2 * This file is part of UBIFS.
4 * Copyright (C) 2006-2008 Nokia Corporation.
6 * This program is free software; you can redistribute it and/or modify it
7 * under the terms of the GNU General Public License version 2 as published by
8 * the Free Software Foundation.
10 * This program is distributed in the hope that it will be useful, but WITHOUT
11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
15 * You should have received a copy of the GNU General Public License along with
16 * this program; if not, write to the Free Software Foundation, Inc., 51
17 * Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
19 * Authors: Artem Bityutskiy (Битюцкий Артём)
24 * This file implements UBIFS initialization and VFS superblock operations. Some
25 * initialization stuff which is rather large and complex is placed at
26 * corresponding subsystems, but most of it is here.
29 #include <linux/init.h>
30 #include <linux/slab.h>
31 #include <linux/module.h>
32 #include <linux/ctype.h>
33 #include <linux/kthread.h>
34 #include <linux/parser.h>
35 #include <linux/seq_file.h>
36 #include <linux/mount.h>
37 #include <linux/math64.h>
38 #include <linux/writeback.h>
42 * Maximum amount of memory we may 'kmalloc()' without worrying that we are
43 * allocating too much.
45 #define UBIFS_KMALLOC_OK (128*1024)
47 /* Slab cache for UBIFS inodes */
48 struct kmem_cache
*ubifs_inode_slab
;
50 /* UBIFS TNC shrinker description */
51 static struct shrinker ubifs_shrinker_info
= {
52 .shrink
= ubifs_shrinker
,
53 .seeks
= DEFAULT_SEEKS
,
57 * validate_inode - validate inode.
58 * @c: UBIFS file-system description object
59 * @inode: the inode to validate
61 * This is a helper function for 'ubifs_iget()' which validates various fields
62 * of a newly built inode to make sure they contain sane values and prevent
63 * possible vulnerabilities. Returns zero if the inode is all right and
64 * a non-zero error code if not.
66 static int validate_inode(struct ubifs_info
*c
, const struct inode
*inode
)
69 const struct ubifs_inode
*ui
= ubifs_inode(inode
);
71 if (inode
->i_size
> c
->max_inode_sz
) {
72 ubifs_err("inode is too large (%lld)",
73 (long long)inode
->i_size
);
77 if (ui
->compr_type
< 0 || ui
->compr_type
>= UBIFS_COMPR_TYPES_CNT
) {
78 ubifs_err("unknown compression type %d", ui
->compr_type
);
82 if (ui
->xattr_names
+ ui
->xattr_cnt
> XATTR_LIST_MAX
)
85 if (ui
->data_len
< 0 || ui
->data_len
> UBIFS_MAX_INO_DATA
)
88 if (ui
->xattr
&& (inode
->i_mode
& S_IFMT
) != S_IFREG
)
91 if (!ubifs_compr_present(ui
->compr_type
)) {
92 ubifs_warn("inode %lu uses '%s' compression, but it was not "
93 "compiled in", inode
->i_ino
,
94 ubifs_compr_name(ui
->compr_type
));
97 err
= dbg_check_dir_size(c
, inode
);
101 struct inode
*ubifs_iget(struct super_block
*sb
, unsigned long inum
)
105 struct ubifs_ino_node
*ino
;
106 struct ubifs_info
*c
= sb
->s_fs_info
;
108 struct ubifs_inode
*ui
;
110 dbg_gen("inode %lu", inum
);
112 inode
= iget_locked(sb
, inum
);
114 return ERR_PTR(-ENOMEM
);
115 if (!(inode
->i_state
& I_NEW
))
117 ui
= ubifs_inode(inode
);
119 ino
= kmalloc(UBIFS_MAX_INO_NODE_SZ
, GFP_NOFS
);
125 ino_key_init(c
, &key
, inode
->i_ino
);
127 err
= ubifs_tnc_lookup(c
, &key
, ino
);
131 inode
->i_flags
|= (S_NOCMTIME
| S_NOATIME
);
132 inode
->i_nlink
= le32_to_cpu(ino
->nlink
);
133 inode
->i_uid
= le32_to_cpu(ino
->uid
);
134 inode
->i_gid
= le32_to_cpu(ino
->gid
);
135 inode
->i_atime
.tv_sec
= (int64_t)le64_to_cpu(ino
->atime_sec
);
136 inode
->i_atime
.tv_nsec
= le32_to_cpu(ino
->atime_nsec
);
137 inode
->i_mtime
.tv_sec
= (int64_t)le64_to_cpu(ino
->mtime_sec
);
138 inode
->i_mtime
.tv_nsec
= le32_to_cpu(ino
->mtime_nsec
);
139 inode
->i_ctime
.tv_sec
= (int64_t)le64_to_cpu(ino
->ctime_sec
);
140 inode
->i_ctime
.tv_nsec
= le32_to_cpu(ino
->ctime_nsec
);
141 inode
->i_mode
= le32_to_cpu(ino
->mode
);
142 inode
->i_size
= le64_to_cpu(ino
->size
);
144 ui
->data_len
= le32_to_cpu(ino
->data_len
);
145 ui
->flags
= le32_to_cpu(ino
->flags
);
146 ui
->compr_type
= le16_to_cpu(ino
->compr_type
);
147 ui
->creat_sqnum
= le64_to_cpu(ino
->creat_sqnum
);
148 ui
->xattr_cnt
= le32_to_cpu(ino
->xattr_cnt
);
149 ui
->xattr_size
= le32_to_cpu(ino
->xattr_size
);
150 ui
->xattr_names
= le32_to_cpu(ino
->xattr_names
);
151 ui
->synced_i_size
= ui
->ui_size
= inode
->i_size
;
153 ui
->xattr
= (ui
->flags
& UBIFS_XATTR_FL
) ? 1 : 0;
155 err
= validate_inode(c
, inode
);
159 /* Disable read-ahead */
160 inode
->i_mapping
->backing_dev_info
= &c
->bdi
;
162 switch (inode
->i_mode
& S_IFMT
) {
164 inode
->i_mapping
->a_ops
= &ubifs_file_address_operations
;
165 inode
->i_op
= &ubifs_file_inode_operations
;
166 inode
->i_fop
= &ubifs_file_operations
;
168 ui
->data
= kmalloc(ui
->data_len
+ 1, GFP_NOFS
);
173 memcpy(ui
->data
, ino
->data
, ui
->data_len
);
174 ((char *)ui
->data
)[ui
->data_len
] = '\0';
175 } else if (ui
->data_len
!= 0) {
181 inode
->i_op
= &ubifs_dir_inode_operations
;
182 inode
->i_fop
= &ubifs_dir_operations
;
183 if (ui
->data_len
!= 0) {
189 inode
->i_op
= &ubifs_symlink_inode_operations
;
190 if (ui
->data_len
<= 0 || ui
->data_len
> UBIFS_MAX_INO_DATA
) {
194 ui
->data
= kmalloc(ui
->data_len
+ 1, GFP_NOFS
);
199 memcpy(ui
->data
, ino
->data
, ui
->data_len
);
200 ((char *)ui
->data
)[ui
->data_len
] = '\0';
206 union ubifs_dev_desc
*dev
;
208 ui
->data
= kmalloc(sizeof(union ubifs_dev_desc
), GFP_NOFS
);
214 dev
= (union ubifs_dev_desc
*)ino
->data
;
215 if (ui
->data_len
== sizeof(dev
->new))
216 rdev
= new_decode_dev(le32_to_cpu(dev
->new));
217 else if (ui
->data_len
== sizeof(dev
->huge
))
218 rdev
= huge_decode_dev(le64_to_cpu(dev
->huge
));
223 memcpy(ui
->data
, ino
->data
, ui
->data_len
);
224 inode
->i_op
= &ubifs_file_inode_operations
;
225 init_special_inode(inode
, inode
->i_mode
, rdev
);
230 inode
->i_op
= &ubifs_file_inode_operations
;
231 init_special_inode(inode
, inode
->i_mode
, 0);
232 if (ui
->data_len
!= 0) {
243 ubifs_set_inode_flags(inode
);
244 unlock_new_inode(inode
);
248 ubifs_err("inode %lu validation failed, error %d", inode
->i_ino
, err
);
249 dbg_dump_node(c
, ino
);
250 dbg_dump_inode(c
, inode
);
255 ubifs_err("failed to read inode %lu, error %d", inode
->i_ino
, err
);
260 static struct inode
*ubifs_alloc_inode(struct super_block
*sb
)
262 struct ubifs_inode
*ui
;
264 ui
= kmem_cache_alloc(ubifs_inode_slab
, GFP_NOFS
);
268 memset((void *)ui
+ sizeof(struct inode
), 0,
269 sizeof(struct ubifs_inode
) - sizeof(struct inode
));
270 mutex_init(&ui
->ui_mutex
);
271 spin_lock_init(&ui
->ui_lock
);
272 return &ui
->vfs_inode
;
275 static void ubifs_destroy_inode(struct inode
*inode
)
277 struct ubifs_inode
*ui
= ubifs_inode(inode
);
280 kmem_cache_free(ubifs_inode_slab
, inode
);
284 * Note, Linux write-back code calls this without 'i_mutex'.
