1 /*******************************************************************************
3 Intel PRO/1000 Linux driver
4 Copyright(c) 1999 - 2006 Intel Corporation.
6 This program is free software; you can redistribute it and/or modify it
7 under the terms and conditions of the GNU General Public License,
8 version 2, as published by the Free Software Foundation.
10 This program is distributed in the hope it will be useful, but WITHOUT
11 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
15 You should have received a copy of the GNU General Public License along with
16 this program; if not, write to the Free Software Foundation, Inc.,
17 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
19 The full GNU General Public License is included in this distribution in
20 the file called "COPYING".
23 Linux NICS <linux.nics@intel.com>
24 e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
25 Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
27 *******************************************************************************/
31 char e1000_driver_name
[] = "e1000";
32 static char e1000_driver_string
[] = "Intel(R) PRO/1000 Network Driver";
33 #ifndef CONFIG_E1000_NAPI
36 #define DRIVERNAPI "-NAPI"
38 #define DRV_VERSION "7.2.7-k2"DRIVERNAPI
39 char e1000_driver_version
[] = DRV_VERSION
;
40 static char e1000_copyright
[] = "Copyright (c) 1999-2006 Intel Corporation.";
42 /* e1000_pci_tbl - PCI Device ID Table
44 * Last entry must be all 0s
47 * {PCI_DEVICE(PCI_VENDOR_ID_INTEL, device_id)}
49 static struct pci_device_id e1000_pci_tbl
[] = {
50 INTEL_E1000_ETHERNET_DEVICE(0x1000),
51 INTEL_E1000_ETHERNET_DEVICE(0x1001),
52 INTEL_E1000_ETHERNET_DEVICE(0x1004),
53 INTEL_E1000_ETHERNET_DEVICE(0x1008),
54 INTEL_E1000_ETHERNET_DEVICE(0x1009),
55 INTEL_E1000_ETHERNET_DEVICE(0x100C),
56 INTEL_E1000_ETHERNET_DEVICE(0x100D),
57 INTEL_E1000_ETHERNET_DEVICE(0x100E),
58 INTEL_E1000_ETHERNET_DEVICE(0x100F),
59 INTEL_E1000_ETHERNET_DEVICE(0x1010),
60 INTEL_E1000_ETHERNET_DEVICE(0x1011),
61 INTEL_E1000_ETHERNET_DEVICE(0x1012),
62 INTEL_E1000_ETHERNET_DEVICE(0x1013),
63 INTEL_E1000_ETHERNET_DEVICE(0x1014),
64 INTEL_E1000_ETHERNET_DEVICE(0x1015),
65 INTEL_E1000_ETHERNET_DEVICE(0x1016),
66 INTEL_E1000_ETHERNET_DEVICE(0x1017),
67 INTEL_E1000_ETHERNET_DEVICE(0x1018),
68 INTEL_E1000_ETHERNET_DEVICE(0x1019),
69 INTEL_E1000_ETHERNET_DEVICE(0x101A),
70 INTEL_E1000_ETHERNET_DEVICE(0x101D),
71 INTEL_E1000_ETHERNET_DEVICE(0x101E),
72 INTEL_E1000_ETHERNET_DEVICE(0x1026),
73 INTEL_E1000_ETHERNET_DEVICE(0x1027),
74 INTEL_E1000_ETHERNET_DEVICE(0x1028),
75 INTEL_E1000_ETHERNET_DEVICE(0x1049),
76 INTEL_E1000_ETHERNET_DEVICE(0x104A),
77 INTEL_E1000_ETHERNET_DEVICE(0x104B),
78 INTEL_E1000_ETHERNET_DEVICE(0x104C),
79 INTEL_E1000_ETHERNET_DEVICE(0x104D),
80 INTEL_E1000_ETHERNET_DEVICE(0x105E),
81 INTEL_E1000_ETHERNET_DEVICE(0x105F),
82 INTEL_E1000_ETHERNET_DEVICE(0x1060),
83 INTEL_E1000_ETHERNET_DEVICE(0x1075),
84 INTEL_E1000_ETHERNET_DEVICE(0x1076),
85 INTEL_E1000_ETHERNET_DEVICE(0x1077),
86 INTEL_E1000_ETHERNET_DEVICE(0x1078),
87 INTEL_E1000_ETHERNET_DEVICE(0x1079),
88 INTEL_E1000_ETHERNET_DEVICE(0x107A),
89 INTEL_E1000_ETHERNET_DEVICE(0x107B),
90 INTEL_E1000_ETHERNET_DEVICE(0x107C),
91 INTEL_E1000_ETHERNET_DEVICE(0x107D),
92 INTEL_E1000_ETHERNET_DEVICE(0x107E),
93 INTEL_E1000_ETHERNET_DEVICE(0x107F),
94 INTEL_E1000_ETHERNET_DEVICE(0x108A),
95 INTEL_E1000_ETHERNET_DEVICE(0x108B),
96 INTEL_E1000_ETHERNET_DEVICE(0x108C),
97 INTEL_E1000_ETHERNET_DEVICE(0x1096),
98 INTEL_E1000_ETHERNET_DEVICE(0x1098),
99 INTEL_E1000_ETHERNET_DEVICE(0x1099),
100 INTEL_E1000_ETHERNET_DEVICE(0x109A),
101 INTEL_E1000_ETHERNET_DEVICE(0x10A4),
102 INTEL_E1000_ETHERNET_DEVICE(0x10B5),
103 INTEL_E1000_ETHERNET_DEVICE(0x10B9),
104 INTEL_E1000_ETHERNET_DEVICE(0x10BA),
105 INTEL_E1000_ETHERNET_DEVICE(0x10BB),
106 /* required last entry */
110 MODULE_DEVICE_TABLE(pci
, e1000_pci_tbl
);
112 int e1000_up(struct e1000_adapter
*adapter
);
113 void e1000_down(struct e1000_adapter
*adapter
);
114 void e1000_reinit_locked(struct e1000_adapter
*adapter
);
115 void e1000_reset(struct e1000_adapter
*adapter
);
116 int e1000_set_spd_dplx(struct e1000_adapter
*adapter
, uint16_t spddplx
);
117 int e1000_setup_all_tx_resources(struct e1000_adapter
*adapter
);
118 int e1000_setup_all_rx_resources(struct e1000_adapter
*adapter
);
119 void e1000_free_all_tx_resources(struct e1000_adapter
*adapter
);
120 void e1000_free_all_rx_resources(struct e1000_adapter
*adapter
);
121 static int e1000_setup_tx_resources(struct e1000_adapter
*adapter
,
122 struct e1000_tx_ring
*txdr
);
123 static int e1000_setup_rx_resources(struct e1000_adapter
*adapter
,
124 struct e1000_rx_ring
*rxdr
);
125 static void e1000_free_tx_resources(struct e1000_adapter
*adapter
,
126 struct e1000_tx_ring
*tx_ring
);
127 static void e1000_free_rx_resources(struct e1000_adapter
*adapter
,
128 struct e1000_rx_ring
*rx_ring
);
129 void e1000_update_stats(struct e1000_adapter
*adapter
);
131 static int e1000_init_module(void);
132 static void e1000_exit_module(void);
133 static int e1000_probe(struct pci_dev
*pdev
, const struct pci_device_id
*ent
);
134 static void __devexit
e1000_remove(struct pci_dev
*pdev
);
135 static int e1000_alloc_queues(struct e1000_adapter
*adapter
);
136 static int e1000_sw_init(struct e1000_adapter
*adapter
);
137 static int e1000_open(struct net_device
*netdev
);
138 static int e1000_close(struct net_device
*netdev
);
139 static void e1000_configure_tx(struct e1000_adapter
*adapter
);
140 static void e1000_configure_rx(struct e1000_adapter
*adapter
);
141 static void e1000_setup_rctl(struct e1000_adapter
*adapter
);
142 static void e1000_clean_all_tx_rings(struct e1000_adapter
*adapter
);
143 static void e1000_clean_all_rx_rings(struct e1000_adapter
*adapter
);
144 static void e1000_clean_tx_ring(struct e1000_adapter
*adapter
,
145 struct e1000_tx_ring
*tx_ring
);
146 static void e1000_clean_rx_ring(struct e1000_adapter
*adapter
,
147 struct e1000_rx_ring
*rx_ring
);
148 static void e1000_set_multi(struct net_device
*netdev
);
149 static void e1000_update_phy_info(unsigned long data
);
150 static void e1000_watchdog(unsigned long data
);
151 static void e1000_82547_tx_fifo_stall(unsigned long data
);
152 static int e1000_xmit_frame(struct sk_buff
*skb
, struct net_device
*netdev
);
153 static struct net_device_stats
* e1000_get_stats(struct net_device
*netdev
);
154 static int e1000_change_mtu(struct net_device
*netdev
, int new_mtu
);
155 static int e1000_set_mac(struct net_device
*netdev
, void *p
);
156 static irqreturn_t
e1000_intr(int irq
, void *data
, struct pt_regs
*regs
);
157 static boolean_t
e1000_clean_tx_irq(struct e1000_adapter
*adapter
,
158 struct e1000_tx_ring
*tx_ring
);
159 #ifdef CONFIG_E1000_NAPI
160 static int e1000_clean(struct net_device
*poll_dev
, int *budget
);
161 static boolean_t
e1000_clean_rx_irq(struct e1000_adapter
*adapter
,
162 struct e1000_rx_ring
*rx_ring
,
163 int *work_done
, int work_to_do
);
164 static boolean_t
e1000_clean_rx_irq_ps(struct e1000_adapter
*adapter
,
165 struct e1000_rx_ring
*rx_ring
,
166 int *work_done
, int work_to_do
);
168 static boolean_t
e1000_clean_rx_irq(struct e1000_adapter
*adapter
,
169 struct e1000_rx_ring
*rx_ring
);
170 static boolean_t
e1000_clean_rx_irq_ps(struct e1000_adapter
*adapter
,
171 struct e1000_rx_ring
*rx_ring
);
173 static void e1000_alloc_rx_buffers(struct e1000_adapter
*adapter
,
174 struct e1000_rx_ring
*rx_ring
,
176 static void e1000_alloc_rx_buffers_ps(struct e1000_adapter
*adapter
,
177 struct e1000_rx_ring
*rx_ring
,
179 static int e1000_ioctl(struct net_device
*netdev
, struct ifreq
*ifr
, int cmd
);
180 static int e1000_mii_ioctl(struct net_device
*netdev
, struct ifreq
*ifr
,
182 void e1000_set_ethtool_ops(struct net_device
*netdev
);
183 static void e1000_enter_82542_rst(struct e1000_adapter
*adapter
);
184 static void e1000_leave_82542_rst(struct e1000_adapter
*adapter
);
185 static void e1000_tx_timeout(struct net_device
*dev
);
186 static void e1000_reset_task(struct net_device
*dev
);
187 static void e1000_smartspeed(struct e1000_adapter
*adapter
);
188 static int e1000_82547_fifo_workaround(struct e1000_adapter
*adapter
,
189 struct sk_buff
*skb
);
191 static void e1000_vlan_rx_register(struct net_device
*netdev
, struct vlan_group
*grp
);
192 static void e1000_vlan_rx_add_vid(struct net_device
*netdev
, uint16_t vid
);
193 static void e1000_vlan_rx_kill_vid(struct net_device
*netdev
, uint16_t vid
);
194 static void e1000_restore_vlan(struct e1000_adapter
*adapter
);
196 static int e1000_suspend(struct pci_dev
*pdev
, pm_message_t state
);
198 static int e1000_resume(struct pci_dev
*pdev
);
200 static void e1000_shutdown(struct pci_dev
*pdev
);
202 #ifdef CONFIG_NET_POLL_CONTROLLER
203 /* for netdump / net console */
204 static void e1000_netpoll (struct net_device
*netdev
);
207 extern void e1000_check_options(struct e1000_adapter
*adapter
);
209 static pci_ers_result_t
e1000_io_error_detected(struct pci_dev
*pdev
,
210 pci_channel_state_t state
);
211 static pci_ers_result_t
e1000_io_slot_reset(struct pci_dev
*pdev
);
212 static void e1000_io_resume(struct pci_dev
*pdev
);
214 static struct pci_error_handlers e1000_err_handler
= {
215 .error_detected
= e1000_io_error_detected
,
216 .slot_reset
= e1000_io_slot_reset
,
217 .resume
= e1000_io_resume
,
220 static struct pci_driver e1000_driver
= {
221 .name
= e1000_driver_name
,
222 .id_table
= e1000_pci_tbl
,
223 .probe
= e1000_probe
,
224 .remove
= __devexit_p(e1000_remove
),
226 /* Power Managment Hooks */
227 .suspend
= e1000_suspend
,
228 .resume
= e1000_resume
,
230 .shutdown
= e1000_shutdown
,
231 .err_handler
= &e1000_err_handler
234 MODULE_AUTHOR("Intel Corporation, <linux.nics@intel.com>");
235 MODULE_DESCRIPTION("Intel(R) PRO/1000 Network Driver");
236 MODULE_LICENSE("GPL");
237 MODULE_VERSION(DRV_VERSION
);
239 static int debug
= NETIF_MSG_DRV
| NETIF_MSG_PROBE
;
240 module_param(debug
, int, 0);
241 MODULE_PARM_DESC(debug
, "Debug level (0=none,...,16=all)");
244 * e1000_init_module - Driver Registration Routine
246 * e1000_init_module is the first routine called when the driver is
247 * loaded. All it does is register with the PCI subsystem.
251 e1000_init_module(void)
254 printk(KERN_INFO
"%s - version %s\n",
255 e1000_driver_string
, e1000_driver_version
);
257 printk(KERN_INFO
"%s\n", e1000_copyright
);
259 ret
= pci_register_driver(&e1000_driver
);
264 module_init(e1000_init_module
);
267 * e1000_exit_module - Driver Exit Cleanup Routine
269 * e1000_exit_module is called just before the driver is removed
274 e1000_exit_module(void)
276 pci_unregister_driver(&e1000_driver
);
279 module_exit(e1000_exit_module
);
281 static int e1000_request_irq(struct e1000_adapter
*adapter
)
283 struct net_device
*netdev
= adapter
->netdev
;
287 #ifdef CONFIG_PCI_MSI
288 if (adapter
->hw
.mac_type
> e1000_82547_rev_2
) {
289 adapter
->have_msi
= TRUE
;
290 if ((err
= pci_enable_msi(adapter
->pdev
))) {
292 "Unable to allocate MSI interrupt Error: %d\n", err
);
293 adapter
->have_msi
= FALSE
;
296 if (adapter
->have_msi
)
297 flags
&= ~IRQF_SHARED
;
299 if ((err
= request_irq(adapter
->pdev
->irq
, &e1000_intr
, flags
,
300 netdev
->name
, netdev
)))
302 "Unable to allocate interrupt Error: %d\n", err
);
307 static void e1000_free_irq(struct e1000_adapter
*adapter
)
309 struct net_device
*netdev
= adapter
->netdev
;
311 free_irq(adapter
->pdev
->irq
, netdev
);
313 #ifdef CONFIG_PCI_MSI
314 if (adapter
->have_msi
)
315 pci_disable_msi(adapter
->pdev
);
320 * e1000_irq_disable - Mask off interrupt generation on the NIC
321 * @adapter: board private structure
325 e1000_irq_disable(struct e1000_adapter
*adapter
)
327 atomic_inc(&adapter
->irq_sem
);
328 E1000_WRITE_REG(&adapter
->hw
, IMC
, ~0);
329 E1000_WRITE_FLUSH(&adapter
->hw
);
330 synchronize_irq(adapter
->pdev
->irq
);
334 * e1000_irq_enable - Enable default interrupt generation settings
335 * @adapter: board private structure
339 e1000_irq_enable(struct e1000_adapter
*adapter
)
341 if (likely(atomic_dec_and_test(&adapter
->irq_sem
))) {
342 E1000_WRITE_REG(&adapter
->hw
, IMS
, IMS_ENABLE_MASK
);
343 E1000_WRITE_FLUSH(&adapter
->hw
);
348 e1000_update_mng_vlan(struct e1000_adapter
*adapter
)
350 struct net_device
*netdev
= adapter
->netdev
;
351 uint16_t vid
= adapter
->hw
.mng_cookie
.vlan_id
;
352 uint16_t old_vid
= adapter
->mng_vlan_id
;
353 if (adapter
->vlgrp
) {
354 if (!adapter
->vlgrp
->vlan_devices
[vid
]) {
355 if (adapter
->hw
.mng_cookie
.status
&
356 E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT
) {
357 e1000_vlan_rx_add_vid(netdev
, vid
);
358 adapter
->mng_vlan_id
= vid
;
360 adapter
->mng_vlan_id
= E1000_MNG_VLAN_NONE
;
362 if ((old_vid
!= (uint16_t)E1000_MNG_VLAN_NONE
) &&
364 !adapter
->vlgrp
->vlan_devices
[old_vid
])
365 e1000_vlan_rx_kill_vid(netdev
, old_vid
);
367 adapter
->mng_vlan_id
= vid
;
372 * e1000_release_hw_control - release control of the h/w to f/w
373 * @adapter: address of board private structure
375 * e1000_release_hw_control resets {CTRL_EXT|FWSM}:DRV_LOAD bit.
376 * For ASF and Pass Through versions of f/w this means that the
377 * driver is no longer loaded. For AMT version (only with 82573) i
378 * of the f/w this means that the netowrk i/f is closed.
383 e1000_release_hw_control(struct e1000_adapter
*adapter
)
389 /* Let firmware taken over control of h/w */
390 switch (adapter
->hw
.mac_type
) {
393 case e1000_80003es2lan
:
394 ctrl_ext
= E1000_READ_REG(&adapter
->hw
, CTRL_EXT
);
395 E1000_WRITE_REG(&adapter
->hw
, CTRL_EXT
,
396 ctrl_ext
& ~E1000_CTRL_EXT_DRV_LOAD
);
399 swsm
= E1000_READ_REG(&adapter
->hw
, SWSM
);
400 E1000_WRITE_REG(&adapter
->hw
, SWSM
,
401 swsm
& ~E1000_SWSM_DRV_LOAD
);
403 extcnf
= E1000_READ_REG(&adapter
->hw
, CTRL_EXT
);
404 E1000_WRITE_REG(&adapter
->hw
, CTRL_EXT
,
405 extcnf
& ~E1000_CTRL_EXT_DRV_LOAD
);
413 * e1000_get_hw_control - get control of the h/w from f/w
414 * @adapter: address of board private structure
416 * e1000_get_hw_control sets {CTRL_EXT|FWSM}:DRV_LOAD bit.
417 * For ASF and Pass Through versions of f/w this means that
418 * the driver is loaded. For AMT version (only with 82573)
419 * of the f/w this means that the netowrk i/f is open.
424 e1000_get_hw_control(struct e1000_adapter
*adapter
)
429 /* Let firmware know the driver has taken over */
430 switch (adapter
->hw
.mac_type
) {
433 case e1000_80003es2lan
:
434 ctrl_ext
= E1000_READ_REG(&adapter
->hw
, CTRL_EXT
);
435 E1000_WRITE_REG(&adapter
->hw
, CTRL_EXT
,
436 ctrl_ext
| E1000_CTRL_EXT_DRV_LOAD
);
439 swsm
= E1000_READ_REG(&adapter
->hw
, SWSM
);
440 E1000_WRITE_REG(&adapter
->hw
, SWSM
,
441 swsm
| E1000_SWSM_DRV_LOAD
);
444 extcnf
= E1000_READ_REG(&adapter
->hw
, EXTCNF_CTRL
);
445 E1000_WRITE_REG(&adapter
->hw
, EXTCNF_CTRL
,
446 extcnf
| E1000_EXTCNF_CTRL_SWFLAG
);
454 e1000_up(struct e1000_adapter
*adapter
)
456 struct net_device
*netdev
= adapter
->netdev
;
459 /* hardware has been reset, we need to reload some things */
461 e1000_set_multi(netdev
);
463 e1000_restore_vlan(adapter
);
465 e1000_configure_tx(adapter
);
466 e1000_setup_rctl(adapter
);
467 e1000_configure_rx(adapter
);
468 /* call E1000_DESC_UNUSED which always leaves
469 * at least 1 descriptor unused to make sure
470 * next_to_use != next_to_clean */
471 for (i
= 0; i
< adapter
->num_rx_queues
; i
++) {
472 struct e1000_rx_ring
*ring
= &adapter
->rx_ring
[i
];
473 adapter
->alloc_rx_buf(adapter
, ring
,
474 E1000_DESC_UNUSED(ring
));
477 adapter
->tx_queue_len
= netdev
->tx_queue_len
;
479 mod_timer(&adapter
->watchdog_timer
, jiffies
);
481 #ifdef CONFIG_E1000_NAPI
482 netif_poll_enable(netdev
);
484 e1000_irq_enable(adapter
);
490 * e1000_power_up_phy - restore link in case the phy was powered down
491 * @adapter: address of board private structure
493 * The phy may be powered down to save power and turn off link when the
494 * driver is unloaded and wake on lan is not enabled (among others)
495 * *** this routine MUST be followed by a call to e1000_reset ***
499 void e1000_power_up_phy(struct e1000_adapter
*adapter
)
501 uint16_t mii_reg
= 0;
503 /* Just clear the power down bit to wake the phy back up */
504 if (adapter
->hw
.media_type
== e1000_media_type_copper
) {
505 /* according to the manual, the phy will retain its
506 * settings across a power-down/up cycle */
507 e1000_read_phy_reg(&adapter
->hw
, PHY_CTRL
, &mii_reg
);
508 mii_reg
&= ~MII_CR_POWER_DOWN
;
509 e1000_write_phy_reg(&adapter
->hw
, PHY_CTRL
, mii_reg
);
513 static void e1000_power_down_phy(struct e1000_adapter
*adapter
)
515 boolean_t mng_mode_enabled
= (adapter
->hw
.mac_type
>= e1000_82571
) &&
516 e1000_check_mng_mode(&adapter
->hw
);
517 /* Power down the PHY so no link is implied when interface is down
518 * The PHY cannot be powered down if any of the following is TRUE
521 * (c) SoL/IDER session is active */
522 if (!adapter
->wol
&& adapter
->hw
.mac_type
>= e1000_82540
&&
523 adapter
->hw
.mac_type
!= e1000_ich8lan
&&
524 adapter
->hw
.media_type
== e1000_media_type_copper
&&
525 !(E1000_READ_REG(&adapter
->hw
, MANC
) & E1000_MANC_SMBUS_EN
) &&
527 !e1000_check_phy_reset_block(&adapter
->hw
)) {
528 uint16_t mii_reg
= 0;
529 e1000_read_phy_reg(&adapter
->hw
, PHY_CTRL
, &mii_reg
);
530 mii_reg
|= MII_CR_POWER_DOWN
;
531 e1000_write_phy_reg(&adapter
->hw
, PHY_CTRL
, mii_reg
);
537 e1000_down(struct e1000_adapter
*adapter
)
539 struct net_device
*netdev
= adapter
->netdev
;
541 e1000_irq_disable(adapter
);
543 del_timer_sync(&adapter
->tx_fifo_stall_timer
);
544 del_timer_sync(&adapter
->watchdog_timer
);
545 del_timer_sync(&adapter
->phy_info_timer
);
547 #ifdef CONFIG_E1000_NAPI
548 netif_poll_disable(netdev
);
550 netdev
->tx_queue_len
= adapter
->tx_queue_len
;
551 adapter
->link_speed
= 0;
552 adapter
->link_duplex
= 0;
553 netif_carrier_off(netdev
);
554 netif_stop_queue(netdev
);
556 e1000_reset(adapter
);
557 e1000_clean_all_tx_rings(adapter
);
558 e1000_clean_all_rx_rings(adapter
);
562 e1000_reinit_locked(struct e1000_adapter
*adapter
)
564 WARN_ON(in_interrupt());
565 while (test_and_set_bit(__E1000_RESETTING
, &adapter
->flags
))
569 clear_bit(__E1000_RESETTING
, &adapter
->flags
);
573 e1000_reset(struct e1000_adapter
*adapter
)
579 uint16_t fc_high_water_mark
= E1000_FC_HIGH_DIFF
;
581 /* Repartition Pba for greater than 9k mtu
582 * To take effect CTRL.RST is required.
