[PATCH] mm: page_alloc cleanups
[linux-2.6/mini2440.git] / mm / page_alloc.c
blob925b0b985f7987aab0b040960a6d6a0cc10d6dea
1 /*
2 * linux/mm/page_alloc.c
4 * Manages the free list, the system allocates free pages here.
5 * Note that kmalloc() lives in slab.c
7 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
8 * Swap reorganised 29.12.95, Stephen Tweedie
9 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
10 * Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
11 * Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
12 * Zone balancing, Kanoj Sarcar, SGI, Jan 2000
13 * Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
14 * (lots of bits borrowed from Ingo Molnar & Andrew Morton)
17 #include <linux/config.h>
18 #include <linux/stddef.h>
19 #include <linux/mm.h>
20 #include <linux/swap.h>
21 #include <linux/interrupt.h>
22 #include <linux/pagemap.h>
23 #include <linux/bootmem.h>
24 #include <linux/compiler.h>
25 #include <linux/kernel.h>
26 #include <linux/module.h>
27 #include <linux/suspend.h>
28 #include <linux/pagevec.h>
29 #include <linux/blkdev.h>
30 #include <linux/slab.h>
31 #include <linux/notifier.h>
32 #include <linux/topology.h>
33 #include <linux/sysctl.h>
34 #include <linux/cpu.h>
35 #include <linux/cpuset.h>
36 #include <linux/memory_hotplug.h>
37 #include <linux/nodemask.h>
38 #include <linux/vmalloc.h>
40 #include <asm/tlbflush.h>
41 #include "internal.h"
44 * MCD - HACK: Find somewhere to initialize this EARLY, or make this
45 * initializer cleaner
47 nodemask_t node_online_map __read_mostly = { { [0] = 1UL } };
48 EXPORT_SYMBOL(node_online_map);
49 nodemask_t node_possible_map __read_mostly = NODE_MASK_ALL;
50 EXPORT_SYMBOL(node_possible_map);
51 struct pglist_data *pgdat_list __read_mostly;
52 unsigned long totalram_pages __read_mostly;
53 unsigned long totalhigh_pages __read_mostly;
54 long nr_swap_pages;
57 * results with 256, 32 in the lowmem_reserve sysctl:
58 * 1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
59 * 1G machine -> (16M dma, 784M normal, 224M high)
60 * NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
61 * HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
62 * HIGHMEM allocation will (224M+784M)/256 of ram reserved in ZONE_DMA
64 * TBD: should special case ZONE_DMA32 machines here - in those we normally
65 * don't need any ZONE_NORMAL reservation
67 int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES-1] = { 256, 256, 32 };
69 EXPORT_SYMBOL(totalram_pages);
72 * Used by page_zone() to look up the address of the struct zone whose
73 * id is encoded in the upper bits of page->flags
75 struct zone *zone_table[1 << ZONETABLE_SHIFT] __read_mostly;
76 EXPORT_SYMBOL(zone_table);
78 static char *zone_names[MAX_NR_ZONES] = { "DMA", "DMA32", "Normal", "HighMem" };
79 int min_free_kbytes = 1024;
81 unsigned long __initdata nr_kernel_pages;
82 unsigned long __initdata nr_all_pages;
84 #ifdef CONFIG_DEBUG_VM
85 static int page_outside_zone_boundaries(struct zone *zone, struct page *page)
87 int ret = 0;
88 unsigned seq;
89 unsigned long pfn = page_to_pfn(page);
91 do {
92 seq = zone_span_seqbegin(zone);
93 if (pfn >= zone->zone_start_pfn + zone->spanned_pages)
94 ret = 1;
95 else if (pfn < zone->zone_start_pfn)
96 ret = 1;
97 } while (zone_span_seqretry(zone, seq));
99 return ret;
102 static int page_is_consistent(struct zone *zone, struct page *page)
104 #ifdef CONFIG_HOLES_IN_ZONE
105 if (!pfn_valid(page_to_pfn(page)))
106 return 0;
107 #endif
108 if (zone != page_zone(page))
109 return 0;
111 return 1;
114 * Temporary debugging check for pages not lying within a given zone.
116 static int bad_range(struct zone *zone, struct page *page)
118 if (page_outside_zone_boundaries(zone, page))
119 return 1;
120 if (!page_is_consistent(zone, page))
121 return 1;
123 return 0;
126 #else
127 static inline int bad_range(struct zone *zone, struct page *page)
129 return 0;
131 #endif
133 static void bad_page(const char *function, struct page *page)
135 printk(KERN_EMERG "Bad page state at %s (in process '%s', page %p)\n",
136 function, current->comm, page);
137 printk(KERN_EMERG "flags:0x%0*lx mapping:%p mapcount:%d count:%d\n",
138 (int)(2*sizeof(unsigned long)), (unsigned long)page->flags,
139 page->mapping, page_mapcount(page), page_count(page));
140 printk(KERN_EMERG "Backtrace:\n");
141 dump_stack();
142 printk(KERN_EMERG "Trying to fix it up, but a reboot is needed\n");
143 page->flags &= ~(1 << PG_lru |
144 1 << PG_private |
145 1 << PG_locked |
146 1 << PG_active |
147 1 << PG_dirty |
148 1 << PG_reclaim |
149 1 << PG_slab |
150 1 << PG_swapcache |
151 1 << PG_writeback );
152 set_page_count(page, 0);
153 reset_page_mapcount(page);
154 page->mapping = NULL;
155 add_taint(TAINT_BAD_PAGE);
159 * Higher-order pages are called "compound pages". They are structured thusly:
161 * The first PAGE_SIZE page is called the "head page".
163 * The remaining PAGE_SIZE pages are called "tail pages".
165 * All pages have PG_compound set. All pages have their ->private pointing at
166 * the head page (even the head page has this).
168 * The first tail page's ->mapping, if non-zero, holds the address of the
169 * compound page's put_page() function.
171 * The order of the allocation is stored in the first tail page's ->index
172 * This is only for debug at present. This usage means that zero-order pages
173 * may not be compound.
175 static void prep_compound_page(struct page *page, unsigned long order)
177 int i;
178 int nr_pages = 1 << order;
180 page[1].mapping = NULL;
181 page[1].index = order;
182 for (i = 0; i < nr_pages; i++) {
183 struct page *p = page + i;
185 SetPageCompound(p);
186 set_page_private(p, (unsigned long)page);
190 static void destroy_compound_page(struct page *page, unsigned long order)
192 int i;
193 int nr_pages = 1 << order;
195 if (!PageCompound(page))
196 return;
198 if (page[1].index != order)
199 bad_page(__FUNCTION__, page);
201 for (i = 0; i < nr_pages; i++) {
202 struct page *p = page + i;
204 if (!PageCompound(p))
205 bad_page(__FUNCTION__, page);
206 if (page_private(p) != (unsigned long)page)
207 bad_page(__FUNCTION__, page);
208 ClearPageCompound(p);
213 * function for dealing with page's order in buddy system.
214 * zone->lock is already acquired when we use these.
215 * So, we don't need atomic page->flags operations here.
217 static inline unsigned long page_order(struct page *page) {
218 return page_private(page);
221 static inline void set_page_order(struct page *page, int order) {
222 set_page_private(page, order);
223 __SetPagePrivate(page);
226 static inline void rmv_page_order(struct page *page)
228 __ClearPagePrivate(page);
229 set_page_private(page, 0);
233 * Locate the struct page for both the matching buddy in our
234 * pair (buddy1) and the combined O(n+1) page they form (page).
236 * 1) Any buddy B1 will have an order O twin B2 which satisfies
237 * the following equation:
238 * B2 = B1 ^ (1 << O)
239 * For example, if the starting buddy (buddy2) is #8 its order
240 * 1 buddy is #10:
241 * B2 = 8 ^ (1 << 1) = 8 ^ 2 = 10
243 * 2) Any buddy B will have an order O+1 parent P which
244 * satisfies the following equation:
245 * P = B & ~(1 << O)
247 * Assumption: *_mem_map is contigious at least up to MAX_ORDER
249 static inline struct page *
250 __page_find_buddy(struct page *page, unsigned long page_idx, unsigned int order)
252 unsigned long buddy_idx = page_idx ^ (1 << order);
254 return page + (buddy_idx - page_idx);
257 static inline unsigned long
258 __find_combined_index(unsigned long page_idx, unsigned int order)
260 return (page_idx & ~(1 << order));
264 * This function checks whether a page is free && is the buddy
265 * we can do coalesce a page and its buddy if
266 * (a) the buddy is not in a hole &&
267 * (b) the buddy is free &&
268 * (c) the buddy is on the buddy system &&
269 * (d) a page and its buddy have the same order.
270 * for recording page's order, we use page_private(page) and PG_private.
273 static inline int page_is_buddy(struct page *page, int order)
275 #ifdef CONFIG_HOLES_IN_ZONE
276 if (!pfn_valid(page_to_pfn(page)))
277 return 0;
278 #endif
280 if (PagePrivate(page) &&
281 (page_order(page) == order) &&
282 page_count(page) == 0)
283 return 1;
284 return 0;
288 * Freeing function for a buddy system allocator.
290 * The concept of a buddy system is to maintain direct-mapped table
291 * (containing bit values) for memory blocks of various "orders".
292 * The bottom level table contains the map for the smallest allocatable
293 * units of memory (here, pages), and each level above it describes
294 * pairs of units from the levels below, hence, "buddies".
295 * At a high level, all that happens here is marking the table entry
296 * at the bottom level available, and propagating the changes upward
297 * as necessary, plus some accounting needed to play nicely with other
298 * parts of the VM system.
299 * At each level, we keep a list of pages, which are heads of continuous
300 * free pages of length of (1 << order) and marked with PG_Private.Page's
301 * order is recorded in page_private(page) field.
302 * So when we are allocating or freeing one, we can derive the state of the
303 * other. That is, if we allocate a small block, and both were
304 * free, the remainder of the region must be split into blocks.
305 * If a block is freed, and its buddy is also free, then this
306 * triggers coalescing into a block of larger size.