286 static int ubifs_write_inode(struct inode
*inode
, int wait
)
289 struct ubifs_info
*c
= inode
->i_sb
->s_fs_info
;
290 struct ubifs_inode
*ui
= ubifs_inode(inode
);
292 ubifs_assert(!ui
->xattr
);
293 if (is_bad_inode(inode
))
296 mutex_lock(&ui
->ui_mutex
);
298 * Due to races between write-back forced by budgeting
299 * (see 'sync_some_inodes()') and pdflush write-back, the inode may
300 * have already been synchronized, do not do this again. This might
301 * also happen if it was synchronized in an VFS operation, e.g.
305 mutex_unlock(&ui
->ui_mutex
);
310 * As an optimization, do not write orphan inodes to the media just
311 * because this is not needed.
313 dbg_gen("inode %lu, mode %#x, nlink %u",
314 inode
->i_ino
, (int)inode
->i_mode
, inode
->i_nlink
);
315 if (inode
->i_nlink
) {
316 err
= ubifs_jnl_write_inode(c
, inode
);
318 ubifs_err("can't write inode %lu, error %d",
323 mutex_unlock(&ui
->ui_mutex
);
324 ubifs_release_dirty_inode_budget(c
, ui
);
328 static void ubifs_delete_inode(struct inode
*inode
)
331 struct ubifs_info
*c
= inode
->i_sb
->s_fs_info
;
332 struct ubifs_inode
*ui
= ubifs_inode(inode
);
336 * Extended attribute inode deletions are fully handled in
337 * 'ubifs_removexattr()'. These inodes are special and have
338 * limited usage, so there is nothing to do here.
342 dbg_gen("inode %lu, mode %#x", inode
->i_ino
, (int)inode
->i_mode
);
343 ubifs_assert(!atomic_read(&inode
->i_count
));
344 ubifs_assert(inode
->i_nlink
== 0);
346 truncate_inode_pages(&inode
->i_data
, 0);
347 if (is_bad_inode(inode
))
350 ui
->ui_size
= inode
->i_size
= 0;
351 err
= ubifs_jnl_delete_inode(c
, inode
);
354 * Worst case we have a lost orphan inode wasting space, so a
355 * simple error message is OK here.
357 ubifs_err("can't delete inode %lu, error %d",
362 ubifs_release_dirty_inode_budget(c
, ui
);
366 static void ubifs_dirty_inode(struct inode
*inode
)
368 struct ubifs_inode
*ui
= ubifs_inode(inode
);
370 ubifs_assert(mutex_is_locked(&ui
->ui_mutex
));
373 dbg_gen("inode %lu", inode
->i_ino
);
377 static int ubifs_statfs(struct dentry
*dentry
, struct kstatfs
*buf
)
379 struct ubifs_info
*c
= dentry
->d_sb
->s_fs_info
;
380 unsigned long long free
;
381 __le32
*uuid
= (__le32
*)c
->uuid
;
383 free
= ubifs_get_free_space(c
);
384 dbg_gen("free space %lld bytes (%lld blocks)",
385 free
, free
>> UBIFS_BLOCK_SHIFT
);
387 buf
->f_type
= UBIFS_SUPER_MAGIC
;
388 buf
->f_bsize
= UBIFS_BLOCK_SIZE
;
389 buf
->f_blocks
= c
->block_cnt
;
390 buf
->f_bfree
= free
>> UBIFS_BLOCK_SHIFT
;
391 if (free
> c
->report_rp_size
)
392 buf
->f_bavail
= (free
- c
->report_rp_size
) >> UBIFS_BLOCK_SHIFT
;
397 buf
->f_namelen
= UBIFS_MAX_NLEN
;
398 buf
->f_fsid
.val
[0] = le32_to_cpu(uuid
[0]) ^ le32_to_cpu(uuid
[2]);
399 buf
->f_fsid
.val
[1] = le32_to_cpu(uuid
[1]) ^ le32_to_cpu(uuid
[3]);
400 ubifs_assert(buf
->f_bfree
<= c
->block_cnt
);
404 static int ubifs_show_options(struct seq_file
*s
, struct vfsmount
*mnt
)
406 struct ubifs_info
*c
= mnt
->mnt_sb
->s_fs_info
;
408 if (c
->mount_opts
.unmount_mode
== 2)
409 seq_printf(s
, ",fast_unmount");
410 else if (c
->mount_opts
.unmount_mode
== 1)
411 seq_printf(s
, ",norm_unmount");
413 if (c
->mount_opts
.bulk_read
== 2)
414 seq_printf(s
, ",bulk_read");
415 else if (c
->mount_opts
.bulk_read
== 1)
416 seq_printf(s
, ",no_bulk_read");
418 if (c
->mount_opts
.chk_data_crc
== 2)
419 seq_printf(s
, ",chk_data_crc");
420 else if (c
->mount_opts
.chk_data_crc
== 1)
421 seq_printf(s
, ",no_chk_data_crc");
423 if (c
->mount_opts
.override_compr
) {
424 seq_printf(s
, ",compr=%s",
425 ubifs_compr_name(c
->mount_opts
.compr_type
));
431 static int ubifs_sync_fs(struct super_block
*sb
, int wait
)
434 struct ubifs_info
*c
= sb
->s_fs_info
;
435 struct writeback_control wbc
= {
436 .sync_mode
= WB_SYNC_ALL
,
438 .range_end
= LLONG_MAX
,
439 .nr_to_write
= LONG_MAX
,
443 * Zero @wait is just an advisory thing to help the file system shove
444 * lots of data into the queues, and there will be the second
445 * '->sync_fs()' call, with non-zero @wait.
450 if (sb
->s_flags
& MS_RDONLY
)
454 * VFS calls '->sync_fs()' before synchronizing all dirty inodes and
455 * pages, so synchronize them first, then commit the journal. Strictly
456 * speaking, it is not necessary to commit the journal here,
457 * synchronizing write-buffers would be enough. But committing makes
458 * UBIFS free space predictions much more accurate, so we want to let
459 * the user be able to get more accurate results of 'statfs()' after
460 * they synchronize the file system.
462 generic_sync_sb_inodes(sb
, &wbc
);
465 * Synchronize write buffers, because 'ubifs_run_commit()' does not
466 * do this if it waits for an already running commit.
468 for (i
= 0; i
< c
->jhead_cnt
; i
++) {
469 err
= ubifs_wbuf_sync(&c
->jheads
[i
].wbuf
);
474 err
= ubifs_run_commit(c
);
478 return ubi_sync(c
->vi
.ubi_num
);
482 * init_constants_early - initialize UBIFS constants.
483 * @c: UBIFS file-system description object
485 * This function initialize UBIFS constants which do not need the superblock to
486 * be read. It also checks that the UBI volume satisfies basic UBIFS
487 * requirements. Returns zero in case of success and a negative error code in
490 static int init_constants_early(struct ubifs_info
*c
)
492 if (c
->vi
.corrupted
) {
493 ubifs_warn("UBI volume is corrupted - read-only mode");
498 ubifs_msg("read-only UBI device");
502 if (c
->vi
.vol_type
== UBI_STATIC_VOLUME
) {
503 ubifs_msg("static UBI volume - read-only mode");
507 c
->leb_cnt
= c
->vi
.size
;
508 c
->leb_size
= c
->vi
.usable_leb_size
;
509 c
->half_leb_size
= c
->leb_size
/ 2;
510 c
->min_io_size
= c
->di
.min_io_size
;
511 c
->min_io_shift
= fls(c
->min_io_size
) - 1;
513 if (c
->leb_size
< UBIFS_MIN_LEB_SZ
) {
514 ubifs_err("too small LEBs (%d bytes), min. is %d bytes",
515 c
->leb_size
, UBIFS_MIN_LEB_SZ
);
519 if (c
->leb_cnt
< UBIFS_MIN_LEB_CNT
) {
520 ubifs_err("too few LEBs (%d), min. is %d",
521 c
->leb_cnt
, UBIFS_MIN_LEB_CNT
);
525 if (!is_power_of_2(c
->min_io_size
)) {
526 ubifs_err("bad min. I/O size %d", c
->min_io_size
);
531 * UBIFS aligns all node to 8-byte boundary, so to make function in
532 * io.c simpler, assume minimum I/O unit size to be 8 bytes if it is
535 if (c
->min_io_size
< 8) {
540 c
->ref_node_alsz
= ALIGN(UBIFS_REF_NODE_SZ
, c
->min_io_size
);
541 c
->mst_node_alsz
= ALIGN(UBIFS_MST_NODE_SZ
, c
->min_io_size
);
544 * Initialize node length ranges which are mostly needed for node
547 c
->ranges
[UBIFS_PAD_NODE
].len
= UBIFS_PAD_NODE_SZ
;
548 c
->ranges
[UBIFS_SB_NODE
].len
= UBIFS_SB_NODE_SZ
;
549 c
->ranges
[UBIFS_MST_NODE
].len
= UBIFS_MST_NODE_SZ
;
550 c
->ranges
[UBIFS_REF_NODE
].len
= UBIFS_REF_NODE_SZ
;
551 c
->ranges
[UBIFS_TRUN_NODE
].len
= UBIFS_TRUN_NODE_SZ
;
552 c
->ranges
[UBIFS_CS_NODE
].len
= UBIFS_CS_NODE_SZ
;
554 c
->ranges
[UBIFS_INO_NODE
].min_len
= UBIFS_INO_NODE_SZ
;
555 c
->ranges
[UBIFS_INO_NODE
].max_len
= UBIFS_MAX_INO_NODE_SZ
;
556 c
->ranges
[UBIFS_ORPH_NODE
].min_len
=
557 UBIFS_ORPH_NODE_SZ
+ sizeof(__le64
);
558 c
->ranges
[UBIFS_ORPH_NODE
].max_len
= c
->leb_size
;
559 c
->ranges
[UBIFS_DENT_NODE
].min_len
= UBIFS_DENT_NODE_SZ
;
560 c
->ranges
[UBIFS_DENT_NODE
].max_len
= UBIFS_MAX_DENT_NODE_SZ
;
561 c
->ranges
[UBIFS_XENT_NODE
].min_len
= UBIFS_XENT_NODE_SZ
;
562 c
->ranges
[UBIFS_XENT_NODE
].max_len
= UBIFS_MAX_XENT_NODE_SZ
;
563 c
->ranges
[UBIFS_DATA_NODE
].min_len
= UBIFS_DATA_NODE_SZ
;
564 c
->ranges
[UBIFS_DATA_NODE
].max_len
= UBIFS_MAX_DATA_NODE_SZ
;
566 * Minimum indexing node size is amended later when superblock is
567 * read and the key length is known.