585 switch (adapter
->hw
.mac_type
) {
587 case e1000_82547_rev_2
:
592 case e1000_80003es2lan
:
606 if ((adapter
->hw
.mac_type
!= e1000_82573
) &&
607 (adapter
->netdev
->mtu
> E1000_RXBUFFER_8192
))
608 pba
-= 8; /* allocate more FIFO for Tx */
611 if (adapter
->hw
.mac_type
== e1000_82547
) {
612 adapter
->tx_fifo_head
= 0;
613 adapter
->tx_head_addr
= pba
<< E1000_TX_HEAD_ADDR_SHIFT
;
614 adapter
->tx_fifo_size
=
615 (E1000_PBA_40K
- pba
) << E1000_PBA_BYTES_SHIFT
;
616 atomic_set(&adapter
->tx_fifo_stall
, 0);
619 E1000_WRITE_REG(&adapter
->hw
, PBA
, pba
);
621 /* flow control settings */
622 /* Set the FC high water mark to 90% of the FIFO size.
623 * Required to clear last 3 LSB */
624 fc_high_water_mark
= ((pba
* 9216)/10) & 0xFFF8;
625 /* We can't use 90% on small FIFOs because the remainder
626 * would be less than 1 full frame. In this case, we size
627 * it to allow at least a full frame above the high water
629 if (pba
< E1000_PBA_16K
)
630 fc_high_water_mark
= (pba
* 1024) - 1600;
632 adapter
->hw
.fc_high_water
= fc_high_water_mark
;
633 adapter
->hw
.fc_low_water
= fc_high_water_mark
- 8;
634 if (adapter
->hw
.mac_type
== e1000_80003es2lan
)
635 adapter
->hw
.fc_pause_time
= 0xFFFF;
637 adapter
->hw
.fc_pause_time
= E1000_FC_PAUSE_TIME
;
638 adapter
->hw
.fc_send_xon
= 1;
639 adapter
->hw
.fc
= adapter
->hw
.original_fc
;
641 /* Allow time for pending master requests to run */
642 e1000_reset_hw(&adapter
->hw
);
643 if (adapter
->hw
.mac_type
>= e1000_82544
)
644 E1000_WRITE_REG(&adapter
->hw
, WUC
, 0);
646 /* disable Multiple Reads in Transmit Control Register for debugging */
647 tctl
= E1000_READ_REG(hw
, TCTL
);
648 E1000_WRITE_REG(hw
, TCTL
, tctl
& ~E1000_TCTL_MULR
);
651 if (e1000_init_hw(&adapter
->hw
))
652 DPRINTK(PROBE
, ERR
, "Hardware Error\n");
653 e1000_update_mng_vlan(adapter
);
654 /* Enable h/w to recognize an 802.1Q VLAN Ethernet packet */
655 E1000_WRITE_REG(&adapter
->hw
, VET
, ETHERNET_IEEE_VLAN_TYPE
);
657 e1000_reset_adaptive(&adapter
->hw
);
658 e1000_phy_get_info(&adapter
->hw
, &adapter
->phy_info
);
660 if (!adapter
->smart_power_down
&&
661 (adapter
->hw
.mac_type
== e1000_82571
||
662 adapter
->hw
.mac_type
== e1000_82572
)) {
663 uint16_t phy_data
= 0;
664 /* speed up time to link by disabling smart power down, ignore
665 * the return value of this function because there is nothing
666 * different we would do if it failed */
667 e1000_read_phy_reg(&adapter
->hw
, IGP02E1000_PHY_POWER_MGMT
,
669 phy_data
&= ~IGP02E1000_PM_SPD
;
670 e1000_write_phy_reg(&adapter
->hw
, IGP02E1000_PHY_POWER_MGMT
,
674 if ((adapter
->en_mng_pt
) && (adapter
->hw
.mac_type
< e1000_82571
)) {
675 manc
= E1000_READ_REG(&adapter
->hw
, MANC
);
676 manc
|= (E1000_MANC_ARP_EN
| E1000_MANC_EN_MNG2HOST
);
677 E1000_WRITE_REG(&adapter
->hw
, MANC
, manc
);
682 * e1000_probe - Device Initialization Routine
683 * @pdev: PCI device information struct
684 * @ent: entry in e1000_pci_tbl
686 * Returns 0 on success, negative on failure
688 * e1000_probe initializes an adapter identified by a pci_dev structure.
689 * The OS initialization, configuring of the adapter private structure,
690 * and a hardware reset occur.
694 e1000_probe(struct pci_dev
*pdev
,
695 const struct pci_device_id
*ent
)
697 struct net_device
*netdev
;
698 struct e1000_adapter
*adapter
;
699 unsigned long mmio_start
, mmio_len
;
700 unsigned long flash_start
, flash_len
;
702 static int cards_found
= 0;
703 static int global_quad_port_a
= 0; /* global ksp3 port a indication */
704 int i
, err
, pci_using_dac
;
705 uint16_t eeprom_data
= 0;
706 uint16_t eeprom_apme_mask
= E1000_EEPROM_APME
;
707 if ((err
= pci_enable_device(pdev
)))
710 if (!(err
= pci_set_dma_mask(pdev
, DMA_64BIT_MASK
)) &&
711 !(err
= pci_set_consistent_dma_mask(pdev
, DMA_64BIT_MASK
))) {
714 if ((err
= pci_set_dma_mask(pdev
, DMA_32BIT_MASK
)) &&
715 (err
= pci_set_consistent_dma_mask(pdev
, DMA_32BIT_MASK
))) {
716 E1000_ERR("No usable DMA configuration, aborting\n");
722 if ((err
= pci_request_regions(pdev
, e1000_driver_name
)))
725 pci_set_master(pdev
);
728 netdev
= alloc_etherdev(sizeof(struct e1000_adapter
));
730 goto err_alloc_etherdev
;
732 SET_MODULE_OWNER(netdev
);
733 SET_NETDEV_DEV(netdev
, &pdev
->dev
);
735 pci_set_drvdata(pdev
, netdev
);
736 adapter
= netdev_priv(netdev
);
737 adapter
->netdev
= netdev
;
738 adapter
->pdev
= pdev
;
739 adapter
->hw
.back
= adapter
;
740 adapter
->msg_enable
= (1 << debug
) - 1;
742 mmio_start
= pci_resource_start(pdev
, BAR_0
);
743 mmio_len
= pci_resource_len(pdev
, BAR_0
);
746 adapter
->hw
.hw_addr
= ioremap(mmio_start
, mmio_len
);
747 if (!adapter
->hw
.hw_addr
)
750 for (i
= BAR_1
; i
<= BAR_5
; i
++) {
751 if (pci_resource_len(pdev
, i
) == 0)
753 if (pci_resource_flags(pdev
, i
) & IORESOURCE_IO
) {
754 adapter
->hw
.io_base
= pci_resource_start(pdev
, i
);
759 netdev
->open
= &e1000_open
;
760 netdev
->stop
= &e1000_close
;
761 netdev
->hard_start_xmit
= &e1000_xmit_frame
;
762 netdev
->get_stats
= &e1000_get_stats
;
763 netdev
->set_multicast_list
= &e1000_set_multi
;
764 netdev
->set_mac_address
= &e1000_set_mac
;
765 netdev
->change_mtu
= &e1000_change_mtu
;
766 netdev
->do_ioctl
= &e1000_ioctl
;
767 e1000_set_ethtool_ops(netdev
);
768 netdev
->tx_timeout
= &e1000_tx_timeout
;
769 netdev
->watchdog_timeo
= 5 * HZ
;
770 #ifdef CONFIG_E1000_NAPI
771 netdev
->poll
= &e1000_clean
;
774 netdev
->vlan_rx_register
= e1000_vlan_rx_register
;
775 netdev
->vlan_rx_add_vid
= e1000_vlan_rx_add_vid
;
776 netdev
->vlan_rx_kill_vid
= e1000_vlan_rx_kill_vid
;
777 #ifdef CONFIG_NET_POLL_CONTROLLER
778 netdev
->poll_controller
= e1000_netpoll
;
780 strncpy(netdev
->name
, pci_name(pdev
), sizeof(netdev
->name
) - 1);
782 netdev
->mem_start
= mmio_start
;
783 netdev
->mem_end
= mmio_start
+ mmio_len
;
784 netdev
->base_addr
= adapter
->hw
.io_base
;
786 adapter
->bd_number
= cards_found
;
788 /* setup the private structure */
790 if ((err
= e1000_sw_init(adapter
)))
794 /* Flash BAR mapping must happen after e1000_sw_init
795 * because it depends on mac_type */
796 if ((adapter
->hw
.mac_type
== e1000_ich8lan
) &&
797 (pci_resource_flags(pdev
, 1) & IORESOURCE_MEM
)) {
798 flash_start
= pci_resource_start(pdev
, 1);
799 flash_len
= pci_resource_len(pdev
, 1);
800 adapter
->hw
.flash_address
= ioremap(flash_start
, flash_len
);
801 if (!adapter
->hw
.flash_address
)
805 if (e1000_check_phy_reset_block(&adapter
->hw
))
806 DPRINTK(PROBE
, INFO
, "PHY reset is blocked due to SOL/IDER session.\n");
808 if (adapter
->hw
.mac_type
>= e1000_82543
) {
809 netdev
->features
= NETIF_F_SG
|
813 NETIF_F_HW_VLAN_FILTER
;
814 if (adapter
->hw
.mac_type
== e1000_ich8lan
)
815 netdev
->features
&= ~NETIF_F_HW_VLAN_FILTER
;
819 if ((adapter
->hw
.mac_type
>= e1000_82544
) &&
820 (adapter
->hw
.mac_type
!= e1000_82547
))
821 netdev
->features
|= NETIF_F_TSO
;
823 #ifdef NETIF_F_TSO_IPV6
824 if (adapter
->hw
.mac_type
> e1000_82547_rev_2
)
825 netdev
->features
|= NETIF_F_TSO_IPV6
;
829 netdev
->features
|= NETIF_F_HIGHDMA
;
831 netdev
->features
|= NETIF_F_LLTX
;
833 adapter
->en_mng_pt
= e1000_enable_mng_pass_thru(&adapter
->hw
);
835 /* initialize eeprom parameters */
837 if (e1000_init_eeprom_params(&adapter
->hw
)) {
838 E1000_ERR("EEPROM initialization failed\n");
842 /* before reading the EEPROM, reset the controller to
843 * put the device in a known good starting state */
845 e1000_reset_hw(&adapter
->hw
);
847 /* make sure the EEPROM is good */
849 if (e1000_validate_eeprom_checksum(&adapter
->hw
) < 0) {
850 DPRINTK(PROBE
, ERR
, "The EEPROM Checksum Is Not Valid\n");
854 /* copy the MAC address out of the EEPROM */
856 if (e1000_read_mac_addr(&adapter
->hw
))
857 DPRINTK(PROBE
, ERR
, "EEPROM Read Error\n");
858 memcpy(netdev
->dev_addr
, adapter
->hw
.mac_addr
, netdev
->addr_len
);
859 memcpy(netdev
->perm_addr
, adapter
->hw
.mac_addr
, netdev
->addr_len
);
861 if (!is_valid_ether_addr(netdev
->perm_addr
)) {
862 DPRINTK(PROBE
, ERR
, "Invalid MAC Address\n");
866 e1000_get_bus_info(&adapter
->hw
);
868 init_timer(&adapter
->tx_fifo_stall_timer
);
869 adapter
->tx_fifo_stall_timer
.function
= &e1000_82547_tx_fifo_stall
;
870 adapter
->tx_fifo_stall_timer
.data
= (unsigned long) adapter
;
872 init_timer(&adapter
->watchdog_timer
);
873 adapter
->watchdog_timer
.function
= &e1000_watchdog
;
874 adapter
->watchdog_timer
.data
= (unsigned long) adapter
;
876 init_timer(&adapter
->phy_info_timer
);
877 adapter
->phy_info_timer
.function
= &e1000_update_phy_info
;
878 adapter
->phy_info_timer
.data
= (unsigned long) adapter
;
880 INIT_WORK(&adapter
->reset_task
,
881 (void (*)(void *))e1000_reset_task
, netdev
);
883 /* we're going to reset, so assume we have no link for now */
885 netif_carrier_off(netdev
);
886 netif_stop_queue(netdev
);
888 e1000_check_options(adapter
);
890 /* Initial Wake on LAN setting
891 * If APM wake is enabled in the EEPROM,
892 * enable the ACPI Magic Packet filter
895 switch (adapter
->hw
.mac_type
) {
896 case e1000_82542_rev2_0
:
897 case e1000_82542_rev2_1
:
901 e1000_read_eeprom(&adapter
->hw
,
902 EEPROM_INIT_CONTROL2_REG
, 1, &eeprom_data
);
903 eeprom_apme_mask
= E1000_EEPROM_82544_APM
;
906 e1000_read_eeprom(&adapter
->hw
,
907 EEPROM_INIT_CONTROL1_REG
, 1, &eeprom_data
);
908 eeprom_apme_mask
= E1000_EEPROM_ICH8_APME
;
911 case e1000_82546_rev_3
:
913 case e1000_80003es2lan
:
914 if (E1000_READ_REG(&adapter
->hw
, STATUS
) & E1000_STATUS_FUNC_1
){
915 e1000_read_eeprom(&adapter
->hw
,
916 EEPROM_INIT_CONTROL3_PORT_B
, 1, &eeprom_data
);
921 e1000_read_eeprom(&adapter
->hw
,
922 EEPROM_INIT_CONTROL3_PORT_A
, 1, &eeprom_data
);
925 if (eeprom_data
& eeprom_apme_mask
)
926 adapter
->eeprom_wol
|= E1000_WUFC_MAG
;
928 /* now that we have the eeprom settings, apply the special cases
929 * where the eeprom may be wrong or the board simply won't support
930 * wake on lan on a particular port */
931 switch (pdev
->device
) {
932 case E1000_DEV_ID_82546GB_PCIE
:
933 adapter
->eeprom_wol
= 0;
935 case E1000_DEV_ID_82546EB_FIBER
:
936 case E1000_DEV_ID_82546GB_FIBER
:
937 case E1000_DEV_ID_82571EB_FIBER
:
938 /* Wake events only supported on port A for dual fiber
939 * regardless of eeprom setting */
940 if (E1000_READ_REG(&adapter
->hw
, STATUS
) & E1000_STATUS_FUNC_1
)
941 adapter
->eeprom_wol
= 0;
943 case E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3
:
944 case E1000_DEV_ID_82571EB_QUAD_COPPER
:
945 /* if quad port adapter, disable WoL on all but port A */
946 if (global_quad_port_a
!= 0)
947 adapter
->eeprom_wol
= 0;
949 adapter
->quad_port_a
= 1;
950 /* Reset for multiple quad port adapters */
951 if (++global_quad_port_a
== 4)
952 global_quad_port_a
= 0;
956 /* initialize the wol settings based on the eeprom settings */
957 adapter
->wol
= adapter
->eeprom_wol
;
959 /* print bus type/speed/width info */
961 struct e1000_hw
*hw
= &adapter
->hw
;
962 DPRINTK(PROBE
, INFO
, "(PCI%s:%s:%s) ",
963 ((hw
->bus_type
== e1000_bus_type_pcix
) ? "-X" :
964 (hw
->bus_type
== e1000_bus_type_pci_express
? " Express":"")),
965 ((hw
->bus_speed
== e1000_bus_speed_2500
) ? "2.5Gb/s" :
966 (hw
->bus_speed
== e1000_bus_speed_133
) ? "133MHz" :
967 (hw
->bus_speed
== e1000_bus_speed_120
) ? "120MHz" :
968 (hw
->bus_speed
== e1000_bus_speed_100
) ? "100MHz" :
969 (hw
->bus_speed
== e1000_bus_speed_66
) ? "66MHz" : "33MHz"),
970 ((hw
->bus_width
== e1000_bus_width_64
) ? "64-bit" :
971 (hw
->bus_width
== e1000_bus_width_pciex_4
) ? "Width x4" :
972 (hw
->bus_width
== e1000_bus_width_pciex_1
) ? "Width x1" :
976 for (i
= 0; i
< 6; i
++)
977 printk("%2.2x%c", netdev
->dev_addr
[i
], i
== 5 ? '\n' : ':');
979 /* reset the hardware with the new settings */
980 e1000_reset(adapter
);
982 /* If the controller is 82573 and f/w is AMT, do not set
983 * DRV_LOAD until the interface is up. For all other cases,
984 * let the f/w know that the h/w is now under the control
986 if (adapter
->hw
.mac_type
!= e1000_82573
||
987 !e1000_check_mng_mode(&adapter
->hw
))
988 e1000_get_hw_control(adapter
);
990 strcpy(netdev
->name
, "eth%d");
991 if ((err
= register_netdev(netdev
)))
994 DPRINTK(PROBE
, INFO
, "Intel(R) PRO/1000 Network Connection\n");
1000 e1000_release_hw_control(adapter
);
1002 if (!e1000_check_phy_reset_block(&adapter
->hw
))
1003 e1000_phy_hw_reset(&adapter
->hw
);
1005 if (adapter
->hw
.flash_address
)
1006 iounmap(adapter
->hw
.flash_address
);
1008 #ifdef CONFIG_E1000_NAPI
1009 for (i
= 0; i
< adapter
->num_rx_queues
; i
++)
1010 dev_put(&adapter
->polling_netdev
[i
]);
1013 kfree(adapter
->tx_ring
);
1014 kfree(adapter
->rx_ring
);
1015 #ifdef CONFIG_E1000_NAPI
1016 kfree(adapter
->polling_netdev
);
1019 iounmap(adapter
->hw
.hw_addr
);
1021 free_netdev(netdev
);
1023 pci_release_regions(pdev
);
1026 pci_disable_device(pdev
);
1031 * e1000_remove - Device Removal Routine
1032 * @pdev: PCI device information struct
1034 * e1000_remove is called by the PCI subsystem to alert the driver
1035 * that it should release a PCI device. The could be caused by a
1036 * Hot-Plug event, or because the driver is going to be removed from
1040 static void __devexit
1041 e1000_remove(struct pci_dev
*pdev
)
1043 struct net_device
*netdev
= pci_get_drvdata(pdev
);
1044 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
1046 #ifdef CONFIG_E1000_NAPI
1050 flush_scheduled_work();
1052 if (adapter
->hw
.mac_type
< e1000_82571
&&
1053 adapter
->hw
.media_type
== e1000_media_type_copper
) {
1054 manc
= E1000_READ_REG(&adapter
->hw
, MANC
);
1055 if (manc
& E1000_MANC_SMBUS_EN
) {
1056 manc
|= E1000_MANC_ARP_EN
;
1057 E1000_WRITE_REG(&adapter
->hw
, MANC
, manc
);
1061 /* Release control of h/w to f/w. If f/w is AMT enabled, this
1062 * would have already happened in close and is redundant. */
1063 e1000_release_hw_control(adapter
);
1065 unregister_netdev(netdev
);
1066 #ifdef CONFIG_E1000_NAPI
1067 for (i
= 0; i
< adapter
->num_rx_queues
; i
++)
1068 dev_put(&adapter
->polling_netdev
[i
]);
1071 if (!e1000_check_phy_reset_block(&adapter
->hw
))
1072 e1000_phy_hw_reset(&adapter
->hw
);
1074 kfree(adapter
->tx_ring
);
1075 kfree(adapter
->rx_ring
);
1076 #ifdef CONFIG_E1000_NAPI
1077 kfree(adapter
->polling_netdev
);
1080 iounmap(adapter
->hw
.hw_addr
);
1081 if (adapter
->hw
.flash_address
)
1082 iounmap(adapter
->hw
.flash_address
);
1083 pci_release_regions(pdev
);
1085 free_netdev(netdev
);
1087 pci_disable_device(pdev
);
1091 * e1000_sw_init - Initialize general software structures (struct e1000_adapter)
1092 * @adapter: board private structure to initialize
1094 * e1000_sw_init initializes the Adapter private data structure.
1095 * Fields are initialized based on PCI device information and
1096 * OS network device settings (MTU size).
1099 static int __devinit
1100 e1000_sw_init(struct e1000_adapter
*adapter
)
1102 struct e1000_hw
*hw
= &adapter
->hw
;
1103 struct net_device
*netdev
= adapter
->netdev
;
1104 struct pci_dev
*pdev
= adapter
->pdev
;
1105 #ifdef CONFIG_E1000_NAPI
1109 /* PCI config space info */
1111 hw
->vendor_id
= pdev
->vendor
;
1112 hw
->device_id
= pdev
->device
;
1113 hw
->subsystem_vendor_id
= pdev
->subsystem_vendor
;
1114 hw
->subsystem_id
= pdev
->subsystem_device
;
1116 pci_read_config_byte(pdev
, PCI_REVISION_ID
, &hw
->revision_id
);
1118 pci_read_config_word(pdev
, PCI_COMMAND
, &hw
->pci_cmd_word
);
1120 adapter
->rx_buffer_len
= MAXIMUM_ETHERNET_VLAN_SIZE
;
1121 adapter
->rx_ps_bsize0
= E1000_RXBUFFER_128
;
1122 hw
->max_frame_size
= netdev
->mtu
+
1123 ENET_HEADER_SIZE
+ ETHERNET_FCS_SIZE
;
1124 hw
->min_frame_size
= MINIMUM_ETHERNET_FRAME_SIZE
;
1126 /* identify the MAC */
1128 if (e1000_set_mac_type(hw
)) {
1129 DPRINTK(PROBE
, ERR
, "Unknown MAC Type\n");
1133 switch (hw
->mac_type
) {
1138 case e1000_82541_rev_2
:
1139 case e1000_82547_rev_2
:
1140 hw
->phy_init_script
= 1;
1144 e1000_set_media_type(hw
);
1146 hw
->wait_autoneg_complete
= FALSE
;
1147 hw
->tbi_compatibility_en
= TRUE
;
1148 hw
->adaptive_ifs
= TRUE
;
1150 /* Copper options */
1152 if (hw
->media_type
== e1000_media_type_copper
) {
1153 hw
->mdix
= AUTO_ALL_MODES
;
1154 hw
->disable_polarity_correction
= FALSE
;
1155 hw
->master_slave
= E1000_MASTER_SLAVE
;
1158 adapter
->num_tx_queues
= 1;
1159 adapter
->num_rx_queues
= 1;
1161 if (e1000_alloc_queues(adapter
)) {
1162 DPRINTK(PROBE
, ERR
, "Unable to allocate memory for queues\n");
1166 #ifdef CONFIG_E1000_NAPI
1167 for (i
= 0; i
< adapter
->num_rx_queues
; i
++) {
1168 adapter
->polling_netdev
[i
].priv
= adapter
;
1169 adapter
->polling_netdev
[i
].poll
= &e1000_clean
;
1170 adapter
->polling_netdev
[i
].weight
= 64;
1171 dev_hold(&adapter
->polling_netdev
[i
]);
1172 set_bit(__LINK_STATE_START
, &adapter
->polling_netdev
[i
].state
);
1174 spin_lock_init(&adapter
->tx_queue_lock
);
1177 atomic_set(&adapter
->irq_sem
, 1);
1178 spin_lock_init(&adapter
->stats_lock
);
1184 * e1000_alloc_queues - Allocate memory for all rings
1185 * @adapter: board private structure to initialize
1187 * We allocate one ring per queue at run-time since we don't know the
1188 * number of queues at compile-time. The polling_netdev array is
1189 * intended for Multiqueue, but should work fine with a single queue.
