bnx2x: return PCI_ERS_RESULT_DISCONNECT on permanent failure
[linux-2.6/mini2440.git] / drivers / block / cciss.c
blob65a0655e7fc8451380d34decf3b04025776f9d0c
1 /*
2 * Disk Array driver for HP Smart Array controllers.
3 * (C) Copyright 2000, 2007 Hewlett-Packard Development Company, L.P.
5 * This program is free software; you can redistribute it and/or modify
6 * it under the terms of the GNU General Public License as published by
7 * the Free Software Foundation; version 2 of the License.
9 * This program is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. See the GNU
12 * General Public License for more details.
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write to the Free Software
16 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA
17 * 02111-1307, USA.
19 * Questions/Comments/Bugfixes to iss_storagedev@hp.com
23 #include <linux/module.h>
24 #include <linux/interrupt.h>
25 #include <linux/types.h>
26 #include <linux/pci.h>
27 #include <linux/kernel.h>
28 #include <linux/slab.h>
29 #include <linux/delay.h>
30 #include <linux/major.h>
31 #include <linux/fs.h>
32 #include <linux/bio.h>
33 #include <linux/blkpg.h>
34 #include <linux/timer.h>
35 #include <linux/proc_fs.h>
36 #include <linux/seq_file.h>
37 #include <linux/init.h>
38 #include <linux/hdreg.h>
39 #include <linux/spinlock.h>
40 #include <linux/compat.h>
41 #include <asm/uaccess.h>
42 #include <asm/io.h>
44 #include <linux/dma-mapping.h>
45 #include <linux/blkdev.h>
46 #include <linux/genhd.h>
47 #include <linux/completion.h>
48 #include <scsi/scsi.h>
49 #include <scsi/sg.h>
50 #include <scsi/scsi_ioctl.h>
51 #include <linux/cdrom.h>
52 #include <linux/scatterlist.h>
53 #include <linux/kthread.h>
55 #define CCISS_DRIVER_VERSION(maj,min,submin) ((maj<<16)|(min<<8)|(submin))
56 #define DRIVER_NAME "HP CISS Driver (v 3.6.20)"
57 #define DRIVER_VERSION CCISS_DRIVER_VERSION(3, 6, 20)
59 /* Embedded module documentation macros - see modules.h */
60 MODULE_AUTHOR("Hewlett-Packard Company");
61 MODULE_DESCRIPTION("Driver for HP Smart Array Controllers");
62 MODULE_SUPPORTED_DEVICE("HP SA5i SA5i+ SA532 SA5300 SA5312 SA641 SA642 SA6400"
63 " SA6i P600 P800 P400 P400i E200 E200i E500 P700m"
64 " Smart Array G2 Series SAS/SATA Controllers");
65 MODULE_VERSION("3.6.20");
66 MODULE_LICENSE("GPL");
68 #include "cciss_cmd.h"
69 #include "cciss.h"
70 #include <linux/cciss_ioctl.h>
72 /* define the PCI info for the cards we can control */
73 static const struct pci_device_id cciss_pci_device_id[] = {
74 {PCI_VENDOR_ID_COMPAQ, PCI_DEVICE_ID_COMPAQ_CISS, 0x0E11, 0x4070},
75 {PCI_VENDOR_ID_COMPAQ, PCI_DEVICE_ID_COMPAQ_CISSB, 0x0E11, 0x4080},
76 {PCI_VENDOR_ID_COMPAQ, PCI_DEVICE_ID_COMPAQ_CISSB, 0x0E11, 0x4082},
77 {PCI_VENDOR_ID_COMPAQ, PCI_DEVICE_ID_COMPAQ_CISSB, 0x0E11, 0x4083},
78 {PCI_VENDOR_ID_COMPAQ, PCI_DEVICE_ID_COMPAQ_CISSC, 0x0E11, 0x4091},
79 {PCI_VENDOR_ID_COMPAQ, PCI_DEVICE_ID_COMPAQ_CISSC, 0x0E11, 0x409A},
80 {PCI_VENDOR_ID_COMPAQ, PCI_DEVICE_ID_COMPAQ_CISSC, 0x0E11, 0x409B},
81 {PCI_VENDOR_ID_COMPAQ, PCI_DEVICE_ID_COMPAQ_CISSC, 0x0E11, 0x409C},
82 {PCI_VENDOR_ID_COMPAQ, PCI_DEVICE_ID_COMPAQ_CISSC, 0x0E11, 0x409D},
83 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSA, 0x103C, 0x3225},
84 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSC, 0x103C, 0x3223},
85 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSC, 0x103C, 0x3234},
86 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSC, 0x103C, 0x3235},
87 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSD, 0x103C, 0x3211},
88 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSD, 0x103C, 0x3212},
89 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSD, 0x103C, 0x3213},
90 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSD, 0x103C, 0x3214},
91 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSD, 0x103C, 0x3215},
92 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSC, 0x103C, 0x3237},
93 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSC, 0x103C, 0x323D},
94 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSE, 0x103C, 0x3241},
95 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSE, 0x103C, 0x3243},
96 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSE, 0x103C, 0x3245},
97 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSE, 0x103C, 0x3247},
98 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSE, 0x103C, 0x3249},
99 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSE, 0x103C, 0x324A},
100 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSE, 0x103C, 0x324B},
101 {PCI_VENDOR_ID_HP, PCI_ANY_ID, PCI_ANY_ID, PCI_ANY_ID,
102 PCI_CLASS_STORAGE_RAID << 8, 0xffff << 8, 0},
103 {0,}
106 MODULE_DEVICE_TABLE(pci, cciss_pci_device_id);
108 /* board_id = Subsystem Device ID & Vendor ID
109 * product = Marketing Name for the board
110 * access = Address of the struct of function pointers
112 static struct board_type products[] = {
113 {0x40700E11, "Smart Array 5300", &SA5_access},
114 {0x40800E11, "Smart Array 5i", &SA5B_access},
115 {0x40820E11, "Smart Array 532", &SA5B_access},
116 {0x40830E11, "Smart Array 5312", &SA5B_access},
117 {0x409A0E11, "Smart Array 641", &SA5_access},
118 {0x409B0E11, "Smart Array 642", &SA5_access},
119 {0x409C0E11, "Smart Array 6400", &SA5_access},
120 {0x409D0E11, "Smart Array 6400 EM", &SA5_access},
121 {0x40910E11, "Smart Array 6i", &SA5_access},
122 {0x3225103C, "Smart Array P600", &SA5_access},
123 {0x3223103C, "Smart Array P800", &SA5_access},
124 {0x3234103C, "Smart Array P400", &SA5_access},
125 {0x3235103C, "Smart Array P400i", &SA5_access},
126 {0x3211103C, "Smart Array E200i", &SA5_access},
127 {0x3212103C, "Smart Array E200", &SA5_access},
128 {0x3213103C, "Smart Array E200i", &SA5_access},
129 {0x3214103C, "Smart Array E200i", &SA5_access},
130 {0x3215103C, "Smart Array E200i", &SA5_access},
131 {0x3237103C, "Smart Array E500", &SA5_access},
132 {0x323D103C, "Smart Array P700m", &SA5_access},
133 {0x3241103C, "Smart Array P212", &SA5_access},
134 {0x3243103C, "Smart Array P410", &SA5_access},
135 {0x3245103C, "Smart Array P410i", &SA5_access},
136 {0x3247103C, "Smart Array P411", &SA5_access},
137 {0x3249103C, "Smart Array P812", &SA5_access},
138 {0x324A103C, "Smart Array P712m", &SA5_access},
139 {0x324B103C, "Smart Array P711m", &SA5_access},
140 {0xFFFF103C, "Unknown Smart Array", &SA5_access},
143 /* How long to wait (in milliseconds) for board to go into simple mode */
144 #define MAX_CONFIG_WAIT 30000
145 #define MAX_IOCTL_CONFIG_WAIT 1000
147 /*define how many times we will try a command because of bus resets */
148 #define MAX_CMD_RETRIES 3
150 #define MAX_CTLR 32
152 /* Originally cciss driver only supports 8 major numbers */
153 #define MAX_CTLR_ORIG 8
155 static ctlr_info_t *hba[MAX_CTLR];
157 static void do_cciss_request(struct request_queue *q);
158 static irqreturn_t do_cciss_intr(int irq, void *dev_id);
159 static int cciss_open(struct block_device *bdev, fmode_t mode);
160 static int cciss_release(struct gendisk *disk, fmode_t mode);
161 static int cciss_ioctl(struct block_device *bdev, fmode_t mode,
162 unsigned int cmd, unsigned long arg);
163 static int cciss_getgeo(struct block_device *bdev, struct hd_geometry *geo);
165 static int cciss_revalidate(struct gendisk *disk);
166 static int rebuild_lun_table(ctlr_info_t *h, int first_time);
167 static int deregister_disk(ctlr_info_t *h, int drv_index,
168 int clear_all);
170 static void cciss_read_capacity(int ctlr, int logvol, int withirq,
171 sector_t *total_size, unsigned int *block_size);
172 static void cciss_read_capacity_16(int ctlr, int logvol, int withirq,
173 sector_t *total_size, unsigned int *block_size);
174 static void cciss_geometry_inquiry(int ctlr, int logvol,
175 int withirq, sector_t total_size,
176 unsigned int block_size, InquiryData_struct *inq_buff,
177 drive_info_struct *drv);
178 static void __devinit cciss_interrupt_mode(ctlr_info_t *, struct pci_dev *,
179 __u32);
180 static void start_io(ctlr_info_t *h);
181 static int sendcmd(__u8 cmd, int ctlr, void *buff, size_t size,
182 __u8 page_code, unsigned char *scsi3addr, int cmd_type);
183 static int sendcmd_withirq(__u8 cmd, int ctlr, void *buff, size_t size,
184 __u8 page_code, unsigned char scsi3addr[],
185 int cmd_type);
186 static int sendcmd_withirq_core(ctlr_info_t *h, CommandList_struct *c,
187 int attempt_retry);
188 static int process_sendcmd_error(ctlr_info_t *h, CommandList_struct *c);
190 static void fail_all_cmds(unsigned long ctlr);
191 static int scan_thread(void *data);
192 static int check_for_unit_attention(ctlr_info_t *h, CommandList_struct *c);
194 #ifdef CONFIG_PROC_FS
195 static void cciss_procinit(int i);
196 #else
197 static void cciss_procinit(int i)
200 #endif /* CONFIG_PROC_FS */
202 #ifdef CONFIG_COMPAT
203 static int cciss_compat_ioctl(struct block_device *, fmode_t,
204 unsigned, unsigned long);
205 #endif
207 static struct block_device_operations cciss_fops = {
208 .owner = THIS_MODULE,
209 .open = cciss_open,
210 .release = cciss_release,
211 .locked_ioctl = cciss_ioctl,
212 .getgeo = cciss_getgeo,
213 #ifdef CONFIG_COMPAT
214 .compat_ioctl = cciss_compat_ioctl,
215 #endif
216 .revalidate_disk = cciss_revalidate,
220 * Enqueuing and dequeuing functions for cmdlists.
222 static inline void addQ(struct hlist_head *list, CommandList_struct *c)
224 hlist_add_head(&c->list, list);
227 static inline void removeQ(CommandList_struct *c)
230 * After kexec/dump some commands might still
231 * be in flight, which the firmware will try
232 * to complete. Resetting the firmware doesn't work
233 * with old fw revisions, so we have to mark
234 * them off as 'stale' to prevent the driver from
235 * falling over.
237 if (WARN_ON(hlist_unhashed(&c->list))) {
238 c->cmd_type = CMD_MSG_STALE;
239 return;
242 hlist_del_init(&c->list);
245 #include "cciss_scsi.c" /* For SCSI tape support */
247 #define RAID_UNKNOWN 6
249 #ifdef CONFIG_PROC_FS
252 * Report information about this controller.
254 #define ENG_GIG 1000000000
255 #define ENG_GIG_FACTOR (ENG_GIG/512)
256 #define ENGAGE_SCSI "engage scsi"
257 static const char *raid_label[] = { "0", "4", "1(1+0)", "5", "5+1", "ADG",
258 "UNKNOWN"
261 static struct proc_dir_entry *proc_cciss;
263 static void cciss_seq_show_header(struct seq_file *seq)
265 ctlr_info_t *h = seq->private;
267 seq_printf(seq, "%s: HP %s Controller\n"
268 "Board ID: 0x%08lx\n"
269 "Firmware Version: %c%c%c%c\n"
270 "IRQ: %d\n"
271 "Logical drives: %d\n"
272 "Current Q depth: %d\n"
273 "Current # commands on controller: %d\n"
274 "Max Q depth since init: %d\n"
275 "Max # commands on controller since init: %d\n"
276 "Max SG entries since init: %d\n",
277 h->devname,
278 h->product_name,
279 (unsigned long)h->board_id,
280 h->firm_ver[0], h->firm_ver[1], h->firm_ver[2],
281 h->firm_ver[3], (unsigned int)h->intr[SIMPLE_MODE_INT],
282 h->num_luns,
283 h->Qdepth, h->commands_outstanding,
284 h->maxQsinceinit, h->max_outstanding, h->maxSG);
286 #ifdef CONFIG_CISS_SCSI_TAPE
287 cciss_seq_tape_report(seq, h->ctlr);
288 #endif /* CONFIG_CISS_SCSI_TAPE */
291 static void *cciss_seq_start(struct seq_file *seq, loff_t *pos)
293 ctlr_info_t *h = seq->private;
294 unsigned ctlr = h->ctlr;
295 unsigned long flags;
297 /* prevent displaying bogus info during configuration
298 * or deconfiguration of a logical volume
300 spin_lock_irqsave(CCISS_LOCK(ctlr), flags);
301 if (h->busy_configuring) {
302 spin_unlock_irqrestore(CCISS_LOCK(ctlr), flags);
303 return ERR_PTR(-EBUSY);
305 h->busy_configuring = 1;
306 spin_unlock_irqrestore(CCISS_LOCK(ctlr), flags);
308 if (*pos == 0)
309 cciss_seq_show_header(seq);
311 return pos;
314 static int cciss_seq_show(struct seq_file *seq, void *v)
316 sector_t vol_sz, vol_sz_frac;
317 ctlr_info_t *h = seq->private;
318 unsigned ctlr = h->ctlr;
319 loff_t *pos = v;
320 drive_info_struct *drv = &h->drv[*pos];
322 if (*pos > h->highest_lun)
323 return 0;
325 if (drv->heads == 0)
326 return 0;
328 vol_sz = drv->nr_blocks;
329 vol_sz_frac = sector_div(vol_sz, ENG_GIG_FACTOR);
330 vol_sz_frac *= 100;
331 sector_div(vol_sz_frac, ENG_GIG_FACTOR);
333 if (drv->raid_level > 5)
334 drv->raid_level = RAID_UNKNOWN;
335 seq_printf(seq, "cciss/c%dd%d:"
336 "\t%4u.%02uGB\tRAID %s\n",
337 ctlr, (int) *pos, (int)vol_sz, (int)vol_sz_frac,
338 raid_label[drv->raid_level]);
339 return 0;
342 static void *cciss_seq_next(struct seq_file *seq, void *v, loff_t *pos)
344 ctlr_info_t *h = seq->private;
346 if (*pos > h->highest_lun)
347 return NULL;
348 *pos += 1;
350 return pos;
353 static void cciss_seq_stop(struct seq_file *seq, void *v)
355 ctlr_info_t *h = seq->private;
357 /* Only reset h->busy_configuring if we succeeded in setting
358 * it during cciss_seq_start. */
359 if (v == ERR_PTR(-EBUSY))
360 return;
362 h->busy_configuring = 0;
365 static struct seq_operations cciss_seq_ops = {
366 .start = cciss_seq_start,
367 .show = cciss_seq_show,
368 .next = cciss_seq_next,
369 .stop = cciss_seq_stop,
372 static int cciss_seq_open(struct inode *inode, struct file *file)
374 int ret = seq_open(file, &cciss_seq_ops);
375 struct seq_file *seq = file->private_data;
377 if (!ret)
378 seq->private = PDE(inode)->data;
380 return ret;
383 static ssize_t
384 cciss_proc_write(struct file *file, const char __user *buf,
385 size_t length, loff_t *ppos)
387 int err;
388 char *buffer;
390 #ifndef CONFIG_CISS_SCSI_TAPE
391 return -EINVAL;
392 #endif
394 if (!buf || length > PAGE_SIZE - 1)
395 return -EINVAL;
397 buffer = (char *)__get_free_page(GFP_KERNEL);
398 if (!buffer)
399 return -ENOMEM;
401 err = -EFAULT;
402 if (copy_from_user(buffer, buf, length))
403 goto out;
404 buffer[length] = '\0';
406 #ifdef CONFIG_CISS_SCSI_TAPE
407 if (strncmp(ENGAGE_SCSI, buffer, sizeof ENGAGE_SCSI - 1) == 0) {
408 struct seq_file *seq = file->private_data;
409 ctlr_info_t *h = seq->private;
410 int rc;
412 rc = cciss_engage_scsi(h->ctlr);
413 if (rc != 0)
414 err = -rc;
415 else
416 err = length;
417 } else
418 #endif /* CONFIG_CISS_SCSI_TAPE */
419 err = -EINVAL;
420 /* might be nice to have "disengage" too, but it's not
421 safely possible. (only 1 module use count, lock issues.) */
423 out:
424 free_page((unsigned long)buffer);
425 return err;
428 static struct file_operations cciss_proc_fops = {
429 .owner = THIS_MODULE,
430 .open = cciss_seq_open,
431 .read = seq_read,
432 .llseek = seq_lseek,
433 .release = seq_release,
434 .write = cciss_proc_write,
437 static void __devinit cciss_procinit(int i)
439 struct proc_dir_entry *pde;
441 if (proc_cciss == NULL)
442 proc_cciss = proc_mkdir("driver/cciss", NULL);
443 if (!proc_cciss)
444 return;
445 pde = proc_create_data(hba[i]->devname, S_IWUSR | S_IRUSR | S_IRGRP |
446 S_IROTH, proc_cciss,
447 &cciss_proc_fops, hba[i]);
449 #endif /* CONFIG_PROC_FS */
451 #define MAX_PRODUCT_NAME_LEN 19
453 #define to_hba(n) container_of(n, struct ctlr_info, dev)
454 #define to_drv(n) container_of(n, drive_info_struct, dev)
456 static struct device_type cciss_host_type = {
457 .name = "cciss_host",
460 static ssize_t dev_show_unique_id(struct device *dev,
461 struct device_attribute *attr,
462 char *buf)
464 drive_info_struct *drv = to_drv(dev);
465 struct ctlr_info *h = to_hba(drv->dev.parent);
466 __u8 sn[16];
467 unsigned long flags;
468 int ret = 0;
470 spin_lock_irqsave(CCISS_LOCK(h->ctlr), flags);
471 if (h->busy_configuring)
472 ret = -EBUSY;
473 else
474 memcpy(sn, drv->serial_no, sizeof(sn));
475 spin_unlock_irqrestore(CCISS_LOCK(h->ctlr), flags);
477 if (ret)
478 return ret;
479 else
480 return snprintf(buf, 16 * 2 + 2,
481 "%02X%02X%02X%02X%02X%02X%02X%02X"
482 "%02X%02X%02X%02X%02X%02X%02X%02X\n",
483 sn[0], sn[1], sn[2], sn[3],
484 sn[4], sn[5], sn[6], sn[7],
485 sn[8], sn[9], sn[10], sn[11],
486 sn[12], sn[13], sn[14], sn[15]);
488 DEVICE_ATTR(unique_id, S_IRUGO, dev_show_unique_id, NULL);
490 static ssize_t dev_show_vendor(struct device *dev,
491 struct device_attribute *attr,
492 char *buf)
494 drive_info_struct *drv = to_drv(dev);
495 struct ctlr_info *h = to_hba(drv->dev.parent);
496 char vendor[VENDOR_LEN + 1];
497 unsigned long flags;
498 int ret = 0;
500 spin_lock_irqsave(CCISS_LOCK(h->ctlr), flags);
501 if (h->busy_configuring)
502 ret = -EBUSY;
503 else
504 memcpy(vendor, drv->vendor, VENDOR_LEN + 1);
505 spin_unlock_irqrestore(CCISS_LOCK(h->ctlr), flags);
507 if (ret)
508 return ret;
509 else
510 return snprintf(buf, sizeof(vendor) + 1, "%s\n", drv->vendor);
512 DEVICE_ATTR(vendor, S_IRUGO, dev_show_vendor, NULL);
514 static ssize_t dev_show_model(struct device *dev,
515 struct device_attribute *attr,
516 char *buf)
518 drive_info_struct *drv = to_drv(dev);
519 struct ctlr_info *h = to_hba(drv->dev.parent);
520 char model[MODEL_LEN + 1];
521 unsigned long flags;
522 int ret = 0;
524 spin_lock_irqsave(CCISS_LOCK(h->ctlr), flags);
525 if (h->busy_configuring)
526 ret = -EBUSY;
527 else
528 memcpy(model, drv->model, MODEL_LEN + 1);
529 spin_unlock_irqrestore(CCISS_LOCK(h->ctlr), flags);
531 if (ret)
532 return ret;
533 else
534 return snprintf(buf, sizeof(model) + 1, "%s\n", drv->model);
536 DEVICE_ATTR(model, S_IRUGO, dev_show_model, NULL);
538 static ssize_t dev_show_rev(struct device *dev,
539 struct device_attribute *attr,
540 char *buf)
542 drive_info_struct *drv = to_drv(dev);
543 struct ctlr_info *h = to_hba(drv->dev.parent);
544 char rev[REV_LEN + 1];
545 unsigned long flags;
546 int ret = 0;
548 spin_lock_irqsave(CCISS_LOCK(h->ctlr), flags);
549 if (h->busy_configuring)
550 ret = -EBUSY;
551 else
552 memcpy(rev, drv->rev, REV_LEN + 1);
553 spin_unlock_irqrestore(CCISS_LOCK(h->ctlr), flags);
555 if (ret)
556 return ret;
557 else
558 return snprintf(buf, sizeof(rev) + 1, "%s\n", drv->rev);
560 DEVICE_ATTR(rev, S_IRUGO, dev_show_rev, NULL);
562 static struct attribute *cciss_dev_attrs[] = {
563 &dev_attr_unique_id.attr,
564 &dev_attr_model.attr,
565 &dev_attr_vendor.attr,
566 &dev_attr_rev.attr,
567 NULL
570 static struct attribute_group cciss_dev_attr_group = {
571 .attrs = cciss_dev_attrs,
574 static struct attribute_group *cciss_dev_attr_groups[] = {
575 &cciss_dev_attr_group,
576 NULL
579 static struct device_type cciss_dev_type = {
580 .name = "cciss_device",
581 .groups = cciss_dev_attr_groups,
584 static struct bus_type cciss_bus_type = {
585 .name = "cciss",
590 * Initialize sysfs entry for each controller. This sets up and registers
591 * the 'cciss#' directory for each individual controller under
592 * /sys/bus/pci/devices/<dev>/.
