firewire: core: prepare for non-core children of card devices
[linux-2.6/mini2440.git] / drivers / firewire / core-card.c
blob4c1be64fdddd458a93bc8dd9ae0c156f7a5abf89
1 /*
2 * Copyright (C) 2005-2007 Kristian Hoegsberg <krh@bitplanet.net>
4 * This program is free software; you can redistribute it and/or modify
5 * it under the terms of the GNU General Public License as published by
6 * the Free Software Foundation; either version 2 of the License, or
7 * (at your option) any later version.
9 * This program is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write to the Free Software Foundation,
16 * Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
19 #include <linux/bug.h>
20 #include <linux/completion.h>
21 #include <linux/crc-itu-t.h>
22 #include <linux/device.h>
23 #include <linux/errno.h>
24 #include <linux/firewire.h>
25 #include <linux/firewire-constants.h>
26 #include <linux/jiffies.h>
27 #include <linux/kernel.h>
28 #include <linux/kref.h>
29 #include <linux/list.h>
30 #include <linux/module.h>
31 #include <linux/mutex.h>
32 #include <linux/spinlock.h>
33 #include <linux/timer.h>
34 #include <linux/workqueue.h>
36 #include <asm/atomic.h>
37 #include <asm/byteorder.h>
39 #include "core.h"
41 int fw_compute_block_crc(u32 *block)
43 __be32 be32_block[256];
44 int i, length;
46 length = (*block >> 16) & 0xff;
47 for (i = 0; i < length; i++)
48 be32_block[i] = cpu_to_be32(block[i + 1]);
49 *block |= crc_itu_t(0, (u8 *) be32_block, length * 4);
51 return length;
54 static DEFINE_MUTEX(card_mutex);
55 static LIST_HEAD(card_list);
57 static LIST_HEAD(descriptor_list);
58 static int descriptor_count;
60 #define BIB_CRC(v) ((v) << 0)
61 #define BIB_CRC_LENGTH(v) ((v) << 16)
62 #define BIB_INFO_LENGTH(v) ((v) << 24)
64 #define BIB_LINK_SPEED(v) ((v) << 0)
65 #define BIB_GENERATION(v) ((v) << 4)
66 #define BIB_MAX_ROM(v) ((v) << 8)
67 #define BIB_MAX_RECEIVE(v) ((v) << 12)
68 #define BIB_CYC_CLK_ACC(v) ((v) << 16)
69 #define BIB_PMC ((1) << 27)
70 #define BIB_BMC ((1) << 28)
71 #define BIB_ISC ((1) << 29)
72 #define BIB_CMC ((1) << 30)
73 #define BIB_IMC ((1) << 31)
75 static u32 *generate_config_rom(struct fw_card *card, size_t *config_rom_length)
77 struct fw_descriptor *desc;
78 static u32 config_rom[256];
79 int i, j, length;
82 * Initialize contents of config rom buffer. On the OHCI
83 * controller, block reads to the config rom accesses the host
84 * memory, but quadlet read access the hardware bus info block
85 * registers. That's just crack, but it means we should make
86 * sure the contents of bus info block in host memory matches
87 * the version stored in the OHCI registers.
90 memset(config_rom, 0, sizeof(config_rom));
91 config_rom[0] = BIB_CRC_LENGTH(4) | BIB_INFO_LENGTH(4) | BIB_CRC(0);
92 config_rom[1] = 0x31333934;
94 config_rom[2] =
95 BIB_LINK_SPEED(card->link_speed) |
96 BIB_GENERATION(card->config_rom_generation++ % 14 + 2) |
97 BIB_MAX_ROM(2) |
98 BIB_MAX_RECEIVE(card->max_receive) |
99 BIB_BMC | BIB_ISC | BIB_CMC | BIB_IMC;
100 config_rom[3] = card->guid >> 32;
101 config_rom[4] = card->guid;
103 /* Generate root directory. */
104 i = 5;
105 config_rom[i++] = 0;
106 config_rom[i++] = 0x0c0083c0; /* node capabilities */
107 j = i + descriptor_count;
109 /* Generate root directory entries for descriptors. */
110 list_for_each_entry (desc, &descriptor_list, link) {
111 if (desc->immediate > 0)
112 config_rom[i++] = desc->immediate;
113 config_rom[i] = desc->key | (j - i);
114 i++;
115 j += desc->length;
118 /* Update root directory length. */
119 config_rom[5] = (i - 5 - 1) << 16;
121 /* End of root directory, now copy in descriptors. */
122 list_for_each_entry (desc, &descriptor_list, link) {
123 memcpy(&config_rom[i], desc->data, desc->length * 4);
124 i += desc->length;
127 /* Calculate CRCs for all blocks in the config rom. This
128 * assumes that CRC length and info length are identical for
129 * the bus info block, which is always the case for this
130 * implementation. */
131 for (i = 0; i < j; i += length + 1)
132 length = fw_compute_block_crc(config_rom + i);
134 *config_rom_length = j;
136 return config_rom;
139 static void update_config_roms(void)
141 struct fw_card *card;
142 u32 *config_rom;
143 size_t length;
145 list_for_each_entry (card, &card_list, link) {
146 config_rom = generate_config_rom(card, &length);
147 card->driver->set_config_rom(card, config_rom, length);
151 int fw_core_add_descriptor(struct fw_descriptor *desc)
153 size_t i;
156 * Check descriptor is valid; the length of all blocks in the
157 * descriptor has to add up to exactly the length of the
158 * block.