1192 static int __devinit
1193 e1000_alloc_queues(struct e1000_adapter
*adapter
)
1197 size
= sizeof(struct e1000_tx_ring
) * adapter
->num_tx_queues
;
1198 adapter
->tx_ring
= kmalloc(size
, GFP_KERNEL
);
1199 if (!adapter
->tx_ring
)
1201 memset(adapter
->tx_ring
, 0, size
);
1203 size
= sizeof(struct e1000_rx_ring
) * adapter
->num_rx_queues
;
1204 adapter
->rx_ring
= kmalloc(size
, GFP_KERNEL
);
1205 if (!adapter
->rx_ring
) {
1206 kfree(adapter
->tx_ring
);
1209 memset(adapter
->rx_ring
, 0, size
);
1211 #ifdef CONFIG_E1000_NAPI
1212 size
= sizeof(struct net_device
) * adapter
->num_rx_queues
;
1213 adapter
->polling_netdev
= kmalloc(size
, GFP_KERNEL
);
1214 if (!adapter
->polling_netdev
) {
1215 kfree(adapter
->tx_ring
);
1216 kfree(adapter
->rx_ring
);
1219 memset(adapter
->polling_netdev
, 0, size
);
1222 return E1000_SUCCESS
;
1226 * e1000_open - Called when a network interface is made active
1227 * @netdev: network interface device structure
1229 * Returns 0 on success, negative value on failure
1231 * The open entry point is called when a network interface is made
1232 * active by the system (IFF_UP). At this point all resources needed
1233 * for transmit and receive operations are allocated, the interrupt
1234 * handler is registered with the OS, the watchdog timer is started,
1235 * and the stack is notified that the interface is ready.
1239 e1000_open(struct net_device
*netdev
)
1241 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
1244 /* disallow open during test */
1245 if (test_bit(__E1000_DRIVER_TESTING
, &adapter
->flags
))
1248 /* allocate transmit descriptors */
1250 if ((err
= e1000_setup_all_tx_resources(adapter
)))
1253 /* allocate receive descriptors */
1255 if ((err
= e1000_setup_all_rx_resources(adapter
)))
1258 err
= e1000_request_irq(adapter
);
1262 e1000_power_up_phy(adapter
);
1264 if ((err
= e1000_up(adapter
)))
1266 adapter
->mng_vlan_id
= E1000_MNG_VLAN_NONE
;
1267 if ((adapter
->hw
.mng_cookie
.status
&
1268 E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT
)) {
1269 e1000_update_mng_vlan(adapter
);
1272 /* If AMT is enabled, let the firmware know that the network
1273 * interface is now open */
1274 if (adapter
->hw
.mac_type
== e1000_82573
&&
1275 e1000_check_mng_mode(&adapter
->hw
))
1276 e1000_get_hw_control(adapter
);
1278 return E1000_SUCCESS
;
1281 e1000_power_down_phy(adapter
);
1282 e1000_free_irq(adapter
);
1284 e1000_free_all_rx_resources(adapter
);
1286 e1000_free_all_tx_resources(adapter
);
1288 e1000_reset(adapter
);
1294 * e1000_close - Disables a network interface
1295 * @netdev: network interface device structure
1297 * Returns 0, this is not allowed to fail
1299 * The close entry point is called when an interface is de-activated
1300 * by the OS. The hardware is still under the drivers control, but
1301 * needs to be disabled. A global MAC reset is issued to stop the
1302 * hardware, and all transmit and receive resources are freed.
1306 e1000_close(struct net_device
*netdev
)
1308 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
1310 WARN_ON(test_bit(__E1000_RESETTING
, &adapter
->flags
));
1311 e1000_down(adapter
);
1312 e1000_power_down_phy(adapter
);
1313 e1000_free_irq(adapter
);
1315 e1000_free_all_tx_resources(adapter
);
1316 e1000_free_all_rx_resources(adapter
);
1318 if ((adapter
->hw
.mng_cookie
.status
&
1319 E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT
)) {
1320 e1000_vlan_rx_kill_vid(netdev
, adapter
->mng_vlan_id
);
1323 /* If AMT is enabled, let the firmware know that the network
1324 * interface is now closed */
1325 if (adapter
->hw
.mac_type
== e1000_82573
&&
1326 e1000_check_mng_mode(&adapter
->hw
))
1327 e1000_release_hw_control(adapter
);
1333 * e1000_check_64k_bound - check that memory doesn't cross 64kB boundary
1334 * @adapter: address of board private structure
1335 * @start: address of beginning of memory
1336 * @len: length of memory
1339 e1000_check_64k_bound(struct e1000_adapter
*adapter
,
1340 void *start
, unsigned long len
)
1342 unsigned long begin
= (unsigned long) start
;
1343 unsigned long end
= begin
+ len
;
1345 /* First rev 82545 and 82546 need to not allow any memory
1346 * write location to cross 64k boundary due to errata 23 */
1347 if (adapter
->hw
.mac_type
== e1000_82545
||
1348 adapter
->hw
.mac_type
== e1000_82546
) {
1349 return ((begin
^ (end
- 1)) >> 16) != 0 ? FALSE
: TRUE
;
1356 * e1000_setup_tx_resources - allocate Tx resources (Descriptors)
1357 * @adapter: board private structure
1358 * @txdr: tx descriptor ring (for a specific queue) to setup
1360 * Return 0 on success, negative on failure
1364 e1000_setup_tx_resources(struct e1000_adapter
*adapter
,
1365 struct e1000_tx_ring
*txdr
)
1367 struct pci_dev
*pdev
= adapter
->pdev
;
1370 size
= sizeof(struct e1000_buffer
) * txdr
->count
;
1371 txdr
->buffer_info
= vmalloc(size
);
1372 if (!txdr
->buffer_info
) {
1374 "Unable to allocate memory for the transmit descriptor ring\n");
1377 memset(txdr
->buffer_info
, 0, size
);
1379 /* round up to nearest 4K */
1381 txdr
->size
= txdr
->count
* sizeof(struct e1000_tx_desc
);
1382 E1000_ROUNDUP(txdr
->size
, 4096);
1384 txdr
->desc
= pci_alloc_consistent(pdev
, txdr
->size
, &txdr
->dma
);
1387 vfree(txdr
->buffer_info
);
1389 "Unable to allocate memory for the transmit descriptor ring\n");
1393 /* Fix for errata 23, can't cross 64kB boundary */
1394 if (!e1000_check_64k_bound(adapter
, txdr
->desc
, txdr
->size
)) {
1395 void *olddesc
= txdr
->desc
;
1396 dma_addr_t olddma
= txdr
->dma
;
1397 DPRINTK(TX_ERR
, ERR
, "txdr align check failed: %u bytes "
1398 "at %p\n", txdr
->size
, txdr
->desc
);
1399 /* Try again, without freeing the previous */
1400 txdr
->desc
= pci_alloc_consistent(pdev
, txdr
->size
, &txdr
->dma
);
1401 /* Failed allocation, critical failure */
1403 pci_free_consistent(pdev
, txdr
->size
, olddesc
, olddma
);
1404 goto setup_tx_desc_die
;
1407 if (!e1000_check_64k_bound(adapter
, txdr
->desc
, txdr
->size
)) {
1409 pci_free_consistent(pdev
, txdr
->size
, txdr
->desc
,
1411 pci_free_consistent(pdev
, txdr
->size
, olddesc
, olddma
);
1413 "Unable to allocate aligned memory "
1414 "for the transmit descriptor ring\n");
1415 vfree(txdr
->buffer_info
);
1418 /* Free old allocation, new allocation was successful */
1419 pci_free_consistent(pdev
, txdr
->size
, olddesc
, olddma
);
1422 memset(txdr
->desc
, 0, txdr
->size
);
1424 txdr
->next_to_use
= 0;
1425 txdr
->next_to_clean
= 0;
1426 spin_lock_init(&txdr
->tx_lock
);
1432 * e1000_setup_all_tx_resources - wrapper to allocate Tx resources
1433 * (Descriptors) for all queues
1434 * @adapter: board private structure
1436 * Return 0 on success, negative on failure
1440 e1000_setup_all_tx_resources(struct e1000_adapter
*adapter
)
1444 for (i
= 0; i
< adapter
->num_tx_queues
; i
++) {
1445 err
= e1000_setup_tx_resources(adapter
, &adapter
->tx_ring
[i
]);
1448 "Allocation for Tx Queue %u failed\n", i
);
1449 for (i
-- ; i
>= 0; i
--)
1450 e1000_free_tx_resources(adapter
,
1451 &adapter
->tx_ring
[i
]);
1460 * e1000_configure_tx - Configure 8254x Transmit Unit after Reset
1461 * @adapter: board private structure
1463 * Configure the Tx unit of the MAC after a reset.
1467 e1000_configure_tx(struct e1000_adapter
*adapter
)
1470 struct e1000_hw
*hw
= &adapter
->hw
;
1471 uint32_t tdlen
, tctl
, tipg
, tarc
;
1472 uint32_t ipgr1
, ipgr2
;
1474 /* Setup the HW Tx Head and Tail descriptor pointers */
1476 switch (adapter
->num_tx_queues
) {
1479 tdba
= adapter
->tx_ring
[0].dma
;
1480 tdlen
= adapter
->tx_ring
[0].count
*
1481 sizeof(struct e1000_tx_desc
);
1482 E1000_WRITE_REG(hw
, TDLEN
, tdlen
);
1483 E1000_WRITE_REG(hw
, TDBAH
, (tdba
>> 32));
1484 E1000_WRITE_REG(hw
, TDBAL
, (tdba
& 0x00000000ffffffffULL
));
1485 E1000_WRITE_REG(hw
, TDT
, 0);
1486 E1000_WRITE_REG(hw
, TDH
, 0);
1487 adapter
->tx_ring
[0].tdh
= ((hw
->mac_type
>= e1000_82543
) ? E1000_TDH
: E1000_82542_TDH
);
1488 adapter
->tx_ring
[0].tdt
= ((hw
->mac_type
>= e1000_82543
) ? E1000_TDT
: E1000_82542_TDT
);
1492 /* Set the default values for the Tx Inter Packet Gap timer */
1494 if (hw
->media_type
== e1000_media_type_fiber
||
1495 hw
->media_type
== e1000_media_type_internal_serdes
)
1496 tipg
= DEFAULT_82543_TIPG_IPGT_FIBER
;
1498 tipg
= DEFAULT_82543_TIPG_IPGT_COPPER
;
1500 switch (hw
->mac_type
) {
1501 case e1000_82542_rev2_0
:
1502 case e1000_82542_rev2_1
:
1503 tipg
= DEFAULT_82542_TIPG_IPGT
;
1504 ipgr1
= DEFAULT_82542_TIPG_IPGR1
;
1505 ipgr2
= DEFAULT_82542_TIPG_IPGR2
;
1507 case e1000_80003es2lan
:
1508 ipgr1
= DEFAULT_82543_TIPG_IPGR1
;
1509 ipgr2
= DEFAULT_80003ES2LAN_TIPG_IPGR2
;
1512 ipgr1
= DEFAULT_82543_TIPG_IPGR1
;
1513 ipgr2
= DEFAULT_82543_TIPG_IPGR2
;
1516 tipg
|= ipgr1
<< E1000_TIPG_IPGR1_SHIFT
;
1517 tipg
|= ipgr2
<< E1000_TIPG_IPGR2_SHIFT
;
1518 E1000_WRITE_REG(hw
, TIPG
, tipg
);
1520 /* Set the Tx Interrupt Delay register */
1522 E1000_WRITE_REG(hw
, TIDV
, adapter
->tx_int_delay
);
1523 if (hw
->mac_type
>= e1000_82540
)
1524 E1000_WRITE_REG(hw
, TADV
, adapter
->tx_abs_int_delay
);
1526 /* Program the Transmit Control Register */
1528 tctl
= E1000_READ_REG(hw
, TCTL
);
1529 tctl
&= ~E1000_TCTL_CT
;
1530 tctl
|= E1000_TCTL_PSP
| E1000_TCTL_RTLC
|
1531 (E1000_COLLISION_THRESHOLD
<< E1000_CT_SHIFT
);
1533 if (hw
->mac_type
== e1000_82571
|| hw
->mac_type
== e1000_82572
) {
1534 tarc
= E1000_READ_REG(hw
, TARC0
);
1536 E1000_WRITE_REG(hw
, TARC0
, tarc
);
1537 } else if (hw
->mac_type
== e1000_80003es2lan
) {
1538 tarc
= E1000_READ_REG(hw
, TARC0
);
1540 E1000_WRITE_REG(hw
, TARC0
, tarc
);
1541 tarc
= E1000_READ_REG(hw
, TARC1
);
1543 E1000_WRITE_REG(hw
, TARC1
, tarc
);
1546 e1000_config_collision_dist(hw
);
1548 /* Setup Transmit Descriptor Settings for eop descriptor */
1549 adapter
->txd_cmd
= E1000_TXD_CMD_IDE
| E1000_TXD_CMD_EOP
|
1552 if (hw
->mac_type
< e1000_82543
)
1553 adapter
->txd_cmd
|= E1000_TXD_CMD_RPS
;
1555 adapter
->txd_cmd
|= E1000_TXD_CMD_RS
;
1557 /* Cache if we're 82544 running in PCI-X because we'll
1558 * need this to apply a workaround later in the send path. */
1559 if (hw
->mac_type
== e1000_82544
&&
1560 hw
->bus_type
== e1000_bus_type_pcix
)
1561 adapter
->pcix_82544
= 1;
1563 E1000_WRITE_REG(hw
, TCTL
, tctl
);
1568 * e1000_setup_rx_resources - allocate Rx resources (Descriptors)
1569 * @adapter: board private structure
1570 * @rxdr: rx descriptor ring (for a specific queue) to setup
1572 * Returns 0 on success, negative on failure
1576 e1000_setup_rx_resources(struct e1000_adapter
*adapter
,
1577 struct e1000_rx_ring
*rxdr
)
1579 struct pci_dev
*pdev
= adapter
->pdev
;
1582 size
= sizeof(struct e1000_buffer
) * rxdr
->count
;
1583 rxdr
->buffer_info
= vmalloc(size
);
1584 if (!rxdr
->buffer_info
) {
1586 "Unable to allocate memory for the receive descriptor ring\n");
1589 memset(rxdr
->buffer_info
, 0, size
);
1591 size
= sizeof(struct e1000_ps_page
) * rxdr
->count
;
1592 rxdr
->ps_page
= kmalloc(size
, GFP_KERNEL
);
1593 if (!rxdr
->ps_page
) {
1594 vfree(rxdr
->buffer_info
);
1596 "Unable to allocate memory for the receive descriptor ring\n");
1599 memset(rxdr
->ps_page
, 0, size
);
1601 size
= sizeof(struct e1000_ps_page_dma
) * rxdr
->count
;
1602 rxdr
->ps_page_dma
= kmalloc(size
, GFP_KERNEL
);
1603 if (!rxdr
->ps_page_dma
) {
1604 vfree(rxdr
->buffer_info
);
1605 kfree(rxdr
->ps_page
);
1607 "Unable to allocate memory for the receive descriptor ring\n");
1610 memset(rxdr
->ps_page_dma
, 0, size
);
1612 if (adapter
->hw
.mac_type
<= e1000_82547_rev_2
)
1613 desc_len
= sizeof(struct e1000_rx_desc
);
1615 desc_len
= sizeof(union e1000_rx_desc_packet_split
);
1617 /* Round up to nearest 4K */
1619 rxdr
->size
= rxdr
->count
* desc_len
;
1620 E1000_ROUNDUP(rxdr
->size
, 4096);
1622 rxdr
->desc
= pci_alloc_consistent(pdev
, rxdr
->size
, &rxdr
->dma
);
1626 "Unable to allocate memory for the receive descriptor ring\n");
1628 vfree(rxdr
->buffer_info
);
1629 kfree(rxdr
->ps_page
);
1630 kfree(rxdr
->ps_page_dma
);
1634 /* Fix for errata 23, can't cross 64kB boundary */
1635 if (!e1000_check_64k_bound(adapter
, rxdr
->desc
, rxdr
->size
)) {
1636 void *olddesc
= rxdr
->desc
;
1637 dma_addr_t olddma
= rxdr
->dma
;
1638 DPRINTK(RX_ERR
, ERR
, "rxdr align check failed: %u bytes "
1639 "at %p\n", rxdr
->size
, rxdr
->desc
);
1640 /* Try again, without freeing the previous */
1641 rxdr
->desc
= pci_alloc_consistent(pdev
, rxdr
->size
, &rxdr
->dma
);
1642 /* Failed allocation, critical failure */
1644 pci_free_consistent(pdev
, rxdr
->size
, olddesc
, olddma
);
1646 "Unable to allocate memory "
1647 "for the receive descriptor ring\n");
1648 goto setup_rx_desc_die
;
1651 if (!e1000_check_64k_bound(adapter
, rxdr
->desc
, rxdr
->size
)) {
1653 pci_free_consistent(pdev
, rxdr
->size
, rxdr
->desc
,
1655 pci_free_consistent(pdev
, rxdr
->size
, olddesc
, olddma
);
1657 "Unable to allocate aligned memory "
1658 "for the receive descriptor ring\n");
1659 goto setup_rx_desc_die
;
1661 /* Free old allocation, new allocation was successful */
1662 pci_free_consistent(pdev
, rxdr
->size
, olddesc
, olddma
);
1665 memset(rxdr
->desc
, 0, rxdr
->size
);
1667 rxdr
->next_to_clean
= 0;
1668 rxdr
->next_to_use
= 0;
1674 * e1000_setup_all_rx_resources - wrapper to allocate Rx resources
1675 * (Descriptors) for all queues
1676 * @adapter: board private structure
1678 * Return 0 on success, negative on failure
1682 e1000_setup_all_rx_resources(struct e1000_adapter
*adapter
)
1686 for (i
= 0; i
< adapter
->num_rx_queues
; i
++) {
1687 err
= e1000_setup_rx_resources(adapter
, &adapter
->rx_ring
[i
]);
1690 "Allocation for Rx Queue %u failed\n", i
);
1691 for (i
-- ; i
>= 0; i
--)
1692 e1000_free_rx_resources(adapter
,
1693 &adapter
->rx_ring
[i
]);
1702 * e1000_setup_rctl - configure the receive control registers
1703 * @adapter: Board private structure
1705 #define PAGE_USE_COUNT(S) (((S) >> PAGE_SHIFT) + \
1706 (((S) & (PAGE_SIZE - 1)) ? 1 : 0))
1708 e1000_setup_rctl(struct e1000_adapter
*adapter
)
1710 uint32_t rctl
, rfctl
;
1711 uint32_t psrctl
= 0;
1712 #ifndef CONFIG_E1000_DISABLE_PACKET_SPLIT
1716 rctl
= E1000_READ_REG(&adapter
->hw
, RCTL
);
1718 rctl
&= ~(3 << E1000_RCTL_MO_SHIFT
);
1720 rctl
|= E1000_RCTL_EN
| E1000_RCTL_BAM
|
1721 E1000_RCTL_LBM_NO
| E1000_RCTL_RDMTS_HALF
|
1722 (adapter
->hw
.mc_filter_type
<< E1000_RCTL_MO_SHIFT
);
1724 if (adapter
->hw
.tbi_compatibility_on
== 1)
1725 rctl
|= E1000_RCTL_SBP
;
1727 rctl
&= ~E1000_RCTL_SBP
;
1729 if (adapter
->netdev
->mtu
<= ETH_DATA_LEN
)
1730 rctl
&= ~E1000_RCTL_LPE
;
1732 rctl
|= E1000_RCTL_LPE
;
1734 /* Setup buffer sizes */
1735 rctl
&= ~E1000_RCTL_SZ_4096
;
1736 rctl
|= E1000_RCTL_BSEX
;
1737 switch (adapter
->rx_buffer_len
) {
1738 case E1000_RXBUFFER_256
:
1739 rctl
|= E1000_RCTL_SZ_256
;
1740 rctl
&= ~E1000_RCTL_BSEX
;
1742 case E1000_RXBUFFER_512
:
1743 rctl
|= E1000_RCTL_SZ_512
;
1744 rctl
&= ~E1000_RCTL_BSEX
;
1746 case E1000_RXBUFFER_1024
:
1747 rctl
|= E1000_RCTL_SZ_1024
;
1748 rctl
&= ~E1000_RCTL_BSEX
;
1750 case E1000_RXBUFFER_2048
:
1752 rctl
|= E1000_RCTL_SZ_2048
;
1753 rctl
&= ~E1000_RCTL_BSEX
;
1755 case E1000_RXBUFFER_4096
:
1756 rctl
|= E1000_RCTL_SZ_4096
;
1758 case E1000_RXBUFFER_8192
:
1759 rctl
|= E1000_RCTL_SZ_8192
;
1761 case E1000_RXBUFFER_16384
:
1762 rctl
|= E1000_RCTL_SZ_16384
;
1766 #ifndef CONFIG_E1000_DISABLE_PACKET_SPLIT
1767 /* 82571 and greater support packet-split where the protocol
1768 * header is placed in skb->data and the packet data is
1769 * placed in pages hanging off of skb_shinfo(skb)->nr_frags.
1770 * In the case of a non-split, skb->data is linearly filled,
1771 * followed by the page buffers. Therefore, skb->data is
1772 * sized to hold the largest protocol header.
1774 pages
= PAGE_USE_COUNT(adapter
->netdev
->mtu
);
1775 if ((adapter
->hw
.mac_type
> e1000_82547_rev_2
) && (pages
<= 3) &&
1777 adapter
->rx_ps_pages
= pages
;
1779 adapter
->rx_ps_pages
= 0;
1781 if (adapter
->rx_ps_pages
) {
1782 /* Configure extra packet-split registers */
1783 rfctl
= E1000_READ_REG(&adapter
->hw
, RFCTL
);
1784 rfctl
|= E1000_RFCTL_EXTEN
;
1785 /* disable IPv6 packet split support */
1786 rfctl
|= E1000_RFCTL_IPV6_DIS
;
1787 E1000_WRITE_REG(&adapter
->hw
, RFCTL
, rfctl
);
1789 rctl
|= E1000_RCTL_DTYP_PS
;
1791 psrctl
|= adapter
->rx_ps_bsize0
>>
1792 E1000_PSRCTL_BSIZE0_SHIFT
;
1794 switch (adapter
->rx_ps_pages
) {
1796 psrctl
|= PAGE_SIZE
<<
1797 E1000_PSRCTL_BSIZE3_SHIFT
;
1799 psrctl
|= PAGE_SIZE
<<
1800 E1000_PSRCTL_BSIZE2_SHIFT
;
1802 psrctl
|= PAGE_SIZE
>>
1803 E1000_PSRCTL_BSIZE1_SHIFT
;
1807 E1000_WRITE_REG(&adapter
->hw
, PSRCTL
, psrctl
);
1810 E1000_WRITE_REG(&adapter
->hw
, RCTL
, rctl
);
1814 * e1000_configure_rx - Configure 8254x Receive Unit after Reset
1815 * @adapter: board private structure
1817 * Configure the Rx unit of the MAC after a reset.