569 c
->ranges
[UBIFS_IDX_NODE
].min_len
= UBIFS_IDX_NODE_SZ
+ UBIFS_BRANCH_SZ
;
571 * Maximum indexing node size is amended later when superblock is
572 * read and the fanout is known.
574 c
->ranges
[UBIFS_IDX_NODE
].max_len
= INT_MAX
;
577 * Initialize dead and dark LEB space watermarks. See gc.c for comments
578 * about these values.
580 c
->dead_wm
= ALIGN(MIN_WRITE_SZ
, c
->min_io_size
);
581 c
->dark_wm
= ALIGN(UBIFS_MAX_NODE_SZ
, c
->min_io_size
);
584 * Calculate how many bytes would be wasted at the end of LEB if it was
585 * fully filled with data nodes of maximum size. This is used in
586 * calculations when reporting free space.
588 c
->leb_overhead
= c
->leb_size
% UBIFS_MAX_DATA_NODE_SZ
;
590 /* Buffer size for bulk-reads */
591 c
->max_bu_buf_len
= UBIFS_MAX_BULK_READ
* UBIFS_MAX_DATA_NODE_SZ
;
592 if (c
->max_bu_buf_len
> c
->leb_size
)
593 c
->max_bu_buf_len
= c
->leb_size
;
598 * bud_wbuf_callback - bud LEB write-buffer synchronization call-back.
599 * @c: UBIFS file-system description object
600 * @lnum: LEB the write-buffer was synchronized to
601 * @free: how many free bytes left in this LEB
602 * @pad: how many bytes were padded
604 * This is a callback function which is called by the I/O unit when the
605 * write-buffer is synchronized. We need this to correctly maintain space
606 * accounting in bud logical eraseblocks. This function returns zero in case of
607 * success and a negative error code in case of failure.
609 * This function actually belongs to the journal, but we keep it here because
610 * we want to keep it static.
612 static int bud_wbuf_callback(struct ubifs_info
*c
, int lnum
, int free
, int pad
)
614 return ubifs_update_one_lp(c
, lnum
, free
, pad
, 0, 0);
618 * init_constants_sb - initialize UBIFS constants.
619 * @c: UBIFS file-system description object
621 * This is a helper function which initializes various UBIFS constants after
622 * the superblock has been read. It also checks various UBIFS parameters and
623 * makes sure they are all right. Returns zero in case of success and a
624 * negative error code in case of failure.
626 static int init_constants_sb(struct ubifs_info
*c
)
631 c
->main_bytes
= (long long)c
->main_lebs
* c
->leb_size
;
632 c
->max_znode_sz
= sizeof(struct ubifs_znode
) +
633 c
->fanout
* sizeof(struct ubifs_zbranch
);
635 tmp
= ubifs_idx_node_sz(c
, 1);
636 c
->ranges
[UBIFS_IDX_NODE
].min_len
= tmp
;
637 c
->min_idx_node_sz
= ALIGN(tmp
, 8);
639 tmp
= ubifs_idx_node_sz(c
, c
->fanout
);
640 c
->ranges
[UBIFS_IDX_NODE
].max_len
= tmp
;
641 c
->max_idx_node_sz
= ALIGN(tmp
, 8);
643 /* Make sure LEB size is large enough to fit full commit */
644 tmp
= UBIFS_CS_NODE_SZ
+ UBIFS_REF_NODE_SZ
* c
->jhead_cnt
;
645 tmp
= ALIGN(tmp
, c
->min_io_size
);
646 if (tmp
> c
->leb_size
) {
647 dbg_err("too small LEB size %d, at least %d needed",
653 * Make sure that the log is large enough to fit reference nodes for
654 * all buds plus one reserved LEB.
656 tmp64
= c
->max_bud_bytes
+ c
->leb_size
- 1;
657 c
->max_bud_cnt
= div_u64(tmp64
, c
->leb_size
);
658 tmp
= (c
->ref_node_alsz
* c
->max_bud_cnt
+ c
->leb_size
- 1);
661 if (c
->log_lebs
< tmp
) {
662 dbg_err("too small log %d LEBs, required min. %d LEBs",
668 * When budgeting we assume worst-case scenarios when the pages are not
669 * be compressed and direntries are of the maximum size.
671 * Note, data, which may be stored in inodes is budgeted separately, so
672 * it is not included into 'c->inode_budget'.
674 c
->page_budget
= UBIFS_MAX_DATA_NODE_SZ
* UBIFS_BLOCKS_PER_PAGE
;
675 c
->inode_budget
= UBIFS_INO_NODE_SZ
;
676 c
->dent_budget
= UBIFS_MAX_DENT_NODE_SZ
;
679 * When the amount of flash space used by buds becomes
680 * 'c->max_bud_bytes', UBIFS just blocks all writers and starts commit.
681 * The writers are unblocked when the commit is finished. To avoid
682 * writers to be blocked UBIFS initiates background commit in advance,
683 * when number of bud bytes becomes above the limit defined below.
685 c
->bg_bud_bytes
= (c
->max_bud_bytes
* 13) >> 4;
688 * Ensure minimum journal size. All the bytes in the journal heads are
689 * considered to be used, when calculating the current journal usage.
690 * Consequently, if the journal is too small, UBIFS will treat it as
693 tmp64
= (long long)(c
->jhead_cnt
+ 1) * c
->leb_size
+ 1;
694 if (c
->bg_bud_bytes
< tmp64
)
695 c
->bg_bud_bytes
= tmp64
;
696 if (c
->max_bud_bytes
< tmp64
+ c
->leb_size
)
697 c
->max_bud_bytes
= tmp64
+ c
->leb_size
;
699 err
= ubifs_calc_lpt_geom(c
);
703 /* Initialize effective LEB size used in budgeting calculations */
704 c
->idx_leb_size
= c
->leb_size
- c
->max_idx_node_sz
;
709 * init_constants_master - initialize UBIFS constants.
710 * @c: UBIFS file-system description object
712 * This is a helper function which initializes various UBIFS constants after
713 * the master node has been read. It also checks various UBIFS parameters and
714 * makes sure they are all right.
716 static void init_constants_master(struct ubifs_info
*c
)
720 c
->min_idx_lebs
= ubifs_calc_min_idx_lebs(c
);
721 c
->report_rp_size
= ubifs_reported_space(c
, c
->rp_size
);
724 * Calculate total amount of FS blocks. This number is not used
725 * internally because it does not make much sense for UBIFS, but it is
726 * necessary to report something for the 'statfs()' call.
728 * Subtract the LEB reserved for GC, the LEB which is reserved for
729 * deletions, minimum LEBs for the index, and assume only one journal
732 tmp64
= c
->main_lebs
- 1 - 1 - MIN_INDEX_LEBS
- c
->jhead_cnt
+ 1;
733 tmp64
*= (long long)c
->leb_size
- c
->leb_overhead
;
734 tmp64
= ubifs_reported_space(c
, tmp64
);
735 c
->block_cnt
= tmp64
>> UBIFS_BLOCK_SHIFT
;
739 * take_gc_lnum - reserve GC LEB.
740 * @c: UBIFS file-system description object
742 * This function ensures that the LEB reserved for garbage collection is marked
743 * as "taken" in lprops. We also have to set free space to LEB size and dirty
744 * space to zero, because lprops may contain out-of-date information if the
745 * file-system was un-mounted before it has been committed. This function
746 * returns zero in case of success and a negative error code in case of
749 static int take_gc_lnum(struct ubifs_info
*c
)
753 if (c
->gc_lnum
== -1) {
754 ubifs_err("no LEB for GC");
758 /* And we have to tell lprops that this LEB is taken */
759 err
= ubifs_change_one_lp(c
, c
->gc_lnum
, c
->leb_size
, 0,
765 * alloc_wbufs - allocate write-buffers.
766 * @c: UBIFS file-system description object
768 * This helper function allocates and initializes UBIFS write-buffers. Returns
769 * zero in case of success and %-ENOMEM in case of failure.