160 i = 0;
161 while (i < desc->length)
162 i += (desc->data[i] >> 16) + 1;
164 if (i != desc->length)
165 return -EINVAL;
167 mutex_lock(&card_mutex);
169 list_add_tail(&desc->link, &descriptor_list);
170 descriptor_count++;
171 if (desc->immediate > 0)
172 descriptor_count++;
173 update_config_roms();
175 mutex_unlock(&card_mutex);
177 return 0;
180 void fw_core_remove_descriptor(struct fw_descriptor *desc)
182 mutex_lock(&card_mutex);
184 list_del(&desc->link);
185 descriptor_count--;
186 if (desc->immediate > 0)
187 descriptor_count--;
188 update_config_roms();
190 mutex_unlock(&card_mutex);
193 static void allocate_broadcast_channel(struct fw_card *card, int generation)
195 int channel, bandwidth = 0;
197 fw_iso_resource_manage(card, generation, 1ULL << 31,
198 &channel, &bandwidth, true);
199 if (channel == 31) {
200 card->broadcast_channel_allocated = true;
201 device_for_each_child(card->device, (void *)(long)generation,
202 fw_device_set_broadcast_channel);
206 static const char gap_count_table[] = {
207 63, 5, 7, 8, 10, 13, 16, 18, 21, 24, 26, 29, 32, 35, 37, 40
210 void fw_schedule_bm_work(struct fw_card *card, unsigned long delay)
212 int scheduled;
214 fw_card_get(card);
215 scheduled = schedule_delayed_work(&card->work, delay);
216 if (!scheduled)
217 fw_card_put(card);
220 static void fw_card_bm_work(struct work_struct *work)
222 struct fw_card *card = container_of(work, struct fw_card, work.work);
223 struct fw_device *root_device;
224 struct fw_node *root_node;
225 unsigned long flags;
226 int root_id, new_root_id, irm_id, local_id;
227 int gap_count, generation, grace, rcode;
228 bool do_reset = false;
229 bool root_device_is_running;
230 bool root_device_is_cmc;
231 __be32 lock_data[2];
233 spin_lock_irqsave(&card->lock, flags);
235 if (card->local_node == NULL) {
236 spin_unlock_irqrestore(&card->lock, flags);
237 goto out_put_card;
240 generation = card->generation;
241 root_node = card->root_node;
242 fw_node_get(root_node);
243 root_device = root_node->data;
244 root_device_is_running = root_device &&
245 atomic_read(&root_device->state) == FW_DEVICE_RUNNING;
246 root_device_is_cmc = root_device && root_device->cmc;
247 root_id = root_node->node_id;
248 irm_id = card->irm_node->node_id;
249 local_id = card->local_node->node_id;
251 grace = time_after(jiffies, card->reset_jiffies + DIV_ROUND_UP(HZ, 8));
253 if (is_next_generation(generation, card->bm_generation) ||
254 (card->bm_generation != generation && grace)) {
256 * This first step is to figure out who is IRM and
257 * then try to become bus manager. If the IRM is not
258 * well defined (e.g. does not have an active link
259 * layer or does not responds to our lock request, we
260 * will have to do a little vigilante bus management.
261 * In that case, we do a goto into the gap count logic
262 * so that when we do the reset, we still optimize the
263 * gap count. That could well save a reset in the
264 * next generation.