1821 e1000_configure_rx(struct e1000_adapter
*adapter
)
1824 struct e1000_hw
*hw
= &adapter
->hw
;
1825 uint32_t rdlen
, rctl
, rxcsum
, ctrl_ext
;
1827 if (adapter
->rx_ps_pages
) {
1828 /* this is a 32 byte descriptor */
1829 rdlen
= adapter
->rx_ring
[0].count
*
1830 sizeof(union e1000_rx_desc_packet_split
);
1831 adapter
->clean_rx
= e1000_clean_rx_irq_ps
;
1832 adapter
->alloc_rx_buf
= e1000_alloc_rx_buffers_ps
;
1834 rdlen
= adapter
->rx_ring
[0].count
*
1835 sizeof(struct e1000_rx_desc
);
1836 adapter
->clean_rx
= e1000_clean_rx_irq
;
1837 adapter
->alloc_rx_buf
= e1000_alloc_rx_buffers
;
1840 /* disable receives while setting up the descriptors */
1841 rctl
= E1000_READ_REG(hw
, RCTL
);
1842 E1000_WRITE_REG(hw
, RCTL
, rctl
& ~E1000_RCTL_EN
);
1844 /* set the Receive Delay Timer Register */
1845 E1000_WRITE_REG(hw
, RDTR
, adapter
->rx_int_delay
);
1847 if (hw
->mac_type
>= e1000_82540
) {
1848 E1000_WRITE_REG(hw
, RADV
, adapter
->rx_abs_int_delay
);
1849 if (adapter
->itr
> 1)
1850 E1000_WRITE_REG(hw
, ITR
,
1851 1000000000 / (adapter
->itr
* 256));
1854 if (hw
->mac_type
>= e1000_82571
) {
1855 ctrl_ext
= E1000_READ_REG(hw
, CTRL_EXT
);
1856 /* Reset delay timers after every interrupt */
1857 ctrl_ext
|= E1000_CTRL_EXT_INT_TIMER_CLR
;
1858 #ifdef CONFIG_E1000_NAPI
1859 /* Auto-Mask interrupts upon ICR read. */
1860 ctrl_ext
|= E1000_CTRL_EXT_IAME
;
1862 E1000_WRITE_REG(hw
, CTRL_EXT
, ctrl_ext
);
1863 E1000_WRITE_REG(hw
, IAM
, ~0);
1864 E1000_WRITE_FLUSH(hw
);
1867 /* Setup the HW Rx Head and Tail Descriptor Pointers and
1868 * the Base and Length of the Rx Descriptor Ring */
1869 switch (adapter
->num_rx_queues
) {
1872 rdba
= adapter
->rx_ring
[0].dma
;
1873 E1000_WRITE_REG(hw
, RDLEN
, rdlen
);
1874 E1000_WRITE_REG(hw
, RDBAH
, (rdba
>> 32));
1875 E1000_WRITE_REG(hw
, RDBAL
, (rdba
& 0x00000000ffffffffULL
));
1876 E1000_WRITE_REG(hw
, RDT
, 0);
1877 E1000_WRITE_REG(hw
, RDH
, 0);
1878 adapter
->rx_ring
[0].rdh
= ((hw
->mac_type
>= e1000_82543
) ? E1000_RDH
: E1000_82542_RDH
);
1879 adapter
->rx_ring
[0].rdt
= ((hw
->mac_type
>= e1000_82543
) ? E1000_RDT
: E1000_82542_RDT
);
1883 /* Enable 82543 Receive Checksum Offload for TCP and UDP */
1884 if (hw
->mac_type
>= e1000_82543
) {
1885 rxcsum
= E1000_READ_REG(hw
, RXCSUM
);
1886 if (adapter
->rx_csum
== TRUE
) {
1887 rxcsum
|= E1000_RXCSUM_TUOFL
;
1889 /* Enable 82571 IPv4 payload checksum for UDP fragments
1890 * Must be used in conjunction with packet-split. */
1891 if ((hw
->mac_type
>= e1000_82571
) &&
1892 (adapter
->rx_ps_pages
)) {
1893 rxcsum
|= E1000_RXCSUM_IPPCSE
;
1896 rxcsum
&= ~E1000_RXCSUM_TUOFL
;
1897 /* don't need to clear IPPCSE as it defaults to 0 */
1899 E1000_WRITE_REG(hw
, RXCSUM
, rxcsum
);
1902 /* Enable Receives */
1903 E1000_WRITE_REG(hw
, RCTL
, rctl
);
1907 * e1000_free_tx_resources - Free Tx Resources per Queue
1908 * @adapter: board private structure
1909 * @tx_ring: Tx descriptor ring for a specific queue
1911 * Free all transmit software resources
1915 e1000_free_tx_resources(struct e1000_adapter
*adapter
,
1916 struct e1000_tx_ring
*tx_ring
)
1918 struct pci_dev
*pdev
= adapter
->pdev
;
1920 e1000_clean_tx_ring(adapter
, tx_ring
);
1922 vfree(tx_ring
->buffer_info
);
1923 tx_ring
->buffer_info
= NULL
;
1925 pci_free_consistent(pdev
, tx_ring
->size
, tx_ring
->desc
, tx_ring
->dma
);
1927 tx_ring
->desc
= NULL
;
1931 * e1000_free_all_tx_resources - Free Tx Resources for All Queues
1932 * @adapter: board private structure
1934 * Free all transmit software resources
1938 e1000_free_all_tx_resources(struct e1000_adapter
*adapter
)
1942 for (i
= 0; i
< adapter
->num_tx_queues
; i
++)
1943 e1000_free_tx_resources(adapter
, &adapter
->tx_ring
[i
]);
1947 e1000_unmap_and_free_tx_resource(struct e1000_adapter
*adapter
,
1948 struct e1000_buffer
*buffer_info
)
1950 if (buffer_info
->dma
) {
1951 pci_unmap_page(adapter
->pdev
,
1953 buffer_info
->length
,
1956 if (buffer_info
->skb
)
1957 dev_kfree_skb_any(buffer_info
->skb
);
1958 memset(buffer_info
, 0, sizeof(struct e1000_buffer
));
1962 * e1000_clean_tx_ring - Free Tx Buffers
1963 * @adapter: board private structure
1964 * @tx_ring: ring to be cleaned
1968 e1000_clean_tx_ring(struct e1000_adapter
*adapter
,
1969 struct e1000_tx_ring
*tx_ring
)
1971 struct e1000_buffer
*buffer_info
;
1975 /* Free all the Tx ring sk_buffs */
1977 for (i
= 0; i
< tx_ring
->count
; i
++) {
1978 buffer_info
= &tx_ring
->buffer_info
[i
];
1979 e1000_unmap_and_free_tx_resource(adapter
, buffer_info
);
1982 size
= sizeof(struct e1000_buffer
) * tx_ring
->count
;
1983 memset(tx_ring
->buffer_info
, 0, size
);
1985 /* Zero out the descriptor ring */
1987 memset(tx_ring
->desc
, 0, tx_ring
->size
);
1989 tx_ring
->next_to_use
= 0;
1990 tx_ring
->next_to_clean
= 0;
1991 tx_ring
->last_tx_tso
= 0;
1993 writel(0, adapter
->hw
.hw_addr
+ tx_ring
->tdh
);
1994 writel(0, adapter
->hw
.hw_addr
+ tx_ring
->tdt
);
1998 * e1000_clean_all_tx_rings - Free Tx Buffers for all queues
1999 * @adapter: board private structure
2003 e1000_clean_all_tx_rings(struct e1000_adapter
*adapter
)
2007 for (i
= 0; i
< adapter
->num_tx_queues
; i
++)
2008 e1000_clean_tx_ring(adapter
, &adapter
->tx_ring
[i
]);
2012 * e1000_free_rx_resources - Free Rx Resources
2013 * @adapter: board private structure
2014 * @rx_ring: ring to clean the resources from
2016 * Free all receive software resources
2020 e1000_free_rx_resources(struct e1000_adapter
*adapter
,
2021 struct e1000_rx_ring
*rx_ring
)
2023 struct pci_dev
*pdev
= adapter
->pdev
;
2025 e1000_clean_rx_ring(adapter
, rx_ring
);
2027 vfree(rx_ring
->buffer_info
);
2028 rx_ring
->buffer_info
= NULL
;
2029 kfree(rx_ring
->ps_page
);
2030 rx_ring
->ps_page
= NULL
;
2031 kfree(rx_ring
->ps_page_dma
);
2032 rx_ring
->ps_page_dma
= NULL
;
2034 pci_free_consistent(pdev
, rx_ring
->size
, rx_ring
->desc
, rx_ring
->dma
);
2036 rx_ring
->desc
= NULL
;
2040 * e1000_free_all_rx_resources - Free Rx Resources for All Queues
2041 * @adapter: board private structure
2043 * Free all receive software resources
2047 e1000_free_all_rx_resources(struct e1000_adapter
*adapter
)
2051 for (i
= 0; i
< adapter
->num_rx_queues
; i
++)
2052 e1000_free_rx_resources(adapter
, &adapter
->rx_ring
[i
]);
2056 * e1000_clean_rx_ring - Free Rx Buffers per Queue
2057 * @adapter: board private structure
2058 * @rx_ring: ring to free buffers from
2062 e1000_clean_rx_ring(struct e1000_adapter
*adapter
,
2063 struct e1000_rx_ring
*rx_ring
)
2065 struct e1000_buffer
*buffer_info
;
2066 struct e1000_ps_page
*ps_page
;
2067 struct e1000_ps_page_dma
*ps_page_dma
;
2068 struct pci_dev
*pdev
= adapter
->pdev
;
2072 /* Free all the Rx ring sk_buffs */
2073 for (i
= 0; i
< rx_ring
->count
; i
++) {
2074 buffer_info
= &rx_ring
->buffer_info
[i
];
2075 if (buffer_info
->skb
) {
2076 pci_unmap_single(pdev
,
2078 buffer_info
->length
,
2079 PCI_DMA_FROMDEVICE
);
2081 dev_kfree_skb(buffer_info
->skb
);
2082 buffer_info
->skb
= NULL
;
2084 ps_page
= &rx_ring
->ps_page
[i
];
2085 ps_page_dma
= &rx_ring
->ps_page_dma
[i
];
2086 for (j
= 0; j
< adapter
->rx_ps_pages
; j
++) {
2087 if (!ps_page
->ps_page
[j
]) break;
2088 pci_unmap_page(pdev
,
2089 ps_page_dma
->ps_page_dma
[j
],
2090 PAGE_SIZE
, PCI_DMA_FROMDEVICE
);
2091 ps_page_dma
->ps_page_dma
[j
] = 0;
2092 put_page(ps_page
->ps_page
[j
]);
2093 ps_page
->ps_page
[j
] = NULL
;
2097 size
= sizeof(struct e1000_buffer
) * rx_ring
->count
;
2098 memset(rx_ring
->buffer_info
, 0, size
);
2099 size
= sizeof(struct e1000_ps_page
) * rx_ring
->count
;
2100 memset(rx_ring
->ps_page
, 0, size
);
2101 size
= sizeof(struct e1000_ps_page_dma
) * rx_ring
->count
;
2102 memset(rx_ring
->ps_page_dma
, 0, size
);
2104 /* Zero out the descriptor ring */
2106 memset(rx_ring
->desc
, 0, rx_ring
->size
);
2108 rx_ring
->next_to_clean
= 0;
2109 rx_ring
->next_to_use
= 0;
2111 writel(0, adapter
->hw
.hw_addr
+ rx_ring
->rdh
);
2112 writel(0, adapter
->hw
.hw_addr
+ rx_ring
->rdt
);
2116 * e1000_clean_all_rx_rings - Free Rx Buffers for all queues
2117 * @adapter: board private structure
2121 e1000_clean_all_rx_rings(struct e1000_adapter
*adapter
)
2125 for (i
= 0; i
< adapter
->num_rx_queues
; i
++)
2126 e1000_clean_rx_ring(adapter
, &adapter
->rx_ring
[i
]);
2129 /* The 82542 2.0 (revision 2) needs to have the receive unit in reset
2130 * and memory write and invalidate disabled for certain operations
2133 e1000_enter_82542_rst(struct e1000_adapter
*adapter
)
2135 struct net_device
*netdev
= adapter
->netdev
;
2138 e1000_pci_clear_mwi(&adapter
->hw
);
2140 rctl
= E1000_READ_REG(&adapter
->hw
, RCTL
);
2141 rctl
|= E1000_RCTL_RST
;
2142 E1000_WRITE_REG(&adapter
->hw
, RCTL
, rctl
);
2143 E1000_WRITE_FLUSH(&adapter
->hw
);
2146 if (netif_running(netdev
))
2147 e1000_clean_all_rx_rings(adapter
);
2151 e1000_leave_82542_rst(struct e1000_adapter
*adapter
)
2153 struct net_device
*netdev
= adapter
->netdev
;
2156 rctl
= E1000_READ_REG(&adapter
->hw
, RCTL
);
2157 rctl
&= ~E1000_RCTL_RST
;
2158 E1000_WRITE_REG(&adapter
->hw
, RCTL
, rctl
);
2159 E1000_WRITE_FLUSH(&adapter
->hw
);
2162 if (adapter
->hw
.pci_cmd_word
& PCI_COMMAND_INVALIDATE
)
2163 e1000_pci_set_mwi(&adapter
->hw
);
2165 if (netif_running(netdev
)) {
2166 /* No need to loop, because 82542 supports only 1 queue */
2167 struct e1000_rx_ring
*ring
= &adapter
->rx_ring
[0];
2168 e1000_configure_rx(adapter
);
2169 adapter
->alloc_rx_buf(adapter
, ring
, E1000_DESC_UNUSED(ring
));
2174 * e1000_set_mac - Change the Ethernet Address of the NIC
2175 * @netdev: network interface device structure
2176 * @p: pointer to an address structure
2178 * Returns 0 on success, negative on failure
2182 e1000_set_mac(struct net_device
*netdev
, void *p
)
2184 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
2185 struct sockaddr
*addr
= p
;
2187 if (!is_valid_ether_addr(addr
->sa_data
))
2188 return -EADDRNOTAVAIL
;
2190 /* 82542 2.0 needs to be in reset to write receive address registers */
2192 if (adapter
->hw
.mac_type
== e1000_82542_rev2_0
)
2193 e1000_enter_82542_rst(adapter
);
2195 memcpy(netdev
->dev_addr
, addr
->sa_data
, netdev
->addr_len
);
2196 memcpy(adapter
->hw
.mac_addr
, addr
->sa_data
, netdev
->addr_len
);
2198 e1000_rar_set(&adapter
->hw
, adapter
->hw
.mac_addr
, 0);
2200 /* With 82571 controllers, LAA may be overwritten (with the default)
2201 * due to controller reset from the other port. */
2202 if (adapter
->hw
.mac_type
== e1000_82571
) {
2203 /* activate the work around */
2204 adapter
->hw
.laa_is_present
= 1;
2206 /* Hold a copy of the LAA in RAR[14] This is done so that
2207 * between the time RAR[0] gets clobbered and the time it
2208 * gets fixed (in e1000_watchdog), the actual LAA is in one
2209 * of the RARs and no incoming packets directed to this port
2210 * are dropped. Eventaully the LAA will be in RAR[0] and
2212 e1000_rar_set(&adapter
->hw
, adapter
->hw
.mac_addr
,
2213 E1000_RAR_ENTRIES
- 1);
2216 if (adapter
->hw
.mac_type
== e1000_82542_rev2_0
)
2217 e1000_leave_82542_rst(adapter
);
2223 * e1000_set_multi - Multicast and Promiscuous mode set
2224 * @netdev: network interface device structure
2226 * The set_multi entry point is called whenever the multicast address
2227 * list or the network interface flags are updated. This routine is
2228 * responsible for configuring the hardware for proper multicast,
2229 * promiscuous mode, and all-multi behavior.
2233 e1000_set_multi(struct net_device
*netdev
)
2235 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
2236 struct e1000_hw
*hw
= &adapter
->hw
;
2237 struct dev_mc_list
*mc_ptr
;
2239 uint32_t hash_value
;
2240 int i
, rar_entries
= E1000_RAR_ENTRIES
;
2241 int mta_reg_count
= (hw
->mac_type
== e1000_ich8lan
) ?
2242 E1000_NUM_MTA_REGISTERS_ICH8LAN
:
2243 E1000_NUM_MTA_REGISTERS
;
2245 if (adapter
->hw
.mac_type
== e1000_ich8lan
)
2246 rar_entries
= E1000_RAR_ENTRIES_ICH8LAN
;
2248 /* reserve RAR[14] for LAA over-write work-around */
2249 if (adapter
->hw
.mac_type
== e1000_82571
)
2252 /* Check for Promiscuous and All Multicast modes */
2254 rctl
= E1000_READ_REG(hw
, RCTL
);
2256 if (netdev
->flags
& IFF_PROMISC
) {
2257 rctl
|= (E1000_RCTL_UPE
| E1000_RCTL_MPE
);
2258 } else if (netdev
->flags
& IFF_ALLMULTI
) {
2259 rctl
|= E1000_RCTL_MPE
;
2260 rctl
&= ~E1000_RCTL_UPE
;
2262 rctl
&= ~(E1000_RCTL_UPE
| E1000_RCTL_MPE
);
2265 E1000_WRITE_REG(hw
, RCTL
, rctl
);
2267 /* 82542 2.0 needs to be in reset to write receive address registers */
2269 if (hw
->mac_type
== e1000_82542_rev2_0
)
2270 e1000_enter_82542_rst(adapter
);
2272 /* load the first 14 multicast address into the exact filters 1-14
2273 * RAR 0 is used for the station MAC adddress
2274 * if there are not 14 addresses, go ahead and clear the filters
2275 * -- with 82571 controllers only 0-13 entries are filled here
2277 mc_ptr
= netdev
->mc_list
;
2279 for (i
= 1; i
< rar_entries
; i
++) {
2281 e1000_rar_set(hw
, mc_ptr
->dmi_addr
, i
);
2282 mc_ptr
= mc_ptr
->next
;
2284 E1000_WRITE_REG_ARRAY(hw
, RA
, i
<< 1, 0);
2285 E1000_WRITE_FLUSH(hw
);
2286 E1000_WRITE_REG_ARRAY(hw
, RA
, (i
<< 1) + 1, 0);
2287 E1000_WRITE_FLUSH(hw
);
2291 /* clear the old settings from the multicast hash table */
2293 for (i
= 0; i
< mta_reg_count
; i
++) {
2294 E1000_WRITE_REG_ARRAY(hw
, MTA
, i
, 0);
2295 E1000_WRITE_FLUSH(hw
);
2298 /* load any remaining addresses into the hash table */
2300 for (; mc_ptr
; mc_ptr
= mc_ptr
->next
) {
2301 hash_value
= e1000_hash_mc_addr(hw
, mc_ptr
->dmi_addr
);
2302 e1000_mta_set(hw
, hash_value
);
2305 if (hw
->mac_type
== e1000_82542_rev2_0
)
2306 e1000_leave_82542_rst(adapter
);
2309 /* Need to wait a few seconds after link up to get diagnostic information from
2313 e1000_update_phy_info(unsigned long data
)
2315 struct e1000_adapter
*adapter
= (struct e1000_adapter
*) data
;
2316 e1000_phy_get_info(&adapter
->hw
, &adapter
->phy_info
);
2320 * e1000_82547_tx_fifo_stall - Timer Call-back
2321 * @data: pointer to adapter cast into an unsigned long
2325 e1000_82547_tx_fifo_stall(unsigned long data
)
2327 struct e1000_adapter
*adapter
= (struct e1000_adapter
*) data
;
2328 struct net_device
*netdev
= adapter
->netdev
;
2331 if (atomic_read(&adapter
->tx_fifo_stall
)) {
2332 if ((E1000_READ_REG(&adapter
->hw
, TDT
) ==
2333 E1000_READ_REG(&adapter
->hw
, TDH
)) &&
2334 (E1000_READ_REG(&adapter
->hw
, TDFT
) ==
2335 E1000_READ_REG(&adapter
->hw
, TDFH
)) &&
2336 (E1000_READ_REG(&adapter
->hw
, TDFTS
) ==
2337 E1000_READ_REG(&adapter
->hw
, TDFHS
))) {
2338 tctl
= E1000_READ_REG(&adapter
->hw
, TCTL
);
2339 E1000_WRITE_REG(&adapter
->hw
, TCTL
,
2340 tctl
& ~E1000_TCTL_EN
);
2341 E1000_WRITE_REG(&adapter
->hw
, TDFT
,
2342 adapter
->tx_head_addr
);
2343 E1000_WRITE_REG(&adapter
->hw
, TDFH
,
2344 adapter
->tx_head_addr
);
2345 E1000_WRITE_REG(&adapter
->hw
, TDFTS
,
2346 adapter
->tx_head_addr
);
2347 E1000_WRITE_REG(&adapter
->hw
, TDFHS
,
2348 adapter
->tx_head_addr
);
2349 E1000_WRITE_REG(&adapter
->hw
, TCTL
, tctl
);
2350 E1000_WRITE_FLUSH(&adapter
->hw
);
2352 adapter
->tx_fifo_head
= 0;
2353 atomic_set(&adapter
->tx_fifo_stall
, 0);
2354 netif_wake_queue(netdev
);
2356 mod_timer(&adapter
->tx_fifo_stall_timer
, jiffies
+ 1);
2362 * e1000_watchdog - Timer Call-back
2363 * @data: pointer to adapter cast into an unsigned long
2366 e1000_watchdog(unsigned long data
)
2368 struct e1000_adapter
*adapter
= (struct e1000_adapter
*) data
;
2369 struct net_device
*netdev
= adapter
->netdev
;
2370 struct e1000_tx_ring
*txdr
= adapter
->tx_ring
;
2371 uint32_t link
, tctl
;
2374 ret_val
= e1000_check_for_link(&adapter
->hw
);
2375 if ((ret_val
== E1000_ERR_PHY
) &&
2376 (adapter
->hw
.phy_type
== e1000_phy_igp_3
) &&
2377 (E1000_READ_REG(&adapter
->hw
, CTRL
) & E1000_PHY_CTRL_GBE_DISABLE
)) {
2378 /* See e1000_kumeran_lock_loss_workaround() */
2380 "Gigabit has been disabled, downgrading speed\n");
2382 if (adapter
->hw
.mac_type
== e1000_82573
) {
2383 e1000_enable_tx_pkt_filtering(&adapter
->hw
);
2384 if (adapter
->mng_vlan_id
!= adapter
->hw
.mng_cookie
.vlan_id
)
2385 e1000_update_mng_vlan(adapter
);
2388 if ((adapter
->hw
.media_type
== e1000_media_type_internal_serdes
) &&
2389 !(E1000_READ_REG(&adapter
->hw
, TXCW
) & E1000_TXCW_ANE
))
2390 link
= !adapter
->hw
.serdes_link_down
;
2392 link
= E1000_READ_REG(&adapter
->hw
, STATUS
) & E1000_STATUS_LU
;
2395 if (!netif_carrier_ok(netdev
)) {
2396 boolean_t txb2b
= 1;
2397 e1000_get_speed_and_duplex(&adapter
->hw
,
2398 &adapter
->link_speed
,
2399 &adapter
->link_duplex
);
2401 DPRINTK(LINK
, INFO
, "NIC Link is Up %d Mbps %s\n",
2402 adapter
->link_speed
,
2403 adapter
->link_duplex
== FULL_DUPLEX
?
2404 "Full Duplex" : "Half Duplex");
2406 /* tweak tx_queue_len according to speed/duplex
2407 * and adjust the timeout factor */
2408 netdev
->tx_queue_len
= adapter
->tx_queue_len
;
2409 adapter
->tx_timeout_factor
= 1;
2410 switch (adapter
->link_speed
) {
2413 netdev
->tx_queue_len
= 10;
2414 adapter
->tx_timeout_factor
= 8;
2418 netdev
->tx_queue_len
= 100;
2419 /* maybe add some timeout factor ? */
2423 if ((adapter
->hw
.mac_type
== e1000_82571
||
2424 adapter
->hw
.mac_type
== e1000_82572
) &&
2426 #define SPEED_MODE_BIT (1 << 21)
2428 tarc0
= E1000_READ_REG(&adapter
->hw
, TARC0
);
2429 tarc0
&= ~SPEED_MODE_BIT
;
2430 E1000_WRITE_REG(&adapter
->hw
, TARC0
, tarc0
);
2434 /* disable TSO for pcie and 10/100 speeds, to avoid
2435 * some hardware issues */
2436 if (!adapter
->tso_force
&&
2437 adapter
->hw
.bus_type
== e1000_bus_type_pci_express
){
2438 switch (adapter
->link_speed
) {
2442 "10/100 speed: disabling TSO\n");
2443 netdev
->features
&= ~NETIF_F_TSO
;
2446 netdev
->features
|= NETIF_F_TSO
;
2455 /* enable transmits in the hardware, need to do this
2456 * after setting TARC0 */
2457 tctl
= E1000_READ_REG(&adapter
->hw
, TCTL
);
2458 tctl
|= E1000_TCTL_EN
;
2459 E1000_WRITE_REG(&adapter
->hw
, TCTL
, tctl
);
2461 netif_carrier_on(netdev
);
2462 netif_wake_queue(netdev
);
2463 mod_timer(&adapter
->phy_info_timer
, jiffies
+ 2 * HZ
);
2464 adapter
->smartspeed
= 0;
2467 if (netif_carrier_ok(netdev
)) {
2468 adapter
->link_speed
= 0;
2469 adapter
->link_duplex
= 0;
2470 DPRINTK(LINK
, INFO
, "NIC Link is Down\n");
2471 netif_carrier_off(netdev
);
2472 netif_stop_queue(netdev
);
2473 mod_timer(&adapter
->phy_info_timer
, jiffies
+ 2 * HZ
);
2475 /* 80003ES2LAN workaround--
2476 * For packet buffer work-around on link down event;
2477 * disable receives in the ISR and
2478 * reset device here in the watchdog
2480 if (adapter
->hw
.mac_type
== e1000_80003es2lan
)
2482 schedule_work(&adapter
->reset_task
);
2485 e1000_smartspeed(adapter
);
2488 e1000_update_stats(adapter
);
2490 adapter
->hw
.tx_packet_delta
= adapter
->stats
.tpt
- adapter
->tpt_old
;
2491 adapter
->tpt_old
= adapter
->stats
.tpt
;
2492 adapter
->hw
.collision_delta
= adapter
->stats
.colc
- adapter
->colc_old
;
2493 adapter
->colc_old
= adapter
->stats
.colc
;
2495 adapter
->gorcl
= adapter
->stats
.gorcl
- adapter
->gorcl_old
;
2496 adapter
->gorcl_old
= adapter
->stats
.gorcl
;
2497 adapter
->gotcl
= adapter
->stats
.gotcl
- adapter
->gotcl_old
;
2498 adapter
->gotcl_old
= adapter
->stats
.gotcl
;
2500 e1000_update_adaptive(&adapter
->hw
);
2502 if (!netif_carrier_ok(netdev
)) {
2503 if (E1000_DESC_UNUSED(txdr
) + 1 < txdr
->count
) {
2504 /* We've lost link, so the controller stops DMA,
2505 * but we've got queued Tx work that's never going
2506 * to get done, so reset controller to flush Tx.