771 static int alloc_wbufs(struct ubifs_info
*c
)
775 c
->jheads
= kzalloc(c
->jhead_cnt
* sizeof(struct ubifs_jhead
),
780 /* Initialize journal heads */
781 for (i
= 0; i
< c
->jhead_cnt
; i
++) {
782 INIT_LIST_HEAD(&c
->jheads
[i
].buds_list
);
783 err
= ubifs_wbuf_init(c
, &c
->jheads
[i
].wbuf
);
787 c
->jheads
[i
].wbuf
.sync_callback
= &bud_wbuf_callback
;
788 c
->jheads
[i
].wbuf
.jhead
= i
;
791 c
->jheads
[BASEHD
].wbuf
.dtype
= UBI_SHORTTERM
;
793 * Garbage Collector head likely contains long-term data and
794 * does not need to be synchronized by timer.
796 c
->jheads
[GCHD
].wbuf
.dtype
= UBI_LONGTERM
;
797 c
->jheads
[GCHD
].wbuf
.timeout
= 0;
803 * free_wbufs - free write-buffers.
804 * @c: UBIFS file-system description object
806 static void free_wbufs(struct ubifs_info
*c
)
811 for (i
= 0; i
< c
->jhead_cnt
; i
++) {
812 kfree(c
->jheads
[i
].wbuf
.buf
);
813 kfree(c
->jheads
[i
].wbuf
.inodes
);
821 * free_orphans - free orphans.
822 * @c: UBIFS file-system description object
824 static void free_orphans(struct ubifs_info
*c
)
826 struct ubifs_orphan
*orph
;
828 while (c
->orph_dnext
) {
829 orph
= c
->orph_dnext
;
830 c
->orph_dnext
= orph
->dnext
;
831 list_del(&orph
->list
);
835 while (!list_empty(&c
->orph_list
)) {
836 orph
= list_entry(c
->orph_list
.next
, struct ubifs_orphan
, list
);
837 list_del(&orph
->list
);
839 dbg_err("orphan list not empty at unmount");
847 * free_buds - free per-bud objects.
848 * @c: UBIFS file-system description object
850 static void free_buds(struct ubifs_info
*c
)
852 struct rb_node
*this = c
->buds
.rb_node
;
853 struct ubifs_bud
*bud
;
857 this = this->rb_left
;
858 else if (this->rb_right
)
859 this = this->rb_right
;
861 bud
= rb_entry(this, struct ubifs_bud
, rb
);
862 this = rb_parent(this);
864 if (this->rb_left
== &bud
->rb
)
865 this->rb_left
= NULL
;
867 this->rb_right
= NULL
;
875 * check_volume_empty - check if the UBI volume is empty.
876 * @c: UBIFS file-system description object
878 * This function checks if the UBIFS volume is empty by looking if its LEBs are
879 * mapped or not. The result of checking is stored in the @c->empty variable.
880 * Returns zero in case of success and a negative error code in case of
883 static int check_volume_empty(struct ubifs_info
*c
)
888 for (lnum
= 0; lnum
< c
->leb_cnt
; lnum
++) {
889 err
= ubi_is_mapped(c
->ubi
, lnum
);
890 if (unlikely(err
< 0))
904 * UBIFS mount options.
906 * Opt_fast_unmount: do not run a journal commit before un-mounting
907 * Opt_norm_unmount: run a journal commit before un-mounting
908 * Opt_bulk_read: enable bulk-reads
909 * Opt_no_bulk_read: disable bulk-reads
910 * Opt_chk_data_crc: check CRCs when reading data nodes
911 * Opt_no_chk_data_crc: do not check CRCs when reading data nodes
912 * Opt_override_compr: override default compressor
913 * Opt_err: just end of array marker
926 static const match_table_t tokens
= {
927 {Opt_fast_unmount
, "fast_unmount"},
928 {Opt_norm_unmount
, "norm_unmount"},
929 {Opt_bulk_read
, "bulk_read"},
930 {Opt_no_bulk_read
, "no_bulk_read"},
931 {Opt_chk_data_crc
, "chk_data_crc"},
932 {Opt_no_chk_data_crc
, "no_chk_data_crc"},
933 {Opt_override_compr
, "compr=%s"},
938 * ubifs_parse_options - parse mount parameters.
939 * @c: UBIFS file-system description object
940 * @options: parameters to parse
941 * @is_remount: non-zero if this is FS re-mount
943 * This function parses UBIFS mount options and returns zero in case success
944 * and a negative error code in case of failure.
946 static int ubifs_parse_options(struct ubifs_info
*c
, char *options
,
950 substring_t args
[MAX_OPT_ARGS
];
955 while ((p
= strsep(&options
, ","))) {
961 token
= match_token(p
, tokens
, args
);
964 * %Opt_fast_unmount and %Opt_norm_unmount options are ignored.
965 * We accepte them in order to be backware-compatible. But this
966 * should be removed at some point.
968 case Opt_fast_unmount
:
969 c
->mount_opts
.unmount_mode
= 2;
971 case Opt_norm_unmount
:
972 c
->mount_opts
.unmount_mode
= 1;
975 c
->mount_opts
.bulk_read
= 2;
978 case Opt_no_bulk_read
:
979 c
->mount_opts
.bulk_read
= 1;
982 case Opt_chk_data_crc
:
983 c
->mount_opts
.chk_data_crc
= 2;
984 c
->no_chk_data_crc
= 0;
986 case Opt_no_chk_data_crc
:
987 c
->mount_opts
.chk_data_crc
= 1;
988 c
->no_chk_data_crc
= 1;
990 case Opt_override_compr
:
992 char *name
= match_strdup(&args
[0]);
996 if (!strcmp(name
, "none"))
997 c
->mount_opts
.compr_type
= UBIFS_COMPR_NONE
;
998 else if (!strcmp(name
, "lzo"))
999 c
->mount_opts
.compr_type
= UBIFS_COMPR_LZO
;
1000 else if (!strcmp(name
, "zlib"))
1001 c
->mount_opts
.compr_type
= UBIFS_COMPR_ZLIB
;
1003 ubifs_err("unknown compressor \"%s\"", name
);
1008 c
->mount_opts
.override_compr
= 1;
1009 c
->default_compr
= c
->mount_opts
.compr_type
;
1013 ubifs_err("unrecognized mount option \"%s\" "
1014 "or missing value", p
);
1023 * destroy_journal - destroy journal data structures.
1024 * @c: UBIFS file-system description object
1026 * This function destroys journal data structures including those that may have
1027 * been created by recovery functions.
1029 static void destroy_journal(struct ubifs_info
*c
)
1031 while (!list_empty(&c
->unclean_leb_list
)) {
1032 struct ubifs_unclean_leb
*ucleb
;
1034 ucleb
= list_entry(c
->unclean_leb_list
.next
,
1035 struct ubifs_unclean_leb
, list
);
1036 list_del(&ucleb
->list
);
1039 while (!list_empty(&c
->old_buds
)) {
1040 struct ubifs_bud
*bud
;
1042 bud
= list_entry(c
->old_buds
.next
, struct ubifs_bud
, list
);
1043 list_del(&bud
->list
);
1046 ubifs_destroy_idx_gc(c
);
1047 ubifs_destroy_size_tree(c
);
1053 * bu_init - initialize bulk-read information.
1054 * @c: UBIFS file-system description object
1056 static void bu_init(struct ubifs_info
*c
)
1058 ubifs_assert(c
->bulk_read
== 1);
1061 return; /* Already initialized */
1064 c
->bu
.buf
= kmalloc(c
->max_bu_buf_len
, GFP_KERNEL
| __GFP_NOWARN
);
1066 if (c
->max_bu_buf_len
> UBIFS_KMALLOC_OK
) {
1067 c
->max_bu_buf_len
= UBIFS_KMALLOC_OK
;
1071 /* Just disable bulk-read */
1072 ubifs_warn("Cannot allocate %d bytes of memory for bulk-read, "
1073 "disabling it", c
->max_bu_buf_len
);
1074 c
->mount_opts
.bulk_read
= 1;
1081 * check_free_space - check if there is enough free space to mount.
1082 * @c: UBIFS file-system description object
1084 * This function makes sure UBIFS has enough free space to be mounted in
1085 * read/write mode. UBIFS must always have some free space to allow deletions.
1087 static int check_free_space(struct ubifs_info
*c
)
1089 ubifs_assert(c
->dark_wm
> 0);
1090 if (c
->lst
.total_free
+ c
->lst
.total_dirty
< c
->dark_wm
) {
1091 ubifs_err("insufficient free space to mount in read/write mode");
1100 * mount_ubifs - mount UBIFS file-system.
1101 * @c: UBIFS file-system description object
1103 * This function mounts UBIFS file system. Returns zero in case of success and
1104 * a negative error code in case of failure.
1106 * Note, the function does not de-allocate resources it it fails half way
1107 * through, and the caller has to do this instead.
1109 static int mount_ubifs(struct ubifs_info
*c
)
1111 struct super_block
*sb
= c
->vfs_sb
;
1112 int err
, mounted_read_only
= (sb
->s_flags
& MS_RDONLY
);
1116 err
= init_constants_early(c
);
1120 err
= ubifs_debugging_init(c
);
1124 err
= check_volume_empty(c
);
1128 if (c
->empty
&& (mounted_read_only
|| c
->ro_media
)) {
1130 * This UBI volume is empty, and read-only, or the file system
1131 * is mounted read-only - we cannot format it.
