfs2_writes_unwritten_extents(osb
))
1697 if (S_ISDIR(inode
->i_mode
))
1700 if (mode
& FALLOC_FL_KEEP_SIZE
)
1704 sr
.l_start
= (s64
)offset
;
1705 sr
.l_len
= (s64
)len
;
1707 return __ocfs2_change_file_space(NULL
, inode
, offset
,
1708 OCFS2_IOC_RESVSP64
, &sr
, change_size
);
1711 static int ocfs2_prepare_inode_for_write(struct dentry
*dentry
,
1717 int ret
= 0, meta_level
= appending
;
1718 struct inode
*inode
= dentry
->d_inode
;
1720 loff_t newsize
, saved_pos
;
1723 * We sample i_size under a read level meta lock to see if our write
1724 * is extending the file, if it is we back off and get a write level
1728 ret
= ocfs2_meta_lock(inode
, NULL
, meta_level
);
1735 /* Clear suid / sgid if necessary. We do this here
1736 * instead of later in the write path because
1737 * remove_suid() calls ->setattr without any hint that
1738 * we may have already done our cluster locking. Since
1739 * ocfs2_setattr() *must* take cluster locks to
1740 * proceeed, this will lead us to recursively lock the
1741 * inode. There's also the dinode i_size state which
1742 * can be lost via setattr during extending writes (we
1743 * set inode->i_size at the end of a write. */
1744 if (should_remove_suid(dentry
)) {
1745 if (meta_level
== 0) {
1746 ocfs2_meta_unlock(inode
, meta_level
);
1751 ret
= ocfs2_write_remove_suid(inode
);
1758 /* work on a copy of ppos until we're sure that we won't have
1759 * to recalculate it due to relocking. */
1761 saved_pos
= i_size_read(inode
);
1762 mlog(0, "O_APPEND: inode->i_size=%llu\n", saved_pos
);
1767 if (ocfs2_sparse_alloc(OCFS2_SB(inode
->i_sb
))) {
1768 loff_t end
= saved_pos
+ count
;
1771 * Skip the O_DIRECT checks if we don't need
1774 if (!direct_io
|| !(*direct_io
))
1778 * Allowing concurrent direct writes means
1779 * i_size changes wouldn't be synchronized, so
1780 * one node could wind up truncating another
1783 if (end
> i_size_read(inode
)) {
1789 * We don't fill holes during direct io, so
1790 * check for them here. If any are found, the
1791 * caller will have to retake some cluster
1792 * locks and initiate the io as buffered.
1794 ret
= ocfs2_check_range_for_holes(inode
, saved_pos
,
1805 * The rest of this loop is concerned with legacy file
1806 * systems which don't support sparse files.
1809 newsize
= count
+ saved_pos
;
1811 mlog(0, "pos=%lld newsize=%lld cursize=%lld\n",
1812 (long long) saved_pos
, (long long) newsize
,
1813 (long long) i_size_read(inode
));
1815 /* No need for a higher level metadata lock if we're
1816 * never going past i_size. */
1817 if (newsize
<= i_size_read(inode
))
1820 if (meta_level
== 0) {
1821 ocfs2_meta_unlock(inode
, meta_level
);
1826 spin_lock(&OCFS2_I(inode
)->ip_lock
);
1827 clusters
= ocfs2_clusters_for_bytes(inode
->i_sb
, newsize
) -
1828 OCFS2_I(inode
)->ip_clusters
;
1829 spin_unlock(&OCFS2_I(inode
)->ip_lock
);
1831 mlog(0, "Writing at EOF, may need more allocation: "
1832 "i_size = %lld, newsize = %lld, need %u clusters\n",
1833 (long long) i_size_read(inode
), (long long) newsize
,
1836 /* We only want to continue the rest of this loop if
1837 * our extend will actually require more
1842 ret
= ocfs2_extend_file(inode
, NULL
, newsize
, count
);
1855 ocfs2_meta_unlock(inode
, meta_level
);
1862 ocfs2_set_next_iovec(const struct iovec
**iovp
, size_t *basep
, size_t bytes
)
1864 const struct iovec
*iov
= *iovp
;
1865 size_t base
= *basep
;
1868 int copy
= min(bytes
, iov
->iov_len
- base
);
1872 if (iov
->iov_len
== base
) {
1881 static struct page
* ocfs2_get_write_source(char **ret_src_buf
,
1882 const struct iovec
*cur_iov
,
1886 char *buf
= cur_iov
->iov_base
+ iov_offset
;
1887 struct page
*src_page
= NULL
;
1890 off
= (unsigned long)(buf
) & ~PAGE_CACHE_MASK
;
1892 if (!segment_eq(get_fs(), KERNEL_DS
)) {
1894 * Pull in the user page. We want to do this outside
1895 * of the meta data locks in order to preserve locking
1896 * order in case of page fault.