2507 * (Do the reset outside of interrupt context). */
2508 adapter
->tx_timeout_count
++;
2509 schedule_work(&adapter
->reset_task
);
2513 /* Dynamic mode for Interrupt Throttle Rate (ITR) */
2514 if (adapter
->hw
.mac_type
>= e1000_82540
&& adapter
->itr
== 1) {
2515 /* Symmetric Tx/Rx gets a reduced ITR=2000; Total
2516 * asymmetrical Tx or Rx gets ITR=8000; everyone
2517 * else is between 2000-8000. */
2518 uint32_t goc
= (adapter
->gotcl
+ adapter
->gorcl
) / 10000;
2519 uint32_t dif
= (adapter
->gotcl
> adapter
->gorcl
?
2520 adapter
->gotcl
- adapter
->gorcl
:
2521 adapter
->gorcl
- adapter
->gotcl
) / 10000;
2522 uint32_t itr
= goc
> 0 ? (dif
* 6000 / goc
+ 2000) : 8000;
2523 E1000_WRITE_REG(&adapter
->hw
, ITR
, 1000000000 / (itr
* 256));
2526 /* Cause software interrupt to ensure rx ring is cleaned */
2527 E1000_WRITE_REG(&adapter
->hw
, ICS
, E1000_ICS_RXDMT0
);
2529 /* Force detection of hung controller every watchdog period */
2530 adapter
->detect_tx_hung
= TRUE
;
2532 /* With 82571 controllers, LAA may be overwritten due to controller
2533 * reset from the other port. Set the appropriate LAA in RAR[0] */
2534 if (adapter
->hw
.mac_type
== e1000_82571
&& adapter
->hw
.laa_is_present
)
2535 e1000_rar_set(&adapter
->hw
, adapter
->hw
.mac_addr
, 0);
2537 /* Reset the timer */
2538 mod_timer(&adapter
->watchdog_timer
, jiffies
+ 2 * HZ
);
2541 #define E1000_TX_FLAGS_CSUM 0x00000001
2542 #define E1000_TX_FLAGS_VLAN 0x00000002
2543 #define E1000_TX_FLAGS_TSO 0x00000004
2544 #define E1000_TX_FLAGS_IPV4 0x00000008
2545 #define E1000_TX_FLAGS_VLAN_MASK 0xffff0000
2546 #define E1000_TX_FLAGS_VLAN_SHIFT 16
2549 e1000_tso(struct e1000_adapter
*adapter
, struct e1000_tx_ring
*tx_ring
,
2550 struct sk_buff
*skb
)
2553 struct e1000_context_desc
*context_desc
;
2554 struct e1000_buffer
*buffer_info
;
2556 uint32_t cmd_length
= 0;
2557 uint16_t ipcse
= 0, tucse
, mss
;
2558 uint8_t ipcss
, ipcso
, tucss
, tucso
, hdr_len
;
2561 if (skb_is_gso(skb
)) {
2562 if (skb_header_cloned(skb
)) {
2563 err
= pskb_expand_head(skb
, 0, 0, GFP_ATOMIC
);
2568 hdr_len
= ((skb
->h
.raw
- skb
->data
) + (skb
->h
.th
->doff
<< 2));
2569 mss
= skb_shinfo(skb
)->gso_size
;
2570 if (skb
->protocol
== htons(ETH_P_IP
)) {
2571 skb
->nh
.iph
->tot_len
= 0;
2572 skb
->nh
.iph
->check
= 0;
2574 ~csum_tcpudp_magic(skb
->nh
.iph
->saddr
,
2579 cmd_length
= E1000_TXD_CMD_IP
;
2580 ipcse
= skb
->h
.raw
- skb
->data
- 1;
2581 #ifdef NETIF_F_TSO_IPV6
2582 } else if (skb
->protocol
== htons(ETH_P_IPV6
)) {
2583 skb
->nh
.ipv6h
->payload_len
= 0;
2585 ~csum_ipv6_magic(&skb
->nh
.ipv6h
->saddr
,
2586 &skb
->nh
.ipv6h
->daddr
,
2593 ipcss
= skb
->nh
.raw
- skb
->data
;
2594 ipcso
= (void *)&(skb
->nh
.iph
->check
) - (void *)skb
->data
;
2595 tucss
= skb
->h
.raw
- skb
->data
;
2596 tucso
= (void *)&(skb
->h
.th
->check
) - (void *)skb
->data
;
2599 cmd_length
|= (E1000_TXD_CMD_DEXT
| E1000_TXD_CMD_TSE
|
2600 E1000_TXD_CMD_TCP
| (skb
->len
- (hdr_len
)));
2602 i
= tx_ring
->next_to_use
;
2603 context_desc
= E1000_CONTEXT_DESC(*tx_ring
, i
);
2604 buffer_info
= &tx_ring
->buffer_info
[i
];
2606 context_desc
->lower_setup
.ip_fields
.ipcss
= ipcss
;
2607 context_desc
->lower_setup
.ip_fields
.ipcso
= ipcso
;
2608 context_desc
->lower_setup
.ip_fields
.ipcse
= cpu_to_le16(ipcse
);
2609 context_desc
->upper_setup
.tcp_fields
.tucss
= tucss
;
2610 context_desc
->upper_setup
.tcp_fields
.tucso
= tucso
;
2611 context_desc
->upper_setup
.tcp_fields
.tucse
= cpu_to_le16(tucse
);
2612 context_desc
->tcp_seg_setup
.fields
.mss
= cpu_to_le16(mss
);
2613 context_desc
->tcp_seg_setup
.fields
.hdr_len
= hdr_len
;
2614 context_desc
->cmd_and_length
= cpu_to_le32(cmd_length
);
2616 buffer_info
->time_stamp
= jiffies
;
2618 if (++i
== tx_ring
->count
) i
= 0;
2619 tx_ring
->next_to_use
= i
;
2629 e1000_tx_csum(struct e1000_adapter
*adapter
, struct e1000_tx_ring
*tx_ring
,
2630 struct sk_buff
*skb
)
2632 struct e1000_context_desc
*context_desc
;
2633 struct e1000_buffer
*buffer_info
;
2637 if (likely(skb
->ip_summed
== CHECKSUM_PARTIAL
)) {
2638 css
= skb
->h
.raw
- skb
->data
;
2640 i
= tx_ring
->next_to_use
;
2641 buffer_info
= &tx_ring
->buffer_info
[i
];
2642 context_desc
= E1000_CONTEXT_DESC(*tx_ring
, i
);
2644 context_desc
->upper_setup
.tcp_fields
.tucss
= css
;
2645 context_desc
->upper_setup
.tcp_fields
.tucso
= css
+ skb
->csum
;
2646 context_desc
->upper_setup
.tcp_fields
.tucse
= 0;
2647 context_desc
->tcp_seg_setup
.data
= 0;
2648 context_desc
->cmd_and_length
= cpu_to_le32(E1000_TXD_CMD_DEXT
);
2650 buffer_info
->time_stamp
= jiffies
;
2652 if (unlikely(++i
== tx_ring
->count
)) i
= 0;
2653 tx_ring
->next_to_use
= i
;
2661 #define E1000_MAX_TXD_PWR 12
2662 #define E1000_MAX_DATA_PER_TXD (1<<E1000_MAX_TXD_PWR)
2665 e1000_tx_map(struct e1000_adapter
*adapter
, struct e1000_tx_ring
*tx_ring
,
2666 struct sk_buff
*skb
, unsigned int first
, unsigned int max_per_txd
,
2667 unsigned int nr_frags
, unsigned int mss
)
2669 struct e1000_buffer
*buffer_info
;
2670 unsigned int len
= skb
->len
;
2671 unsigned int offset
= 0, size
, count
= 0, i
;
2673 len
-= skb
->data_len
;
2675 i
= tx_ring
->next_to_use
;
2678 buffer_info
= &tx_ring
->buffer_info
[i
];
2679 size
= min(len
, max_per_txd
);
2681 /* Workaround for Controller erratum --
2682 * descriptor for non-tso packet in a linear SKB that follows a
2683 * tso gets written back prematurely before the data is fully
2684 * DMA'd to the controller */
2685 if (!skb
->data_len
&& tx_ring
->last_tx_tso
&&
2687 tx_ring
->last_tx_tso
= 0;
2691 /* Workaround for premature desc write-backs
2692 * in TSO mode. Append 4-byte sentinel desc */
2693 if (unlikely(mss
&& !nr_frags
&& size
== len
&& size
> 8))
2696 /* work-around for errata 10 and it applies
2697 * to all controllers in PCI-X mode
2698 * The fix is to make sure that the first descriptor of a
2699 * packet is smaller than 2048 - 16 - 16 (or 2016) bytes
2701 if (unlikely((adapter
->hw
.bus_type
== e1000_bus_type_pcix
) &&
2702 (size
> 2015) && count
== 0))
2705 /* Workaround for potential 82544 hang in PCI-X. Avoid
2706 * terminating buffers within evenly-aligned dwords. */
2707 if (unlikely(adapter
->pcix_82544
&&
2708 !((unsigned long)(skb
->data
+ offset
+ size
- 1) & 4) &&
2712 buffer_info
->length
= size
;
2714 pci_map_single(adapter
->pdev
,
2718 buffer_info
->time_stamp
= jiffies
;
2723 if (unlikely(++i
== tx_ring
->count
)) i
= 0;
2726 for (f
= 0; f
< nr_frags
; f
++) {
2727 struct skb_frag_struct
*frag
;
2729 frag
= &skb_shinfo(skb
)->frags
[f
];
2731 offset
= frag
->page_offset
;
2734 buffer_info
= &tx_ring
->buffer_info
[i
];
2735 size
= min(len
, max_per_txd
);
2737 /* Workaround for premature desc write-backs
2738 * in TSO mode. Append 4-byte sentinel desc */
2739 if (unlikely(mss
&& f
== (nr_frags
-1) && size
== len
&& size
> 8))
2742 /* Workaround for potential 82544 hang in PCI-X.
2743 * Avoid terminating buffers within evenly-aligned
2745 if (unlikely(adapter
->pcix_82544
&&
2746 !((unsigned long)(frag
->page
+offset
+size
-1) & 4) &&
2750 buffer_info
->length
= size
;
2752 pci_map_page(adapter
->pdev
,
2757 buffer_info
->time_stamp
= jiffies
;
2762 if (unlikely(++i
== tx_ring
->count
)) i
= 0;
2766 i
= (i
== 0) ? tx_ring
->count
- 1 : i
- 1;
2767 tx_ring
->buffer_info
[i
].skb
= skb
;
2768 tx_ring
->buffer_info
[first
].next_to_watch
= i
;
2774 e1000_tx_queue(struct e1000_adapter
*adapter
, struct e1000_tx_ring
*tx_ring
,
2775 int tx_flags
, int count
)
2777 struct e1000_tx_desc
*tx_desc
= NULL
;
2778 struct e1000_buffer
*buffer_info
;
2779 uint32_t txd_upper
= 0, txd_lower
= E1000_TXD_CMD_IFCS
;
2782 if (likely(tx_flags
& E1000_TX_FLAGS_TSO
)) {
2783 txd_lower
|= E1000_TXD_CMD_DEXT
| E1000_TXD_DTYP_D
|
2785 txd_upper
|= E1000_TXD_POPTS_TXSM
<< 8;
2787 if (likely(tx_flags
& E1000_TX_FLAGS_IPV4
))
2788 txd_upper
|= E1000_TXD_POPTS_IXSM
<< 8;
2791 if (likely(tx_flags
& E1000_TX_FLAGS_CSUM
)) {
2792 txd_lower
|= E1000_TXD_CMD_DEXT
| E1000_TXD_DTYP_D
;
2793 txd_upper
|= E1000_TXD_POPTS_TXSM
<< 8;
2796 if (unlikely(tx_flags
& E1000_TX_FLAGS_VLAN
)) {
2797 txd_lower
|= E1000_TXD_CMD_VLE
;
2798 txd_upper
|= (tx_flags
& E1000_TX_FLAGS_VLAN_MASK
);
2801 i
= tx_ring
->next_to_use
;
2804 buffer_info
= &tx_ring
->buffer_info
[i
];
2805 tx_desc
= E1000_TX_DESC(*tx_ring
, i
);
2806 tx_desc
->buffer_addr
= cpu_to_le64(buffer_info
->dma
);
2807 tx_desc
->lower
.data
=
2808 cpu_to_le32(txd_lower
| buffer_info
->length
);
2809 tx_desc
->upper
.data
= cpu_to_le32(txd_upper
);
2810 if (unlikely(++i
== tx_ring
->count
)) i
= 0;
2813 tx_desc
->lower
.data
|= cpu_to_le32(adapter
->txd_cmd
);
2815 /* Force memory writes to complete before letting h/w
2816 * know there are new descriptors to fetch. (Only
2817 * applicable for weak-ordered memory model archs,
2818 * such as IA-64). */
2821 tx_ring
->next_to_use
= i
;
2822 writel(i
, adapter
->hw
.hw_addr
+ tx_ring
->tdt
);
2826 * 82547 workaround to avoid controller hang in half-duplex environment.
2827 * The workaround is to avoid queuing a large packet that would span
2828 * the internal Tx FIFO ring boundary by notifying the stack to resend
2829 * the packet at a later time. This gives the Tx FIFO an opportunity to
2830 * flush all packets. When that occurs, we reset the Tx FIFO pointers
2831 * to the beginning of the Tx FIFO.
2834 #define E1000_FIFO_HDR 0x10
2835 #define E1000_82547_PAD_LEN 0x3E0
2838 e1000_82547_fifo_workaround(struct e1000_adapter
*adapter
, struct sk_buff
*skb
)
2840 uint32_t fifo_space
= adapter
->tx_fifo_size
- adapter
->tx_fifo_head
;
2841 uint32_t skb_fifo_len
= skb
->len
+ E1000_FIFO_HDR
;
2843 E1000_ROUNDUP(skb_fifo_len
, E1000_FIFO_HDR
);
2845 if (adapter
->link_duplex
!= HALF_DUPLEX
)
2846 goto no_fifo_stall_required
;
2848 if (atomic_read(&adapter
->tx_fifo_stall
))
2851 if (skb_fifo_len
>= (E1000_82547_PAD_LEN
+ fifo_space
)) {
2852 atomic_set(&adapter
->tx_fifo_stall
, 1);
2856 no_fifo_stall_required
:
2857 adapter
->tx_fifo_head
+= skb_fifo_len
;
2858 if (adapter
->tx_fifo_head
>= adapter
->tx_fifo_size
)
2859 adapter
->tx_fifo_head
-= adapter
->tx_fifo_size
;
2863 #define MINIMUM_DHCP_PACKET_SIZE 282
2865 e1000_transfer_dhcp_info(struct e1000_adapter
*adapter
, struct sk_buff
*skb
)
2867 struct e1000_hw
*hw
= &adapter
->hw
;
2868 uint16_t length
, offset
;
2869 if (vlan_tx_tag_present(skb
)) {
2870 if (!((vlan_tx_tag_get(skb
) == adapter
->hw
.mng_cookie
.vlan_id
) &&
2871 ( adapter
->hw
.mng_cookie
.status
&
2872 E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT
)) )
2875 if (skb
->len
> MINIMUM_DHCP_PACKET_SIZE
) {
2876 struct ethhdr
*eth
= (struct ethhdr
*) skb
->data
;
2877 if ((htons(ETH_P_IP
) == eth
->h_proto
)) {
2878 const struct iphdr
*ip
=
2879 (struct iphdr
*)((uint8_t *)skb
->data
+14);
2880 if (IPPROTO_UDP
== ip
->protocol
) {
2881 struct udphdr
*udp
=
2882 (struct udphdr
*)((uint8_t *)ip
+
2884 if (ntohs(udp
->dest
) == 67) {
2885 offset
= (uint8_t *)udp
+ 8 - skb
->data
;
2886 length
= skb
->len
- offset
;
2888 return e1000_mng_write_dhcp_info(hw
,
2898 static int __e1000_maybe_stop_tx(struct net_device
*netdev
, int size
)
2900 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
2901 struct e1000_tx_ring
*tx_ring
= adapter
->tx_ring
;
2903 netif_stop_queue(netdev
);
2904 /* Herbert's original patch had:
2905 * smp_mb__after_netif_stop_queue();
2906 * but since that doesn't exist yet, just open code it. */
2909 /* We need to check again in a case another CPU has just
2910 * made room available. */
2911 if (likely(E1000_DESC_UNUSED(tx_ring
) < size
))
2915 netif_start_queue(netdev
);
2919 static int e1000_maybe_stop_tx(struct net_device
*netdev
,
2920 struct e1000_tx_ring
*tx_ring
, int size
)
2922 if (likely(E1000_DESC_UNUSED(tx_ring
) >= size
))
2924 return __e1000_maybe_stop_tx(netdev
, size
);
2927 #define TXD_USE_COUNT(S, X) (((S) >> (X)) + 1 )
2929 e1000_xmit_frame(struct sk_buff
*skb
, struct net_device
*netdev
)
2931 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
2932 struct e1000_tx_ring
*tx_ring
;
2933 unsigned int first
, max_per_txd
= E1000_MAX_DATA_PER_TXD
;
2934 unsigned int max_txd_pwr
= E1000_MAX_TXD_PWR
;
2935 unsigned int tx_flags
= 0;
2936 unsigned int len
= skb
->len
;
2937 unsigned long flags
;
2938 unsigned int nr_frags
= 0;
2939 unsigned int mss
= 0;
2943 len
-= skb
->data_len
;
2945 /* This goes back to the question of how to logically map a tx queue
2946 * to a flow. Right now, performance is impacted slightly negatively
2947 * if using multiple tx queues. If the stack breaks away from a
2948 * single qdisc implementation, we can look at this again. */
2949 tx_ring
= adapter
->tx_ring
;
2951 if (unlikely(skb
->len
<= 0)) {
2952 dev_kfree_skb_any(skb
);
2953 return NETDEV_TX_OK
;
2957 mss
= skb_shinfo(skb
)->gso_size
;
2958 /* The controller does a simple calculation to
2959 * make sure there is enough room in the FIFO before
2960 * initiating the DMA for each buffer. The calc is:
2961 * 4 = ceil(buffer len/mss). To make sure we don't
2962 * overrun the FIFO, adjust the max buffer len if mss
2966 max_per_txd
= min(mss
<< 2, max_per_txd
);
2967 max_txd_pwr
= fls(max_per_txd
) - 1;
2969 /* TSO Workaround for 82571/2/3 Controllers -- if skb->data
2970 * points to just header, pull a few bytes of payload from
2971 * frags into skb->data */
2972 hdr_len
= ((skb
->h
.raw
- skb
->data
) + (skb
->h
.th
->doff
<< 2));
2973 if (skb
->data_len
&& (hdr_len
== (skb
->len
- skb
->data_len
))) {
2974 switch (adapter
->hw
.mac_type
) {
2975 unsigned int pull_size
;
2980 pull_size
= min((unsigned int)4, skb
->data_len
);
2981 if (!__pskb_pull_tail(skb
, pull_size
)) {
2983 "__pskb_pull_tail failed.\n");
2984 dev_kfree_skb_any(skb
);
2985 return NETDEV_TX_OK
;
2987 len
= skb
->len
- skb
->data_len
;
2996 /* reserve a descriptor for the offload context */
2997 if ((mss
) || (skb
->ip_summed
== CHECKSUM_PARTIAL
))
3001 if (skb
->ip_summed
== CHECKSUM_PARTIAL
)
3006 /* Controller Erratum workaround */
3007 if (!skb
->data_len
&& tx_ring
->last_tx_tso
&& !skb_is_gso(skb
))
3011 count
+= TXD_USE_COUNT(len
, max_txd_pwr
);
3013 if (adapter
->pcix_82544
)
3016 /* work-around for errata 10 and it applies to all controllers
3017 * in PCI-X mode, so add one more descriptor to the count
3019 if (unlikely((adapter
->hw
.bus_type
== e1000_bus_type_pcix
) &&
3023 nr_frags
= skb_shinfo(skb
)->nr_frags
;
3024 for (f
= 0; f
< nr_frags
; f
++)
3025 count
+= TXD_USE_COUNT(skb_shinfo(skb
)->frags
[f
].size
,
3027 if (adapter
->pcix_82544
)
3031 if (adapter
->hw
.tx_pkt_filtering
&&
3032 (adapter
->hw
.mac_type
== e1000_82573
))
3033 e1000_transfer_dhcp_info(adapter
, skb
);
3035 local_irq_save(flags
);
3036 if (!spin_trylock(&tx_ring
->tx_lock
)) {
3037 /* Collision - tell upper layer to requeue */
3038 local_irq_restore(flags
);
3039 return NETDEV_TX_LOCKED
;
3042 /* need: count + 2 desc gap to keep tail from touching
3043 * head, otherwise try next time */
3044 if (unlikely(e1000_maybe_stop_tx(netdev
, tx_ring
, count
+ 2))) {
3045 spin_unlock_irqrestore(&tx_ring
->tx_lock
, flags
);
3046 return NETDEV_TX_BUSY
;
3049 if (unlikely(adapter
->hw
.mac_type
== e1000_82547
)) {
3050 if (unlikely(e1000_82547_fifo_workaround(adapter
, skb
))) {
3051 netif_stop_queue(netdev
);
3052 mod_timer(&adapter
->tx_fifo_stall_timer
, jiffies
);
3053 spin_unlock_irqrestore(&tx_ring
->tx_lock
, flags
);
3054 return NETDEV_TX_BUSY
;
3058 if (unlikely(adapter
->vlgrp
&& vlan_tx_tag_present(skb
))) {
3059 tx_flags
|= E1000_TX_FLAGS_VLAN
;
3060 tx_flags
|= (vlan_tx_tag_get(skb
) << E1000_TX_FLAGS_VLAN_SHIFT
);
3063 first
= tx_ring
->next_to_use
;
3065 tso
= e1000_tso(adapter
, tx_ring
, skb
);
3067 dev_kfree_skb_any(skb
);
3068 spin_unlock_irqrestore(&tx_ring
->tx_lock
, flags
);
3069 return NETDEV_TX_OK
;
3073 tx_ring
->last_tx_tso
= 1;
3074 tx_flags
|= E1000_TX_FLAGS_TSO
;
3075 } else if (likely(e1000_tx_csum(adapter
, tx_ring
, skb
)))
3076 tx_flags
|= E1000_TX_FLAGS_CSUM
;
3078 /* Old method was to assume IPv4 packet by default if TSO was enabled.
3079 * 82571 hardware supports TSO capabilities for IPv6 as well...