1133 ubifs_err("can't format empty UBI volume: read-only %s",
1134 c
->ro_media
? "UBI volume" : "mount");
1139 if (c
->ro_media
&& !mounted_read_only
) {
1140 ubifs_err("cannot mount read-write - read-only media");
1146 * The requirement for the buffer is that it should fit indexing B-tree
1147 * height amount of integers. We assume the height if the TNC tree will
1151 c
->bottom_up_buf
= kmalloc(BOTTOM_UP_HEIGHT
* sizeof(int), GFP_KERNEL
);
1152 if (!c
->bottom_up_buf
)
1155 c
->sbuf
= vmalloc(c
->leb_size
);
1159 if (!mounted_read_only
) {
1160 c
->ileb_buf
= vmalloc(c
->leb_size
);
1165 if (c
->bulk_read
== 1)
1169 * We have to check all CRCs, even for data nodes, when we mount the FS
1170 * (specifically, when we are replaying).
1172 c
->always_chk_crc
= 1;
1174 err
= ubifs_read_superblock(c
);
1179 * Make sure the compressor which is set as default in the superblock
1180 * or overridden by mount options is actually compiled in.
1182 if (!ubifs_compr_present(c
->default_compr
)) {
1183 ubifs_err("'compressor \"%s\" is not compiled in",
1184 ubifs_compr_name(c
->default_compr
));
1188 err
= init_constants_sb(c
);
1192 sz
= ALIGN(c
->max_idx_node_sz
, c
->min_io_size
);
1193 sz
= ALIGN(sz
+ c
->max_idx_node_sz
, c
->min_io_size
);
1194 c
->cbuf
= kmalloc(sz
, GFP_NOFS
);
1200 sprintf(c
->bgt_name
, BGT_NAME_PATTERN
, c
->vi
.ubi_num
, c
->vi
.vol_id
);
1201 if (!mounted_read_only
) {
1202 err
= alloc_wbufs(c
);
1206 /* Create background thread */
1207 c
->bgt
= kthread_create(ubifs_bg_thread
, c
, "%s", c
->bgt_name
);
1208 if (IS_ERR(c
->bgt
)) {
1209 err
= PTR_ERR(c
->bgt
);
1211 ubifs_err("cannot spawn \"%s\", error %d",
1215 wake_up_process(c
->bgt
);
1218 err
= ubifs_read_master(c
);
1222 init_constants_master(c
);
1224 if ((c
->mst_node
->flags
& cpu_to_le32(UBIFS_MST_DIRTY
)) != 0) {
1225 ubifs_msg("recovery needed");
1226 c
->need_recovery
= 1;
1227 if (!mounted_read_only
) {
1228 err
= ubifs_recover_inl_heads(c
, c
->sbuf
);
1232 } else if (!mounted_read_only
) {
1234 * Set the "dirty" flag so that if we reboot uncleanly we
1235 * will notice this immediately on the next mount.
1237 c
->mst_node
->flags
|= cpu_to_le32(UBIFS_MST_DIRTY
);
1238 err
= ubifs_write_master(c
);
1243 err
= ubifs_lpt_init(c
, 1, !mounted_read_only
);
1247 err
= dbg_check_idx_size(c
, c
->old_idx_sz
);
1251 err
= ubifs_replay_journal(c
);
1255 err
= ubifs_mount_orphans(c
, c
->need_recovery
, mounted_read_only
);
1259 if (!mounted_read_only
) {
1262 err
= check_free_space(c
);
1266 /* Check for enough log space */
1267 lnum
= c
->lhead_lnum
+ 1;
1268 if (lnum
>= UBIFS_LOG_LNUM
+ c
->log_lebs
)
1269 lnum
= UBIFS_LOG_LNUM
;
1270 if (lnum
== c
->ltail_lnum
) {
1271 err
= ubifs_consolidate_log(c
);
1276 if (c
->need_recovery
) {
1277 err
= ubifs_recover_size(c
);
1280 err
= ubifs_rcvry_gc_commit(c
);
1282 err
= take_gc_lnum(c
);
1287 * GC LEB may contain garbage if there was an unclean
1288 * reboot, and it should be un-mapped.
1290 err
= ubifs_leb_unmap(c
, c
->gc_lnum
);
1295 err
= dbg_check_lprops(c
);
1298 } else if (c
->need_recovery
) {
1299 err
= ubifs_recover_size(c
);
1304 * Even if we mount read-only, we have to set space in GC LEB
1305 * to proper value because this affects UBIFS free space
1306 * reporting. We do not want to have a situation when
1307 * re-mounting from R/O to R/W changes amount of free space.
1309 err
= take_gc_lnum(c
);
1314 spin_lock(&ubifs_infos_lock
);
1315 list_add_tail(&c
->infos_list
, &ubifs_infos
);
1316 spin_unlock(&ubifs_infos_lock
);
1318 if (c
->need_recovery
) {
1319 if (mounted_read_only
)
1320 ubifs_msg("recovery deferred");
1322 c
->need_recovery
= 0;
1323 ubifs_msg("recovery completed");
1325 * GC LEB has to be empty and taken at this point. But
1326 * the journal head LEBs may also be accounted as
1327 * "empty taken" if they are empty.
1329 ubifs_assert(c
->lst
.taken_empty_lebs
> 0);
1332 ubifs_assert(c
->lst
.taken_empty_lebs
> 0);
1334 err
= dbg_check_filesystem(c
);
1338 err
= dbg_debugfs_init_fs(c
);
1342 c
->always_chk_crc
= 0;
1344 ubifs_msg("mounted UBI device %d, volume %d, name \"%s\"",
1345 c
->vi
.ubi_num
, c
->vi
.vol_id
, c
->vi
.name
);
1346 if (mounted_read_only
)
1347 ubifs_msg("mounted read-only");
1348 x
= (long long)c
->main_lebs
* c
->leb_size
;
1349 ubifs_msg("file system size: %lld bytes (%lld KiB, %lld MiB, %d "
1350 "LEBs)", x
, x
>> 10, x
>> 20, c
->main_lebs
);
1351 x
= (long long)c
->log_lebs
* c
->leb_size
+ c
->max_bud_bytes
;
1352 ubifs_msg("journal size: %lld bytes (%lld KiB, %lld MiB, %d "
1353 "LEBs)", x
, x
>> 10, x
>> 20, c
->log_lebs
+ c
->max_bud_cnt
);
1354 ubifs_msg("media format: w%d/r%d (latest is w%d/r%d)",
1355 c
->fmt_version
, c
->ro_compat_version
,
1356 UBIFS_FORMAT_VERSION
, UBIFS_RO_COMPAT_VERSION
);
1357 ubifs_msg("default compressor: %s", ubifs_compr_name(c
->default_compr
));
1358 ubifs_msg("reserved for root: %llu bytes (%llu KiB)",
1359 c
->report_rp_size
, c
->report_rp_size
>> 10);
1361 dbg_msg("compiled on: " __DATE__
" at " __TIME__
);
1362 dbg_msg("min. I/O unit size: %d bytes", c
->min_io_size
);
1363 dbg_msg("LEB size: %d bytes (%d KiB)",
1364 c
->leb_size
, c
->leb_size
>> 10);
1365 dbg_msg("data journal heads: %d",
1366 c
->jhead_cnt
- NONDATA_JHEADS_CNT
);
1367 dbg_msg("UUID: %02X%02X%02X%02X-%02X%02X"
1368 "-%02X%02X-%02X%02X-%02X%02X%02X%02X%02X%02X",
1369 c
->uuid
[0], c
->uuid
[1], c
->uuid
[2], c
->uuid
[3],
1370 c
->uuid
[4], c
->uuid
[5], c
->uuid
[6], c
->uuid
[7],
1371 c
->uuid
[8], c
->uuid
[9], c
->uuid
[10], c
->uuid
[11],
1372 c
->uuid
[12], c
->uuid
[13], c
->uuid
[14], c
->uuid
[15]);
1373 dbg_msg("big_lpt %d", c
->big_lpt
);
1374 dbg_msg("log LEBs: %d (%d - %d)",
1375 c
->log_lebs
, UBIFS_LOG_LNUM
, c
->log_last
);
1376 dbg_msg("LPT area LEBs: %d (%d - %d)",
1377 c
->lpt_lebs
, c
->lpt_first
, c
->lpt_last
);
1378 dbg_msg("orphan area LEBs: %d (%d - %d)",
1379 c
->orph_lebs
, c
->orph_first
, c
->orph_last
);
1380 dbg_msg("main area LEBs: %d (%d - %d)",
1381 c
->main_lebs
, c
->main_first
, c
->leb_cnt
- 1);
1382 dbg_msg("index LEBs: %d", c
->lst
.idx_lebs
);
1383 dbg_msg("total index bytes: %lld (%lld KiB, %lld MiB)",
1384 c
->old_idx_sz
, c
->old_idx_sz
>> 10, c
->old_idx_sz
>> 20);
1385 dbg_msg("key hash type: %d", c
->key_hash_type
);
1386 dbg_msg("tree fanout: %d", c
->fanout
);
1387 dbg_msg("reserved GC LEB: %d", c
->gc_lnum
);
1388 dbg_msg("first main LEB: %d", c
->main_first
);
1389 dbg_msg("max. znode size %d", c
->max_znode_sz
);
1390 dbg_msg("max. index node size %d", c
->max_idx_node_sz
);
1391 dbg_msg("node sizes: data %zu, inode %zu, dentry %zu",
1392 UBIFS_DATA_NODE_SZ
, UBIFS_INO_NODE_SZ
, UBIFS_DENT_NODE_SZ
);
1393 dbg_msg("node sizes: trun %zu, sb %zu, master %zu",
1394 UBIFS_TRUN_NODE_SZ
, UBIFS_SB_NODE_SZ
, UBIFS_MST_NODE_SZ
);
1395 dbg_msg("node sizes: ref %zu, cmt. start %zu, orph %zu",
1396 UBIFS_REF_NODE_SZ
, UBIFS_CS_NODE_SZ
, UBIFS_ORPH_NODE_SZ
);
1397 dbg_msg("max. node sizes: data %zu, inode %zu dentry %zu",
1398 UBIFS_MAX_DATA_NODE_SZ
, UBIFS_MAX_INO_NODE_SZ
,
1399 UBIFS_MAX_DENT_NODE_SZ
);
1400 dbg_msg("dead watermark: %d", c
->dead_wm
);
1401 dbg_msg("dark watermark: %d", c
->dark_wm
);
1402 dbg_msg("LEB overhead: %d", c
->leb_overhead
);
1403 x
= (long long)c
->main_lebs
* c
->dark_wm
;
1404 dbg_msg("max. dark space: %lld (%lld KiB, %lld MiB)",
1405 x
, x
>> 10, x
>> 20);
1406 dbg_msg("maximum bud bytes: %lld (%lld KiB, %lld MiB)",
1407 c
->max_bud_bytes
, c
->max_bud_bytes
>> 10,
1408 c
->max_bud_bytes
>> 20);
1409 dbg_msg("BG commit bud bytes: %lld (%lld KiB, %lld MiB)",
1410 c
->bg_bud_bytes
, c
->bg_bud_bytes
>> 10,
1411 c
->bg_bud_bytes
>> 20);
1412 dbg_msg("current bud bytes %lld (%lld KiB, %lld MiB)",
1413 c
->bud_bytes
, c
->bud_bytes
>> 10, c
->bud_bytes
>> 20);
1414 dbg_msg("max. seq. number: %llu", c
->max_sqnum
);
1415 dbg_msg("commit number: %llu", c
->cmt_no
);
1420 spin_lock(&ubifs_infos_lock
);
1421 list_del(&c
->infos_list
);
1422 spin_unlock(&ubifs_infos_lock
);
1428 ubifs_lpt_free(c
, 0);
1431 kfree(c
->rcvrd_mst_node
);
1433 kthread_stop(c
->bgt
);
1442 kfree(c
->bottom_up_buf
);
1443 ubifs_debugging_exit(c
);
1448 * ubifs_umount - un-mount UBIFS file-system.