594 static int cciss_create_hba_sysfs_entry(struct ctlr_info *h)
596 device_initialize(&h->dev);
597 h->dev.type = &cciss_host_type;
598 h->dev.bus = &cciss_bus_type;
599 dev_set_name(&h->dev, "%s", h->devname);
600 h->dev.parent = &h->pdev->dev;
602 return device_add(&h->dev);
606 * Remove sysfs entries for an hba.
608 static void cciss_destroy_hba_sysfs_entry(struct ctlr_info *h)
610 device_del(&h->dev);
614 * Initialize sysfs for each logical drive. This sets up and registers
615 * the 'c#d#' directory for each individual logical drive under
616 * /sys/bus/pci/devices/<dev/ccis#/. We also create a link from
617 * /sys/block/cciss!c#d# to this entry.
619 static int cciss_create_ld_sysfs_entry(struct ctlr_info *h,
620 drive_info_struct *drv,
621 int drv_index)
623 device_initialize(&drv->dev);
624 drv->dev.type = &cciss_dev_type;
625 drv->dev.bus = &cciss_bus_type;
626 dev_set_name(&drv->dev, "c%dd%d", h->ctlr, drv_index);
627 drv->dev.parent = &h->dev;
628 return device_add(&drv->dev);
632 * Remove sysfs entries for a logical drive.
634 static void cciss_destroy_ld_sysfs_entry(drive_info_struct *drv)
636 device_del(&drv->dev);
640 * For operations that cannot sleep, a command block is allocated at init,
641 * and managed by cmd_alloc() and cmd_free() using a simple bitmap to track
642 * which ones are free or in use. For operations that can wait for kmalloc
643 * to possible sleep, this routine can be called with get_from_pool set to 0.
644 * cmd_free() MUST be called with a got_from_pool set to 0 if cmd_alloc was.
646 static CommandList_struct *cmd_alloc(ctlr_info_t *h, int get_from_pool)
648 CommandList_struct *c;
649 int i;
650 u64bit temp64;
651 dma_addr_t cmd_dma_handle, err_dma_handle;
653 if (!get_from_pool) {
654 c = (CommandList_struct *) pci_alloc_consistent(h->pdev,
655 sizeof(CommandList_struct), &cmd_dma_handle);
656 if (c == NULL)
657 return NULL;
658 memset(c, 0, sizeof(CommandList_struct));
660 c->cmdindex = -1;
662 c->err_info = (ErrorInfo_struct *)
663 pci_alloc_consistent(h->pdev, sizeof(ErrorInfo_struct),
664 &err_dma_handle);
666 if (c->err_info == NULL) {
667 pci_free_consistent(h->pdev,
668 sizeof(CommandList_struct), c, cmd_dma_handle);
669 return NULL;
671 memset(c->err_info, 0, sizeof(ErrorInfo_struct));
672 } else { /* get it out of the controllers pool */
674 do {
675 i = find_first_zero_bit(h->cmd_pool_bits, h->nr_cmds);
676 if (i == h->nr_cmds)
677 return NULL;
678 } while (test_and_set_bit
679 (i & (BITS_PER_LONG - 1),
680 h->cmd_pool_bits + (i / BITS_PER_LONG)) != 0);
681 #ifdef CCISS_DEBUG
682 printk(KERN_DEBUG "cciss: using command buffer %d\n", i);
683 #endif
684 c = h->cmd_pool + i;
685 memset(c, 0, sizeof(CommandList_struct));
686 cmd_dma_handle = h->cmd_pool_dhandle
687 + i * sizeof(CommandList_struct);
688 c->err_info = h->errinfo_pool + i;
689 memset(c->err_info, 0, sizeof(ErrorInfo_struct));
690 err_dma_handle = h->errinfo_pool_dhandle
691 + i * sizeof(ErrorInfo_struct);
692 h->nr_allocs++;
694 c->cmdindex = i;
697 INIT_HLIST_NODE(&c->list);
698 c->busaddr = (__u32) cmd_dma_handle;
699 temp64.val = (__u64) err_dma_handle;
700 c->ErrDesc.Addr.lower = temp64.val32.lower;
701 c->ErrDesc.Addr.upper = temp64.val32.upper;
702 c->ErrDesc.Len = sizeof(ErrorInfo_struct);
704 c->ctlr = h->ctlr;
705 return c;
709 * Frees a command block that was previously allocated with cmd_alloc().
711 static void cmd_free(ctlr_info_t *h, CommandList_struct *c, int got_from_pool)
713 int i;
714 u64bit temp64;
716 if (!got_from_pool) {
717 temp64.val32.lower = c->ErrDesc.Addr.lower;
718 temp64.val32.upper = c->ErrDesc.Addr.upper;
719 pci_free_consistent(h->pdev, sizeof(ErrorInfo_struct),
720 c->err_info, (dma_addr_t) temp64.val);
721 pci_free_consistent(h->pdev, sizeof(CommandList_struct),
722 c, (dma_addr_t) c->busaddr);
723 } else {
724 i = c - h->cmd_pool;
725 clear_bit(i & (BITS_PER_LONG - 1),
726 h->cmd_pool_bits + (i / BITS_PER_LONG));
727 h->nr_frees++;
731 static inline ctlr_info_t *get_host(struct gendisk *disk)
733 return disk->queue->queuedata;
736 static inline drive_info_struct *get_drv(struct gendisk *disk)
738 return disk->private_data;
742 * Open. Make sure the device is really there.
744 static int cciss_open(struct block_device *bdev, fmode_t mode)
746 ctlr_info_t *host = get_host(bdev->bd_disk);
747 drive_info_struct *drv = get_drv(bdev->bd_disk);
749 #ifdef CCISS_DEBUG
750 printk(KERN_DEBUG "cciss_open %s\n", bdev->bd_disk->disk_name);
751 #endif /* CCISS_DEBUG */
753 if (host->busy_initializing || drv->busy_configuring)
754 return -EBUSY;
756 * Root is allowed to open raw volume zero even if it's not configured
757 * so array config can still work. Root is also allowed to open any
758 * volume that has a LUN ID, so it can issue IOCTL to reread the
759 * disk information. I don't think I really like this
760 * but I'm already using way to many device nodes to claim another one
761 * for "raw controller".
763 if (drv->heads == 0) {
764 if (MINOR(bdev->bd_dev) != 0) { /* not node 0? */
765 /* if not node 0 make sure it is a partition = 0 */
766 if (MINOR(bdev->bd_dev) & 0x0f) {
767 return -ENXIO;
768 /* if it is, make sure we have a LUN ID */
769 } else if (drv->LunID == 0) {
770 return -ENXIO;
773 if (!capable(CAP_SYS_ADMIN))
774 return -EPERM;
776 drv->usage_count++;
777 host->usage_count++;
778 return 0;
782 * Close. Sync first.
784 static int cciss_release(struct gendisk *disk, fmode_t mode)
786 ctlr_info_t *host = get_host(disk);
787 drive_info_struct *drv = get_drv(disk);
789 #ifdef CCISS_DEBUG
790 printk(KERN_DEBUG "cciss_release %s\n", disk->disk_name);
791 #endif /* CCISS_DEBUG */
793 drv->usage_count--;
794 host->usage_count--;
795 return 0;
798 #ifdef CONFIG_COMPAT
800 static int do_ioctl(struct block_device *bdev, fmode_t mode,
801 unsigned cmd, unsigned long arg)
803 int ret;
804 lock_kernel();
805 ret = cciss_ioctl(bdev, mode, cmd, arg);
806 unlock_kernel();
807 return ret;
810 static int cciss_ioctl32_passthru(struct block_device *bdev, fmode_t mode,
811 unsigned cmd, unsigned long arg);
812 static int cciss_ioctl32_big_passthru(struct block_device *bdev, fmode_t mode,
813 unsigned cmd, unsigned long arg);
815 static int cciss_compat_ioctl(struct block_device *bdev, fmode_t mode,
816 unsigned cmd, unsigned long arg)
818 switch (cmd) {
819 case CCISS_GETPCIINFO:
820 case CCISS_GETINTINFO:
821 case CCISS_SETINTINFO:
822 case CCISS_GETNODENAME:
823 case CCISS_SETNODENAME:
824 case CCISS_GETHEARTBEAT:
825 case CCISS_GETBUSTYPES:
826 case CCISS_GETFIRMVER:
827 case CCISS_GETDRIVVER:
828 case CCISS_REVALIDVOLS:
829 case CCISS_DEREGDISK:
830 case CCISS_REGNEWDISK:
831 case CCISS_REGNEWD:
832 case CCISS_RESCANDISK:
833 case CCISS_GETLUNINFO:
834 return do_ioctl(bdev, mode, cmd, arg);
836 case CCISS_PASSTHRU32:
837 return cciss_ioctl32_passthru(bdev, mode, cmd, arg);
838 case CCISS_BIG_PASSTHRU32:
839 return cciss_ioctl32_big_passthru(bdev, mode, cmd, arg);
841 default:
842 return -ENOIOCTLCMD;
846 static int cciss_ioctl32_passthru(struct block_device *bdev, fmode_t mode,
847 unsigned cmd, unsigned long arg)
849 IOCTL32_Command_struct __user *arg32 =
850 (IOCTL32_Command_struct __user *) arg;
851 IOCTL_Command_struct arg64;
852 IOCTL_Command_struct __user *p = compat_alloc_user_space(sizeof(arg64));
853 int err;
854 u32 cp;
856 err = 0;
857 err |=
858 copy_from_user(&arg64.LUN_info, &arg32->LUN_info,
859 sizeof(arg64.LUN_info));
860 err |=
861 copy_from_user(&arg64.Request, &arg32->Request,
862 sizeof(arg64.Request));
863 err |=
864 copy_from_user(&arg64.error_info, &arg32->error_info,
865 sizeof(arg64.error_info));
866 err |= get_user(arg64.buf_size, &arg32->buf_size);
867 err |= get_user(cp, &arg32->buf);
868 arg64.buf = compat_ptr(cp);
869 err |= copy_to_user(p, &arg64, sizeof(arg64));
871 if (err)
872 return -EFAULT;
874 err = do_ioctl(bdev, mode, CCISS_PASSTHRU, (unsigned long)p);
875 if (err)
876 return err;
877 err |=
878 copy_in_user(&arg32->error_info, &p->error_info,
879 sizeof(arg32->error_info));
880 if (err)
881 return -EFAULT;
882 return err;
885 static int cciss_ioctl32_big_passthru(struct block_device *bdev, fmode_t mode,
886 unsigned cmd, unsigned long arg)
888 BIG_IOCTL32_Command_struct __user *arg32 =
889 (BIG_IOCTL32_Command_struct __user *) arg;
890 BIG_IOCTL_Command_struct arg64;
891 BIG_IOCTL_Command_struct __user *p =
892 compat_alloc_user_space(sizeof(arg64));
893 int err;
894 u32 cp;
896 err = 0;
897 err |=
898 copy_from_user(&arg64.LUN_info, &arg32->LUN_info,
899 sizeof(arg64.LUN_info));
900 err |=
901 copy_from_user(&arg64.Request, &arg32->Request,
902 sizeof(arg64.Request));
903 err |=
904 copy_from_user(&arg64.error_info, &arg32->error_info,
905 sizeof(arg64.error_info));
906 err |= get_user(arg64.buf_size, &arg32->buf_size);
907 err |= get_user(arg64.malloc_size, &arg32->malloc_size);
908 err |= get_user(cp, &arg32->buf);
909 arg64.buf = compat_ptr(cp);
910 err |= copy_to_user(p, &arg64, sizeof(arg64));
912 if (err)
913 return -EFAULT;
915 err = do_ioctl(bdev, mode, CCISS_BIG_PASSTHRU, (unsigned long)p);
916 if (err)
917 return err;
918 err |=
919 copy_in_user(&arg32->error_info, &p->error_info,
920 sizeof(arg32->error_info));
921 if (err)
922 return -EFAULT;
923 return err;
925 #endif
927 static int cciss_getgeo(struct block_device *bdev, struct hd_geometry *geo)
929 drive_info_struct *drv = get_drv(bdev->bd_disk);
931 if (!drv->cylinders)
932 return -ENXIO;
934 geo->heads = drv->heads;
935 geo->sectors = drv->sectors;
936 geo->cylinders = drv->cylinders;
937 return 0;
940 static void check_ioctl_unit_attention(ctlr_info_t *host, CommandList_struct *c)
942 if (c->err_info->CommandStatus == CMD_TARGET_STATUS &&
943 c->err_info->ScsiStatus != SAM_STAT_CHECK_CONDITION)
944 (void)check_for_unit_attention(host, c);
947 * ioctl
949 static int cciss_ioctl(struct block_device *bdev, fmode_t mode,
950 unsigned int cmd, unsigned long arg)
952 struct gendisk *disk = bdev->bd_disk;
953 ctlr_info_t *host = get_host(disk);
954 drive_info_struct *drv = get_drv(disk);
955 int ctlr = host->ctlr;
956 void __user *argp = (void __user *)arg;
958 #ifdef CCISS_DEBUG
959 printk(KERN_DEBUG "cciss_ioctl: Called with cmd=%x %lx\n", cmd, arg);
960 #endif /* CCISS_DEBUG */
962 switch (cmd) {
963 case CCISS_GETPCIINFO:
965 cciss_pci_info_struct pciinfo;
967 if (!arg)
968 return -EINVAL;
969 pciinfo.domain = pci_domain_nr(host->pdev->bus);
970 pciinfo.bus = host->pdev->bus->number;
971 pciinfo.dev_fn = host->pdev->devfn;
972 pciinfo.board_id = host->board_id;
973 if (copy_to_user
974 (argp, &pciinfo, sizeof(cciss_pci_info_struct)))
975 return -EFAULT;
976 return 0;
978 case CCISS_GETINTINFO:
980 cciss_coalint_struct intinfo;
981 if (!arg)
982 return -EINVAL;
983 intinfo.delay =
984 readl(&host->cfgtable->HostWrite.CoalIntDelay);
985 intinfo.count =
986 readl(&host->cfgtable->HostWrite.CoalIntCount);
987 if (copy_to_user
988 (argp, &intinfo, sizeof(cciss_coalint_struct)))
989 return -EFAULT;
990 return 0;
992 case CCISS_SETINTINFO:
994 cciss_coalint_struct intinfo;
995 unsigned long flags;
996 int i;
998 if (!arg)
999 return -EINVAL;
1000 if (!capable(CAP_SYS_ADMIN))
1001 return -EPERM;
1002 if (copy_from_user
1003 (&intinfo, argp, sizeof(cciss_coalint_struct)))
1004 return -EFAULT;
1005 if ((intinfo.delay == 0) && (intinfo.count == 0))
1007 // printk("cciss_ioctl: delay and count cannot be 0\n");
1008 return -EINVAL;
1010 spin_lock_irqsave(CCISS_LOCK(ctlr), flags);
1011 /* Update the field, and then ring the doorbell */
1012 writel(intinfo.delay,
1013 &(host->cfgtable->HostWrite.CoalIntDelay));
1014 writel(intinfo.count,
1015 &(host->cfgtable->HostWrite.CoalIntCount));
1016 writel(CFGTBL_ChangeReq, host->vaddr + SA5_DOORBELL);
1018 for (i = 0; i < MAX_IOCTL_CONFIG_WAIT; i++) {
1019 if (!(readl(host->vaddr + SA5_DOORBELL)
1020 & CFGTBL_ChangeReq))
1021 break;
1022 /* delay and try again */
1023 udelay(1000);
1025 spin_unlock_irqrestore(CCISS_LOCK(ctlr), flags);
1026 if (i >= MAX_IOCTL_CONFIG_WAIT)
1027 return -EAGAIN;
1028 return 0;
1030 case CCISS_GETNODENAME:
1032 NodeName_type NodeName;
1033 int i;
1035 if (!arg)
1036 return -EINVAL;
1037 for (i = 0; i < 16; i++)
1038 NodeName[i] =
1039 readb(&host->cfgtable->ServerName[i]);
1040 if (copy_to_user(argp, NodeName, sizeof(NodeName_type)))
1041 return -EFAULT;
1042 return 0;
1044 case CCISS_SETNODENAME:
1046 NodeName_type NodeName;
1047 unsigned long flags;
1048 int i;
1050 if (!arg)
1051 return -EINVAL;
1052 if (!capable(CAP_SYS_ADMIN))
1053 return -EPERM;
1055 if (copy_from_user
1056 (NodeName, argp, sizeof(NodeName_type)))
1057 return -EFAULT;
1059 spin_lock_irqsave(CCISS_LOCK(ctlr), flags);
1061 /* Update the field, and then ring the doorbell */
1062 for (i = 0; i < 16; i++)
1063 writeb(NodeName[i],