267 if (!card->irm_node->link_on) {
268 new_root_id = local_id;
269 fw_notify("IRM has link off, making local node (%02x) root.\n",
270 new_root_id);
271 goto pick_me;
274 lock_data[0] = cpu_to_be32(0x3f);
275 lock_data[1] = cpu_to_be32(local_id);
277 spin_unlock_irqrestore(&card->lock, flags);
279 rcode = fw_run_transaction(card, TCODE_LOCK_COMPARE_SWAP,
280 irm_id, generation, SCODE_100,
281 CSR_REGISTER_BASE + CSR_BUS_MANAGER_ID,
282 lock_data, sizeof(lock_data));
284 if (rcode == RCODE_GENERATION)
285 /* Another bus reset, BM work has been rescheduled. */
286 goto out;
288 if (rcode == RCODE_COMPLETE &&
289 lock_data[0] != cpu_to_be32(0x3f)) {
291 /* Somebody else is BM. Only act as IRM. */
292 if (local_id == irm_id)
293 allocate_broadcast_channel(card, generation);
295 goto out;
298 spin_lock_irqsave(&card->lock, flags);
300 if (rcode != RCODE_COMPLETE) {
302 * The lock request failed, maybe the IRM
303 * isn't really IRM capable after all. Let's
304 * do a bus reset and pick the local node as
305 * root, and thus, IRM.
307 new_root_id = local_id;
308 fw_notify("BM lock failed, making local node (%02x) root.\n",
309 new_root_id);
310 goto pick_me;
312 } else if (card->bm_generation != generation) {
314 * We weren't BM in the last generation, and the last
315 * bus reset is less than 125ms ago. Reschedule this job.
317 spin_unlock_irqrestore(&card->lock, flags);
318 fw_schedule_bm_work(card, DIV_ROUND_UP(HZ, 8));
319 goto out;
323 * We're bus manager for this generation, so next step is to
324 * make sure we have an active cycle master and do gap count
325 * optimization.
327 card->bm_generation = generation;
329 if (root_device == NULL) {
331 * Either link_on is false, or we failed to read the
332 * config rom. In either case, pick another root.
334 new_root_id = local_id;
335 } else if (!root_device_is_running) {
337 * If we haven't probed this device yet, bail out now
338 * and let's try again once that's done.
340 spin_unlock_irqrestore(&card->lock, flags);
341 goto out;
342 } else if (root_device_is_cmc) {
344 * FIXME: I suppose we should set the cmstr bit in the
345 * STATE_CLEAR register of this node, as described in
346 * 1394-1995, 8.4.2.6. Also, send out a force root
347 * packet for this node.
349 new_root_id = root_id;
350 } else {
352 * Current root has an active link layer and we
353 * successfully read the config rom, but it's not
354 * cycle master capable.
356 new_root_id = local_id;
359 pick_me:
361 * Pick a gap count from 1394a table E-1. The table doesn't cover
362 * the typically much larger 1394b beta repeater delays though.
364 if (!card->beta_repeaters_present &&
365 root_node->max_hops < ARRAY_SIZE(gap_count_table))
366 gap_count = gap_count_table[root_node->max_hops];
367 else
368 gap_count = 63;
371 * Finally, figure out if we should do a reset or not. If we have
372 * done less than 5 resets with the same physical topology and we
373 * have either a new root or a new gap count setting, let's do it.
