libata: fix ata_dev_disable()
[linux-2.6/mini2440.git] / kernel / sched.c
blob50e1a312269945284bc0ce769eb9b2acd629b7f2
1 /*
2 * kernel/sched.c
4 * Kernel scheduler and related syscalls
6 * Copyright (C) 1991-2002 Linus Torvalds
8 * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and
9 * make semaphores SMP safe
10 * 1998-11-19 Implemented schedule_timeout() and related stuff
11 * by Andrea Arcangeli
12 * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar:
13 * hybrid priority-list and round-robin design with
14 * an array-switch method of distributing timeslices
15 * and per-CPU runqueues. Cleanups and useful suggestions
16 * by Davide Libenzi, preemptible kernel bits by Robert Love.
17 * 2003-09-03 Interactivity tuning by Con Kolivas.
18 * 2004-04-02 Scheduler domains code by Nick Piggin
21 #include <linux/mm.h>
22 #include <linux/module.h>
23 #include <linux/nmi.h>
24 #include <linux/init.h>
25 #include <asm/uaccess.h>
26 #include <linux/highmem.h>
27 #include <linux/smp_lock.h>
28 #include <asm/mmu_context.h>
29 #include <linux/interrupt.h>
30 #include <linux/capability.h>
31 #include <linux/completion.h>
32 #include <linux/kernel_stat.h>
33 #include <linux/debug_locks.h>
34 #include <linux/security.h>
35 #include <linux/notifier.h>
36 #include <linux/profile.h>
37 #include <linux/freezer.h>
38 #include <linux/vmalloc.h>
39 #include <linux/blkdev.h>
40 #include <linux/delay.h>
41 #include <linux/smp.h>
42 #include <linux/threads.h>
43 #include <linux/timer.h>
44 #include <linux/rcupdate.h>
45 #include <linux/cpu.h>
46 #include <linux/cpuset.h>
47 #include <linux/percpu.h>
48 #include <linux/kthread.h>
49 #include <linux/seq_file.h>
50 #include <linux/syscalls.h>
51 #include <linux/times.h>
52 #include <linux/tsacct_kern.h>
53 #include <linux/kprobes.h>
54 #include <linux/delayacct.h>
55 #include <linux/reciprocal_div.h>
57 #include <asm/tlb.h>
58 #include <asm/unistd.h>
61 * Scheduler clock - returns current time in nanosec units.
62 * This is default implementation.
63 * Architectures and sub-architectures can override this.
65 unsigned long long __attribute__((weak)) sched_clock(void)
67 return (unsigned long long)jiffies * (1000000000 / HZ);
71 * Convert user-nice values [ -20 ... 0 ... 19 ]
72 * to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ],
73 * and back.
75 #define NICE_TO_PRIO(nice) (MAX_RT_PRIO + (nice) + 20)
76 #define PRIO_TO_NICE(prio) ((prio) - MAX_RT_PRIO - 20)
77 #define TASK_NICE(p) PRIO_TO_NICE((p)->static_prio)
80 * 'User priority' is the nice value converted to something we
81 * can work with better when scaling various scheduler parameters,
82 * it's a [ 0 ... 39 ] range.
84 #define USER_PRIO(p) ((p)-MAX_RT_PRIO)
85 #define TASK_USER_PRIO(p) USER_PRIO((p)->static_prio)
86 #define MAX_USER_PRIO (USER_PRIO(MAX_PRIO))
89 * Some helpers for converting nanosecond timing to jiffy resolution
91 #define NS_TO_JIFFIES(TIME) ((TIME) / (1000000000 / HZ))
92 #define JIFFIES_TO_NS(TIME) ((TIME) * (1000000000 / HZ))
95 * These are the 'tuning knobs' of the scheduler:
97 * Minimum timeslice is 5 msecs (or 1 jiffy, whichever is larger),
98 * default timeslice is 100 msecs, maximum timeslice is 800 msecs.
99 * Timeslices get refilled after they expire.
101 #define MIN_TIMESLICE max(5 * HZ / 1000, 1)
102 #define DEF_TIMESLICE (100 * HZ / 1000)
103 #define ON_RUNQUEUE_WEIGHT 30
104 #define CHILD_PENALTY 95
105 #define PARENT_PENALTY 100
106 #define EXIT_WEIGHT 3
107 #define PRIO_BONUS_RATIO 25
108 #define MAX_BONUS (MAX_USER_PRIO * PRIO_BONUS_RATIO / 100)
109 #define INTERACTIVE_DELTA 2
110 #define MAX_SLEEP_AVG (DEF_TIMESLICE * MAX_BONUS)
111 #define STARVATION_LIMIT (MAX_SLEEP_AVG)
112 #define NS_MAX_SLEEP_AVG (JIFFIES_TO_NS(MAX_SLEEP_AVG))
115 * If a task is 'interactive' then we reinsert it in the active
116 * array after it has expired its current timeslice. (it will not
117 * continue to run immediately, it will still roundrobin with
118 * other interactive tasks.)
120 * This part scales the interactivity limit depending on niceness.
122 * We scale it linearly, offset by the INTERACTIVE_DELTA delta.
123 * Here are a few examples of different nice levels:
125 * TASK_INTERACTIVE(-20): [1,1,1,1,1,1,1,1,1,0,0]
126 * TASK_INTERACTIVE(-10): [1,1,1,1,1,1,1,0,0,0,0]
127 * TASK_INTERACTIVE( 0): [1,1,1,1,0,0,0,0,0,0,0]
128 * TASK_INTERACTIVE( 10): [1,1,0,0,0,0,0,0,0,0,0]
129 * TASK_INTERACTIVE( 19): [0,0,0,0,0,0,0,0,0,0,0]
131 * (the X axis represents the possible -5 ... 0 ... +5 dynamic
132 * priority range a task can explore, a value of '1' means the
133 * task is rated interactive.)
135 * Ie. nice +19 tasks can never get 'interactive' enough to be
136 * reinserted into the active array. And only heavily CPU-hog nice -20
137 * tasks will be expired. Default nice 0 tasks are somewhere between,
138 * it takes some effort for them to get interactive, but it's not
139 * too hard.
142 #define CURRENT_BONUS(p) \
143 (NS_TO_JIFFIES((p)->sleep_avg) * MAX_BONUS / \
144 MAX_SLEEP_AVG)
146 #define GRANULARITY (10 * HZ / 1000 ? : 1)
148 #ifdef CONFIG_SMP
149 #define TIMESLICE_GRANULARITY(p) (GRANULARITY * \
150 (1 << (((MAX_BONUS - CURRENT_BONUS(p)) ? : 1) - 1)) * \
151 num_online_cpus())
152 #else
153 #define TIMESLICE_GRANULARITY(p) (GRANULARITY * \
154 (1 << (((MAX_BONUS - CURRENT_BONUS(p)) ? : 1) - 1)))
155 #endif
157 #define SCALE(v1,v1_max,v2_max) \
158 (v1) * (v2_max) / (v1_max)
160 #define DELTA(p) \
161 (SCALE(TASK_NICE(p) + 20, 40, MAX_BONUS) - 20 * MAX_BONUS / 40 + \
162 INTERACTIVE_DELTA)
164 #define TASK_INTERACTIVE(p) \
165 ((p)->prio <= (p)->static_prio - DELTA(p))
167 #define INTERACTIVE_SLEEP(p) \
168 (JIFFIES_TO_NS(MAX_SLEEP_AVG * \
169 (MAX_BONUS / 2 + DELTA((p)) + 1) / MAX_BONUS - 1))
171 #define TASK_PREEMPTS_CURR(p, rq) \
172 ((p)->prio < (rq)->curr->prio)
174 #define SCALE_PRIO(x, prio) \
175 max(x * (MAX_PRIO - prio) / (MAX_USER_PRIO / 2), MIN_TIMESLICE)
177 static unsigned int static_prio_timeslice(int static_prio)
179 if (static_prio < NICE_TO_PRIO(0))
180 return SCALE_PRIO(DEF_TIMESLICE * 4, static_prio);
181 else
182 return SCALE_PRIO(DEF_TIMESLICE, static_prio);
185 #ifdef CONFIG_SMP
187 * Divide a load by a sched group cpu_power : (load / sg->__cpu_power)
188 * Since cpu_power is a 'constant', we can use a reciprocal divide.
190 static inline u32 sg_div_cpu_power(const struct sched_group *sg, u32 load)
192 return reciprocal_divide(load, sg->reciprocal_cpu_power);
196 * Each time a sched group cpu_power is changed,
197 * we must compute its reciprocal value
199 static inline void sg_inc_cpu_power(struct sched_group *sg, u32 val)
201 sg->__cpu_power += val;
202 sg->reciprocal_cpu_power = reciprocal_value(sg->__cpu_power);
204 #endif
207 * task_timeslice() scales user-nice values [ -20 ... 0 ... 19 ]
208 * to time slice values: [800ms ... 100ms ... 5ms]
210 * The higher a thread's priority, the bigger timeslices
211 * it gets during one round of execution. But even the lowest
212 * priority thread gets MIN_TIMESLICE worth of execution time.
215 static inline unsigned int task_timeslice(struct task_struct *p)
217 return static_prio_timeslice(p->static_prio);
221 * These are the runqueue data structures:
224 struct prio_array {
225 unsigned int nr_active;
226 DECLARE_BITMAP(bitmap, MAX_PRIO+1); /* include 1 bit for delimiter */
227 struct list_head queue[MAX_PRIO];
231 * This is the main, per-CPU runqueue data structure.
233 * Locking rule: those places that want to lock multiple runqueues
234 * (such as the load balancing or the thread migration code), lock
235 * acquire operations must be ordered by ascending &runqueue.
237 struct rq {
238 spinlock_t lock;
241 * nr_running and cpu_load should be in the same cacheline because
242 * remote CPUs use both these fields when doing load calculation.
244 unsigned long nr_running;
245 unsigned long raw_weighted_load;
246 #ifdef CONFIG_SMP
247 unsigned long cpu_load[3];
248 unsigned char idle_at_tick;
249 #ifdef CONFIG_NO_HZ
250 unsigned char in_nohz_recently;
251 #endif
252 #endif
253 unsigned long long nr_switches;
256 * This is part of a global counter where only the total sum
257 * over all CPUs matters. A task can increase this counter on
258 * one CPU and if it got migrated afterwards it may decrease
259 * it on another CPU. Always updated under the runqueue lock:
261 unsigned long nr_uninterruptible;
263 unsigned long expired_timestamp;
264 /* Cached timestamp set by update_cpu_clock() */
265 unsigned long long most_recent_timestamp;
266 struct task_struct *curr, *idle;
267 unsigned long next_balance;
268 struct mm_struct *prev_mm;
269 struct prio_array *active, *expired, arrays[2];
270 int best_expired_prio;
271 atomic_t nr_iowait;
273 #ifdef CONFIG_SMP
274 struct sched_domain *sd;
276 /* For active balancing */
277 int active_balance;
278 int push_cpu;
279 int cpu; /* cpu of this runqueue */
281 struct task_struct *migration_thread;
282 struct list_head migration_queue;
283 #endif
285 #ifdef CONFIG_SCHEDSTATS
286 /* latency stats */
287 struct sched_info rq_sched_info;
289 /* sys_sched_yield() stats */
290 unsigned long yld_exp_empty;
291 unsigned long yld_act_empty;
292 unsigned long yld_both_empty;
293 unsigned long yld_cnt;
295 /* schedule() stats */
296 unsigned long sched_switch;
297 unsigned long sched_cnt;
298 unsigned long sched_goidle;
300 /* try_to_wake_up() stats */
301 unsigned long ttwu_cnt;
302 unsigned long ttwu_local;
303 #endif
304 struct lock_class_key rq_lock_key;
307 static DEFINE_PER_CPU(struct rq, runqueues) ____cacheline_aligned_in_smp;
308 static DEFINE_MUTEX(sched_hotcpu_mutex);
310 static inline int cpu_of(struct rq *rq)
312 #ifdef CONFIG_SMP
313 return rq->cpu;
314 #else
315 return 0;
316 #endif
320 * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
321 * See detach_destroy_domains: synchronize_sched for details.
323 * The domain tree of any CPU may only be accessed from within
324 * preempt-disabled sections.
326 #define for_each_domain(cpu, __sd) \
327 for (__sd = rcu_dereference(cpu_rq(cpu)->sd); __sd; __sd = __sd->parent)
329 #define cpu_rq(cpu) (&per_cpu(runqueues, (cpu)))
330 #define this_rq() (&__get_cpu_var(runqueues))
331 #define task_rq(p) cpu_rq(task_cpu(p))
332 #define cpu_curr(cpu) (cpu_rq(cpu)->curr)
334 #ifndef prepare_arch_switch
335 # define prepare_arch_switch(next) do { } while (0)
336 #endif
337 #ifndef finish_arch_switch
338 # define finish_arch_switch(prev) do { } while (0)
339 #endif
341 #ifndef __ARCH_WANT_UNLOCKED_CTXSW
342 static inline int task_running(struct rq *rq, struct task_struct *p)
344 return rq->curr == p;
347 static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
351 static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
353 #ifdef CONFIG_DEBUG_SPINLOCK
354 /* this is a valid case when another task releases the spinlock */
355 rq->lock.owner = current;
356 #endif
358 * If we are tracking spinlock dependencies then we have to
359 * fix up the runqueue lock - which gets 'carried over' from
360 * prev into current:
362 spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_);
364 spin_unlock_irq(&rq->lock);
367 #else /* __ARCH_WANT_UNLOCKED_CTXSW */
368 static inline int task_running(struct rq *rq, struct task_struct *p)
370 #ifdef CONFIG_SMP
371 return p->oncpu;
372 #else
373 return rq->curr == p;
374 #endif
377 static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
379 #ifdef CONFIG_SMP
381 * We can optimise this out completely for !SMP, because the
382 * SMP rebalancing from interrupt is the only thing that cares
383 * here.
385 next->oncpu = 1;
386 #endif
387 #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
388 spin_unlock_irq(&rq->lock);
389 #else
390 spin_unlock(&rq->lock);
391 #endif
394 static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
396 #ifdef CONFIG_SMP
398 * After ->oncpu is cleared, the task can be moved to a different CPU.
399 * We must ensure this doesn't happen until the switch is completely
400 * finished.
402 smp_wmb();
403 prev->oncpu = 0;
404 #endif
405 #ifndef __ARCH_WANT_INTERRUPTS_ON_CTXSW
406 local_irq_enable();
407 #endif
409 #endif /* __ARCH_WANT_UNLOCKED_CTXSW */
412 * __task_rq_lock - lock the runqueue a given task resides on.
413 * Must be called interrupts disabled.
415 static inline struct rq *__task_rq_lock(struct task_struct *p)
416 __acquires(rq->lock)
418 struct rq *rq;
420 repeat_lock_task:
421 rq = task_rq(p);
422 spin_lock(&rq->lock);
423 if (unlikely(rq != task_rq(p))) {
424 spin_unlock(&rq->lock);
425 goto repeat_lock_task;
427 return rq;
431 * task_rq_lock - lock the runqueue a given task resides on and disable
432 * interrupts. Note the ordering: we can safely lookup the task_rq without
433 * explicitly disabling preemption.
435 static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
436 __acquires(rq->lock)
438 struct rq *rq;
440 repeat_lock_task:
441 local_irq_save(*flags);
442 rq = task_rq(p);
443 spin_lock(&rq->lock);
444 if (unlikely(rq != task_rq(p))) {
445 spin_unlock_irqrestore(&rq->lock, *flags);
446 goto repeat_lock_task;
448 return rq;
451 static inline void __task_rq_unlock(struct rq *rq)
452 __releases(rq->lock)
454 spin_unlock(&rq->lock);
457 static inline void task_rq_unlock(struct rq *rq, unsigned long *flags)
458 __releases(rq->lock)
460 spin_unlock_irqrestore(&rq->lock, *flags);
463 #ifdef CONFIG_SCHEDSTATS
465 * bump this up when changing the output format or the meaning of an existing
466 * format, so that tools can adapt (or abort)
468 #define SCHEDSTAT_VERSION 14
470 static int show_schedstat(struct seq_file *seq, void *v)
472 int cpu;
474 seq_printf(seq, "version %d\n", SCHEDSTAT_VERSION);
475 seq_printf(seq, "timestamp %lu\n", jiffies);
476 for_each_online_cpu(cpu) {
477 struct rq *rq = cpu_rq(cpu);
478 #ifdef CONFIG_SMP
479 struct sched_domain *sd;
480 int dcnt = 0;
481 #endif
483 /* runqueue-specific stats */
484 seq_printf(seq,
485 "cpu%d %lu %lu %lu %lu %lu %lu %lu %lu %lu %lu %lu %lu",
486 cpu, rq->yld_both_empty,
487 rq->yld_act_empty, rq->yld_exp_empty, rq->yld_cnt,
488 rq->sched_switch, rq->sched_cnt, rq->sched_goidle,
489 rq->ttwu_cnt, rq->ttwu_local,
490 rq->rq_sched_info.cpu_time,
491 rq->rq_sched_info.run_delay, rq->rq_sched_info.pcnt);
493 seq_printf(seq, "\n");
495 #ifdef CONFIG_SMP
496 /* domain-specific stats */
497 preempt_disable();
498 for_each_domain(cpu, sd) {
499 enum idle_type itype;
500 char mask_str[NR_CPUS];
502 cpumask_scnprintf(mask_str, NR_CPUS, sd->span);
503 seq_printf(seq, "domain%d %s", dcnt++, mask_str);
504 for (itype = SCHED_IDLE; itype < MAX_IDLE_TYPES;
505 itype++) {
506 seq_printf(seq, " %lu %lu %lu %lu %lu %lu %lu "
507 "%lu",
508 sd->lb_cnt[itype],
509 sd->lb_balanced[itype],
510 sd->lb_failed[itype],
511 sd->lb_imbalance[itype],
512 sd->lb_gained[itype],
513 sd->lb_hot_gained[itype],
514 sd->lb_nobusyq[itype],
515 sd->lb_nobusyg[itype]);
517 seq_printf(seq, " %lu %lu %lu %lu %lu %lu %lu %lu %lu"
518 " %lu %lu %lu\n",
519 sd->alb_cnt, sd->alb_failed, sd->alb_pushed,
520 sd->sbe_cnt, sd->sbe_balanced, sd->sbe_pushed,
521 sd->sbf_cnt, sd->sbf_balanced, sd->sbf_pushed,
522 sd->ttwu_wake_remote, sd->ttwu_move_affine,
523 sd->ttwu_move_balance);
525 preempt_enable();
526 #endif
528 return 0;
531 static int schedstat_open(struct inode *inode, struct file *file)
533 unsigned int size = PAGE_SIZE * (1 + num_online_cpus() / 32);
534 char *buf = kmalloc(size, GFP_KERNEL);
535 struct seq_file *m;
536 int res;
538 if (!buf)
539 return -ENOMEM;
540 res = single_open(file, show_schedstat, NULL);
541 if (!res) {
542 m = file->private_data;
543 m->buf = buf;
544 m->size = size;
545 } else
546 kfree(buf);
547 return res;
550 const struct file_operations proc_schedstat_operations = {
551 .open = schedstat_open,
552 .read = seq_read,
553 .llseek = seq_lseek,
554 .release = single_release,
558 * Expects runqueue lock to be held for atomicity of update
560 static inline void
561 rq_sched_info_arrive(struct rq *rq, unsigned long delta_jiffies)
563 if (rq) {
564 rq->rq_sched_info.run_delay += delta_jiffies;
565 rq->rq_sched_info.pcnt++;
570 * Expects runqueue lock to be held for atomicity of update
572 static inline void
573 rq_sched_info_depart(struct rq *rq, unsigned long delta_jiffies)
575 if (rq)
576 rq->rq_sched_info.cpu_time += delta_jiffies;
578 # define schedstat_inc(rq, field) do { (rq)->field++; } while (0)
579 # define schedstat_add(rq, field, amt) do { (rq)->field += (amt); } while (0)
580 #else /* !CONFIG_SCHEDSTATS */
581 static inline void
582 rq_sched_info_arrive(struct rq *rq, unsigned long delta_jiffies)
584 static inline void
585 rq_sched_info_depart(struct rq *rq, unsigned long delta_jiffies)
587 # define schedstat_inc(rq, field) do { } while (0)
588 # define schedstat_add(rq, field, amt) do { } while (0)
589 #endif
592 * this_rq_lock - lock this runqueue and disable interrupts.
594 static inline struct rq *this_rq_lock(void)
595 __acquires(rq->lock)
597 struct rq *rq;
599 local_irq_disable();
600 rq = this_rq();
601 spin_lock(&rq->lock);
603 return rq;
606 #if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
608 * Called when a process is dequeued from the active array and given
609 * the cpu. We should note that with the exception of interactive
610 * tasks, the expired queue will become the active queue after the active
611 * queue is empty, without explicitly dequeuing and requeuing tasks in the
612 * expired queue. (Interactive tasks may be requeued directly to the
613 * active queue, thus delaying tasks in the expired queue from running;
614 * see scheduler_tick()).
616 * This function is only called from sched_info_arrive(), rather than
617 * dequeue_task(). Even though a task may be queued and dequeued multiple
618 * times as it is shuffled about, we're really interested in knowing how
619 * long it was from the *first* time it was queued to the time that it
620 * finally hit a cpu.
622 static inline void sched_info_dequeued(struct task_struct *t)
624 t->sched_info.last_queued = 0;
628 * Called when a task finally hits the cpu. We can now calculate how
629 * long it was waiting to run. We also note when it began so that we
630 * can keep stats on how long its timeslice is.
632 static void sched_info_arrive(struct task_struct *t)
634 unsigned long now = jiffies, delta_jiffies = 0;
636 if (t->sched_info.last_queued)
637 delta_jiffies = now - t->sched_info.last_queued;
638 sched_info_dequeued(t);
639 t->sched_info.run_delay += delta_jiffies;
640 t->sched_info.last_arrival = now;
641 t->sched_info.pcnt++;
643 rq_sched_info_arrive(task_rq(t), delta_jiffies);
647 * Called when a process is queued into either the active or expired
648 * array. The time is noted and later used to determine how long we
649 * had to wait for us to reach the cpu. Since the expired queue will
650 * become the active queue after active queue is empty, without dequeuing
651 * and requeuing any tasks, we are interested in queuing to either. It
652 * is unusual but not impossible for tasks to be dequeued and immediately
653 * requeued in the same or another array: this can happen in sched_yield(),
654 * set_user_nice(), and even load_balance() as it moves tasks from runqueue
655 * to runqueue.
657 * This function is only called from enqueue_task(), but also only updates
658 * the timestamp if it is already not set. It's assumed that
659 * sched_info_dequeued() will clear that stamp when appropriate.
661 static inline void sched_info_queued(struct task_struct *t)
663 if (unlikely(sched_info_on()))
664 if (!t->sched_info.last_queued)
665 t->sched_info.last_queued = jiffies;
669 * Called when a process ceases being the active-running process, either
670 * voluntarily or involuntarily. Now we can calculate how long we ran.
672 static inline void sched_info_depart(struct task_struct *t)
674 unsigned long delta_jiffies = jiffies - t->sched_info.last_arrival;
676 t->sched_info.cpu_time += delta_jiffies;
677 rq_sched_info_depart(task_rq(t), delta_jiffies);
681 * Called when tasks are switched involuntarily due, typically, to expiring
682 * their time slice. (This may also be called when switching to or from
683 * the idle task.) We are only called when prev != next.
685 static inline void
686 __sched_info_switch(struct task_struct *prev, struct task_struct *next)
688 struct rq *rq = task_rq(prev);
691 * prev now departs the cpu. It's not interesting to record
692 * stats about how efficient we were at scheduling the idle
693 * process, however.
695 if (prev != rq->idle)
696 sched_info_depart(prev);
698 if (next != rq->idle)
699 sched_info_arrive(next);
701 static inline void
702 sched_info_switch(struct task_struct *prev, struct task_struct *next)
704 if (unlikely(sched_info_on()))
705 __sched_info_switch(prev, next);
707 #else
708 #define sched_info_queued(t) do { } while (0)
709 #define sched_info_switch(t, next) do { } while (0)
710 #endif /* CONFIG_SCHEDSTATS || CONFIG_TASK_DELAY_ACCT */
713 * Adding/removing a task to/from a priority array:
715 static void dequeue_task(struct task_struct *p, struct prio_array *array)
717 array->nr_active--;
718 list_del(&p->run_list);
719 if (list_empty(array->queue + p->prio))
720 __clear_bit(p->prio, array->bitmap);
723 static void enqueue_task(struct task_struct *p, struct prio_array *array)
725 sched_info_queued(p);
726 list_add_tail(&p->run_list, array->queue + p->prio);
727 __set_bit(p->prio, array->bitmap);
728 array->nr_active++;
729 p->array = array;
733 * Put task to the end of the run list without the overhead of dequeue
734 * followed by enqueue.
736 static void requeue_task(struct task_struct *p, struct prio_array *array)
738 list_move_tail(&p->run_list, array->queue + p->prio);
741 static inline void
742 enqueue_task_head(struct task_struct *p, struct prio_array *array)
744 list_add(&p->run_list, array->queue + p->prio);
745 __set_bit(p->prio, array->bitmap);
746 array->nr_active++;
747 p->array = array;
751 * __normal_prio - return the priority that is based on the static
752 * priority but is modified by bonuses/penalties.
754 * We scale the actual sleep average [0 .... MAX_SLEEP_AVG]
755 * into the -5 ... 0 ... +5 bonus/penalty range.
757 * We use 25% of the full 0...39 priority range so that:
759 * 1) nice +19 interactive tasks do not preempt nice 0 CPU hogs.
760 * 2) nice -20 CPU hogs do not get preempted by nice 0 tasks.
762 * Both properties are important to certain workloads.
765 static inline int __normal_prio(struct task_struct *p)
767 int bonus, prio;
769 bonus = CURRENT_BONUS(p) - MAX_BONUS / 2;
771 prio = p->static_prio - bonus;
772 if (prio < MAX_RT_PRIO)
773 prio = MAX_RT_PRIO;
774 if (prio > MAX_PRIO-1)
775 prio = MAX_PRIO-1;
776 return prio;
780 * To aid in avoiding the subversion of "niceness" due to uneven distribution
781 * of tasks with abnormal "nice" values across CPUs the contribution that
782 * each task makes to its run queue's load is weighted according to its
783 * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
784 * scaled version of the new time slice allocation that they receive on time
785 * slice expiry etc.
789 * Assume: static_prio_timeslice(NICE_TO_PRIO(0)) == DEF_TIMESLICE
790 * If static_prio_timeslice() is ever changed to break this assumption then
791 * this code will need modification
793 #define TIME_SLICE_NICE_ZERO DEF_TIMESLICE
794 #define LOAD_WEIGHT(lp) \
795 (((lp) * SCHED_LOAD_SCALE) / TIME_SLICE_NICE_ZERO)
796 #define PRIO_TO_LOAD_WEIGHT(prio) \
797 LOAD_WEIGHT(static_prio_timeslice(prio))
798 #define RTPRIO_TO_LOAD_WEIGHT(rp) \
799 (PRIO_TO_LOAD_WEIGHT(MAX_RT_PRIO) + LOAD_WEIGHT(rp))
801 static void set_load_weight(struct task_struct *p)
803 if (has_rt_policy(p)) {
804 #ifdef CONFIG_SMP
805 if (p == task_rq(p)->migration_thread)
807 * The migration thread does the actual balancing.
808 * Giving its load any weight will skew balancing
809 * adversely.
811 p->load_weight = 0;
812 else
813 #endif
814 p->load_weight = RTPRIO_TO_LOAD_WEIGHT(p->rt_priority);
815 } else
816 p->load_weight = PRIO_TO_LOAD_WEIGHT(p->static_prio);
819 static inline void
820 inc_raw_weighted_load(struct rq *rq, const struct task_struct *p)
822 rq->raw_weighted_load += p->load_weight;
825 static inline void
826 dec_raw_weighted_load(struct rq *rq, const struct task_struct *p)
828 rq->raw_weighted_load -= p->load_weight;
831 static inline void inc_nr_running(struct task_struct *p, struct rq *rq)
833 rq->nr_running++;
834 inc_raw_weighted_load(rq, p);
837 static inline void dec_nr_running(struct task_struct *p, struct rq *rq)
839 rq->nr_running--;
840 dec_raw_weighted_load(rq, p);
844 * Calculate the expected normal priority: i.e. priority
845 * without taking RT-inheritance into account. Might be
846 * boosted by interactivity modifiers. Changes upon fork,
847 * setprio syscalls, and whenever the interactivity
848 * estimator recalculates.