1898 ret
= get_user_pages(current
, current
->mm
,
1899 (unsigned long)buf
& PAGE_CACHE_MASK
, 1,
1900 0, 0, &src_page
, NULL
);
1902 *ret_src_buf
= kmap(src_page
) + off
;
1904 src_page
= ERR_PTR(-EFAULT
);
1912 static void ocfs2_put_write_source(struct page
*page
)
1916 page_cache_release(page
);
1920 static ssize_t
ocfs2_file_buffered_write(struct file
*file
, loff_t
*ppos
,
1921 const struct iovec
*iov
,
1922 unsigned long nr_segs
,
1924 ssize_t o_direct_written
)
1927 ssize_t copied
, total
= 0;
1928 size_t iov_offset
= 0, bytes
;
1930 const struct iovec
*cur_iov
= iov
;
1931 struct page
*user_page
, *page
;
1932 char * uninitialized_var(buf
);
1937 * handle partial DIO write. Adjust cur_iov if needed.
1939 ocfs2_set_next_iovec(&cur_iov
, &iov_offset
, o_direct_written
);
1944 user_page
= ocfs2_get_write_source(&buf
, cur_iov
, iov_offset
);
1945 if (IS_ERR(user_page
)) {
1946 ret
= PTR_ERR(user_page
);
1950 /* Stay within our page boundaries */
1951 bytes
= min((PAGE_CACHE_SIZE
- ((unsigned long)pos
& ~PAGE_CACHE_MASK
)),
1952 (PAGE_CACHE_SIZE
- ((unsigned long)buf
& ~PAGE_CACHE_MASK
)));
1953 /* Stay within the vector boundary */
1954 bytes
= min_t(size_t, bytes
, cur_iov
->iov_len
- iov_offset
);
1955 /* Stay within count */
1956 bytes
= min(bytes
, count
);
1959 ret
= ocfs2_write_begin(file
, file
->f_mapping
, pos
, bytes
, 0,
1966 dst
= kmap_atomic(page
, KM_USER0
);
1967 memcpy(dst
+ (pos
& (loff_t
)(PAGE_CACHE_SIZE
- 1)), buf
, bytes
);
1968 kunmap_atomic(dst
, KM_USER0
);
1969 flush_dcache_page(page
);
1970 ocfs2_put_write_source(user_page
);
1972 copied
= ocfs2_write_end(file
, file
->f_mapping
, pos
, bytes
,
1973 bytes
, page
, fsdata
);
1981 *ppos
= pos
+ copied
;
1984 ocfs2_set_next_iovec(&cur_iov
, &iov_offset
, copied
);
1988 return total
? total
: ret
;
1991 static ssize_t
ocfs2_file_aio_write(struct kiocb
*iocb
,
1992 const struct iovec
*iov
,
1993 unsigned long nr_segs
,
1996 int ret
, direct_io
, appending
, rw_level
, have_alloc_sem
= 0;
1997 int can_do_direct
, sync
= 0;
1998 ssize_t written
= 0;
1999 size_t ocount
; /* original count */
2000 size_t count
; /* after file limit checks */
2001 loff_t
*ppos
= &iocb
->ki_pos
;
2002 struct file
*file
= iocb
->ki_filp
;
2003 struct inode
*inode
= file
->f_path
.dentry
->d_inode
;
2005 mlog_entry("(0x%p, %u, '%.*s')\n", file
,
2006 (unsigned int)nr_segs
,
2007 file
->f_path
.dentry
->d_name
.len
,
2008 file
->f_path
.dentry
->d_name
.name
);
2010 if (iocb
->ki_left
== 0)
2013 ret
= generic_segment_checks(iov
, &nr_segs
, &ocount
, VERIFY_READ
);
2019 vfs_check_frozen(inode
->i_sb
, SB_FREEZE_WRITE
);
2021 appending
= file
->f_flags
& O_APPEND
? 1 : 0;
2022 direct_io
= file
->f_flags
& O_DIRECT
? 1 : 0;
2024 mutex_lock(&inode
->i_mutex
);
2027 /* to match setattr's i_mutex -> i_alloc_sem -> rw_lock ordering */
2029 down_read(&inode
->i_alloc_sem
);
2033 /* concurrent O_DIRECT writes are allowed */
2034 rw_level
= !direct_io
;
2035 ret
= ocfs2_rw_lock(inode
, rw_level
);
2041 can_do_direct
= direct_io
;
2042 ret
= ocfs2_prepare_inode_for_write(file
->f_path
.dentry
, ppos
,
2043 iocb
->ki_left
, appending
,
2051 * We can't complete the direct I/O as requested, fall back to
2054 if (direct_io
&& !can_do_direct
) {
2055 ocfs2_rw_unlock(inode
, rw_level
);
2056 up_read(&inode
->i_alloc_sem
);
2066 if (!sync
&& ((file
->f_flags
& O_SYNC
) || IS_SYNC(inode
)))
2070 * XXX: Is it ok to execute these checks a second time?