1449 * @c: UBIFS file-system description object
1451 * Note, this function is called to free allocated resourced when un-mounting,
1452 * as well as free resources when an error occurred while we were half way
1453 * through mounting (error path cleanup function). So it has to make sure the
1454 * resource was actually allocated before freeing it.
1456 static void ubifs_umount(struct ubifs_info
*c
)
1458 dbg_gen("un-mounting UBI device %d, volume %d", c
->vi
.ubi_num
,
1461 dbg_debugfs_exit_fs(c
);
1462 spin_lock(&ubifs_infos_lock
);
1463 list_del(&c
->infos_list
);
1464 spin_unlock(&ubifs_infos_lock
);
1467 kthread_stop(c
->bgt
);
1472 ubifs_lpt_free(c
, 0);
1475 kfree(c
->rcvrd_mst_node
);
1480 kfree(c
->bottom_up_buf
);
1481 ubifs_debugging_exit(c
);
1485 * ubifs_remount_rw - re-mount in read-write mode.
1486 * @c: UBIFS file-system description object
1488 * UBIFS avoids allocating many unnecessary resources when mounted in read-only
1489 * mode. This function allocates the needed resources and re-mounts UBIFS in
1492 static int ubifs_remount_rw(struct ubifs_info
*c
)
1496 if (c
->rw_incompat
) {
1497 ubifs_err("the file-system is not R/W-compatible");
1498 ubifs_msg("on-flash format version is w%d/r%d, but software "
1499 "only supports up to version w%d/r%d", c
->fmt_version
,
1500 c
->ro_compat_version
, UBIFS_FORMAT_VERSION
,
1501 UBIFS_RO_COMPAT_VERSION
);
1505 mutex_lock(&c
->umount_mutex
);
1506 dbg_save_space_info(c
);
1507 c
->remounting_rw
= 1;
1508 c
->always_chk_crc
= 1;
1510 err
= check_free_space(c
);
1514 if (c
->old_leb_cnt
!= c
->leb_cnt
) {
1515 struct ubifs_sb_node
*sup
;
1517 sup
= ubifs_read_sb_node(c
);
1522 sup
->leb_cnt
= cpu_to_le32(c
->leb_cnt
);
1523 err
= ubifs_write_sb_node(c
, sup
);
1528 if (c
->need_recovery
) {
1529 ubifs_msg("completing deferred recovery");
1530 err
= ubifs_write_rcvrd_mst_node(c
);
1533 err
= ubifs_recover_size(c
);
1536 err
= ubifs_clean_lebs(c
, c
->sbuf
);
1539 err
= ubifs_recover_inl_heads(c
, c
->sbuf
);
1543 /* A readonly mount is not allowed to have orphans */
1544 ubifs_assert(c
->tot_orphans
== 0);
1545 err
= ubifs_clear_orphans(c
);
1550 if (!(c
->mst_node
->flags
& cpu_to_le32(UBIFS_MST_DIRTY
))) {
1551 c
->mst_node
->flags
|= cpu_to_le32(UBIFS_MST_DIRTY
);
1552 err
= ubifs_write_master(c
);
1557 c
->ileb_buf
= vmalloc(c
->leb_size
);
1563 err
= ubifs_lpt_init(c
, 0, 1);
1567 err
= alloc_wbufs(c
);
1571 ubifs_create_buds_lists(c
);
1573 /* Create background thread */
1574 c
->bgt
= kthread_create(ubifs_bg_thread
, c
, "%s", c
->bgt_name
);
1575 if (IS_ERR(c
->bgt
)) {
1576 err
= PTR_ERR(c
->bgt
);
1578 ubifs_err("cannot spawn \"%s\", error %d",
1582 wake_up_process(c
->bgt
);
1584 c
->orph_buf
= vmalloc(c
->leb_size
);
1590 /* Check for enough log space */
1591 lnum
= c
->lhead_lnum
+ 1;
1592 if (lnum
>= UBIFS_LOG_LNUM
+ c
->log_lebs
)
1593 lnum
= UBIFS_LOG_LNUM
;
1594 if (lnum
== c
->ltail_lnum
) {
1595 err
= ubifs_consolidate_log(c
);
1600 if (c
->need_recovery
)
1601 err
= ubifs_rcvry_gc_commit(c
);
1603 err
= ubifs_leb_unmap(c
, c
->gc_lnum
);
1607 if (c
->need_recovery
) {
1608 c
->need_recovery
= 0;
1609 ubifs_msg("deferred recovery completed");
1612 dbg_gen("re-mounted read-write");
1613 c
->vfs_sb
->s_flags
&= ~MS_RDONLY
;
1614 c
->remounting_rw
= 0;
1615 c
->always_chk_crc
= 0;
1616 err
= dbg_check_space_info(c
);
1617 mutex_unlock(&c
->umount_mutex
);
1624 kthread_stop(c
->bgt
);
1630 ubifs_lpt_free(c
, 1);
1631 c
->remounting_rw
= 0;
1632 c
->always_chk_crc
= 0;
1633 mutex_unlock(&c
->umount_mutex
);
1638 * ubifs_remount_ro - re-mount in read-only mode.
1639 * @c: UBIFS file-system description object
1641 * We assume VFS has stopped writing. Possibly the background thread could be
1642 * running a commit, however kthread_stop will wait in that case.
1644 static void ubifs_remount_ro(struct ubifs_info
*c
)
1648 ubifs_assert(!c
->need_recovery
);
1649 ubifs_assert(!(c
->vfs_sb
->s_flags
& MS_RDONLY
));
1651 mutex_lock(&c
->umount_mutex
);
1653 kthread_stop(c
->bgt
);
1657 dbg_save_space_info(c
);
1659 for (i
= 0; i
< c
->jhead_cnt
; i
++) {
1660 ubifs_wbuf_sync(&c
->jheads
[i
].wbuf
);
1661 del_timer_sync(&c
->jheads
[i
].wbuf
.timer
);
1664 c
->mst_node
->flags
&= ~cpu_to_le32(UBIFS_MST_DIRTY
);
1665 c
->mst_node
->flags
|= cpu_to_le32(UBIFS_MST_NO_ORPHS
);
1666 c
->mst_node
->gc_lnum
= cpu_to_le32(c
->gc_lnum
);
1667 err
= ubifs_write_master(c
);
1669 ubifs_ro_mode(c
, err
);
1676 ubifs_lpt_free(c
, 1);
1677 err
= dbg_check_space_info(c
);
1679 ubifs_ro_mode(c
, err
);
1680 mutex_unlock(&c
->umount_mutex
);
1683 static void ubifs_put_super(struct super_block
*sb
)
1686 struct ubifs_info
*c
= sb
->s_fs_info
;
1688 ubifs_msg("un-mount UBI device %d, volume %d", c
->vi
.ubi_num
,
1691 * The following asserts are only valid if there has not been a failure
1692 * of the media. For example, there will be dirty inodes if we failed
1693 * to write them back because of I/O errors.