850 static inline int normal_prio(struct task_struct *p)
852 int prio;
854 if (has_rt_policy(p))
855 prio = MAX_RT_PRIO-1 - p->rt_priority;
856 else
857 prio = __normal_prio(p);
858 return prio;
862 * Calculate the current priority, i.e. the priority
863 * taken into account by the scheduler. This value might
864 * be boosted by RT tasks, or might be boosted by
865 * interactivity modifiers. Will be RT if the task got
866 * RT-boosted. If not then it returns p->normal_prio.
868 static int effective_prio(struct task_struct *p)
870 p->normal_prio = normal_prio(p);
872 * If we are RT tasks or we were boosted to RT priority,
873 * keep the priority unchanged. Otherwise, update priority
874 * to the normal priority:
876 if (!rt_prio(p->prio))
877 return p->normal_prio;
878 return p->prio;
882 * __activate_task - move a task to the runqueue.
884 static void __activate_task(struct task_struct *p, struct rq *rq)
886 struct prio_array *target = rq->active;
888 if (batch_task(p))
889 target = rq->expired;
890 enqueue_task(p, target);
891 inc_nr_running(p, rq);
895 * __activate_idle_task - move idle task to the _front_ of runqueue.
897 static inline void __activate_idle_task(struct task_struct *p, struct rq *rq)
899 enqueue_task_head(p, rq->active);
900 inc_nr_running(p, rq);
904 * Recalculate p->normal_prio and p->prio after having slept,
905 * updating the sleep-average too:
907 static int recalc_task_prio(struct task_struct *p, unsigned long long now)
909 /* Caller must always ensure 'now >= p->timestamp' */
910 unsigned long sleep_time = now - p->timestamp;
912 if (batch_task(p))
913 sleep_time = 0;
915 if (likely(sleep_time > 0)) {
917 * This ceiling is set to the lowest priority that would allow
918 * a task to be reinserted into the active array on timeslice
919 * completion.
921 unsigned long ceiling = INTERACTIVE_SLEEP(p);
923 if (p->mm && sleep_time > ceiling && p->sleep_avg < ceiling) {
925 * Prevents user tasks from achieving best priority
926 * with one single large enough sleep.
928 p->sleep_avg = ceiling;
930 * Using INTERACTIVE_SLEEP() as a ceiling places a
931 * nice(0) task 1ms sleep away from promotion, and
932 * gives it 700ms to round-robin with no chance of
933 * being demoted. This is more than generous, so
934 * mark this sleep as non-interactive to prevent the
935 * on-runqueue bonus logic from intervening should
936 * this task not receive cpu immediately.
938 p->sleep_type = SLEEP_NONINTERACTIVE;
939 } else {
941 * Tasks waking from uninterruptible sleep are
942 * limited in their sleep_avg rise as they
943 * are likely to be waiting on I/O
945 if (p->sleep_type == SLEEP_NONINTERACTIVE && p->mm) {
946 if (p->sleep_avg >= ceiling)
947 sleep_time = 0;
948 else if (p->sleep_avg + sleep_time >=
949 ceiling) {
950 p->sleep_avg = ceiling;
951 sleep_time = 0;
956 * This code gives a bonus to interactive tasks.
958 * The boost works by updating the 'average sleep time'
959 * value here, based on ->timestamp. The more time a
960 * task spends sleeping, the higher the average gets -
961 * and the higher the priority boost gets as well.
963 p->sleep_avg += sleep_time;
966 if (p->sleep_avg > NS_MAX_SLEEP_AVG)
967 p->sleep_avg = NS_MAX_SLEEP_AVG;
970 return effective_prio(p);
974 * activate_task - move a task to the runqueue and do priority recalculation
976 * Update all the scheduling statistics stuff. (sleep average
977 * calculation, priority modifiers, etc.)
979 static void activate_task(struct task_struct *p, struct rq *rq, int local)
981 unsigned long long now;
983 if (rt_task(p))
984 goto out;
986 now = sched_clock();
987 #ifdef CONFIG_SMP
988 if (!local) {
989 /* Compensate for drifting sched_clock */
990 struct rq *this_rq = this_rq();
991 now = (now - this_rq->most_recent_timestamp)
992 + rq->most_recent_timestamp;
994 #endif
997 * Sleep time is in units of nanosecs, so shift by 20 to get a
998 * milliseconds-range estimation of the amount of time that the task
999 * spent sleeping:
1001 if (unlikely(prof_on == SLEEP_PROFILING)) {
1002 if (p->state == TASK_UNINTERRUPTIBLE)
1003 profile_hits(SLEEP_PROFILING, (void *)get_wchan(p),
1004 (now - p->timestamp) >> 20);
1007 p->prio = recalc_task_prio(p, now);
1010 * This checks to make sure it's not an uninterruptible task
1011 * that is now waking up.
1013 if (p->sleep_type == SLEEP_NORMAL) {
1015 * Tasks which were woken up by interrupts (ie. hw events)
1016 * are most likely of interactive nature. So we give them
1017 * the credit of extending their sleep time to the period
1018 * of time they spend on the runqueue, waiting for execution
1019 * on a CPU, first time around:
1021 if (in_interrupt())
1022 p->sleep_type = SLEEP_INTERRUPTED;
1023 else {
1025 * Normal first-time wakeups get a credit too for
1026 * on-runqueue time, but it will be weighted down:
1028 p->sleep_type = SLEEP_INTERACTIVE;
1031 p->timestamp = now;
1032 out:
1033 __activate_task(p, rq);
1037 * deactivate_task - remove a task from the runqueue.
1039 static void deactivate_task(struct task_struct *p, struct rq *rq)
1041 dec_nr_running(p, rq);
1042 dequeue_task(p, p->array);
1043 p->array = NULL;
1047 * resched_task - mark a task 'to be rescheduled now'.
1049 * On UP this means the setting of the need_resched flag, on SMP it
1050 * might also involve a cross-CPU call to trigger the scheduler on
1051 * the target CPU.
1053 #ifdef CONFIG_SMP
1055 #ifndef tsk_is_polling
1056 #define tsk_is_polling(t) test_tsk_thread_flag(t, TIF_POLLING_NRFLAG)
1057 #endif
1059 static void resched_task(struct task_struct *p)
1061 int cpu;
1063 assert_spin_locked(&task_rq(p)->lock);
1065 if (unlikely(test_tsk_thread_flag(p, TIF_NEED_RESCHED)))
1066 return;
1068 set_tsk_thread_flag(p, TIF_NEED_RESCHED);
1070 cpu = task_cpu(p);
1071 if (cpu == smp_processor_id())
1072 return;
1074 /* NEED_RESCHED must be visible before we test polling */
1075 smp_mb();
1076 if (!tsk_is_polling(p))
1077 smp_send_reschedule(cpu);
1080 static void resched_cpu(int cpu)
1082 struct rq *rq = cpu_rq(cpu);
1083 unsigned long flags;
1085 if (!spin_trylock_irqsave(&rq->lock, flags))
1086 return;
1087 resched_task(cpu_curr(cpu));
1088 spin_unlock_irqrestore(&rq->lock, flags);
1090 #else
1091 static inline void resched_task(struct task_struct *p)
1093 assert_spin_locked(&task_rq(p)->lock);
1094 set_tsk_need_resched(p);
1096 #endif
1099 * task_curr - is this task currently executing on a CPU?
1100 * @p: the task in question.
1102 inline int task_curr(const struct task_struct *p)
1104 return cpu_curr(task_cpu(p)) == p;
1107 /* Used instead of source_load when we know the type == 0 */
1108 unsigned long weighted_cpuload(const int cpu)
1110 return cpu_rq(cpu)->raw_weighted_load;
1113 #ifdef CONFIG_SMP
1114 struct migration_req {
1115 struct list_head list;
1117 struct task_struct *task;
1118 int dest_cpu;
1120 struct completion done;
1124 * The task's runqueue lock must be held.
1125 * Returns true if you have to wait for migration thread.
1127 static int
1128 migrate_task(struct task_struct *p, int dest_cpu, struct migration_req *req)
1130 struct rq *rq = task_rq(p);
1133 * If the task is not on a runqueue (and not running), then
1134 * it is sufficient to simply update the task's cpu field.
1136 if (!p->array && !task_running(rq, p)) {
1137 set_task_cpu(p, dest_cpu);
1138 return 0;
1141 init_completion(&req->done);
1142 req->task = p;
1143 req->dest_cpu = dest_cpu;
1144 list_add(&req->list, &rq->migration_queue);
1146 return 1;
1150 * wait_task_inactive - wait for a thread to unschedule.
1152 * The caller must ensure that the task *will* unschedule sometime soon,
1153 * else this function might spin for a *long* time. This function can't
1154 * be called with interrupts off, or it may introduce deadlock with
1155 * smp_call_function() if an IPI is sent by the same process we are
1156 * waiting to become inactive.
1158 void wait_task_inactive(struct task_struct *p)
1160 unsigned long flags;
1161 struct rq *rq;
1162 struct prio_array *array;
1163 int running;
1165 repeat:
1167 * We do the initial early heuristics without holding
1168 * any task-queue locks at all. We'll only try to get
1169 * the runqueue lock when things look like they will
1170 * work out!
1172 rq = task_rq(p);
1175 * If the task is actively running on another CPU
1176 * still, just relax and busy-wait without holding
1177 * any locks.
1179 * NOTE! Since we don't hold any locks, it's not
1180 * even sure that "rq" stays as the right runqueue!
1181 * But we don't care, since "task_running()" will
1182 * return false if the runqueue has changed and p
1183 * is actually now running somewhere else!
1185 while (task_running(rq, p))
1186 cpu_relax();
1189 * Ok, time to look more closely! We need the rq
1190 * lock now, to be *sure*. If we're wrong, we'll
1191 * just go back and repeat.
1193 rq = task_rq_lock(p, &flags);
1194 running = task_running(rq, p);
1195 array = p->array;
1196 task_rq_unlock(rq, &flags);
1199 * Was it really running after all now that we
1200 * checked with the proper locks actually held?
1202 * Oops. Go back and try again..
1204 if (unlikely(running)) {
1205 cpu_relax();
1206 goto repeat;
1210 * It's not enough that it's not actively running,
1211 * it must be off the runqueue _entirely_, and not
1212 * preempted!
1214 * So if it wa still runnable (but just not actively
1215 * running right now), it's preempted, and we should
1216 * yield - it could be a while.
1218 if (unlikely(array)) {
1219 yield();
1220 goto repeat;
1224 * Ahh, all good. It wasn't running, and it wasn't
1225 * runnable, which means that it will never become
1226 * running in the future either. We're all done!
1230 /***
1231 * kick_process - kick a running thread to enter/exit the kernel
1232 * @p: the to-be-kicked thread
1234 * Cause a process which is running on another CPU to enter
1235 * kernel-mode, without any delay. (to get signals handled.)
1237 * NOTE: this function doesnt have to take the runqueue lock,
1238 * because all it wants to ensure is that the remote task enters
1239 * the kernel. If the IPI races and the task has been migrated
1240 * to another CPU then no harm is done and the purpose has been
1241 * achieved as well.
1243 void kick_process(struct task_struct *p)
1245 int cpu;
1247 preempt_disable();
1248 cpu = task_cpu(p);
1249 if ((cpu != smp_processor_id()) && task_curr(p))
1250 smp_send_reschedule(cpu);
1251 preempt_enable();
1255 * Return a low guess at the load of a migration-source cpu weighted
1256 * according to the scheduling class and "nice" value.
1258 * We want to under-estimate the load of migration sources, to
1259 * balance conservatively.
1261 static inline unsigned long source_load(int cpu, int type)
1263 struct rq *rq = cpu_rq(cpu);
1265 if (type == 0)
1266 return rq->raw_weighted_load;
1268 return min(rq->cpu_load[type-1], rq->raw_weighted_load);
1272 * Return a high guess at the load of a migration-target cpu weighted
1273 * according to the scheduling class and "nice" value.
1275 static inline unsigned long target_load(int cpu, int type)
1277 struct rq *rq = cpu_rq(cpu);
1279 if (type == 0)
1280 return rq->raw_weighted_load;
1282 return max(rq->cpu_load[type-1], rq->raw_weighted_load);
1286 * Return the average load per task on the cpu's run queue
1288 static inline unsigned long cpu_avg_load_per_task(int cpu)
1290 struct rq *rq = cpu_rq(cpu);
1291 unsigned long n = rq->nr_running;
1293 return n ? rq->raw_weighted_load / n : SCHED_LOAD_SCALE;
1297 * find_idlest_group finds and returns the least busy CPU group within the
1298 * domain.
1300 static struct sched_group *
1301 find_idlest_group(struct sched_domain *sd, struct task_struct *p, int this_cpu)
1303 struct sched_group *idlest = NULL, *this = NULL, *group = sd->groups;
1304 unsigned long min_load = ULONG_MAX, this_load = 0;
1305 int load_idx = sd->forkexec_idx;
1306 int imbalance = 100 + (sd->imbalance_pct-100)/2;
1308 do {
1309 unsigned long load, avg_load;
1310 int local_group;
1311 int i;
1313 /* Skip over this group if it has no CPUs allowed */
1314 if (!cpus_intersects(group->cpumask, p->cpus_allowed))
1315 goto nextgroup;
1317 local_group = cpu_isset(this_cpu, group->cpumask);
1319 /* Tally up the load of all CPUs in the group */
1320 avg_load = 0;
1322 for_each_cpu_mask(i, group->cpumask) {
1323 /* Bias balancing toward cpus of our domain */
1324 if (local_group)
1325 load = source_load(i, load_idx);
1326 else
1327 load = target_load(i, load_idx);
1329 avg_load += load;
1332 /* Adjust by relative CPU power of the group */
1333 avg_load = sg_div_cpu_power(group,
1334 avg_load * SCHED_LOAD_SCALE);
1336 if (local_group) {
1337 this_load = avg_load;
1338 this = group;
1339 } else if (avg_load < min_load) {
1340 min_load = avg_load;
1341 idlest = group;
1343 nextgroup:
1344 group = group->next;
1345 } while (group != sd->groups);
1347 if (!idlest || 100*this_load < imbalance*min_load)
1348 return NULL;
1349 return idlest;
1353 * find_idlest_cpu - find the idlest cpu among the cpus in group.
1355 static int
1356 find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu)
1358 cpumask_t tmp;
1359 unsigned long load, min_load = ULONG_MAX;
1360 int idlest = -1;
1361 int i;
1363 /* Traverse only the allowed CPUs */
1364 cpus_and(tmp, group->cpumask, p->cpus_allowed);
1366 for_each_cpu_mask(i, tmp) {
1367 load = weighted_cpuload(i);
1369 if (load < min_load || (load == min_load && i == this_cpu)) {
1370 min_load = load;
1371 idlest = i;
1375 return idlest;
1379 * sched_balance_self: balance the current task (running on cpu) in domains
1380 * that have the 'flag' flag set. In practice, this is SD_BALANCE_FORK and
1381 * SD_BALANCE_EXEC.
1383 * Balance, ie. select the least loaded group.
1385 * Returns the target CPU number, or the same CPU if no balancing is needed.
1387 * preempt must be disabled.
1389 static int sched_balance_self(int cpu, int flag)
1391 struct task_struct *t = current;
1392 struct sched_domain *tmp, *sd = NULL;
1394 for_each_domain(cpu, tmp) {
1396 * If power savings logic is enabled for a domain, stop there.
1398 if (tmp->flags & SD_POWERSAVINGS_BALANCE)
1399 break;
1400 if (tmp->flags & flag)
1401 sd = tmp;
1404 while (sd) {
1405 cpumask_t span;
1406 struct sched_group *group;
1407 int new_cpu, weight;
1409 if (!(sd->flags & flag)) {
1410 sd = sd->child;
1411 continue;
1414 span = sd->span;
1415 group = find_idlest_group(sd, t, cpu);
1416 if (!group) {
1417 sd = sd->child;
1418 continue;
1421 new_cpu = find_idlest_cpu(group, t, cpu);
1422 if (new_cpu == -1 || new_cpu == cpu) {
1423 /* Now try balancing at a lower domain level of cpu */
1424 sd = sd->child;
1425 continue;
1428 /* Now try balancing at a lower domain level of new_cpu */
1429 cpu = new_cpu;
1430 sd = NULL;
1431 weight = cpus_weight(span);
1432 for_each_domain(cpu, tmp) {
1433 if (weight <= cpus_weight(tmp->span))
1434 break;
1435 if (tmp->flags & flag)
1436 sd = tmp;
1438 /* while loop will break here if sd == NULL */
1441 return cpu;
1444 #endif /* CONFIG_SMP */
1447 * wake_idle() will wake a task on an idle cpu if task->cpu is
1448 * not idle and an idle cpu is available. The span of cpus to
1449 * search starts with cpus closest then further out as needed,
1450 * so we always favor a closer, idle cpu.
1452 * Returns the CPU we should wake onto.
1454 #if defined(ARCH_HAS_SCHED_WAKE_IDLE)
1455 static int wake_idle(int cpu, struct task_struct *p)
1457 cpumask_t tmp;
1458 struct sched_domain *sd;
1459 int i;
1462 * If it is idle, then it is the best cpu to run this task.
1464 * This cpu is also the best, if it has more than one task already.
1465 * Siblings must be also busy(in most cases) as they didn't already
1466 * pickup the extra load from this cpu and hence we need not check
1467 * sibling runqueue info. This will avoid the checks and cache miss
1468 * penalities associated with that.
1470 if (idle_cpu(cpu) || cpu_rq(cpu)->nr_running > 1)
1471 return cpu;
1473 for_each_domain(cpu, sd) {
1474 if (sd->flags & SD_WAKE_IDLE) {
1475 cpus_and(tmp, sd->span, p->cpus_allowed);
1476 for_each_cpu_mask(i, tmp) {
1477 if (idle_cpu(i))
1478 return i;
1481 else
1482 break;
1484 return cpu;
1486 #else
1487 static inline int wake_idle(int cpu, struct task_struct *p)
1489 return cpu;
1491 #endif
1493 /***
1494 * try_to_wake_up - wake up a thread
1495 * @p: the to-be-woken-up thread
1496 * @state: the mask of task states that can be woken
1497 * @sync: do a synchronous wakeup?
1499 * Put it on the run-queue if it's not already there. The "current"
1500 * thread is always on the run-queue (except when the actual
1501 * re-schedule is in progress), and as such you're allowed to do
1502 * the simpler "current->state = TASK_RUNNING" to mark yourself
1503 * runnable without the overhead of this.
1505 * returns failure only if the task is already active.
1507 static int try_to_wake_up(struct task_struct *p, unsigned int state, int sync)
1509 int cpu, this_cpu, success = 0;
1510 unsigned long flags;
1511 long old_state;
1512 struct rq *rq;
1513 #ifdef CONFIG_SMP
1514 struct sched_domain *sd, *this_sd = NULL;
1515 unsigned long load, this_load;
1516 int new_cpu;
1517 #endif
1519 rq = task_rq_lock(p, &flags);
1520 old_state = p->state;
1521 if (!(old_state & state))
1522 goto out;
1524 if (p->array)
1525 goto out_running;
1527 cpu = task_cpu(p);
1528 this_cpu = smp_processor_id();
1530 #ifdef CONFIG_SMP
1531 if (unlikely(task_running(rq, p)))
1532 goto out_activate;
1534 new_cpu = cpu;
1536 schedstat_inc(rq, ttwu_cnt);
1537 if (cpu == this_cpu) {
1538 schedstat_inc(rq, ttwu_local);
1539 goto out_set_cpu;
1542 for_each_domain(this_cpu, sd) {
1543 if (cpu_isset(cpu, sd->span)) {
1544 schedstat_inc(sd, ttwu_wake_remote);
1545 this_sd = sd;
1546 break;
1550 if (unlikely(!cpu_isset(this_cpu, p->cpus_allowed)))
1551 goto out_set_cpu;
1554 * Check for affine wakeup and passive balancing possibilities.
1556 if (this_sd) {
1557 int idx = this_sd->wake_idx;
1558 unsigned int imbalance;
1560 imbalance = 100 + (this_sd->imbalance_pct - 100) / 2;
1562 load = source_load(cpu, idx);
1563 this_load = target_load(this_cpu, idx);
1565 new_cpu = this_cpu; /* Wake to this CPU if we can */
1567 if (this_sd->flags & SD_WAKE_AFFINE) {
1568 unsigned long tl = this_load;
1569 unsigned long tl_per_task;
1571 tl_per_task = cpu_avg_load_per_task(this_cpu);
1574 * If sync wakeup then subtract the (maximum possible)
1575 * effect of the currently running task from the load
1576 * of the current CPU:
1578 if (sync)
1579 tl -= current->load_weight;
1581 if ((tl <= load &&
1582 tl + target_load(cpu, idx) <= tl_per_task) ||
1583 100*(tl + p->load_weight) <= imbalance*load) {
1585 * This domain has SD_WAKE_AFFINE and
1586 * p is cache cold in this domain, and
1587 * there is no bad imbalance.
1589 schedstat_inc(this_sd, ttwu_move_affine);
1590 goto out_set_cpu;
1595 * Start passive balancing when half the imbalance_pct
1596 * limit is reached.
1598 if (this_sd->flags & SD_WAKE_BALANCE) {
1599 if (imbalance*this_load <= 100*load) {
1600 schedstat_inc(this_sd, ttwu_move_balance);
1601 goto out_set_cpu;
1606 new_cpu = cpu; /* Could not wake to this_cpu. Wake to cpu instead */
1607 out_set_cpu:
1608 new_cpu = wake_idle(new_cpu, p);
1609 if (new_cpu != cpu) {
1610 set_task_cpu(p, new_cpu);
1611 task_rq_unlock(rq, &flags);
1612 /* might preempt at this point */
1613 rq = task_rq_lock(p, &flags);
1614 old_state = p->state;
1615 if (!(old_state & state))
1616 goto out;
1617 if (p->array)
1618 goto out_running;
1620 this_cpu = smp_processor_id();
1621 cpu = task_cpu(p);
1624 out_activate:
1625 #endif /* CONFIG_SMP */
1626 if (old_state == TASK_UNINTERRUPTIBLE) {
1627 rq->nr_uninterruptible--;
1629 * Tasks on involuntary sleep don't earn
1630 * sleep_avg beyond just interactive state.
1632 p->sleep_type = SLEEP_NONINTERACTIVE;
1633 } else
1636 * Tasks that have marked their sleep as noninteractive get
1637 * woken up with their sleep average not weighted in an
1638 * interactive way.
1640 if (old_state & TASK_NONINTERACTIVE)
1641 p->sleep_type = SLEEP_NONINTERACTIVE;
1644 activate_task(p, rq, cpu == this_cpu);
1646 * Sync wakeups (i.e. those types of wakeups where the waker
1647 * has indicated that it will leave the CPU in short order)
1648 * don't trigger a preemption, if the woken up task will run on
1649 * this cpu. (in this case the 'I will reschedule' promise of
1650 * the waker guarantees that the freshly woken up task is going
1651 * to be considered on this CPU.)
1653 if (!sync || cpu != this_cpu) {
1654 if (TASK_PREEMPTS_CURR(p, rq))
1655 resched_task(rq->curr);
1657 success = 1;
1659 out_running:
1660 p->state = TASK_RUNNING;
1661 out:
1662 task_rq_unlock(rq, &flags);
1664 return success;
1667 int fastcall wake_up_process(struct task_struct *p)
1669 return try_to_wake_up(p, TASK_STOPPED | TASK_TRACED |
1670 TASK_INTERRUPTIBLE | TASK_UNINTERRUPTIBLE, 0);
1672 EXPORT_SYMBOL(wake_up_process);
1674 int fastcall wake_up_state(struct task_struct *p, unsigned int state)
1676 return try_to_wake_up(p, state, 0);
1679 static void task_running_tick(struct rq *rq, struct task_struct *p);
1681 * Perform scheduler related setup for a newly forked process p.
1682 * p is forked by current.
1684 void fastcall sched_fork(struct task_struct *p, int clone_flags)
1686 int cpu = get_cpu();
1688 #ifdef CONFIG_SMP
1689 cpu = sched_balance_self(cpu, SD_BALANCE_FORK);
1690 #endif
1691 set_task_cpu(p, cpu);
1694 * We mark the process as running here, but have not actually
1695 * inserted it onto the runqueue yet. This guarantees that
1696 * nobody will actually run it, and a signal or other external
1697 * event cannot wake it up and insert it on the runqueue either.
1699 p->state = TASK_RUNNING;
1702 * Make sure we do not leak PI boosting priority to the child:
1704 p->prio = current->normal_prio;
1706 INIT_LIST_HEAD(&p->run_list);
1707 p->array = NULL;
1708 #if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
1709 if (unlikely(sched_info_on()))
1710 memset(&p->sched_info, 0, sizeof(p->sched_info));
1711 #endif
1712 #if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
1713 p->oncpu = 0;
1714 #endif
1715 #ifdef CONFIG_PREEMPT
1716 /* Want to start with kernel preemption disabled. */
1717 task_thread_info(p)->preempt_count = 1;
1718 #endif
1720 * Share the timeslice between parent and child, thus the
1721 * total amount of pending timeslices in the system doesn't change,
1722 * resulting in more scheduling fairness.
1724 local_irq_disable();
1725 p->time_slice = (current->time_slice + 1) >> 1;
1727 * The remainder of the first timeslice might be recovered by
1728 * the parent if the child exits early enough.
1730 p->first_time_slice = 1;
1731 current->time_slice >>= 1;
1732 p->timestamp = sched_clock();
1733 if (unlikely(!current->time_slice)) {
1735 * This case is rare, it happens when the parent has only
1736 * a single jiffy left from its timeslice. Taking the
1737 * runqueue lock is not a problem.
1739 current->time_slice = 1;
1740 task_running_tick(cpu_rq(cpu), current);
1742 local_irq_enable();
1743 put_cpu();
1747 * wake_up_new_task - wake up a newly created task for the first time.
1749 * This function will do some initial scheduler statistics housekeeping
1750 * that must be done for every newly created context, then puts the task
1751 * on the runqueue and wakes it.
1753 void fastcall wake_up_new_task(struct task_struct *p, unsigned long clone_flags)
1755 struct rq *rq, *this_rq;
1756 unsigned long flags;
1757 int this_cpu, cpu;
1759 rq = task_rq_lock(p, &flags);
1760 BUG_ON(p->state != TASK_RUNNING);
1761 this_cpu = smp_processor_id();
1762 cpu = task_cpu(p);
1765 * We decrease the sleep average of forking parents
1766 * and children as well, to keep max-interactive tasks
1767 * from forking tasks that are max-interactive. The parent
1768 * (current) is done further down, under its lock.
1770 p->sleep_avg = JIFFIES_TO_NS(CURRENT_BONUS(p) *
1771 CHILD_PENALTY / 100 * MAX_SLEEP_AVG / MAX_BONUS);
1773 p->prio = effective_prio(p);
1775 if (likely(cpu == this_cpu)) {
1776 if (!(clone_flags & CLONE_VM)) {
1778 * The VM isn't cloned, so we're in a good position to
1779 * do child-runs-first in anticipation of an exec. This
1780 * usually avoids a lot of COW overhead.
1782 if (unlikely(!current->array))
1783 __activate_task(p, rq);
1784 else {
1785 p->prio = current->prio;
1786 p->normal_prio = current->normal_prio;
1787 list_add_tail(&p->run_list, &current->run_list);
1788 p->array = current->array;
1789 p->array->nr_active++;
1790 inc_nr_running(p, rq);
1792 set_need_resched();
1793 } else
1794 /* Run child last */
1795 __activate_task(p, rq);
1797 * We skip the following code due to cpu == this_cpu
1799 * task_rq_unlock(rq, &flags);
1800 * this_rq = task_rq_lock(current, &flags);
1802 this_rq = rq;
1803 } else {
1804 this_rq = cpu_rq(this_cpu);
1807 * Not the local CPU - must adjust timestamp. This should
1808 * get optimised away in the !CONFIG_SMP case.