376 if (card->bm_retries++ < 5 &&
377 (card->gap_count != gap_count || new_root_id != root_id))
378 do_reset = true;
380 spin_unlock_irqrestore(&card->lock, flags);
382 if (do_reset) {
383 fw_notify("phy config: card %d, new root=%x, gap_count=%d\n",
384 card->index, new_root_id, gap_count);
385 fw_send_phy_config(card, new_root_id, generation, gap_count);
386 fw_core_initiate_bus_reset(card, 1);
387 /* Will allocate broadcast channel after the reset. */
388 } else {
389 if (local_id == irm_id)
390 allocate_broadcast_channel(card, generation);
393 out:
394 fw_node_put(root_node);
395 out_put_card:
396 fw_card_put(card);
399 static void flush_timer_callback(unsigned long data)
401 struct fw_card *card = (struct fw_card *)data;
403 fw_flush_transactions(card);
406 void fw_card_initialize(struct fw_card *card,
407 const struct fw_card_driver *driver,
408 struct device *device)
410 static atomic_t index = ATOMIC_INIT(-1);
412 card->index = atomic_inc_return(&index);
413 card->driver = driver;
414 card->device = device;
415 card->current_tlabel = 0;
416 card->tlabel_mask = 0;
417 card->color = 0;
418 card->broadcast_channel = BROADCAST_CHANNEL_INITIAL;
420 kref_init(&card->kref);
421 init_completion(&card->done);
422 INIT_LIST_HEAD(&card->transaction_list);
423 spin_lock_init(&card->lock);
424 setup_timer(&card->flush_timer,
425 flush_timer_callback, (unsigned long)card);
427 card->local_node = NULL;
429 INIT_DELAYED_WORK(&card->work, fw_card_bm_work);
431 EXPORT_SYMBOL(fw_card_initialize);
433 int fw_card_add(struct fw_card *card,
434 u32 max_receive, u32 link_speed, u64 guid)
436 u32 *config_rom;
437 size_t length;
438 int ret;
440 card->max_receive = max_receive;
441 card->link_speed = link_speed;
442 card->guid = guid;
444 mutex_lock(&card_mutex);
445 config_rom = generate_config_rom(card, &length);
446 list_add_tail(&card->link, &card_list);
447 mutex_unlock(&card_mutex);
449 ret = card->driver->enable(card, config_rom, length);
450 if (ret < 0) {
451 mutex_lock(&card_mutex);
452 list_del(&card->link);
453 mutex_unlock(&card_mutex);
456 return ret;
458 EXPORT_SYMBOL(fw_card_add);
462 * The next few functions implements a dummy driver that use once a
463 * card driver shuts down an fw_card. This allows the driver to
464 * cleanly unload, as all IO to the card will be handled by the dummy
465 * driver instead of calling into the (possibly) unloaded module. The
466 * dummy driver just fails all IO.
469 static int dummy_enable(struct fw_card *card, u32 *config_rom, size_t length)
471 BUG();
472 return -1;
475 static int dummy_update_phy_reg(struct fw_card *card, int address,
476 int clear_bits, int set_bits)
478 return -ENODEV;
481 static int dummy_set_config_rom(struct fw_card *card,
482 u32 *config_rom, size_t length)
485 * We take the card out of card_list before setting the dummy
486 * driver, so this should never get called.
488 BUG();
489 return -1;
492 static void dummy_send_request(struct fw_card *card, struct fw_packet *packet)
494 packet->callback(packet, card, -ENODEV);
497 static void dummy_send_response(struct fw_card *card, struct fw_packet *packet)
499 packet->callback(packet, card, -ENODEV);
502 static int dummy_cancel_packet(struct fw_card *card, struct fw_packet *packet)
504 return -ENOENT;
507 static int dummy_enable_phys_dma(struct fw_card *card,
508 int node_id, int generation)
510 return -ENODEV;
513 static struct fw_card_driver dummy_driver = {
514 .enable = dummy_enable,
515 .update_phy_reg = dummy_update_phy_reg,
516 .set_config_rom = dummy_set_config_rom,
517 .send_request = dummy_send_request,
518 .cancel_packet = dummy_cancel_packet,
519 .send_response = dummy_send_response,
520 .enable_phys_dma = dummy_enable_phys_dma,
523 void fw_card_release(struct kref *kref)
525 struct fw_card *card = container_of(kref, struct fw_card, kref);
527 complete(&card->done);
530 void fw_core_remove_card(struct fw_card *card)
532 card->driver->update_phy_reg(card, 4,
533 PHY_LINK_ACTIVE | PHY_CONTENDER, 0);
534 fw_core_initiate_bus_reset(card, 1);
536 mutex_lock(&card_mutex);
537 list_del_init(&card->link);
538 mutex_unlock(&card_mutex);
540 /* Set up the dummy driver. */
541 card->driver = &dummy_driver;
543 fw_destroy_nodes(card);
545 /* Wait for all users, especially device workqueue jobs, to finish. */
546 fw_card_put(card);
547 wait_for_completion(&card->done);
549 WARN_ON(!list_empty(&card->transaction_list));
550 del_timer_sync(&card->flush_timer);
552 EXPORT_SYMBOL(fw_core_remove_card);
554 int fw_core_initiate_bus_reset(struct fw_card *card, int short_reset)
556 int reg = short_reset ? 5 : 1;
557 int bit = short_reset ? PHY_BUS_SHORT_RESET : PHY_BUS_RESET;
559 return card->driver->update_phy_reg(card, reg, 0, bit);
561 EXPORT_SYMBOL(fw_core_initiate_bus_reset);