308 * -- wli
311 static inline void __free_pages_bulk (struct page *page,
312 struct zone *zone, unsigned int order)
314 unsigned long page_idx;
315 int order_size = 1 << order;
317 if (unlikely(order))
318 destroy_compound_page(page, order);
320 page_idx = page_to_pfn(page) & ((1 << MAX_ORDER) - 1);
322 BUG_ON(page_idx & (order_size - 1));
323 BUG_ON(bad_range(zone, page));
325 zone->free_pages += order_size;
326 while (order < MAX_ORDER-1) {
327 unsigned long combined_idx;
328 struct free_area *area;
329 struct page *buddy;
331 buddy = __page_find_buddy(page, page_idx, order);
332 if (!page_is_buddy(buddy, order))
333 break; /* Move the buddy up one level. */
335 list_del(&buddy->lru);
336 area = zone->free_area + order;
337 area->nr_free--;
338 rmv_page_order(buddy);
339 combined_idx = __find_combined_index(page_idx, order);
340 page = page + (combined_idx - page_idx);
341 page_idx = combined_idx;
342 order++;
344 set_page_order(page, order);
345 list_add(&page->lru, &zone->free_area[order].free_list);
346 zone->free_area[order].nr_free++;
349 static inline int free_pages_check(const char *function, struct page *page)
351 if (unlikely(page_mapcount(page) |
352 (page->mapping != NULL) |
353 (page_count(page) != 0) |
354 (page->flags & (
355 1 << PG_lru |
356 1 << PG_private |
357 1 << PG_locked |
358 1 << PG_active |
359 1 << PG_reclaim |
360 1 << PG_slab |
361 1 << PG_swapcache |
362 1 << PG_writeback |
363 1 << PG_reserved ))))
364 bad_page(function, page);
365 if (PageDirty(page))
366 __ClearPageDirty(page);
368 * For now, we report if PG_reserved was found set, but do not
369 * clear it, and do not free the page. But we shall soon need
370 * to do more, for when the ZERO_PAGE count wraps negative.
372 return PageReserved(page);
376 * Frees a list of pages.
377 * Assumes all pages on list are in same zone, and of same order.
378 * count is the number of pages to free.
380 * If the zone was previously in an "all pages pinned" state then look to
381 * see if this freeing clears that state.
383 * And clear the zone's pages_scanned counter, to hold off the "all pages are
384 * pinned" detection logic.
386 static int
387 free_pages_bulk(struct zone *zone, int count,
388 struct list_head *list, unsigned int order)
390 struct page *page = NULL;
391 int ret = 0;
393 spin_lock(&zone->lock);
394 zone->all_unreclaimable = 0;
395 zone->pages_scanned = 0;
396 while (!list_empty(list) && count--) {
397 page = list_entry(list->prev, struct page, lru);
398 /* have to delete it as __free_pages_bulk list manipulates */
399 list_del(&page->lru);
400 __free_pages_bulk(page, zone, order);
401 ret++;
403 spin_unlock(&zone->lock);
404 return ret;
407 void __free_pages_ok(struct page *page, unsigned int order)
409 unsigned long flags;
410 LIST_HEAD(list);
411 int i;
412 int reserved = 0;
414 arch_free_page(page, order);
416 #ifndef CONFIG_MMU
417 if (order > 0)
418 for (i = 1 ; i < (1 << order) ; ++i)
419 __put_page(page + i);
420 #endif
422 for (i = 0 ; i < (1 << order) ; ++i)
423 reserved += free_pages_check(__FUNCTION__, page + i);
424 if (reserved)
425 return;
427 list_add(&page->lru, &list);
428 mod_page_state(pgfree, 1 << order);
429 kernel_map_pages(page, 1<<order, 0);
430 local_irq_save(flags);
431 free_pages_bulk(page_zone(page), 1, &list, order);
432 local_irq_restore(flags);
437 * The order of subdivision here is critical for the IO subsystem.
438 * Please do not alter this order without good reasons and regression
439 * testing. Specifically, as large blocks of memory are subdivided,
440 * the order in which smaller blocks are delivered depends on the order
441 * they're subdivided in this function. This is the primary factor
442 * influencing the order in which pages are delivered to the IO
443 * subsystem according to empirical testing, and this is also justified
444 * by considering the behavior of a buddy system containing a single
445 * large block of memory acted on by a series of small allocations.
446 * This behavior is a critical factor in sglist merging's success.
448 * -- wli
450 static inline void expand(struct zone *zone, struct page *page,
451 int low, int high, struct free_area *area)
453 unsigned long size = 1 << high;
455 while (high > low) {
456 area--;
457 high--;
458 size >>= 1;
459 BUG_ON(bad_range(zone, &page[size]));
460 list_add(&page[size].lru, &area->free_list);
461 area->nr_free++;
462 set_page_order(&page[size], high);
467 * This page is about to be returned from the page allocator
469 static int prep_new_page(struct page *page, int order)
471 if (unlikely(page_mapcount(page) |
472 (page->mapping != NULL) |
473 (page_count(page) != 0) |
474 (page->flags & (
475 1 << PG_lru |
476 1 << PG_private |
477 1 << PG_locked |
478 1 << PG_active |
479 1 << PG_dirty |
480 1 << PG_reclaim |
481 1 << PG_slab |
482 1 << PG_swapcache |
483 1 << PG_writeback |
484 1 << PG_reserved ))))
485 bad_page(__FUNCTION__, page);
488 * For now, we report if PG_reserved was found set, but do not
489 * clear it, and do not allocate the page: as a safety net.
491 if (PageReserved(page))
492 return 1;
494 page->flags &= ~(1 << PG_uptodate | 1 << PG_error |
495 1 << PG_referenced | 1 << PG_arch_1 |
496 1 << PG_checked | 1 << PG_mappedtodisk);
497 set_page_private(page, 0);
498 set_page_refs(page, order);
499 kernel_map_pages(page, 1 << order, 1);
500 return 0;
504 * Do the hard work of removing an element from the buddy allocator.
505 * Call me with the zone->lock already held.
507 static struct page *__rmqueue(struct zone *zone, unsigned int order)
509 struct free_area * area;
510 unsigned int current_order;
511 struct page *page;
513 for (current_order = order; current_order < MAX_ORDER; ++current_order) {
514 area = zone->free_area + current_order;
515 if (list_empty(&area->free_list))
516 continue;
518 page = list_entry(area->free_list.next, struct page, lru);
519 list_del(&page->lru);
520 rmv_page_order(page);
521 area->nr_free--;
522 zone->free_pages -= 1UL << order;
523 expand(zone, page, order, current_order, area);
524 return page;
527 return NULL;
531 * Obtain a specified number of elements from the buddy allocator, all under
532 * a single hold of the lock, for efficiency. Add them to the supplied list.
533 * Returns the number of new pages which were placed at *list.
535 static int rmqueue_bulk(struct zone *zone, unsigned int order,
536 unsigned long count, struct list_head *list)
538 int i;
540 spin_lock(&zone->lock);
541 for (i = 0; i < count; ++i) {
542 struct page *page = __rmqueue(zone, order);
543 if (unlikely(page == NULL))
544 break;
545 list_add_tail(&page->lru, list);
547 spin_unlock(&zone->lock);
548 return i;
551 #ifdef CONFIG_NUMA
552 /* Called from the slab reaper to drain remote pagesets */
553 void drain_remote_pages(void)
555 struct zone *zone;
556 int i;
557 unsigned long flags;
559 local_irq_save(flags);
560 for_each_zone(zone) {
561 struct per_cpu_pageset *pset;
563 /* Do not drain local pagesets */
564 if (zone->zone_pgdat->node_id == numa_node_id())
565 continue;
567 pset = zone->pageset[smp_processor_id()];
568 for (i = 0; i < ARRAY_SIZE(pset->pcp); i++) {
569 struct per_cpu_pages *pcp;
571 pcp = &pset->pcp[i];
572 if (pcp->count)
573 pcp->count -= free_pages_bulk(zone, pcp->count,
574 &pcp->list, 0);
577 local_irq_restore(flags);
579 #endif
581 #if defined(CONFIG_PM) || defined(CONFIG_HOTPLUG_CPU)
582 static void __drain_pages(unsigned int cpu)
584 unsigned long flags;
585 struct zone *zone;
586 int i;
588 for_each_zone(zone) {
589 struct per_cpu_pageset *pset;
591 pset = zone_pcp(zone, cpu);
592 for (i = 0; i < ARRAY_SIZE(pset->pcp); i++) {
593 struct per_cpu_pages *pcp;
595 pcp = &pset->pcp[i];
596 local_irq_save(flags);
597 pcp->count -= free_pages_bulk(zone, pcp->count,
598 &pcp->list, 0);
599 local_irq_restore(flags);
603 #endif /* CONFIG_PM || CONFIG_HOTPLUG_CPU */
605 #ifdef CONFIG_PM
607 void mark_free_pages(struct zone *zone)
609 unsigned long zone_pfn, flags;
610 int order;
611 struct list_head *curr;
613 if (!zone->spanned_pages)
614 return;
616 spin_lock_irqsave(&zone->lock, flags);
617 for (zone_pfn = 0; zone_pfn < zone->spanned_pages; ++zone_pfn)
618 ClearPageNosaveFree(pfn_to_page(zone_pfn + zone->zone_start_pfn));
620 for (order = MAX_ORDER - 1; order >= 0; --order)
621 list_for_each(curr, &zone->free_area[order].free_list) {
622 unsigned long start_pfn, i;
624 start_pfn = page_to_pfn(list_entry(curr, struct page, lru));
626 for (i=0; i < (1<<order); i++)
627 SetPageNosaveFree(pfn_to_page(start_pfn+i));
629 spin_unlock_irqrestore(&zone->lock, flags);
633 * Spill all of this CPU's per-cpu pages back into the buddy allocator.