2072 ret
= generic_write_checks(file
, ppos
, &count
, S_ISBLK(inode
->i_mode
));
2077 * Set pos so that sync_page_range_nolock() below understands
2078 * where to start from. We might've moved it around via the
2079 * calls above. The range we want to actually sync starts from
2085 /* communicate with ocfs2_dio_end_io */
2086 ocfs2_iocb_set_rw_locked(iocb
, rw_level
);
2089 written
= generic_file_direct_write(iocb
, iov
, &nr_segs
, *ppos
,
2090 ppos
, count
, ocount
);
2096 written
= ocfs2_file_buffered_write(file
, ppos
, iov
, nr_segs
,
2100 if (ret
!= -EFAULT
|| ret
!= -ENOSPC
)
2107 /* buffered aio wouldn't have proper lock coverage today */
2108 BUG_ON(ret
== -EIOCBQUEUED
&& !(file
->f_flags
& O_DIRECT
));
2111 * deep in g_f_a_w_n()->ocfs2_direct_IO we pass in a ocfs2_dio_end_io
2112 * function pointer which is called when o_direct io completes so that
2113 * it can unlock our rw lock. (it's the clustered equivalent of
2114 * i_alloc_sem; protects truncate from racing with pending ios).
2115 * Unfortunately there are error cases which call end_io and others
2116 * that don't. so we don't have to unlock the rw_lock if either an
2117 * async dio is going to do it in the future or an end_io after an
2118 * error has already done it.
2120 if (ret
== -EIOCBQUEUED
|| !ocfs2_iocb_is_rw_locked(iocb
)) {
2127 ocfs2_rw_unlock(inode
, rw_level
);
2131 up_read(&inode
->i_alloc_sem
);
2133 if (written
> 0 && sync
) {
2136 err
= sync_page_range_nolock(inode
, file
->f_mapping
, pos
, count
);
2141 mutex_unlock(&inode
->i_mutex
);
2144 return written
? written
: ret
;
2147 static int ocfs2_splice_write_actor(struct pipe_inode_info
*pipe
,
2148 struct pipe_buffer
*buf
,
2149 struct splice_desc
*sd
)
2153 struct file
*file
= sd
->u
.file
;
2154 unsigned int offset
;
2155 struct page
*page
= NULL
;
2159 ret
= buf
->ops
->confirm(pipe
, buf
);
2163 offset
= sd
->pos
& ~PAGE_CACHE_MASK
;
2165 if (count
+ offset
> PAGE_CACHE_SIZE
)
2166 count
= PAGE_CACHE_SIZE
- offset
;
2168 ret
= ocfs2_write_begin(file
, file
->f_mapping
, sd
->pos
, count
, 0,
2175 src
= buf
->ops
->map(pipe
, buf
, 1);
2176 dst
= kmap_atomic(page
, KM_USER1
);
2177 memcpy(dst
+ offset
, src
+ buf
->offset
, count
);
2178 kunmap_atomic(dst
, KM_USER1
);
2179 buf
->ops
->unmap(pipe
, buf
, src
);
2181 copied
= ocfs2_write_end(file
, file
->f_mapping
, sd
->pos
, count
, count
,
2190 return copied
? copied
: ret
;
2193 static ssize_t
__ocfs2_file_splice_write(struct pipe_inode_info
*pipe
,
2200 struct address_space
*mapping
= out
->f_mapping
;
2201 struct inode
*inode
= mapping
->host
;
2202 struct splice_desc sd
= {
2209 ret
= __splice_from_pipe(pipe
, &sd
, ocfs2_splice_write_actor
);
2213 if (unlikely((out
->f_flags
& O_SYNC
) || IS_SYNC(inode
))) {
2214 err
= generic_osync_inode(inode
, mapping
,
2215 OSYNC_METADATA
|OSYNC_DATA
);
2224 static ssize_t
ocfs2_file_splice_write(struct pipe_inode_info
*pipe
,
2231 struct inode
*inode
= out
->f_path
.dentry
->d_inode
;
2233 mlog_entry("(0x%p, 0x%p, %u, '%.*s')\n", out
, pipe
,
2235 out
->f_path
.dentry
->d_name
.len
,
2236 out
->f_path
.dentry
->d_name
.name
);
2238 inode_double_lock(inode
, pipe
->inode
);
2240 ret
= ocfs2_rw_lock(inode
, 1);
2246 ret
= ocfs2_prepare_inode_for_write(out
->f_path
.dentry
, ppos
, len
, 0,
2253 /* ok, we're done with i_size and alloc work */
2254 ret
= __ocfs2_file_splice_write(pipe
, out
, ppos