1810 p->timestamp = (p->timestamp - this_rq->most_recent_timestamp)
1811 + rq->most_recent_timestamp;
1812 __activate_task(p, rq);
1813 if (TASK_PREEMPTS_CURR(p, rq))
1814 resched_task(rq->curr);
1817 * Parent and child are on different CPUs, now get the
1818 * parent runqueue to update the parent's ->sleep_avg:
1820 task_rq_unlock(rq, &flags);
1821 this_rq = task_rq_lock(current, &flags);
1823 current->sleep_avg = JIFFIES_TO_NS(CURRENT_BONUS(current) *
1824 PARENT_PENALTY / 100 * MAX_SLEEP_AVG / MAX_BONUS);
1825 task_rq_unlock(this_rq, &flags);
1829 * Potentially available exiting-child timeslices are
1830 * retrieved here - this way the parent does not get
1831 * penalized for creating too many threads.
1833 * (this cannot be used to 'generate' timeslices
1834 * artificially, because any timeslice recovered here
1835 * was given away by the parent in the first place.)
1837 void fastcall sched_exit(struct task_struct *p)
1839 unsigned long flags;
1840 struct rq *rq;
1843 * If the child was a (relative-) CPU hog then decrease
1844 * the sleep_avg of the parent as well.
1846 rq = task_rq_lock(p->parent, &flags);
1847 if (p->first_time_slice && task_cpu(p) == task_cpu(p->parent)) {
1848 p->parent->time_slice += p->time_slice;
1849 if (unlikely(p->parent->time_slice > task_timeslice(p)))
1850 p->parent->time_slice = task_timeslice(p);
1852 if (p->sleep_avg < p->parent->sleep_avg)
1853 p->parent->sleep_avg = p->parent->sleep_avg /
1854 (EXIT_WEIGHT + 1) * EXIT_WEIGHT + p->sleep_avg /
1855 (EXIT_WEIGHT + 1);
1856 task_rq_unlock(rq, &flags);
1860 * prepare_task_switch - prepare to switch tasks
1861 * @rq: the runqueue preparing to switch
1862 * @next: the task we are going to switch to.
1864 * This is called with the rq lock held and interrupts off. It must
1865 * be paired with a subsequent finish_task_switch after the context
1866 * switch.
1868 * prepare_task_switch sets up locking and calls architecture specific
1869 * hooks.
1871 static inline void prepare_task_switch(struct rq *rq, struct task_struct *next)
1873 prepare_lock_switch(rq, next);
1874 prepare_arch_switch(next);
1878 * finish_task_switch - clean up after a task-switch
1879 * @rq: runqueue associated with task-switch
1880 * @prev: the thread we just switched away from.
1882 * finish_task_switch must be called after the context switch, paired
1883 * with a prepare_task_switch call before the context switch.
1884 * finish_task_switch will reconcile locking set up by prepare_task_switch,
1885 * and do any other architecture-specific cleanup actions.
1887 * Note that we may have delayed dropping an mm in context_switch(). If
1888 * so, we finish that here outside of the runqueue lock. (Doing it
1889 * with the lock held can cause deadlocks; see schedule() for
1890 * details.)
1892 static inline void finish_task_switch(struct rq *rq, struct task_struct *prev)
1893 __releases(rq->lock)
1895 struct mm_struct *mm = rq->prev_mm;
1896 long prev_state;
1898 rq->prev_mm = NULL;
1901 * A task struct has one reference for the use as "current".
1902 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
1903 * schedule one last time. The schedule call will never return, and
1904 * the scheduled task must drop that reference.
1905 * The test for TASK_DEAD must occur while the runqueue locks are
1906 * still held, otherwise prev could be scheduled on another cpu, die
1907 * there before we look at prev->state, and then the reference would
1908 * be dropped twice.
1909 * Manfred Spraul <manfred@colorfullife.com>
1911 prev_state = prev->state;
1912 finish_arch_switch(prev);
1913 finish_lock_switch(rq, prev);
1914 if (mm)
1915 mmdrop(mm);
1916 if (unlikely(prev_state == TASK_DEAD)) {
1918 * Remove function-return probe instances associated with this
1919 * task and put them back on the free list.
1921 kprobe_flush_task(prev);
1922 put_task_struct(prev);
1927 * schedule_tail - first thing a freshly forked thread must call.
1928 * @prev: the thread we just switched away from.
1930 asmlinkage void schedule_tail(struct task_struct *prev)
1931 __releases(rq->lock)
1933 struct rq *rq = this_rq();
1935 finish_task_switch(rq, prev);
1936 #ifdef __ARCH_WANT_UNLOCKED_CTXSW
1937 /* In this case, finish_task_switch does not reenable preemption */
1938 preempt_enable();
1939 #endif
1940 if (current->set_child_tid)
1941 put_user(current->pid, current->set_child_tid);
1945 * context_switch - switch to the new MM and the new
1946 * thread's register state.
1948 static inline struct task_struct *
1949 context_switch(struct rq *rq, struct task_struct *prev,
1950 struct task_struct *next)
1952 struct mm_struct *mm = next->mm;
1953 struct mm_struct *oldmm = prev->active_mm;
1956 * For paravirt, this is coupled with an exit in switch_to to
1957 * combine the page table reload and the switch backend into
1958 * one hypercall.
1960 arch_enter_lazy_cpu_mode();
1962 if (!mm) {
1963 next->active_mm = oldmm;
1964 atomic_inc(&oldmm->mm_count);
1965 enter_lazy_tlb(oldmm, next);
1966 } else
1967 switch_mm(oldmm, mm, next);
1969 if (!prev->mm) {
1970 prev->active_mm = NULL;
1971 WARN_ON(rq->prev_mm);
1972 rq->prev_mm = oldmm;
1975 * Since the runqueue lock will be released by the next
1976 * task (which is an invalid locking op but in the case
1977 * of the scheduler it's an obvious special-case), so we
1978 * do an early lockdep release here:
1980 #ifndef __ARCH_WANT_UNLOCKED_CTXSW
1981 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
1982 #endif
1984 /* Here we just switch the register state and the stack. */
1985 switch_to(prev, next, prev);
1987 return prev;
1991 * nr_running, nr_uninterruptible and nr_context_switches:
1993 * externally visible scheduler statistics: current number of runnable
1994 * threads, current number of uninterruptible-sleeping threads, total
1995 * number of context switches performed since bootup.
1997 unsigned long nr_running(void)
1999 unsigned long i, sum = 0;
2001 for_each_online_cpu(i)
2002 sum += cpu_rq(i)->nr_running;
2004 return sum;
2007 unsigned long nr_uninterruptible(void)
2009 unsigned long i, sum = 0;
2011 for_each_possible_cpu(i)
2012 sum += cpu_rq(i)->nr_uninterruptible;
2015 * Since we read the counters lockless, it might be slightly
2016 * inaccurate. Do not allow it to go below zero though:
2018 if (unlikely((long)sum < 0))
2019 sum = 0;
2021 return sum;
2024 unsigned long long nr_context_switches(void)
2026 int i;
2027 unsigned long long sum = 0;
2029 for_each_possible_cpu(i)
2030 sum += cpu_rq(i)->nr_switches;
2032 return sum;
2035 unsigned long nr_iowait(void)
2037 unsigned long i, sum = 0;
2039 for_each_possible_cpu(i)
2040 sum += atomic_read(&cpu_rq(i)->nr_iowait);
2042 return sum;
2045 unsigned long nr_active(void)
2047 unsigned long i, running = 0, uninterruptible = 0;
2049 for_each_online_cpu(i) {
2050 running += cpu_rq(i)->nr_running;
2051 uninterruptible += cpu_rq(i)->nr_uninterruptible;
2054 if (unlikely((long)uninterruptible < 0))
2055 uninterruptible = 0;
2057 return running + uninterruptible;
2060 #ifdef CONFIG_SMP
2063 * Is this task likely cache-hot:
2065 static inline int
2066 task_hot(struct task_struct *p, unsigned long long now, struct sched_domain *sd)
2068 return (long long)(now - p->last_ran) < (long long)sd->cache_hot_time;
2072 * double_rq_lock - safely lock two runqueues
2074 * Note this does not disable interrupts like task_rq_lock,
2075 * you need to do so manually before calling.
2077 static void double_rq_lock(struct rq *rq1, struct rq *rq2)
2078 __acquires(rq1->lock)
2079 __acquires(rq2->lock)
2081 BUG_ON(!irqs_disabled());
2082 if (rq1 == rq2) {
2083 spin_lock(&rq1->lock);
2084 __acquire(rq2->lock); /* Fake it out ;) */
2085 } else {
2086 if (rq1 < rq2) {
2087 spin_lock(&rq1->lock);
2088 spin_lock(&rq2->lock);
2089 } else {
2090 spin_lock(&rq2->lock);
2091 spin_lock(&rq1->lock);
2097 * double_rq_unlock - safely unlock two runqueues
2099 * Note this does not restore interrupts like task_rq_unlock,
2100 * you need to do so manually after calling.
2102 static void double_rq_unlock(struct rq *rq1, struct rq *rq2)
2103 __releases(rq1->lock)
2104 __releases(rq2->lock)
2106 spin_unlock(&rq1->lock);
2107 if (rq1 != rq2)
2108 spin_unlock(&rq2->lock);
2109 else
2110 __release(rq2->lock);
2114 * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
2116 static void double_lock_balance(struct rq *this_rq, struct rq *busiest)
2117 __releases(this_rq->lock)
2118 __acquires(busiest->lock)
2119 __acquires(this_rq->lock)
2121 if (unlikely(!irqs_disabled())) {
2122 /* printk() doesn't work good under rq->lock */
2123 spin_unlock(&this_rq->lock);
2124 BUG_ON(1);
2126 if (unlikely(!spin_trylock(&busiest->lock))) {
2127 if (busiest < this_rq) {
2128 spin_unlock(&this_rq->lock);
2129 spin_lock(&busiest->lock);
2130 spin_lock(&this_rq->lock);
2131 } else
2132 spin_lock(&busiest->lock);
2137 * If dest_cpu is allowed for this process, migrate the task to it.
2138 * This is accomplished by forcing the cpu_allowed mask to only
2139 * allow dest_cpu, which will force the cpu onto dest_cpu. Then
2140 * the cpu_allowed mask is restored.
2142 static void sched_migrate_task(struct task_struct *p, int dest_cpu)
2144 struct migration_req req;
2145 unsigned long flags;
2146 struct rq *rq;
2148 rq = task_rq_lock(p, &flags);
2149 if (!cpu_isset(dest_cpu, p->cpus_allowed)
2150 || unlikely(cpu_is_offline(dest_cpu)))
2151 goto out;
2153 /* force the process onto the specified CPU */
2154 if (migrate_task(p, dest_cpu, &req)) {
2155 /* Need to wait for migration thread (might exit: take ref). */
2156 struct task_struct *mt = rq->migration_thread;
2158 get_task_struct(mt);
2159 task_rq_unlock(rq, &flags);
2160 wake_up_process(mt);
2161 put_task_struct(mt);
2162 wait_for_completion(&req.done);
2164 return;
2166 out:
2167 task_rq_unlock(rq, &flags);
2171 * sched_exec - execve() is a valuable balancing opportunity, because at
2172 * this point the task has the smallest effective memory and cache footprint.
2174 void sched_exec(void)
2176 int new_cpu, this_cpu = get_cpu();
2177 new_cpu = sched_balance_self(this_cpu, SD_BALANCE_EXEC);
2178 put_cpu();
2179 if (new_cpu != this_cpu)
2180 sched_migrate_task(current, new_cpu);
2184 * pull_task - move a task from a remote runqueue to the local runqueue.
2185 * Both runqueues must be locked.
2187 static void pull_task(struct rq *src_rq, struct prio_array *src_array,
2188 struct task_struct *p, struct rq *this_rq,
2189 struct prio_array *this_array, int this_cpu)
2191 dequeue_task(p, src_array);
2192 dec_nr_running(p, src_rq);
2193 set_task_cpu(p, this_cpu);
2194 inc_nr_running(p, this_rq);
2195 enqueue_task(p, this_array);
2196 p->timestamp = (p->timestamp - src_rq->most_recent_timestamp)
2197 + this_rq->most_recent_timestamp;
2199 * Note that idle threads have a prio of MAX_PRIO, for this test
2200 * to be always true for them.
2202 if (TASK_PREEMPTS_CURR(p, this_rq))
2203 resched_task(this_rq->curr);
2207 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
2209 static
2210 int can_migrate_task(struct task_struct *p, struct rq *rq, int this_cpu,
2211 struct sched_domain *sd, enum idle_type idle,
2212 int *all_pinned)
2215 * We do not migrate tasks that are:
2216 * 1) running (obviously), or
2217 * 2) cannot be migrated to this CPU due to cpus_allowed, or
2218 * 3) are cache-hot on their current CPU.
2220 if (!cpu_isset(this_cpu, p->cpus_allowed))
2221 return 0;
2222 *all_pinned = 0;
2224 if (task_running(rq, p))
2225 return 0;
2228 * Aggressive migration if:
2229 * 1) task is cache cold, or
2230 * 2) too many balance attempts have failed.
2233 if (sd->nr_balance_failed > sd->cache_nice_tries) {
2234 #ifdef CONFIG_SCHEDSTATS
2235 if (task_hot(p, rq->most_recent_timestamp, sd))
2236 schedstat_inc(sd, lb_hot_gained[idle]);
2237 #endif
2238 return 1;
2241 if (task_hot(p, rq->most_recent_timestamp, sd))
2242 return 0;
2243 return 1;
2246 #define rq_best_prio(rq) min((rq)->curr->prio, (rq)->best_expired_prio)
2249 * move_tasks tries to move up to max_nr_move tasks and max_load_move weighted
2250 * load from busiest to this_rq, as part of a balancing operation within
2251 * "domain". Returns the number of tasks moved.
2253 * Called with both runqueues locked.
2255 static int move_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
2256 unsigned long max_nr_move, unsigned long max_load_move,
2257 struct sched_domain *sd, enum idle_type idle,
2258 int *all_pinned)
2260 int idx, pulled = 0, pinned = 0, this_best_prio, best_prio,
2261 best_prio_seen, skip_for_load;
2262 struct prio_array *array, *dst_array;
2263 struct list_head *head, *curr;
2264 struct task_struct *tmp;
2265 long rem_load_move;
2267 if (max_nr_move == 0 || max_load_move == 0)
2268 goto out;
2270 rem_load_move = max_load_move;
2271 pinned = 1;
2272 this_best_prio = rq_best_prio(this_rq);
2273 best_prio = rq_best_prio(busiest);
2275 * Enable handling of the case where there is more than one task
2276 * with the best priority. If the current running task is one
2277 * of those with prio==best_prio we know it won't be moved
2278 * and therefore it's safe to override the skip (based on load) of
2279 * any task we find with that prio.
2281 best_prio_seen = best_prio == busiest->curr->prio;
2284 * We first consider expired tasks. Those will likely not be
2285 * executed in the near future, and they are most likely to
2286 * be cache-cold, thus switching CPUs has the least effect
2287 * on them.
2289 if (busiest->expired->nr_active) {
2290 array = busiest->expired;
2291 dst_array = this_rq->expired;
2292 } else {
2293 array = busiest->active;
2294 dst_array = this_rq->active;
2297 new_array:
2298 /* Start searching at priority 0: */
2299 idx = 0;
2300 skip_bitmap:
2301 if (!idx)
2302 idx = sched_find_first_bit(array->bitmap);
2303 else
2304 idx = find_next_bit(array->bitmap, MAX_PRIO, idx);
2305 if (idx >= MAX_PRIO) {
2306 if (array == busiest->expired && busiest->active->nr_active) {
2307 array = busiest->active;
2308 dst_array = this_rq->active;
2309 goto new_array;
2311 goto out;
2314 head = array->queue + idx;
2315 curr = head->prev;
2316 skip_queue:
2317 tmp = list_entry(curr, struct task_struct, run_list);
2319 curr = curr->prev;
2322 * To help distribute high priority tasks accross CPUs we don't
2323 * skip a task if it will be the highest priority task (i.e. smallest
2324 * prio value) on its new queue regardless of its load weight
2326 skip_for_load = tmp->load_weight > rem_load_move;
2327 if (skip_for_load && idx < this_best_prio)
2328 skip_for_load = !best_prio_seen && idx == best_prio;
2329 if (skip_for_load ||
2330 !can_migrate_task(tmp, busiest, this_cpu, sd, idle, &pinned)) {
2332 best_prio_seen |= idx == best_prio;
2333 if (curr != head)
2334 goto skip_queue;
2335 idx++;
2336 goto skip_bitmap;
2339 pull_task(busiest, array, tmp, this_rq, dst_array, this_cpu);
2340 pulled++;
2341 rem_load_move -= tmp->load_weight;
2344 * We only want to steal up to the prescribed number of tasks
2345 * and the prescribed amount of weighted load.
2347 if (pulled < max_nr_move && rem_load_move > 0) {
2348 if (idx < this_best_prio)
2349 this_best_prio = idx;
2350 if (curr != head)
2351 goto skip_queue;
2352 idx++;
2353 goto skip_bitmap;
2355 out:
2357 * Right now, this is the only place pull_task() is called,
2358 * so we can safely collect pull_task() stats here rather than
2359 * inside pull_task().
2361 schedstat_add(sd, lb_gained[idle], pulled);
2363 if (all_pinned)
2364 *all_pinned = pinned;
2365 return pulled;
2369 * find_busiest_group finds and returns the busiest CPU group within the
2370 * domain. It calculates and returns the amount of weighted load which
2371 * should be moved to restore balance via the imbalance parameter.
2373 static struct sched_group *
2374 find_busiest_group(struct sched_domain *sd, int this_cpu,
2375 unsigned long *imbalance, enum idle_type idle, int *sd_idle,
2376 cpumask_t *cpus, int *balance)
2378 struct sched_group *busiest = NULL, *this = NULL, *group = sd->groups;
2379 unsigned long max_load, avg_load, total_load, this_load, total_pwr;
2380 unsigned long max_pull;
2381 unsigned long busiest_load_per_task, busiest_nr_running;
2382 unsigned long this_load_per_task, this_nr_running;
2383 int load_idx;
2384 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
2385 int power_savings_balance = 1;
2386 unsigned long leader_nr_running = 0, min_load_per_task = 0;
2387 unsigned long min_nr_running = ULONG_MAX;
2388 struct sched_group *group_min = NULL, *group_leader = NULL;
2389 #endif
2391 max_load = this_load = total_load = total_pwr = 0;
2392 busiest_load_per_task = busiest_nr_running = 0;
2393 this_load_per_task = this_nr_running = 0;
2394 if (idle == NOT_IDLE)
2395 load_idx = sd->busy_idx;
2396 else if (idle == NEWLY_IDLE)
2397 load_idx = sd->newidle_idx;
2398 else
2399 load_idx = sd->idle_idx;
2401 do {
2402 unsigned long load, group_capacity;
2403 int local_group;
2404 int i;
2405 unsigned int balance_cpu = -1, first_idle_cpu = 0;
2406 unsigned long sum_nr_running, sum_weighted_load;
2408 local_group = cpu_isset(this_cpu, group->cpumask);
2410 if (local_group)
2411 balance_cpu = first_cpu(group->cpumask);
2413 /* Tally up the load of all CPUs in the group */
2414 sum_weighted_load = sum_nr_running = avg_load = 0;
2416 for_each_cpu_mask(i, group->cpumask) {
2417 struct rq *rq;
2419 if (!cpu_isset(i, *cpus))
2420 continue;
2422 rq = cpu_rq(i);
2424 if (*sd_idle && !idle_cpu(i))
2425 *sd_idle = 0;
2427 /* Bias balancing toward cpus of our domain */
2428 if (local_group) {
2429 if (idle_cpu(i) && !first_idle_cpu) {
2430 first_idle_cpu = 1;
2431 balance_cpu = i;
2434 load = target_load(i, load_idx);
2435 } else
2436 load = source_load(i, load_idx);
2438 avg_load += load;
2439 sum_nr_running += rq->nr_running;
2440 sum_weighted_load += rq->raw_weighted_load;
2444 * First idle cpu or the first cpu(busiest) in this sched group
2445 * is eligible for doing load balancing at this and above
2446 * domains.
2448 if (local_group && balance_cpu != this_cpu && balance) {
2449 *balance = 0;
2450 goto ret;
2453 total_load += avg_load;
2454 total_pwr += group->__cpu_power;
2456 /* Adjust by relative CPU power of the group */
2457 avg_load = sg_div_cpu_power(group,
2458 avg_load * SCHED_LOAD_SCALE);
2460 group_capacity = group->__cpu_power / SCHED_LOAD_SCALE;
2462 if (local_group) {
2463 this_load = avg_load;
2464 this = group;
2465 this_nr_running = sum_nr_running;
2466 this_load_per_task = sum_weighted_load;
2467 } else if (avg_load > max_load &&
2468 sum_nr_running > group_capacity) {
2469 max_load = avg_load;
2470 busiest = group;
2471 busiest_nr_running = sum_nr_running;
2472 busiest_load_per_task = sum_weighted_load;
2475 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
2477 * Busy processors will not participate in power savings
2478 * balance.
2480 if (idle == NOT_IDLE || !(sd->flags & SD_POWERSAVINGS_BALANCE))
2481 goto group_next;
2484 * If the local group is idle or completely loaded
2485 * no need to do power savings balance at this domain
2487 if (local_group && (this_nr_running >= group_capacity ||
2488 !this_nr_running))
2489 power_savings_balance = 0;
2492 * If a group is already running at full capacity or idle,
2493 * don't include that group in power savings calculations
2495 if (!power_savings_balance || sum_nr_running >= group_capacity
2496 || !sum_nr_running)
2497 goto group_next;
2500 * Calculate the group which has the least non-idle load.
2501 * This is the group from where we need to pick up the load
2502 * for saving power
2504 if ((sum_nr_running < min_nr_running) ||
2505 (sum_nr_running == min_nr_running &&
2506 first_cpu(group->cpumask) <
2507 first_cpu(group_min->cpumask))) {
2508 group_min = group;
2509 min_nr_running = sum_nr_running;
2510 min_load_per_task = sum_weighted_load /
2511 sum_nr_running;
2515 * Calculate the group which is almost near its
2516 * capacity but still has some space to pick up some load
2517 * from other group and save more power
2519 if (sum_nr_running <= group_capacity - 1) {
2520 if (sum_nr_running > leader_nr_running ||
2521 (sum_nr_running == leader_nr_running &&
2522 first_cpu(group->cpumask) >
2523 first_cpu(group_leader->cpumask))) {
2524 group_leader = group;
2525 leader_nr_running = sum_nr_running;
2528 group_next:
2529 #endif
2530 group = group->next;
2531 } while (group != sd->groups);
2533 if (!busiest || this_load >= max_load || busiest_nr_running == 0)
2534 goto out_balanced;
2536 avg_load = (SCHED_LOAD_SCALE * total_load) / total_pwr;
2538 if (this_load >= avg_load ||
2539 100*max_load <= sd->imbalance_pct*this_load)
2540 goto out_balanced;
2542 busiest_load_per_task /= busiest_nr_running;
2544 * We're trying to get all the cpus to the average_load, so we don't
2545 * want to push ourselves above the average load, nor do we wish to
2546 * reduce the max loaded cpu below the average load, as either of these
2547 * actions would just result in more rebalancing later, and ping-pong
2548 * tasks around. Thus we look for the minimum possible imbalance.
2549 * Negative imbalances (*we* are more loaded than anyone else) will
2550 * be counted as no imbalance for these purposes -- we can't fix that
2551 * by pulling tasks to us. Be careful of negative numbers as they'll
2552 * appear as very large values with unsigned longs.
2554 if (max_load <= busiest_load_per_task)
2555 goto out_balanced;
2558 * In the presence of smp nice balancing, certain scenarios can have
2559 * max load less than avg load(as we skip the groups at or below
2560 * its cpu_power, while calculating max_load..)
2562 if (max_load < avg_load) {
2563 *imbalance = 0;
2564 goto small_imbalance;
2567 /* Don't want to pull so many tasks that a group would go idle */
2568 max_pull = min(max_load - avg_load, max_load - busiest_load_per_task);
2570 /* How much load to actually move to equalise the imbalance */
2571 *imbalance = min(max_pull * busiest->__cpu_power,
2572 (avg_load - this_load) * this->__cpu_power)
2573 / SCHED_LOAD_SCALE;
2576 * if *imbalance is less than the average load per runnable task
2577 * there is no gaurantee that any tasks will be moved so we'll have
2578 * a think about bumping its value to force at least one task to be
2579 * moved
2581 if (*imbalance < busiest_load_per_task) {
2582 unsigned long tmp, pwr_now, pwr_move;
2583 unsigned int imbn;
2585 small_imbalance:
2586 pwr_move = pwr_now = 0;
2587 imbn = 2;
2588 if (this_nr_running) {
2589 this_load_per_task /= this_nr_running;
2590 if (busiest_load_per_task > this_load_per_task)
2591 imbn = 1;
2592 } else
2593 this_load_per_task = SCHED_LOAD_SCALE;
2595 if (max_load - this_load >= busiest_load_per_task * imbn) {
2596 *imbalance = busiest_load_per_task;
2597 return busiest;
2601 * OK, we don't have enough imbalance to justify moving tasks,
2602 * however we may be able to increase total CPU power used by
2603 * moving them.
2606 pwr_now += busiest->__cpu_power *
2607 min(busiest_load_per_task, max_load);
2608 pwr_now += this->__cpu_power *
2609 min(this_load_per_task, this_load);
2610 pwr_now /= SCHED_LOAD_SCALE;
2612 /* Amount of load we'd subtract */
2613 tmp = sg_div_cpu_power(busiest,
2614 busiest_load_per_task * SCHED_LOAD_SCALE);
2615 if (max_load > tmp)
2616 pwr_move += busiest->__cpu_power *
2617 min(busiest_load_per_task, max_load - tmp);
2619 /* Amount of load we'd add */
2620 if (max_load * busiest->__cpu_power <
2621 busiest_load_per_task * SCHED_LOAD_SCALE)
2622 tmp = sg_div_cpu_power(this,
2623 max_load * busiest->__cpu_power);
2624 else
2625 tmp = sg_div_cpu_power(this,
2626 busiest_load_per_task * SCHED_LOAD_SCALE);
2627 pwr_move += this->__cpu_power *
2628 min(this_load_per_task, this_load + tmp);
2629 pwr_move /= SCHED_LOAD_SCALE;
2631 /* Move if we gain throughput */
2632 if (pwr_move <= pwr_now)
2633 goto out_balanced;
2635 *imbalance = busiest_load_per_task;
2638 return busiest;
2640 out_balanced:
2641 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
2642 if (idle == NOT_IDLE || !(sd->flags & SD_POWERSAVINGS_BALANCE))
2643 goto ret;
2645 if (this == group_leader && group_leader != group_min) {
2646 *imbalance = min_load_per_task;
2647 return group_min;
2649 #endif
2650 ret:
2651 *imbalance = 0;
2652 return NULL;
2656 * find_busiest_queue - find the busiest runqueue among the cpus in group.
2658 static struct rq *
2659 find_busiest_queue(struct sched_group *group, enum idle_type idle,
2660 unsigned long imbalance, cpumask_t *cpus)
2662 struct rq *busiest = NULL, *rq;
2663 unsigned long max_load = 0;
2664 int i;
2666 for_each_cpu_mask(i, group->cpumask) {
2668 if (!cpu_isset(i, *cpus))
2669 continue;
2671 rq = cpu_rq(i);
2673 if (rq->nr_running == 1 && rq->raw_weighted_load > imbalance)
2674 continue;
2676 if (rq->raw_weighted_load > max_load) {
2677 max_load = rq->raw_weighted_load;
2678 busiest = rq;
2682 return busiest;
2686 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
2687 * so long as it is large enough.
2689 #define MAX_PINNED_INTERVAL 512
2691 static inline unsigned long minus_1_or_zero(unsigned long n)
2693 return n > 0 ? n - 1 : 0;
2697 * Check this_cpu to ensure it is balanced within domain. Attempt to move
2698 * tasks if there is an imbalance.
2700 static int load_balance(int this_cpu, struct rq *this_rq,
2701 struct sched_domain *sd, enum idle_type idle,
2702 int *balance)
2704 int nr_moved, all_pinned = 0, active_balance = 0, sd_idle = 0;
2705 struct sched_group *group;
2706 unsigned long imbalance;
2707 struct rq *busiest;
2708 cpumask_t cpus = CPU_MASK_ALL;
2709 unsigned long flags;
2712 * When power savings policy is enabled for the parent domain, idle
2713 * sibling can pick up load irrespective of busy siblings. In this case,
2714 * let the state of idle sibling percolate up as IDLE, instead of
2715 * portraying it as NOT_IDLE.