635 void drain_local_pages(void)
637 unsigned long flags;
639 local_irq_save(flags);
640 __drain_pages(smp_processor_id());
641 local_irq_restore(flags);
643 #endif /* CONFIG_PM */
645 static void zone_statistics(struct zonelist *zonelist, struct zone *z)
647 #ifdef CONFIG_NUMA
648 unsigned long flags;
649 int cpu;
650 pg_data_t *pg = z->zone_pgdat;
651 pg_data_t *orig = zonelist->zones[0]->zone_pgdat;
652 struct per_cpu_pageset *p;
654 local_irq_save(flags);
655 cpu = smp_processor_id();
656 p = zone_pcp(z,cpu);
657 if (pg == orig) {
658 p->numa_hit++;
659 } else {
660 p->numa_miss++;
661 zone_pcp(zonelist->zones[0], cpu)->numa_foreign++;
663 if (pg == NODE_DATA(numa_node_id()))
664 p->local_node++;
665 else
666 p->other_node++;
667 local_irq_restore(flags);
668 #endif
672 * Free a 0-order page
674 static void FASTCALL(free_hot_cold_page(struct page *page, int cold));
675 static void fastcall free_hot_cold_page(struct page *page, int cold)
677 struct zone *zone = page_zone(page);
678 struct per_cpu_pages *pcp;
679 unsigned long flags;
681 arch_free_page(page, 0);
683 if (PageAnon(page))
684 page->mapping = NULL;
685 if (free_pages_check(__FUNCTION__, page))
686 return;
688 inc_page_state(pgfree);
689 kernel_map_pages(page, 1, 0);
691 pcp = &zone_pcp(zone, get_cpu())->pcp[cold];
692 local_irq_save(flags);
693 list_add(&page->lru, &pcp->list);
694 pcp->count++;
695 if (pcp->count >= pcp->high)
696 pcp->count -= free_pages_bulk(zone, pcp->batch, &pcp->list, 0);
697 local_irq_restore(flags);
698 put_cpu();
701 void fastcall free_hot_page(struct page *page)
703 free_hot_cold_page(page, 0);
706 void fastcall free_cold_page(struct page *page)
708 free_hot_cold_page(page, 1);
711 static inline void prep_zero_page(struct page *page, int order, gfp_t gfp_flags)
713 int i;
715 BUG_ON((gfp_flags & (__GFP_WAIT | __GFP_HIGHMEM)) == __GFP_HIGHMEM);
716 for(i = 0; i < (1 << order); i++)
717 clear_highpage(page + i);
721 * Really, prep_compound_page() should be called from __rmqueue_bulk(). But
722 * we cheat by calling it from here, in the order > 0 path. Saves a branch
723 * or two.
725 static struct page *
726 buffered_rmqueue(struct zone *zone, int order, gfp_t gfp_flags)
728 unsigned long flags;
729 struct page *page;
730 int cold = !!(gfp_flags & __GFP_COLD);
732 again:
733 if (order == 0) {
734 struct per_cpu_pages *pcp;
736 page = NULL;
737 pcp = &zone_pcp(zone, get_cpu())->pcp[cold];
738 local_irq_save(flags);
739 if (!pcp->count)
740 pcp->count += rmqueue_bulk(zone, 0,
741 pcp->batch, &pcp->list);
742 if (likely(pcp->count)) {
743 page = list_entry(pcp->list.next, struct page, lru);
744 list_del(&page->lru);
745 pcp->count--;
747 local_irq_restore(flags);
748 put_cpu();
749 } else {
750 spin_lock_irqsave(&zone->lock, flags);
751 page = __rmqueue(zone, order);
752 spin_unlock_irqrestore(&zone->lock, flags);
755 if (page != NULL) {
756 BUG_ON(bad_range(zone, page));
757 mod_page_state_zone(zone, pgalloc, 1 << order);
758 if (prep_new_page(page, order))
759 goto again;
761 if (gfp_flags & __GFP_ZERO)
762 prep_zero_page(page, order, gfp_flags);
764 if (order && (gfp_flags & __GFP_COMP))
765 prep_compound_page(page, order);
767 return page;
770 #define ALLOC_NO_WATERMARKS 0x01 /* don't check watermarks at all */
771 #define ALLOC_WMARK_MIN 0x02 /* use pages_min watermark */
772 #define ALLOC_WMARK_LOW 0x04 /* use pages_low watermark */
773 #define ALLOC_WMARK_HIGH 0x08 /* use pages_high watermark */
774 #define ALLOC_HARDER 0x10 /* try to alloc harder */
775 #define ALLOC_HIGH 0x20 /* __GFP_HIGH set */
776 #define ALLOC_CPUSET 0x40 /* check for correct cpuset */
779 * Return 1 if free pages are above 'mark'. This takes into account the order
780 * of the allocation.
782 int zone_watermark_ok(struct zone *z, int order, unsigned long mark,
783 int classzone_idx, int alloc_flags)
785 /* free_pages my go negative - that's OK */
786 long min = mark, free_pages = z->free_pages - (1 << order) + 1;
787 int o;
789 if (alloc_flags & ALLOC_HIGH)
790 min -= min / 2;
791 if (alloc_flags & ALLOC_HARDER)
792 min -= min / 4;
794 if (free_pages <= min + z->lowmem_reserve[classzone_idx])
795 return 0;
796 for (o = 0; o < order; o++) {
797 /* At the next order, this order's pages become unavailable */
798 free_pages -= z->free_area[o].nr_free << o;
800 /* Require fewer higher order pages to be free */
801 min >>= 1;
803 if (free_pages <= min)
804 return 0;
806 return 1;
810 * get_page_from_freeliest goes through the zonelist trying to allocate
811 * a page.
813 static struct page *
814 get_page_from_freelist(gfp_t gfp_mask, unsigned int order,
815 struct zonelist *zonelist, int alloc_flags)
817 struct zone **z = zonelist->zones;
818 struct page *page = NULL;
819 int classzone_idx = zone_idx(*z);
822 * Go through the zonelist once, looking for a zone with enough free.
823 * See also cpuset_zone_allowed() comment in kernel/cpuset.c.
825 do {
826 if ((alloc_flags & ALLOC_CPUSET) &&
827 !cpuset_zone_allowed(*z, gfp_mask))
828 continue;
830 if (!(alloc_flags & ALLOC_NO_WATERMARKS)) {
831 unsigned long mark;
832 if (alloc_flags & ALLOC_WMARK_MIN)
833 mark = (*z)->pages_min;
834 else if (alloc_flags & ALLOC_WMARK_LOW)
835 mark = (*z)->pages_low;
836 else
837 mark = (*z)->pages_high;
838 if (!zone_watermark_ok(*z, order, mark,
839 classzone_idx, alloc_flags))
840 continue;
843 page = buffered_rmqueue(*z, order, gfp_mask);
844 if (page) {
845 zone_statistics(zonelist, *z);
846 break;
848 } while (*(++z) != NULL);
849 return page;
853 * This is the 'heart' of the zoned buddy allocator.
855 struct page * fastcall
856 __alloc_pages(gfp_t gfp_mask, unsigned int order,
857 struct zonelist *zonelist)
859 const gfp_t wait = gfp_mask & __GFP_WAIT;
860 struct zone **z;
861 struct page *page;
862 struct reclaim_state reclaim_state;
863 struct task_struct *p = current;
864 int do_retry;
865 int alloc_flags;
866 int did_some_progress;
868 might_sleep_if(wait);
870 restart:
871 z = zonelist->zones; /* the list of zones suitable for gfp_mask */
873 if (unlikely(*z == NULL)) {
874 /* Should this ever happen?? */
875 return NULL;
878 page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, order,
879 zonelist, ALLOC_WMARK_LOW|ALLOC_CPUSET);
880 if (page)
881 goto got_pg;
883 do {
884 wakeup_kswapd(*z, order);
885 } while (*(++z));
888 * OK, we're below the kswapd watermark and have kicked background
889 * reclaim. Now things get more complex, so set up alloc_flags according
890 * to how we want to proceed.
892 * The caller may dip into page reserves a bit more if the caller
893 * cannot run direct reclaim, or if the caller has realtime scheduling
894 * policy.
896 alloc_flags = ALLOC_WMARK_MIN;
897 if ((unlikely(rt_task(p)) && !in_interrupt()) || !wait)
898 alloc_flags |= ALLOC_HARDER;
899 if (gfp_mask & __GFP_HIGH)
900 alloc_flags |= ALLOC_HIGH;
901 alloc_flags |= ALLOC_CPUSET;
904 * Go through the zonelist again. Let __GFP_HIGH and allocations
905 * coming from realtime tasks go deeper into reserves.
907 * This is the last chance, in general, before the goto nopage.
908 * Ignore cpuset if GFP_ATOMIC (!wait) rather than fail alloc.
909 * See also cpuset_zone_allowed() comment in kernel/cpuset.c.
911 page = get_page_from_freelist(gfp_mask, order, zonelist, alloc_flags);
912 if (page)
913 goto got_pg;
915 /* This allocation should allow future memory freeing. */
917 if (((p->flags & PF_MEMALLOC) || unlikely(test_thread_flag(TIF_MEMDIE)))
918 && !in_interrupt()) {
919 if (!(gfp_mask & __GFP_NOMEMALLOC)) {
920 nofail_alloc:
921 /* go through the zonelist yet again, ignoring mins */
922 page = get_page_from_freelist(gfp_mask, order,
923 zonelist, ALLOC_NO_WATERMARKS);
924 if (page)
925 goto got_pg;
926 if (gfp_mask & __GFP_NOFAIL) {
927 blk_congestion_wait(WRITE, HZ/50);
928 goto nofail_alloc;
931 goto nopage;
934 /* Atomic allocations - we can't balance anything */
935 if (!wait)
936 goto nopage;
938 rebalance:
939 cond_resched();
941 /* We now go into synchronous reclaim */
942 p->flags |= PF_MEMALLOC;
943 reclaim_state.reclaimed_slab = 0;
944 p->reclaim_state = &reclaim_state;
946 did_some_progress = try_to_free_pages(zonelist->zones, gfp_mask);
948 p->reclaim_state = NULL;
949 p->flags &= ~PF_MEMALLOC;
951 cond_resched();
953 if (likely(did_some_progress)) {
954 page = get_page_from_freelist(gfp_mask, order,
955 zonelist, alloc_flags);
956 if (page)
957 goto got_pg;
958 } else if ((gfp_mask & __GFP_FS) && !(gfp_mask & __GFP_NORETRY)) {
960 * Go through the zonelist yet one more time, keep
961 * very high watermark here, this is only to catch
962 * a parallel oom killing, we must fail if we're still
963 * under heavy pressure.
965 page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, order,
966 zonelist, ALLOC_WMARK_HIGH|ALLOC_CPUSET);
967 if (page)
968 goto got_pg;
970 out_of_memory(gfp_mask, order);
971 goto restart;
975 * Don't let big-order allocations loop unless the caller explicitly
976 * requests that. Wait for some write requests to complete then retry.
978 * In this implementation, __GFP_REPEAT means __GFP_NOFAIL for order
979 * <= 3, but that may not be true in other implementations.
981 do_retry = 0;
982 if (!(gfp_mask & __GFP_NORETRY)) {
983 if ((order <= 3) || (gfp_mask & __GFP_REPEAT))
984 do_retry = 1;
985 if (gfp_mask & __GFP_NOFAIL)
986 do_retry = 1;
988 if (do_retry) {
989 blk_congestion_wait(WRITE, HZ/50);
990 goto rebalance;
993 nopage:
994 if (!(gfp_mask & __GFP_NOWARN) && printk_ratelimit()) {
995 printk(KERN_WARNING "%s: page allocation failure."