, len
, flags
);
2257 ocfs2_rw_unlock(inode
, 1);
2259 inode_double_unlock(inode
, pipe
->inode
);
2265 static ssize_t
ocfs2_file_splice_read(struct file
*in
,
2267 struct pipe_inode_info
*pipe
,
2272 struct inode
*inode
= in
->f_path
.dentry
->d_inode
;
2274 mlog_entry("(0x%p, 0x%p, %u, '%.*s')\n", in
, pipe
,
2276 in
->f_path
.dentry
->d_name
.len
,
2277 in
->f_path
.dentry
->d_name
.name
);
2280 * See the comment in ocfs2_file_aio_read()
2282 ret
= ocfs2_meta_lock(inode
, NULL
, 0);
2287 ocfs2_meta_unlock(inode
, 0);
2289 ret
= generic_file_splice_read(in
, ppos
, pipe
, len
, flags
);
2296 static ssize_t
ocfs2_file_aio_read(struct kiocb
*iocb
,
2297 const struct iovec
*iov
,
2298 unsigned long nr_segs
,
2301 int ret
= 0, rw_level
= -1, have_alloc_sem
= 0, lock_level
= 0;
2302 struct file
*filp
= iocb
->ki_filp
;
2303 struct inode
*inode
= filp
->f_path
.dentry
->d_inode
;
2305 mlog_entry("(0x%p, %u, '%.*s')\n", filp
,
2306 (unsigned int)nr_segs
,
2307 filp
->f_path
.dentry
->d_name
.len
,
2308 filp
->f_path
.dentry
->d_name
.name
);
2317 * buffered reads protect themselves in ->readpage(). O_DIRECT reads
2318 * need locks to protect pending reads from racing with truncate.
2320 if (filp
->f_flags
& O_DIRECT
) {
2321 down_read(&inode
->i_alloc_sem
);
2324 ret
= ocfs2_rw_lock(inode
, 0);
2330 /* communicate with ocfs2_dio_end_io */
2331 ocfs2_iocb_set_rw_locked(iocb
, rw_level
);
2335 * We're fine letting folks race truncates and extending
2336 * writes with read across the cluster, just like they can
2337 * locally. Hence no rw_lock during read.
2339 * Take and drop the meta data lock to update inode fields
2340 * like i_size. This allows the checks down below
2341 * generic_file_aio_read() a chance of actually working.
2343 ret
= ocfs2_meta_lock_atime(inode
, filp
->f_vfsmnt
, &lock_level
);
2348 ocfs2_meta_unlock(inode
, lock_level
);
2350 ret
= generic_file_aio_read(iocb
, iov
, nr_segs
, iocb
->ki_pos
);
2352 mlog(ML_ERROR
, "generic_file_aio_read returned -EINVAL\n");
2354 /* buffered aio wouldn't have proper lock coverage today */
2355 BUG_ON(ret
== -EIOCBQUEUED
&& !(filp
->f_flags
& O_DIRECT
));
2357 /* see ocfs2_file_aio_write */
2358 if (ret
== -EIOCBQUEUED
|| !ocfs2_iocb_is_rw_locked(iocb
)) {
2365 up_read(&inode
->i_alloc_sem
);
2367 ocfs2_rw_unlock(inode
, rw_level
);
2373 const struct inode_operations ocfs2_file_iops
= {
2374 .setattr
= ocfs2_setattr
,
2375 .getattr
= ocfs2_getattr
,
2376 .permission
= ocfs2_permission
,
2377 .fallocate
= ocfs2_fallocate
,
2380 const struct inode_operations ocfs2_special_file_iops
= {
2381 .setattr
= ocfs2_setattr
,
2382 .getattr
= ocfs2_getattr
,
2383 .permission
= ocfs2_permission
,
2386 const struct file_operations ocfs2_fops
= {
2387 .read
= do_sync_read
,
2388 .write
= do_sync_write
,
2390 .fsync
= ocfs2_sync_file
,
2391 .release
= ocfs2_file_release
,
2392 .open
= ocfs2_file_open
,
2393 .aio_read
= ocfs2_file_aio_read
,
2394 .aio_write
= ocfs2_file_aio_write
,
2395 .ioctl
= ocfs2_ioctl
,
2396 #ifdef CONFIG_COMPAT
2397 .compat_ioctl
= ocfs2_compat_ioctl
,
2399 .splice_read
= ocfs2_file_splice_read
,
2400 .splice_write
= ocfs2_file_splice_write
,
2403 const struct file_operations ocfs2_dops
= {
2404 .read
= generic_read_dir
,
2405 .readdir
= ocfs2_readdir
,
2406 .fsync
= ocfs2_sync_file
,
2407 .ioctl
= ocfs2_ioctl
,
2408 #ifdef CONFIG_COMPAT
2409 .compat_ioctl
= ocfs2_compat_ioctl
,