1064 &host->cfgtable->ServerName[i]);
1066 writel(CFGTBL_ChangeReq, host->vaddr + SA5_DOORBELL);
1068 for (i = 0; i < MAX_IOCTL_CONFIG_WAIT; i++) {
1069 if (!(readl(host->vaddr + SA5_DOORBELL)
1070 & CFGTBL_ChangeReq))
1071 break;
1072 /* delay and try again */
1073 udelay(1000);
1075 spin_unlock_irqrestore(CCISS_LOCK(ctlr), flags);
1076 if (i >= MAX_IOCTL_CONFIG_WAIT)
1077 return -EAGAIN;
1078 return 0;
1081 case CCISS_GETHEARTBEAT:
1083 Heartbeat_type heartbeat;
1085 if (!arg)
1086 return -EINVAL;
1087 heartbeat = readl(&host->cfgtable->HeartBeat);
1088 if (copy_to_user
1089 (argp, &heartbeat, sizeof(Heartbeat_type)))
1090 return -EFAULT;
1091 return 0;
1093 case CCISS_GETBUSTYPES:
1095 BusTypes_type BusTypes;
1097 if (!arg)
1098 return -EINVAL;
1099 BusTypes = readl(&host->cfgtable->BusTypes);
1100 if (copy_to_user
1101 (argp, &BusTypes, sizeof(BusTypes_type)))
1102 return -EFAULT;
1103 return 0;
1105 case CCISS_GETFIRMVER:
1107 FirmwareVer_type firmware;
1109 if (!arg)
1110 return -EINVAL;
1111 memcpy(firmware, host->firm_ver, 4);
1113 if (copy_to_user
1114 (argp, firmware, sizeof(FirmwareVer_type)))
1115 return -EFAULT;
1116 return 0;
1118 case CCISS_GETDRIVVER:
1120 DriverVer_type DriverVer = DRIVER_VERSION;
1122 if (!arg)
1123 return -EINVAL;
1125 if (copy_to_user
1126 (argp, &DriverVer, sizeof(DriverVer_type)))
1127 return -EFAULT;
1128 return 0;
1131 case CCISS_DEREGDISK:
1132 case CCISS_REGNEWD:
1133 case CCISS_REVALIDVOLS:
1134 return rebuild_lun_table(host, 0);
1136 case CCISS_GETLUNINFO:{
1137 LogvolInfo_struct luninfo;
1139 luninfo.LunID = drv->LunID;
1140 luninfo.num_opens = drv->usage_count;
1141 luninfo.num_parts = 0;
1142 if (copy_to_user(argp, &luninfo,
1143 sizeof(LogvolInfo_struct)))
1144 return -EFAULT;
1145 return 0;
1147 case CCISS_PASSTHRU:
1149 IOCTL_Command_struct iocommand;
1150 CommandList_struct *c;
1151 char *buff = NULL;
1152 u64bit temp64;
1153 unsigned long flags;
1154 DECLARE_COMPLETION_ONSTACK(wait);
1156 if (!arg)
1157 return -EINVAL;
1159 if (!capable(CAP_SYS_RAWIO))
1160 return -EPERM;
1162 if (copy_from_user
1163 (&iocommand, argp, sizeof(IOCTL_Command_struct)))
1164 return -EFAULT;
1165 if ((iocommand.buf_size < 1) &&
1166 (iocommand.Request.Type.Direction != XFER_NONE)) {
1167 return -EINVAL;
1169 #if 0 /* 'buf_size' member is 16-bits, and always smaller than kmalloc limit */
1170 /* Check kmalloc limits */
1171 if (iocommand.buf_size > 128000)
1172 return -EINVAL;
1173 #endif
1174 if (iocommand.buf_size > 0) {
1175 buff = kmalloc(iocommand.buf_size, GFP_KERNEL);
1176 if (buff == NULL)
1177 return -EFAULT;
1179 if (iocommand.Request.Type.Direction == XFER_WRITE) {
1180 /* Copy the data into the buffer we created */
1181 if (copy_from_user
1182 (buff, iocommand.buf, iocommand.buf_size)) {
1183 kfree(buff);
1184 return -EFAULT;
1186 } else {
1187 memset(buff, 0, iocommand.buf_size);
1189 if ((c = cmd_alloc(host, 0)) == NULL) {
1190 kfree(buff);
1191 return -ENOMEM;
1193 // Fill in the command type
1194 c->cmd_type = CMD_IOCTL_PEND;
1195 // Fill in Command Header
1196 c->Header.ReplyQueue = 0; // unused in simple mode
1197 if (iocommand.buf_size > 0) // buffer to fill
1199 c->Header.SGList = 1;
1200 c->Header.SGTotal = 1;
1201 } else // no buffers to fill
1203 c->Header.SGList = 0;
1204 c->Header.SGTotal = 0;
1206 c->Header.LUN = iocommand.LUN_info;
1207 c->Header.Tag.lower = c->busaddr; // use the kernel address the cmd block for tag
1209 // Fill in Request block
1210 c->Request = iocommand.Request;
1212 // Fill in the scatter gather information
1213 if (iocommand.buf_size > 0) {
1214 temp64.val = pci_map_single(host->pdev, buff,
1215 iocommand.buf_size,
1216 PCI_DMA_BIDIRECTIONAL);
1217 c->SG[0].Addr.lower = temp64.val32.lower;
1218 c->SG[0].Addr.upper = temp64.val32.upper;
1219 c->SG[0].Len = iocommand.buf_size;
1220 c->SG[0].Ext = 0; // we are not chaining
1222 c->waiting = &wait;
1224 /* Put the request on the tail of the request queue */
1225 spin_lock_irqsave(CCISS_LOCK(ctlr), flags);
1226 addQ(&host->reqQ, c);
1227 host->Qdepth++;
1228 start_io(host);
1229 spin_unlock_irqrestore(CCISS_LOCK(ctlr), flags);
1231 wait_for_completion(&wait);
1233 /* unlock the buffers from DMA */
1234 temp64.val32.lower = c->SG[0].Addr.lower;
1235 temp64.val32.upper = c->SG[0].Addr.upper;
1236 pci_unmap_single(host->pdev, (dma_addr_t) temp64.val,
1237 iocommand.buf_size,
1238 PCI_DMA_BIDIRECTIONAL);
1240 check_ioctl_unit_attention(host, c);
1242 /* Copy the error information out */
1243 iocommand.error_info = *(c->err_info);
1244 if (copy_to_user
1245 (argp, &iocommand, sizeof(IOCTL_Command_struct))) {
1246 kfree(buff);
1247 cmd_free(host, c, 0);
1248 return -EFAULT;
1251 if (iocommand.Request.Type.Direction == XFER_READ) {
1252 /* Copy the data out of the buffer we created */
1253 if (copy_to_user
1254 (iocommand.buf, buff, iocommand.buf_size)) {
1255 kfree(buff);
1256 cmd_free(host, c, 0);
1257 return -EFAULT;
1260 kfree(buff);
1261 cmd_free(host, c, 0);
1262 return 0;
1264 case CCISS_BIG_PASSTHRU:{
1265 BIG_IOCTL_Command_struct *ioc;
1266 CommandList_struct *c;
1267 unsigned char **buff = NULL;
1268 int *buff_size = NULL;
1269 u64bit temp64;
1270 unsigned long flags;
1271 BYTE sg_used = 0;
1272 int status = 0;
1273 int i;
1274 DECLARE_COMPLETION_ONSTACK(wait);
1275 __u32 left;
1276 __u32 sz;
1277 BYTE __user *data_ptr;
1279 if (!arg)
1280 return -EINVAL;
1281 if (!capable(CAP_SYS_RAWIO))
1282 return -EPERM;
1283 ioc = (BIG_IOCTL_Command_struct *)
1284 kmalloc(sizeof(*ioc), GFP_KERNEL);
1285 if (!ioc) {
1286 status = -ENOMEM;
1287 goto cleanup1;
1289 if (copy_from_user(ioc, argp, sizeof(*ioc))) {
1290 status = -EFAULT;
1291 goto cleanup1;
1293 if ((ioc->buf_size < 1) &&
1294 (ioc->Request.Type.Direction != XFER_NONE)) {
1295 status = -EINVAL;
1296 goto cleanup1;
1298 /* Check kmalloc limits using all SGs */
1299 if (ioc->malloc_size > MAX_KMALLOC_SIZE) {
1300 status = -EINVAL;
1301 goto cleanup1;
1303 if (ioc->buf_size > ioc->malloc_size * MAXSGENTRIES) {
1304 status = -EINVAL;
1305 goto cleanup1;
1307 buff =
1308 kzalloc(MAXSGENTRIES * sizeof(char *), GFP_KERNEL);
1309 if (!buff) {
1310 status = -ENOMEM;
1311 goto cleanup1;
1313 buff_size = kmalloc(MAXSGENTRIES * sizeof(int),
1314 GFP_KERNEL);
1315 if (!buff_size) {
1316 status = -ENOMEM;
1317 goto cleanup1;
1319 left = ioc->buf_size;
1320 data_ptr = ioc->buf;
1321 while (left) {
1322 sz = (left >
1323 ioc->malloc_size) ? ioc->
1324 malloc_size : left;
1325 buff_size[sg_used] = sz;
1326 buff[sg_used] = kmalloc(sz, GFP_KERNEL);
1327 if (buff[sg_used] == NULL) {
1328 status = -ENOMEM;
1329 goto cleanup1;
1331 if (ioc->Request.Type.Direction == XFER_WRITE) {
1332 if (copy_from_user
1333 (buff[sg_used], data_ptr, sz)) {
1334 status = -EFAULT;
1335 goto cleanup1;
1337 } else {
1338 memset(buff[sg_used], 0, sz);
1340 left -= sz;
1341 data_ptr += sz;
1342 sg_used++;
1344 if ((c = cmd_alloc(host, 0)) == NULL) {
1345 status = -ENOMEM;
1346 goto cleanup1;
1348 c->cmd_type = CMD_IOCTL_PEND;
1349 c->Header.ReplyQueue = 0;
1351 if (ioc->buf_size > 0) {
1352 c->Header.SGList = sg_used;
1353 c->Header.SGTotal = sg_used;
1354 } else {
1355 c->Header.SGList = 0;
1356 c->Header.SGTotal = 0;
1358 c->Header.LUN = ioc->LUN_info;
1359 c->Header.Tag.lower = c->busaddr;
1361 c->Request = ioc->Request;
1362 if (ioc->buf_size > 0) {
1363 int i;
1364 for (i = 0; i < sg_used; i++) {
1365 temp64.val =
1366 pci_map_single(host->pdev, buff[i],
1367 buff_size[i],
1368 PCI_DMA_BIDIRECTIONAL);
1369 c->SG[i].Addr.lower =
1370 temp64.val32.lower;
1371 c->SG[i].Addr.upper =
1372 temp64.val32.upper;
1373 c->SG[i].Len = buff_size[i];
1374 c->SG[i].Ext = 0; /* we are not chaining */
1377 c->waiting = &wait;
1378 /* Put the request on the tail of the request queue */
1379 spin_lock_irqsave(CCISS_LOCK(ctlr), flags);
1380 addQ(&host->reqQ, c);
1381 host->Qdepth++;
1382 start_io(host);
1383 spin_unlock_irqrestore(CCISS_LOCK(ctlr), flags);
1384 wait_for_completion(&wait);
1385 /* unlock the buffers from DMA */
1386 for (i = 0; i < sg_used; i++) {
1387 temp64.val32.lower = c->SG[i].Addr.lower;
1388 temp64.val32.upper = c->SG[i].Addr.upper;
1389 pci_unmap_single(host->pdev,
1390 (dma_addr_t) temp64.val, buff_size[i],
1391 PCI_DMA_BIDIRECTIONAL);
1393 check_ioctl_unit_attention(host, c);
1394 /* Copy the error information out */
1395 ioc->error_info = *(c->err_info);
1396 if (copy_to_user(argp, ioc, sizeof(*ioc))) {
1397 cmd_free(host, c, 0);
1398 status = -EFAULT;
1399 goto cleanup1;
1401 if (ioc->Request.Type.Direction == XFER_READ) {
1402 /* Copy the data out of the buffer we created */
1403 BYTE __user *ptr = ioc->buf;
1404 for (i = 0; i < sg_used; i++) {
1405 if (copy_to_user
1406 (ptr, buff[i], buff_size[i])) {
1407 cmd_free(host, c, 0);
1408 status = -EFAULT;
1409 goto cleanup1;
1411 ptr += buff_size[i];
1414 cmd_free(host, c, 0);
1415 status = 0;
1416 cleanup1:
1417 if (buff) {
1418 for (i = 0; i < sg_used; i++)
1419 kfree(buff[i]);
1420 kfree(buff);
1422 kfree(buff_size);
1423 kfree(ioc);
1424 return status;
1427 /* scsi_cmd_ioctl handles these, below, though some are not */
1428 /* very meaningful for cciss. SG_IO is the main one people want. */
1430 case SG_GET_VERSION_NUM:
1431 case SG_SET_TIMEOUT:
1432 case SG_GET_TIMEOUT:
1433 case SG_GET_RESERVED_SIZE:
1434 case SG_SET_RESERVED_SIZE:
1435 case SG_EMULATED_HOST:
1436 case SG_IO:
1437 case SCSI_IOCTL_SEND_COMMAND:
1438 return scsi_cmd_ioctl(disk->queue, disk, mode, cmd, argp);
1440 /* scsi_cmd_ioctl would normally handle these, below, but */
1441 /* they aren't a good fit for cciss, as CD-ROMs are */
1442 /* not supported, and we don't have any bus/target/lun */
1443 /* which we present to the kernel. */
1445 case CDROM_SEND_PACKET:
1446 case CDROMCLOSETRAY:
1447 case CDROMEJECT:
1448 case SCSI_IOCTL_GET_IDLUN:
1449 case SCSI_IOCTL_GET_BUS_NUMBER:
1450 default:
1451 return -ENOTTY;
1455 static void cciss_check_queues(ctlr_info_t *h)
1457 int start_queue = h->next_to_run;
1458 int i;
1460 /* check to see if we have maxed out the number of commands that can
1461 * be placed on the queue. If so then exit. We do this check here
1462 * in case the interrupt we serviced was from an ioctl and did not
1463 * free any new commands.
1465 if ((find_first_zero_bit(h->cmd_pool_bits, h->nr_cmds)) == h->nr_cmds)
1466 return;
1468 /* We have room on the queue for more commands. Now we need to queue
1469 * them up. We will also keep track of the next queue to run so
1470 * that every queue gets a chance to be started first.
1472 for (i = 0; i < h->highest_lun + 1; i++) {
1473 int curr_queue = (start_queue + i) % (h->highest_lun + 1);
1474 /* make sure the disk has been added and the drive is real
1475 * because this can be called from the middle of init_one.
1477 if (!(h->drv[curr_queue].queue) || !(h->drv[curr_queue].heads))
1478 continue;
1479 blk_start_queue(h->gendisk[curr_queue]->queue);
1481 /* check to see if we have maxed out the number of commands
1482 * that can be placed on the queue.
1484 if ((find_first_zero_bit(h->cmd_pool_bits, h->nr_cmds)) == h->nr_cmds) {
1485 if (curr_queue == start_queue) {
1486 h->next_to_run =
1487 (start_queue + 1) % (h->highest_lun + 1);
1488 break;
1489 } else {
1490 h->next_to_run = curr_queue;
1491 break;
1497 static void cciss_softirq_done(struct request *rq)
1499 CommandList_struct *cmd = rq->completion_data;
1500 ctlr_info_t *h = hba[cmd->ctlr];
1501 unsigned long flags;
1502 u64bit temp64;
1503 int i, ddir;
1505 if (cmd->Request.Type.Direction == XFER_READ)
1506 ddir = PCI_DMA_FROMDEVICE;
1507 else
1508 ddir = PCI_DMA_TODEVICE;
1510 /* command did not need to be retried */
1511 /* unmap the DMA mapping for all the scatter gather elements */
1512 for (i = 0; i < cmd->Header.SGList; i++) {
1513 temp64.val32.lower = cmd->SG[i].Addr.lower;
1514 temp64.val32.upper = cmd->SG[i].Addr.upper;
1515 pci_unmap_page(h->pdev, temp64.val, cmd->SG[i].Len, ddir);
1518 #ifdef CCISS_DEBUG
1519 printk("Done with %p\n", rq);
1520 #endif /* CCISS_DEBUG */
1522 /* set the residual count for pc requests */
1523 if (blk_pc_request(rq))
1524 rq->resid_len = cmd->err_info->ResidualCnt;
1526 blk_end_request_all(rq, (rq->errors == 0) ? 0 : -EIO);
1528 spin_lock_irqsave(&h->lock, flags);
1529 cmd_free(h, cmd, 1);
1530 cciss_check_queues(h);
1531 spin_unlock_irqrestore(&h->lock, flags);
1534 static void log_unit_to_scsi3addr(ctlr_info_t *h, unsigned char scsi3addr[],
1535 uint32_t log_unit)
1537 log_unit = h->drv[log_unit].LunID & 0x03fff;
1538 memset(&scsi3addr[4], 0, 4);
1539 memcpy(&scsi3addr[0], &log_unit, 4);
1540 scsi3addr[3] |= 0x40;
1543 /* This function gets the SCSI vendor, model, and revision of a logical drive
1544 * via the inquiry page 0. Model, vendor, and rev are set to empty strings if
1545 * they cannot be read.