996 " order:%d, mode:0x%x\n",
997 p->comm, order, gfp_mask);
998 dump_stack();
999 show_mem();
1001 got_pg:
1002 return page;
1005 EXPORT_SYMBOL(__alloc_pages);
1008 * Common helper functions.
1010 fastcall unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order)
1012 struct page * page;
1013 page = alloc_pages(gfp_mask, order);
1014 if (!page)
1015 return 0;
1016 return (unsigned long) page_address(page);
1019 EXPORT_SYMBOL(__get_free_pages);
1021 fastcall unsigned long get_zeroed_page(gfp_t gfp_mask)
1023 struct page * page;
1026 * get_zeroed_page() returns a 32-bit address, which cannot represent
1027 * a highmem page
1029 BUG_ON((gfp_mask & __GFP_HIGHMEM) != 0);
1031 page = alloc_pages(gfp_mask | __GFP_ZERO, 0);
1032 if (page)
1033 return (unsigned long) page_address(page);
1034 return 0;
1037 EXPORT_SYMBOL(get_zeroed_page);
1039 void __pagevec_free(struct pagevec *pvec)
1041 int i = pagevec_count(pvec);
1043 while (--i >= 0)
1044 free_hot_cold_page(pvec->pages[i], pvec->cold);
1047 fastcall void __free_pages(struct page *page, unsigned int order)
1049 if (put_page_testzero(page)) {
1050 if (order == 0)
1051 free_hot_page(page);
1052 else
1053 __free_pages_ok(page, order);
1057 EXPORT_SYMBOL(__free_pages);
1059 fastcall void free_pages(unsigned long addr, unsigned int order)
1061 if (addr != 0) {
1062 BUG_ON(!virt_addr_valid((void *)addr));
1063 __free_pages(virt_to_page((void *)addr), order);
1067 EXPORT_SYMBOL(free_pages);
1070 * Total amount of free (allocatable) RAM:
1072 unsigned int nr_free_pages(void)
1074 unsigned int sum = 0;
1075 struct zone *zone;
1077 for_each_zone(zone)
1078 sum += zone->free_pages;
1080 return sum;
1083 EXPORT_SYMBOL(nr_free_pages);
1085 #ifdef CONFIG_NUMA
1086 unsigned int nr_free_pages_pgdat(pg_data_t *pgdat)
1088 unsigned int i, sum = 0;
1090 for (i = 0; i < MAX_NR_ZONES; i++)
1091 sum += pgdat->node_zones[i].free_pages;
1093 return sum;
1095 #endif
1097 static unsigned int nr_free_zone_pages(int offset)
1099 /* Just pick one node, since fallback list is circular */
1100 pg_data_t *pgdat = NODE_DATA(numa_node_id());
1101 unsigned int sum = 0;
1103 struct zonelist *zonelist = pgdat->node_zonelists + offset;
1104 struct zone **zonep = zonelist->zones;
1105 struct zone *zone;
1107 for (zone = *zonep++; zone; zone = *zonep++) {
1108 unsigned long size = zone->present_pages;
1109 unsigned long high = zone->pages_high;
1110 if (size > high)
1111 sum += size - high;
1114 return sum;
1118 * Amount of free RAM allocatable within ZONE_DMA and ZONE_NORMAL
1120 unsigned int nr_free_buffer_pages(void)
1122 return nr_free_zone_pages(gfp_zone(GFP_USER));
1126 * Amount of free RAM allocatable within all zones
1128 unsigned int nr_free_pagecache_pages(void)
1130 return nr_free_zone_pages(gfp_zone(GFP_HIGHUSER));
1133 #ifdef CONFIG_HIGHMEM
1134 unsigned int nr_free_highpages (void)
1136 pg_data_t *pgdat;
1137 unsigned int pages = 0;
1139 for_each_pgdat(pgdat)
1140 pages += pgdat->node_zones[ZONE_HIGHMEM].free_pages;
1142 return pages;
1144 #endif
1146 #ifdef CONFIG_NUMA
1147 static void show_node(struct zone *zone)
1149 printk("Node %d ", zone->zone_pgdat->node_id);
1151 #else
1152 #define show_node(zone) do { } while (0)
1153 #endif
1156 * Accumulate the page_state information across all CPUs.
1157 * The result is unavoidably approximate - it can change
1158 * during and after execution of this function.
1160 static DEFINE_PER_CPU(struct page_state, page_states) = {0};
1162 atomic_t nr_pagecache = ATOMIC_INIT(0);
1163 EXPORT_SYMBOL(nr_pagecache);
1164 #ifdef CONFIG_SMP
1165 DEFINE_PER_CPU(long, nr_pagecache_local) = 0;
1166 #endif
1168 static void __get_page_state(struct page_state *ret, int nr, cpumask_t *cpumask)
1170 int cpu = 0;
1172 memset(ret, 0, sizeof(*ret));
1174 cpu = first_cpu(*cpumask);
1175 while (cpu < NR_CPUS) {
1176 unsigned long *in, *out, off;
1178 in = (unsigned long *)&per_cpu(page_states, cpu);
1180 cpu = next_cpu(cpu, *cpumask);
1182 if (cpu < NR_CPUS)
1183 prefetch(&per_cpu(page_states, cpu));
1185 out = (unsigned long *)ret;
1186 for (off = 0; off < nr; off++)
1187 *out++ += *in++;
1191 void get_page_state_node(struct page_state *ret, int node)
1193 int nr;
1194 cpumask_t mask = node_to_cpumask(node);
1196 nr = offsetof(struct page_state, GET_PAGE_STATE_LAST);
1197 nr /= sizeof(unsigned long);
1199 __get_page_state(ret, nr+1, &mask);
1202 void get_page_state(struct page_state *ret)
1204 int nr;
1205 cpumask_t mask = CPU_MASK_ALL;
1207 nr = offsetof(struct page_state, GET_PAGE_STATE_LAST);
1208 nr /= sizeof(unsigned long);
1210 __get_page_state(ret, nr + 1, &mask);
1213 void get_full_page_state(struct page_state *ret)
1215 cpumask_t mask = CPU_MASK_ALL;
1217 __get_page_state(ret, sizeof(*ret) / sizeof(unsigned long), &mask);
1220 unsigned long __read_page_state(unsigned long offset)
1222 unsigned long ret = 0;
1223 int cpu;
1225 for_each_cpu(cpu) {
1226 unsigned long in;
1228 in = (unsigned long)&per_cpu(page_states, cpu) + offset;
1229 ret += *((unsigned long *)in);
1231 return ret;
1234 void __mod_page_state(unsigned long offset, unsigned long delta)
1236 unsigned long flags;
1237 void* ptr;
1239 local_irq_save(flags);
1240 ptr = &__get_cpu_var(page_states);
1241 *(unsigned long*)(ptr + offset) += delta;
1242 local_irq_restore(flags);
1245 EXPORT_SYMBOL(__mod_page_state);
1247 void __get_zone_counts(unsigned long *active, unsigned long *inactive,
1248 unsigned long *free, struct pglist_data *pgdat)
1250 struct zone *zones = pgdat->node_zones;
1251 int i;
1253 *active = 0;
1254 *inactive = 0;
1255 *free = 0;
1256 for (i = 0; i < MAX_NR_ZONES; i++) {
1257 *active += zones[i].nr_active;
1258 *inactive += zones[i].nr_inactive;
1259 *free += zones[i].free_pages;
1263 void get_zone_counts(unsigned long *active,
1264 unsigned long *inactive, unsigned long *free)
1266 struct pglist_data *pgdat;
1268 *active = 0;
1269 *inactive = 0;
1270 *free = 0;
1271 for_each_pgdat(pgdat) {
1272 unsigned long l, m, n;
1273 __get_zone_counts(&l, &m, &n, pgdat);
1274 *active += l;
1275 *inactive += m;
1276 *free += n;
1280 void si_meminfo(struct sysinfo *val)
1282 val->totalram = totalram_pages;
1283 val->sharedram = 0;
1284 val->freeram = nr_free_pages();
1285 val->bufferram = nr_blockdev_pages();
1286 #ifdef CONFIG_HIGHMEM
1287 val->totalhigh = totalhigh_pages;
1288 val->freehigh = nr_free_highpages();
1289 #else
1290 val->totalhigh = 0;
1291 val->freehigh = 0;
1292 #endif
1293 val->mem_unit = PAGE_SIZE;
1296 EXPORT_SYMBOL(si_meminfo);
1298 #ifdef CONFIG_NUMA
1299 void si_meminfo_node(struct sysinfo *val, int nid)
1301 pg_data_t *pgdat = NODE_DATA(nid);
1303 val->totalram = pgdat->node_present_pages;
1304 val->freeram = nr_free_pages_pgdat(pgdat);
1305 val->totalhigh = pgdat->node_zones[ZONE_HIGHMEM].present_pages;
1306 val->freehigh = pgdat->node_zones[ZONE_HIGHMEM].free_pages;
1307 val->mem_unit = PAGE_SIZE;
1309 #endif
1311 #define K(x) ((x) << (PAGE_SHIFT-10))
1314 * Show free area list (used inside shift_scroll-lock stuff)
1315 * We also calculate the percentage fragmentation. We do this by counting the
1316 * memory on each free list with the exception of the first item on the list.