2717 if (idle != NOT_IDLE && sd->flags & SD_SHARE_CPUPOWER &&
2718 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
2719 sd_idle = 1;
2721 schedstat_inc(sd, lb_cnt[idle]);
2723 redo:
2724 group = find_busiest_group(sd, this_cpu, &imbalance, idle, &sd_idle,
2725 &cpus, balance);
2727 if (*balance == 0)
2728 goto out_balanced;
2730 if (!group) {
2731 schedstat_inc(sd, lb_nobusyg[idle]);
2732 goto out_balanced;
2735 busiest = find_busiest_queue(group, idle, imbalance, &cpus);
2736 if (!busiest) {
2737 schedstat_inc(sd, lb_nobusyq[idle]);
2738 goto out_balanced;
2741 BUG_ON(busiest == this_rq);
2743 schedstat_add(sd, lb_imbalance[idle], imbalance);
2745 nr_moved = 0;
2746 if (busiest->nr_running > 1) {
2748 * Attempt to move tasks. If find_busiest_group has found
2749 * an imbalance but busiest->nr_running <= 1, the group is
2750 * still unbalanced. nr_moved simply stays zero, so it is
2751 * correctly treated as an imbalance.
2753 local_irq_save(flags);
2754 double_rq_lock(this_rq, busiest);
2755 nr_moved = move_tasks(this_rq, this_cpu, busiest,
2756 minus_1_or_zero(busiest->nr_running),
2757 imbalance, sd, idle, &all_pinned);
2758 double_rq_unlock(this_rq, busiest);
2759 local_irq_restore(flags);
2762 * some other cpu did the load balance for us.
2764 if (nr_moved && this_cpu != smp_processor_id())
2765 resched_cpu(this_cpu);
2767 /* All tasks on this runqueue were pinned by CPU affinity */
2768 if (unlikely(all_pinned)) {
2769 cpu_clear(cpu_of(busiest), cpus);
2770 if (!cpus_empty(cpus))
2771 goto redo;
2772 goto out_balanced;
2776 if (!nr_moved) {
2777 schedstat_inc(sd, lb_failed[idle]);
2778 sd->nr_balance_failed++;
2780 if (unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2)) {
2782 spin_lock_irqsave(&busiest->lock, flags);
2784 /* don't kick the migration_thread, if the curr
2785 * task on busiest cpu can't be moved to this_cpu
2787 if (!cpu_isset(this_cpu, busiest->curr->cpus_allowed)) {
2788 spin_unlock_irqrestore(&busiest->lock, flags);
2789 all_pinned = 1;
2790 goto out_one_pinned;
2793 if (!busiest->active_balance) {
2794 busiest->active_balance = 1;
2795 busiest->push_cpu = this_cpu;
2796 active_balance = 1;
2798 spin_unlock_irqrestore(&busiest->lock, flags);
2799 if (active_balance)
2800 wake_up_process(busiest->migration_thread);
2803 * We've kicked active balancing, reset the failure
2804 * counter.
2806 sd->nr_balance_failed = sd->cache_nice_tries+1;
2808 } else
2809 sd->nr_balance_failed = 0;
2811 if (likely(!active_balance)) {
2812 /* We were unbalanced, so reset the balancing interval */
2813 sd->balance_interval = sd->min_interval;
2814 } else {
2816 * If we've begun active balancing, start to back off. This
2817 * case may not be covered by the all_pinned logic if there
2818 * is only 1 task on the busy runqueue (because we don't call
2819 * move_tasks).
2821 if (sd->balance_interval < sd->max_interval)
2822 sd->balance_interval *= 2;
2825 if (!nr_moved && !sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
2826 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
2827 return -1;
2828 return nr_moved;
2830 out_balanced:
2831 schedstat_inc(sd, lb_balanced[idle]);
2833 sd->nr_balance_failed = 0;
2835 out_one_pinned:
2836 /* tune up the balancing interval */
2837 if ((all_pinned && sd->balance_interval < MAX_PINNED_INTERVAL) ||
2838 (sd->balance_interval < sd->max_interval))
2839 sd->balance_interval *= 2;
2841 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
2842 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
2843 return -1;
2844 return 0;
2848 * Check this_cpu to ensure it is balanced within domain. Attempt to move
2849 * tasks if there is an imbalance.
2851 * Called from schedule when this_rq is about to become idle (NEWLY_IDLE).
2852 * this_rq is locked.
2854 static int
2855 load_balance_newidle(int this_cpu, struct rq *this_rq, struct sched_domain *sd)
2857 struct sched_group *group;
2858 struct rq *busiest = NULL;
2859 unsigned long imbalance;
2860 int nr_moved = 0;
2861 int sd_idle = 0;
2862 cpumask_t cpus = CPU_MASK_ALL;
2865 * When power savings policy is enabled for the parent domain, idle
2866 * sibling can pick up load irrespective of busy siblings. In this case,
2867 * let the state of idle sibling percolate up as IDLE, instead of
2868 * portraying it as NOT_IDLE.
2870 if (sd->flags & SD_SHARE_CPUPOWER &&
2871 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
2872 sd_idle = 1;
2874 schedstat_inc(sd, lb_cnt[NEWLY_IDLE]);
2875 redo:
2876 group = find_busiest_group(sd, this_cpu, &imbalance, NEWLY_IDLE,
2877 &sd_idle, &cpus, NULL);
2878 if (!group) {
2879 schedstat_inc(sd, lb_nobusyg[NEWLY_IDLE]);
2880 goto out_balanced;
2883 busiest = find_busiest_queue(group, NEWLY_IDLE, imbalance,
2884 &cpus);
2885 if (!busiest) {
2886 schedstat_inc(sd, lb_nobusyq[NEWLY_IDLE]);
2887 goto out_balanced;
2890 BUG_ON(busiest == this_rq);
2892 schedstat_add(sd, lb_imbalance[NEWLY_IDLE], imbalance);
2894 nr_moved = 0;
2895 if (busiest->nr_running > 1) {
2896 /* Attempt to move tasks */
2897 double_lock_balance(this_rq, busiest);
2898 nr_moved = move_tasks(this_rq, this_cpu, busiest,
2899 minus_1_or_zero(busiest->nr_running),
2900 imbalance, sd, NEWLY_IDLE, NULL);
2901 spin_unlock(&busiest->lock);
2903 if (!nr_moved) {
2904 cpu_clear(cpu_of(busiest), cpus);
2905 if (!cpus_empty(cpus))
2906 goto redo;
2910 if (!nr_moved) {
2911 schedstat_inc(sd, lb_failed[NEWLY_IDLE]);
2912 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
2913 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
2914 return -1;
2915 } else
2916 sd->nr_balance_failed = 0;
2918 return nr_moved;
2920 out_balanced:
2921 schedstat_inc(sd, lb_balanced[NEWLY_IDLE]);
2922 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
2923 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
2924 return -1;
2925 sd->nr_balance_failed = 0;
2927 return 0;
2931 * idle_balance is called by schedule() if this_cpu is about to become
2932 * idle. Attempts to pull tasks from other CPUs.
2934 static void idle_balance(int this_cpu, struct rq *this_rq)
2936 struct sched_domain *sd;
2937 int pulled_task = 0;
2938 unsigned long next_balance = jiffies + 60 * HZ;
2940 for_each_domain(this_cpu, sd) {
2941 unsigned long interval;
2943 if (!(sd->flags & SD_LOAD_BALANCE))
2944 continue;
2946 if (sd->flags & SD_BALANCE_NEWIDLE)
2947 /* If we've pulled tasks over stop searching: */
2948 pulled_task = load_balance_newidle(this_cpu,
2949 this_rq, sd);
2951 interval = msecs_to_jiffies(sd->balance_interval);
2952 if (time_after(next_balance, sd->last_balance + interval))
2953 next_balance = sd->last_balance + interval;
2954 if (pulled_task)
2955 break;
2957 if (!pulled_task)
2959 * We are going idle. next_balance may be set based on
2960 * a busy processor. So reset next_balance.
2962 this_rq->next_balance = next_balance;
2966 * active_load_balance is run by migration threads. It pushes running tasks
2967 * off the busiest CPU onto idle CPUs. It requires at least 1 task to be
2968 * running on each physical CPU where possible, and avoids physical /
2969 * logical imbalances.
2971 * Called with busiest_rq locked.
2973 static void active_load_balance(struct rq *busiest_rq, int busiest_cpu)
2975 int target_cpu = busiest_rq->push_cpu;
2976 struct sched_domain *sd;
2977 struct rq *target_rq;
2979 /* Is there any task to move? */
2980 if (busiest_rq->nr_running <= 1)
2981 return;
2983 target_rq = cpu_rq(target_cpu);
2986 * This condition is "impossible", if it occurs
2987 * we need to fix it. Originally reported by
2988 * Bjorn Helgaas on a 128-cpu setup.
2990 BUG_ON(busiest_rq == target_rq);
2992 /* move a task from busiest_rq to target_rq */
2993 double_lock_balance(busiest_rq, target_rq);
2995 /* Search for an sd spanning us and the target CPU. */
2996 for_each_domain(target_cpu, sd) {
2997 if ((sd->flags & SD_LOAD_BALANCE) &&
2998 cpu_isset(busiest_cpu, sd->span))
2999 break;
3002 if (likely(sd)) {
3003 schedstat_inc(sd, alb_cnt);
3005 if (move_tasks(target_rq, target_cpu, busiest_rq, 1,
3006 RTPRIO_TO_LOAD_WEIGHT(100), sd, SCHED_IDLE,
3007 NULL))
3008 schedstat_inc(sd, alb_pushed);
3009 else
3010 schedstat_inc(sd, alb_failed);
3012 spin_unlock(&target_rq->lock);
3015 static void update_load(struct rq *this_rq)
3017 unsigned long this_load;
3018 unsigned int i, scale;
3020 this_load = this_rq->raw_weighted_load;
3022 /* Update our load: */
3023 for (i = 0, scale = 1; i < 3; i++, scale += scale) {
3024 unsigned long old_load, new_load;
3026 /* scale is effectively 1 << i now, and >> i divides by scale */
3028 old_load = this_rq->cpu_load[i];
3029 new_load = this_load;
3031 * Round up the averaging division if load is increasing. This
3032 * prevents us from getting stuck on 9 if the load is 10, for
3033 * example.
3035 if (new_load > old_load)
3036 new_load += scale-1;
3037 this_rq->cpu_load[i] = (old_load*(scale-1) + new_load) >> i;
3041 #ifdef CONFIG_NO_HZ
3042 static struct {
3043 atomic_t load_balancer;
3044 cpumask_t cpu_mask;
3045 } nohz ____cacheline_aligned = {
3046 .load_balancer = ATOMIC_INIT(-1),
3047 .cpu_mask = CPU_MASK_NONE,
3051 * This routine will try to nominate the ilb (idle load balancing)
3052 * owner among the cpus whose ticks are stopped. ilb owner will do the idle
3053 * load balancing on behalf of all those cpus. If all the cpus in the system
3054 * go into this tickless mode, then there will be no ilb owner (as there is
3055 * no need for one) and all the cpus will sleep till the next wakeup event
3056 * arrives...
3058 * For the ilb owner, tick is not stopped. And this tick will be used
3059 * for idle load balancing. ilb owner will still be part of
3060 * nohz.cpu_mask..
3062 * While stopping the tick, this cpu will become the ilb owner if there
3063 * is no other owner. And will be the owner till that cpu becomes busy
3064 * or if all cpus in the system stop their ticks at which point
3065 * there is no need for ilb owner.
3067 * When the ilb owner becomes busy, it nominates another owner, during the
3068 * next busy scheduler_tick()
3070 int select_nohz_load_balancer(int stop_tick)
3072 int cpu = smp_processor_id();
3074 if (stop_tick) {
3075 cpu_set(cpu, nohz.cpu_mask);
3076 cpu_rq(cpu)->in_nohz_recently = 1;
3079 * If we are going offline and still the leader, give up!
3081 if (cpu_is_offline(cpu) &&
3082 atomic_read(&nohz.load_balancer) == cpu) {
3083 if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
3084 BUG();
3085 return 0;
3088 /* time for ilb owner also to sleep */
3089 if (cpus_weight(nohz.cpu_mask) == num_online_cpus()) {
3090 if (atomic_read(&nohz.load_balancer) == cpu)
3091 atomic_set(&nohz.load_balancer, -1);
3092 return 0;
3095 if (atomic_read(&nohz.load_balancer) == -1) {
3096 /* make me the ilb owner */
3097 if (atomic_cmpxchg(&nohz.load_balancer, -1, cpu) == -1)
3098 return 1;
3099 } else if (atomic_read(&nohz.load_balancer) == cpu)
3100 return 1;
3101 } else {
3102 if (!cpu_isset(cpu, nohz.cpu_mask))
3103 return 0;
3105 cpu_clear(cpu, nohz.cpu_mask);
3107 if (atomic_read(&nohz.load_balancer) == cpu)
3108 if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
3109 BUG();
3111 return 0;
3113 #endif
3115 static DEFINE_SPINLOCK(balancing);
3118 * It checks each scheduling domain to see if it is due to be balanced,
3119 * and initiates a balancing operation if so.
3121 * Balancing parameters are set up in arch_init_sched_domains.
3123 static inline void rebalance_domains(int cpu, enum idle_type idle)
3125 int balance = 1;
3126 struct rq *rq = cpu_rq(cpu);
3127 unsigned long interval;
3128 struct sched_domain *sd;
3129 /* Earliest time when we have to do rebalance again */
3130 unsigned long next_balance = jiffies + 60*HZ;
3132 for_each_domain(cpu, sd) {
3133 if (!(sd->flags & SD_LOAD_BALANCE))
3134 continue;
3136 interval = sd->balance_interval;
3137 if (idle != SCHED_IDLE)
3138 interval *= sd->busy_factor;
3140 /* scale ms to jiffies */
3141 interval = msecs_to_jiffies(interval);
3142 if (unlikely(!interval))
3143 interval = 1;
3145 if (sd->flags & SD_SERIALIZE) {
3146 if (!spin_trylock(&balancing))
3147 goto out;
3150 if (time_after_eq(jiffies, sd->last_balance + interval)) {
3151 if (load_balance(cpu, rq, sd, idle, &balance)) {
3153 * We've pulled tasks over so either we're no
3154 * longer idle, or one of our SMT siblings is
3155 * not idle.
3157 idle = NOT_IDLE;
3159 sd->last_balance = jiffies;
3161 if (sd->flags & SD_SERIALIZE)
3162 spin_unlock(&balancing);
3163 out:
3164 if (time_after(next_balance, sd->last_balance + interval))
3165 next_balance = sd->last_balance + interval;
3168 * Stop the load balance at this level. There is another
3169 * CPU in our sched group which is doing load balancing more
3170 * actively.
3172 if (!balance)
3173 break;
3175 rq->next_balance = next_balance;
3179 * run_rebalance_domains is triggered when needed from the scheduler tick.
3180 * In CONFIG_NO_HZ case, the idle load balance owner will do the
3181 * rebalancing for all the cpus for whom scheduler ticks are stopped.
3183 static void run_rebalance_domains(struct softirq_action *h)
3185 int local_cpu = smp_processor_id();
3186 struct rq *local_rq = cpu_rq(local_cpu);
3187 enum idle_type idle = local_rq->idle_at_tick ? SCHED_IDLE : NOT_IDLE;
3189 rebalance_domains(local_cpu, idle);
3191 #ifdef CONFIG_NO_HZ
3193 * If this cpu is the owner for idle load balancing, then do the
3194 * balancing on behalf of the other idle cpus whose ticks are
3195 * stopped.
3197 if (local_rq->idle_at_tick &&
3198 atomic_read(&nohz.load_balancer) == local_cpu) {
3199 cpumask_t cpus = nohz.cpu_mask;
3200 struct rq *rq;
3201 int balance_cpu;
3203 cpu_clear(local_cpu, cpus);
3204 for_each_cpu_mask(balance_cpu, cpus) {
3206 * If this cpu gets work to do, stop the load balancing
3207 * work being done for other cpus. Next load
3208 * balancing owner will pick it up.
3210 if (need_resched())
3211 break;
3213 rebalance_domains(balance_cpu, SCHED_IDLE);
3215 rq = cpu_rq(balance_cpu);
3216 if (time_after(local_rq->next_balance, rq->next_balance))
3217 local_rq->next_balance = rq->next_balance;
3220 #endif
3224 * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
3226 * In case of CONFIG_NO_HZ, this is the place where we nominate a new
3227 * idle load balancing owner or decide to stop the periodic load balancing,
3228 * if the whole system is idle.
3230 static inline void trigger_load_balance(int cpu)
3232 struct rq *rq = cpu_rq(cpu);
3233 #ifdef CONFIG_NO_HZ
3235 * If we were in the nohz mode recently and busy at the current
3236 * scheduler tick, then check if we need to nominate new idle
3237 * load balancer.
3239 if (rq->in_nohz_recently && !rq->idle_at_tick) {
3240 rq->in_nohz_recently = 0;
3242 if (atomic_read(&nohz.load_balancer) == cpu) {
3243 cpu_clear(cpu, nohz.cpu_mask);
3244 atomic_set(&nohz.load_balancer, -1);
3247 if (atomic_read(&nohz.load_balancer) == -1) {
3249 * simple selection for now: Nominate the
3250 * first cpu in the nohz list to be the next
3251 * ilb owner.
3253 * TBD: Traverse the sched domains and nominate
3254 * the nearest cpu in the nohz.cpu_mask.
3256 int ilb = first_cpu(nohz.cpu_mask);
3258 if (ilb != NR_CPUS)
3259 resched_cpu(ilb);
3264 * If this cpu is idle and doing idle load balancing for all the
3265 * cpus with ticks stopped, is it time for that to stop?
3267 if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) == cpu &&
3268 cpus_weight(nohz.cpu_mask) == num_online_cpus()) {
3269 resched_cpu(cpu);
3270 return;
3274 * If this cpu is idle and the idle load balancing is done by
3275 * someone else, then no need raise the SCHED_SOFTIRQ
3277 if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) != cpu &&
3278 cpu_isset(cpu, nohz.cpu_mask))
3279 return;
3280 #endif
3281 if (time_after_eq(jiffies, rq->next_balance))
3282 raise_softirq(SCHED_SOFTIRQ);
3284 #else
3286 * on UP we do not need to balance between CPUs:
3288 static inline void idle_balance(int cpu, struct rq *rq)
3291 #endif
3293 DEFINE_PER_CPU(struct kernel_stat, kstat);
3295 EXPORT_PER_CPU_SYMBOL(kstat);
3298 * This is called on clock ticks and on context switches.
3299 * Bank in p->sched_time the ns elapsed since the last tick or switch.
3301 static inline void
3302 update_cpu_clock(struct task_struct *p, struct rq *rq, unsigned long long now)
3304 p->sched_time += now - p->last_ran;
3305 p->last_ran = rq->most_recent_timestamp = now;
3309 * Return current->sched_time plus any more ns on the sched_clock
3310 * that have not yet been banked.
3312 unsigned long long current_sched_time(const struct task_struct *p)
3314 unsigned long long ns;
3315 unsigned long flags;
3317 local_irq_save(flags);
3318 ns = p->sched_time + sched_clock() - p->last_ran;
3319 local_irq_restore(flags);
3321 return ns;
3325 * We place interactive tasks back into the active array, if possible.
3327 * To guarantee that this does not starve expired tasks we ignore the
3328 * interactivity of a task if the first expired task had to wait more
3329 * than a 'reasonable' amount of time. This deadline timeout is
3330 * load-dependent, as the frequency of array switched decreases with
3331 * increasing number of running tasks. We also ignore the interactivity
3332 * if a better static_prio task has expired:
3334 static inline int expired_starving(struct rq *rq)
3336 if (rq->curr->static_prio > rq->best_expired_prio)
3337 return 1;
3338 if (!STARVATION_LIMIT || !rq->expired_timestamp)
3339 return 0;
3340 if (jiffies - rq->expired_timestamp > STARVATION_LIMIT * rq->nr_running)
3341 return 1;
3342 return 0;
3346 * Account user cpu time to a process.
3347 * @p: the process that the cpu time gets accounted to
3348 * @hardirq_offset: the offset to subtract from hardirq_count()
3349 * @cputime: the cpu time spent in user space since the last update
3351 void account_user_time(struct task_struct *p, cputime_t cputime)
3353 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3354 cputime64_t tmp;
3356 p->utime = cputime_add(p->utime, cputime);
3358 /* Add user time to cpustat. */
3359 tmp = cputime_to_cputime64(cputime);
3360 if (TASK_NICE(p) > 0)
3361 cpustat->nice = cputime64_add(cpustat->nice, tmp);
3362 else
3363 cpustat->user = cputime64_add(cpustat->user, tmp);
3367 * Account system cpu time to a process.
3368 * @p: the process that the cpu time gets accounted to
3369 * @hardirq_offset: the offset to subtract from hardirq_count()
3370 * @cputime: the cpu time spent in kernel space since the last update
3372 void account_system_time(struct task_struct *p, int hardirq_offset,
3373 cputime_t cputime)
3375 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3376 struct rq *rq = this_rq();
3377 cputime64_t tmp;
3379 p->stime = cputime_add(p->stime, cputime);
3381 /* Add system time to cpustat. */
3382 tmp = cputime_to_cputime64(cputime);
3383 if (hardirq_count() - hardirq_offset)
3384 cpustat->irq = cputime64_add(cpustat->irq, tmp);
3385 else if (softirq_count())
3386 cpustat->softirq = cputime64_add(cpustat->softirq, tmp);
3387 else if (p != rq->idle)
3388 cpustat->system = cputime64_add(cpustat->system, tmp);
3389 else if (atomic_read(&rq->nr_iowait) > 0)
3390 cpustat->iowait = cputime64_add(cpustat->iowait, tmp);
3391 else
3392 cpustat->idle = cputime64_add(cpustat->idle, tmp);
3393 /* Account for system time used */
3394 acct_update_integrals(p);
3398 * Account for involuntary wait time.
3399 * @p: the process from which the cpu time has been stolen
3400 * @steal: the cpu time spent in involuntary wait
3402 void account_steal_time(struct task_struct *p, cputime_t steal)
3404 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3405 cputime64_t tmp = cputime_to_cputime64(steal);
3406 struct rq *rq = this_rq();
3408 if (p == rq->idle) {
3409 p->stime = cputime_add(p->stime, steal);
3410 if (atomic_read(&rq->nr_iowait) > 0)
3411 cpustat->iowait = cputime64_add(cpustat->iowait, tmp);
3412 else
3413 cpustat->idle = cputime64_add(cpustat->idle, tmp);
3414 } else
3415 cpustat->steal = cputime64_add(cpustat->steal, tmp);
3418 static void task_running_tick(struct rq *rq, struct task_struct *p)
3420 if (p->array != rq->active) {
3421 /* Task has expired but was not scheduled yet */
3422 set_tsk_need_resched(p);
3423 return;
3425 spin_lock(&rq->lock);
3427 * The task was running during this tick - update the
3428 * time slice counter. Note: we do not update a thread's
3429 * priority until it either goes to sleep or uses up its
3430 * timeslice. This makes it possible for interactive tasks
3431 * to use up their timeslices at their highest priority levels.
3433 if (rt_task(p)) {
3435 * RR tasks need a special form of timeslice management.
3436 * FIFO tasks have no timeslices.
3438 if ((p->policy == SCHED_RR) && !--p->time_slice) {
3439 p->time_slice = task_timeslice(p);
3440 p->first_time_slice = 0;
3441 set_tsk_need_resched(p);
3443 /* put it at the end of the queue: */
3444 requeue_task(p, rq->active);
3446 goto out_unlock;
3448 if (!--p->time_slice) {
3449 dequeue_task(p, rq->active);
3450 set_tsk_need_resched(p);
3451 p->prio = effective_prio(p);
3452 p->time_slice = task_timeslice(p);
3453 p->first_time_slice = 0;
3455 if (!rq->expired_timestamp)
3456 rq->expired_timestamp = jiffies;
3457 if (!TASK_INTERACTIVE(p) || expired_starving(rq)) {
3458 enqueue_task(p, rq->expired);
3459 if (p->static_prio < rq->best_expired_prio)
3460 rq->best_expired_prio = p->static_prio;
3461 } else
3462 enqueue_task(p, rq->active);
3463 } else {
3465 * Prevent a too long timeslice allowing a task to monopolize
3466 * the CPU. We do this by splitting up the timeslice into
3467 * smaller pieces.
3469 * Note: this does not mean the task's timeslices expire or
3470 * get lost in any way, they just might be preempted by
3471 * another task of equal priority. (one with higher
3472 * priority would have preempted this task already.) We
3473 * requeue this task to the end of the list on this priority
3474 * level, which is in essence a round-robin of tasks with
3475 * equal priority.
3477 * This only applies to tasks in the interactive
3478 * delta range with at least TIMESLICE_GRANULARITY to requeue.
3480 if (TASK_INTERACTIVE(p) && !((task_timeslice(p) -
3481 p->time_slice) % TIMESLICE_GRANULARITY(p)) &&
3482 (p->time_slice >= TIMESLICE_GRANULARITY(p)) &&
3483 (p->array == rq->active)) {
3485 requeue_task(p, rq->active);
3486 set_tsk_need_resched(p);
3489 out_unlock:
3490 spin_unlock(&rq->lock);
3494 * This function gets called by the timer code, with HZ frequency.
3495 * We call it with interrupts disabled.
3497 * It also gets called by the fork code, when changing the parent's
3498 * timeslices.
3500 void scheduler_tick(void)
3502 unsigned long long now = sched_clock();
3503 struct task_struct *p = current;
3504 int cpu = smp_processor_id();
3505 int idle_at_tick = idle_cpu(cpu);
3506 struct rq *rq = cpu_rq(cpu);
3508 update_cpu_clock(p, rq, now);
3510 if (!idle_at_tick)
3511 task_running_tick(rq, p);
3512 #ifdef CONFIG_SMP
3513 update_load(rq);
3514 rq->idle_at_tick = idle_at_tick;
3515 trigger_load_balance(cpu);
3516 #endif
3519 #if defined(CONFIG_PREEMPT) && defined(CONFIG_DEBUG_PREEMPT)
3521 void fastcall add_preempt_count(int val)
3524 * Underflow?
3526 if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
3527 return;
3528 preempt_count() += val;
3530 * Spinlock count overflowing soon?
3532 DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
3533 PREEMPT_MASK - 10);
3535 EXPORT_SYMBOL(add_preempt_count);
3537 void fastcall sub_preempt_count(int val)
3540 * Underflow?
3542 if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
3543 return;
3545 * Is the spinlock portion underflowing?
3547 if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
3548 !(preempt_count() & PREEMPT_MASK)))
3549 return;
3551 preempt_count() -= val;
3553 EXPORT_SYMBOL(sub_preempt_count);
3555 #endif
3557 static inline int interactive_sleep(enum sleep_type sleep_type)
3559 return (sleep_type == SLEEP_INTERACTIVE ||
3560 sleep_type == SLEEP_INTERRUPTED);
3564 * schedule() is the main scheduler function.
3566 asmlinkage void __sched schedule(void)
3568 struct task_struct *prev, *next;
3569 struct prio_array *array;
3570 struct list_head *queue;
3571 unsigned long long now;
3572 unsigned long run_time;
3573 int cpu, idx, new_prio;
3574 long *switch_count;
3575 struct rq *rq;
3578 * Test if we are atomic. Since do_exit() needs to call into
3579 * schedule() atomically, we ignore that path for now.
3580 * Otherwise, whine if we are scheduling when we should not be.
3582 if (unlikely(in_atomic() && !current->exit_state)) {
3583 printk(KERN_ERR "BUG: scheduling while atomic: "
3584 "%s/0x%08x/%d\n",
3585 current->comm, preempt_count(), current->pid);
3586 debug_show_held_locks(current);
3587 if (irqs_disabled())
3588 print_irqtrace_events(current);
3589 dump_stack();
3591 profile_hit(SCHED_PROFILING, __builtin_return_address(0));
3593 need_resched:
3594 preempt_disable();
3595 prev = current;
3596 release_kernel_lock(prev);
3597 need_resched_nonpreemptible:
3598 rq = this_rq();
3601 * The idle thread is not allowed to schedule!
3602 * Remove this check after it has been exercised a bit.