3080 * no longer assume, we must. */
3081 if (likely(skb
->protocol
== htons(ETH_P_IP
)))
3082 tx_flags
|= E1000_TX_FLAGS_IPV4
;
3084 e1000_tx_queue(adapter
, tx_ring
, tx_flags
,
3085 e1000_tx_map(adapter
, tx_ring
, skb
, first
,
3086 max_per_txd
, nr_frags
, mss
));
3088 netdev
->trans_start
= jiffies
;
3090 /* Make sure there is space in the ring for the next send. */
3091 e1000_maybe_stop_tx(netdev
, tx_ring
, MAX_SKB_FRAGS
+ 2);
3093 spin_unlock_irqrestore(&tx_ring
->tx_lock
, flags
);
3094 return NETDEV_TX_OK
;
3098 * e1000_tx_timeout - Respond to a Tx Hang
3099 * @netdev: network interface device structure
3103 e1000_tx_timeout(struct net_device
*netdev
)
3105 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
3107 /* Do the reset outside of interrupt context */
3108 adapter
->tx_timeout_count
++;
3109 schedule_work(&adapter
->reset_task
);
3113 e1000_reset_task(struct net_device
*netdev
)
3115 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
3117 e1000_reinit_locked(adapter
);
3121 * e1000_get_stats - Get System Network Statistics
3122 * @netdev: network interface device structure
3124 * Returns the address of the device statistics structure.
3125 * The statistics are actually updated from the timer callback.
3128 static struct net_device_stats
*
3129 e1000_get_stats(struct net_device
*netdev
)
3131 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
3133 /* only return the current stats */
3134 return &adapter
->net_stats
;
3138 * e1000_change_mtu - Change the Maximum Transfer Unit
3139 * @netdev: network interface device structure
3140 * @new_mtu: new value for maximum frame size
3142 * Returns 0 on success, negative on failure
3146 e1000_change_mtu(struct net_device
*netdev
, int new_mtu
)
3148 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
3149 int max_frame
= new_mtu
+ ENET_HEADER_SIZE
+ ETHERNET_FCS_SIZE
;
3150 uint16_t eeprom_data
= 0;
3152 if ((max_frame
< MINIMUM_ETHERNET_FRAME_SIZE
) ||
3153 (max_frame
> MAX_JUMBO_FRAME_SIZE
)) {
3154 DPRINTK(PROBE
, ERR
, "Invalid MTU setting\n");
3158 /* Adapter-specific max frame size limits. */
3159 switch (adapter
->hw
.mac_type
) {
3160 case e1000_undefined
... e1000_82542_rev2_1
:
3162 if (max_frame
> MAXIMUM_ETHERNET_FRAME_SIZE
) {
3163 DPRINTK(PROBE
, ERR
, "Jumbo Frames not supported.\n");
3168 /* Jumbo Frames not supported if:
3169 * - this is not an 82573L device
3170 * - ASPM is enabled in any way (0x1A bits 3:2) */
3171 e1000_read_eeprom(&adapter
->hw
, EEPROM_INIT_3GIO_3
, 1,
3173 if ((adapter
->hw
.device_id
!= E1000_DEV_ID_82573L
) ||
3174 (eeprom_data
& EEPROM_WORD1A_ASPM_MASK
)) {
3175 if (max_frame
> MAXIMUM_ETHERNET_FRAME_SIZE
) {
3177 "Jumbo Frames not supported.\n");
3182 /* ERT will be enabled later to enable wire speed receives */
3184 /* fall through to get support */
3187 case e1000_80003es2lan
:
3188 #define MAX_STD_JUMBO_FRAME_SIZE 9234
3189 if (max_frame
> MAX_STD_JUMBO_FRAME_SIZE
) {
3190 DPRINTK(PROBE
, ERR
, "MTU > 9216 not supported.\n");
3195 /* Capable of supporting up to MAX_JUMBO_FRAME_SIZE limit. */
3199 /* NOTE: netdev_alloc_skb reserves 16 bytes, and typically NET_IP_ALIGN
3200 * means we reserve 2 more, this pushes us to allocate from the next
3202 * i.e. RXBUFFER_2048 --> size-4096 slab */
3204 if (max_frame
<= E1000_RXBUFFER_256
)
3205 adapter
->rx_buffer_len
= E1000_RXBUFFER_256
;
3206 else if (max_frame
<= E1000_RXBUFFER_512
)
3207 adapter
->rx_buffer_len
= E1000_RXBUFFER_512
;
3208 else if (max_frame
<= E1000_RXBUFFER_1024
)
3209 adapter
->rx_buffer_len
= E1000_RXBUFFER_1024
;
3210 else if (max_frame
<= E1000_RXBUFFER_2048
)
3211 adapter
->rx_buffer_len
= E1000_RXBUFFER_2048
;
3212 else if (max_frame
<= E1000_RXBUFFER_4096
)
3213 adapter
->rx_buffer_len
= E1000_RXBUFFER_4096
;
3214 else if (max_frame
<= E1000_RXBUFFER_8192
)
3215 adapter
->rx_buffer_len
= E1000_RXBUFFER_8192
;
3216 else if (max_frame
<= E1000_RXBUFFER_16384
)
3217 adapter
->rx_buffer_len
= E1000_RXBUFFER_16384
;
3219 /* adjust allocation if LPE protects us, and we aren't using SBP */
3220 if (!adapter
->hw
.tbi_compatibility_on
&&
3221 ((max_frame
== MAXIMUM_ETHERNET_FRAME_SIZE
) ||
3222 (max_frame
== MAXIMUM_ETHERNET_VLAN_SIZE
)))
3223 adapter
->rx_buffer_len
= MAXIMUM_ETHERNET_VLAN_SIZE
;
3225 netdev
->mtu
= new_mtu
;
3227 if (netif_running(netdev
))
3228 e1000_reinit_locked(adapter
);
3230 adapter
->hw
.max_frame_size
= max_frame
;
3236 * e1000_update_stats - Update the board statistics counters
3237 * @adapter: board private structure
3241 e1000_update_stats(struct e1000_adapter
*adapter
)
3243 struct e1000_hw
*hw
= &adapter
->hw
;
3244 struct pci_dev
*pdev
= adapter
->pdev
;
3245 unsigned long flags
;
3248 #define PHY_IDLE_ERROR_COUNT_MASK 0x00FF
3251 * Prevent stats update while adapter is being reset, or if the pci
3252 * connection is down.
3254 if (adapter
->link_speed
== 0)
3256 if (pdev
->error_state
&& pdev
->error_state
!= pci_channel_io_normal
)
3259 spin_lock_irqsave(&adapter
->stats_lock
, flags
);
3261 /* these counters are modified from e1000_adjust_tbi_stats,
3262 * called from the interrupt context, so they must only
3263 * be written while holding adapter->stats_lock
3266 adapter
->stats
.crcerrs
+= E1000_READ_REG(hw
, CRCERRS
);
3267 adapter
->stats
.gprc
+= E1000_READ_REG(hw
, GPRC
);
3268 adapter
->stats
.gorcl
+= E1000_READ_REG(hw
, GORCL
);
3269 adapter
->stats
.gorch
+= E1000_READ_REG(hw
, GORCH
);
3270 adapter
->stats
.bprc
+= E1000_READ_REG(hw
, BPRC
);
3271 adapter
->stats
.mprc
+= E1000_READ_REG(hw
, MPRC
);
3272 adapter
->stats
.roc
+= E1000_READ_REG(hw
, ROC
);
3274 if (adapter
->hw
.mac_type
!= e1000_ich8lan
) {
3275 adapter
->stats
.prc64
+= E1000_READ_REG(hw
, PRC64
);
3276 adapter
->stats
.prc127
+= E1000_READ_REG(hw
, PRC127
);
3277 adapter
->stats
.prc255
+= E1000_READ_REG(hw
, PRC255
);
3278 adapter
->stats
.prc511
+= E1000_READ_REG(hw
, PRC511
);
3279 adapter
->stats
.prc1023
+= E1000_READ_REG(hw
, PRC1023
);
3280 adapter
->stats
.prc1522
+= E1000_READ_REG(hw
, PRC1522
);
3283 adapter
->stats
.symerrs
+= E1000_READ_REG(hw
, SYMERRS
);
3284 adapter
->stats
.mpc
+= E1000_READ_REG(hw
, MPC
);
3285 adapter
->stats
.scc
+= E1000_READ_REG(hw
, SCC
);
3286 adapter
->stats
.ecol
+= E1000_READ_REG(hw
, ECOL
);
3287 adapter
->stats
.mcc
+= E1000_READ_REG(hw
, MCC
);
3288 adapter
->stats
.latecol
+= E1000_READ_REG(hw
, LATECOL
);
3289 adapter
->stats
.dc
+= E1000_READ_REG(hw
, DC
);
3290 adapter
->stats
.sec
+= E1000_READ_REG(hw
, SEC
);
3291 adapter
->stats
.rlec
+= E1000_READ_REG(hw
, RLEC
);
3292 adapter
->stats
.xonrxc
+= E1000_READ_REG(hw
, XONRXC
);
3293 adapter
->stats
.xontxc
+= E1000_READ_REG(hw
, XONTXC
);
3294 adapter
->stats
.xoffrxc
+= E1000_READ_REG(hw
, XOFFRXC
);
3295 adapter
->stats
.xofftxc
+= E1000_READ_REG(hw
, XOFFTXC
);
3296 adapter
->stats
.fcruc
+= E1000_READ_REG(hw
, FCRUC
);
3297 adapter
->stats
.gptc
+= E1000_READ_REG(hw
, GPTC
);
3298 adapter
->stats
.gotcl
+= E1000_READ_REG(hw
, GOTCL
);
3299 adapter
->stats
.gotch
+= E1000_READ_REG(hw
, GOTCH
);
3300 adapter
->stats
.rnbc
+= E1000_READ_REG(hw
, RNBC
);
3301 adapter
->stats
.ruc
+= E1000_READ_REG(hw
, RUC
);
3302 adapter
->stats
.rfc
+= E1000_READ_REG(hw
, RFC
);
3303 adapter
->stats
.rjc
+= E1000_READ_REG(hw
, RJC
);
3304 adapter
->stats
.torl
+= E1000_READ_REG(hw
, TORL
);
3305 adapter
->stats
.torh
+= E1000_READ_REG(hw
, TORH
);
3306 adapter
->stats
.totl
+= E1000_READ_REG(hw
, TOTL
);
3307 adapter
->stats
.toth
+= E1000_READ_REG(hw
, TOTH
);
3308 adapter
->stats
.tpr
+= E1000_READ_REG(hw
, TPR
);
3310 if (adapter
->hw
.mac_type
!= e1000_ich8lan
) {
3311 adapter
->stats
.ptc64
+= E1000_READ_REG(hw
, PTC64
);
3312 adapter
->stats
.ptc127
+= E1000_READ_REG(hw
, PTC127
);
3313 adapter
->stats
.ptc255
+= E1000_READ_REG(hw
, PTC255
);
3314 adapter
->stats
.ptc511
+= E1000_READ_REG(hw
, PTC511
);
3315 adapter
->stats
.ptc1023
+= E1000_READ_REG(hw
, PTC1023
);
3316 adapter
->stats
.ptc1522
+= E1000_READ_REG(hw
, PTC1522
);
3319 adapter
->stats
.mptc
+= E1000_READ_REG(hw
, MPTC
);
3320 adapter
->stats
.bptc
+= E1000_READ_REG(hw
, BPTC
);
3322 /* used for adaptive IFS */
3324 hw
->tx_packet_delta
= E1000_READ_REG(hw
, TPT
);
3325 adapter
->stats
.tpt
+= hw
->tx_packet_delta
;
3326 hw
->collision_delta
= E1000_READ_REG(hw
, COLC
);
3327 adapter
->stats
.colc
+= hw
->collision_delta
;
3329 if (hw
->mac_type
>= e1000_82543
) {
3330 adapter
->stats
.algnerrc
+= E1000_READ_REG(hw
, ALGNERRC
);
3331 adapter
->stats
.rxerrc
+= E1000_READ_REG(hw
, RXERRC
);
3332 adapter
->stats
.tncrs
+= E1000_READ_REG(hw
, TNCRS
);
3333 adapter
->stats
.cexterr
+= E1000_READ_REG(hw
, CEXTERR
);
3334 adapter
->stats
.tsctc
+= E1000_READ_REG(hw
, TSCTC
);
3335 adapter
->stats
.tsctfc
+= E1000_READ_REG(hw
, TSCTFC
);
3337 if (hw
->mac_type
> e1000_82547_rev_2
) {
3338 adapter
->stats
.iac
+= E1000_READ_REG(hw
, IAC
);
3339 adapter
->stats
.icrxoc
+= E1000_READ_REG(hw
, ICRXOC
);
3341 if (adapter
->hw
.mac_type
!= e1000_ich8lan
) {
3342 adapter
->stats
.icrxptc
+= E1000_READ_REG(hw
, ICRXPTC
);
3343 adapter
->stats
.icrxatc
+= E1000_READ_REG(hw
, ICRXATC
);
3344 adapter
->stats
.ictxptc
+= E1000_READ_REG(hw
, ICTXPTC
);
3345 adapter
->stats
.ictxatc
+= E1000_READ_REG(hw
, ICTXATC
);
3346 adapter
->stats
.ictxqec
+= E1000_READ_REG(hw
, ICTXQEC
);
3347 adapter
->stats
.ictxqmtc
+= E1000_READ_REG(hw
, ICTXQMTC
);
3348 adapter
->stats
.icrxdmtc
+= E1000_READ_REG(hw
, ICRXDMTC
);
3352 /* Fill out the OS statistics structure */
3354 adapter
->net_stats
.rx_packets
= adapter
->stats
.gprc
;
3355 adapter
->net_stats
.tx_packets
= adapter
->stats
.gptc
;
3356 adapter
->net_stats
.rx_bytes
= adapter
->stats
.gorcl
;
3357 adapter
->net_stats
.tx_bytes
= adapter
->stats
.gotcl
;
3358 adapter
->net_stats
.multicast
= adapter
->stats
.mprc
;
3359 adapter
->net_stats
.collisions
= adapter
->stats
.colc
;
3363 /* RLEC on some newer hardware can be incorrect so build
3364 * our own version based on RUC and ROC */
3365 adapter
->net_stats
.rx_errors
= adapter
->stats
.rxerrc
+
3366 adapter
->stats
.crcerrs
+ adapter
->stats
.algnerrc
+
3367 adapter
->stats
.ruc
+ adapter
->stats
.roc
+
3368 adapter
->stats
.cexterr
;
3369 adapter
->stats
.rlerrc
= adapter
->stats
.ruc
+ adapter
->stats
.roc
;
3370 adapter
->net_stats
.rx_length_errors
= adapter
->stats
.rlerrc
;
3371 adapter
->net_stats
.rx_crc_errors
= adapter
->stats
.crcerrs
;
3372 adapter
->net_stats
.rx_frame_errors
= adapter
->stats
.algnerrc
;
3373 adapter
->net_stats
.rx_missed_errors
= adapter
->stats
.mpc
;
3376 adapter
->stats
.txerrc
= adapter
->stats
.ecol
+ adapter
->stats
.latecol
;
3377 adapter
->net_stats
.tx_errors
= adapter
->stats
.txerrc
;
3378 adapter
->net_stats
.tx_aborted_errors
= adapter
->stats
.ecol
;
3379 adapter
->net_stats
.tx_window_errors
= adapter
->stats
.latecol
;
3380 adapter
->net_stats
.tx_carrier_errors
= adapter
->stats
.tncrs
;
3382 /* Tx Dropped needs to be maintained elsewhere */
3386 if (hw
->media_type
== e1000_media_type_copper
) {
3387 if ((adapter
->link_speed
== SPEED_1000
) &&
3388 (!e1000_read_phy_reg(hw
, PHY_1000T_STATUS
, &phy_tmp
))) {
3389 phy_tmp
&= PHY_IDLE_ERROR_COUNT_MASK
;
3390 adapter
->phy_stats
.idle_errors
+= phy_tmp
;
3393 if ((hw
->mac_type
<= e1000_82546
) &&
3394 (hw
->phy_type
== e1000_phy_m88
) &&
3395 !e1000_read_phy_reg(hw
, M88E1000_RX_ERR_CNTR
, &phy_tmp
))
3396 adapter
->phy_stats
.receive_errors
+= phy_tmp
;
3399 spin_unlock_irqrestore(&adapter
->stats_lock
, flags
);
3403 * e1000_intr - Interrupt Handler
3404 * @irq: interrupt number
3405 * @data: pointer to a network interface device structure
3406 * @pt_regs: CPU registers structure
3410 e1000_intr(int irq
, void *data
, struct pt_regs
*regs
)
3412 struct net_device
*netdev
= data
;
3413 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
3414 struct e1000_hw
*hw
= &adapter
->hw
;
3415 uint32_t rctl
, icr
= E1000_READ_REG(hw
, ICR
);
3416 #ifndef CONFIG_E1000_NAPI
3419 /* Interrupt Auto-Mask...upon reading ICR,
3420 * interrupts are masked. No need for the
3421 * IMC write, but it does mean we should
3422 * account for it ASAP. */
3423 if (likely(hw
->mac_type
>= e1000_82571
))
3424 atomic_inc(&adapter
->irq_sem
);
3427 if (unlikely(!icr
)) {
3428 #ifdef CONFIG_E1000_NAPI
3429 if (hw
->mac_type
>= e1000_82571
)
3430 e1000_irq_enable(adapter
);
3432 return IRQ_NONE
; /* Not our interrupt */
3435 if (unlikely(icr
& (E1000_ICR_RXSEQ
| E1000_ICR_LSC
))) {
3436 hw
->get_link_status
= 1;
3437 /* 80003ES2LAN workaround--
3438 * For packet buffer work-around on link down event;
3439 * disable receives here in the ISR and
3440 * reset adapter in watchdog
3442 if (netif_carrier_ok(netdev
) &&
3443 (adapter
->hw
.mac_type
== e1000_80003es2lan
)) {
3444 /* disable receives */
3445 rctl
= E1000_READ_REG(hw
, RCTL
);
3446 E1000_WRITE_REG(hw
, RCTL
, rctl
& ~E1000_RCTL_EN
);
3448 mod_timer(&adapter
->watchdog_timer
, jiffies
);
3451 #ifdef CONFIG_E1000_NAPI
3452 if (unlikely(hw
->mac_type
< e1000_82571
)) {
3453 atomic_inc(&adapter
->irq_sem
);
3454 E1000_WRITE_REG(hw
, IMC
, ~0);
3455 E1000_WRITE_FLUSH(hw
);
3457 if (likely(netif_rx_schedule_prep(netdev
)))
3458 __netif_rx_schedule(netdev
);
3460 e1000_irq_enable(adapter
);
3462 /* Writing IMC and IMS is needed for 82547.
3463 * Due to Hub Link bus being occupied, an interrupt
3464 * de-assertion message is not able to be sent.
3465 * When an interrupt assertion message is generated later,
3466 * two messages are re-ordered and sent out.
3467 * That causes APIC to think 82547 is in de-assertion
3468 * state, while 82547 is in assertion state, resulting
3469 * in dead lock. Writing IMC forces 82547 into
3470 * de-assertion state.
3472 if (hw
->mac_type
== e1000_82547
|| hw
->mac_type
== e1000_82547_rev_2
) {
3473 atomic_inc(&adapter
->irq_sem
);
3474 E1000_WRITE_REG(hw
, IMC
, ~0);
3477 for (i
= 0; i
< E1000_MAX_INTR
; i
++)
3478 if (unlikely(!adapter
->clean_rx(adapter
, adapter
->rx_ring
) &
3479 !e1000_clean_tx_irq(adapter
, adapter
->tx_ring
)))
3482 if (hw
->mac_type
== e1000_82547
|| hw
->mac_type
== e1000_82547_rev_2
)
3483 e1000_irq_enable(adapter
);
3490 #ifdef CONFIG_E1000_NAPI
3492 * e1000_clean - NAPI Rx polling callback
3493 * @adapter: board private structure
3497 e1000_clean(struct net_device
*poll_dev
, int *budget
)
3499 struct e1000_adapter
*adapter
;
3500 int work_to_do
= min(*budget
, poll_dev
->quota
);
3501 int tx_cleaned
= 0, work_done
= 0;
3503 /* Must NOT use netdev_priv macro here. */
3504 adapter
= poll_dev
->priv
;
3506 /* Keep link state information with original netdev */
3507 if (!netif_carrier_ok(poll_dev
))
3510 /* e1000_clean is called per-cpu. This lock protects
3511 * tx_ring[0] from being cleaned by multiple cpus
3512 * simultaneously. A failure obtaining the lock means
3513 * tx_ring[0] is currently being cleaned anyway. */
3514 if (spin_trylock(&adapter
->tx_queue_lock
)) {
3515 tx_cleaned
= e1000_clean_tx_irq(adapter
,
3516 &adapter
->tx_ring
[0]);
3517 spin_unlock(&adapter
->tx_queue_lock
);
3520 adapter
->clean_rx(adapter
, &adapter
->rx_ring
[0],
3521 &work_done
, work_to_do
);
3523 *budget
-= work_done
;
3524 poll_dev
->quota
-= work_done
;
3526 /* If no Tx and not enough Rx work done, exit the polling mode */
3527 if ((!tx_cleaned
&& (work_done
== 0)) ||
3528 !netif_running(poll_dev
)) {
3530 netif_rx_complete(poll_dev
);
3531 e1000_irq_enable(adapter
);
3540 * e1000_clean_tx_irq - Reclaim resources after transmit completes
3541 * @adapter: board private structure
3545 e1000_clean_tx_irq(struct e1000_adapter
*adapter
,
3546 struct e1000_tx_ring
*tx_ring
)
3548 struct net_device
*netdev
= adapter
->netdev
;
3549 struct e1000_tx_desc
*tx_desc
, *eop_desc
;
3550 struct e1000_buffer
*buffer_info
;
3551 unsigned int i
, eop
;
3552 #ifdef CONFIG_E1000_NAPI
3553 unsigned int count
= 0;
3555 boolean_t cleaned
= FALSE
;
3557 i
= tx_ring
->next_to_clean
;
3558 eop
= tx_ring
->buffer_info
[i
].next_to_watch
;
3559 eop_desc
= E1000_TX_DESC(*tx_ring
, eop
);
3561 while (eop_desc
->upper
.data
& cpu_to_le32(E1000_TXD_STAT_DD
)) {
3562 for (cleaned
= FALSE
; !cleaned
; ) {
3563 tx_desc
= E1000_TX_DESC(*tx_ring
, i
);
3564 buffer_info
= &tx_ring
->buffer_info
[i
];
3565 cleaned
= (i
== eop
);
3567 e1000_unmap_and_free_tx_resource(adapter
, buffer_info
);
3568 memset(tx_desc
, 0, sizeof(struct e1000_tx_desc
));
3570 if (unlikely(++i
== tx_ring
->count
)) i
= 0;
3574 eop
= tx_ring
->buffer_info
[i
].next_to_watch
;
3575 eop_desc
= E1000_TX_DESC(*tx_ring
, eop
);
3576 #ifdef CONFIG_E1000_NAPI
3577 #define E1000_TX_WEIGHT 64
3578 /* weight of a sort for tx, to avoid endless transmit cleanup */
3579 if (count
++ == E1000_TX_WEIGHT
) break;
3583 tx_ring
->next_to_clean
= i
;
3585 #define TX_WAKE_THRESHOLD 32
3586 if (unlikely(cleaned
&& netif_carrier_ok(netdev
) &&
3587 E1000_DESC_UNUSED(tx_ring
) >= TX_WAKE_THRESHOLD
)) {
3588 /* Make sure that anybody stopping the queue after this
3589 * sees the new next_to_clean.