1318 void show_free_areas(void)
1320 struct page_state ps;
1321 int cpu, temperature;
1322 unsigned long active;
1323 unsigned long inactive;
1324 unsigned long free;
1325 struct zone *zone;
1327 for_each_zone(zone) {
1328 show_node(zone);
1329 printk("%s per-cpu:", zone->name);
1331 if (!zone->present_pages) {
1332 printk(" empty\n");
1333 continue;
1334 } else
1335 printk("\n");
1337 for_each_online_cpu(cpu) {
1338 struct per_cpu_pageset *pageset;
1340 pageset = zone_pcp(zone, cpu);
1342 for (temperature = 0; temperature < 2; temperature++)
1343 printk("cpu %d %s: high %d, batch %d used:%d\n",
1344 cpu,
1345 temperature ? "cold" : "hot",
1346 pageset->pcp[temperature].high,
1347 pageset->pcp[temperature].batch,
1348 pageset->pcp[temperature].count);
1352 get_page_state(&ps);
1353 get_zone_counts(&active, &inactive, &free);
1355 printk("Free pages: %11ukB (%ukB HighMem)\n",
1356 K(nr_free_pages()),
1357 K(nr_free_highpages()));
1359 printk("Active:%lu inactive:%lu dirty:%lu writeback:%lu "
1360 "unstable:%lu free:%u slab:%lu mapped:%lu pagetables:%lu\n",
1361 active,
1362 inactive,
1363 ps.nr_dirty,
1364 ps.nr_writeback,
1365 ps.nr_unstable,
1366 nr_free_pages(),
1367 ps.nr_slab,
1368 ps.nr_mapped,
1369 ps.nr_page_table_pages);
1371 for_each_zone(zone) {
1372 int i;
1374 show_node(zone);
1375 printk("%s"
1376 " free:%lukB"
1377 " min:%lukB"
1378 " low:%lukB"
1379 " high:%lukB"
1380 " active:%lukB"
1381 " inactive:%lukB"
1382 " present:%lukB"
1383 " pages_scanned:%lu"
1384 " all_unreclaimable? %s"
1385 "\n",
1386 zone->name,
1387 K(zone->free_pages),
1388 K(zone->pages_min),
1389 K(zone->pages_low),
1390 K(zone->pages_high),
1391 K(zone->nr_active),
1392 K(zone->nr_inactive),
1393 K(zone->present_pages),
1394 zone->pages_scanned,
1395 (zone->all_unreclaimable ? "yes" : "no")
1397 printk("lowmem_reserve[]:");
1398 for (i = 0; i < MAX_NR_ZONES; i++)
1399 printk(" %lu", zone->lowmem_reserve[i]);
1400 printk("\n");
1403 for_each_zone(zone) {
1404 unsigned long nr, flags, order, total = 0;
1406 show_node(zone);
1407 printk("%s: ", zone->name);
1408 if (!zone->present_pages) {
1409 printk("empty\n");
1410 continue;
1413 spin_lock_irqsave(&zone->lock, flags);
1414 for (order = 0; order < MAX_ORDER; order++) {
1415 nr = zone->free_area[order].nr_free;
1416 total += nr << order;
1417 printk("%lu*%lukB ", nr, K(1UL) << order);
1419 spin_unlock_irqrestore(&zone->lock, flags);
1420 printk("= %lukB\n", K(total));
1423 show_swap_cache_info();
1427 * Builds allocation fallback zone lists.
1429 static int __init build_zonelists_node(pg_data_t *pgdat, struct zonelist *zonelist, int j, int k)
1431 switch (k) {
1432 struct zone *zone;
1433 default:
1434 BUG();
1435 case ZONE_HIGHMEM:
1436 zone = pgdat->node_zones + ZONE_HIGHMEM;
1437 if (zone->present_pages) {
1438 #ifndef CONFIG_HIGHMEM
1439 BUG();
1440 #endif
1441 zonelist->zones[j++] = zone;
1443 case ZONE_NORMAL:
1444 zone = pgdat->node_zones + ZONE_NORMAL;
1445 if (zone->present_pages)
1446 zonelist->zones[j++] = zone;
1447 case ZONE_DMA32:
1448 zone = pgdat->node_zones + ZONE_DMA32;
1449 if (zone->present_pages)
1450 zonelist->zones[j++] = zone;
1451 case ZONE_DMA:
1452 zone = pgdat->node_zones + ZONE_DMA;
1453 if (zone->present_pages)
1454 zonelist->zones[j++] = zone;
1457 return j;
1460 static inline int highest_zone(int zone_bits)
1462 int res = ZONE_NORMAL;
1463 if (zone_bits & (__force int)__GFP_HIGHMEM)
1464 res = ZONE_HIGHMEM;
1465 if (zone_bits & (__force int)__GFP_DMA32)
1466 res = ZONE_DMA32;
1467 if (zone_bits & (__force int)__GFP_DMA)
1468 res = ZONE_DMA;
1469 return res;
1472 #ifdef CONFIG_NUMA
1473 #define MAX_NODE_LOAD (num_online_nodes())
1474 static int __initdata node_load[MAX_NUMNODES];
1476 * find_next_best_node - find the next node that should appear in a given node's fallback list
1477 * @node: node whose fallback list we're appending
1478 * @used_node_mask: nodemask_t of already used nodes
1480 * We use a number of factors to determine which is the next node that should
1481 * appear on a given node's fallback list. The node should not have appeared
1482 * already in @node's fallback list, and it should be the next closest node
1483 * according to the distance array (which contains arbitrary distance values
1484 * from each node to each node in the system), and should also prefer nodes
1485 * with no CPUs, since presumably they'll have very little allocation pressure
1486 * on them otherwise.
1487 * It returns -1 if no node is found.
1489 static int __init find_next_best_node(int node, nodemask_t *used_node_mask)
1491 int i, n, val;
1492 int min_val = INT_MAX;
1493 int best_node = -1;
1495 for_each_online_node(i) {
1496 cpumask_t tmp;
1498 /* Start from local node */
1499 n = (node+i) % num_online_nodes();
1501 /* Don't want a node to appear more than once */
1502 if (node_isset(n, *used_node_mask))
1503 continue;
1505 /* Use the local node if we haven't already */
1506 if (!node_isset(node, *used_node_mask)) {
1507 best_node = node;
1508 break;
1511 /* Use the distance array to find the distance */
1512 val = node_distance(node, n);
1514 /* Give preference to headless and unused nodes */
1515 tmp = node_to_cpumask(n);
1516 if (!cpus_empty(tmp))
1517 val += PENALTY_FOR_NODE_WITH_CPUS;
1519 /* Slight preference for less loaded node */
1520 val *= (MAX_NODE_LOAD*MAX_NUMNODES);
1521 val += node_load[n];
1523 if (val < min_val) {
1524 min_val = val;
1525 best_node = n;
1529 if (best_node >= 0)
1530 node_set(best_node, *used_node_mask);
1532 return best_node;
1535 static void __init build_zonelists(pg_data_t *pgdat)
1537 int i, j, k, node, local_node;
1538 int prev_node, load;
1539 struct zonelist *zonelist;
1540 nodemask_t used_mask;
1542 /* initialize zonelists */
1543 for (i = 0; i < GFP_ZONETYPES; i++) {
1544 zonelist = pgdat->node_zonelists + i;
1545 zonelist->zones[0] = NULL;
1548 /* NUMA-aware ordering of nodes */
1549 local_node = pgdat->node_id;
1550 load = num_online_nodes();
1551 prev_node = local_node;
1552 nodes_clear(used_mask);
1553 while ((node = find_next_best_node(local_node, &used_mask)) >= 0) {
1555 * We don't want to pressure a particular node.
1556 * So adding penalty to the first node in same
1557 * distance group to make it round-robin.
1559 if (node_distance(local_node, node) !=
1560 node_distance(local_node, prev_node))
1561 node_load[node] += load;
1562 prev_node = node;
1563 load--;
1564 for (i = 0; i < GFP_ZONETYPES; i++) {
1565 zonelist = pgdat->node_zonelists + i;
1566 for (j = 0; zonelist->zones[j] != NULL; j++);
1568 k = highest_zone(i);
1570 j = build_zonelists_node(NODE_DATA(node), zonelist, j, k);
1571 zonelist->zones[j] = NULL;
1576 #else /* CONFIG_NUMA */
1578 static void __init build_zonelists(pg_data_t *pgdat)
1580 int i, j, k, node, local_node;
1582 local_node = pgdat->node_id;
1583 for (i = 0; i < GFP_ZONETYPES; i++) {
1584 struct zonelist *zonelist;
1586 zonelist = pgdat->node_zonelists + i;
1588 j = 0;
1589 k = highest_zone(i);
1590 j = build_zonelists_node(pgdat, zonelist, j, k);
1592 * Now we build the zonelist so that it contains the zones
1593 * of all the other nodes.
1594 * We don't want to pressure a particular node, so when
1595 * building the zones for node N, we make sure that the
1596 * zones coming right after the local ones are those from
1597 * node N+1 (modulo N)
1599 for (node = local_node + 1; node < MAX_NUMNODES; node++) {
1600 if (!node_online(node))
1601 continue;
1602 j = build_zonelists_node(NODE_DATA(node), zonelist, j, k);
1604 for (node = 0; node < local_node; node++) {
1605 if (!node_online(node))
1606 continue;
1607 j = build_zonelists_node(NODE_DATA(node), zonelist, j, k);
1610 zonelist->zones[j] = NULL;
1614 #endif /* CONFIG_NUMA */
1616 void __init build_all_zonelists(void)
1618 int i;
1620 for_each_online_node(i)
1621 build_zonelists(NODE_DATA(i));
1622 printk("Built %i zonelists\n", num_online_nodes());
1623 cpuset_init_current_mems_allowed();
1627 * Helper functions to size the waitqueue hash table.
1628 * Essentially these want to choose hash table sizes sufficiently
1629 * large so that collisions trying to wait on pages are rare.
1630 * But in fact, the number of active page waitqueues on typical
1631 * systems is ridiculously low, less than 200. So this is even
1632 * conservative, even though it seems large.
1634 * The constant PAGES_PER_WAITQUEUE specifies the ratio of pages to
1635 * waitqueues, i.e. the size of the waitq table given the number of pages.
1637 #define PAGES_PER_WAITQUEUE 256
1639 static inline unsigned long wait_table_size(unsigned long pages)
1641 unsigned long size = 1;
1643 pages /= PAGES_PER_WAITQUEUE;
1645 while (size < pages)
1646 size <<= 1;
1649 * Once we have dozens or even hundreds of threads sleeping
1650 * on IO we've got bigger problems than wait queue collision.
1651 * Limit the size of the wait table to a reasonable size.
1653 size = min(size, 4096UL);
1655 return max(size, 4UL);
1659 * This is an integer logarithm so that shifts can be used later
1660 * to extract the more random high bits from the multiplicative
1661 * hash function before the remainder is taken.