3604 if (unlikely(prev == rq->idle) && prev->state != TASK_RUNNING) {
3605 printk(KERN_ERR "bad: scheduling from the idle thread!\n");
3606 dump_stack();
3609 schedstat_inc(rq, sched_cnt);
3610 now = sched_clock();
3611 if (likely((long long)(now - prev->timestamp) < NS_MAX_SLEEP_AVG)) {
3612 run_time = now - prev->timestamp;
3613 if (unlikely((long long)(now - prev->timestamp) < 0))
3614 run_time = 0;
3615 } else
3616 run_time = NS_MAX_SLEEP_AVG;
3619 * Tasks charged proportionately less run_time at high sleep_avg to
3620 * delay them losing their interactive status
3622 run_time /= (CURRENT_BONUS(prev) ? : 1);
3624 spin_lock_irq(&rq->lock);
3626 switch_count = &prev->nivcsw;
3627 if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
3628 switch_count = &prev->nvcsw;
3629 if (unlikely((prev->state & TASK_INTERRUPTIBLE) &&
3630 unlikely(signal_pending(prev))))
3631 prev->state = TASK_RUNNING;
3632 else {
3633 if (prev->state == TASK_UNINTERRUPTIBLE)
3634 rq->nr_uninterruptible++;
3635 deactivate_task(prev, rq);
3639 cpu = smp_processor_id();
3640 if (unlikely(!rq->nr_running)) {
3641 idle_balance(cpu, rq);
3642 if (!rq->nr_running) {
3643 next = rq->idle;
3644 rq->expired_timestamp = 0;
3645 goto switch_tasks;
3649 array = rq->active;
3650 if (unlikely(!array->nr_active)) {
3652 * Switch the active and expired arrays.
3654 schedstat_inc(rq, sched_switch);
3655 rq->active = rq->expired;
3656 rq->expired = array;
3657 array = rq->active;
3658 rq->expired_timestamp = 0;
3659 rq->best_expired_prio = MAX_PRIO;
3662 idx = sched_find_first_bit(array->bitmap);
3663 queue = array->queue + idx;
3664 next = list_entry(queue->next, struct task_struct, run_list);
3666 if (!rt_task(next) && interactive_sleep(next->sleep_type)) {
3667 unsigned long long delta = now - next->timestamp;
3668 if (unlikely((long long)(now - next->timestamp) < 0))
3669 delta = 0;
3671 if (next->sleep_type == SLEEP_INTERACTIVE)
3672 delta = delta * (ON_RUNQUEUE_WEIGHT * 128 / 100) / 128;
3674 array = next->array;
3675 new_prio = recalc_task_prio(next, next->timestamp + delta);
3677 if (unlikely(next->prio != new_prio)) {
3678 dequeue_task(next, array);
3679 next->prio = new_prio;
3680 enqueue_task(next, array);
3683 next->sleep_type = SLEEP_NORMAL;
3684 switch_tasks:
3685 if (next == rq->idle)
3686 schedstat_inc(rq, sched_goidle);
3687 prefetch(next);
3688 prefetch_stack(next);
3689 clear_tsk_need_resched(prev);
3690 rcu_qsctr_inc(task_cpu(prev));
3692 update_cpu_clock(prev, rq, now);
3694 prev->sleep_avg -= run_time;
3695 if ((long)prev->sleep_avg <= 0)
3696 prev->sleep_avg = 0;
3697 prev->timestamp = prev->last_ran = now;
3699 sched_info_switch(prev, next);
3700 if (likely(prev != next)) {
3701 next->timestamp = next->last_ran = now;
3702 rq->nr_switches++;
3703 rq->curr = next;
3704 ++*switch_count;
3706 prepare_task_switch(rq, next);
3707 prev = context_switch(rq, prev, next);
3708 barrier();
3710 * this_rq must be evaluated again because prev may have moved
3711 * CPUs since it called schedule(), thus the 'rq' on its stack
3712 * frame will be invalid.
3714 finish_task_switch(this_rq(), prev);
3715 } else
3716 spin_unlock_irq(&rq->lock);
3718 prev = current;
3719 if (unlikely(reacquire_kernel_lock(prev) < 0))
3720 goto need_resched_nonpreemptible;
3721 preempt_enable_no_resched();
3722 if (unlikely(test_thread_flag(TIF_NEED_RESCHED)))
3723 goto need_resched;
3725 EXPORT_SYMBOL(schedule);
3727 #ifdef CONFIG_PREEMPT
3729 * this is the entry point to schedule() from in-kernel preemption
3730 * off of preempt_enable. Kernel preemptions off return from interrupt
3731 * occur there and call schedule directly.
3733 asmlinkage void __sched preempt_schedule(void)
3735 struct thread_info *ti = current_thread_info();
3736 #ifdef CONFIG_PREEMPT_BKL
3737 struct task_struct *task = current;
3738 int saved_lock_depth;
3739 #endif
3741 * If there is a non-zero preempt_count or interrupts are disabled,
3742 * we do not want to preempt the current task. Just return..
3744 if (likely(ti->preempt_count || irqs_disabled()))
3745 return;
3747 need_resched:
3748 add_preempt_count(PREEMPT_ACTIVE);
3750 * We keep the big kernel semaphore locked, but we
3751 * clear ->lock_depth so that schedule() doesnt
3752 * auto-release the semaphore:
3754 #ifdef CONFIG_PREEMPT_BKL
3755 saved_lock_depth = task->lock_depth;
3756 task->lock_depth = -1;
3757 #endif
3758 schedule();
3759 #ifdef CONFIG_PREEMPT_BKL
3760 task->lock_depth = saved_lock_depth;
3761 #endif
3762 sub_preempt_count(PREEMPT_ACTIVE);
3764 /* we could miss a preemption opportunity between schedule and now */
3765 barrier();
3766 if (unlikely(test_thread_flag(TIF_NEED_RESCHED)))
3767 goto need_resched;
3769 EXPORT_SYMBOL(preempt_schedule);
3772 * this is the entry point to schedule() from kernel preemption
3773 * off of irq context.
3774 * Note, that this is called and return with irqs disabled. This will
3775 * protect us against recursive calling from irq.
3777 asmlinkage void __sched preempt_schedule_irq(void)
3779 struct thread_info *ti = current_thread_info();
3780 #ifdef CONFIG_PREEMPT_BKL
3781 struct task_struct *task = current;
3782 int saved_lock_depth;
3783 #endif
3784 /* Catch callers which need to be fixed */
3785 BUG_ON(ti->preempt_count || !irqs_disabled());
3787 need_resched:
3788 add_preempt_count(PREEMPT_ACTIVE);
3790 * We keep the big kernel semaphore locked, but we
3791 * clear ->lock_depth so that schedule() doesnt
3792 * auto-release the semaphore:
3794 #ifdef CONFIG_PREEMPT_BKL
3795 saved_lock_depth = task->lock_depth;
3796 task->lock_depth = -1;
3797 #endif
3798 local_irq_enable();
3799 schedule();
3800 local_irq_disable();
3801 #ifdef CONFIG_PREEMPT_BKL
3802 task->lock_depth = saved_lock_depth;
3803 #endif
3804 sub_preempt_count(PREEMPT_ACTIVE);
3806 /* we could miss a preemption opportunity between schedule and now */
3807 barrier();
3808 if (unlikely(test_thread_flag(TIF_NEED_RESCHED)))
3809 goto need_resched;
3812 #endif /* CONFIG_PREEMPT */
3814 int default_wake_function(wait_queue_t *curr, unsigned mode, int sync,
3815 void *key)
3817 return try_to_wake_up(curr->private, mode, sync);
3819 EXPORT_SYMBOL(default_wake_function);
3822 * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
3823 * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
3824 * number) then we wake all the non-exclusive tasks and one exclusive task.
3826 * There are circumstances in which we can try to wake a task which has already
3827 * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
3828 * zero in this (rare) case, and we handle it by continuing to scan the queue.
3830 static void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
3831 int nr_exclusive, int sync, void *key)
3833 struct list_head *tmp, *next;
3835 list_for_each_safe(tmp, next, &q->task_list) {
3836 wait_queue_t *curr = list_entry(tmp, wait_queue_t, task_list);
3837 unsigned flags = curr->flags;
3839 if (curr->func(curr, mode, sync, key) &&
3840 (flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive)
3841 break;
3846 * __wake_up - wake up threads blocked on a waitqueue.
3847 * @q: the waitqueue
3848 * @mode: which threads
3849 * @nr_exclusive: how many wake-one or wake-many threads to wake up
3850 * @key: is directly passed to the wakeup function
3852 void fastcall __wake_up(wait_queue_head_t *q, unsigned int mode,
3853 int nr_exclusive, void *key)
3855 unsigned long flags;
3857 spin_lock_irqsave(&q->lock, flags);
3858 __wake_up_common(q, mode, nr_exclusive, 0, key);
3859 spin_unlock_irqrestore(&q->lock, flags);
3861 EXPORT_SYMBOL(__wake_up);
3864 * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
3866 void fastcall __wake_up_locked(wait_queue_head_t *q, unsigned int mode)
3868 __wake_up_common(q, mode, 1, 0, NULL);
3872 * __wake_up_sync - wake up threads blocked on a waitqueue.
3873 * @q: the waitqueue
3874 * @mode: which threads
3875 * @nr_exclusive: how many wake-one or wake-many threads to wake up
3877 * The sync wakeup differs that the waker knows that it will schedule
3878 * away soon, so while the target thread will be woken up, it will not
3879 * be migrated to another CPU - ie. the two threads are 'synchronized'
3880 * with each other. This can prevent needless bouncing between CPUs.
3882 * On UP it can prevent extra preemption.
3884 void fastcall
3885 __wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
3887 unsigned long flags;
3888 int sync = 1;
3890 if (unlikely(!q))
3891 return;
3893 if (unlikely(!nr_exclusive))
3894 sync = 0;
3896 spin_lock_irqsave(&q->lock, flags);
3897 __wake_up_common(q, mode, nr_exclusive, sync, NULL);
3898 spin_unlock_irqrestore(&q->lock, flags);
3900 EXPORT_SYMBOL_GPL(__wake_up_sync); /* For internal use only */
3902 void fastcall complete(struct completion *x)
3904 unsigned long flags;
3906 spin_lock_irqsave(&x->wait.lock, flags);
3907 x->done++;
3908 __wake_up_common(&x->wait, TASK_UNINTERRUPTIBLE | TASK_INTERRUPTIBLE,
3909 1, 0, NULL);
3910 spin_unlock_irqrestore(&x->wait.lock, flags);
3912 EXPORT_SYMBOL(complete);
3914 void fastcall complete_all(struct completion *x)
3916 unsigned long flags;
3918 spin_lock_irqsave(&x->wait.lock, flags);
3919 x->done += UINT_MAX/2;
3920 __wake_up_common(&x->wait, TASK_UNINTERRUPTIBLE | TASK_INTERRUPTIBLE,
3921 0, 0, NULL);
3922 spin_unlock_irqrestore(&x->wait.lock, flags);
3924 EXPORT_SYMBOL(complete_all);
3926 void fastcall __sched wait_for_completion(struct completion *x)
3928 might_sleep();
3930 spin_lock_irq(&x->wait.lock);
3931 if (!x->done) {
3932 DECLARE_WAITQUEUE(wait, current);
3934 wait.flags |= WQ_FLAG_EXCLUSIVE;
3935 __add_wait_queue_tail(&x->wait, &wait);
3936 do {
3937 __set_current_state(TASK_UNINTERRUPTIBLE);
3938 spin_unlock_irq(&x->wait.lock);
3939 schedule();
3940 spin_lock_irq(&x->wait.lock);
3941 } while (!x->done);
3942 __remove_wait_queue(&x->wait, &wait);
3944 x->done--;
3945 spin_unlock_irq(&x->wait.lock);
3947 EXPORT_SYMBOL(wait_for_completion);
3949 unsigned long fastcall __sched
3950 wait_for_completion_timeout(struct completion *x, unsigned long timeout)
3952 might_sleep();
3954 spin_lock_irq(&x->wait.lock);
3955 if (!x->done) {
3956 DECLARE_WAITQUEUE(wait, current);
3958 wait.flags |= WQ_FLAG_EXCLUSIVE;
3959 __add_wait_queue_tail(&x->wait, &wait);
3960 do {
3961 __set_current_state(TASK_UNINTERRUPTIBLE);
3962 spin_unlock_irq(&x->wait.lock);
3963 timeout = schedule_timeout(timeout);
3964 spin_lock_irq(&x->wait.lock);
3965 if (!timeout) {
3966 __remove_wait_queue(&x->wait, &wait);
3967 goto out;
3969 } while (!x->done);
3970 __remove_wait_queue(&x->wait, &wait);
3972 x->done--;
3973 out:
3974 spin_unlock_irq(&x->wait.lock);
3975 return timeout;
3977 EXPORT_SYMBOL(wait_for_completion_timeout);
3979 int fastcall __sched wait_for_completion_interruptible(struct completion *x)
3981 int ret = 0;
3983 might_sleep();
3985 spin_lock_irq(&x->wait.lock);
3986 if (!x->done) {
3987 DECLARE_WAITQUEUE(wait, current);
3989 wait.flags |= WQ_FLAG_EXCLUSIVE;
3990 __add_wait_queue_tail(&x->wait, &wait);
3991 do {
3992 if (signal_pending(current)) {
3993 ret = -ERESTARTSYS;
3994 __remove_wait_queue(&x->wait, &wait);
3995 goto out;
3997 __set_current_state(TASK_INTERRUPTIBLE);
3998 spin_unlock_irq(&x->wait.lock);
3999 schedule();
4000 spin_lock_irq(&x->wait.lock);
4001 } while (!x->done);
4002 __remove_wait_queue(&x->wait, &wait);
4004 x->done--;
4005 out:
4006 spin_unlock_irq(&x->wait.lock);
4008 return ret;
4010 EXPORT_SYMBOL(wait_for_completion_interruptible);
4012 unsigned long fastcall __sched
4013 wait_for_completion_interruptible_timeout(struct completion *x,
4014 unsigned long timeout)
4016 might_sleep();
4018 spin_lock_irq(&x->wait.lock);
4019 if (!x->done) {
4020 DECLARE_WAITQUEUE(wait, current);
4022 wait.flags |= WQ_FLAG_EXCLUSIVE;
4023 __add_wait_queue_tail(&x->wait, &wait);
4024 do {
4025 if (signal_pending(current)) {
4026 timeout = -ERESTARTSYS;
4027 __remove_wait_queue(&x->wait, &wait);
4028 goto out;
4030 __set_current_state(TASK_INTERRUPTIBLE);
4031 spin_unlock_irq(&x->wait.lock);
4032 timeout = schedule_timeout(timeout);
4033 spin_lock_irq(&x->wait.lock);
4034 if (!timeout) {
4035 __remove_wait_queue(&x->wait, &wait);
4036 goto out;
4038 } while (!x->done);
4039 __remove_wait_queue(&x->wait, &wait);
4041 x->done--;
4042 out:
4043 spin_unlock_irq(&x->wait.lock);
4044 return timeout;
4046 EXPORT_SYMBOL(wait_for_completion_interruptible_timeout);
4049 #define SLEEP_ON_VAR \
4050 unsigned long flags; \
4051 wait_queue_t wait; \
4052 init_waitqueue_entry(&wait, current);
4054 #define SLEEP_ON_HEAD \
4055 spin_lock_irqsave(&q->lock,flags); \
4056 __add_wait_queue(q, &wait); \
4057 spin_unlock(&q->lock);
4059 #define SLEEP_ON_TAIL \
4060 spin_lock_irq(&q->lock); \
4061 __remove_wait_queue(q, &wait); \
4062 spin_unlock_irqrestore(&q->lock, flags);
4064 void fastcall __sched interruptible_sleep_on(wait_queue_head_t *q)
4066 SLEEP_ON_VAR
4068 current->state = TASK_INTERRUPTIBLE;
4070 SLEEP_ON_HEAD
4071 schedule();
4072 SLEEP_ON_TAIL
4074 EXPORT_SYMBOL(interruptible_sleep_on);
4076 long fastcall __sched
4077 interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
4079 SLEEP_ON_VAR
4081 current->state = TASK_INTERRUPTIBLE;
4083 SLEEP_ON_HEAD
4084 timeout = schedule_timeout(timeout);
4085 SLEEP_ON_TAIL
4087 return timeout;
4089 EXPORT_SYMBOL(interruptible_sleep_on_timeout);
4091 void fastcall __sched sleep_on(wait_queue_head_t *q)
4093 SLEEP_ON_VAR
4095 current->state = TASK_UNINTERRUPTIBLE;
4097 SLEEP_ON_HEAD
4098 schedule();
4099 SLEEP_ON_TAIL
4101 EXPORT_SYMBOL(sleep_on);
4103 long fastcall __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
4105 SLEEP_ON_VAR
4107 current->state = TASK_UNINTERRUPTIBLE;
4109 SLEEP_ON_HEAD
4110 timeout = schedule_timeout(timeout);
4111 SLEEP_ON_TAIL
4113 return timeout;
4116 EXPORT_SYMBOL(sleep_on_timeout);
4118 #ifdef CONFIG_RT_MUTEXES
4121 * rt_mutex_setprio - set the current priority of a task
4122 * @p: task
4123 * @prio: prio value (kernel-internal form)
4125 * This function changes the 'effective' priority of a task. It does
4126 * not touch ->normal_prio like __setscheduler().
4128 * Used by the rt_mutex code to implement priority inheritance logic.
4130 void rt_mutex_setprio(struct task_struct *p, int prio)
4132 struct prio_array *array;
4133 unsigned long flags;
4134 struct rq *rq;
4135 int oldprio;
4137 BUG_ON(prio < 0 || prio > MAX_PRIO);
4139 rq = task_rq_lock(p, &flags);
4141 oldprio = p->prio;
4142 array = p->array;
4143 if (array)
4144 dequeue_task(p, array);
4145 p->prio = prio;
4147 if (array) {
4149 * If changing to an RT priority then queue it
4150 * in the active array!
4152 if (rt_task(p))
4153 array = rq->active;
4154 enqueue_task(p, array);
4156 * Reschedule if we are currently running on this runqueue and
4157 * our priority decreased, or if we are not currently running on
4158 * this runqueue and our priority is higher than the current's
4160 if (task_running(rq, p)) {
4161 if (p->prio > oldprio)
4162 resched_task(rq->curr);
4163 } else if (TASK_PREEMPTS_CURR(p, rq))
4164 resched_task(rq->curr);
4166 task_rq_unlock(rq, &flags);
4169 #endif
4171 void set_user_nice(struct task_struct *p, long nice)
4173 struct prio_array *array;
4174 int old_prio, delta;
4175 unsigned long flags;
4176 struct rq *rq;
4178 if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
4179 return;
4181 * We have to be careful, if called from sys_setpriority(),
4182 * the task might be in the middle of scheduling on another CPU.
4184 rq = task_rq_lock(p, &flags);
4186 * The RT priorities are set via sched_setscheduler(), but we still
4187 * allow the 'normal' nice value to be set - but as expected
4188 * it wont have any effect on scheduling until the task is
4189 * not SCHED_NORMAL/SCHED_BATCH:
4191 if (has_rt_policy(p)) {
4192 p->static_prio = NICE_TO_PRIO(nice);
4193 goto out_unlock;
4195 array = p->array;
4196 if (array) {
4197 dequeue_task(p, array);
4198 dec_raw_weighted_load(rq, p);
4201 p->static_prio = NICE_TO_PRIO(nice);
4202 set_load_weight(p);
4203 old_prio = p->prio;
4204 p->prio = effective_prio(p);
4205 delta = p->prio - old_prio;
4207 if (array) {
4208 enqueue_task(p, array);
4209 inc_raw_weighted_load(rq, p);
4211 * If the task increased its priority or is running and
4212 * lowered its priority, then reschedule its CPU:
4214 if (delta < 0 || (delta > 0 && task_running(rq, p)))
4215 resched_task(rq->curr);
4217 out_unlock:
4218 task_rq_unlock(rq, &flags);
4220 EXPORT_SYMBOL(set_user_nice);
4223 * can_nice - check if a task can reduce its nice value
4224 * @p: task
4225 * @nice: nice value
4227 int can_nice(const struct task_struct *p, const int nice)
4229 /* convert nice value [19,-20] to rlimit style value [1,40] */
4230 int nice_rlim = 20 - nice;
4232 return (nice_rlim <= p->signal->rlim[RLIMIT_NICE].rlim_cur ||
4233 capable(CAP_SYS_NICE));
4236 #ifdef __ARCH_WANT_SYS_NICE
4239 * sys_nice - change the priority of the current process.
4240 * @increment: priority increment
4242 * sys_setpriority is a more generic, but much slower function that
4243 * does similar things.
4245 asmlinkage long sys_nice(int increment)
4247 long nice, retval;
4250 * Setpriority might change our priority at the same moment.
4251 * We don't have to worry. Conceptually one call occurs first
4252 * and we have a single winner.
4254 if (increment < -40)
4255 increment = -40;
4256 if (increment > 40)
4257 increment = 40;
4259 nice = PRIO_TO_NICE(current->static_prio) + increment;
4260 if (nice < -20)
4261 nice = -20;
4262 if (nice > 19)
4263 nice = 19;
4265 if (increment < 0 && !can_nice(current, nice))
4266 return -EPERM;
4268 retval = security_task_setnice(current, nice);
4269 if (retval)
4270 return retval;
4272 set_user_nice(current, nice);
4273 return 0;
4276 #endif
4279 * task_prio - return the priority value of a given task.
4280 * @p: the task in question.
4282 * This is the priority value as seen by users in /proc.
4283 * RT tasks are offset by -200. Normal tasks are centered
4284 * around 0, value goes from -16 to +15.
4286 int task_prio(const struct task_struct *p)
4288 return p->prio - MAX_RT_PRIO;
4292 * task_nice - return the nice value of a given task.
4293 * @p: the task in question.
4295 int task_nice(const struct task_struct *p)
4297 return TASK_NICE(p);
4299 EXPORT_SYMBOL_GPL(task_nice);
4302 * idle_cpu - is a given cpu idle currently?
4303 * @cpu: the processor in question.
4305 int idle_cpu(int cpu)
4307 return cpu_curr(cpu) == cpu_rq(cpu)->idle;
4311 * idle_task - return the idle task for a given cpu.
4312 * @cpu: the processor in question.
4314 struct task_struct *idle_task(int cpu)
4316 return cpu_rq(cpu)->idle;
4320 * find_process_by_pid - find a process with a matching PID value.
4321 * @pid: the pid in question.
4323 static inline struct task_struct *find_process_by_pid(pid_t pid)
4325 return pid ? find_task_by_pid(pid) : current;
4328 /* Actually do priority change: must hold rq lock. */
4329 static void __setscheduler(struct task_struct *p, int policy, int prio)
4331 BUG_ON(p->array);
4333 p->policy = policy;
4334 p->rt_priority = prio;
4335 p->normal_prio = normal_prio(p);
4336 /* we are holding p->pi_lock already */
4337 p->prio = rt_mutex_getprio(p);
4339 * SCHED_BATCH tasks are treated as perpetual CPU hogs:
4341 if (policy == SCHED_BATCH)
4342 p->sleep_avg = 0;
4343 set_load_weight(p);
4347 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
4348 * @p: the task in question.
4349 * @policy: new policy.
4350 * @param: structure containing the new RT priority.
4352 * NOTE that the task may be already dead.
4354 int sched_setscheduler(struct task_struct *p, int policy,
4355 struct sched_param *param)
4357 int retval, oldprio, oldpolicy = -1;
4358 struct prio_array *array;
4359 unsigned long flags;
4360 struct rq *rq;
4362 /* may grab non-irq protected spin_locks */
4363 BUG_ON(in_interrupt());
4364 recheck:
4365 /* double check policy once rq lock held */
4366 if (policy < 0)
4367 policy = oldpolicy = p->policy;
4368 else if (policy != SCHED_FIFO && policy != SCHED_RR &&
4369 policy != SCHED_NORMAL && policy != SCHED_BATCH)
4370 return -EINVAL;
4372 * Valid priorities for SCHED_FIFO and SCHED_RR are
4373 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL and
4374 * SCHED_BATCH is 0.
4376 if (param->sched_priority < 0 ||
4377 (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) ||
4378 (!p->mm && param->sched_priority > MAX_RT_PRIO-1))
4379 return -EINVAL;
4380 if (is_rt_policy(policy) != (param->sched_priority != 0))
4381 return -EINVAL;
4384 * Allow unprivileged RT tasks to decrease priority:
4386 if (!capable(CAP_SYS_NICE)) {
4387 if (is_rt_policy(policy)) {
4388 unsigned long rlim_rtprio;
4389 unsigned long flags;
4391 if (!lock_task_sighand(p, &flags))
4392 return -ESRCH;
4393 rlim_rtprio = p->signal->rlim[RLIMIT_RTPRIO].rlim_cur;
4394 unlock_task_sighand(p, &flags);
4396 /* can't set/change the rt policy */
4397 if (policy != p->policy && !rlim_rtprio)
4398 return -EPERM;
4400 /* can't increase priority */
4401 if (param->sched_priority > p->rt_priority &&
4402 param->sched_priority > rlim_rtprio)
4403 return -EPERM;
4406 /* can't change other user's priorities */
4407 if ((current->euid != p->euid) &&
4408 (current->euid != p->uid))
4409 return -EPERM;
4412 retval = security_task_setscheduler(p, policy, param);
4413 if (retval)
4414 return retval;
4416 * make sure no PI-waiters arrive (or leave) while we are
4417 * changing the priority of the task:
4419 spin_lock_irqsave(&p->pi_lock, flags);
4421 * To be able to change p->policy safely, the apropriate
4422 * runqueue lock must be held.
4424 rq = __task_rq_lock(p);
4425 /* recheck policy now with rq lock held */
4426 if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
4427 policy = oldpolicy = -1;
4428 __task_rq_unlock(rq);
4429 spin_unlock_irqrestore(&p->pi_lock, flags);
4430 goto recheck;
4432 array = p->array;
4433 if (array)
4434 deactivate_task(p, rq);
4435 oldprio = p->prio;
4436 __setscheduler(p, policy, param->sched_priority);
4437 if (array) {
4438 __activate_task(p, rq);
4440 * Reschedule if we are currently running on this runqueue and
4441 * our priority decreased, or if we are not currently running on
4442 * this runqueue and our priority is higher than the current's
4444 if (task_running(rq, p)) {
4445 if (p->prio > oldprio)
4446 resched_task(rq->curr);
4447 } else if (TASK_PREEMPTS_CURR(p, rq))
4448 resched_task(rq->curr);
4450 __task_rq_unlock(rq);
4451 spin_unlock_irqrestore(&p->pi_lock, flags);
4453 rt_mutex_adjust_pi(p);
4455 return 0;
4457 EXPORT_SYMBOL_GPL(sched_setscheduler);
4459 static int
4460 do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
4462 struct sched_param lparam;
4463 struct task_struct *p;
4464 int retval;
4466 if (!param || pid < 0)
4467 return -EINVAL;
4468 if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
4469 return -EFAULT;
4471 rcu_read_lock();
4472 retval = -ESRCH;
4473 p = find_process_by_pid(pid);
4474 if (p != NULL)
4475 retval = sched_setscheduler(p, policy, &lparam);
4476 rcu_read_unlock();
4478 return retval;
4482 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
4483 * @pid: the pid in question.
4484 * @policy: new policy.
4485 * @param: structure containing the new RT priority.
4487 asmlinkage long sys_sched_setscheduler(pid_t pid, int policy,
4488 struct sched_param __user *param)
4490 /* negative values for policy are not valid */
4491 if (policy < 0)
4492 return -EINVAL;
4494 return do_sched_setscheduler(pid, policy, param);
4498 * sys_sched_setparam - set/change the RT priority of a thread
4499 * @pid: the pid in question.
4500 * @param: structure containing the new RT priority.
4502 asmlinkage long sys_sched_setparam(pid_t pid, struct sched_param __user *param)
4504 return do_sched_setscheduler(pid, -1, param);
4508 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
4509 * @pid: the pid in question.
4511 asmlinkage long sys_sched_getscheduler(pid_t pid)
4513 struct task_struct *p;
4514 int retval = -EINVAL;
4516 if (pid < 0)
4517 goto out_nounlock;
4519 retval = -ESRCH;
4520 read_lock(&tasklist_lock);
4521 p = find_process_by_pid(pid);
4522 if (p) {
4523 retval = security_task_getscheduler(p);
4524 if (!retval)
4525 retval = p->policy;
4527 read_unlock(&tasklist_lock);
4529 out_nounlock:
4530 return retval;
4534 * sys_sched_getscheduler - get the RT priority of a thread
4535 * @pid: the pid in question.