1695 ubifs_assert(atomic_long_read(&c
->dirty_pg_cnt
) == 0);
1696 ubifs_assert(c
->budg_idx_growth
== 0);
1697 ubifs_assert(c
->budg_dd_growth
== 0);
1698 ubifs_assert(c
->budg_data_growth
== 0);
1701 * The 'c->umount_lock' prevents races between UBIFS memory shrinker
1702 * and file system un-mount. Namely, it prevents the shrinker from
1703 * picking this superblock for shrinking - it will be just skipped if
1704 * the mutex is locked.
1706 mutex_lock(&c
->umount_mutex
);
1707 if (!(c
->vfs_sb
->s_flags
& MS_RDONLY
)) {
1709 * First of all kill the background thread to make sure it does
1710 * not interfere with un-mounting and freeing resources.
1713 kthread_stop(c
->bgt
);
1717 /* Synchronize write-buffers */
1719 for (i
= 0; i
< c
->jhead_cnt
; i
++) {
1720 ubifs_wbuf_sync(&c
->jheads
[i
].wbuf
);
1721 del_timer_sync(&c
->jheads
[i
].wbuf
.timer
);
1725 * On fatal errors c->ro_media is set to 1, in which case we do
1726 * not write the master node.
1730 * We are being cleanly unmounted which means the
1731 * orphans were killed - indicate this in the master
1732 * node. Also save the reserved GC LEB number.
1736 c
->mst_node
->flags
&= ~cpu_to_le32(UBIFS_MST_DIRTY
);
1737 c
->mst_node
->flags
|= cpu_to_le32(UBIFS_MST_NO_ORPHS
);
1738 c
->mst_node
->gc_lnum
= cpu_to_le32(c
->gc_lnum
);
1739 err
= ubifs_write_master(c
);
1742 * Recovery will attempt to fix the master area
1743 * next mount, so we just print a message and
1744 * continue to unmount normally.
1746 ubifs_err("failed to write master node, "
1752 bdi_destroy(&c
->bdi
);
1753 ubi_close_volume(c
->ubi
);
1754 mutex_unlock(&c
->umount_mutex
);
1758 static int ubifs_remount_fs(struct super_block
*sb
, int *flags
, char *data
)
1761 struct ubifs_info
*c
= sb
->s_fs_info
;
1763 dbg_gen("old flags %#lx, new flags %#x", sb
->s_flags
, *flags
);
1765 err
= ubifs_parse_options(c
, data
, 1);
1767 ubifs_err("invalid or unknown remount parameter");
1771 if ((sb
->s_flags
& MS_RDONLY
) && !(*flags
& MS_RDONLY
)) {
1773 ubifs_msg("cannot re-mount due to prior errors");
1776 err
= ubifs_remount_rw(c
);
1779 } else if (!(sb
->s_flags
& MS_RDONLY
) && (*flags
& MS_RDONLY
)) {
1781 ubifs_msg("cannot re-mount due to prior errors");
1784 ubifs_remount_ro(c
);
1787 if (c
->bulk_read
== 1)
1790 dbg_gen("disable bulk-read");
1795 ubifs_assert(c
->lst
.taken_empty_lebs
> 0);
1799 const struct super_operations ubifs_super_operations
= {
1800 .alloc_inode
= ubifs_alloc_inode
,
1801 .destroy_inode
= ubifs_destroy_inode
,
1802 .put_super
= ubifs_put_super
,
1803 .write_inode
= ubifs_write_inode
,
1804 .delete_inode
= ubifs_delete_inode
,
1805 .statfs
= ubifs_statfs
,
1806 .dirty_inode
= ubifs_dirty_inode
,
1807 .remount_fs
= ubifs_remount_fs
,
1808 .show_options
= ubifs_show_options
,
1809 .sync_fs
= ubifs_sync_fs
,
1813 * open_ubi - parse UBI device name string and open the UBI device.
1814 * @name: UBI volume name
1815 * @mode: UBI volume open mode
1817 * There are several ways to specify UBI volumes when mounting UBIFS:
1818 * o ubiX_Y - UBI device number X, volume Y;
1819 * o ubiY - UBI device number 0, volume Y;
1820 * o ubiX:NAME - mount UBI device X, volume with name NAME;
1821 * o ubi:NAME - mount UBI device 0, volume with name NAME.
1823 * Alternative '!' separator may be used instead of ':' (because some shells
1824 * like busybox may interpret ':' as an NFS host name separator). This function
1825 * returns ubi volume object in case of success and a negative error code in
1828 static struct ubi_volume_desc
*open_ubi(const char *name
, int mode
)
1833 if (name
[0] != 'u' || name
[1] != 'b' || name
[2] != 'i')
1834 return ERR_PTR(-EINVAL
);
1836 /* ubi:NAME method */
1837 if ((name
[3] == ':' || name
[3] == '!') && name
[4] != '\0')
1838 return ubi_open_volume_nm(0, name
+ 4, mode
);
1840 if (!isdigit(name
[3]))
1841 return ERR_PTR(-EINVAL
);
1843 dev
= simple_strtoul(name
+ 3, &endptr
, 0);
1846 if (*endptr
== '\0')
1847 return ubi_open_volume(0, dev
, mode
);
1850 if (*endptr
== '_' && isdigit(endptr
[1])) {
1851 vol
= simple_strtoul(endptr
+ 1, &endptr
, 0);
1852 if (*endptr
!= '\0')
1853 return ERR_PTR(-EINVAL
);
1854 return ubi_open_volume(dev
, vol
, mode
);
1857 /* ubiX:NAME method */
1858 if ((*endptr
== ':' || *endptr
== '!') && endptr
[1] != '\0')
1859 return ubi_open_volume_nm(dev
, ++endptr
, mode
);
1861 return ERR_PTR(-EINVAL
);
1864 static int ubifs_fill_super(struct super_block
*sb
, void *data
, int silent
)
1866 struct ubi_volume_desc
*ubi
= sb
->s_fs_info
;
1867 struct ubifs_info
*c
;
1871 c
= kzalloc(sizeof(struct ubifs_info
), GFP_KERNEL
);
1875 spin_lock_init(&c
->cnt_lock
);
1876 spin_lock_init(&c
->cs_lock
);
1877 spin_lock_init(&c
->buds_lock
);
1878 spin_lock_init(&c
->space_lock
);
1879 spin_lock_init(&c
->orphan_lock
);
1880 init_rwsem(&c
->commit_sem
);
1881 mutex_init(&c
->lp_mutex
);
1882 mutex_init(&c
->tnc_mutex
);
1883 mutex_init(&c
->log_mutex
);
1884 mutex_init(&c
->mst_mutex
);
1885 mutex_init(&c
->umount_mutex
);
1886 mutex_init(&c
->bu_mutex
);
1887 init_waitqueue_head(&c
->cmt_wq
);
1889 c
->old_idx
= RB_ROOT
;
1890 c
->size_tree
= RB_ROOT
;
1891 c
->orph_tree
= RB_ROOT
;
1892 INIT_LIST_HEAD(&c
->infos_list
);
1893 INIT_LIST_HEAD(&c
->idx_gc
);
1894 INIT_LIST_HEAD(&c
->replay_list
);
1895 INIT_LIST_HEAD(&c
->replay_buds
);
1896 INIT_LIST_HEAD(&c
->uncat_list
);
1897 INIT_LIST_HEAD(&c
->empty_list
);
1898 INIT_LIST_HEAD(&c
->freeable_list
);
1899 INIT_LIST_HEAD(&c
->frdi_idx_list
);
1900 INIT_LIST_HEAD(&c
->unclean_leb_list
);
1901 INIT_LIST_HEAD(&c
->old_buds
);
1902 INIT_LIST_HEAD(&c
->orph_list
);
1903 INIT_LIST_HEAD(&c
->orph_new
);
1905 c
->highest_inum
= UBIFS_FIRST_INO
;
1906 c
->lhead_lnum
= c
->ltail_lnum
= UBIFS_LOG_LNUM
;
1908 ubi_get_volume_info(ubi
, &c
->vi
);
1909 ubi_get_device_info(c
->vi
.ubi_num
, &c
->di
);
1911 /* Re-open the UBI device in read-write mode */
1912 c
->ubi
= ubi_open_volume(c
->vi
.ubi_num
, c
->vi
.vol_id
, UBI_READWRITE
);
1913 if (IS_ERR(c
->ubi
)) {
1914 err
= PTR_ERR(c
->ubi
);
1919 * UBIFS provides 'backing_dev_info' in order to disable read-ahead. For
1920 * UBIFS, I/O is not deferred, it is done immediately in readpage,
1921 * which means the user would have to wait not just for their own I/O
1922 * but the read-ahead I/O as well i.e. completely pointless.
1924 * Read-ahead will be disabled because @c->bdi.ra_pages is 0.