1663 static inline unsigned long wait_table_bits(unsigned long size)
1665 return ffz(~size);
1668 #define LONG_ALIGN(x) (((x)+(sizeof(long))-1)&~((sizeof(long))-1))
1670 static void __init calculate_zone_totalpages(struct pglist_data *pgdat,
1671 unsigned long *zones_size, unsigned long *zholes_size)
1673 unsigned long realtotalpages, totalpages = 0;
1674 int i;
1676 for (i = 0; i < MAX_NR_ZONES; i++)
1677 totalpages += zones_size[i];
1678 pgdat->node_spanned_pages = totalpages;
1680 realtotalpages = totalpages;
1681 if (zholes_size)
1682 for (i = 0; i < MAX_NR_ZONES; i++)
1683 realtotalpages -= zholes_size[i];
1684 pgdat->node_present_pages = realtotalpages;
1685 printk(KERN_DEBUG "On node %d totalpages: %lu\n", pgdat->node_id, realtotalpages);
1690 * Initially all pages are reserved - free ones are freed
1691 * up by free_all_bootmem() once the early boot process is
1692 * done. Non-atomic initialization, single-pass.
1694 void __devinit memmap_init_zone(unsigned long size, int nid, unsigned long zone,
1695 unsigned long start_pfn)
1697 struct page *page;
1698 unsigned long end_pfn = start_pfn + size;
1699 unsigned long pfn;
1701 for (pfn = start_pfn; pfn < end_pfn; pfn++, page++) {
1702 if (!early_pfn_valid(pfn))
1703 continue;
1704 page = pfn_to_page(pfn);
1705 set_page_links(page, zone, nid, pfn);
1706 set_page_count(page, 1);
1707 reset_page_mapcount(page);
1708 SetPageReserved(page);
1709 INIT_LIST_HEAD(&page->lru);
1710 #ifdef WANT_PAGE_VIRTUAL
1711 /* The shift won't overflow because ZONE_NORMAL is below 4G. */
1712 if (!is_highmem_idx(zone))
1713 set_page_address(page, __va(pfn << PAGE_SHIFT));
1714 #endif
1718 void zone_init_free_lists(struct pglist_data *pgdat, struct zone *zone,
1719 unsigned long size)
1721 int order;
1722 for (order = 0; order < MAX_ORDER ; order++) {
1723 INIT_LIST_HEAD(&zone->free_area[order].free_list);
1724 zone->free_area[order].nr_free = 0;
1728 #define ZONETABLE_INDEX(x, zone_nr) ((x << ZONES_SHIFT) | zone_nr)
1729 void zonetable_add(struct zone *zone, int nid, int zid, unsigned long pfn,
1730 unsigned long size)
1732 unsigned long snum = pfn_to_section_nr(pfn);
1733 unsigned long end = pfn_to_section_nr(pfn + size);
1735 if (FLAGS_HAS_NODE)
1736 zone_table[ZONETABLE_INDEX(nid, zid)] = zone;
1737 else
1738 for (; snum <= end; snum++)
1739 zone_table[ZONETABLE_INDEX(snum, zid)] = zone;
1742 #ifndef __HAVE_ARCH_MEMMAP_INIT
1743 #define memmap_init(size, nid, zone, start_pfn) \
1744 memmap_init_zone((size), (nid), (zone), (start_pfn))
1745 #endif
1747 static int __devinit zone_batchsize(struct zone *zone)
1749 int batch;
1752 * The per-cpu-pages pools are set to around 1000th of the
1753 * size of the zone. But no more than 1/2 of a meg.
1755 * OK, so we don't know how big the cache is. So guess.
1757 batch = zone->present_pages / 1024;
1758 if (batch * PAGE_SIZE > 512 * 1024)
1759 batch = (512 * 1024) / PAGE_SIZE;
1760 batch /= 4; /* We effectively *= 4 below */
1761 if (batch < 1)
1762 batch = 1;
1765 * Clamp the batch to a 2^n - 1 value. Having a power
1766 * of 2 value was found to be more likely to have
1767 * suboptimal cache aliasing properties in some cases.
1769 * For example if 2 tasks are alternately allocating
1770 * batches of pages, one task can end up with a lot
1771 * of pages of one half of the possible page colors
1772 * and the other with pages of the other colors.
1774 batch = (1 << (fls(batch + batch/2)-1)) - 1;
1776 return batch;
1779 inline void setup_pageset(struct per_cpu_pageset *p, unsigned long batch)
1781 struct per_cpu_pages *pcp;
1783 memset(p, 0, sizeof(*p));
1785 pcp = &p->pcp[0]; /* hot */
1786 pcp->count = 0;
1787 pcp->high = 6 * batch;
1788 pcp->batch = max(1UL, 1 * batch);
1789 INIT_LIST_HEAD(&pcp->list);
1791 pcp = &p->pcp[1]; /* cold*/
1792 pcp->count = 0;
1793 pcp->high = 2 * batch;
1794 pcp->batch = max(1UL, batch/2);
1795 INIT_LIST_HEAD(&pcp->list);
1798 #ifdef CONFIG_NUMA
1800 * Boot pageset table. One per cpu which is going to be used for all
1801 * zones and all nodes. The parameters will be set in such a way
1802 * that an item put on a list will immediately be handed over to
1803 * the buddy list. This is safe since pageset manipulation is done
1804 * with interrupts disabled.
1806 * Some NUMA counter updates may also be caught by the boot pagesets.
1808 * The boot_pagesets must be kept even after bootup is complete for
1809 * unused processors and/or zones. They do play a role for bootstrapping
1810 * hotplugged processors.
1812 * zoneinfo_show() and maybe other functions do
1813 * not check if the processor is online before following the pageset pointer.
1814 * Other parts of the kernel may not check if the zone is available.
1816 static struct per_cpu_pageset
1817 boot_pageset[NR_CPUS];
1820 * Dynamically allocate memory for the
1821 * per cpu pageset array in struct zone.
1823 static int __devinit process_zones(int cpu)
1825 struct zone *zone, *dzone;
1827 for_each_zone(zone) {
1829 zone->pageset[cpu] = kmalloc_node(sizeof(struct per_cpu_pageset),
1830 GFP_KERNEL, cpu_to_node(cpu));
1831 if (!zone->pageset[cpu])
1832 goto bad;
1834 setup_pageset(zone->pageset[cpu], zone_batchsize(zone));
1837 return 0;
1838 bad:
1839 for_each_zone(dzone) {
1840 if (dzone == zone)
1841 break;
1842 kfree(dzone->pageset[cpu]);
1843 dzone->pageset[cpu] = NULL;
1845 return -ENOMEM;
1848 static inline void free_zone_pagesets(int cpu)
1850 #ifdef CONFIG_NUMA
1851 struct zone *zone;
1853 for_each_zone(zone) {
1854 struct per_cpu_pageset *pset = zone_pcp(zone, cpu);
1856 zone_pcp(zone, cpu) = NULL;
1857 kfree(pset);
1859 #endif
1862 static int __devinit pageset_cpuup_callback(struct notifier_block *nfb,
1863 unsigned long action,
1864 void *hcpu)
1866 int cpu = (long)hcpu;
1867 int ret = NOTIFY_OK;
1869 switch (action) {
1870 case CPU_UP_PREPARE:
1871 if (process_zones(cpu))
1872 ret = NOTIFY_BAD;
1873 break;
1874 case CPU_UP_CANCELED:
1875 case CPU_DEAD:
1876 free_zone_pagesets(cpu);
1877 break;
1878 default:
1879 break;
1881 return ret;
1884 static struct notifier_block pageset_notifier =
1885 { &pageset_cpuup_callback, NULL, 0 };
1887 void __init setup_per_cpu_pageset(void)
1889 int err;
1891 /* Initialize per_cpu_pageset for cpu 0.
1892 * A cpuup callback will do this for every cpu
1893 * as it comes online
1895 err = process_zones(smp_processor_id());
1896 BUG_ON(err);
1897 register_cpu_notifier(&pageset_notifier);
1900 #endif
1902 static __devinit
1903 void zone_wait_table_init(struct zone *zone, unsigned long zone_size_pages)
1905 int i;
1906 struct pglist_data *pgdat = zone->zone_pgdat;
1909 * The per-page waitqueue mechanism uses hashed waitqueues
1910 * per zone.