1547 static void cciss_get_device_descr(int ctlr, int logvol, int withirq,
1548 char *vendor, char *model, char *rev)
1550 int rc;
1551 InquiryData_struct *inq_buf;
1552 unsigned char scsi3addr[8];
1554 *vendor = '\0';
1555 *model = '\0';
1556 *rev = '\0';
1558 inq_buf = kzalloc(sizeof(InquiryData_struct), GFP_KERNEL);
1559 if (!inq_buf)
1560 return;
1562 log_unit_to_scsi3addr(hba[ctlr], scsi3addr, logvol);
1563 if (withirq)
1564 rc = sendcmd_withirq(CISS_INQUIRY, ctlr, inq_buf,
1565 sizeof(InquiryData_struct), 0,
1566 scsi3addr, TYPE_CMD);
1567 else
1568 rc = sendcmd(CISS_INQUIRY, ctlr, inq_buf,
1569 sizeof(InquiryData_struct), 0,
1570 scsi3addr, TYPE_CMD);
1571 if (rc == IO_OK) {
1572 memcpy(vendor, &inq_buf->data_byte[8], VENDOR_LEN);
1573 vendor[VENDOR_LEN] = '\0';
1574 memcpy(model, &inq_buf->data_byte[16], MODEL_LEN);
1575 model[MODEL_LEN] = '\0';
1576 memcpy(rev, &inq_buf->data_byte[32], REV_LEN);
1577 rev[REV_LEN] = '\0';
1580 kfree(inq_buf);
1581 return;
1584 /* This function gets the serial number of a logical drive via
1585 * inquiry page 0x83. Serial no. is 16 bytes. If the serial
1586 * number cannot be had, for whatever reason, 16 bytes of 0xff
1587 * are returned instead.
1589 static void cciss_get_serial_no(int ctlr, int logvol, int withirq,
1590 unsigned char *serial_no, int buflen)
1592 #define PAGE_83_INQ_BYTES 64
1593 int rc;
1594 unsigned char *buf;
1595 unsigned char scsi3addr[8];
1597 if (buflen > 16)
1598 buflen = 16;
1599 memset(serial_no, 0xff, buflen);
1600 buf = kzalloc(PAGE_83_INQ_BYTES, GFP_KERNEL);
1601 if (!buf)
1602 return;
1603 memset(serial_no, 0, buflen);
1604 log_unit_to_scsi3addr(hba[ctlr], scsi3addr, logvol);
1605 if (withirq)
1606 rc = sendcmd_withirq(CISS_INQUIRY, ctlr, buf,
1607 PAGE_83_INQ_BYTES, 0x83, scsi3addr, TYPE_CMD);
1608 else
1609 rc = sendcmd(CISS_INQUIRY, ctlr, buf,
1610 PAGE_83_INQ_BYTES, 0x83, scsi3addr, TYPE_CMD);
1611 if (rc == IO_OK)
1612 memcpy(serial_no, &buf[8], buflen);
1613 kfree(buf);
1614 return;
1617 static void cciss_add_disk(ctlr_info_t *h, struct gendisk *disk,
1618 int drv_index)
1620 disk->queue = blk_init_queue(do_cciss_request, &h->lock);
1621 sprintf(disk->disk_name, "cciss/c%dd%d", h->ctlr, drv_index);
1622 disk->major = h->major;
1623 disk->first_minor = drv_index << NWD_SHIFT;
1624 disk->fops = &cciss_fops;
1625 disk->private_data = &h->drv[drv_index];
1626 disk->driverfs_dev = &h->drv[drv_index].dev;
1628 /* Set up queue information */
1629 blk_queue_bounce_limit(disk->queue, h->pdev->dma_mask);
1631 /* This is a hardware imposed limit. */
1632 blk_queue_max_hw_segments(disk->queue, MAXSGENTRIES);
1634 /* This is a limit in the driver and could be eliminated. */
1635 blk_queue_max_phys_segments(disk->queue, MAXSGENTRIES);
1637 blk_queue_max_sectors(disk->queue, h->cciss_max_sectors);
1639 blk_queue_softirq_done(disk->queue, cciss_softirq_done);
1641 disk->queue->queuedata = h;
1643 blk_queue_logical_block_size(disk->queue,
1644 h->drv[drv_index].block_size);
1646 /* Make sure all queue data is written out before */
1647 /* setting h->drv[drv_index].queue, as setting this */
1648 /* allows the interrupt handler to start the queue */
1649 wmb();
1650 h->drv[drv_index].queue = disk->queue;
1651 add_disk(disk);
1654 /* This function will check the usage_count of the drive to be updated/added.
1655 * If the usage_count is zero and it is a heretofore unknown drive, or,
1656 * the drive's capacity, geometry, or serial number has changed,
1657 * then the drive information will be updated and the disk will be
1658 * re-registered with the kernel. If these conditions don't hold,
1659 * then it will be left alone for the next reboot. The exception to this
1660 * is disk 0 which will always be left registered with the kernel since it
1661 * is also the controller node. Any changes to disk 0 will show up on
1662 * the next reboot.
1664 static void cciss_update_drive_info(int ctlr, int drv_index, int first_time)
1666 ctlr_info_t *h = hba[ctlr];
1667 struct gendisk *disk;
1668 InquiryData_struct *inq_buff = NULL;
1669 unsigned int block_size;
1670 sector_t total_size;
1671 unsigned long flags = 0;
1672 int ret = 0;
1673 drive_info_struct *drvinfo;
1674 int was_only_controller_node;
1676 /* Get information about the disk and modify the driver structure */
1677 inq_buff = kmalloc(sizeof(InquiryData_struct), GFP_KERNEL);
1678 drvinfo = kmalloc(sizeof(*drvinfo), GFP_KERNEL);
1679 if (inq_buff == NULL || drvinfo == NULL)
1680 goto mem_msg;
1682 /* See if we're trying to update the "controller node"
1683 * this will happen the when the first logical drive gets
1684 * created by ACU.
1686 was_only_controller_node = (drv_index == 0 &&
1687 h->drv[0].raid_level == -1);
1689 /* testing to see if 16-byte CDBs are already being used */
1690 if (h->cciss_read == CCISS_READ_16) {
1691 cciss_read_capacity_16(h->ctlr, drv_index, 1,
1692 &total_size, &block_size);
1694 } else {
1695 cciss_read_capacity(ctlr, drv_index, 1,
1696 &total_size, &block_size);
1698 /* if read_capacity returns all F's this volume is >2TB */
1699 /* in size so we switch to 16-byte CDB's for all */
1700 /* read/write ops */
1701 if (total_size == 0xFFFFFFFFULL) {
1702 cciss_read_capacity_16(ctlr, drv_index, 1,
1703 &total_size, &block_size);
1704 h->cciss_read = CCISS_READ_16;
1705 h->cciss_write = CCISS_WRITE_16;
1706 } else {
1707 h->cciss_read = CCISS_READ_10;
1708 h->cciss_write = CCISS_WRITE_10;
1712 cciss_geometry_inquiry(ctlr, drv_index, 1, total_size, block_size,
1713 inq_buff, drvinfo);
1714 drvinfo->block_size = block_size;
1715 drvinfo->nr_blocks = total_size + 1;
1717 cciss_get_device_descr(ctlr, drv_index, 1, drvinfo->vendor,
1718 drvinfo->model, drvinfo->rev);
1719 cciss_get_serial_no(ctlr, drv_index, 1, drvinfo->serial_no,
1720 sizeof(drvinfo->serial_no));
1722 /* Is it the same disk we already know, and nothing's changed? */
1723 if (h->drv[drv_index].raid_level != -1 &&
1724 ((memcmp(drvinfo->serial_no,
1725 h->drv[drv_index].serial_no, 16) == 0) &&
1726 drvinfo->block_size == h->drv[drv_index].block_size &&
1727 drvinfo->nr_blocks == h->drv[drv_index].nr_blocks &&
1728 drvinfo->heads == h->drv[drv_index].heads &&
1729 drvinfo->sectors == h->drv[drv_index].sectors &&
1730 drvinfo->cylinders == h->drv[drv_index].cylinders))
1731 /* The disk is unchanged, nothing to update */
1732 goto freeret;
1734 /* If we get here it's not the same disk, or something's changed,
1735 * so we need to * deregister it, and re-register it, if it's not
1736 * in use.
1737 * If the disk already exists then deregister it before proceeding
1738 * (unless it's the first disk (for the controller node).
1740 if (h->drv[drv_index].raid_level != -1 && drv_index != 0) {
1741 printk(KERN_WARNING "disk %d has changed.\n", drv_index);
1742 spin_lock_irqsave(CCISS_LOCK(h->ctlr), flags);
1743 h->drv[drv_index].busy_configuring = 1;
1744 spin_unlock_irqrestore(CCISS_LOCK(h->ctlr), flags);
1746 /* deregister_disk sets h->drv[drv_index].queue = NULL
1747 * which keeps the interrupt handler from starting
1748 * the queue.
1750 ret = deregister_disk(h, drv_index, 0);
1751 h->drv[drv_index].busy_configuring = 0;
1754 /* If the disk is in use return */
1755 if (ret)
1756 goto freeret;
1758 /* Save the new information from cciss_geometry_inquiry
1759 * and serial number inquiry.
1761 h->drv[drv_index].block_size = drvinfo->block_size;
1762 h->drv[drv_index].nr_blocks = drvinfo->nr_blocks;
1763 h->drv[drv_index].heads = drvinfo->heads;
1764 h->drv[drv_index].sectors = drvinfo->sectors;
1765 h->drv[drv_index].cylinders = drvinfo->cylinders;
1766 h->drv[drv_index].raid_level = drvinfo->raid_level;
1767 memcpy(h->drv[drv_index].serial_no, drvinfo->serial_no, 16);
1768 memcpy(h->drv[drv_index].vendor, drvinfo->vendor, VENDOR_LEN + 1);
1769 memcpy(h->drv[drv_index].model, drvinfo->model, MODEL_LEN + 1);
1770 memcpy(h->drv[drv_index].rev, drvinfo->rev, REV_LEN + 1);
1772 ++h->num_luns;
1773 disk = h->gendisk[drv_index];
1774 set_capacity(disk, h->drv[drv_index].nr_blocks);
1776 /* If it's not disk 0 (drv_index != 0)
1777 * or if it was disk 0, but there was previously
1778 * no actual corresponding configured logical drive
1779 * (raid_leve == -1) then we want to update the
1780 * logical drive's information.
1782 if (drv_index || first_time)
1783 cciss_add_disk(h, disk, drv_index);
1785 freeret:
1786 kfree(inq_buff);
1787 kfree(drvinfo);
1788 return;
1789 mem_msg:
1790 printk(KERN_ERR "cciss: out of memory\n");
1791 goto freeret;
1794 /* This function will find the first index of the controllers drive array
1795 * that has a -1 for the raid_level and will return that index. This is
1796 * where new drives will be added. If the index to be returned is greater
1797 * than the highest_lun index for the controller then highest_lun is set
1798 * to this new index. If there are no available indexes then -1 is returned.
1799 * "controller_node" is used to know if this is a real logical drive, or just
1800 * the controller node, which determines if this counts towards highest_lun.
1802 static int cciss_find_free_drive_index(int ctlr, int controller_node)
1804 int i;
1806 for (i = 0; i < CISS_MAX_LUN; i++) {
1807 if (hba[ctlr]->drv[i].raid_level == -1) {
1808 if (i > hba[ctlr]->highest_lun)
1809 if (!controller_node)
1810 hba[ctlr]->highest_lun = i;
1811 return i;
1814 return -1;
1817 /* cciss_add_gendisk finds a free hba[]->drv structure
1818 * and allocates a gendisk if needed, and sets the lunid
1819 * in the drvinfo structure. It returns the index into
1820 * the ->drv[] array, or -1 if none are free.
1821 * is_controller_node indicates whether highest_lun should
1822 * count this disk, or if it's only being added to provide
1823 * a means to talk to the controller in case no logical
1824 * drives have yet been configured.
1826 static int cciss_add_gendisk(ctlr_info_t *h, __u32 lunid, int controller_node)
1828 int drv_index;
1830 drv_index = cciss_find_free_drive_index(h->ctlr, controller_node);
1831 if (drv_index == -1)
1832 return -1;
1833 /*Check if the gendisk needs to be allocated */
1834 if (!h->gendisk[drv_index]) {
1835 h->gendisk[drv_index] =
1836 alloc_disk(1 << NWD_SHIFT);
1837 if (!h->gendisk[drv_index]) {
1838 printk(KERN_ERR "cciss%d: could not "
1839 "allocate a new disk %d\n",
1840 h->ctlr, drv_index);
1841 return -1;
1844 h->drv[drv_index].LunID = lunid;
1845 if (cciss_create_ld_sysfs_entry(h, &h->drv[drv_index], drv_index))
1846 goto err_free_disk;
1848 /* Don't need to mark this busy because nobody */
1849 /* else knows about this disk yet to contend */
1850 /* for access to it. */
1851 h->drv[drv_index].busy_configuring = 0;
1852 wmb();
1853 return drv_index;
1855 err_free_disk:
1856 put_disk(h->gendisk[drv_index]);
1857 h->gendisk[drv_index] = NULL;
1858 return -1;
1861 /* This is for the special case of a controller which
1862 * has no logical drives. In this case, we still need
1863 * to register a disk so the controller can be accessed
1864 * by the Array Config Utility.
1866 static void cciss_add_controller_node(ctlr_info_t *h)
1868 struct gendisk *disk;
1869 int drv_index;
1871 if (h->gendisk[0] != NULL) /* already did this? Then bail. */
1872 return;
1874 drv_index = cciss_add_gendisk(h, 0, 1);
1875 if (drv_index == -1) {
1876 printk(KERN_WARNING "cciss%d: could not "
1877 "add disk 0.\n", h->ctlr);
1878 return;
1880 h->drv[drv_index].block_size = 512;
1881 h->drv[drv_index].nr_blocks = 0;
1882 h->drv[drv_index].heads = 0;
1883 h->drv[drv_index].sectors = 0;
1884 h->drv[drv_index].cylinders = 0;
1885 h->drv[drv_index].raid_level = -1;
1886 memset(h->drv[drv_index].serial_no, 0, 16);
1887 disk = h->gendisk[drv_index];
1888 cciss_add_disk(h, disk, drv_index);
1891 /* This function will add and remove logical drives from the Logical
1892 * drive array of the controller and maintain persistency of ordering
1893 * so that mount points are preserved until the next reboot. This allows
1894 * for the removal of logical drives in the middle of the drive array
1895 * without a re-ordering of those drives.
1896 * INPUT
1897 * h = The controller to perform the operations on
1899 static int rebuild_lun_table(ctlr_info_t *h, int first_time)
1901 int ctlr = h->ctlr;
1902 int num_luns;
1903 ReportLunData_struct *ld_buff = NULL;
1904 int return_code;
1905 int listlength = 0;
1906 int i;
1907 int drv_found;
1908 int drv_index = 0;
1909 __u32 lunid = 0;
1910 unsigned long flags;
1912 if (!capable(CAP_SYS_RAWIO))
1913 return -EPERM;
1915 /* Set busy_configuring flag for this operation */
1916 spin_lock_irqsave(CCISS_LOCK(h->ctlr), flags);
1917 if (h->busy_configuring) {
1918 spin_unlock_irqrestore(CCISS_LOCK(h->ctlr), flags);
1919 return -EBUSY;
1921 h->busy_configuring = 1;
1922 spin_unlock_irqrestore(CCISS_LOCK(h->ctlr), flags);
1924 ld_buff = kzalloc(sizeof(ReportLunData_struct), GFP_KERNEL);
1925 if (ld_buff == NULL)
1926 goto mem_msg;
1928 return_code = sendcmd_withirq(CISS_REPORT_LOG, ctlr, ld_buff,
1929 sizeof(ReportLunData_struct),
1930 0, CTLR_LUNID, TYPE_CMD);
1932 if (return_code == IO_OK)
1933 listlength = be32_to_cpu(*(__be32 *) ld_buff->LUNListLength);
1934 else { /* reading number of logical volumes failed */
1935 printk(KERN_WARNING "cciss: report logical volume"
1936 " command failed\n");
1937 listlength = 0;
1938 goto freeret;
1941 num_luns = listlength / 8; /* 8 bytes per entry */
1942 if (num_luns > CISS_MAX_LUN) {
1943 num_luns = CISS_MAX_LUN;
1944 printk(KERN_WARNING "cciss: more luns configured"
1945 " on controller than can be handled by"
1946 " this driver.\n");
1949 if (num_luns == 0)
1950 cciss_add_controller_node(h);
1952 /* Compare controller drive array to driver's drive array
1953 * to see if any drives are missing on the controller due
1954 * to action of Array Config Utility (user deletes drive)
1955 * and deregister logical drives which have disappeared.
1957 for (i = 0; i <= h->highest_lun; i++) {
1958 int j;
1959 drv_found = 0;
1961 /* skip holes in the array from already deleted drives */
1962 if (h->drv[i].raid_level == -1)
1963 continue;
1965 for (j = 0; j < num_luns; j++) {
1966 memcpy(&lunid, &ld_buff->LUN[j][0], 4);
1967 lunid = le32_to_cpu(lunid);
1968 if (h->drv[i].LunID == lunid) {
1969 drv_found = 1;
1970 break;
1973 if (!drv_found) {
1974 /* Deregister it from the OS, it's gone. */
1975 spin_lock_irqsave(CCISS_LOCK(h->ctlr), flags);
1976 h->drv[i].busy_configuring = 1;
1977 spin_unlock_irqrestore(CCISS_LOCK(h->ctlr), flags);
1978 return_code = deregister_disk(h, i, 1);
1979 cciss_destroy_ld_sysfs_entry(&h->drv[i]);
1980 h->drv[i].busy_configuring = 0;
1984 /* Compare controller drive array to driver's drive array.
1985 * Check for updates in the drive information and any new drives
1986 * on the controller due to ACU adding logical drives, or changing
1987 * a logical drive's size, etc. Reregister any new/changed drives
1989 for (i = 0; i < num_luns; i++) {
1990 int j;
1992 drv_found = 0;
1994 memcpy(&lunid, &ld_buff->LUN[i][0], 4);
1995 lunid = le32_to_cpu(lunid);
1997 /* Find if the LUN is already in the drive array
1998 * of the driver. If so then update its info
1999 * if not in use. If it does not exist then find
2000 * the first free index and add it.