4536 * @param: structure containing the RT priority.
4538 asmlinkage long sys_sched_getparam(pid_t pid, struct sched_param __user *param)
4540 struct sched_param lp;
4541 struct task_struct *p;
4542 int retval = -EINVAL;
4544 if (!param || pid < 0)
4545 goto out_nounlock;
4547 read_lock(&tasklist_lock);
4548 p = find_process_by_pid(pid);
4549 retval = -ESRCH;
4550 if (!p)
4551 goto out_unlock;
4553 retval = security_task_getscheduler(p);
4554 if (retval)
4555 goto out_unlock;
4557 lp.sched_priority = p->rt_priority;
4558 read_unlock(&tasklist_lock);
4561 * This one might sleep, we cannot do it with a spinlock held ...
4563 retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
4565 out_nounlock:
4566 return retval;
4568 out_unlock:
4569 read_unlock(&tasklist_lock);
4570 return retval;
4573 long sched_setaffinity(pid_t pid, cpumask_t new_mask)
4575 cpumask_t cpus_allowed;
4576 struct task_struct *p;
4577 int retval;
4579 mutex_lock(&sched_hotcpu_mutex);
4580 read_lock(&tasklist_lock);
4582 p = find_process_by_pid(pid);
4583 if (!p) {
4584 read_unlock(&tasklist_lock);
4585 mutex_unlock(&sched_hotcpu_mutex);
4586 return -ESRCH;
4590 * It is not safe to call set_cpus_allowed with the
4591 * tasklist_lock held. We will bump the task_struct's
4592 * usage count and then drop tasklist_lock.
4594 get_task_struct(p);
4595 read_unlock(&tasklist_lock);
4597 retval = -EPERM;
4598 if ((current->euid != p->euid) && (current->euid != p->uid) &&
4599 !capable(CAP_SYS_NICE))
4600 goto out_unlock;
4602 retval = security_task_setscheduler(p, 0, NULL);
4603 if (retval)
4604 goto out_unlock;
4606 cpus_allowed = cpuset_cpus_allowed(p);
4607 cpus_and(new_mask, new_mask, cpus_allowed);
4608 retval = set_cpus_allowed(p, new_mask);
4610 out_unlock:
4611 put_task_struct(p);
4612 mutex_unlock(&sched_hotcpu_mutex);
4613 return retval;
4616 static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
4617 cpumask_t *new_mask)
4619 if (len < sizeof(cpumask_t)) {
4620 memset(new_mask, 0, sizeof(cpumask_t));
4621 } else if (len > sizeof(cpumask_t)) {
4622 len = sizeof(cpumask_t);
4624 return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
4628 * sys_sched_setaffinity - set the cpu affinity of a process
4629 * @pid: pid of the process
4630 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4631 * @user_mask_ptr: user-space pointer to the new cpu mask
4633 asmlinkage long sys_sched_setaffinity(pid_t pid, unsigned int len,
4634 unsigned long __user *user_mask_ptr)
4636 cpumask_t new_mask;
4637 int retval;
4639 retval = get_user_cpu_mask(user_mask_ptr, len, &new_mask);
4640 if (retval)
4641 return retval;
4643 return sched_setaffinity(pid, new_mask);
4647 * Represents all cpu's present in the system
4648 * In systems capable of hotplug, this map could dynamically grow
4649 * as new cpu's are detected in the system via any platform specific
4650 * method, such as ACPI for e.g.
4653 cpumask_t cpu_present_map __read_mostly;
4654 EXPORT_SYMBOL(cpu_present_map);
4656 #ifndef CONFIG_SMP
4657 cpumask_t cpu_online_map __read_mostly = CPU_MASK_ALL;
4658 EXPORT_SYMBOL(cpu_online_map);
4660 cpumask_t cpu_possible_map __read_mostly = CPU_MASK_ALL;
4661 EXPORT_SYMBOL(cpu_possible_map);
4662 #endif
4664 long sched_getaffinity(pid_t pid, cpumask_t *mask)
4666 struct task_struct *p;
4667 int retval;
4669 mutex_lock(&sched_hotcpu_mutex);
4670 read_lock(&tasklist_lock);
4672 retval = -ESRCH;
4673 p = find_process_by_pid(pid);
4674 if (!p)
4675 goto out_unlock;
4677 retval = security_task_getscheduler(p);
4678 if (retval)
4679 goto out_unlock;
4681 cpus_and(*mask, p->cpus_allowed, cpu_online_map);
4683 out_unlock:
4684 read_unlock(&tasklist_lock);
4685 mutex_unlock(&sched_hotcpu_mutex);
4686 if (retval)
4687 return retval;
4689 return 0;
4693 * sys_sched_getaffinity - get the cpu affinity of a process
4694 * @pid: pid of the process
4695 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4696 * @user_mask_ptr: user-space pointer to hold the current cpu mask
4698 asmlinkage long sys_sched_getaffinity(pid_t pid, unsigned int len,
4699 unsigned long __user *user_mask_ptr)
4701 int ret;
4702 cpumask_t mask;
4704 if (len < sizeof(cpumask_t))
4705 return -EINVAL;
4707 ret = sched_getaffinity(pid, &mask);
4708 if (ret < 0)
4709 return ret;
4711 if (copy_to_user(user_mask_ptr, &mask, sizeof(cpumask_t)))
4712 return -EFAULT;
4714 return sizeof(cpumask_t);
4718 * sys_sched_yield - yield the current processor to other threads.
4720 * This function yields the current CPU by moving the calling thread
4721 * to the expired array. If there are no other threads running on this
4722 * CPU then this function will return.
4724 asmlinkage long sys_sched_yield(void)
4726 struct rq *rq = this_rq_lock();
4727 struct prio_array *array = current->array, *target = rq->expired;
4729 schedstat_inc(rq, yld_cnt);
4731 * We implement yielding by moving the task into the expired
4732 * queue.
4734 * (special rule: RT tasks will just roundrobin in the active
4735 * array.)
4737 if (rt_task(current))
4738 target = rq->active;
4740 if (array->nr_active == 1) {
4741 schedstat_inc(rq, yld_act_empty);
4742 if (!rq->expired->nr_active)
4743 schedstat_inc(rq, yld_both_empty);
4744 } else if (!rq->expired->nr_active)
4745 schedstat_inc(rq, yld_exp_empty);
4747 if (array != target) {
4748 dequeue_task(current, array);
4749 enqueue_task(current, target);
4750 } else
4752 * requeue_task is cheaper so perform that if possible.
4754 requeue_task(current, array);
4757 * Since we are going to call schedule() anyway, there's
4758 * no need to preempt or enable interrupts:
4760 __release(rq->lock);
4761 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
4762 _raw_spin_unlock(&rq->lock);
4763 preempt_enable_no_resched();
4765 schedule();
4767 return 0;
4770 static void __cond_resched(void)
4772 #ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
4773 __might_sleep(__FILE__, __LINE__);
4774 #endif
4776 * The BKS might be reacquired before we have dropped
4777 * PREEMPT_ACTIVE, which could trigger a second
4778 * cond_resched() call.
4780 do {
4781 add_preempt_count(PREEMPT_ACTIVE);
4782 schedule();
4783 sub_preempt_count(PREEMPT_ACTIVE);
4784 } while (need_resched());
4787 int __sched cond_resched(void)
4789 if (need_resched() && !(preempt_count() & PREEMPT_ACTIVE) &&
4790 system_state == SYSTEM_RUNNING) {
4791 __cond_resched();
4792 return 1;
4794 return 0;
4796 EXPORT_SYMBOL(cond_resched);
4799 * cond_resched_lock() - if a reschedule is pending, drop the given lock,
4800 * call schedule, and on return reacquire the lock.
4802 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
4803 * operations here to prevent schedule() from being called twice (once via
4804 * spin_unlock(), once by hand).
4806 int cond_resched_lock(spinlock_t *lock)
4808 int ret = 0;
4810 if (need_lockbreak(lock)) {
4811 spin_unlock(lock);
4812 cpu_relax();
4813 ret = 1;
4814 spin_lock(lock);
4816 if (need_resched() && system_state == SYSTEM_RUNNING) {
4817 spin_release(&lock->dep_map, 1, _THIS_IP_);
4818 _raw_spin_unlock(lock);
4819 preempt_enable_no_resched();
4820 __cond_resched();
4821 ret = 1;
4822 spin_lock(lock);
4824 return ret;
4826 EXPORT_SYMBOL(cond_resched_lock);
4828 int __sched cond_resched_softirq(void)
4830 BUG_ON(!in_softirq());
4832 if (need_resched() && system_state == SYSTEM_RUNNING) {
4833 local_bh_enable();
4834 __cond_resched();
4835 local_bh_disable();
4836 return 1;
4838 return 0;
4840 EXPORT_SYMBOL(cond_resched_softirq);
4843 * yield - yield the current processor to other threads.
4845 * This is a shortcut for kernel-space yielding - it marks the
4846 * thread runnable and calls sys_sched_yield().
4848 void __sched yield(void)
4850 set_current_state(TASK_RUNNING);
4851 sys_sched_yield();
4853 EXPORT_SYMBOL(yield);
4856 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
4857 * that process accounting knows that this is a task in IO wait state.
4859 * But don't do that if it is a deliberate, throttling IO wait (this task
4860 * has set its backing_dev_info: the queue against which it should throttle)
4862 void __sched io_schedule(void)
4864 struct rq *rq = &__raw_get_cpu_var(runqueues);
4866 delayacct_blkio_start();
4867 atomic_inc(&rq->nr_iowait);
4868 schedule();
4869 atomic_dec(&rq->nr_iowait);
4870 delayacct_blkio_end();
4872 EXPORT_SYMBOL(io_schedule);
4874 long __sched io_schedule_timeout(long timeout)
4876 struct rq *rq = &__raw_get_cpu_var(runqueues);
4877 long ret;
4879 delayacct_blkio_start();
4880 atomic_inc(&rq->nr_iowait);
4881 ret = schedule_timeout(timeout);
4882 atomic_dec(&rq->nr_iowait);
4883 delayacct_blkio_end();
4884 return ret;
4888 * sys_sched_get_priority_max - return maximum RT priority.
4889 * @policy: scheduling class.
4891 * this syscall returns the maximum rt_priority that can be used
4892 * by a given scheduling class.
4894 asmlinkage long sys_sched_get_priority_max(int policy)
4896 int ret = -EINVAL;
4898 switch (policy) {
4899 case SCHED_FIFO:
4900 case SCHED_RR:
4901 ret = MAX_USER_RT_PRIO-1;
4902 break;
4903 case SCHED_NORMAL:
4904 case SCHED_BATCH:
4905 ret = 0;
4906 break;
4908 return ret;
4912 * sys_sched_get_priority_min - return minimum RT priority.
4913 * @policy: scheduling class.
4915 * this syscall returns the minimum rt_priority that can be used
4916 * by a given scheduling class.
4918 asmlinkage long sys_sched_get_priority_min(int policy)
4920 int ret = -EINVAL;
4922 switch (policy) {
4923 case SCHED_FIFO:
4924 case SCHED_RR:
4925 ret = 1;
4926 break;
4927 case SCHED_NORMAL:
4928 case SCHED_BATCH:
4929 ret = 0;
4931 return ret;
4935 * sys_sched_rr_get_interval - return the default timeslice of a process.
4936 * @pid: pid of the process.
4937 * @interval: userspace pointer to the timeslice value.
4939 * this syscall writes the default timeslice value of a given process
4940 * into the user-space timespec buffer. A value of '0' means infinity.
4942 asmlinkage
4943 long sys_sched_rr_get_interval(pid_t pid, struct timespec __user *interval)
4945 struct task_struct *p;
4946 int retval = -EINVAL;
4947 struct timespec t;
4949 if (pid < 0)
4950 goto out_nounlock;
4952 retval = -ESRCH;
4953 read_lock(&tasklist_lock);
4954 p = find_process_by_pid(pid);
4955 if (!p)
4956 goto out_unlock;
4958 retval = security_task_getscheduler(p);
4959 if (retval)
4960 goto out_unlock;
4962 jiffies_to_timespec(p->policy == SCHED_FIFO ?
4963 0 : task_timeslice(p), &t);
4964 read_unlock(&tasklist_lock);
4965 retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
4966 out_nounlock:
4967 return retval;
4968 out_unlock:
4969 read_unlock(&tasklist_lock);
4970 return retval;
4973 static const char stat_nam[] = "RSDTtZX";
4975 static void show_task(struct task_struct *p)
4977 unsigned long free = 0;
4978 unsigned state;
4980 state = p->state ? __ffs(p->state) + 1 : 0;
4981 printk("%-13.13s %c", p->comm,
4982 state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
4983 #if (BITS_PER_LONG == 32)
4984 if (state == TASK_RUNNING)
4985 printk(" running ");
4986 else
4987 printk(" %08lX ", thread_saved_pc(p));
4988 #else
4989 if (state == TASK_RUNNING)
4990 printk(" running task ");
4991 else
4992 printk(" %016lx ", thread_saved_pc(p));
4993 #endif
4994 #ifdef CONFIG_DEBUG_STACK_USAGE
4996 unsigned long *n = end_of_stack(p);
4997 while (!*n)
4998 n++;
4999 free = (unsigned long)n - (unsigned long)end_of_stack(p);
5001 #endif
5002 printk("%5lu %5d %6d", free, p->pid, p->parent->pid);
5003 if (!p->mm)
5004 printk(" (L-TLB)\n");
5005 else
5006 printk(" (NOTLB)\n");
5008 if (state != TASK_RUNNING)
5009 show_stack(p, NULL);
5012 void show_state_filter(unsigned long state_filter)
5014 struct task_struct *g, *p;
5016 #if (BITS_PER_LONG == 32)
5017 printk("\n"
5018 " free sibling\n");
5019 printk(" task PC stack pid father child younger older\n");
5020 #else
5021 printk("\n"
5022 " free sibling\n");
5023 printk(" task PC stack pid father child younger older\n");
5024 #endif
5025 read_lock(&tasklist_lock);
5026 do_each_thread(g, p) {
5028 * reset the NMI-timeout, listing all files on a slow
5029 * console might take alot of time:
5031 touch_nmi_watchdog();
5032 if (!state_filter || (p->state & state_filter))
5033 show_task(p);
5034 } while_each_thread(g, p);
5036 touch_all_softlockup_watchdogs();
5038 read_unlock(&tasklist_lock);
5040 * Only show locks if all tasks are dumped:
5042 if (state_filter == -1)
5043 debug_show_all_locks();
5047 * init_idle - set up an idle thread for a given CPU
5048 * @idle: task in question
5049 * @cpu: cpu the idle task belongs to
5051 * NOTE: this function does not set the idle thread's NEED_RESCHED
5052 * flag, to make booting more robust.
5054 void __cpuinit init_idle(struct task_struct *idle, int cpu)
5056 struct rq *rq = cpu_rq(cpu);
5057 unsigned long flags;
5059 idle->timestamp = sched_clock();
5060 idle->sleep_avg = 0;
5061 idle->array = NULL;
5062 idle->prio = idle->normal_prio = MAX_PRIO;
5063 idle->state = TASK_RUNNING;
5064 idle->cpus_allowed = cpumask_of_cpu(cpu);
5065 set_task_cpu(idle, cpu);
5067 spin_lock_irqsave(&rq->lock, flags);
5068 rq->curr = rq->idle = idle;
5069 #if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
5070 idle->oncpu = 1;
5071 #endif
5072 spin_unlock_irqrestore(&rq->lock, flags);
5074 /* Set the preempt count _outside_ the spinlocks! */
5075 #if defined(CONFIG_PREEMPT) && !defined(CONFIG_PREEMPT_BKL)
5076 task_thread_info(idle)->preempt_count = (idle->lock_depth >= 0);
5077 #else
5078 task_thread_info(idle)->preempt_count = 0;
5079 #endif
5083 * In a system that switches off the HZ timer nohz_cpu_mask
5084 * indicates which cpus entered this state. This is used
5085 * in the rcu update to wait only for active cpus. For system
5086 * which do not switch off the HZ timer nohz_cpu_mask should
5087 * always be CPU_MASK_NONE.
5089 cpumask_t nohz_cpu_mask = CPU_MASK_NONE;
5091 #ifdef CONFIG_SMP
5093 * This is how migration works:
5095 * 1) we queue a struct migration_req structure in the source CPU's
5096 * runqueue and wake up that CPU's migration thread.
5097 * 2) we down() the locked semaphore => thread blocks.
5098 * 3) migration thread wakes up (implicitly it forces the migrated
5099 * thread off the CPU)
5100 * 4) it gets the migration request and checks whether the migrated
5101 * task is still in the wrong runqueue.
5102 * 5) if it's in the wrong runqueue then the migration thread removes
5103 * it and puts it into the right queue.
5104 * 6) migration thread up()s the semaphore.
5105 * 7) we wake up and the migration is done.
5109 * Change a given task's CPU affinity. Migrate the thread to a
5110 * proper CPU and schedule it away if the CPU it's executing on
5111 * is removed from the allowed bitmask.
5113 * NOTE: the caller must have a valid reference to the task, the
5114 * task must not exit() & deallocate itself prematurely. The
5115 * call is not atomic; no spinlocks may be held.
5117 int set_cpus_allowed(struct task_struct *p, cpumask_t new_mask)
5119 struct migration_req req;
5120 unsigned long flags;
5121 struct rq *rq;
5122 int ret = 0;
5124 rq = task_rq_lock(p, &flags);
5125 if (!cpus_intersects(new_mask, cpu_online_map)) {
5126 ret = -EINVAL;
5127 goto out;
5130 p->cpus_allowed = new_mask;
5131 /* Can the task run on the task's current CPU? If so, we're done */
5132 if (cpu_isset(task_cpu(p), new_mask))
5133 goto out;
5135 if (migrate_task(p, any_online_cpu(new_mask), &req)) {
5136 /* Need help from migration thread: drop lock and wait. */
5137 task_rq_unlock(rq, &flags);
5138 wake_up_process(rq->migration_thread);
5139 wait_for_completion(&req.done);
5140 tlb_migrate_finish(p->mm);
5141 return 0;
5143 out:
5144 task_rq_unlock(rq, &flags);
5146 return ret;
5148 EXPORT_SYMBOL_GPL(set_cpus_allowed);
5151 * Move (not current) task off this cpu, onto dest cpu. We're doing
5152 * this because either it can't run here any more (set_cpus_allowed()
5153 * away from this CPU, or CPU going down), or because we're
5154 * attempting to rebalance this task on exec (sched_exec).
5156 * So we race with normal scheduler movements, but that's OK, as long
5157 * as the task is no longer on this CPU.
5159 * Returns non-zero if task was successfully migrated.
5161 static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
5163 struct rq *rq_dest, *rq_src;
5164 int ret = 0;
5166 if (unlikely(cpu_is_offline(dest_cpu)))
5167 return ret;
5169 rq_src = cpu_rq(src_cpu);
5170 rq_dest = cpu_rq(dest_cpu);
5172 double_rq_lock(rq_src, rq_dest);
5173 /* Already moved. */
5174 if (task_cpu(p) != src_cpu)
5175 goto out;
5176 /* Affinity changed (again). */
5177 if (!cpu_isset(dest_cpu, p->cpus_allowed))
5178 goto out;
5180 set_task_cpu(p, dest_cpu);
5181 if (p->array) {
5183 * Sync timestamp with rq_dest's before activating.
5184 * The same thing could be achieved by doing this step
5185 * afterwards, and pretending it was a local activate.
5186 * This way is cleaner and logically correct.
5188 p->timestamp = p->timestamp - rq_src->most_recent_timestamp
5189 + rq_dest->most_recent_timestamp;
5190 deactivate_task(p, rq_src);
5191 __activate_task(p, rq_dest);
5192 if (TASK_PREEMPTS_CURR(p, rq_dest))
5193 resched_task(rq_dest->curr);
5195 ret = 1;
5196 out:
5197 double_rq_unlock(rq_src, rq_dest);
5198 return ret;
5202 * migration_thread - this is a highprio system thread that performs
5203 * thread migration by bumping thread off CPU then 'pushing' onto
5204 * another runqueue.
5206 static int migration_thread(void *data)
5208 int cpu = (long)data;
5209 struct rq *rq;
5211 rq = cpu_rq(cpu);
5212 BUG_ON(rq->migration_thread != current);
5214 set_current_state(TASK_INTERRUPTIBLE);
5215 while (!kthread_should_stop()) {
5216 struct migration_req *req;
5217 struct list_head *head;
5219 try_to_freeze();
5221 spin_lock_irq(&rq->lock);
5223 if (cpu_is_offline(cpu)) {
5224 spin_unlock_irq(&rq->lock);
5225 goto wait_to_die;
5228 if (rq->active_balance) {
5229 active_load_balance(rq, cpu);
5230 rq->active_balance = 0;
5233 head = &rq->migration_queue;
5235 if (list_empty(head)) {
5236 spin_unlock_irq(&rq->lock);
5237 schedule();
5238 set_current_state(TASK_INTERRUPTIBLE);
5239 continue;
5241 req = list_entry(head->next, struct migration_req, list);
5242 list_del_init(head->next);
5244 spin_unlock(&rq->lock);
5245 __migrate_task(req->task, cpu, req->dest_cpu);
5246 local_irq_enable();
5248 complete(&req->done);
5250 __set_current_state(TASK_RUNNING);
5251 return 0;
5253 wait_to_die:
5254 /* Wait for kthread_stop */
5255 set_current_state(TASK_INTERRUPTIBLE);
5256 while (!kthread_should_stop()) {
5257 schedule();
5258 set_current_state(TASK_INTERRUPTIBLE);
5260 __set_current_state(TASK_RUNNING);
5261 return 0;
5264 #ifdef CONFIG_HOTPLUG_CPU
5266 * Figure out where task on dead CPU should go, use force if neccessary.
5267 * NOTE: interrupts should be disabled by the caller
5269 static void move_task_off_dead_cpu(int dead_cpu, struct task_struct *p)
5271 unsigned long flags;
5272 cpumask_t mask;
5273 struct rq *rq;
5274 int dest_cpu;
5276 restart:
5277 /* On same node? */
5278 mask = node_to_cpumask(cpu_to_node(dead_cpu));
5279 cpus_and(mask, mask, p->cpus_allowed);
5280 dest_cpu = any_online_cpu(mask);
5282 /* On any allowed CPU? */
5283 if (dest_cpu == NR_CPUS)
5284 dest_cpu = any_online_cpu(p->cpus_allowed);
5286 /* No more Mr. Nice Guy. */
5287 if (dest_cpu == NR_CPUS) {
5288 rq = task_rq_lock(p, &flags);
5289 cpus_setall(p->cpus_allowed);
5290 dest_cpu = any_online_cpu(p->cpus_allowed);
5291 task_rq_unlock(rq, &flags);
5294 * Don't tell them about moving exiting tasks or
5295 * kernel threads (both mm NULL), since they never
5296 * leave kernel.
5298 if (p->mm && printk_ratelimit())
5299 printk(KERN_INFO "process %d (%s) no "
5300 "longer affine to cpu%d\n",
5301 p->pid, p->comm, dead_cpu);
5303 if (!__migrate_task(p, dead_cpu, dest_cpu))
5304 goto restart;
5308 * While a dead CPU has no uninterruptible tasks queued at this point,
5309 * it might still have a nonzero ->nr_uninterruptible counter, because
5310 * for performance reasons the counter is not stricly tracking tasks to
5311 * their home CPUs. So we just add the counter to another CPU's counter,
5312 * to keep the global sum constant after CPU-down:
5314 static void migrate_nr_uninterruptible(struct rq *rq_src)
5316 struct rq *rq_dest = cpu_rq(any_online_cpu(CPU_MASK_ALL));
5317 unsigned long flags;
5319 local_irq_save(flags);
5320 double_rq_lock(rq_src, rq_dest);
5321 rq_dest->nr_uninterruptible += rq_src->nr_uninterruptible;
5322 rq_src->nr_uninterruptible = 0;
5323 double_rq_unlock(rq_src, rq_dest);
5324 local_irq_restore(flags);
5327 /* Run through task list and migrate tasks from the dead cpu. */
5328 static void migrate_live_tasks(int src_cpu)
5330 struct task_struct *p, *t;
5332 write_lock_irq(&tasklist_lock);
5334 do_each_thread(t, p) {
5335 if (p == current)
5336 continue;
5338 if (task_cpu(p) == src_cpu)
5339 move_task_off_dead_cpu(src_cpu, p);
5340 } while_each_thread(t, p);
5342 write_unlock_irq(&tasklist_lock);
5345 /* Schedules idle task to be the next runnable task on current CPU.
5346 * It does so by boosting its priority to highest possible and adding it to
5347 * the _front_ of the runqueue. Used by CPU offline code.
5349 void sched_idle_next(void)
5351 int this_cpu = smp_processor_id();
5352 struct rq *rq = cpu_rq(this_cpu);
5353 struct task_struct *p = rq->idle;
5354 unsigned long flags;
5356 /* cpu has to be offline */
5357 BUG_ON(cpu_online(this_cpu));
5360 * Strictly not necessary since rest of the CPUs are stopped by now
5361 * and interrupts disabled on the current cpu.
5363 spin_lock_irqsave(&rq->lock, flags);
5365 __setscheduler(p, SCHED_FIFO, MAX_RT_PRIO-1);
5367 /* Add idle task to the _front_ of its priority queue: */
5368 __activate_idle_task(p, rq);
5370 spin_unlock_irqrestore(&rq->lock, flags);
5374 * Ensures that the idle task is using init_mm right before its cpu goes
5375 * offline.
5377 void idle_task_exit(void)
5379 struct mm_struct *mm = current->active_mm;
5381 BUG_ON(cpu_online(smp_processor_id()));
5383 if (mm != &init_mm)
5384 switch_mm(mm, &init_mm, current);
5385 mmdrop(mm);
5388 /* called under rq->lock with disabled interrupts */
5389 static void migrate_dead(unsigned int dead_cpu, struct task_struct *p)
5391 struct rq *rq = cpu_rq(dead_cpu);
5393 /* Must be exiting, otherwise would be on tasklist. */
5394 BUG_ON(p->exit_state != EXIT_ZOMBIE && p->exit_state != EXIT_DEAD);
5396 /* Cannot have done final schedule yet: would have vanished. */
5397 BUG_ON(p->state == TASK_DEAD);
5399 get_task_struct(p);
5402 * Drop lock around migration; if someone else moves it,
5403 * that's OK. No task can be added to this CPU, so iteration is
5404 * fine.
5405 * NOTE: interrupts should be left disabled --dev@
5407 spin_unlock(&rq->lock);
5408 move_task_off_dead_cpu(dead_cpu, p);
5409 spin_lock(&rq->lock);
5411 put_task_struct(p);
5414 /* release_task() removes task from tasklist, so we won't find dead tasks. */
5415 static void migrate_dead_tasks(unsigned int dead_cpu)
5417 struct rq *rq = cpu_rq(dead_cpu);
5418 unsigned int arr, i;
5420 for (arr = 0; arr < 2; arr++) {
5421 for (i = 0; i < MAX_PRIO; i++) {
5422 struct list_head *list = &rq->arrays[arr].queue[i];
5424 while (!list_empty(list))
5425 migrate_dead(dead_cpu, list_entry(list->next,
5426 struct task_struct, run_list));
5430 #endif /* CONFIG_HOTPLUG_CPU */
5433 * migration_call - callback that gets triggered when a CPU is added.
5434 * Here we can start up the necessary migration thread for the new CPU.