3592 if (netif_queue_stopped(netdev
))
3593 netif_wake_queue(netdev
);
3596 if (adapter
->detect_tx_hung
) {
3597 /* Detect a transmit hang in hardware, this serializes the
3598 * check with the clearing of time_stamp and movement of i */
3599 adapter
->detect_tx_hung
= FALSE
;
3600 if (tx_ring
->buffer_info
[eop
].dma
&&
3601 time_after(jiffies
, tx_ring
->buffer_info
[eop
].time_stamp
+
3602 (adapter
->tx_timeout_factor
* HZ
))
3603 && !(E1000_READ_REG(&adapter
->hw
, STATUS
) &
3604 E1000_STATUS_TXOFF
)) {
3606 /* detected Tx unit hang */
3607 DPRINTK(DRV
, ERR
, "Detected Tx Unit Hang\n"
3611 " next_to_use <%x>\n"
3612 " next_to_clean <%x>\n"
3613 "buffer_info[next_to_clean]\n"
3614 " time_stamp <%lx>\n"
3615 " next_to_watch <%x>\n"
3617 " next_to_watch.status <%x>\n",
3618 (unsigned long)((tx_ring
- adapter
->tx_ring
) /
3619 sizeof(struct e1000_tx_ring
)),
3620 readl(adapter
->hw
.hw_addr
+ tx_ring
->tdh
),
3621 readl(adapter
->hw
.hw_addr
+ tx_ring
->tdt
),
3622 tx_ring
->next_to_use
,
3623 tx_ring
->next_to_clean
,
3624 tx_ring
->buffer_info
[eop
].time_stamp
,
3627 eop_desc
->upper
.fields
.status
);
3628 netif_stop_queue(netdev
);
3635 * e1000_rx_checksum - Receive Checksum Offload for 82543
3636 * @adapter: board private structure
3637 * @status_err: receive descriptor status and error fields
3638 * @csum: receive descriptor csum field
3639 * @sk_buff: socket buffer with received data
3643 e1000_rx_checksum(struct e1000_adapter
*adapter
,
3644 uint32_t status_err
, uint32_t csum
,
3645 struct sk_buff
*skb
)
3647 uint16_t status
= (uint16_t)status_err
;
3648 uint8_t errors
= (uint8_t)(status_err
>> 24);
3649 skb
->ip_summed
= CHECKSUM_NONE
;
3651 /* 82543 or newer only */
3652 if (unlikely(adapter
->hw
.mac_type
< e1000_82543
)) return;
3653 /* Ignore Checksum bit is set */
3654 if (unlikely(status
& E1000_RXD_STAT_IXSM
)) return;
3655 /* TCP/UDP checksum error bit is set */
3656 if (unlikely(errors
& E1000_RXD_ERR_TCPE
)) {
3657 /* let the stack verify checksum errors */
3658 adapter
->hw_csum_err
++;
3661 /* TCP/UDP Checksum has not been calculated */
3662 if (adapter
->hw
.mac_type
<= e1000_82547_rev_2
) {
3663 if (!(status
& E1000_RXD_STAT_TCPCS
))
3666 if (!(status
& (E1000_RXD_STAT_TCPCS
| E1000_RXD_STAT_UDPCS
)))
3669 /* It must be a TCP or UDP packet with a valid checksum */
3670 if (likely(status
& E1000_RXD_STAT_TCPCS
)) {
3671 /* TCP checksum is good */
3672 skb
->ip_summed
= CHECKSUM_UNNECESSARY
;
3673 } else if (adapter
->hw
.mac_type
> e1000_82547_rev_2
) {
3674 /* IP fragment with UDP payload */
3675 /* Hardware complements the payload checksum, so we undo it
3676 * and then put the value in host order for further stack use.
3678 csum
= ntohl(csum
^ 0xFFFF);
3680 skb
->ip_summed
= CHECKSUM_COMPLETE
;
3682 adapter
->hw_csum_good
++;
3686 * e1000_clean_rx_irq - Send received data up the network stack; legacy
3687 * @adapter: board private structure
3691 #ifdef CONFIG_E1000_NAPI
3692 e1000_clean_rx_irq(struct e1000_adapter
*adapter
,
3693 struct e1000_rx_ring
*rx_ring
,
3694 int *work_done
, int work_to_do
)
3696 e1000_clean_rx_irq(struct e1000_adapter
*adapter
,
3697 struct e1000_rx_ring
*rx_ring
)
3700 struct net_device
*netdev
= adapter
->netdev
;
3701 struct pci_dev
*pdev
= adapter
->pdev
;
3702 struct e1000_rx_desc
*rx_desc
, *next_rxd
;
3703 struct e1000_buffer
*buffer_info
, *next_buffer
;
3704 unsigned long flags
;
3708 int cleaned_count
= 0;
3709 boolean_t cleaned
= FALSE
;
3711 i
= rx_ring
->next_to_clean
;
3712 rx_desc
= E1000_RX_DESC(*rx_ring
, i
);
3713 buffer_info
= &rx_ring
->buffer_info
[i
];
3715 while (rx_desc
->status
& E1000_RXD_STAT_DD
) {
3716 struct sk_buff
*skb
;
3718 #ifdef CONFIG_E1000_NAPI
3719 if (*work_done
>= work_to_do
)
3723 status
= rx_desc
->status
;
3724 skb
= buffer_info
->skb
;
3725 buffer_info
->skb
= NULL
;
3727 prefetch(skb
->data
- NET_IP_ALIGN
);
3729 if (++i
== rx_ring
->count
) i
= 0;
3730 next_rxd
= E1000_RX_DESC(*rx_ring
, i
);
3733 next_buffer
= &rx_ring
->buffer_info
[i
];
3737 pci_unmap_single(pdev
,
3739 buffer_info
->length
,
3740 PCI_DMA_FROMDEVICE
);
3742 length
= le16_to_cpu(rx_desc
->length
);
3744 /* adjust length to remove Ethernet CRC */
3747 if (unlikely(!(status
& E1000_RXD_STAT_EOP
))) {
3748 /* All receives must fit into a single buffer */
3749 E1000_DBG("%s: Receive packet consumed multiple"
3750 " buffers\n", netdev
->name
);
3752 buffer_info
->skb
= skb
;
3756 if (unlikely(rx_desc
->errors
& E1000_RXD_ERR_FRAME_ERR_MASK
)) {
3757 last_byte
= *(skb
->data
+ length
- 1);
3758 if (TBI_ACCEPT(&adapter
->hw
, status
,
3759 rx_desc
->errors
, length
, last_byte
)) {
3760 spin_lock_irqsave(&adapter
->stats_lock
, flags
);
3761 e1000_tbi_adjust_stats(&adapter
->hw
,
3764 spin_unlock_irqrestore(&adapter
->stats_lock
,
3769 buffer_info
->skb
= skb
;
3774 /* code added for copybreak, this should improve
3775 * performance for small packets with large amounts
3776 * of reassembly being done in the stack */
3777 #define E1000_CB_LENGTH 256
3778 if (length
< E1000_CB_LENGTH
) {
3779 struct sk_buff
*new_skb
=
3780 netdev_alloc_skb(netdev
, length
+ NET_IP_ALIGN
);
3782 skb_reserve(new_skb
, NET_IP_ALIGN
);
3783 memcpy(new_skb
->data
- NET_IP_ALIGN
,
3784 skb
->data
- NET_IP_ALIGN
,
3785 length
+ NET_IP_ALIGN
);
3786 /* save the skb in buffer_info as good */
3787 buffer_info
->skb
= skb
;
3789 skb_put(skb
, length
);
3792 skb_put(skb
, length
);
3794 /* end copybreak code */
3796 /* Receive Checksum Offload */
3797 e1000_rx_checksum(adapter
,
3798 (uint32_t)(status
) |
3799 ((uint32_t)(rx_desc
->errors
) << 24),
3800 le16_to_cpu(rx_desc
->csum
), skb
);
3802 skb
->protocol
= eth_type_trans(skb
, netdev
);
3803 #ifdef CONFIG_E1000_NAPI
3804 if (unlikely(adapter
->vlgrp
&&
3805 (status
& E1000_RXD_STAT_VP
))) {
3806 vlan_hwaccel_receive_skb(skb
, adapter
->vlgrp
,
3807 le16_to_cpu(rx_desc
->special
) &
3808 E1000_RXD_SPC_VLAN_MASK
);
3810 netif_receive_skb(skb
);
3812 #else /* CONFIG_E1000_NAPI */
3813 if (unlikely(adapter
->vlgrp
&&
3814 (status
& E1000_RXD_STAT_VP
))) {
3815 vlan_hwaccel_rx(skb
, adapter
->vlgrp
,
3816 le16_to_cpu(rx_desc
->special
) &
3817 E1000_RXD_SPC_VLAN_MASK
);
3821 #endif /* CONFIG_E1000_NAPI */
3822 netdev
->last_rx
= jiffies
;
3825 rx_desc
->status
= 0;
3827 /* return some buffers to hardware, one at a time is too slow */
3828 if (unlikely(cleaned_count
>= E1000_RX_BUFFER_WRITE
)) {
3829 adapter
->alloc_rx_buf(adapter
, rx_ring
, cleaned_count
);
3833 /* use prefetched values */
3835 buffer_info
= next_buffer
;
3837 rx_ring
->next_to_clean
= i
;
3839 cleaned_count
= E1000_DESC_UNUSED(rx_ring
);
3841 adapter
->alloc_rx_buf(adapter
, rx_ring
, cleaned_count
);
3847 * e1000_clean_rx_irq_ps - Send received data up the network stack; packet split
3848 * @adapter: board private structure
3852 #ifdef CONFIG_E1000_NAPI
3853 e1000_clean_rx_irq_ps(struct e1000_adapter
*adapter
,
3854 struct e1000_rx_ring
*rx_ring
,
3855 int *work_done
, int work_to_do
)
3857 e1000_clean_rx_irq_ps(struct e1000_adapter
*adapter
,
3858 struct e1000_rx_ring
*rx_ring
)
3861 union e1000_rx_desc_packet_split
*rx_desc
, *next_rxd
;
3862 struct net_device
*netdev
= adapter
->netdev
;
3863 struct pci_dev
*pdev
= adapter
->pdev
;
3864 struct e1000_buffer
*buffer_info
, *next_buffer
;
3865 struct e1000_ps_page
*ps_page
;
3866 struct e1000_ps_page_dma
*ps_page_dma
;
3867 struct sk_buff
*skb
;
3869 uint32_t length
, staterr
;
3870 int cleaned_count
= 0;
3871 boolean_t cleaned
= FALSE
;
3873 i
= rx_ring
->next_to_clean
;
3874 rx_desc
= E1000_RX_DESC_PS(*rx_ring
, i
);
3875 staterr
= le32_to_cpu(rx_desc
->wb
.middle
.status_error
);
3876 buffer_info
= &rx_ring
->buffer_info
[i
];
3878 while (staterr
& E1000_RXD_STAT_DD
) {
3879 ps_page
= &rx_ring
->ps_page
[i
];
3880 ps_page_dma
= &rx_ring
->ps_page_dma
[i
];
3881 #ifdef CONFIG_E1000_NAPI
3882 if (unlikely(*work_done
>= work_to_do
))
3886 skb
= buffer_info
->skb
;
3888 /* in the packet split case this is header only */
3889 prefetch(skb
->data
- NET_IP_ALIGN
);
3891 if (++i
== rx_ring
->count
) i
= 0;
3892 next_rxd
= E1000_RX_DESC_PS(*rx_ring
, i
);
3895 next_buffer
= &rx_ring
->buffer_info
[i
];
3899 pci_unmap_single(pdev
, buffer_info
->dma
,
3900 buffer_info
->length
,
3901 PCI_DMA_FROMDEVICE
);
3903 if (unlikely(!(staterr
& E1000_RXD_STAT_EOP
))) {
3904 E1000_DBG("%s: Packet Split buffers didn't pick up"
3905 " the full packet\n", netdev
->name
);
3906 dev_kfree_skb_irq(skb
);
3910 if (unlikely(staterr
& E1000_RXDEXT_ERR_FRAME_ERR_MASK
)) {
3911 dev_kfree_skb_irq(skb
);
3915 length
= le16_to_cpu(rx_desc
->wb
.middle
.length0
);
3917 if (unlikely(!length
)) {
3918 E1000_DBG("%s: Last part of the packet spanning"
3919 " multiple descriptors\n", netdev
->name
);
3920 dev_kfree_skb_irq(skb
);
3925 skb_put(skb
, length
);
3928 /* this looks ugly, but it seems compiler issues make it
3929 more efficient than reusing j */
3930 int l1
= le16_to_cpu(rx_desc
->wb
.upper
.length
[0]);
3932 /* page alloc/put takes too long and effects small packet
3933 * throughput, so unsplit small packets and save the alloc/put*/
3934 if (l1
&& ((length
+ l1
) <= adapter
->rx_ps_bsize0
)) {
3936 /* there is no documentation about how to call
3937 * kmap_atomic, so we can't hold the mapping
3939 pci_dma_sync_single_for_cpu(pdev
,
3940 ps_page_dma
->ps_page_dma
[0],
3942 PCI_DMA_FROMDEVICE
);
3943 vaddr
= kmap_atomic(ps_page
->ps_page
[0],
3944 KM_SKB_DATA_SOFTIRQ
);
3945 memcpy(skb
->tail
, vaddr
, l1
);
3946 kunmap_atomic(vaddr
, KM_SKB_DATA_SOFTIRQ
);
3947 pci_dma_sync_single_for_device(pdev
,
3948 ps_page_dma
->ps_page_dma
[0],
3949 PAGE_SIZE
, PCI_DMA_FROMDEVICE
);
3950 /* remove the CRC */
3957 for (j
= 0; j
< adapter
->rx_ps_pages
; j
++) {
3958 if (!(length
= le16_to_cpu(rx_desc
->wb
.upper
.length
[j
])))
3960 pci_unmap_page(pdev
, ps_page_dma
->ps_page_dma
[j
],
3961 PAGE_SIZE
, PCI_DMA_FROMDEVICE
);
3962 ps_page_dma
->ps_page_dma
[j
] = 0;
3963 skb_fill_page_desc(skb
, j
, ps_page
->ps_page
[j
], 0,
3965 ps_page
->ps_page
[j
] = NULL
;
3967 skb
->data_len
+= length
;
3968 skb
->truesize
+= length
;
3971 /* strip the ethernet crc, problem is we're using pages now so
3972 * this whole operation can get a little cpu intensive */
3973 pskb_trim(skb
, skb
->len
- 4);
3976 e1000_rx_checksum(adapter
, staterr
,
3977 le16_to_cpu(rx_desc
->wb
.lower
.hi_dword
.csum_ip
.csum
), skb
);
3978 skb
->protocol
= eth_type_trans(skb
, netdev
);
3980 if (likely(rx_desc
->wb
.upper
.header_status
&
3981 cpu_to_le16(E1000_RXDPS_HDRSTAT_HDRSP
)))
3982 adapter
->rx_hdr_split
++;
3983 #ifdef CONFIG_E1000_NAPI
3984 if (unlikely(adapter
->vlgrp
&& (staterr
& E1000_RXD_STAT_VP
))) {
3985 vlan_hwaccel_receive_skb(skb
, adapter
->vlgrp
,
3986 le16_to_cpu(rx_desc
->wb
.middle
.vlan
) &
3987 E1000_RXD_SPC_VLAN_MASK
);
3989 netif_receive_skb(skb
);
3991 #else /* CONFIG_E1000_NAPI */
3992 if (unlikely(adapter
->vlgrp
&& (staterr
& E1000_RXD_STAT_VP
))) {
3993 vlan_hwaccel_rx(skb
, adapter
->vlgrp
,
3994 le16_to_cpu(rx_desc
->wb
.middle
.vlan
) &
3995 E1000_RXD_SPC_VLAN_MASK
);
3999 #endif /* CONFIG_E1000_NAPI */
4000 netdev
->last_rx
= jiffies
;
4003 rx_desc
->wb
.middle
.status_error
&= cpu_to_le32(~0xFF);
4004 buffer_info
->skb
= NULL
;
4006 /* return some buffers to hardware, one at a time is too slow */
4007 if (unlikely(cleaned_count
>= E1000_RX_BUFFER_WRITE
)) {
4008 adapter
->alloc_rx_buf(adapter
, rx_ring
, cleaned_count
);
4012 /* use prefetched values */
4014 buffer_info
= next_buffer
;
4016 staterr
= le32_to_cpu(rx_desc
->wb
.middle
.status_error
);
4018 rx_ring
->next_to_clean
= i
;
4020 cleaned_count
= E1000_DESC_UNUSED(rx_ring
);
4022 adapter
->alloc_rx_buf(adapter
, rx_ring
, cleaned_count
);
4028 * e1000_alloc_rx_buffers - Replace used receive buffers; legacy & extended
4029 * @adapter: address of board private structure
4033 e1000_alloc_rx_buffers(struct e1000_adapter
*adapter
,
4034 struct e1000_rx_ring
*rx_ring
,
4037 struct net_device
*netdev
= adapter
->netdev
;
4038 struct pci_dev
*pdev
= adapter
->pdev
;
4039 struct e1000_rx_desc
*rx_desc
;
4040 struct e1000_buffer
*buffer_info
;
4041 struct sk_buff
*skb
;
4043 unsigned int bufsz
= adapter
->rx_buffer_len
+ NET_IP_ALIGN
;
4045 i
= rx_ring
->next_to_use
;
4046 buffer_info
= &rx_ring
->buffer_info
[i
];
4048 while (cleaned_count
--) {
4049 skb
= buffer_info
->skb
;
4055 skb
= netdev_alloc_skb(netdev
, bufsz
);
4056 if (unlikely(!skb
)) {
4057 /* Better luck next round */
4058 adapter
->alloc_rx_buff_failed
++;
4062 /* Fix for errata 23, can't cross 64kB boundary */
4063 if (!e1000_check_64k_bound(adapter
, skb
->data
, bufsz
)) {
4064 struct sk_buff
*oldskb
= skb
;
4065 DPRINTK(RX_ERR
, ERR
, "skb align check failed: %u bytes "
4066 "at %p\n", bufsz
, skb
->data
);
4067 /* Try again, without freeing the previous */
4068 skb
= netdev_alloc_skb(netdev
, bufsz
);
4069 /* Failed allocation, critical failure */
4071 dev_kfree_skb(oldskb
);
4075 if (!e1000_check_64k_bound(adapter
, skb
->data
, bufsz
)) {
4078 dev_kfree_skb(oldskb
);
4079 break; /* while !buffer_info->skb */
4082 /* Use new allocation */
4083 dev_kfree_skb(oldskb
);
4085 /* Make buffer alignment 2 beyond a 16 byte boundary
4086 * this will result in a 16 byte aligned IP header after
4087 * the 14 byte MAC header is removed
4089 skb_reserve(skb
, NET_IP_ALIGN
);
4091 buffer_info
->skb
= skb
;
4092 buffer_info
->length
= adapter
->rx_buffer_len
;
4094 buffer_info
->dma
= pci_map_single(pdev
,
4096 adapter
->rx_buffer_len
,
4097 PCI_DMA_FROMDEVICE
);
4099 /* Fix for errata 23, can't cross 64kB boundary */
4100 if (!e1000_check_64k_bound(adapter
,
4101 (void *)(unsigned long)buffer_info
->dma
,
4102 adapter
->rx_buffer_len
)) {
4103 DPRINTK(RX_ERR
, ERR
,
4104 "dma align check failed: %u bytes at %p\n",
4105 adapter
->rx_buffer_len
,
4106 (void *)(unsigned long)buffer_info
->dma
);
4108 buffer_info
->skb
= NULL
;
4110 pci_unmap_single(pdev
, buffer_info
->dma
,
4111 adapter
->rx_buffer_len
,
4112 PCI_DMA_FROMDEVICE
);
4114 break; /* while !buffer_info->skb */
4116 rx_desc
= E1000_RX_DESC(*rx_ring
, i
);
4117 rx_desc
->buffer_addr
= cpu_to_le64(buffer_info
->dma
);
4119 if (unlikely(++i
== rx_ring
->count
))
4121 buffer_info
= &rx_ring
->buffer_info
[i
];
4124 if (likely(rx_ring
->next_to_use
!= i
)) {
4125 rx_ring
->next_to_use
= i
;
4126 if (unlikely(i
-- == 0))
4127 i
= (rx_ring
->count
- 1);
4129 /* Force memory writes to complete before letting h/w
4130 * know there are new descriptors to fetch. (Only
4131 * applicable for weak-ordered memory model archs,
4132 * such as IA-64). */
4134 writel(i
, adapter
->hw
.hw_addr
+ rx_ring
->rdt
);
4139 * e1000_alloc_rx_buffers_ps - Replace used receive buffers; packet split
4140 * @adapter: address of board private structure
4144 e1000_alloc_rx_buffers_ps(struct e1000_adapter
*adapter
,
4145 struct e1000_rx_ring
*rx_ring
,
4148 struct net_device
*netdev
= adapter
->netdev
;
4149 struct pci_dev
*pdev
= adapter
->pdev
;
4150 union e1000_rx_desc_packet_split
*rx_desc
;
4151 struct e1000_buffer
*buffer_info
;
4152 struct e1000_ps_page
*ps_page
;
4153 struct e1000_ps_page_dma
*ps_page_dma
;
4154 struct sk_buff
*skb
;
4157 i
= rx_ring
->next_to_use
;
4158 buffer_info
= &rx_ring
->buffer_info
[i
];
4159 ps_page
= &rx_ring
->ps_page
[i
];
4160 ps_page_dma
= &rx_ring
->ps_page_dma
[i
];
4162 while (cleaned_count
--) {
4163 rx_desc
= E1000_RX_DESC_PS(*rx_ring
, i
);
4165 for (j
= 0; j
< PS_PAGE_BUFFERS
; j
++) {
4166 if (j
< adapter
->rx_ps_pages
) {
4167 if (likely(!ps_page
->ps_page
[j
])) {
4168 ps_page
->ps_page
[j
] =
4169 alloc_page(GFP_ATOMIC
);
4170 if (unlikely(!ps_page
->ps_page
[j
])) {
4171 adapter
->alloc_rx_buff_failed
++;
4174 ps_page_dma
->ps_page_dma
[j
] =
4176 ps_page
->ps_page
[j
],
4178 PCI_DMA_FROMDEVICE
);
4180 /* Refresh the desc even if buffer_addrs didn't
4181 * change because each write-back erases
4184 rx_desc
->read
.buffer_addr
[j
+1] =
4185 cpu_to_le64(ps_page_dma
->ps_page_dma
[j
]);
4187 rx_desc
->read
.buffer_addr
[j
+1] = ~0;
4190 skb
= netdev_alloc_skb(netdev
,
4191 adapter
->rx_ps_bsize0
+ NET_IP_ALIGN
);
4193 if (unlikely(!skb
)) {
4194 adapter
->alloc_rx_buff_failed
++;
4198 /* Make buffer alignment 2 beyond a 16 byte boundary
4199 * this will result in a 16 byte aligned IP header after
4200 * the 14 byte MAC header is removed
4202 skb_reserve(skb
, NET_IP_ALIGN
);
4204 buffer_info
->skb
= skb
;
4205 buffer_info
->length
= adapter
->rx_ps_bsize0
;
4206 buffer_info
->dma
= pci_map_single(pdev
, skb
->data
,
4207 adapter
->rx_ps_bsize0
,
4208 PCI_DMA_FROMDEVICE
);
4210 rx_desc
->read
.buffer_addr
[0] = cpu_to_le64(buffer_info
->dma
);
4212 if (unlikely(++i
== rx_ring
->count
)) i
= 0;
4213 buffer_info
= &rx_ring
->buffer_info
[i
];
4214 ps_page
= &rx_ring
->ps_page
[i
];
4215 ps_page_dma
= &rx_ring
->ps_page_dma
[i
];
4219 if (likely(rx_ring
->next_to_use
!= i
)) {
4220 rx_ring
->next_to_use
= i
;
4221 if (unlikely(i
-- == 0)) i
= (rx_ring
->count
- 1);
4223 /* Force memory writes to complete before letting h/w
4224 * know there are new descriptors to fetch. (Only
4225 * applicable for weak-ordered memory model archs,
4226 * such as IA-64). */
4228 /* Hardware increments by 16 bytes, but packet split
4229 * descriptors are 32 bytes...so we increment tail
4232 writel(i
<<1, adapter
->hw
.hw_addr
+ rx_ring
->rdt
);
4237 * e1000_smartspeed - Workaround for SmartSpeed on 82541 and 82547 controllers.