2002 for (j = 0; j <= h->highest_lun; j++) {
2003 if (h->drv[j].raid_level != -1 &&
2004 h->drv[j].LunID == lunid) {
2005 drv_index = j;
2006 drv_found = 1;
2007 break;
2011 /* check if the drive was found already in the array */
2012 if (!drv_found) {
2013 drv_index = cciss_add_gendisk(h, lunid, 0);
2014 if (drv_index == -1)
2015 goto freeret;
2017 cciss_update_drive_info(ctlr, drv_index, first_time);
2018 } /* end for */
2020 freeret:
2021 kfree(ld_buff);
2022 h->busy_configuring = 0;
2023 /* We return -1 here to tell the ACU that we have registered/updated
2024 * all of the drives that we can and to keep it from calling us
2025 * additional times.
2027 return -1;
2028 mem_msg:
2029 printk(KERN_ERR "cciss: out of memory\n");
2030 h->busy_configuring = 0;
2031 goto freeret;
2034 /* This function will deregister the disk and it's queue from the
2035 * kernel. It must be called with the controller lock held and the
2036 * drv structures busy_configuring flag set. It's parameters are:
2038 * disk = This is the disk to be deregistered
2039 * drv = This is the drive_info_struct associated with the disk to be
2040 * deregistered. It contains information about the disk used
2041 * by the driver.
2042 * clear_all = This flag determines whether or not the disk information
2043 * is going to be completely cleared out and the highest_lun
2044 * reset. Sometimes we want to clear out information about
2045 * the disk in preparation for re-adding it. In this case
2046 * the highest_lun should be left unchanged and the LunID
2047 * should not be cleared.
2049 static int deregister_disk(ctlr_info_t *h, int drv_index,
2050 int clear_all)
2052 int i;
2053 struct gendisk *disk;
2054 drive_info_struct *drv;
2056 if (!capable(CAP_SYS_RAWIO))
2057 return -EPERM;
2059 drv = &h->drv[drv_index];
2060 disk = h->gendisk[drv_index];
2062 /* make sure logical volume is NOT is use */
2063 if (clear_all || (h->gendisk[0] == disk)) {
2064 if (drv->usage_count > 1)
2065 return -EBUSY;
2066 } else if (drv->usage_count > 0)
2067 return -EBUSY;
2069 /* invalidate the devices and deregister the disk. If it is disk
2070 * zero do not deregister it but just zero out it's values. This
2071 * allows us to delete disk zero but keep the controller registered.
2073 if (h->gendisk[0] != disk) {
2074 struct request_queue *q = disk->queue;
2075 if (disk->flags & GENHD_FL_UP)
2076 del_gendisk(disk);
2077 if (q) {
2078 blk_cleanup_queue(q);
2079 /* Set drv->queue to NULL so that we do not try
2080 * to call blk_start_queue on this queue in the
2081 * interrupt handler
2083 drv->queue = NULL;
2085 /* If clear_all is set then we are deleting the logical
2086 * drive, not just refreshing its info. For drives
2087 * other than disk 0 we will call put_disk. We do not
2088 * do this for disk 0 as we need it to be able to
2089 * configure the controller.
2091 if (clear_all){
2092 /* This isn't pretty, but we need to find the
2093 * disk in our array and NULL our the pointer.
2094 * This is so that we will call alloc_disk if
2095 * this index is used again later.
2097 for (i=0; i < CISS_MAX_LUN; i++){
2098 if (h->gendisk[i] == disk) {
2099 h->gendisk[i] = NULL;
2100 break;
2103 put_disk(disk);
2105 } else {
2106 set_capacity(disk, 0);
2109 --h->num_luns;
2110 /* zero out the disk size info */
2111 drv->nr_blocks = 0;
2112 drv->block_size = 0;
2113 drv->heads = 0;
2114 drv->sectors = 0;
2115 drv->cylinders = 0;
2116 drv->raid_level = -1; /* This can be used as a flag variable to
2117 * indicate that this element of the drive
2118 * array is free.
2121 if (clear_all) {
2122 /* check to see if it was the last disk */
2123 if (drv == h->drv + h->highest_lun) {
2124 /* if so, find the new hightest lun */
2125 int i, newhighest = -1;
2126 for (i = 0; i <= h->highest_lun; i++) {
2127 /* if the disk has size > 0, it is available */
2128 if (h->drv[i].heads)
2129 newhighest = i;
2131 h->highest_lun = newhighest;
2134 drv->LunID = 0;
2136 return 0;
2139 static int fill_cmd(CommandList_struct *c, __u8 cmd, int ctlr, void *buff,
2140 size_t size, __u8 page_code, unsigned char *scsi3addr,
2141 int cmd_type)
2143 ctlr_info_t *h = hba[ctlr];
2144 u64bit buff_dma_handle;
2145 int status = IO_OK;
2147 c->cmd_type = CMD_IOCTL_PEND;
2148 c->Header.ReplyQueue = 0;
2149 if (buff != NULL) {
2150 c->Header.SGList = 1;
2151 c->Header.SGTotal = 1;
2152 } else {
2153 c->Header.SGList = 0;
2154 c->Header.SGTotal = 0;
2156 c->Header.Tag.lower = c->busaddr;
2157 memcpy(c->Header.LUN.LunAddrBytes, scsi3addr, 8);
2159 c->Request.Type.Type = cmd_type;
2160 if (cmd_type == TYPE_CMD) {
2161 switch (cmd) {
2162 case CISS_INQUIRY:
2163 /* are we trying to read a vital product page */
2164 if (page_code != 0) {
2165 c->Request.CDB[1] = 0x01;
2166 c->Request.CDB[2] = page_code;
2168 c->Request.CDBLen = 6;
2169 c->Request.Type.Attribute = ATTR_SIMPLE;
2170 c->Request.Type.Direction = XFER_READ;
2171 c->Request.Timeout = 0;
2172 c->Request.CDB[0] = CISS_INQUIRY;
2173 c->Request.CDB[4] = size & 0xFF;
2174 break;
2175 case CISS_REPORT_LOG:
2176 case CISS_REPORT_PHYS:
2177 /* Talking to controller so It's a physical command
2178 mode = 00 target = 0. Nothing to write.
2180 c->Request.CDBLen = 12;
2181 c->Request.Type.Attribute = ATTR_SIMPLE;
2182 c->Request.Type.Direction = XFER_READ;
2183 c->Request.Timeout = 0;
2184 c->Request.CDB[0] = cmd;
2185 c->Request.CDB[6] = (size >> 24) & 0xFF; //MSB
2186 c->Request.CDB[7] = (size >> 16) & 0xFF;
2187 c->Request.CDB[8] = (size >> 8) & 0xFF;
2188 c->Request.CDB[9] = size & 0xFF;
2189 break;
2191 case CCISS_READ_CAPACITY:
2192 c->Request.CDBLen = 10;
2193 c->Request.Type.Attribute = ATTR_SIMPLE;
2194 c->Request.Type.Direction = XFER_READ;
2195 c->Request.Timeout = 0;
2196 c->Request.CDB[0] = cmd;
2197 break;
2198 case CCISS_READ_CAPACITY_16:
2199 c->Request.CDBLen = 16;
2200 c->Request.Type.Attribute = ATTR_SIMPLE;
2201 c->Request.Type.Direction = XFER_READ;
2202 c->Request.Timeout = 0;
2203 c->Request.CDB[0] = cmd;
2204 c->Request.CDB[1] = 0x10;
2205 c->Request.CDB[10] = (size >> 24) & 0xFF;
2206 c->Request.CDB[11] = (size >> 16) & 0xFF;
2207 c->Request.CDB[12] = (size >> 8) & 0xFF;
2208 c->Request.CDB[13] = size & 0xFF;
2209 c->Request.Timeout = 0;
2210 c->Request.CDB[0] = cmd;
2211 break;
2212 case CCISS_CACHE_FLUSH:
2213 c->Request.CDBLen = 12;
2214 c->Request.Type.Attribute = ATTR_SIMPLE;
2215 c->Request.Type.Direction = XFER_WRITE;
2216 c->Request.Timeout = 0;
2217 c->Request.CDB[0] = BMIC_WRITE;
2218 c->Request.CDB[6] = BMIC_CACHE_FLUSH;
2219 break;
2220 case TEST_UNIT_READY:
2221 c->Request.CDBLen = 6;
2222 c->Request.Type.Attribute = ATTR_SIMPLE;
2223 c->Request.Type.Direction = XFER_NONE;
2224 c->Request.Timeout = 0;
2225 break;
2226 default:
2227 printk(KERN_WARNING
2228 "cciss%d: Unknown Command 0x%c\n", ctlr, cmd);
2229 return IO_ERROR;
2231 } else if (cmd_type == TYPE_MSG) {
2232 switch (cmd) {
2233 case 0: /* ABORT message */
2234 c->Request.CDBLen = 12;
2235 c->Request.Type.Attribute = ATTR_SIMPLE;
2236 c->Request.Type.Direction = XFER_WRITE;
2237 c->Request.Timeout = 0;
2238 c->Request.CDB[0] = cmd; /* abort */
2239 c->Request.CDB[1] = 0; /* abort a command */
2240 /* buff contains the tag of the command to abort */
2241 memcpy(&c->Request.CDB[4], buff, 8);
2242 break;
2243 case 1: /* RESET message */
2244 c->Request.CDBLen = 16;
2245 c->Request.Type.Attribute = ATTR_SIMPLE;
2246 c->Request.Type.Direction = XFER_NONE;
2247 c->Request.Timeout = 0;
2248 memset(&c->Request.CDB[0], 0, sizeof(c->Request.CDB));
2249 c->Request.CDB[0] = cmd; /* reset */
2250 c->Request.CDB[1] = 0x03; /* reset a target */
2251 break;
2252 case 3: /* No-Op message */
2253 c->Request.CDBLen = 1;
2254 c->Request.Type.Attribute = ATTR_SIMPLE;
2255 c->Request.Type.Direction = XFER_WRITE;
2256 c->Request.Timeout = 0;
2257 c->Request.CDB[0] = cmd;
2258 break;
2259 default:
2260 printk(KERN_WARNING
2261 "cciss%d: unknown message type %d\n", ctlr, cmd);
2262 return IO_ERROR;
2264 } else {
2265 printk(KERN_WARNING
2266 "cciss%d: unknown command type %d\n", ctlr, cmd_type);
2267 return IO_ERROR;
2269 /* Fill in the scatter gather information */
2270 if (size > 0) {
2271 buff_dma_handle.val = (__u64) pci_map_single(h->pdev,
2272 buff, size,
2273 PCI_DMA_BIDIRECTIONAL);
2274 c->SG[0].Addr.lower = buff_dma_handle.val32.lower;
2275 c->SG[0].Addr.upper = buff_dma_handle.val32.upper;
2276 c->SG[0].Len = size;
2277 c->SG[0].Ext = 0; /* we are not chaining */
2279 return status;
2282 static int check_target_status(ctlr_info_t *h, CommandList_struct *c)
2284 switch (c->err_info->ScsiStatus) {
2285 case SAM_STAT_GOOD:
2286 return IO_OK;
2287 case SAM_STAT_CHECK_CONDITION:
2288 switch (0xf & c->err_info->SenseInfo[2]) {
2289 case 0: return IO_OK; /* no sense */
2290 case 1: return IO_OK; /* recovered error */
2291 default:
2292 printk(KERN_WARNING "cciss%d: cmd 0x%02x "
2293 "check condition, sense key = 0x%02x\n",
2294 h->ctlr, c->Request.CDB[0],
2295 c->err_info->SenseInfo[2]);
2297 break;
2298 default:
2299 printk(KERN_WARNING "cciss%d: cmd 0x%02x"
2300 "scsi status = 0x%02x\n", h->ctlr,
2301 c->Request.CDB[0], c->err_info->ScsiStatus);
2302 break;
2304 return IO_ERROR;
2307 static int process_sendcmd_error(ctlr_info_t *h, CommandList_struct *c)
2309 int return_status = IO_OK;
2311 if (c->err_info->CommandStatus == CMD_SUCCESS)
2312 return IO_OK;
2314 switch (c->err_info->CommandStatus) {
2315 case CMD_TARGET_STATUS:
2316 return_status = check_target_status(h, c);
2317 break;
2318 case CMD_DATA_UNDERRUN:
2319 case CMD_DATA_OVERRUN:
2320 /* expected for inquiry and report lun commands */
2321 break;
2322 case CMD_INVALID:
2323 printk(KERN_WARNING "cciss: cmd 0x%02x is "
2324 "reported invalid\n", c->Request.CDB[0]);
2325 return_status = IO_ERROR;
2326 break;
2327 case CMD_PROTOCOL_ERR:
2328 printk(KERN_WARNING "cciss: cmd 0x%02x has "
2329 "protocol error \n", c->Request.CDB[0]);
2330 return_status = IO_ERROR;
2331 break;
2332 case CMD_HARDWARE_ERR:
2333 printk(KERN_WARNING "cciss: cmd 0x%02x had "
2334 " hardware error\n", c->Request.CDB[0]);
2335 return_status = IO_ERROR;
2336 break;
2337 case CMD_CONNECTION_LOST:
2338 printk(KERN_WARNING "cciss: cmd 0x%02x had "
2339 "connection lost\n", c->Request.CDB[0]);
2340 return_status = IO_ERROR;
2341 break;
2342 case CMD_ABORTED:
2343 printk(KERN_WARNING "cciss: cmd 0x%02x was "
2344 "aborted\n", c->Request.CDB[0]);
2345 return_status = IO_ERROR;
2346 break;
2347 case CMD_ABORT_FAILED:
2348 printk(KERN_WARNING "cciss: cmd 0x%02x reports "
2349 "abort failed\n", c->Request.CDB[0]);
2350 return_status = IO_ERROR;
2351 break;
2352 case CMD_UNSOLICITED_ABORT:
2353 printk(KERN_WARNING
2354 "cciss%d: unsolicited abort 0x%02x\n", h->ctlr,
2355 c->Request.CDB[0]);
2356 return_status = IO_NEEDS_RETRY;
2357 break;
2358 default:
2359 printk(KERN_WARNING "cciss: cmd 0x%02x returned "
2360 "unknown status %x\n", c->Request.CDB[0],
2361 c->err_info->CommandStatus);
2362 return_status = IO_ERROR;
2364 return return_status;
2367 static int sendcmd_withirq_core(ctlr_info_t *h, CommandList_struct *c,
2368 int attempt_retry)
2370 DECLARE_COMPLETION_ONSTACK(wait);
2371 u64bit buff_dma_handle;
2372 unsigned long flags;
2373 int return_status = IO_OK;
2375 resend_cmd2:
2376 c->waiting = &wait;
2377 /* Put the request on the tail of the queue and send it */
2378 spin_lock_irqsave(CCISS_LOCK(h->ctlr), flags);
2379 addQ(&h->reqQ, c);
2380 h->Qdepth++;
2381 start_io(h);
2382 spin_unlock_irqrestore(CCISS_LOCK(h->ctlr), flags);
2384 wait_for_completion(&wait);
2386 if (c->err_info->CommandStatus == 0 || !attempt_retry)
2387 goto command_done;
2389 return_status = process_sendcmd_error(h, c);
2391 if (return_status == IO_NEEDS_RETRY &&
2392 c->retry_count < MAX_CMD_RETRIES) {
2393 printk(KERN_WARNING "cciss%d: retrying 0x%02x\n", h->ctlr,
2394 c->Request.CDB[0]);
2395 c->retry_count++;
2396 /* erase the old error information */
2397 memset(c->err_info, 0, sizeof(ErrorInfo_struct));
2398 return_status = IO_OK;
2399 INIT_COMPLETION(wait);
2400 goto resend_cmd2;
2403 command_done:
2404 /* unlock the buffers from DMA */
2405 buff_dma_handle.val32.lower = c->SG[0].Addr.lower;
2406 buff_dma_handle.val32.upper = c->SG[0].Addr.upper;
2407 pci_unmap_single(h->pdev, (dma_addr_t) buff_dma_handle.val,
2408 c->SG[0].Len, PCI_DMA_BIDIRECTIONAL);
2409 return return_status;
2412 static int sendcmd_withirq(__u8 cmd, int ctlr, void *buff, size_t size,
2413 __u8 page_code, unsigned char scsi3addr[],
2414 int cmd_type)
2416 ctlr_info_t *h = hba[ctlr];
2417 CommandList_struct *c;
2418 int return_status;
2420 c = cmd_alloc(h, 0);
2421 if (!c)
2422 return -ENOMEM;
2423 return_status = fill_cmd(c, cmd, ctlr, buff, size, page_code,
2424 scsi3addr, cmd_type);
2425 if (return_status == IO_OK)
2426 return_status = sendcmd_withirq_core(h, c, 1);
2428 cmd_free(h, c, 0);
2429 return return_status;
2432 static void cciss_geometry_inquiry(int ctlr, int logvol,
2433 int withirq, sector_t total_size,
2434 unsigned int block_size,
2435 InquiryData_struct *inq_buff,
2436 drive_info_struct *drv)
2438 int return_code;
2439 unsigned long t;
2440 unsigned char scsi3addr[8];
2442 memset(inq_buff, 0, sizeof(InquiryData_struct));
2443 log_unit_to_scsi3addr(hba[ctlr], scsi3addr, logvol);
2444 if (withirq)
2445 return_code = sendcmd_withirq(CISS_INQUIRY, ctlr,
2446 inq_buff, sizeof(*inq_buff),
2447 0xC1, scsi3addr, TYPE_CMD);
2448 else
2449 return_code = sendcmd(CISS_INQUIRY, ctlr, inq_buff,
2450 sizeof(*inq_buff), 0xC1, scsi3addr,
2451 TYPE_CMD);
2452 if (return_code == IO_OK) {
2453 if (inq_buff->data_byte[8] == 0xFF) {
2454 printk(KERN_WARNING
2455 "cciss: reading geometry failed, volume "
2456 "does not support reading geometry\n");
2457 drv->heads = 255;
2458 drv->sectors = 32; // Sectors per track
2459 drv->cylinders = total_size + 1;
2460 drv->raid_level = RAID_UNKNOWN;
2461 } else {
2462 drv->heads = inq_buff->data_byte[6];
2463 drv->sectors = inq_buff->data_byte[7];
2464 drv->cylinders = (inq_buff->data_byte[4] & 0xff) << 8;
2465 drv->cylinders += inq_buff->data_byte[5];
2466 drv->raid_level = inq_buff->data_byte[8];
2468 drv->block_size = block_size;
2469 drv->nr_blocks = total_size + 1;
2470 t = drv->heads * drv->sectors;
2471 if (t > 1) {
2472 sector_t real_size = total_size + 1;
2473 unsigned long rem = sector_div(real_size, t);
2474 if (rem)
2475 real_size++;
2476 drv->cylinders = real_size;
2478 } else { /* Get geometry failed */
2479 printk(KERN_WARNING "cciss: reading geometry failed\n");
2481 printk(KERN_INFO " heads=%d, sectors=%d, cylinders=%d\n\n",
2482 drv->heads, drv->sectors, drv->cylinders);
2485 static void
2486 cciss_read_capacity(int ctlr, int logvol, int withirq, sector_t *total_size,
2487 unsigned int *block_size)
2489 ReadCapdata_struct *buf;
2490 int return_code;
2491 unsigned char scsi3addr[8];
2493 buf = kzalloc(sizeof(ReadCapdata_struct), GFP_KERNEL);
2494 if (!buf) {
2495 printk(KERN_WARNING "cciss: out of memory\n");
2496 return;
2499 log_unit_to_scsi3addr(hba[ctlr], scsi3addr, logvol);
2500 if (withirq)
2501 return_code = sendcmd_withirq(CCISS_READ_CAPACITY,
2502 ctlr, buf, sizeof(ReadCapdata_struct),
2503 0, scsi3addr, TYPE_CMD);
2504 else
2505 return_code = sendcmd(CCISS_READ_CAPACITY,
2506 ctlr, buf, sizeof(ReadCapdata_struct),
2507 0, scsi3addr, TYPE_CMD);
2508 if (return_code == IO_OK) {
2509 *total_size = be32_to_cpu(*(__be32 *) buf->total_size);
2510 *block_size = be32_to_cpu(*(__be32 *) buf->block_size);
2511 } else { /* read capacity command failed */
2512 printk(KERN_WARNING "cciss: read capacity failed\n");
2513 *total_size = 0;
2514 *block_size = BLOCK_SIZE;
2516 if (*total_size != 0)
2517 printk(KERN_INFO " blocks= %llu block_size= %d\n",
2518 (unsigned long long)*total_size+1, *block_size);
2519 kfree(buf);
2522 static void
2523 cciss_read_capacity_16(int ctlr, int logvol, int withirq, sector_t *total_size, unsigned int *block_size)
2525 ReadCapdata_struct_16 *buf;
2526 int return_code;
2527 unsigned char scsi3addr[8];
2529 buf = kzalloc(sizeof(ReadCapdata_struct_16), GFP_KERNEL);
2530 if (!buf) {
2531 printk(KERN_WARNING "cciss: out of memory\n");
2532 return;
2535 log_unit_to_scsi3addr(hba[ctlr], scsi3addr, logvol);
2536 if (withirq) {
2537 return_code = sendcmd_withirq(CCISS_READ_CAPACITY_16,
2538 ctlr, buf, sizeof(ReadCapdata_struct_16),
2539 0, scsi3addr, TYPE_CMD);
2541 else {
2542 return_code = sendcmd(CCISS_READ_CAPACITY_16,
2543 ctlr, buf, sizeof(ReadCapdata_struct_16),
2544 0, scsi3addr, TYPE_CMD);
2546 if (return_code == IO_OK) {
2547 *total_size = be64_to_cpu(*(__be64 *) buf->total_size);
2548 *block_size = be32_to_cpu(*(__be32 *) buf->block_size);
2549 } else { /* read capacity command failed */
2550 printk(KERN_WARNING "cciss: read capacity failed\n");
2551 *total_size = 0;
2552 *block_size = BLOCK_SIZE;
2554 printk(KERN_INFO " blocks= %llu block_size= %d\n",
2555 (unsigned long long)*total_size+1, *block_size);
2556 kfree(buf);
2559 static int cciss_revalidate(struct gendisk *disk)
2561 ctlr_info_t *h = get_host(disk);
2562 drive_info_struct *drv = get_drv(disk);
2563 int logvol;
2564 int FOUND = 0;
2565 unsigned int block_size;
2566 sector_t total_size;
2567 InquiryData_struct *inq_buff = NULL;
2569 for (logvol = 0; logvol < CISS_MAX_LUN; logvol++) {
2570 if (h->drv[logvol].LunID == drv->LunID) {
2571 FOUND = 1;
2572 break;
2576 if (!FOUND)
2577 return 1;
2579 inq_buff = kmalloc(sizeof(InquiryData_struct), GFP_KERNEL);
2580 if (inq_buff == NULL) {
2581 printk(KERN_WARNING "cciss: out of memory\n");
2582 return 1;
2584 if (h->cciss_read == CCISS_READ_10) {
2585 cciss_read_capacity(h->ctlr, logvol, 1,
2586 &total_size, &block_size);
2587 } else {
2588 cciss_read_capacity_16(h->ctlr, logvol, 1,
2589 &total_size, &block_size);
2591 cciss_geometry_inquiry(h->ctlr, logvol, 1, total_size, block_size,
2592 inq_buff, drv);
2594 blk_queue_logical_block_size(drv->queue, drv->block_size);
2595 set_capacity(disk, drv->nr_blocks);
2597 kfree(inq_buff);
2598 return 0;
2602 * Wait polling for a command to complete.