1912 zone->wait_table_size = wait_table_size(zone_size_pages);
1913 zone->wait_table_bits = wait_table_bits(zone->wait_table_size);
1914 zone->wait_table = (wait_queue_head_t *)
1915 alloc_bootmem_node(pgdat, zone->wait_table_size
1916 * sizeof(wait_queue_head_t));
1918 for(i = 0; i < zone->wait_table_size; ++i)
1919 init_waitqueue_head(zone->wait_table + i);
1922 static __devinit void zone_pcp_init(struct zone *zone)
1924 int cpu;
1925 unsigned long batch = zone_batchsize(zone);
1927 for (cpu = 0; cpu < NR_CPUS; cpu++) {
1928 #ifdef CONFIG_NUMA
1929 /* Early boot. Slab allocator not functional yet */
1930 zone->pageset[cpu] = &boot_pageset[cpu];
1931 setup_pageset(&boot_pageset[cpu],0);
1932 #else
1933 setup_pageset(zone_pcp(zone,cpu), batch);
1934 #endif
1936 printk(KERN_DEBUG " %s zone: %lu pages, LIFO batch:%lu\n",
1937 zone->name, zone->present_pages, batch);
1940 static __devinit void init_currently_empty_zone(struct zone *zone,
1941 unsigned long zone_start_pfn, unsigned long size)
1943 struct pglist_data *pgdat = zone->zone_pgdat;
1945 zone_wait_table_init(zone, size);
1946 pgdat->nr_zones = zone_idx(zone) + 1;
1948 zone->zone_mem_map = pfn_to_page(zone_start_pfn);
1949 zone->zone_start_pfn = zone_start_pfn;
1951 memmap_init(size, pgdat->node_id, zone_idx(zone), zone_start_pfn);
1953 zone_init_free_lists(pgdat, zone, zone->spanned_pages);
1957 * Set up the zone data structures:
1958 * - mark all pages reserved
1959 * - mark all memory queues empty
1960 * - clear the memory bitmaps
1962 static void __init free_area_init_core(struct pglist_data *pgdat,
1963 unsigned long *zones_size, unsigned long *zholes_size)
1965 unsigned long j;
1966 int nid = pgdat->node_id;
1967 unsigned long zone_start_pfn = pgdat->node_start_pfn;
1969 pgdat_resize_init(pgdat);
1970 pgdat->nr_zones = 0;
1971 init_waitqueue_head(&pgdat->kswapd_wait);
1972 pgdat->kswapd_max_order = 0;
1974 for (j = 0; j < MAX_NR_ZONES; j++) {
1975 struct zone *zone = pgdat->node_zones + j;
1976 unsigned long size, realsize;
1978 realsize = size = zones_size[j];
1979 if (zholes_size)
1980 realsize -= zholes_size[j];
1982 if (j < ZONE_HIGHMEM)
1983 nr_kernel_pages += realsize;
1984 nr_all_pages += realsize;
1986 zone->spanned_pages = size;
1987 zone->present_pages = realsize;
1988 zone->name = zone_names[j];
1989 spin_lock_init(&zone->lock);
1990 spin_lock_init(&zone->lru_lock);
1991 zone_seqlock_init(zone);
1992 zone->zone_pgdat = pgdat;
1993 zone->free_pages = 0;
1995 zone->temp_priority = zone->prev_priority = DEF_PRIORITY;
1997 zone_pcp_init(zone);
1998 INIT_LIST_HEAD(&zone->active_list);
1999 INIT_LIST_HEAD(&zone->inactive_list);
2000 zone->nr_scan_active = 0;
2001 zone->nr_scan_inactive = 0;
2002 zone->nr_active = 0;
2003 zone->nr_inactive = 0;
2004 atomic_set(&zone->reclaim_in_progress, 0);
2005 if (!size)
2006 continue;
2008 zonetable_add(zone, nid, j, zone_start_pfn, size);
2009 init_currently_empty_zone(zone, zone_start_pfn, size);
2010 zone_start_pfn += size;
2014 static void __init alloc_node_mem_map(struct pglist_data *pgdat)
2016 /* Skip empty nodes */
2017 if (!pgdat->node_spanned_pages)
2018 return;
2020 #ifdef CONFIG_FLAT_NODE_MEM_MAP
2021 /* ia64 gets its own node_mem_map, before this, without bootmem */
2022 if (!pgdat->node_mem_map) {
2023 unsigned long size;
2024 struct page *map;
2026 size = (pgdat->node_spanned_pages + 1) * sizeof(struct page);
2027 map = alloc_remap(pgdat->node_id, size);
2028 if (!map)
2029 map = alloc_bootmem_node(pgdat, size);
2030 pgdat->node_mem_map = map;
2032 #ifdef CONFIG_FLATMEM
2034 * With no DISCONTIG, the global mem_map is just set as node 0's
2036 if (pgdat == NODE_DATA(0))
2037 mem_map = NODE_DATA(0)->node_mem_map;
2038 #endif
2039 #endif /* CONFIG_FLAT_NODE_MEM_MAP */
2042 void __init free_area_init_node(int nid, struct pglist_data *pgdat,
2043 unsigned long *zones_size, unsigned long node_start_pfn,
2044 unsigned long *zholes_size)
2046 pgdat->node_id = nid;
2047 pgdat->node_start_pfn = node_start_pfn;
2048 calculate_zone_totalpages(pgdat, zones_size, zholes_size);
2050 alloc_node_mem_map(pgdat);
2052 free_area_init_core(pgdat, zones_size, zholes_size);
2055 #ifndef CONFIG_NEED_MULTIPLE_NODES
2056 static bootmem_data_t contig_bootmem_data;
2057 struct pglist_data contig_page_data = { .bdata = &contig_bootmem_data };
2059 EXPORT_SYMBOL(contig_page_data);
2060 #endif
2062 void __init free_area_init(unsigned long *zones_size)
2064 free_area_init_node(0, NODE_DATA(0), zones_size,
2065 __pa(PAGE_OFFSET) >> PAGE_SHIFT, NULL);
2068 #ifdef CONFIG_PROC_FS
2070 #include <linux/seq_file.h>
2072 static void *frag_start(struct seq_file *m, loff_t *pos)
2074 pg_data_t *pgdat;
2075 loff_t node = *pos;
2077 for (pgdat = pgdat_list; pgdat && node; pgdat = pgdat->pgdat_next)
2078 --node;
2080 return pgdat;
2083 static void *frag_next(struct seq_file *m, void *arg, loff_t *pos)
2085 pg_data_t *pgdat = (pg_data_t *)arg;
2087 (*pos)++;
2088 return pgdat->pgdat_next;
2091 static void frag_stop(struct seq_file *m, void *arg)
2096 * This walks the free areas for each zone.
2098 static int frag_show(struct seq_file *m, void *arg)
2100 pg_data_t *pgdat = (pg_data_t *)arg;
2101 struct zone *zone;
2102 struct zone *node_zones = pgdat->node_zones;
2103 unsigned long flags;
2104 int order;
2106 for (zone = node_zones; zone - node_zones < MAX_NR_ZONES; ++zone) {
2107 if (!zone->present_pages)
2108 continue;
2110 spin_lock_irqsave(&zone->lock, flags);
2111 seq_printf(m, "Node %d, zone %8s ", pgdat->node_id, zone->name);
2112 for (order = 0; order < MAX_ORDER; ++order)
2113 seq_printf(m, "%6lu ", zone->free_area[order].nr_free);
2114 spin_unlock_irqrestore(&zone->lock, flags);
2115 seq_putc(m, '\n');
2117 return 0;
2120 struct seq_operations fragmentation_op = {
2121 .start = frag_start,
2122 .next = frag_next,
2123 .stop = frag_stop,
2124 .show = frag_show,
2128 * Output information about zones in @pgdat.
2130 static int zoneinfo_show(struct seq_file *m, void *arg)
2132 pg_data_t *pgdat = arg;
2133 struct zone *zone;
2134 struct zone *node_zones = pgdat->node_zones;
2135 unsigned long flags;
2137 for (zone = node_zones; zone - node_zones < MAX_NR_ZONES; zone++) {
2138 int i;
2140 if (!zone->present_pages)
2141 continue;
2143 spin_lock_irqsave(&zone->lock, flags);
2144 seq_printf(m, "Node %d, zone %8s", pgdat->node_id, zone->name);
2145 seq_printf(m,
2146 "\n pages free %lu"
2147 "\n min %lu"
2148 "\n low %lu"
2149 "\n high %lu"
2150 "\n active %lu"
2151 "\n inactive %lu"
2152 "\n scanned %lu (a: %lu i: %lu)"
2153 "\n spanned %lu"
2154 "\n present %lu",
2155 zone->free_pages,
2156 zone->pages_min,
2157 zone->pages_low,
2158 zone->pages_high,
2159 zone->nr_active,
2160 zone->nr_inactive,
2161 zone->pages_scanned,
2162 zone->nr_scan_active, zone->nr_scan_inactive,
2163 zone->spanned_pages,
2164 zone->present_pages);
2165 seq_printf(m,
2166 "\n protection: (%lu",
2167 zone->lowmem_reserve[0]);
2168 for (i = 1; i < ARRAY_SIZE(zone->lowmem_reserve); i++)
2169 seq_printf(m, ", %lu", zone->lowmem_reserve[i]);
2170 seq_printf(m,
2172 "\n pagesets");
2173 for (i = 0; i < ARRAY_SIZE(zone->pageset); i++) {
2174 struct per_cpu_pageset *pageset;
2175 int j;
2177 pageset = zone_pcp(zone, i);
2178 for (j = 0; j < ARRAY_SIZE(pageset->pcp); j++) {
2179 if (pageset->pcp[j].count)
2180 break;
2182 if (j == ARRAY_SIZE(pageset->pcp))
2183 continue;
2184 for (j = 0; j < ARRAY_SIZE(pageset->pcp); j++) {
2185 seq_printf(m,
2186 "\n cpu: %i pcp: %i"
2187 "\n count: %i"
2188 "\n high: %i"
2189 "\n batch: %i",
2190 i, j,
2191 pageset->pcp[j].count,
2192 pageset->pcp[j].high,
2193 pageset->pcp[j].batch);
2195 #ifdef CONFIG_NUMA
2196 seq_printf(m,
2197 "\n numa_hit: %lu"
2198 "\n numa_miss: %lu"
2199 "\n numa_foreign: %lu"
2200 "\n interleave_hit: %lu"
2201 "\n local_node: %lu"
2202 "\n other_node: %lu",
2203 pageset->numa_hit,
2204 pageset->numa_miss,
2205 pageset->numa_foreign,
2206 pageset->interleave_hit,
2207 pageset->local_node,
2208 pageset->other_node);
2209 #endif
2211 seq_printf(m,
2212 "\n all_unreclaimable: %u"
2213 "\n prev_priority: %i"
2214 "\n temp_priority: %i"
2215 "\n start_pfn: %lu",
2216 zone->all_unreclaimable,
2217 zone->prev_priority,
2218 zone->temp_priority,
2219 zone->zone_start_pfn);
2220 spin_unlock_irqrestore(&zone->lock, flags);
2221 seq_putc(m, '\n');
2223 return 0;
2226 struct seq_operations zoneinfo_op = {
2227 .start = frag_start, /* iterate over all zones. The same as in
2228 * fragmentation. */
2229 .next = frag_next,
2230 .stop = frag_stop,
2231 .show = zoneinfo_show,
2234 static char *vmstat_text[] = {
2235 "nr_dirty",
2236 "nr_writeback",
2237 "nr_unstable",
2238 "nr_page_table_pages",
2239 "nr_mapped",
2240 "nr_slab",
2242 "pgpgin",
2243 "pgpgout",
2244 "pswpin",
2245 "pswpout",
2246 "pgalloc_high",
2248 "pgalloc_normal",
2249 "pgalloc_dma",
2250 "pgfree",
2251 "pgactivate",
2252 "pgdeactivate",
2254 "pgfault",
2255 "pgmajfault",
2256 "pgrefill_high",
2257 "pgrefill_normal",
2258 "pgrefill_dma",
2260 "pgsteal_high",
2261 "pgsteal_normal",
2262 "pgsteal_dma",
2263 "pgscan_kswapd_high",
2264 "pgscan_kswapd_normal",
2266 "pgscan_kswapd_dma",
2267 "pgscan_direct_high",
2268 "pgscan_direct_normal",
2269 "pgscan_direct_dma",
2270 "pginodesteal",
2272 "slabs_scanned",
2273 "kswapd_steal",
2274 "kswapd_inodesteal",
2275 "pageoutrun",
2276 "allocstall",
2278 "pgrotated",
2279 "nr_bounce",
2282 static void *vmstat_start(struct seq_file *m, loff_t *pos)
2284 struct page_state *ps;
2286 if (*pos >= ARRAY_SIZE(vmstat_text))
2287 return NULL;
2289 ps = kmalloc(sizeof(*ps), GFP_KERNEL);
2290 m->private = ps;
2291 if (!ps)
2292 return ERR_PTR(-ENOMEM);
2293 get_full_page_state(ps);
2294 ps->pgpgin /= 2; /* sectors -> kbytes */
2295 ps->pgpgout /= 2;
2296 return (unsigned long *)ps + *pos;
2299 static void *vmstat_next(struct seq_file *m, void *arg, loff_t *pos)
2301 (*pos)++;
2302 if (*pos >= ARRAY_SIZE(vmstat_text))
2303 return NULL;
2304 return (unsigned long *)m->private + *pos;
2307 static int vmstat_show(struct seq_file *m, void *arg)
2309 unsigned long *l = arg;
2310 unsigned long off = l - (unsigned long *)m->private;
2312 seq_printf(m, "%s %lu\n", vmstat_text[off], *l);
2313 return 0;
2316 static void vmstat_stop(struct seq_file *m, void *arg)
2318 kfree(m->private);
2319 m->private = NULL;
2322 struct seq_operations vmstat_op = {
2323 .start = vmstat_start,
2324 .next = vmstat_next,
2325 .stop = vmstat_stop,
2326 .show = vmstat_show,
2329 #endif /* CONFIG_PROC_FS */
2331 #ifdef CONFIG_HOTPLUG_CPU
2332 static int page_alloc_cpu_notify(struct notifier_block *self,
2333 unsigned long action, void *hcpu)
2335 int cpu = (unsigned long)hcpu;
2336 long *count;
2337 unsigned long *src, *dest;
2339 if (action == CPU_DEAD) {
2340 int i;
2342 /* Drain local pagecache count. */
2343 count = &per_cpu(nr_pagecache_local, cpu);
2344 atomic_add(*count, &nr_pagecache);
2345 *count = 0;
2346 local_irq_disable();
2347 __drain_pages(cpu);
2349 /* Add dead cpu's page_states to our own. */
2350 dest = (unsigned long *)&__get_cpu_var(page_states);
2351 src = (unsigned long *)&per_cpu(page_states, cpu);
2353 for (i = 0; i < sizeof(struct page_state)/sizeof(unsigned long);
2354 i++) {
2355 dest[i] += src[i];
2356 src[i] = 0;
2359 local_irq_enable();
2361 return NOTIFY_OK;
2363 #endif /* CONFIG_HOTPLUG_CPU */
2365 void __init page_alloc_init(void)
2367 hotcpu_notifier(page_alloc_cpu_notify, 0);
2371 * setup_per_zone_lowmem_reserve - called whenever
2372 * sysctl_lower_zone_reserve_ratio changes. Ensures that each zone
2373 * has a correct pages reserved value, so an adequate number of
2374 * pages are left in the zone after a successful __alloc_pages().