5436 static int __cpuinit
5437 migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
5439 struct task_struct *p;
5440 int cpu = (long)hcpu;
5441 unsigned long flags;
5442 struct rq *rq;
5444 switch (action) {
5445 case CPU_LOCK_ACQUIRE:
5446 mutex_lock(&sched_hotcpu_mutex);
5447 break;
5449 case CPU_UP_PREPARE:
5450 case CPU_UP_PREPARE_FROZEN:
5451 p = kthread_create(migration_thread, hcpu, "migration/%d",cpu);
5452 if (IS_ERR(p))
5453 return NOTIFY_BAD;
5454 p->flags |= PF_NOFREEZE;
5455 kthread_bind(p, cpu);
5456 /* Must be high prio: stop_machine expects to yield to it. */
5457 rq = task_rq_lock(p, &flags);
5458 __setscheduler(p, SCHED_FIFO, MAX_RT_PRIO-1);
5459 task_rq_unlock(rq, &flags);
5460 cpu_rq(cpu)->migration_thread = p;
5461 break;
5463 case CPU_ONLINE:
5464 case CPU_ONLINE_FROZEN:
5465 /* Strictly unneccessary, as first user will wake it. */
5466 wake_up_process(cpu_rq(cpu)->migration_thread);
5467 break;
5469 #ifdef CONFIG_HOTPLUG_CPU
5470 case CPU_UP_CANCELED:
5471 case CPU_UP_CANCELED_FROZEN:
5472 if (!cpu_rq(cpu)->migration_thread)
5473 break;
5474 /* Unbind it from offline cpu so it can run. Fall thru. */
5475 kthread_bind(cpu_rq(cpu)->migration_thread,
5476 any_online_cpu(cpu_online_map));
5477 kthread_stop(cpu_rq(cpu)->migration_thread);
5478 cpu_rq(cpu)->migration_thread = NULL;
5479 break;
5481 case CPU_DEAD:
5482 case CPU_DEAD_FROZEN:
5483 migrate_live_tasks(cpu);
5484 rq = cpu_rq(cpu);
5485 kthread_stop(rq->migration_thread);
5486 rq->migration_thread = NULL;
5487 /* Idle task back to normal (off runqueue, low prio) */
5488 rq = task_rq_lock(rq->idle, &flags);
5489 deactivate_task(rq->idle, rq);
5490 rq->idle->static_prio = MAX_PRIO;
5491 __setscheduler(rq->idle, SCHED_NORMAL, 0);
5492 migrate_dead_tasks(cpu);
5493 task_rq_unlock(rq, &flags);
5494 migrate_nr_uninterruptible(rq);
5495 BUG_ON(rq->nr_running != 0);
5497 /* No need to migrate the tasks: it was best-effort if
5498 * they didn't take sched_hotcpu_mutex. Just wake up
5499 * the requestors. */
5500 spin_lock_irq(&rq->lock);
5501 while (!list_empty(&rq->migration_queue)) {
5502 struct migration_req *req;
5504 req = list_entry(rq->migration_queue.next,
5505 struct migration_req, list);
5506 list_del_init(&req->list);
5507 complete(&req->done);
5509 spin_unlock_irq(&rq->lock);
5510 break;
5511 #endif
5512 case CPU_LOCK_RELEASE:
5513 mutex_unlock(&sched_hotcpu_mutex);
5514 break;
5516 return NOTIFY_OK;
5519 /* Register at highest priority so that task migration (migrate_all_tasks)
5520 * happens before everything else.
5522 static struct notifier_block __cpuinitdata migration_notifier = {
5523 .notifier_call = migration_call,
5524 .priority = 10
5527 int __init migration_init(void)
5529 void *cpu = (void *)(long)smp_processor_id();
5530 int err;
5532 /* Start one for the boot CPU: */
5533 err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
5534 BUG_ON(err == NOTIFY_BAD);
5535 migration_call(&migration_notifier, CPU_ONLINE, cpu);
5536 register_cpu_notifier(&migration_notifier);
5538 return 0;
5540 #endif
5542 #ifdef CONFIG_SMP
5544 /* Number of possible processor ids */
5545 int nr_cpu_ids __read_mostly = NR_CPUS;
5546 EXPORT_SYMBOL(nr_cpu_ids);
5548 #undef SCHED_DOMAIN_DEBUG
5549 #ifdef SCHED_DOMAIN_DEBUG
5550 static void sched_domain_debug(struct sched_domain *sd, int cpu)
5552 int level = 0;
5554 if (!sd) {
5555 printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
5556 return;
5559 printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
5561 do {
5562 int i;
5563 char str[NR_CPUS];
5564 struct sched_group *group = sd->groups;
5565 cpumask_t groupmask;
5567 cpumask_scnprintf(str, NR_CPUS, sd->span);
5568 cpus_clear(groupmask);
5570 printk(KERN_DEBUG);
5571 for (i = 0; i < level + 1; i++)
5572 printk(" ");
5573 printk("domain %d: ", level);
5575 if (!(sd->flags & SD_LOAD_BALANCE)) {
5576 printk("does not load-balance\n");
5577 if (sd->parent)
5578 printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
5579 " has parent");
5580 break;
5583 printk("span %s\n", str);
5585 if (!cpu_isset(cpu, sd->span))
5586 printk(KERN_ERR "ERROR: domain->span does not contain "
5587 "CPU%d\n", cpu);
5588 if (!cpu_isset(cpu, group->cpumask))
5589 printk(KERN_ERR "ERROR: domain->groups does not contain"
5590 " CPU%d\n", cpu);
5592 printk(KERN_DEBUG);
5593 for (i = 0; i < level + 2; i++)
5594 printk(" ");
5595 printk("groups:");
5596 do {
5597 if (!group) {
5598 printk("\n");
5599 printk(KERN_ERR "ERROR: group is NULL\n");
5600 break;
5603 if (!group->__cpu_power) {
5604 printk("\n");
5605 printk(KERN_ERR "ERROR: domain->cpu_power not "
5606 "set\n");
5609 if (!cpus_weight(group->cpumask)) {
5610 printk("\n");
5611 printk(KERN_ERR "ERROR: empty group\n");
5614 if (cpus_intersects(groupmask, group->cpumask)) {
5615 printk("\n");
5616 printk(KERN_ERR "ERROR: repeated CPUs\n");
5619 cpus_or(groupmask, groupmask, group->cpumask);
5621 cpumask_scnprintf(str, NR_CPUS, group->cpumask);
5622 printk(" %s", str);
5624 group = group->next;
5625 } while (group != sd->groups);
5626 printk("\n");
5628 if (!cpus_equal(sd->span, groupmask))
5629 printk(KERN_ERR "ERROR: groups don't span "
5630 "domain->span\n");
5632 level++;
5633 sd = sd->parent;
5634 if (!sd)
5635 continue;
5637 if (!cpus_subset(groupmask, sd->span))
5638 printk(KERN_ERR "ERROR: parent span is not a superset "
5639 "of domain->span\n");
5641 } while (sd);
5643 #else
5644 # define sched_domain_debug(sd, cpu) do { } while (0)
5645 #endif
5647 static int sd_degenerate(struct sched_domain *sd)
5649 if (cpus_weight(sd->span) == 1)
5650 return 1;
5652 /* Following flags need at least 2 groups */
5653 if (sd->flags & (SD_LOAD_BALANCE |
5654 SD_BALANCE_NEWIDLE |
5655 SD_BALANCE_FORK |
5656 SD_BALANCE_EXEC |
5657 SD_SHARE_CPUPOWER |
5658 SD_SHARE_PKG_RESOURCES)) {
5659 if (sd->groups != sd->groups->next)
5660 return 0;
5663 /* Following flags don't use groups */
5664 if (sd->flags & (SD_WAKE_IDLE |
5665 SD_WAKE_AFFINE |
5666 SD_WAKE_BALANCE))
5667 return 0;
5669 return 1;
5672 static int
5673 sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
5675 unsigned long cflags = sd->flags, pflags = parent->flags;
5677 if (sd_degenerate(parent))
5678 return 1;
5680 if (!cpus_equal(sd->span, parent->span))
5681 return 0;
5683 /* Does parent contain flags not in child? */
5684 /* WAKE_BALANCE is a subset of WAKE_AFFINE */
5685 if (cflags & SD_WAKE_AFFINE)
5686 pflags &= ~SD_WAKE_BALANCE;
5687 /* Flags needing groups don't count if only 1 group in parent */
5688 if (parent->groups == parent->groups->next) {
5689 pflags &= ~(SD_LOAD_BALANCE |
5690 SD_BALANCE_NEWIDLE |
5691 SD_BALANCE_FORK |
5692 SD_BALANCE_EXEC |
5693 SD_SHARE_CPUPOWER |
5694 SD_SHARE_PKG_RESOURCES);
5696 if (~cflags & pflags)
5697 return 0;
5699 return 1;
5703 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
5704 * hold the hotplug lock.
5706 static void cpu_attach_domain(struct sched_domain *sd, int cpu)
5708 struct rq *rq = cpu_rq(cpu);
5709 struct sched_domain *tmp;
5711 /* Remove the sched domains which do not contribute to scheduling. */
5712 for (tmp = sd; tmp; tmp = tmp->parent) {
5713 struct sched_domain *parent = tmp->parent;
5714 if (!parent)
5715 break;
5716 if (sd_parent_degenerate(tmp, parent)) {
5717 tmp->parent = parent->parent;
5718 if (parent->parent)
5719 parent->parent->child = tmp;
5723 if (sd && sd_degenerate(sd)) {
5724 sd = sd->parent;
5725 if (sd)
5726 sd->child = NULL;
5729 sched_domain_debug(sd, cpu);
5731 rcu_assign_pointer(rq->sd, sd);
5734 /* cpus with isolated domains */
5735 static cpumask_t cpu_isolated_map = CPU_MASK_NONE;
5737 /* Setup the mask of cpus configured for isolated domains */
5738 static int __init isolated_cpu_setup(char *str)
5740 int ints[NR_CPUS], i;
5742 str = get_options(str, ARRAY_SIZE(ints), ints);
5743 cpus_clear(cpu_isolated_map);
5744 for (i = 1; i <= ints[0]; i++)
5745 if (ints[i] < NR_CPUS)
5746 cpu_set(ints[i], cpu_isolated_map);
5747 return 1;
5750 __setup ("isolcpus=", isolated_cpu_setup);
5753 * init_sched_build_groups takes the cpumask we wish to span, and a pointer
5754 * to a function which identifies what group(along with sched group) a CPU
5755 * belongs to. The return value of group_fn must be a >= 0 and < NR_CPUS
5756 * (due to the fact that we keep track of groups covered with a cpumask_t).
5758 * init_sched_build_groups will build a circular linked list of the groups
5759 * covered by the given span, and will set each group's ->cpumask correctly,
5760 * and ->cpu_power to 0.
5762 static void
5763 init_sched_build_groups(cpumask_t span, const cpumask_t *cpu_map,
5764 int (*group_fn)(int cpu, const cpumask_t *cpu_map,
5765 struct sched_group **sg))
5767 struct sched_group *first = NULL, *last = NULL;
5768 cpumask_t covered = CPU_MASK_NONE;
5769 int i;
5771 for_each_cpu_mask(i, span) {
5772 struct sched_group *sg;
5773 int group = group_fn(i, cpu_map, &sg);
5774 int j;
5776 if (cpu_isset(i, covered))
5777 continue;
5779 sg->cpumask = CPU_MASK_NONE;
5780 sg->__cpu_power = 0;
5782 for_each_cpu_mask(j, span) {
5783 if (group_fn(j, cpu_map, NULL) != group)
5784 continue;
5786 cpu_set(j, covered);
5787 cpu_set(j, sg->cpumask);
5789 if (!first)
5790 first = sg;
5791 if (last)
5792 last->next = sg;
5793 last = sg;
5795 last->next = first;
5798 #define SD_NODES_PER_DOMAIN 16
5801 * Self-tuning task migration cost measurement between source and target CPUs.
5803 * This is done by measuring the cost of manipulating buffers of varying
5804 * sizes. For a given buffer-size here are the steps that are taken:
5806 * 1) the source CPU reads+dirties a shared buffer
5807 * 2) the target CPU reads+dirties the same shared buffer
5809 * We measure how long they take, in the following 4 scenarios:
5811 * - source: CPU1, target: CPU2 | cost1
5812 * - source: CPU2, target: CPU1 | cost2
5813 * - source: CPU1, target: CPU1 | cost3
5814 * - source: CPU2, target: CPU2 | cost4
5816 * We then calculate the cost3+cost4-cost1-cost2 difference - this is
5817 * the cost of migration.
5819 * We then start off from a small buffer-size and iterate up to larger
5820 * buffer sizes, in 5% steps - measuring each buffer-size separately, and
5821 * doing a maximum search for the cost. (The maximum cost for a migration
5822 * normally occurs when the working set size is around the effective cache
5823 * size.)
5825 #define SEARCH_SCOPE 2
5826 #define MIN_CACHE_SIZE (64*1024U)
5827 #define DEFAULT_CACHE_SIZE (5*1024*1024U)
5828 #define ITERATIONS 1
5829 #define SIZE_THRESH 130
5830 #define COST_THRESH 130
5833 * The migration cost is a function of 'domain distance'. Domain
5834 * distance is the number of steps a CPU has to iterate down its
5835 * domain tree to share a domain with the other CPU. The farther
5836 * two CPUs are from each other, the larger the distance gets.
5838 * Note that we use the distance only to cache measurement results,
5839 * the distance value is not used numerically otherwise. When two
5840 * CPUs have the same distance it is assumed that the migration
5841 * cost is the same. (this is a simplification but quite practical)
5843 #define MAX_DOMAIN_DISTANCE 32
5845 static unsigned long long migration_cost[MAX_DOMAIN_DISTANCE] =
5846 { [ 0 ... MAX_DOMAIN_DISTANCE-1 ] =
5848 * Architectures may override the migration cost and thus avoid
5849 * boot-time calibration. Unit is nanoseconds. Mostly useful for
5850 * virtualized hardware:
5852 #ifdef CONFIG_DEFAULT_MIGRATION_COST
5853 CONFIG_DEFAULT_MIGRATION_COST
5854 #else
5855 -1LL
5856 #endif
5860 * Allow override of migration cost - in units of microseconds.
5861 * E.g. migration_cost=1000,2000,3000 will set up a level-1 cost
5862 * of 1 msec, level-2 cost of 2 msecs and level3 cost of 3 msecs:
5864 static int __init migration_cost_setup(char *str)
5866 int ints[MAX_DOMAIN_DISTANCE+1], i;
5868 str = get_options(str, ARRAY_SIZE(ints), ints);
5870 printk("#ints: %d\n", ints[0]);
5871 for (i = 1; i <= ints[0]; i++) {
5872 migration_cost[i-1] = (unsigned long long)ints[i]*1000;
5873 printk("migration_cost[%d]: %Ld\n", i-1, migration_cost[i-1]);
5875 return 1;
5878 __setup ("migration_cost=", migration_cost_setup);
5881 * Global multiplier (divisor) for migration-cutoff values,
5882 * in percentiles. E.g. use a value of 150 to get 1.5 times
5883 * longer cache-hot cutoff times.
5885 * (We scale it from 100 to 128 to long long handling easier.)
5888 #define MIGRATION_FACTOR_SCALE 128
5890 static unsigned int migration_factor = MIGRATION_FACTOR_SCALE;
5892 static int __init setup_migration_factor(char *str)
5894 get_option(&str, &migration_factor);
5895 migration_factor = migration_factor * MIGRATION_FACTOR_SCALE / 100;
5896 return 1;
5899 __setup("migration_factor=", setup_migration_factor);
5902 * Estimated distance of two CPUs, measured via the number of domains
5903 * we have to pass for the two CPUs to be in the same span:
5905 static unsigned long domain_distance(int cpu1, int cpu2)
5907 unsigned long distance = 0;
5908 struct sched_domain *sd;
5910 for_each_domain(cpu1, sd) {
5911 WARN_ON(!cpu_isset(cpu1, sd->span));
5912 if (cpu_isset(cpu2, sd->span))
5913 return distance;
5914 distance++;
5916 if (distance >= MAX_DOMAIN_DISTANCE) {
5917 WARN_ON(1);
5918 distance = MAX_DOMAIN_DISTANCE-1;
5921 return distance;
5924 static unsigned int migration_debug;
5926 static int __init setup_migration_debug(char *str)
5928 get_option(&str, &migration_debug);
5929 return 1;
5932 __setup("migration_debug=", setup_migration_debug);
5935 * Maximum cache-size that the scheduler should try to measure.
5936 * Architectures with larger caches should tune this up during
5937 * bootup. Gets used in the domain-setup code (i.e. during SMP
5938 * bootup).
5940 unsigned int max_cache_size;
5942 static int __init setup_max_cache_size(char *str)
5944 get_option(&str, &max_cache_size);
5945 return 1;
5948 __setup("max_cache_size=", setup_max_cache_size);
5951 * Dirty a big buffer in a hard-to-predict (for the L2 cache) way. This
5952 * is the operation that is timed, so we try to generate unpredictable
5953 * cachemisses that still end up filling the L2 cache:
5955 static void touch_cache(void *__cache, unsigned long __size)
5957 unsigned long size = __size / sizeof(long);
5958 unsigned long chunk1 = size / 3;
5959 unsigned long chunk2 = 2 * size / 3;
5960 unsigned long *cache = __cache;
5961 int i;
5963 for (i = 0; i < size/6; i += 8) {
5964 switch (i % 6) {
5965 case 0: cache[i]++;
5966 case 1: cache[size-1-i]++;
5967 case 2: cache[chunk1-i]++;
5968 case 3: cache[chunk1+i]++;
5969 case 4: cache[chunk2-i]++;
5970 case 5: cache[chunk2+i]++;
5976 * Measure the cache-cost of one task migration. Returns in units of nsec.
5978 static unsigned long long
5979 measure_one(void *cache, unsigned long size, int source, int target)
5981 cpumask_t mask, saved_mask;
5982 unsigned long long t0, t1, t2, t3, cost;
5984 saved_mask = current->cpus_allowed;
5987 * Flush source caches to RAM and invalidate them:
5989 sched_cacheflush();
5992 * Migrate to the source CPU:
5994 mask = cpumask_of_cpu(source);
5995 set_cpus_allowed(current, mask);
5996 WARN_ON(smp_processor_id() != source);
5999 * Dirty the working set:
6001 t0 = sched_clock();
6002 touch_cache(cache, size);
6003 t1 = sched_clock();
6006 * Migrate to the target CPU, dirty the L2 cache and access
6007 * the shared buffer. (which represents the working set
6008 * of a migrated task.)
6010 mask = cpumask_of_cpu(target);
6011 set_cpus_allowed(current, mask);
6012 WARN_ON(smp_processor_id() != target);
6014 t2 = sched_clock();
6015 touch_cache(cache, size);
6016 t3 = sched_clock();
6018 cost = t1-t0 + t3-t2;
6020 if (migration_debug >= 2)
6021 printk("[%d->%d]: %8Ld %8Ld %8Ld => %10Ld.\n",
6022 source, target, t1-t0, t1-t0, t3-t2, cost);
6024 * Flush target caches to RAM and invalidate them:
6026 sched_cacheflush();
6028 set_cpus_allowed(current, saved_mask);
6030 return cost;
6034 * Measure a series of task migrations and return the average
6035 * result. Since this code runs early during bootup the system
6036 * is 'undisturbed' and the average latency makes sense.
6038 * The algorithm in essence auto-detects the relevant cache-size,
6039 * so it will properly detect different cachesizes for different
6040 * cache-hierarchies, depending on how the CPUs are connected.
6042 * Architectures can prime the upper limit of the search range via
6043 * max_cache_size, otherwise the search range defaults to 20MB...64K.
6045 static unsigned long long
6046 measure_cost(int cpu1, int cpu2, void *cache, unsigned int size)
6048 unsigned long long cost1, cost2;
6049 int i;
6052 * Measure the migration cost of 'size' bytes, over an
6053 * average of 10 runs:
6055 * (We perturb the cache size by a small (0..4k)
6056 * value to compensate size/alignment related artifacts.
6057 * We also subtract the cost of the operation done on
6058 * the same CPU.)
6060 cost1 = 0;
6063 * dry run, to make sure we start off cache-cold on cpu1,
6064 * and to get any vmalloc pagefaults in advance:
6066 measure_one(cache, size, cpu1, cpu2);
6067 for (i = 0; i < ITERATIONS; i++)
6068 cost1 += measure_one(cache, size - i * 1024, cpu1, cpu2);
6070 measure_one(cache, size, cpu2, cpu1);
6071 for (i = 0; i < ITERATIONS; i++)
6072 cost1 += measure_one(cache, size - i * 1024, cpu2, cpu1);
6075 * (We measure the non-migrating [cached] cost on both
6076 * cpu1 and cpu2, to handle CPUs with different speeds)
6078 cost2 = 0;
6080 measure_one(cache, size, cpu1, cpu1);
6081 for (i = 0; i < ITERATIONS; i++)
6082 cost2 += measure_one(cache, size - i * 1024, cpu1, cpu1);
6084 measure_one(cache, size, cpu2, cpu2);
6085 for (i = 0; i < ITERATIONS; i++)
6086 cost2 += measure_one(cache, size - i * 1024, cpu2, cpu2);
6089 * Get the per-iteration migration cost:
6091 do_div(cost1, 2 * ITERATIONS);
6092 do_div(cost2, 2 * ITERATIONS);
6094 return cost1 - cost2;
6097 static unsigned long long measure_migration_cost(int cpu1, int cpu2)
6099 unsigned long long max_cost = 0, fluct = 0, avg_fluct = 0;
6100 unsigned int max_size, size, size_found = 0;
6101 long long cost = 0, prev_cost;
6102 void *cache;
6105 * Search from max_cache_size*5 down to 64K - the real relevant
6106 * cachesize has to lie somewhere inbetween.
6108 if (max_cache_size) {
6109 max_size = max(max_cache_size * SEARCH_SCOPE, MIN_CACHE_SIZE);
6110 size = max(max_cache_size / SEARCH_SCOPE, MIN_CACHE_SIZE);
6111 } else {
6113 * Since we have no estimation about the relevant
6114 * search range
6116 max_size = DEFAULT_CACHE_SIZE * SEARCH_SCOPE;
6117 size = MIN_CACHE_SIZE;
6120 if (!cpu_online(cpu1) || !cpu_online(cpu2)) {
6121 printk("cpu %d and %d not both online!\n", cpu1, cpu2);
6122 return 0;
6126 * Allocate the working set:
6128 cache = vmalloc(max_size);
6129 if (!cache) {
6130 printk("could not vmalloc %d bytes for cache!\n", 2 * max_size);
6131 return 1000000; /* return 1 msec on very small boxen */
6134 while (size <= max_size) {
6135 prev_cost = cost;
6136 cost = measure_cost(cpu1, cpu2, cache, size);
6139 * Update the max:
6141 if (cost > 0) {
6142 if (max_cost < cost) {
6143 max_cost = cost;
6144 size_found = size;
6148 * Calculate average fluctuation, we use this to prevent
6149 * noise from triggering an early break out of the loop:
6151 fluct = abs(cost - prev_cost);
6152 avg_fluct = (avg_fluct + fluct)/2;
6154 if (migration_debug)
6155 printk("-> [%d][%d][%7d] %3ld.%ld [%3ld.%ld] (%ld): "
6156 "(%8Ld %8Ld)\n",
6157 cpu1, cpu2, size,
6158 (long)cost / 1000000,
6159 ((long)cost / 100000) % 10,
6160 (long)max_cost / 1000000,
6161 ((long)max_cost / 100000) % 10,
6162 domain_distance(cpu1, cpu2),
6163 cost, avg_fluct);
6166 * If we iterated at least 20% past the previous maximum,
6167 * and the cost has dropped by more than 20% already,
6168 * (taking fluctuations into account) then we assume to
6169 * have found the maximum and break out of the loop early:
6171 if (size_found && (size*100 > size_found*SIZE_THRESH))
6172 if (cost+avg_fluct <= 0 ||
6173 max_cost*100 > (cost+avg_fluct)*COST_THRESH) {
6175 if (migration_debug)
6176 printk("-> found max.\n");
6177 break;
6180 * Increase the cachesize in 10% steps:
6182 size = size * 10 / 9;
6185 if (migration_debug)
6186 printk("[%d][%d] working set size found: %d, cost: %Ld\n",
6187 cpu1, cpu2, size_found, max_cost);
6189 vfree(cache);
6192 * A task is considered 'cache cold' if at least 2 times
6193 * the worst-case cost of migration has passed.
6195 * (this limit is only listened to if the load-balancing
6196 * situation is 'nice' - if there is a large imbalance we
6197 * ignore it for the sake of CPU utilization and
6198 * processing fairness.)
6200 return 2 * max_cost * migration_factor / MIGRATION_FACTOR_SCALE;
6203 static void calibrate_migration_costs(const cpumask_t *cpu_map)
6205 int cpu1 = -1, cpu2 = -1, cpu, orig_cpu = raw_smp_processor_id();
6206 unsigned long j0, j1, distance, max_distance = 0;
6207 struct sched_domain *sd;
6209 j0 = jiffies;
6212 * First pass - calculate the cacheflush times:
6214 for_each_cpu_mask(cpu1, *cpu_map) {
6215 for_each_cpu_mask(cpu2, *cpu_map) {
6216 if (cpu1 == cpu2)
6217 continue;
6218 distance = domain_distance(cpu1, cpu2);
6219 max_distance = max(max_distance, distance);
6221 * No result cached yet?
6223 if (migration_cost[distance] == -1LL)
6224 migration_cost[distance] =
6225 measure_migration_cost(cpu1, cpu2);
6229 * Second pass - update the sched domain hierarchy with
6230 * the new cache-hot-time estimations:
6232 for_each_cpu_mask(cpu, *cpu_map) {
6233 distance = 0;
6234 for_each_domain(cpu, sd) {
6235 sd->cache_hot_time = migration_cost[distance];
6236 distance++;
6240 * Print the matrix:
6242 if (migration_debug)
6243 printk("migration: max_cache_size: %d, cpu: %d MHz:\n",
6244 max_cache_size,
6245 #ifdef CONFIG_X86
6246 cpu_khz/1000
6247 #else
6249 #endif
6251 if (system_state == SYSTEM_BOOTING && num_online_cpus() > 1) {
6252 printk("migration_cost=");
6253 for (distance = 0; distance <= max_distance; distance++) {
6254 if (distance)
6255 printk(",");
6256 printk("%ld", (long)migration_cost[distance] / 1000);
6258 printk("\n");
6260 j1 = jiffies;
6261 if (migration_debug)
6262 printk("migration: %ld seconds\n", (j1-j0) / HZ);
6265 * Move back to the original CPU. NUMA-Q gets confused
6266 * if we migrate to another quad during bootup.
6268 if (raw_smp_processor_id() != orig_cpu) {
6269 cpumask_t mask = cpumask_of_cpu(orig_cpu),
6270 saved_mask = current->cpus_allowed;
6272 set_cpus_allowed(current, mask);
6273 set_cpus_allowed(current, saved_mask);
6277 #ifdef CONFIG_NUMA
6280 * find_next_best_node - find the next node to include in a sched_domain
6281 * @node: node whose sched_domain we're building
6282 * @used_nodes: nodes already in the sched_domain
6284 * Find the next node to include in a given scheduling domain. Simply
6285 * finds the closest node not already in the @used_nodes map.
6287 * Should use nodemask_t.
6289 static int find_next_best_node(int node, unsigned long *used_nodes)
6291 int i, n, val, min_val, best_node = 0;
6293 min_val = INT_MAX;
6295 for (i = 0; i < MAX_NUMNODES; i++) {
6296 /* Start at @node */
6297 n = (node + i) % MAX_NUMNODES;
6299 if (!nr_cpus_node(n))
6300 continue;
6302 /* Skip already used nodes */
6303 if (test_bit(n, used_nodes))
6304 continue;
6306 /* Simple min distance search */
6307 val = node_distance(node, n);
6309 if (val < min_val) {
6310 min_val = val;
6311 best_node = n;
6315 set_bit(best_node, used_nodes);
6316 return best_node;
6320 * sched_domain_node_span - get a cpumask for a node's sched_domain
6321 * @node: node whose cpumask we're constructing
6322 * @size: number of nodes to include in this span
6324 * Given a node, construct a good cpumask for its sched_domain to span. It
6325 * should be one that prevents unnecessary balancing, but also spreads tasks
6326 * out optimally.