2603 * The memory mapped FIFO is polled for the completion.
2604 * Used only at init time, interrupts from the HBA are disabled.
2606 static unsigned long pollcomplete(int ctlr)
2608 unsigned long done;
2609 int i;
2611 /* Wait (up to 20 seconds) for a command to complete */
2613 for (i = 20 * HZ; i > 0; i--) {
2614 done = hba[ctlr]->access.command_completed(hba[ctlr]);
2615 if (done == FIFO_EMPTY)
2616 schedule_timeout_uninterruptible(1);
2617 else
2618 return done;
2620 /* Invalid address to tell caller we ran out of time */
2621 return 1;
2624 /* Send command c to controller h and poll for it to complete.
2625 * Turns interrupts off on the board. Used at driver init time
2626 * and during SCSI error recovery.
2628 static int sendcmd_core(ctlr_info_t *h, CommandList_struct *c)
2630 int i;
2631 unsigned long complete;
2632 int status = IO_ERROR;
2633 u64bit buff_dma_handle;
2635 resend_cmd1:
2637 /* Disable interrupt on the board. */
2638 h->access.set_intr_mask(h, CCISS_INTR_OFF);
2640 /* Make sure there is room in the command FIFO */
2641 /* Actually it should be completely empty at this time */
2642 /* unless we are in here doing error handling for the scsi */
2643 /* tape side of the driver. */
2644 for (i = 200000; i > 0; i--) {
2645 /* if fifo isn't full go */
2646 if (!(h->access.fifo_full(h)))
2647 break;
2648 udelay(10);
2649 printk(KERN_WARNING "cciss cciss%d: SendCmd FIFO full,"
2650 " waiting!\n", h->ctlr);
2652 h->access.submit_command(h, c); /* Send the cmd */
2653 do {
2654 complete = pollcomplete(h->ctlr);
2656 #ifdef CCISS_DEBUG
2657 printk(KERN_DEBUG "cciss: command completed\n");
2658 #endif /* CCISS_DEBUG */
2660 if (complete == 1) {
2661 printk(KERN_WARNING
2662 "cciss cciss%d: SendCmd Timeout out, "
2663 "No command list address returned!\n", h->ctlr);
2664 status = IO_ERROR;
2665 break;
2668 /* Make sure it's the command we're expecting. */
2669 if ((complete & ~CISS_ERROR_BIT) != c->busaddr) {
2670 printk(KERN_WARNING "cciss%d: Unexpected command "
2671 "completion.\n", h->ctlr);
2672 continue;
2675 /* It is our command. If no error, we're done. */
2676 if (!(complete & CISS_ERROR_BIT)) {
2677 status = IO_OK;
2678 break;
2681 /* There is an error... */
2683 /* if data overrun or underun on Report command ignore it */
2684 if (((c->Request.CDB[0] == CISS_REPORT_LOG) ||
2685 (c->Request.CDB[0] == CISS_REPORT_PHYS) ||
2686 (c->Request.CDB[0] == CISS_INQUIRY)) &&
2687 ((c->err_info->CommandStatus == CMD_DATA_OVERRUN) ||
2688 (c->err_info->CommandStatus == CMD_DATA_UNDERRUN))) {
2689 complete = c->busaddr;
2690 status = IO_OK;
2691 break;
2694 if (c->err_info->CommandStatus == CMD_UNSOLICITED_ABORT) {
2695 printk(KERN_WARNING "cciss%d: unsolicited abort %p\n",
2696 h->ctlr, c);
2697 if (c->retry_count < MAX_CMD_RETRIES) {
2698 printk(KERN_WARNING "cciss%d: retrying %p\n",
2699 h->ctlr, c);
2700 c->retry_count++;
2701 /* erase the old error information */
2702 memset(c->err_info, 0, sizeof(c->err_info));
2703 goto resend_cmd1;
2705 printk(KERN_WARNING "cciss%d: retried %p too many "
2706 "times\n", h->ctlr, c);
2707 status = IO_ERROR;
2708 break;
2711 if (c->err_info->CommandStatus == CMD_UNABORTABLE) {
2712 printk(KERN_WARNING "cciss%d: command could not be "
2713 "aborted.\n", h->ctlr);
2714 status = IO_ERROR;
2715 break;
2718 if (c->err_info->CommandStatus == CMD_TARGET_STATUS) {
2719 status = check_target_status(h, c);
2720 break;
2723 printk(KERN_WARNING "cciss%d: sendcmd error\n", h->ctlr);
2724 printk(KERN_WARNING "cmd = 0x%02x, CommandStatus = 0x%02x\n",
2725 c->Request.CDB[0], c->err_info->CommandStatus);
2726 status = IO_ERROR;
2727 break;
2729 } while (1);
2731 /* unlock the data buffer from DMA */
2732 buff_dma_handle.val32.lower = c->SG[0].Addr.lower;
2733 buff_dma_handle.val32.upper = c->SG[0].Addr.upper;
2734 pci_unmap_single(h->pdev, (dma_addr_t) buff_dma_handle.val,
2735 c->SG[0].Len, PCI_DMA_BIDIRECTIONAL);
2736 return status;
2740 * Send a command to the controller, and wait for it to complete.
2741 * Used at init time, and during SCSI error recovery.
2743 static int sendcmd(__u8 cmd, int ctlr, void *buff, size_t size,
2744 __u8 page_code, unsigned char *scsi3addr, int cmd_type)
2746 CommandList_struct *c;
2747 int status;
2749 c = cmd_alloc(hba[ctlr], 1);
2750 if (!c) {
2751 printk(KERN_WARNING "cciss: unable to get memory");
2752 return IO_ERROR;
2754 status = fill_cmd(c, cmd, ctlr, buff, size, page_code,
2755 scsi3addr, cmd_type);
2756 if (status == IO_OK)
2757 status = sendcmd_core(hba[ctlr], c);
2758 cmd_free(hba[ctlr], c, 1);
2759 return status;
2763 * Map (physical) PCI mem into (virtual) kernel space
2765 static void __iomem *remap_pci_mem(ulong base, ulong size)
2767 ulong page_base = ((ulong) base) & PAGE_MASK;
2768 ulong page_offs = ((ulong) base) - page_base;
2769 void __iomem *page_remapped = ioremap(page_base, page_offs + size);
2771 return page_remapped ? (page_remapped + page_offs) : NULL;
2775 * Takes jobs of the Q and sends them to the hardware, then puts it on
2776 * the Q to wait for completion.
2778 static void start_io(ctlr_info_t *h)
2780 CommandList_struct *c;
2782 while (!hlist_empty(&h->reqQ)) {
2783 c = hlist_entry(h->reqQ.first, CommandList_struct, list);
2784 /* can't do anything if fifo is full */
2785 if ((h->access.fifo_full(h))) {
2786 printk(KERN_WARNING "cciss: fifo full\n");
2787 break;
2790 /* Get the first entry from the Request Q */
2791 removeQ(c);
2792 h->Qdepth--;
2794 /* Tell the controller execute command */
2795 h->access.submit_command(h, c);
2797 /* Put job onto the completed Q */
2798 addQ(&h->cmpQ, c);
2802 /* Assumes that CCISS_LOCK(h->ctlr) is held. */
2803 /* Zeros out the error record and then resends the command back */
2804 /* to the controller */
2805 static inline void resend_cciss_cmd(ctlr_info_t *h, CommandList_struct *c)
2807 /* erase the old error information */
2808 memset(c->err_info, 0, sizeof(ErrorInfo_struct));
2810 /* add it to software queue and then send it to the controller */
2811 addQ(&h->reqQ, c);
2812 h->Qdepth++;
2813 if (h->Qdepth > h->maxQsinceinit)
2814 h->maxQsinceinit = h->Qdepth;
2816 start_io(h);
2819 static inline unsigned int make_status_bytes(unsigned int scsi_status_byte,
2820 unsigned int msg_byte, unsigned int host_byte,
2821 unsigned int driver_byte)
2823 /* inverse of macros in scsi.h */
2824 return (scsi_status_byte & 0xff) |
2825 ((msg_byte & 0xff) << 8) |
2826 ((host_byte & 0xff) << 16) |
2827 ((driver_byte & 0xff) << 24);
2830 static inline int evaluate_target_status(ctlr_info_t *h,
2831 CommandList_struct *cmd, int *retry_cmd)
2833 unsigned char sense_key;
2834 unsigned char status_byte, msg_byte, host_byte, driver_byte;
2835 int error_value;
2837 *retry_cmd = 0;
2838 /* If we get in here, it means we got "target status", that is, scsi status */
2839 status_byte = cmd->err_info->ScsiStatus;
2840 driver_byte = DRIVER_OK;
2841 msg_byte = cmd->err_info->CommandStatus; /* correct? seems too device specific */
2843 if (blk_pc_request(cmd->rq))
2844 host_byte = DID_PASSTHROUGH;
2845 else
2846 host_byte = DID_OK;
2848 error_value = make_status_bytes(status_byte, msg_byte,
2849 host_byte, driver_byte);
2851 if (cmd->err_info->ScsiStatus != SAM_STAT_CHECK_CONDITION) {
2852 if (!blk_pc_request(cmd->rq))
2853 printk(KERN_WARNING "cciss: cmd %p "
2854 "has SCSI Status 0x%x\n",
2855 cmd, cmd->err_info->ScsiStatus);
2856 return error_value;
2859 /* check the sense key */
2860 sense_key = 0xf & cmd->err_info->SenseInfo[2];
2861 /* no status or recovered error */
2862 if (((sense_key == 0x0) || (sense_key == 0x1)) && !blk_pc_request(cmd->rq))
2863 error_value = 0;
2865 if (check_for_unit_attention(h, cmd)) {
2866 *retry_cmd = !blk_pc_request(cmd->rq);
2867 return 0;
2870 if (!blk_pc_request(cmd->rq)) { /* Not SG_IO or similar? */
2871 if (error_value != 0)
2872 printk(KERN_WARNING "cciss: cmd %p has CHECK CONDITION"
2873 " sense key = 0x%x\n", cmd, sense_key);
2874 return error_value;
2877 /* SG_IO or similar, copy sense data back */
2878 if (cmd->rq->sense) {
2879 if (cmd->rq->sense_len > cmd->err_info->SenseLen)
2880 cmd->rq->sense_len = cmd->err_info->SenseLen;
2881 memcpy(cmd->rq->sense, cmd->err_info->SenseInfo,
2882 cmd->rq->sense_len);
2883 } else
2884 cmd->rq->sense_len = 0;
2886 return error_value;
2889 /* checks the status of the job and calls complete buffers to mark all
2890 * buffers for the completed job. Note that this function does not need
2891 * to hold the hba/queue lock.
2893 static inline void complete_command(ctlr_info_t *h, CommandList_struct *cmd,
2894 int timeout)
2896 int retry_cmd = 0;
2897 struct request *rq = cmd->rq;
2899 rq->errors = 0;
2901 if (timeout)
2902 rq->errors = make_status_bytes(0, 0, 0, DRIVER_TIMEOUT);
2904 if (cmd->err_info->CommandStatus == 0) /* no error has occurred */
2905 goto after_error_processing;
2907 switch (cmd->err_info->CommandStatus) {
2908 case CMD_TARGET_STATUS:
2909 rq->errors = evaluate_target_status(h, cmd, &retry_cmd);
2910 break;
2911 case CMD_DATA_UNDERRUN:
2912 if (blk_fs_request(cmd->rq)) {
2913 printk(KERN_WARNING "cciss: cmd %p has"
2914 " completed with data underrun "
2915 "reported\n", cmd);
2916 cmd->rq->resid_len = cmd->err_info->ResidualCnt;
2918 break;
2919 case CMD_DATA_OVERRUN:
2920 if (blk_fs_request(cmd->rq))
2921 printk(KERN_WARNING "cciss: cmd %p has"
2922 " completed with data overrun "
2923 "reported\n", cmd);
2924 break;
2925 case CMD_INVALID:
2926 printk(KERN_WARNING "cciss: cmd %p is "
2927 "reported invalid\n", cmd);
2928 rq->errors = make_status_bytes(SAM_STAT_GOOD,
2929 cmd->err_info->CommandStatus, DRIVER_OK,
2930 blk_pc_request(cmd->rq) ? DID_PASSTHROUGH : DID_ERROR);
2931 break;
2932 case CMD_PROTOCOL_ERR:
2933 printk(KERN_WARNING "cciss: cmd %p has "
2934 "protocol error \n", cmd);
2935 rq->errors = make_status_bytes(SAM_STAT_GOOD,
2936 cmd->err_info->CommandStatus, DRIVER_OK,
2937 blk_pc_request(cmd->rq) ? DID_PASSTHROUGH : DID_ERROR);
2938 break;
2939 case CMD_HARDWARE_ERR:
2940 printk(KERN_WARNING "cciss: cmd %p had "
2941 " hardware error\n", cmd);
2942 rq->errors = make_status_bytes(SAM_STAT_GOOD,
2943 cmd->err_info->CommandStatus, DRIVER_OK,
2944 blk_pc_request(cmd->rq) ? DID_PASSTHROUGH : DID_ERROR);
2945 break;
2946 case CMD_CONNECTION_LOST:
2947 printk(KERN_WARNING "cciss: cmd %p had "
2948 "connection lost\n", cmd);
2949 rq->errors = make_status_bytes(SAM_STAT_GOOD,
2950 cmd->err_info->CommandStatus, DRIVER_OK,
2951 blk_pc_request(cmd->rq) ? DID_PASSTHROUGH : DID_ERROR);
2952 break;
2953 case CMD_ABORTED:
2954 printk(KERN_WARNING "cciss: cmd %p was "
2955 "aborted\n", cmd);
2956 rq->errors = make_status_bytes(SAM_STAT_GOOD,
2957 cmd->err_info->CommandStatus, DRIVER_OK,
2958 blk_pc_request(cmd->rq) ? DID_PASSTHROUGH : DID_ABORT);
2959 break;
2960 case CMD_ABORT_FAILED:
2961 printk(KERN_WARNING "cciss: cmd %p reports "
2962 "abort failed\n", cmd);
2963 rq->errors = make_status_bytes(SAM_STAT_GOOD,
2964 cmd->err_info->CommandStatus, DRIVER_OK,
2965 blk_pc_request(cmd->rq) ? DID_PASSTHROUGH : DID_ERROR);
2966 break;
2967 case CMD_UNSOLICITED_ABORT:
2968 printk(KERN_WARNING "cciss%d: unsolicited "
2969 "abort %p\n", h->ctlr, cmd);
2970 if (cmd->retry_count < MAX_CMD_RETRIES) {
2971 retry_cmd = 1;
2972 printk(KERN_WARNING
2973 "cciss%d: retrying %p\n", h->ctlr, cmd);
2974 cmd->retry_count++;
2975 } else
2976 printk(KERN_WARNING
2977 "cciss%d: %p retried too "
2978 "many times\n", h->ctlr, cmd);
2979 rq->errors = make_status_bytes(SAM_STAT_GOOD,
2980 cmd->err_info->CommandStatus, DRIVER_OK,
2981 blk_pc_request(cmd->rq) ? DID_PASSTHROUGH : DID_ABORT);
2982 break;
2983 case CMD_TIMEOUT:
2984 printk(KERN_WARNING "cciss: cmd %p timedout\n", cmd);
2985 rq->errors = make_status_bytes(SAM_STAT_GOOD,
2986 cmd->err_info->CommandStatus, DRIVER_OK,
2987 blk_pc_request(cmd->rq) ? DID_PASSTHROUGH : DID_ERROR);
2988 break;
2989 default:
2990 printk(KERN_WARNING "cciss: cmd %p returned "
2991 "unknown status %x\n", cmd,
2992 cmd->err_info->CommandStatus);
2993 rq->errors = make_status_bytes(SAM_STAT_GOOD,
2994 cmd->err_info->CommandStatus, DRIVER_OK,
2995 blk_pc_request(cmd->rq) ? DID_PASSTHROUGH : DID_ERROR);
2998 after_error_processing:
3000 /* We need to return this command */
3001 if (retry_cmd) {
3002 resend_cciss_cmd(h, cmd);
3003 return;
3005 cmd->rq->completion_data = cmd;
3006 blk_complete_request(cmd->rq);
3010 * Get a request and submit it to the controller.