2376 static void setup_per_zone_lowmem_reserve(void)
2378 struct pglist_data *pgdat;
2379 int j, idx;
2381 for_each_pgdat(pgdat) {
2382 for (j = 0; j < MAX_NR_ZONES; j++) {
2383 struct zone *zone = pgdat->node_zones + j;
2384 unsigned long present_pages = zone->present_pages;
2386 zone->lowmem_reserve[j] = 0;
2388 for (idx = j-1; idx >= 0; idx--) {
2389 struct zone *lower_zone;
2391 if (sysctl_lowmem_reserve_ratio[idx] < 1)
2392 sysctl_lowmem_reserve_ratio[idx] = 1;
2394 lower_zone = pgdat->node_zones + idx;
2395 lower_zone->lowmem_reserve[j] = present_pages /
2396 sysctl_lowmem_reserve_ratio[idx];
2397 present_pages += lower_zone->present_pages;
2404 * setup_per_zone_pages_min - called when min_free_kbytes changes. Ensures
2405 * that the pages_{min,low,high} values for each zone are set correctly
2406 * with respect to min_free_kbytes.
2408 void setup_per_zone_pages_min(void)
2410 unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10);
2411 unsigned long lowmem_pages = 0;
2412 struct zone *zone;
2413 unsigned long flags;
2415 /* Calculate total number of !ZONE_HIGHMEM pages */
2416 for_each_zone(zone) {
2417 if (!is_highmem(zone))
2418 lowmem_pages += zone->present_pages;
2421 for_each_zone(zone) {
2422 unsigned long tmp;
2423 spin_lock_irqsave(&zone->lru_lock, flags);
2424 tmp = (pages_min * zone->present_pages) / lowmem_pages;
2425 if (is_highmem(zone)) {
2427 * __GFP_HIGH and PF_MEMALLOC allocations usually don't
2428 * need highmem pages, so cap pages_min to a small
2429 * value here.
2431 * The (pages_high-pages_low) and (pages_low-pages_min)
2432 * deltas controls asynch page reclaim, and so should
2433 * not be capped for highmem.
2435 int min_pages;
2437 min_pages = zone->present_pages / 1024;
2438 if (min_pages < SWAP_CLUSTER_MAX)
2439 min_pages = SWAP_CLUSTER_MAX;
2440 if (min_pages > 128)
2441 min_pages = 128;
2442 zone->pages_min = min_pages;
2443 } else {
2445 * If it's a lowmem zone, reserve a number of pages
2446 * proportionate to the zone's size.
2448 zone->pages_min = tmp;
2451 zone->pages_low = zone->pages_min + tmp / 4;
2452 zone->pages_high = zone->pages_min + tmp / 2;
2453 spin_unlock_irqrestore(&zone->lru_lock, flags);
2458 * Initialise min_free_kbytes.
2460 * For small machines we want it small (128k min). For large machines
2461 * we want it large (64MB max). But it is not linear, because network
2462 * bandwidth does not increase linearly with machine size. We use
2464 * min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
2465 * min_free_kbytes = sqrt(lowmem_kbytes * 16)
2467 * which yields
2469 * 16MB: 512k
2470 * 32MB: 724k
2471 * 64MB: 1024k
2472 * 128MB: 1448k
2473 * 256MB: 2048k
2474 * 512MB: 2896k
2475 * 1024MB: 4096k
2476 * 2048MB: 5792k
2477 * 4096MB: 8192k
2478 * 8192MB: 11584k
2479 * 16384MB: 16384k
2481 static int __init init_per_zone_pages_min(void)
2483 unsigned long lowmem_kbytes;
2485 lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10);
2487 min_free_kbytes = int_sqrt(lowmem_kbytes * 16);
2488 if (min_free_kbytes < 128)
2489 min_free_kbytes = 128;
2490 if (min_free_kbytes > 65536)
2491 min_free_kbytes = 65536;
2492 setup_per_zone_pages_min();
2493 setup_per_zone_lowmem_reserve();
2494 return 0;
2496 module_init(init_per_zone_pages_min)
2499 * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
2500 * that we can call two helper functions whenever min_free_kbytes
2501 * changes.
2503 int min_free_kbytes_sysctl_handler(ctl_table *table, int write,
2504 struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
2506 proc_dointvec(table, write, file, buffer, length, ppos);
2507 setup_per_zone_pages_min();
2508 return 0;
2512 * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
2513 * proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
2514 * whenever sysctl_lowmem_reserve_ratio changes.
2516 * The reserve ratio obviously has absolutely no relation with the
2517 * pages_min watermarks. The lowmem reserve ratio can only make sense
2518 * if in function of the boot time zone sizes.
2520 int lowmem_reserve_ratio_sysctl_handler(ctl_table *table, int write,
2521 struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
2523 proc_dointvec_minmax(table, write, file, buffer, length, ppos);
2524 setup_per_zone_lowmem_reserve();
2525 return 0;
2528 __initdata int hashdist = HASHDIST_DEFAULT;
2530 #ifdef CONFIG_NUMA
2531 static int __init set_hashdist(char *str)
2533 if (!str)
2534 return 0;
2535 hashdist = simple_strtoul(str, &str, 0);
2536 return 1;
2538 __setup("hashdist=", set_hashdist);
2539 #endif
2542 * allocate a large system hash table from bootmem
2543 * - it is assumed that the hash table must contain an exact power-of-2
2544 * quantity of entries
2545 * - limit is the number of hash buckets, not the total allocation size
2547 void *__init alloc_large_system_hash(const char *tablename,
2548 unsigned long bucketsize,
2549 unsigned long numentries,
2550 int scale,
2551 int flags,
2552 unsigned int *_hash_shift,
2553 unsigned int *_hash_mask,
2554 unsigned long limit)
2556 unsigned long long max = limit;
2557 unsigned long log2qty, size;
2558 void *table = NULL;
2560 /* allow the kernel cmdline to have a say */
2561 if (!numentries) {
2562 /* round applicable memory size up to nearest megabyte */
2563 numentries = (flags & HASH_HIGHMEM) ? nr_all_pages : nr_kernel_pages;
2564 numentries += (1UL << (20 - PAGE_SHIFT)) - 1;
2565 numentries >>= 20 - PAGE_SHIFT;
2566 numentries <<= 20 - PAGE_SHIFT;
2568 /* limit to 1 bucket per 2^scale bytes of low memory */
2569 if (scale > PAGE_SHIFT)
2570 numentries >>= (scale - PAGE_SHIFT);
2571 else
2572 numentries <<= (PAGE_SHIFT - scale);
2574 /* rounded up to nearest power of 2 in size */
2575 numentries = 1UL << (long_log2(numentries) + 1);
2577 /* limit allocation size to 1/16 total memory by default */
2578 if (max == 0) {
2579 max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4;
2580 do_div(max, bucketsize);
2583 if (numentries > max)
2584 numentries = max;
2586 log2qty = long_log2(numentries);
2588 do {
2589 size = bucketsize << log2qty;
2590 if (flags & HASH_EARLY)
2591 table = alloc_bootmem(size);
2592 else if (hashdist)
2593 table = __vmalloc(size, GFP_ATOMIC, PAGE_KERNEL);
2594 else {
2595 unsigned long order;
2596 for (order = 0; ((1UL << order) << PAGE_SHIFT) < size; order++)
2598 table = (void*) __get_free_pages(GFP_ATOMIC, order);
2600 } while (!table && size > PAGE_SIZE && --log2qty);
2602 if (!table)
2603 panic("Failed to allocate %s hash table\n", tablename);
2605 printk("%s hash table entries: %d (order: %d, %lu bytes)\n",
2606 tablename,
2607 (1U << log2qty),
2608 long_log2(size) - PAGE_SHIFT,
2609 size);
2611 if (_hash_shift)
2612 *_hash_shift = log2qty;
2613 if (_hash_mask)
2614 *_hash_mask = (1 << log2qty) - 1;
2616 return table;