6328 static cpumask_t sched_domain_node_span(int node)
6330 DECLARE_BITMAP(used_nodes, MAX_NUMNODES);
6331 cpumask_t span, nodemask;
6332 int i;
6334 cpus_clear(span);
6335 bitmap_zero(used_nodes, MAX_NUMNODES);
6337 nodemask = node_to_cpumask(node);
6338 cpus_or(span, span, nodemask);
6339 set_bit(node, used_nodes);
6341 for (i = 1; i < SD_NODES_PER_DOMAIN; i++) {
6342 int next_node = find_next_best_node(node, used_nodes);
6344 nodemask = node_to_cpumask(next_node);
6345 cpus_or(span, span, nodemask);
6348 return span;
6350 #endif
6352 int sched_smt_power_savings = 0, sched_mc_power_savings = 0;
6355 * SMT sched-domains:
6357 #ifdef CONFIG_SCHED_SMT
6358 static DEFINE_PER_CPU(struct sched_domain, cpu_domains);
6359 static DEFINE_PER_CPU(struct sched_group, sched_group_cpus);
6361 static int cpu_to_cpu_group(int cpu, const cpumask_t *cpu_map,
6362 struct sched_group **sg)
6364 if (sg)
6365 *sg = &per_cpu(sched_group_cpus, cpu);
6366 return cpu;
6368 #endif
6371 * multi-core sched-domains:
6373 #ifdef CONFIG_SCHED_MC
6374 static DEFINE_PER_CPU(struct sched_domain, core_domains);
6375 static DEFINE_PER_CPU(struct sched_group, sched_group_core);
6376 #endif
6378 #if defined(CONFIG_SCHED_MC) && defined(CONFIG_SCHED_SMT)
6379 static int cpu_to_core_group(int cpu, const cpumask_t *cpu_map,
6380 struct sched_group **sg)
6382 int group;
6383 cpumask_t mask = cpu_sibling_map[cpu];
6384 cpus_and(mask, mask, *cpu_map);
6385 group = first_cpu(mask);
6386 if (sg)
6387 *sg = &per_cpu(sched_group_core, group);
6388 return group;
6390 #elif defined(CONFIG_SCHED_MC)
6391 static int cpu_to_core_group(int cpu, const cpumask_t *cpu_map,
6392 struct sched_group **sg)
6394 if (sg)
6395 *sg = &per_cpu(sched_group_core, cpu);
6396 return cpu;
6398 #endif
6400 static DEFINE_PER_CPU(struct sched_domain, phys_domains);
6401 static DEFINE_PER_CPU(struct sched_group, sched_group_phys);
6403 static int cpu_to_phys_group(int cpu, const cpumask_t *cpu_map,
6404 struct sched_group **sg)
6406 int group;
6407 #ifdef CONFIG_SCHED_MC
6408 cpumask_t mask = cpu_coregroup_map(cpu);
6409 cpus_and(mask, mask, *cpu_map);
6410 group = first_cpu(mask);
6411 #elif defined(CONFIG_SCHED_SMT)
6412 cpumask_t mask = cpu_sibling_map[cpu];
6413 cpus_and(mask, mask, *cpu_map);
6414 group = first_cpu(mask);
6415 #else
6416 group = cpu;
6417 #endif
6418 if (sg)
6419 *sg = &per_cpu(sched_group_phys, group);
6420 return group;
6423 #ifdef CONFIG_NUMA
6425 * The init_sched_build_groups can't handle what we want to do with node
6426 * groups, so roll our own. Now each node has its own list of groups which
6427 * gets dynamically allocated.
6429 static DEFINE_PER_CPU(struct sched_domain, node_domains);
6430 static struct sched_group **sched_group_nodes_bycpu[NR_CPUS];
6432 static DEFINE_PER_CPU(struct sched_domain, allnodes_domains);
6433 static DEFINE_PER_CPU(struct sched_group, sched_group_allnodes);
6435 static int cpu_to_allnodes_group(int cpu, const cpumask_t *cpu_map,
6436 struct sched_group **sg)
6438 cpumask_t nodemask = node_to_cpumask(cpu_to_node(cpu));
6439 int group;
6441 cpus_and(nodemask, nodemask, *cpu_map);
6442 group = first_cpu(nodemask);
6444 if (sg)
6445 *sg = &per_cpu(sched_group_allnodes, group);
6446 return group;
6449 static void init_numa_sched_groups_power(struct sched_group *group_head)
6451 struct sched_group *sg = group_head;
6452 int j;
6454 if (!sg)
6455 return;
6456 next_sg:
6457 for_each_cpu_mask(j, sg->cpumask) {
6458 struct sched_domain *sd;
6460 sd = &per_cpu(phys_domains, j);
6461 if (j != first_cpu(sd->groups->cpumask)) {
6463 * Only add "power" once for each
6464 * physical package.
6466 continue;
6469 sg_inc_cpu_power(sg, sd->groups->__cpu_power);
6471 sg = sg->next;
6472 if (sg != group_head)
6473 goto next_sg;
6475 #endif
6477 #ifdef CONFIG_NUMA
6478 /* Free memory allocated for various sched_group structures */
6479 static void free_sched_groups(const cpumask_t *cpu_map)
6481 int cpu, i;
6483 for_each_cpu_mask(cpu, *cpu_map) {
6484 struct sched_group **sched_group_nodes
6485 = sched_group_nodes_bycpu[cpu];
6487 if (!sched_group_nodes)
6488 continue;
6490 for (i = 0; i < MAX_NUMNODES; i++) {
6491 cpumask_t nodemask = node_to_cpumask(i);
6492 struct sched_group *oldsg, *sg = sched_group_nodes[i];
6494 cpus_and(nodemask, nodemask, *cpu_map);
6495 if (cpus_empty(nodemask))
6496 continue;
6498 if (sg == NULL)
6499 continue;
6500 sg = sg->next;
6501 next_sg:
6502 oldsg = sg;
6503 sg = sg->next;
6504 kfree(oldsg);
6505 if (oldsg != sched_group_nodes[i])
6506 goto next_sg;
6508 kfree(sched_group_nodes);
6509 sched_group_nodes_bycpu[cpu] = NULL;
6512 #else
6513 static void free_sched_groups(const cpumask_t *cpu_map)
6516 #endif
6519 * Initialize sched groups cpu_power.
6521 * cpu_power indicates the capacity of sched group, which is used while
6522 * distributing the load between different sched groups in a sched domain.
6523 * Typically cpu_power for all the groups in a sched domain will be same unless
6524 * there are asymmetries in the topology. If there are asymmetries, group
6525 * having more cpu_power will pickup more load compared to the group having
6526 * less cpu_power.
6528 * cpu_power will be a multiple of SCHED_LOAD_SCALE. This multiple represents
6529 * the maximum number of tasks a group can handle in the presence of other idle
6530 * or lightly loaded groups in the same sched domain.
6532 static void init_sched_groups_power(int cpu, struct sched_domain *sd)
6534 struct sched_domain *child;
6535 struct sched_group *group;
6537 WARN_ON(!sd || !sd->groups);
6539 if (cpu != first_cpu(sd->groups->cpumask))
6540 return;
6542 child = sd->child;
6544 sd->groups->__cpu_power = 0;
6547 * For perf policy, if the groups in child domain share resources
6548 * (for example cores sharing some portions of the cache hierarchy
6549 * or SMT), then set this domain groups cpu_power such that each group
6550 * can handle only one task, when there are other idle groups in the
6551 * same sched domain.
6553 if (!child || (!(sd->flags & SD_POWERSAVINGS_BALANCE) &&
6554 (child->flags &
6555 (SD_SHARE_CPUPOWER | SD_SHARE_PKG_RESOURCES)))) {
6556 sg_inc_cpu_power(sd->groups, SCHED_LOAD_SCALE);
6557 return;
6561 * add cpu_power of each child group to this groups cpu_power
6563 group = child->groups;
6564 do {
6565 sg_inc_cpu_power(sd->groups, group->__cpu_power);
6566 group = group->next;
6567 } while (group != child->groups);
6571 * Build sched domains for a given set of cpus and attach the sched domains
6572 * to the individual cpus
6574 static int build_sched_domains(const cpumask_t *cpu_map)
6576 int i;
6577 struct sched_domain *sd;
6578 #ifdef CONFIG_NUMA
6579 struct sched_group **sched_group_nodes = NULL;
6580 int sd_allnodes = 0;
6583 * Allocate the per-node list of sched groups
6585 sched_group_nodes = kzalloc(sizeof(struct sched_group*)*MAX_NUMNODES,
6586 GFP_KERNEL);
6587 if (!sched_group_nodes) {
6588 printk(KERN_WARNING "Can not alloc sched group node list\n");
6589 return -ENOMEM;
6591 sched_group_nodes_bycpu[first_cpu(*cpu_map)] = sched_group_nodes;
6592 #endif
6595 * Set up domains for cpus specified by the cpu_map.
6597 for_each_cpu_mask(i, *cpu_map) {
6598 struct sched_domain *sd = NULL, *p;
6599 cpumask_t nodemask = node_to_cpumask(cpu_to_node(i));
6601 cpus_and(nodemask, nodemask, *cpu_map);
6603 #ifdef CONFIG_NUMA
6604 if (cpus_weight(*cpu_map)
6605 > SD_NODES_PER_DOMAIN*cpus_weight(nodemask)) {
6606 sd = &per_cpu(allnodes_domains, i);
6607 *sd = SD_ALLNODES_INIT;
6608 sd->span = *cpu_map;
6609 cpu_to_allnodes_group(i, cpu_map, &sd->groups);
6610 p = sd;
6611 sd_allnodes = 1;
6612 } else
6613 p = NULL;
6615 sd = &per_cpu(node_domains, i);
6616 *sd = SD_NODE_INIT;
6617 sd->span = sched_domain_node_span(cpu_to_node(i));
6618 sd->parent = p;
6619 if (p)
6620 p->child = sd;
6621 cpus_and(sd->span, sd->span, *cpu_map);
6622 #endif
6624 p = sd;
6625 sd = &per_cpu(phys_domains, i);
6626 *sd = SD_CPU_INIT;
6627 sd->span = nodemask;
6628 sd->parent = p;
6629 if (p)
6630 p->child = sd;
6631 cpu_to_phys_group(i, cpu_map, &sd->groups);
6633 #ifdef CONFIG_SCHED_MC
6634 p = sd;
6635 sd = &per_cpu(core_domains, i);
6636 *sd = SD_MC_INIT;
6637 sd->span = cpu_coregroup_map(i);
6638 cpus_and(sd->span, sd->span, *cpu_map);
6639 sd->parent = p;
6640 p->child = sd;
6641 cpu_to_core_group(i, cpu_map, &sd->groups);
6642 #endif
6644 #ifdef CONFIG_SCHED_SMT
6645 p = sd;
6646 sd = &per_cpu(cpu_domains, i);
6647 *sd = SD_SIBLING_INIT;
6648 sd->span = cpu_sibling_map[i];
6649 cpus_and(sd->span, sd->span, *cpu_map);
6650 sd->parent = p;
6651 p->child = sd;
6652 cpu_to_cpu_group(i, cpu_map, &sd->groups);
6653 #endif
6656 #ifdef CONFIG_SCHED_SMT
6657 /* Set up CPU (sibling) groups */
6658 for_each_cpu_mask(i, *cpu_map) {
6659 cpumask_t this_sibling_map = cpu_sibling_map[i];
6660 cpus_and(this_sibling_map, this_sibling_map, *cpu_map);
6661 if (i != first_cpu(this_sibling_map))
6662 continue;
6664 init_sched_build_groups(this_sibling_map, cpu_map, &cpu_to_cpu_group);
6666 #endif
6668 #ifdef CONFIG_SCHED_MC
6669 /* Set up multi-core groups */
6670 for_each_cpu_mask(i, *cpu_map) {
6671 cpumask_t this_core_map = cpu_coregroup_map(i);
6672 cpus_and(this_core_map, this_core_map, *cpu_map);
6673 if (i != first_cpu(this_core_map))
6674 continue;
6675 init_sched_build_groups(this_core_map, cpu_map, &cpu_to_core_group);
6677 #endif
6680 /* Set up physical groups */
6681 for (i = 0; i < MAX_NUMNODES; i++) {
6682 cpumask_t nodemask = node_to_cpumask(i);
6684 cpus_and(nodemask, nodemask, *cpu_map);
6685 if (cpus_empty(nodemask))
6686 continue;
6688 init_sched_build_groups(nodemask, cpu_map, &cpu_to_phys_group);
6691 #ifdef CONFIG_NUMA
6692 /* Set up node groups */
6693 if (sd_allnodes)
6694 init_sched_build_groups(*cpu_map, cpu_map, &cpu_to_allnodes_group);
6696 for (i = 0; i < MAX_NUMNODES; i++) {
6697 /* Set up node groups */
6698 struct sched_group *sg, *prev;
6699 cpumask_t nodemask = node_to_cpumask(i);
6700 cpumask_t domainspan;
6701 cpumask_t covered = CPU_MASK_NONE;
6702 int j;
6704 cpus_and(nodemask, nodemask, *cpu_map);
6705 if (cpus_empty(nodemask)) {
6706 sched_group_nodes[i] = NULL;
6707 continue;
6710 domainspan = sched_domain_node_span(i);
6711 cpus_and(domainspan, domainspan, *cpu_map);
6713 sg = kmalloc_node(sizeof(struct sched_group), GFP_KERNEL, i);
6714 if (!sg) {
6715 printk(KERN_WARNING "Can not alloc domain group for "
6716 "node %d\n", i);
6717 goto error;
6719 sched_group_nodes[i] = sg;
6720 for_each_cpu_mask(j, nodemask) {
6721 struct sched_domain *sd;
6722 sd = &per_cpu(node_domains, j);
6723 sd->groups = sg;
6725 sg->__cpu_power = 0;
6726 sg->cpumask = nodemask;
6727 sg->next = sg;
6728 cpus_or(covered, covered, nodemask);
6729 prev = sg;
6731 for (j = 0; j < MAX_NUMNODES; j++) {
6732 cpumask_t tmp, notcovered;
6733 int n = (i + j) % MAX_NUMNODES;
6735 cpus_complement(notcovered, covered);
6736 cpus_and(tmp, notcovered, *cpu_map);
6737 cpus_and(tmp, tmp, domainspan);
6738 if (cpus_empty(tmp))
6739 break;
6741 nodemask = node_to_cpumask(n);
6742 cpus_and(tmp, tmp, nodemask);
6743 if (cpus_empty(tmp))
6744 continue;
6746 sg = kmalloc_node(sizeof(struct sched_group),
6747 GFP_KERNEL, i);
6748 if (!sg) {
6749 printk(KERN_WARNING
6750 "Can not alloc domain group for node %d\n", j);
6751 goto error;
6753 sg->__cpu_power = 0;
6754 sg->cpumask = tmp;
6755 sg->next = prev->next;
6756 cpus_or(covered, covered, tmp);
6757 prev->next = sg;
6758 prev = sg;
6761 #endif
6763 /* Calculate CPU power for physical packages and nodes */
6764 #ifdef CONFIG_SCHED_SMT
6765 for_each_cpu_mask(i, *cpu_map) {
6766 sd = &per_cpu(cpu_domains, i);
6767 init_sched_groups_power(i, sd);
6769 #endif
6770 #ifdef CONFIG_SCHED_MC
6771 for_each_cpu_mask(i, *cpu_map) {
6772 sd = &per_cpu(core_domains, i);
6773 init_sched_groups_power(i, sd);
6775 #endif
6777 for_each_cpu_mask(i, *cpu_map) {
6778 sd = &per_cpu(phys_domains, i);
6779 init_sched_groups_power(i, sd);
6782 #ifdef CONFIG_NUMA
6783 for (i = 0; i < MAX_NUMNODES; i++)
6784 init_numa_sched_groups_power(sched_group_nodes[i]);
6786 if (sd_allnodes) {
6787 struct sched_group *sg;
6789 cpu_to_allnodes_group(first_cpu(*cpu_map), cpu_map, &sg);
6790 init_numa_sched_groups_power(sg);
6792 #endif
6794 /* Attach the domains */
6795 for_each_cpu_mask(i, *cpu_map) {
6796 struct sched_domain *sd;
6797 #ifdef CONFIG_SCHED_SMT
6798 sd = &per_cpu(cpu_domains, i);
6799 #elif defined(CONFIG_SCHED_MC)
6800 sd = &per_cpu(core_domains, i);
6801 #else
6802 sd = &per_cpu(phys_domains, i);
6803 #endif
6804 cpu_attach_domain(sd, i);
6807 * Tune cache-hot values:
6809 calibrate_migration_costs(cpu_map);
6811 return 0;
6813 #ifdef CONFIG_NUMA
6814 error:
6815 free_sched_groups(cpu_map);
6816 return -ENOMEM;
6817 #endif
6820 * Set up scheduler domains and groups. Callers must hold the hotplug lock.
6822 static int arch_init_sched_domains(const cpumask_t *cpu_map)
6824 cpumask_t cpu_default_map;
6825 int err;
6828 * Setup mask for cpus without special case scheduling requirements.
6829 * For now this just excludes isolated cpus, but could be used to
6830 * exclude other special cases in the future.
6832 cpus_andnot(cpu_default_map, *cpu_map, cpu_isolated_map);
6834 err = build_sched_domains(&cpu_default_map);
6836 return err;
6839 static void arch_destroy_sched_domains(const cpumask_t *cpu_map)
6841 free_sched_groups(cpu_map);
6845 * Detach sched domains from a group of cpus specified in cpu_map
6846 * These cpus will now be attached to the NULL domain
6848 static void detach_destroy_domains(const cpumask_t *cpu_map)
6850 int i;
6852 for_each_cpu_mask(i, *cpu_map)
6853 cpu_attach_domain(NULL, i);
6854 synchronize_sched();
6855 arch_destroy_sched_domains(cpu_map);
6859 * Partition sched domains as specified by the cpumasks below.
6860 * This attaches all cpus from the cpumasks to the NULL domain,
6861 * waits for a RCU quiescent period, recalculates sched
6862 * domain information and then attaches them back to the
6863 * correct sched domains
6864 * Call with hotplug lock held
6866 int partition_sched_domains(cpumask_t *partition1, cpumask_t *partition2)
6868 cpumask_t change_map;
6869 int err = 0;
6871 cpus_and(*partition1, *partition1, cpu_online_map);
6872 cpus_and(*partition2, *partition2, cpu_online_map);
6873 cpus_or(change_map, *partition1, *partition2);
6875 /* Detach sched domains from all of the affected cpus */
6876 detach_destroy_domains(&change_map);
6877 if (!cpus_empty(*partition1))
6878 err = build_sched_domains(partition1);
6879 if (!err && !cpus_empty(*partition2))
6880 err = build_sched_domains(partition2);
6882 return err;
6885 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
6886 int arch_reinit_sched_domains(void)
6888 int err;
6890 mutex_lock(&sched_hotcpu_mutex);
6891 detach_destroy_domains(&cpu_online_map);
6892 err = arch_init_sched_domains(&cpu_online_map);
6893 mutex_unlock(&sched_hotcpu_mutex);
6895 return err;
6898 static ssize_t sched_power_savings_store(const char *buf, size_t count, int smt)
6900 int ret;
6902 if (buf[0] != '0' && buf[0] != '1')
6903 return -EINVAL;
6905 if (smt)
6906 sched_smt_power_savings = (buf[0] == '1');
6907 else
6908 sched_mc_power_savings = (buf[0] == '1');
6910 ret = arch_reinit_sched_domains();
6912 return ret ? ret : count;
6915 int sched_create_sysfs_power_savings_entries(struct sysdev_class *cls)
6917 int err = 0;
6919 #ifdef CONFIG_SCHED_SMT
6920 if (smt_capable())
6921 err = sysfs_create_file(&cls->kset.kobj,
6922 &attr_sched_smt_power_savings.attr);
6923 #endif
6924 #ifdef CONFIG_SCHED_MC
6925 if (!err && mc_capable())
6926 err = sysfs_create_file(&cls->kset.kobj,
6927 &attr_sched_mc_power_savings.attr);
6928 #endif
6929 return err;
6931 #endif
6933 #ifdef CONFIG_SCHED_MC
6934 static ssize_t sched_mc_power_savings_show(struct sys_device *dev, char *page)
6936 return sprintf(page, "%u\n", sched_mc_power_savings);
6938 static ssize_t sched_mc_power_savings_store(struct sys_device *dev,
6939 const char *buf, size_t count)
6941 return sched_power_savings_store(buf, count, 0);
6943 SYSDEV_ATTR(sched_mc_power_savings, 0644, sched_mc_power_savings_show,
6944 sched_mc_power_savings_store);
6945 #endif
6947 #ifdef CONFIG_SCHED_SMT
6948 static ssize_t sched_smt_power_savings_show(struct sys_device *dev, char *page)
6950 return sprintf(page, "%u\n", sched_smt_power_savings);
6952 static ssize_t sched_smt_power_savings_store(struct sys_device *dev,
6953 const char *buf, size_t count)
6955 return sched_power_savings_store(buf, count, 1);
6957 SYSDEV_ATTR(sched_smt_power_savings, 0644, sched_smt_power_savings_show,
6958 sched_smt_power_savings_store);
6959 #endif
6962 * Force a reinitialization of the sched domains hierarchy. The domains
6963 * and groups cannot be updated in place without racing with the balancing
6964 * code, so we temporarily attach all running cpus to the NULL domain
6965 * which will prevent rebalancing while the sched domains are recalculated.
6967 static int update_sched_domains(struct notifier_block *nfb,
6968 unsigned long action, void *hcpu)
6970 switch (action) {
6971 case CPU_UP_PREPARE:
6972 case CPU_UP_PREPARE_FROZEN:
6973 case CPU_DOWN_PREPARE:
6974 case CPU_DOWN_PREPARE_FROZEN:
6975 detach_destroy_domains(&cpu_online_map);
6976 return NOTIFY_OK;
6978 case CPU_UP_CANCELED:
6979 case CPU_UP_CANCELED_FROZEN:
6980 case CPU_DOWN_FAILED:
6981 case CPU_DOWN_FAILED_FROZEN:
6982 case CPU_ONLINE:
6983 case CPU_ONLINE_FROZEN:
6984 case CPU_DEAD:
6985 case CPU_DEAD_FROZEN:
6987 * Fall through and re-initialise the domains.
6989 break;
6990 default:
6991 return NOTIFY_DONE;
6994 /* The hotplug lock is already held by cpu_up/cpu_down */
6995 arch_init_sched_domains(&cpu_online_map);
6997 return NOTIFY_OK;
7000 void __init sched_init_smp(void)
7002 cpumask_t non_isolated_cpus;
7004 mutex_lock(&sched_hotcpu_mutex);
7005 arch_init_sched_domains(&cpu_online_map);
7006 cpus_andnot(non_isolated_cpus, cpu_possible_map, cpu_isolated_map);
7007 if (cpus_empty(non_isolated_cpus))
7008 cpu_set(smp_processor_id(), non_isolated_cpus);
7009 mutex_unlock(&sched_hotcpu_mutex);
7010 /* XXX: Theoretical race here - CPU may be hotplugged now */
7011 hotcpu_notifier(update_sched_domains, 0);
7013 /* Move init over to a non-isolated CPU */
7014 if (set_cpus_allowed(current, non_isolated_cpus) < 0)
7015 BUG();
7017 #else
7018 void __init sched_init_smp(void)
7021 #endif /* CONFIG_SMP */
7023 int in_sched_functions(unsigned long addr)
7025 /* Linker adds these: start and end of __sched functions */
7026 extern char __sched_text_start[], __sched_text_end[];
7028 return in_lock_functions(addr) ||
7029 (addr >= (unsigned long)__sched_text_start
7030 && addr < (unsigned long)__sched_text_end);
7033 void __init sched_init(void)
7035 int i, j, k;
7036 int highest_cpu = 0;
7038 for_each_possible_cpu(i) {
7039 struct prio_array *array;
7040 struct rq *rq;
7042 rq = cpu_rq(i);
7043 spin_lock_init(&rq->lock);
7044 lockdep_set_class(&rq->lock, &rq->rq_lock_key);
7045 rq->nr_running = 0;
7046 rq->active = rq->arrays;
7047 rq->expired = rq->arrays + 1;
7048 rq->best_expired_prio = MAX_PRIO;
7050 #ifdef CONFIG_SMP
7051 rq->sd = NULL;
7052 for (j = 1; j < 3; j++)
7053 rq->cpu_load[j] = 0;
7054 rq->active_balance = 0;
7055 rq->push_cpu = 0;
7056 rq->cpu = i;
7057 rq->migration_thread = NULL;
7058 INIT_LIST_HEAD(&rq->migration_queue);
7059 #endif
7060 atomic_set(&rq->nr_iowait, 0);
7062 for (j = 0; j < 2; j++) {
7063 array = rq->arrays + j;
7064 for (k = 0; k < MAX_PRIO; k++) {
7065 INIT_LIST_HEAD(array->queue + k);
7066 __clear_bit(k, array->bitmap);
7068 // delimiter for bitsearch
7069 __set_bit(MAX_PRIO, array->bitmap);
7071 highest_cpu = i;
7074 set_load_weight(&init_task);
7076 #ifdef CONFIG_SMP
7077 nr_cpu_ids = highest_cpu + 1;
7078 open_softirq(SCHED_SOFTIRQ, run_rebalance_domains, NULL);
7079 #endif
7081 #ifdef CONFIG_RT_MUTEXES
7082 plist_head_init(&init_task.pi_waiters, &init_task.pi_lock);
7083 #endif
7086 * The boot idle thread does lazy MMU switching as well:
7088 atomic_inc(&init_mm.mm_count);
7089 enter_lazy_tlb(&init_mm, current);
7092 * Make us the idle thread. Technically, schedule() should not be
7093 * called from this thread, however somewhere below it might be,
7094 * but because we are the idle thread, we just pick up running again
7095 * when this runqueue becomes "idle".
7097 init_idle(current, smp_processor_id());
7100 #ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
7101 void __might_sleep(char *file, int line)
7103 #ifdef in_atomic
7104 static unsigned long prev_jiffy; /* ratelimiting */
7106 if ((in_atomic() || irqs_disabled()) &&
7107 system_state == SYSTEM_RUNNING && !oops_in_progress) {
7108 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
7109 return;
7110 prev_jiffy = jiffies;
7111 printk(KERN_ERR "BUG: sleeping function called from invalid"
7112 " context at %s:%d\n", file, line);
7113 printk("in_atomic():%d, irqs_disabled():%d\n",
7114 in_atomic(), irqs_disabled());
7115 debug_show_held_locks(current);
7116 if (irqs_disabled())
7117 print_irqtrace_events(current);
7118 dump_stack();
7120 #endif
7122 EXPORT_SYMBOL(__might_sleep);
7123 #endif
7125 #ifdef CONFIG_MAGIC_SYSRQ
7126 void normalize_rt_tasks(void)
7128 struct prio_array *array;
7129 struct task_struct *g, *p;
7130 unsigned long flags;
7131 struct rq *rq;
7133 read_lock_irq(&tasklist_lock);
7135 do_each_thread(g, p) {
7136 if (!rt_task(p))
7137 continue;
7139 spin_lock_irqsave(&p->pi_lock, flags);
7140 rq = __task_rq_lock(p);
7142 array = p->array;
7143 if (array)
7144 deactivate_task(p, task_rq(p));
7145 __setscheduler(p, SCHED_NORMAL, 0);
7146 if (array) {
7147 __activate_task(p, task_rq(p));
7148 resched_task(rq->curr);
7151 __task_rq_unlock(rq);
7152 spin_unlock_irqrestore(&p->pi_lock, flags);
7153 } while_each_thread(g, p);
7155 read_unlock_irq(&tasklist_lock);
7158 #endif /* CONFIG_MAGIC_SYSRQ */
7160 #ifdef CONFIG_IA64
7162 * These functions are only useful for the IA64 MCA handling.
7164 * They can only be called when the whole system has been
7165 * stopped - every CPU needs to be quiescent, and no scheduling
7166 * activity can take place. Using them for anything else would
7167 * be a serious bug, and as a result, they aren't even visible
7168 * under any other configuration.
7172 * curr_task - return the current task for a given cpu.
7173 * @cpu: the processor in question.
7175 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
7177 struct task_struct *curr_task(int cpu)
7179 return cpu_curr(cpu);
7183 * set_curr_task - set the current task for a given cpu.
7184 * @cpu: the processor in question.
7185 * @p: the task pointer to set.
7187 * Description: This function must only be used when non-maskable interrupts
7188 * are serviced on a separate stack. It allows the architecture to switch the
7189 * notion of the current task on a cpu in a non-blocking manner. This function
7190 * must be called with all CPU's synchronized, and interrupts disabled, the
7191 * and caller must save the original value of the current task (see
7192 * curr_task() above) and restore that value before reenabling interrupts and
7193 * re-starting the system.
7195 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
7197 void set_curr_task(int cpu, struct task_struct *p)
7199 cpu_curr(cpu) = p;
7202 #endif