3012 static void do_cciss_request(struct request_queue *q)
3014 ctlr_info_t *h = q->queuedata;
3015 CommandList_struct *c;
3016 sector_t start_blk;
3017 int seg;
3018 struct request *creq;
3019 u64bit temp64;
3020 struct scatterlist tmp_sg[MAXSGENTRIES];
3021 drive_info_struct *drv;
3022 int i, dir;
3024 /* We call start_io here in case there is a command waiting on the
3025 * queue that has not been sent.
3027 if (blk_queue_plugged(q))
3028 goto startio;
3030 queue:
3031 creq = blk_peek_request(q);
3032 if (!creq)
3033 goto startio;
3035 BUG_ON(creq->nr_phys_segments > MAXSGENTRIES);
3037 if ((c = cmd_alloc(h, 1)) == NULL)
3038 goto full;
3040 blk_start_request(creq);
3042 spin_unlock_irq(q->queue_lock);
3044 c->cmd_type = CMD_RWREQ;
3045 c->rq = creq;
3047 /* fill in the request */
3048 drv = creq->rq_disk->private_data;
3049 c->Header.ReplyQueue = 0; // unused in simple mode
3050 /* got command from pool, so use the command block index instead */
3051 /* for direct lookups. */
3052 /* The first 2 bits are reserved for controller error reporting. */
3053 c->Header.Tag.lower = (c->cmdindex << 3);
3054 c->Header.Tag.lower |= 0x04; /* flag for direct lookup. */
3055 c->Header.LUN.LogDev.VolId = drv->LunID;
3056 c->Header.LUN.LogDev.Mode = 1;
3057 c->Request.CDBLen = 10; // 12 byte commands not in FW yet;
3058 c->Request.Type.Type = TYPE_CMD; // It is a command.
3059 c->Request.Type.Attribute = ATTR_SIMPLE;
3060 c->Request.Type.Direction =
3061 (rq_data_dir(creq) == READ) ? XFER_READ : XFER_WRITE;
3062 c->Request.Timeout = 0; // Don't time out
3063 c->Request.CDB[0] =
3064 (rq_data_dir(creq) == READ) ? h->cciss_read : h->cciss_write;
3065 start_blk = blk_rq_pos(creq);
3066 #ifdef CCISS_DEBUG
3067 printk(KERN_DEBUG "ciss: sector =%d nr_sectors=%d\n",
3068 (int)blk_rq_pos(creq), (int)blk_rq_sectors(creq));
3069 #endif /* CCISS_DEBUG */
3071 sg_init_table(tmp_sg, MAXSGENTRIES);
3072 seg = blk_rq_map_sg(q, creq, tmp_sg);
3074 /* get the DMA records for the setup */
3075 if (c->Request.Type.Direction == XFER_READ)
3076 dir = PCI_DMA_FROMDEVICE;
3077 else
3078 dir = PCI_DMA_TODEVICE;
3080 for (i = 0; i < seg; i++) {
3081 c->SG[i].Len = tmp_sg[i].length;
3082 temp64.val = (__u64) pci_map_page(h->pdev, sg_page(&tmp_sg[i]),
3083 tmp_sg[i].offset,
3084 tmp_sg[i].length, dir);
3085 c->SG[i].Addr.lower = temp64.val32.lower;
3086 c->SG[i].Addr.upper = temp64.val32.upper;
3087 c->SG[i].Ext = 0; // we are not chaining
3089 /* track how many SG entries we are using */
3090 if (seg > h->maxSG)
3091 h->maxSG = seg;
3093 #ifdef CCISS_DEBUG
3094 printk(KERN_DEBUG "cciss: Submitting %u sectors in %d segments\n",
3095 blk_rq_sectors(creq), seg);
3096 #endif /* CCISS_DEBUG */
3098 c->Header.SGList = c->Header.SGTotal = seg;
3099 if (likely(blk_fs_request(creq))) {
3100 if(h->cciss_read == CCISS_READ_10) {
3101 c->Request.CDB[1] = 0;
3102 c->Request.CDB[2] = (start_blk >> 24) & 0xff; //MSB
3103 c->Request.CDB[3] = (start_blk >> 16) & 0xff;
3104 c->Request.CDB[4] = (start_blk >> 8) & 0xff;
3105 c->Request.CDB[5] = start_blk & 0xff;
3106 c->Request.CDB[6] = 0; // (sect >> 24) & 0xff; MSB
3107 c->Request.CDB[7] = (blk_rq_sectors(creq) >> 8) & 0xff;
3108 c->Request.CDB[8] = blk_rq_sectors(creq) & 0xff;
3109 c->Request.CDB[9] = c->Request.CDB[11] = c->Request.CDB[12] = 0;
3110 } else {
3111 u32 upper32 = upper_32_bits(start_blk);
3113 c->Request.CDBLen = 16;
3114 c->Request.CDB[1]= 0;
3115 c->Request.CDB[2]= (upper32 >> 24) & 0xff; //MSB
3116 c->Request.CDB[3]= (upper32 >> 16) & 0xff;
3117 c->Request.CDB[4]= (upper32 >> 8) & 0xff;
3118 c->Request.CDB[5]= upper32 & 0xff;
3119 c->Request.CDB[6]= (start_blk >> 24) & 0xff;
3120 c->Request.CDB[7]= (start_blk >> 16) & 0xff;
3121 c->Request.CDB[8]= (start_blk >> 8) & 0xff;
3122 c->Request.CDB[9]= start_blk & 0xff;
3123 c->Request.CDB[10]= (blk_rq_sectors(creq) >> 24) & 0xff;
3124 c->Request.CDB[11]= (blk_rq_sectors(creq) >> 16) & 0xff;
3125 c->Request.CDB[12]= (blk_rq_sectors(creq) >> 8) & 0xff;
3126 c->Request.CDB[13]= blk_rq_sectors(creq) & 0xff;
3127 c->Request.CDB[14] = c->Request.CDB[15] = 0;
3129 } else if (blk_pc_request(creq)) {
3130 c->Request.CDBLen = creq->cmd_len;
3131 memcpy(c->Request.CDB, creq->cmd, BLK_MAX_CDB);
3132 } else {
3133 printk(KERN_WARNING "cciss%d: bad request type %d\n", h->ctlr, creq->cmd_type);
3134 BUG();
3137 spin_lock_irq(q->queue_lock);
3139 addQ(&h->reqQ, c);
3140 h->Qdepth++;
3141 if (h->Qdepth > h->maxQsinceinit)
3142 h->maxQsinceinit = h->Qdepth;
3144 goto queue;
3145 full:
3146 blk_stop_queue(q);
3147 startio:
3148 /* We will already have the driver lock here so not need
3149 * to lock it.
3151 start_io(h);
3154 static inline unsigned long get_next_completion(ctlr_info_t *h)
3156 return h->access.command_completed(h);
3159 static inline int interrupt_pending(ctlr_info_t *h)
3161 return h->access.intr_pending(h);
3164 static inline long interrupt_not_for_us(ctlr_info_t *h)
3166 return (((h->access.intr_pending(h) == 0) ||
3167 (h->interrupts_enabled == 0)));
3170 static irqreturn_t do_cciss_intr(int irq, void *dev_id)
3172 ctlr_info_t *h = dev_id;
3173 CommandList_struct *c;
3174 unsigned long flags;
3175 __u32 a, a1, a2;
3177 if (interrupt_not_for_us(h))
3178 return IRQ_NONE;
3180 * If there are completed commands in the completion queue,
3181 * we had better do something about it.
3183 spin_lock_irqsave(CCISS_LOCK(h->ctlr), flags);
3184 while (interrupt_pending(h)) {
3185 while ((a = get_next_completion(h)) != FIFO_EMPTY) {
3186 a1 = a;
3187 if ((a & 0x04)) {
3188 a2 = (a >> 3);
3189 if (a2 >= h->nr_cmds) {
3190 printk(KERN_WARNING
3191 "cciss: controller cciss%d failed, stopping.\n",
3192 h->ctlr);
3193 fail_all_cmds(h->ctlr);
3194 return IRQ_HANDLED;
3197 c = h->cmd_pool + a2;
3198 a = c->busaddr;
3200 } else {
3201 struct hlist_node *tmp;
3203 a &= ~3;
3204 c = NULL;
3205 hlist_for_each_entry(c, tmp, &h->cmpQ, list) {
3206 if (c->busaddr == a)
3207 break;
3211 * If we've found the command, take it off the
3212 * completion Q and free it
3214 if (c && c->busaddr == a) {
3215 removeQ(c);
3216 if (c->cmd_type == CMD_RWREQ) {
3217 complete_command(h, c, 0);
3218 } else if (c->cmd_type == CMD_IOCTL_PEND) {
3219 complete(c->waiting);
3221 # ifdef CONFIG_CISS_SCSI_TAPE
3222 else if (c->cmd_type == CMD_SCSI)
3223 complete_scsi_command(c, 0, a1);
3224 # endif
3225 continue;
3230 spin_unlock_irqrestore(CCISS_LOCK(h->ctlr), flags);
3231 return IRQ_HANDLED;
3234 static int scan_thread(void *data)
3236 ctlr_info_t *h = data;
3237 int rc;
3238 DECLARE_COMPLETION_ONSTACK(wait);
3239 h->rescan_wait = &wait;
3241 for (;;) {
3242 rc = wait_for_completion_interruptible(&wait);
3243 if (kthread_should_stop())
3244 break;
3245 if (!rc)
3246 rebuild_lun_table(h, 0);
3248 return 0;
3251 static int check_for_unit_attention(ctlr_info_t *h, CommandList_struct *c)
3253 if (c->err_info->SenseInfo[2] != UNIT_ATTENTION)
3254 return 0;
3256 switch (c->err_info->SenseInfo[12]) {
3257 case STATE_CHANGED:
3258 printk(KERN_WARNING "cciss%d: a state change "
3259 "detected, command retried\n", h->ctlr);
3260 return 1;
3261 break;
3262 case LUN_FAILED:
3263 printk(KERN_WARNING "cciss%d: LUN failure "
3264 "detected, action required\n", h->ctlr);
3265 return 1;
3266 break;
3267 case REPORT_LUNS_CHANGED:
3268 printk(KERN_WARNING "cciss%d: report LUN data "
3269 "changed\n", h->ctlr);
3270 if (h->rescan_wait)
3271 complete(h->rescan_wait);
3272 return 1;
3273 break;
3274 case POWER_OR_RESET:
3275 printk(KERN_WARNING "cciss%d: a power on "
3276 "or device reset detected\n", h->ctlr);
3277 return 1;
3278 break;
3279 case UNIT_ATTENTION_CLEARED:
3280 printk(KERN_WARNING "cciss%d: unit attention "
3281 "cleared by another initiator\n", h->ctlr);
3282 return 1;
3283 break;
3284 default:
3285 printk(KERN_WARNING "cciss%d: unknown "
3286 "unit attention detected\n", h->ctlr);
3287 return 1;
3292 * We cannot read the structure directly, for portability we must use
3293 * the io functions.
3294 * This is for debug only.
3296 #ifdef CCISS_DEBUG
3297 static void print_cfg_table(CfgTable_struct *tb)
3299 int i;
3300 char temp_name[17];
3302 printk("Controller Configuration information\n");
3303 printk("------------------------------------\n");
3304 for (i = 0; i < 4; i++)
3305 temp_name[i] = readb(&(tb->Signature[i]));
3306 temp_name[4] = '\0';
3307 printk(" Signature = %s\n", temp_name);
3308 printk(" Spec Number = %d\n", readl(&(tb->SpecValence)));
3309 printk(" Transport methods supported = 0x%x\n",
3310 readl(&(tb->TransportSupport)));
3311 printk(" Transport methods active = 0x%x\n",
3312 readl(&(tb->TransportActive)));
3313 printk(" Requested transport Method = 0x%x\n",
3314 readl(&(tb->HostWrite.TransportRequest)));
3315 printk(" Coalesce Interrupt Delay = 0x%x\n",
3316 readl(&(tb->HostWrite.CoalIntDelay)));
3317 printk(" Coalesce Interrupt Count = 0x%x\n",
3318 readl(&(tb->HostWrite.CoalIntCount)));
3319 printk(" Max outstanding commands = 0x%d\n",
3320 readl(&(tb->CmdsOutMax)));
3321 printk(" Bus Types = 0x%x\n", readl(&(tb->BusTypes)));
3322 for (i = 0; i < 16; i++)
3323 temp_name[i] = readb(&(tb->ServerName[i]));
3324 temp_name[16] = '\0';
3325 printk(" Server Name = %s\n", temp_name);
3326 printk(" Heartbeat Counter = 0x%x\n\n\n", readl(&(tb->HeartBeat)));
3328 #endif /* CCISS_DEBUG */
3330 static int find_PCI_BAR_index(struct pci_dev *pdev, unsigned long pci_bar_addr)
3332 int i, offset, mem_type, bar_type;
3333 if (pci_bar_addr == PCI_BASE_ADDRESS_0) /* looking for BAR zero? */
3334 return 0;
3335 offset = 0;
3336 for (i = 0; i < DEVICE_COUNT_RESOURCE; i++) {
3337 bar_type = pci_resource_flags(pdev, i) & PCI_BASE_ADDRESS_SPACE;
3338 if (bar_type == PCI_BASE_ADDRESS_SPACE_IO)
3339 offset += 4;
3340 else {
3341 mem_type = pci_resource_flags(pdev, i) &
3342 PCI_BASE_ADDRESS_MEM_TYPE_MASK;
3343 switch (mem_type) {
3344 case PCI_BASE_ADDRESS_MEM_TYPE_32:
3345 case PCI_BASE_ADDRESS_MEM_TYPE_1M:
3346 offset += 4; /* 32 bit */
3347 break;
3348 case PCI_BASE_ADDRESS_MEM_TYPE_64:
3349 offset += 8;
3350 break;
3351 default: /* reserved in PCI 2.2 */
3352 printk(KERN_WARNING
3353 "Base address is invalid\n");
3354 return -1;
3355 break;
3358 if (offset == pci_bar_addr - PCI_BASE_ADDRESS_0)
3359 return i + 1;
3361 return -1;
3364 /* If MSI/MSI-X is supported by the kernel we will try to enable it on
3365 * controllers that are capable. If not, we use IO-APIC mode.
3368 static void __devinit cciss_interrupt_mode(ctlr_info_t *c,
3369 struct pci_dev *pdev, __u32 board_id)
3371 #ifdef CONFIG_PCI_MSI
3372 int err;
3373 struct msix_entry cciss_msix_entries[4] = { {0, 0}, {0, 1},
3374 {0, 2}, {0, 3}
3377 /* Some boards advertise MSI but don't really support it */
3378 if ((board_id == 0x40700E11) ||
3379 (board_id == 0x40800E11) ||
3380 (board_id == 0x40820E11) || (board_id == 0x40830E11))
3381 goto default_int_mode;
3383 if (pci_find_capability(pdev, PCI_CAP_ID_MSIX)) {
3384 err = pci_enable_msix(pdev, cciss_msix_entries, 4);
3385 if (!err) {
3386 c->intr[0] = cciss_msix_entries[0].vector;
3387 c->intr[1] = cciss_msix_entries[1].vector;
3388 c->intr[2] = cciss_msix_entries[2].vector;
3389 c->intr[3] = cciss_msix_entries[3].vector;
3390 c->msix_vector = 1;
3391 return;
3393 if (err > 0) {
3394 printk(KERN_WARNING "cciss: only %d MSI-X vectors "
3395 "available\n", err);
3396 goto default_int_mode;
3397 } else {
3398 printk(KERN_WARNING "cciss: MSI-X init failed %d\n",
3399 err);
3400 goto default_int_mode;
3403 if (pci_find_capability(pdev, PCI_CAP_ID_MSI)) {
3404 if (!pci_enable_msi(pdev)) {
3405 c->msi_vector = 1;
3406 } else {
3407 printk(KERN_WARNING "cciss: MSI init failed\n");
3410 default_int_mode:
3411 #endif /* CONFIG_PCI_MSI */
3412 /* if we get here we're going to use the default interrupt mode */
3413 c->intr[SIMPLE_MODE_INT] = pdev->irq;
3414 return;
3417 static int __devinit cciss_pci_init(ctlr_info_t *c, struct pci_dev *pdev)
3419 ushort subsystem_vendor_id, subsystem_device_id, command;
3420 __u32 board_id, scratchpad = 0;
3421 __u64 cfg_offset;
3422 __u32 cfg_base_addr;
3423 __u64 cfg_base_addr_index;
3424 int i, err;
3426 /* check to see if controller has been disabled */
3427 /* BEFORE trying to enable it */
3428 (void)pci_read_config_word(pdev, PCI_COMMAND, &command);
3429 if (!(command & 0x02)) {
3430 printk(KERN_WARNING
3431 "cciss: controller appears to be disabled\n");
3432 return -ENODEV;
3435 err = pci_enable_device(pdev);
3436 if (err) {
3437 printk(KERN_ERR "cciss: Unable to Enable PCI device\n");
3438 return err;
3441 err = pci_request_regions(pdev, "cciss");
3442 if (err) {
3443 printk(KERN_ERR "cciss: Cannot obtain PCI resources, "
3444 "aborting\n");
3445 return err;
3448 subsystem_vendor_id = pdev->subsystem_vendor;
3449 subsystem_device_id = pdev->subsystem_device;
3450 board_id = (((__u32) (subsystem_device_id << 16) & 0xffff0000) |
3451 subsystem_vendor_id);
3453 #ifdef CCISS_DEBUG
3454 printk("command = %x\n", command);
3455 printk("irq = %x\n", pdev->irq);
3456 printk("board_id = %x\n", board_id);
3457 #endif /* CCISS_DEBUG */
3459 /* If the kernel supports MSI/MSI-X we will try to enable that functionality,
3460 * else we use the IO-APIC interrupt assigned to us by system ROM.