4242 e1000_smartspeed(struct e1000_adapter
*adapter
)
4244 uint16_t phy_status
;
4247 if ((adapter
->hw
.phy_type
!= e1000_phy_igp
) || !adapter
->hw
.autoneg
||
4248 !(adapter
->hw
.autoneg_advertised
& ADVERTISE_1000_FULL
))
4251 if (adapter
->smartspeed
== 0) {
4252 /* If Master/Slave config fault is asserted twice,
4253 * we assume back-to-back */
4254 e1000_read_phy_reg(&adapter
->hw
, PHY_1000T_STATUS
, &phy_status
);
4255 if (!(phy_status
& SR_1000T_MS_CONFIG_FAULT
)) return;
4256 e1000_read_phy_reg(&adapter
->hw
, PHY_1000T_STATUS
, &phy_status
);
4257 if (!(phy_status
& SR_1000T_MS_CONFIG_FAULT
)) return;
4258 e1000_read_phy_reg(&adapter
->hw
, PHY_1000T_CTRL
, &phy_ctrl
);
4259 if (phy_ctrl
& CR_1000T_MS_ENABLE
) {
4260 phy_ctrl
&= ~CR_1000T_MS_ENABLE
;
4261 e1000_write_phy_reg(&adapter
->hw
, PHY_1000T_CTRL
,
4263 adapter
->smartspeed
++;
4264 if (!e1000_phy_setup_autoneg(&adapter
->hw
) &&
4265 !e1000_read_phy_reg(&adapter
->hw
, PHY_CTRL
,
4267 phy_ctrl
|= (MII_CR_AUTO_NEG_EN
|
4268 MII_CR_RESTART_AUTO_NEG
);
4269 e1000_write_phy_reg(&adapter
->hw
, PHY_CTRL
,
4274 } else if (adapter
->smartspeed
== E1000_SMARTSPEED_DOWNSHIFT
) {
4275 /* If still no link, perhaps using 2/3 pair cable */
4276 e1000_read_phy_reg(&adapter
->hw
, PHY_1000T_CTRL
, &phy_ctrl
);
4277 phy_ctrl
|= CR_1000T_MS_ENABLE
;
4278 e1000_write_phy_reg(&adapter
->hw
, PHY_1000T_CTRL
, phy_ctrl
);
4279 if (!e1000_phy_setup_autoneg(&adapter
->hw
) &&
4280 !e1000_read_phy_reg(&adapter
->hw
, PHY_CTRL
, &phy_ctrl
)) {
4281 phy_ctrl
|= (MII_CR_AUTO_NEG_EN
|
4282 MII_CR_RESTART_AUTO_NEG
);
4283 e1000_write_phy_reg(&adapter
->hw
, PHY_CTRL
, phy_ctrl
);
4286 /* Restart process after E1000_SMARTSPEED_MAX iterations */
4287 if (adapter
->smartspeed
++ == E1000_SMARTSPEED_MAX
)
4288 adapter
->smartspeed
= 0;
4299 e1000_ioctl(struct net_device
*netdev
, struct ifreq
*ifr
, int cmd
)
4305 return e1000_mii_ioctl(netdev
, ifr
, cmd
);
4319 e1000_mii_ioctl(struct net_device
*netdev
, struct ifreq
*ifr
, int cmd
)
4321 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
4322 struct mii_ioctl_data
*data
= if_mii(ifr
);
4326 unsigned long flags
;
4328 if (adapter
->hw
.media_type
!= e1000_media_type_copper
)
4333 data
->phy_id
= adapter
->hw
.phy_addr
;
4336 if (!capable(CAP_NET_ADMIN
))
4338 spin_lock_irqsave(&adapter
->stats_lock
, flags
);
4339 if (e1000_read_phy_reg(&adapter
->hw
, data
->reg_num
& 0x1F,
4341 spin_unlock_irqrestore(&adapter
->stats_lock
, flags
);
4344 spin_unlock_irqrestore(&adapter
->stats_lock
, flags
);
4347 if (!capable(CAP_NET_ADMIN
))
4349 if (data
->reg_num
& ~(0x1F))
4351 mii_reg
= data
->val_in
;
4352 spin_lock_irqsave(&adapter
->stats_lock
, flags
);
4353 if (e1000_write_phy_reg(&adapter
->hw
, data
->reg_num
,
4355 spin_unlock_irqrestore(&adapter
->stats_lock
, flags
);
4358 if (adapter
->hw
.media_type
== e1000_media_type_copper
) {
4359 switch (data
->reg_num
) {
4361 if (mii_reg
& MII_CR_POWER_DOWN
)
4363 if (mii_reg
& MII_CR_AUTO_NEG_EN
) {
4364 adapter
->hw
.autoneg
= 1;
4365 adapter
->hw
.autoneg_advertised
= 0x2F;
4368 spddplx
= SPEED_1000
;
4369 else if (mii_reg
& 0x2000)
4370 spddplx
= SPEED_100
;
4373 spddplx
+= (mii_reg
& 0x100)
4376 retval
= e1000_set_spd_dplx(adapter
,
4379 spin_unlock_irqrestore(
4380 &adapter
->stats_lock
,
4385 if (netif_running(adapter
->netdev
))
4386 e1000_reinit_locked(adapter
);
4388 e1000_reset(adapter
);
4390 case M88E1000_PHY_SPEC_CTRL
:
4391 case M88E1000_EXT_PHY_SPEC_CTRL
:
4392 if (e1000_phy_reset(&adapter
->hw
)) {
4393 spin_unlock_irqrestore(
4394 &adapter
->stats_lock
, flags
);
4400 switch (data
->reg_num
) {
4402 if (mii_reg
& MII_CR_POWER_DOWN
)
4404 if (netif_running(adapter
->netdev
))
4405 e1000_reinit_locked(adapter
);
4407 e1000_reset(adapter
);
4411 spin_unlock_irqrestore(&adapter
->stats_lock
, flags
);
4416 return E1000_SUCCESS
;
4420 e1000_pci_set_mwi(struct e1000_hw
*hw
)
4422 struct e1000_adapter
*adapter
= hw
->back
;
4423 int ret_val
= pci_set_mwi(adapter
->pdev
);
4426 DPRINTK(PROBE
, ERR
, "Error in setting MWI\n");
4430 e1000_pci_clear_mwi(struct e1000_hw
*hw
)
4432 struct e1000_adapter
*adapter
= hw
->back
;
4434 pci_clear_mwi(adapter
->pdev
);
4438 e1000_read_pci_cfg(struct e1000_hw
*hw
, uint32_t reg
, uint16_t *value
)
4440 struct e1000_adapter
*adapter
= hw
->back
;
4442 pci_read_config_word(adapter
->pdev
, reg
, value
);
4446 e1000_write_pci_cfg(struct e1000_hw
*hw
, uint32_t reg
, uint16_t *value
)
4448 struct e1000_adapter
*adapter
= hw
->back
;
4450 pci_write_config_word(adapter
->pdev
, reg
, *value
);
4454 e1000_io_write(struct e1000_hw
*hw
, unsigned long port
, uint32_t value
)
4460 e1000_vlan_rx_register(struct net_device
*netdev
, struct vlan_group
*grp
)
4462 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
4463 uint32_t ctrl
, rctl
;
4465 e1000_irq_disable(adapter
);
4466 adapter
->vlgrp
= grp
;
4469 /* enable VLAN tag insert/strip */
4470 ctrl
= E1000_READ_REG(&adapter
->hw
, CTRL
);
4471 ctrl
|= E1000_CTRL_VME
;
4472 E1000_WRITE_REG(&adapter
->hw
, CTRL
, ctrl
);
4474 if (adapter
->hw
.mac_type
!= e1000_ich8lan
) {
4475 /* enable VLAN receive filtering */
4476 rctl
= E1000_READ_REG(&adapter
->hw
, RCTL
);
4477 rctl
|= E1000_RCTL_VFE
;
4478 rctl
&= ~E1000_RCTL_CFIEN
;
4479 E1000_WRITE_REG(&adapter
->hw
, RCTL
, rctl
);
4480 e1000_update_mng_vlan(adapter
);
4483 /* disable VLAN tag insert/strip */
4484 ctrl
= E1000_READ_REG(&adapter
->hw
, CTRL
);
4485 ctrl
&= ~E1000_CTRL_VME
;
4486 E1000_WRITE_REG(&adapter
->hw
, CTRL
, ctrl
);
4488 if (adapter
->hw
.mac_type
!= e1000_ich8lan
) {
4489 /* disable VLAN filtering */
4490 rctl
= E1000_READ_REG(&adapter
->hw
, RCTL
);
4491 rctl
&= ~E1000_RCTL_VFE
;
4492 E1000_WRITE_REG(&adapter
->hw
, RCTL
, rctl
);
4493 if (adapter
->mng_vlan_id
!= (uint16_t)E1000_MNG_VLAN_NONE
) {
4494 e1000_vlan_rx_kill_vid(netdev
, adapter
->mng_vlan_id
);
4495 adapter
->mng_vlan_id
= E1000_MNG_VLAN_NONE
;
4500 e1000_irq_enable(adapter
);
4504 e1000_vlan_rx_add_vid(struct net_device
*netdev
, uint16_t vid
)
4506 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
4507 uint32_t vfta
, index
;
4509 if ((adapter
->hw
.mng_cookie
.status
&
4510 E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT
) &&
4511 (vid
== adapter
->mng_vlan_id
))
4513 /* add VID to filter table */
4514 index
= (vid
>> 5) & 0x7F;
4515 vfta
= E1000_READ_REG_ARRAY(&adapter
->hw
, VFTA
, index
);
4516 vfta
|= (1 << (vid
& 0x1F));
4517 e1000_write_vfta(&adapter
->hw
, index
, vfta
);
4521 e1000_vlan_rx_kill_vid(struct net_device
*netdev
, uint16_t vid
)
4523 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
4524 uint32_t vfta
, index
;
4526 e1000_irq_disable(adapter
);
4529 adapter
->vlgrp
->vlan_devices
[vid
] = NULL
;
4531 e1000_irq_enable(adapter
);
4533 if ((adapter
->hw
.mng_cookie
.status
&
4534 E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT
) &&
4535 (vid
== adapter
->mng_vlan_id
)) {
4536 /* release control to f/w */
4537 e1000_release_hw_control(adapter
);
4541 /* remove VID from filter table */
4542 index
= (vid
>> 5) & 0x7F;
4543 vfta
= E1000_READ_REG_ARRAY(&adapter
->hw
, VFTA
, index
);
4544 vfta
&= ~(1 << (vid
& 0x1F));
4545 e1000_write_vfta(&adapter
->hw
, index
, vfta
);
4549 e1000_restore_vlan(struct e1000_adapter
*adapter
)
4551 e1000_vlan_rx_register(adapter
->netdev
, adapter
->vlgrp
);
4553 if (adapter
->vlgrp
) {
4555 for (vid
= 0; vid
< VLAN_GROUP_ARRAY_LEN
; vid
++) {
4556 if (!adapter
->vlgrp
->vlan_devices
[vid
])
4558 e1000_vlan_rx_add_vid(adapter
->netdev
, vid
);
4564 e1000_set_spd_dplx(struct e1000_adapter
*adapter
, uint16_t spddplx
)
4566 adapter
->hw
.autoneg
= 0;
4568 /* Fiber NICs only allow 1000 gbps Full duplex */
4569 if ((adapter
->hw
.media_type
== e1000_media_type_fiber
) &&
4570 spddplx
!= (SPEED_1000
+ DUPLEX_FULL
)) {
4571 DPRINTK(PROBE
, ERR
, "Unsupported Speed/Duplex configuration\n");
4576 case SPEED_10
+ DUPLEX_HALF
:
4577 adapter
->hw
.forced_speed_duplex
= e1000_10_half
;
4579 case SPEED_10
+ DUPLEX_FULL
:
4580 adapter
->hw
.forced_speed_duplex
= e1000_10_full
;
4582 case SPEED_100
+ DUPLEX_HALF
:
4583 adapter
->hw
.forced_speed_duplex
= e1000_100_half
;
4585 case SPEED_100
+ DUPLEX_FULL
:
4586 adapter
->hw
.forced_speed_duplex
= e1000_100_full
;
4588 case SPEED_1000
+ DUPLEX_FULL
:
4589 adapter
->hw
.autoneg
= 1;
4590 adapter
->hw
.autoneg_advertised
= ADVERTISE_1000_FULL
;
4592 case SPEED_1000
+ DUPLEX_HALF
: /* not supported */
4594 DPRINTK(PROBE
, ERR
, "Unsupported Speed/Duplex configuration\n");
4601 /* Save/restore 16 or 64 dwords of PCI config space depending on which
4602 * bus we're on (PCI(X) vs. PCI-E)
4604 #define PCIE_CONFIG_SPACE_LEN 256
4605 #define PCI_CONFIG_SPACE_LEN 64
4607 e1000_pci_save_state(struct e1000_adapter
*adapter
)
4609 struct pci_dev
*dev
= adapter
->pdev
;
4613 if (adapter
->hw
.mac_type
>= e1000_82571
)
4614 size
= PCIE_CONFIG_SPACE_LEN
;
4616 size
= PCI_CONFIG_SPACE_LEN
;
4618 WARN_ON(adapter
->config_space
!= NULL
);
4620 adapter
->config_space
= kmalloc(size
, GFP_KERNEL
);
4621 if (!adapter
->config_space
) {
4622 DPRINTK(PROBE
, ERR
, "unable to allocate %d bytes\n", size
);
4625 for (i
= 0; i
< (size
/ 4); i
++)
4626 pci_read_config_dword(dev
, i
* 4, &adapter
->config_space
[i
]);
4631 e1000_pci_restore_state(struct e1000_adapter
*adapter
)
4633 struct pci_dev
*dev
= adapter
->pdev
;
4637 if (adapter
->config_space
== NULL
)
4640 if (adapter
->hw
.mac_type
>= e1000_82571
)
4641 size
= PCIE_CONFIG_SPACE_LEN
;
4643 size
= PCI_CONFIG_SPACE_LEN
;
4644 for (i
= 0; i
< (size
/ 4); i
++)
4645 pci_write_config_dword(dev
, i
* 4, adapter
->config_space
[i
]);
4646 kfree(adapter
->config_space
);
4647 adapter
->config_space
= NULL
;
4650 #endif /* CONFIG_PM */
4653 e1000_suspend(struct pci_dev
*pdev
, pm_message_t state
)
4655 struct net_device
*netdev
= pci_get_drvdata(pdev
);
4656 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
4657 uint32_t ctrl
, ctrl_ext
, rctl
, manc
, status
;
4658 uint32_t wufc
= adapter
->wol
;
4663 netif_device_detach(netdev
);
4665 if (netif_running(netdev
)) {
4666 WARN_ON(test_bit(__E1000_RESETTING
, &adapter
->flags
));
4667 e1000_down(adapter
);
4671 /* Implement our own version of pci_save_state(pdev) because pci-
4672 * express adapters have 256-byte config spaces. */
4673 retval
= e1000_pci_save_state(adapter
);
4678 status
= E1000_READ_REG(&adapter
->hw
, STATUS
);
4679 if (status
& E1000_STATUS_LU
)
4680 wufc
&= ~E1000_WUFC_LNKC
;
4683 e1000_setup_rctl(adapter
);
4684 e1000_set_multi(netdev
);
4686 /* turn on all-multi mode if wake on multicast is enabled */
4687 if (wufc
& E1000_WUFC_MC
) {
4688 rctl
= E1000_READ_REG(&adapter
->hw
, RCTL
);
4689 rctl
|= E1000_RCTL_MPE
;
4690 E1000_WRITE_REG(&adapter
->hw
, RCTL
, rctl
);
4693 if (adapter
->hw
.mac_type
>= e1000_82540
) {
4694 ctrl
= E1000_READ_REG(&adapter
->hw
, CTRL
);
4695 /* advertise wake from D3Cold */
4696 #define E1000_CTRL_ADVD3WUC 0x00100000
4697 /* phy power management enable */
4698 #define E1000_CTRL_EN_PHY_PWR_MGMT 0x00200000
4699 ctrl
|= E1000_CTRL_ADVD3WUC
|
4700 E1000_CTRL_EN_PHY_PWR_MGMT
;
4701 E1000_WRITE_REG(&adapter
->hw
, CTRL
, ctrl
);
4704 if (adapter
->hw
.media_type
== e1000_media_type_fiber
||
4705 adapter
->hw
.media_type
== e1000_media_type_internal_serdes
) {
4706 /* keep the laser running in D3 */
4707 ctrl_ext
= E1000_READ_REG(&adapter
->hw
, CTRL_EXT
);
4708 ctrl_ext
|= E1000_CTRL_EXT_SDP7_DATA
;
4709 E1000_WRITE_REG(&adapter
->hw
, CTRL_EXT
, ctrl_ext
);
4712 /* Allow time for pending master requests to run */
4713 e1000_disable_pciex_master(&adapter
->hw
);
4715 E1000_WRITE_REG(&adapter
->hw
, WUC
, E1000_WUC_PME_EN
);
4716 E1000_WRITE_REG(&adapter
->hw
, WUFC
, wufc
);
4717 pci_enable_wake(pdev
, PCI_D3hot
, 1);
4718 pci_enable_wake(pdev
, PCI_D3cold
, 1);
4720 E1000_WRITE_REG(&adapter
->hw
, WUC
, 0);
4721 E1000_WRITE_REG(&adapter
->hw
, WUFC
, 0);
4722 pci_enable_wake(pdev
, PCI_D3hot
, 0);
4723 pci_enable_wake(pdev
, PCI_D3cold
, 0);
4726 if (adapter
->hw
.mac_type
< e1000_82571
&&
4727 adapter
->hw
.media_type
== e1000_media_type_copper
) {
4728 manc
= E1000_READ_REG(&adapter
->hw
, MANC
);
4729 if (manc
& E1000_MANC_SMBUS_EN
) {
4730 manc
|= E1000_MANC_ARP_EN
;
4731 E1000_WRITE_REG(&adapter
->hw
, MANC
, manc
);
4732 pci_enable_wake(pdev
, PCI_D3hot
, 1);
4733 pci_enable_wake(pdev
, PCI_D3cold
, 1);
4737 if (adapter
->hw
.phy_type
== e1000_phy_igp_3
)
4738 e1000_phy_powerdown_workaround(&adapter
->hw
);
4740 /* Release control of h/w to f/w. If f/w is AMT enabled, this
4741 * would have already happened in close and is redundant. */
4742 e1000_release_hw_control(adapter
);
4744 pci_disable_device(pdev
);
4746 pci_set_power_state(pdev
, pci_choose_state(pdev
, state
));
4753 e1000_resume(struct pci_dev
*pdev
)
4755 struct net_device
*netdev
= pci_get_drvdata(pdev
);
4756 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
4759 pci_set_power_state(pdev
, PCI_D0
);
4760 e1000_pci_restore_state(adapter
);
4761 if ((err
= pci_enable_device(pdev
))) {
4762 printk(KERN_ERR
"e1000: Cannot enable PCI device from suspend\n");
4765 pci_set_master(pdev
);
4767 pci_enable_wake(pdev
, PCI_D3hot
, 0);
4768 pci_enable_wake(pdev
, PCI_D3cold
, 0);
4770 e1000_reset(adapter
);
4771 E1000_WRITE_REG(&adapter
->hw
, WUS
, ~0);
4773 if (netif_running(netdev
))
4776 netif_device_attach(netdev
);
4778 if (adapter
->hw
.mac_type
< e1000_82571
&&
4779 adapter
->hw
.media_type
== e1000_media_type_copper
) {
4780 manc
= E1000_READ_REG(&adapter
->hw
, MANC
);
4781 manc
&= ~(E1000_MANC_ARP_EN
);
4782 E1000_WRITE_REG(&adapter
->hw
, MANC
, manc
);
4785 /* If the controller is 82573 and f/w is AMT, do not set
4786 * DRV_LOAD until the interface is up. For all other cases,
4787 * let the f/w know that the h/w is now under the control
4789 if (adapter
->hw
.mac_type
!= e1000_82573
||
4790 !e1000_check_mng_mode(&adapter
->hw
))
4791 e1000_get_hw_control(adapter
);
4797 static void e1000_shutdown(struct pci_dev
*pdev
)
4799 e1000_suspend(pdev
, PMSG_SUSPEND
);
4802 #ifdef CONFIG_NET_POLL_CONTROLLER
4804 * Polling 'interrupt' - used by things like netconsole to send skbs
4805 * without having to re-enable interrupts. It's not called while
4806 * the interrupt routine is executing.
4809 e1000_netpoll(struct net_device
*netdev
)
4811 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
4813 disable_irq(adapter
->pdev
->irq
);
4814 e1000_intr(adapter
->pdev
->irq
, netdev
, NULL
);
4815 e1000_clean_tx_irq(adapter
, adapter
->tx_ring
);
4816 #ifndef CONFIG_E1000_NAPI
4817 adapter
->clean_rx(adapter
, adapter
->rx_ring
);
4819 enable_irq(adapter
->pdev
->irq
);
4824 * e1000_io_error_detected - called when PCI error is detected
4825 * @pdev: Pointer to PCI device
4826 * @state: The current pci conneection state
4828 * This function is called after a PCI bus error affecting
4829 * this device has been detected.
4831 static pci_ers_result_t
e1000_io_error_detected(struct pci_dev
*pdev
, pci_channel_state_t state
)
4833 struct net_device
*netdev
= pci_get_drvdata(pdev
);
4834 struct e1000_adapter
*adapter
= netdev
->priv
;
4836 netif_device_detach(netdev
);
4838 if (netif_running(netdev
))
4839 e1000_down(adapter
);
4840 pci_disable_device(pdev
);
4842 /* Request a slot slot reset. */
4843 return PCI_ERS_RESULT_NEED_RESET
;
4847 * e1000_io_slot_reset - called after the pci bus has been reset.
4848 * @pdev: Pointer to PCI device
4850 * Restart the card from scratch, as if from a cold-boot. Implementation
4851 * resembles the first-half of the e1000_resume routine.
4853 static pci_ers_result_t
e1000_io_slot_reset(struct pci_dev
*pdev
)
4855 struct net_device
*netdev
= pci_get_drvdata(pdev
);
4856 struct e1000_adapter
*adapter
= netdev
->priv
;
4858 if (pci_enable_device(pdev
)) {
4859 printk(KERN_ERR
"e1000: Cannot re-enable PCI device after reset.\n");
4860 return PCI_ERS_RESULT_DISCONNECT
;
4862 pci_set_master(pdev
);
4864 pci_enable_wake(pdev
, 3, 0);
4865 pci_enable_wake(pdev
, 4, 0); /* 4 == D3 cold */
4867 /* Perform card reset only on one instance of the card */
4868 if (PCI_FUNC (pdev
->devfn
) != 0)
4869 return PCI_ERS_RESULT_RECOVERED
;
4871 e1000_reset(adapter
);
4872 E1000_WRITE_REG(&adapter
->hw
, WUS
, ~0);
4874 return PCI_ERS_RESULT_RECOVERED
;
4878 * e1000_io_resume - called when traffic can start flowing again.
4879 * @pdev: Pointer to PCI device
4881 * This callback is called when the error recovery driver tells us that
4882 * its OK to resume normal operation. Implementation resembles the
4883 * second-half of the e1000_resume routine.
4885 static void e1000_io_resume(struct pci_dev
*pdev
)
4887 struct net_device
*netdev
= pci_get_drvdata(pdev
);
4888 struct e1000_adapter
*adapter
= netdev
->priv
;
4889 uint32_t manc
, swsm
;
4891 if (netif_running(netdev
)) {
4892 if (e1000_up(adapter
)) {
4893 printk("e1000: can't bring device back up after reset\n");
4898 netif_device_attach(netdev
);
4900 if (adapter
->hw
.mac_type
>= e1000_82540
&&
4901 adapter
->hw
.media_type
== e1000_media_type_copper
) {
4902 manc
= E1000_READ_REG(&adapter
->hw
, MANC
);
4903 manc
&= ~(E1000_MANC_ARP_EN
);
4904 E1000_WRITE_REG(&adapter
->hw
, MANC
, manc
);
4907 switch (adapter
->hw
.mac_type
) {
4909 swsm
= E1000_READ_REG(&adapter
->hw
, SWSM
);
4910 E1000_WRITE_REG(&adapter
->hw
, SWSM
,
4911 swsm
| E1000_SWSM_DRV_LOAD
);
4917 if (netif_running(netdev
))
4918 mod_timer(&adapter
->watchdog_timer
, jiffies
);