1926 c
->bdi
.capabilities
= BDI_CAP_MAP_COPY
;
1927 c
->bdi
.unplug_io_fn
= default_unplug_io_fn
;
1928 err
= bdi_init(&c
->bdi
);
1932 err
= ubifs_parse_options(c
, data
, 0);
1939 sb
->s_magic
= UBIFS_SUPER_MAGIC
;
1940 sb
->s_blocksize
= UBIFS_BLOCK_SIZE
;
1941 sb
->s_blocksize_bits
= UBIFS_BLOCK_SHIFT
;
1942 sb
->s_dev
= c
->vi
.cdev
;
1943 sb
->s_maxbytes
= c
->max_inode_sz
= key_max_inode_size(c
);
1944 if (c
->max_inode_sz
> MAX_LFS_FILESIZE
)
1945 sb
->s_maxbytes
= c
->max_inode_sz
= MAX_LFS_FILESIZE
;
1946 sb
->s_op
= &ubifs_super_operations
;
1948 mutex_lock(&c
->umount_mutex
);
1949 err
= mount_ubifs(c
);
1951 ubifs_assert(err
< 0);
1955 /* Read the root inode */
1956 root
= ubifs_iget(sb
, UBIFS_ROOT_INO
);
1958 err
= PTR_ERR(root
);
1962 sb
->s_root
= d_alloc_root(root
);
1966 mutex_unlock(&c
->umount_mutex
);
1974 mutex_unlock(&c
->umount_mutex
);
1976 bdi_destroy(&c
->bdi
);
1978 ubi_close_volume(c
->ubi
);
1984 static int sb_test(struct super_block
*sb
, void *data
)
1988 return sb
->s_dev
== *dev
;
1991 static int sb_set(struct super_block
*sb
, void *data
)
1999 static int ubifs_get_sb(struct file_system_type
*fs_type
, int flags
,
2000 const char *name
, void *data
, struct vfsmount
*mnt
)
2002 struct ubi_volume_desc
*ubi
;
2003 struct ubi_volume_info vi
;
2004 struct super_block
*sb
;
2007 dbg_gen("name %s, flags %#x", name
, flags
);
2010 * Get UBI device number and volume ID. Mount it read-only so far
2011 * because this might be a new mount point, and UBI allows only one
2012 * read-write user at a time.
2014 ubi
= open_ubi(name
, UBI_READONLY
);
2016 ubifs_err("cannot open \"%s\", error %d",
2017 name
, (int)PTR_ERR(ubi
));
2018 return PTR_ERR(ubi
);
2020 ubi_get_volume_info(ubi
, &vi
);
2022 dbg_gen("opened ubi%d_%d", vi
.ubi_num
, vi
.vol_id
);
2024 sb
= sget(fs_type
, &sb_test
, &sb_set
, &vi
.cdev
);
2031 /* A new mount point for already mounted UBIFS */
2032 dbg_gen("this ubi volume is already mounted");
2033 if ((flags
^ sb
->s_flags
) & MS_RDONLY
) {
2038 sb
->s_flags
= flags
;
2040 * Pass 'ubi' to 'fill_super()' in sb->s_fs_info where it is
2043 sb
->s_fs_info
= ubi
;
2044 err
= ubifs_fill_super(sb
, data
, flags
& MS_SILENT
? 1 : 0);
2047 /* We do not support atime */
2048 sb
->s_flags
|= MS_ACTIVE
| MS_NOATIME
;
2051 /* 'fill_super()' opens ubi again so we must close it here */
2052 ubi_close_volume(ubi
);
2054 simple_set_mnt(mnt
, sb
);
2058 up_write(&sb
->s_umount
);
2059 deactivate_super(sb
);
2061 ubi_close_volume(ubi
);
2065 static void ubifs_kill_sb(struct super_block
*sb
)
2067 generic_shutdown_super(sb
);
2070 static struct file_system_type ubifs_fs_type
= {
2072 .owner
= THIS_MODULE
,
2073 .get_sb
= ubifs_get_sb
,
2074 .kill_sb
= ubifs_kill_sb
2078 * Inode slab cache constructor.
2080 static void inode_slab_ctor(void *obj
)
2082 struct ubifs_inode
*ui
= obj
;
2083 inode_init_once(&ui
->vfs_inode
);
2086 static int __init
ubifs_init(void)
2090 BUILD_BUG_ON(sizeof(struct ubifs_ch
) != 24);
2092 /* Make sure node sizes are 8-byte aligned */
2093 BUILD_BUG_ON(UBIFS_CH_SZ
& 7);
2094 BUILD_BUG_ON(UBIFS_INO_NODE_SZ
& 7);
2095 BUILD_BUG_ON(UBIFS_DENT_NODE_SZ
& 7);
2096 BUILD_BUG_ON(UBIFS_XENT_NODE_SZ
& 7);
2097 BUILD_BUG_ON(UBIFS_DATA_NODE_SZ
& 7);
2098 BUILD_BUG_ON(UBIFS_TRUN_NODE_SZ
& 7);
2099 BUILD_BUG_ON(UBIFS_SB_NODE_SZ
& 7);
2100 BUILD_BUG_ON(UBIFS_MST_NODE_SZ
& 7);
2101 BUILD_BUG_ON(UBIFS_REF_NODE_SZ
& 7);
2102 BUILD_BUG_ON(UBIFS_CS_NODE_SZ
& 7);
2103 BUILD_BUG_ON(UBIFS_ORPH_NODE_SZ
& 7);
2105 BUILD_BUG_ON(UBIFS_MAX_DENT_NODE_SZ
& 7);
2106 BUILD_BUG_ON(UBIFS_MAX_XENT_NODE_SZ
& 7);
2107 BUILD_BUG_ON(UBIFS_MAX_DATA_NODE_SZ
& 7);
2108 BUILD_BUG_ON(UBIFS_MAX_INO_NODE_SZ
& 7);
2109 BUILD_BUG_ON(UBIFS_MAX_NODE_SZ
& 7);
2110 BUILD_BUG_ON(MIN_WRITE_SZ
& 7);
2112 /* Check min. node size */
2113 BUILD_BUG_ON(UBIFS_INO_NODE_SZ
< MIN_WRITE_SZ
);
2114 BUILD_BUG_ON(UBIFS_DENT_NODE_SZ
< MIN_WRITE_SZ
);
2115 BUILD_BUG_ON(UBIFS_XENT_NODE_SZ
< MIN_WRITE_SZ
);
2116 BUILD_BUG_ON(UBIFS_TRUN_NODE_SZ
< MIN_WRITE_SZ
);
2118 BUILD_BUG_ON(UBIFS_MAX_DENT_NODE_SZ
> UBIFS_MAX_NODE_SZ
);
2119 BUILD_BUG_ON(UBIFS_MAX_XENT_NODE_SZ
> UBIFS_MAX_NODE_SZ
);
2120 BUILD_BUG_ON(UBIFS_MAX_DATA_NODE_SZ
> UBIFS_MAX_NODE_SZ
);
2121 BUILD_BUG_ON(UBIFS_MAX_INO_NODE_SZ
> UBIFS_MAX_NODE_SZ
);
2123 /* Defined node sizes */
2124 BUILD_BUG_ON(UBIFS_SB_NODE_SZ
!= 4096);
2125 BUILD_BUG_ON(UBIFS_MST_NODE_SZ
!= 512);
2126 BUILD_BUG_ON(UBIFS_INO_NODE_SZ
!= 160);
2127 BUILD_BUG_ON(UBIFS_REF_NODE_SZ
!= 64);
2130 * We use 2 bit wide bit-fields to store compression type, which should
2131 * be amended if more compressors are added. The bit-fields are:
2132 * @compr_type in 'struct ubifs_inode', @default_compr in
2133 * 'struct ubifs_info' and @compr_type in 'struct ubifs_mount_opts'.
2135 BUILD_BUG_ON(UBIFS_COMPR_TYPES_CNT
> 4);
2138 * We require that PAGE_CACHE_SIZE is greater-than-or-equal-to
2139 * UBIFS_BLOCK_SIZE. It is assumed that both are powers of 2.
2141 if (PAGE_CACHE_SIZE
< UBIFS_BLOCK_SIZE
) {
2142 ubifs_err("VFS page cache size is %u bytes, but UBIFS requires"
2143 " at least 4096 bytes",
2144 (unsigned int)PAGE_CACHE_SIZE
);
2148 err
= register_filesystem(&ubifs_fs_type
);
2150 ubifs_err("cannot register file system, error %d", err
);
2155 ubifs_inode_slab
= kmem_cache_create("ubifs_inode_slab",
2156 sizeof(struct ubifs_inode
), 0,
2157 SLAB_MEM_SPREAD
| SLAB_RECLAIM_ACCOUNT
,
2159 if (!ubifs_inode_slab
)
2162 register_shrinker(&ubifs_shrinker_info
);
2164 err
= ubifs_compressors_init();
2168 err
= dbg_debugfs_init();
2175 ubifs_compressors_exit();
2177 unregister_shrinker(&ubifs_shrinker_info
);
2178 kmem_cache_destroy(ubifs_inode_slab
);
2180 unregister_filesystem(&ubifs_fs_type
);
2183 /* late_initcall to let compressors initialize first */
2184 late_initcall(ubifs_init
);
2186 static void __exit
ubifs_exit(void)
2188 ubifs_assert(list_empty(&ubifs_infos
));
2189 ubifs_assert(atomic_long_read(&ubifs_clean_zn_cnt
) == 0);
2192 ubifs_compressors_exit();
2193 unregister_shrinker(&ubifs_shrinker_info
);
2194 kmem_cache_destroy(ubifs_inode_slab
);
2195 unregister_filesystem(&ubifs_fs_type
);
2197 module_exit(ubifs_exit
);
2199 MODULE_LICENSE("GPL");
2200 MODULE_VERSION(__stringify(UBIFS_VERSION
));
2201 MODULE_AUTHOR("Artem Bityutskiy, Adrian Hunter");
2202 MODULE_DESCRIPTION("UBIFS - UBI File System");