3462 cciss_interrupt_mode(c, pdev, board_id);
3464 /* find the memory BAR */
3465 for (i = 0; i < DEVICE_COUNT_RESOURCE; i++) {
3466 if (pci_resource_flags(pdev, i) & IORESOURCE_MEM)
3467 break;
3469 if (i == DEVICE_COUNT_RESOURCE) {
3470 printk(KERN_WARNING "cciss: No memory BAR found\n");
3471 err = -ENODEV;
3472 goto err_out_free_res;
3475 c->paddr = pci_resource_start(pdev, i); /* addressing mode bits
3476 * already removed
3479 #ifdef CCISS_DEBUG
3480 printk("address 0 = %lx\n", c->paddr);
3481 #endif /* CCISS_DEBUG */
3482 c->vaddr = remap_pci_mem(c->paddr, 0x250);
3484 /* Wait for the board to become ready. (PCI hotplug needs this.)
3485 * We poll for up to 120 secs, once per 100ms. */
3486 for (i = 0; i < 1200; i++) {
3487 scratchpad = readl(c->vaddr + SA5_SCRATCHPAD_OFFSET);
3488 if (scratchpad == CCISS_FIRMWARE_READY)
3489 break;
3490 set_current_state(TASK_INTERRUPTIBLE);
3491 schedule_timeout(HZ / 10); /* wait 100ms */
3493 if (scratchpad != CCISS_FIRMWARE_READY) {
3494 printk(KERN_WARNING "cciss: Board not ready. Timed out.\n");
3495 err = -ENODEV;
3496 goto err_out_free_res;
3499 /* get the address index number */
3500 cfg_base_addr = readl(c->vaddr + SA5_CTCFG_OFFSET);
3501 cfg_base_addr &= (__u32) 0x0000ffff;
3502 #ifdef CCISS_DEBUG
3503 printk("cfg base address = %x\n", cfg_base_addr);
3504 #endif /* CCISS_DEBUG */
3505 cfg_base_addr_index = find_PCI_BAR_index(pdev, cfg_base_addr);
3506 #ifdef CCISS_DEBUG
3507 printk("cfg base address index = %llx\n",
3508 (unsigned long long)cfg_base_addr_index);
3509 #endif /* CCISS_DEBUG */
3510 if (cfg_base_addr_index == -1) {
3511 printk(KERN_WARNING "cciss: Cannot find cfg_base_addr_index\n");
3512 err = -ENODEV;
3513 goto err_out_free_res;
3516 cfg_offset = readl(c->vaddr + SA5_CTMEM_OFFSET);
3517 #ifdef CCISS_DEBUG
3518 printk("cfg offset = %llx\n", (unsigned long long)cfg_offset);
3519 #endif /* CCISS_DEBUG */
3520 c->cfgtable = remap_pci_mem(pci_resource_start(pdev,
3521 cfg_base_addr_index) +
3522 cfg_offset, sizeof(CfgTable_struct));
3523 c->board_id = board_id;
3525 #ifdef CCISS_DEBUG
3526 print_cfg_table(c->cfgtable);
3527 #endif /* CCISS_DEBUG */
3529 /* Some controllers support Zero Memory Raid (ZMR).
3530 * When configured in ZMR mode the number of supported
3531 * commands drops to 64. So instead of just setting an
3532 * arbitrary value we make the driver a little smarter.
3533 * We read the config table to tell us how many commands
3534 * are supported on the controller then subtract 4 to
3535 * leave a little room for ioctl calls.
3537 c->max_commands = readl(&(c->cfgtable->CmdsOutMax));
3538 for (i = 0; i < ARRAY_SIZE(products); i++) {
3539 if (board_id == products[i].board_id) {
3540 c->product_name = products[i].product_name;
3541 c->access = *(products[i].access);
3542 c->nr_cmds = c->max_commands - 4;
3543 break;
3546 if ((readb(&c->cfgtable->Signature[0]) != 'C') ||
3547 (readb(&c->cfgtable->Signature[1]) != 'I') ||
3548 (readb(&c->cfgtable->Signature[2]) != 'S') ||
3549 (readb(&c->cfgtable->Signature[3]) != 'S')) {
3550 printk("Does not appear to be a valid CISS config table\n");
3551 err = -ENODEV;
3552 goto err_out_free_res;
3554 /* We didn't find the controller in our list. We know the
3555 * signature is valid. If it's an HP device let's try to
3556 * bind to the device and fire it up. Otherwise we bail.
3558 if (i == ARRAY_SIZE(products)) {
3559 if (subsystem_vendor_id == PCI_VENDOR_ID_HP) {
3560 c->product_name = products[i-1].product_name;
3561 c->access = *(products[i-1].access);
3562 c->nr_cmds = c->max_commands - 4;
3563 printk(KERN_WARNING "cciss: This is an unknown "
3564 "Smart Array controller.\n"
3565 "cciss: Please update to the latest driver "
3566 "available from www.hp.com.\n");
3567 } else {
3568 printk(KERN_WARNING "cciss: Sorry, I don't know how"
3569 " to access the Smart Array controller %08lx\n"
3570 , (unsigned long)board_id);
3571 err = -ENODEV;
3572 goto err_out_free_res;
3575 #ifdef CONFIG_X86
3577 /* Need to enable prefetch in the SCSI core for 6400 in x86 */
3578 __u32 prefetch;
3579 prefetch = readl(&(c->cfgtable->SCSI_Prefetch));
3580 prefetch |= 0x100;
3581 writel(prefetch, &(c->cfgtable->SCSI_Prefetch));
3583 #endif
3585 /* Disabling DMA prefetch and refetch for the P600.
3586 * An ASIC bug may result in accesses to invalid memory addresses.
3587 * We've disabled prefetch for some time now. Testing with XEN
3588 * kernels revealed a bug in the refetch if dom0 resides on a P600.
3590 if(board_id == 0x3225103C) {
3591 __u32 dma_prefetch;
3592 __u32 dma_refetch;
3593 dma_prefetch = readl(c->vaddr + I2O_DMA1_CFG);
3594 dma_prefetch |= 0x8000;
3595 writel(dma_prefetch, c->vaddr + I2O_DMA1_CFG);
3596 pci_read_config_dword(pdev, PCI_COMMAND_PARITY, &dma_refetch);
3597 dma_refetch |= 0x1;
3598 pci_write_config_dword(pdev, PCI_COMMAND_PARITY, dma_refetch);
3601 #ifdef CCISS_DEBUG
3602 printk("Trying to put board into Simple mode\n");
3603 #endif /* CCISS_DEBUG */
3604 c->max_commands = readl(&(c->cfgtable->CmdsOutMax));
3605 /* Update the field, and then ring the doorbell */
3606 writel(CFGTBL_Trans_Simple, &(c->cfgtable->HostWrite.TransportRequest));
3607 writel(CFGTBL_ChangeReq, c->vaddr + SA5_DOORBELL);
3609 /* under certain very rare conditions, this can take awhile.
3610 * (e.g.: hot replace a failed 144GB drive in a RAID 5 set right
3611 * as we enter this code.) */
3612 for (i = 0; i < MAX_CONFIG_WAIT; i++) {
3613 if (!(readl(c->vaddr + SA5_DOORBELL) & CFGTBL_ChangeReq))
3614 break;
3615 /* delay and try again */
3616 set_current_state(TASK_INTERRUPTIBLE);
3617 schedule_timeout(10);
3620 #ifdef CCISS_DEBUG
3621 printk(KERN_DEBUG "I counter got to %d %x\n", i,
3622 readl(c->vaddr + SA5_DOORBELL));
3623 #endif /* CCISS_DEBUG */
3624 #ifdef CCISS_DEBUG
3625 print_cfg_table(c->cfgtable);
3626 #endif /* CCISS_DEBUG */
3628 if (!(readl(&(c->cfgtable->TransportActive)) & CFGTBL_Trans_Simple)) {
3629 printk(KERN_WARNING "cciss: unable to get board into"
3630 " simple mode\n");
3631 err = -ENODEV;
3632 goto err_out_free_res;
3634 return 0;
3636 err_out_free_res:
3638 * Deliberately omit pci_disable_device(): it does something nasty to
3639 * Smart Array controllers that pci_enable_device does not undo
3641 pci_release_regions(pdev);
3642 return err;
3645 /* Function to find the first free pointer into our hba[] array
3646 * Returns -1 if no free entries are left.
3648 static int alloc_cciss_hba(void)
3650 int i;
3652 for (i = 0; i < MAX_CTLR; i++) {
3653 if (!hba[i]) {
3654 ctlr_info_t *p;
3656 p = kzalloc(sizeof(ctlr_info_t), GFP_KERNEL);
3657 if (!p)
3658 goto Enomem;
3659 hba[i] = p;
3660 return i;
3663 printk(KERN_WARNING "cciss: This driver supports a maximum"
3664 " of %d controllers.\n", MAX_CTLR);
3665 return -1;
3666 Enomem:
3667 printk(KERN_ERR "cciss: out of memory.\n");
3668 return -1;
3671 static void free_hba(int i)
3673 ctlr_info_t *p = hba[i];
3674 int n;
3676 hba[i] = NULL;
3677 for (n = 0; n < CISS_MAX_LUN; n++)
3678 put_disk(p->gendisk[n]);
3679 kfree(p);
3682 /* Send a message CDB to the firmware. */
3683 static __devinit int cciss_message(struct pci_dev *pdev, unsigned char opcode, unsigned char type)
3685 typedef struct {
3686 CommandListHeader_struct CommandHeader;
3687 RequestBlock_struct Request;
3688 ErrDescriptor_struct ErrorDescriptor;
3689 } Command;
3690 static const size_t cmd_sz = sizeof(Command) + sizeof(ErrorInfo_struct);
3691 Command *cmd;
3692 dma_addr_t paddr64;
3693 uint32_t paddr32, tag;
3694 void __iomem *vaddr;
3695 int i, err;
3697 vaddr = ioremap_nocache(pci_resource_start(pdev, 0), pci_resource_len(pdev, 0));
3698 if (vaddr == NULL)
3699 return -ENOMEM;
3701 /* The Inbound Post Queue only accepts 32-bit physical addresses for the
3702 CCISS commands, so they must be allocated from the lower 4GiB of
3703 memory. */
3704 err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(32));
3705 if (err) {
3706 iounmap(vaddr);
3707 return -ENOMEM;
3710 cmd = pci_alloc_consistent(pdev, cmd_sz, &paddr64);
3711 if (cmd == NULL) {
3712 iounmap(vaddr);
3713 return -ENOMEM;
3716 /* This must fit, because of the 32-bit consistent DMA mask. Also,
3717 although there's no guarantee, we assume that the address is at
3718 least 4-byte aligned (most likely, it's page-aligned). */
3719 paddr32 = paddr64;
3721 cmd->CommandHeader.ReplyQueue = 0;
3722 cmd->CommandHeader.SGList = 0;
3723 cmd->CommandHeader.SGTotal = 0;
3724 cmd->CommandHeader.Tag.lower = paddr32;
3725 cmd->CommandHeader.Tag.upper = 0;
3726 memset(&cmd->CommandHeader.LUN.LunAddrBytes, 0, 8);
3728 cmd->Request.CDBLen = 16;
3729 cmd->Request.Type.Type = TYPE_MSG;
3730 cmd->Request.Type.Attribute = ATTR_HEADOFQUEUE;
3731 cmd->Request.Type.Direction = XFER_NONE;
3732 cmd->Request.Timeout = 0; /* Don't time out */
3733 cmd->Request.CDB[0] = opcode;
3734 cmd->Request.CDB[1] = type;
3735 memset(&cmd->Request.CDB[2], 0, 14); /* the rest of the CDB is reserved */
3737 cmd->ErrorDescriptor.Addr.lower = paddr32 + sizeof(Command);
3738 cmd->ErrorDescriptor.Addr.upper = 0;
3739 cmd->ErrorDescriptor.Len = sizeof(ErrorInfo_struct);
3741 writel(paddr32, vaddr + SA5_REQUEST_PORT_OFFSET);
3743 for (i = 0; i < 10; i++) {
3744 tag = readl(vaddr + SA5_REPLY_PORT_OFFSET);
3745 if ((tag & ~3) == paddr32)
3746 break;
3747 schedule_timeout_uninterruptible(HZ);
3750 iounmap(vaddr);
3752 /* we leak the DMA buffer here ... no choice since the controller could
3753 still complete the command. */
3754 if (i == 10) {
3755 printk(KERN_ERR "cciss: controller message %02x:%02x timed out\n",
3756 opcode, type);
3757 return -ETIMEDOUT;
3760 pci_free_consistent(pdev, cmd_sz, cmd, paddr64);
3762 if (tag & 2) {
3763 printk(KERN_ERR "cciss: controller message %02x:%02x failed\n",
3764 opcode, type);
3765 return -EIO;
3768 printk(KERN_INFO "cciss: controller message %02x:%02x succeeded\n",
3769 opcode, type);
3770 return 0;
3773 #define cciss_soft_reset_controller(p) cciss_message(p, 1, 0)
3774 #define cciss_noop(p) cciss_message(p, 3, 0)
3776 static __devinit int cciss_reset_msi(struct pci_dev *pdev)
3778 /* the #defines are stolen from drivers/pci/msi.h. */
3779 #define msi_control_reg(base) (base + PCI_MSI_FLAGS)
3780 #define PCI_MSIX_FLAGS_ENABLE (1 << 15)
3782 int pos;
3783 u16 control = 0;
3785 pos = pci_find_capability(pdev, PCI_CAP_ID_MSI);
3786 if (pos) {
3787 pci_read_config_word(pdev, msi_control_reg(pos), &control);
3788 if (control & PCI_MSI_FLAGS_ENABLE) {
3789 printk(KERN_INFO "cciss: resetting MSI\n");
3790 pci_write_config_word(pdev, msi_control_reg(pos), control & ~PCI_MSI_FLAGS_ENABLE);
3794 pos = pci_find_capability(pdev, PCI_CAP_ID_MSIX);
3795 if (pos) {
3796 pci_read_config_word(pdev, msi_control_reg(pos), &control);
3797 if (control & PCI_MSIX_FLAGS_ENABLE) {
3798 printk(KERN_INFO "cciss: resetting MSI-X\n");
3799 pci_write_config_word(pdev, msi_control_reg(pos), control & ~PCI_MSIX_FLAGS_ENABLE);
3803 return 0;
3806 /* This does a hard reset of the controller using PCI power management
3807 * states. */
3808 static __devinit int cciss_hard_reset_controller(struct pci_dev *pdev)
3810 u16 pmcsr, saved_config_space[32];
3811 int i, pos;
3813 printk(KERN_INFO "cciss: using PCI PM to reset controller\n");
3815 /* This is very nearly the same thing as
3817 pci_save_state(pci_dev);
3818 pci_set_power_state(pci_dev, PCI_D3hot);
3819 pci_set_power_state(pci_dev, PCI_D0);
3820 pci_restore_state(pci_dev);
3822 but we can't use these nice canned kernel routines on
3823 kexec, because they also check the MSI/MSI-X state in PCI
3824 configuration space and do the wrong thing when it is
3825 set/cleared. Also, the pci_save/restore_state functions
3826 violate the ordering requirements for restoring the
3827 configuration space from the CCISS document (see the
3828 comment below). So we roll our own .... */
3830 for (i = 0; i < 32; i++)
3831 pci_read_config_word(pdev, 2*i, &saved_config_space[i]);
3833 pos = pci_find_capability(pdev, PCI_CAP_ID_PM);
3834 if (pos == 0) {
3835 printk(KERN_ERR "cciss_reset_controller: PCI PM not supported\n");
3836 return -ENODEV;
3839 /* Quoting from the Open CISS Specification: "The Power
3840 * Management Control/Status Register (CSR) controls the power
3841 * state of the device. The normal operating state is D0,
3842 * CSR=00h. The software off state is D3, CSR=03h. To reset
3843 * the controller, place the interface device in D3 then to
3844 * D0, this causes a secondary PCI reset which will reset the
3845 * controller." */
3847 /* enter the D3hot power management state */
3848 pci_read_config_word(pdev, pos + PCI_PM_CTRL, &pmcsr);
3849 pmcsr &= ~PCI_PM_CTRL_STATE_MASK;
3850 pmcsr |= PCI_D3hot;
3851 pci_write_config_word(pdev, pos + PCI_PM_CTRL, pmcsr);
3853 schedule_timeout_uninterruptible(HZ >> 1);
3855 /* enter the D0 power management state */
3856 pmcsr &= ~PCI_PM_CTRL_STATE_MASK;
3857 pmcsr |= PCI_D0;
3858 pci_write_config_word(pdev, pos + PCI_PM_CTRL, pmcsr);
3860 schedule_timeout_uninterruptible(HZ >> 1);
3862 /* Restore the PCI configuration space. The Open CISS
3863 * Specification says, "Restore the PCI Configuration
3864 * Registers, offsets 00h through 60h. It is important to
3865 * restore the command register, 16-bits at offset 04h,
3866 * last. Do not restore the configuration status register,
3867 * 16-bits at offset 06h." Note that the offset is 2*i. */
3868 for (i = 0; i < 32; i++) {
3869 if (i == 2 || i == 3)
3870 continue;
3871 pci_write_config_word(pdev, 2*i, saved_config_space[i]);
3873 wmb();
3874 pci_write_config_word(pdev, 4, saved_config_space[2]);
3876 return 0;
3880 * This is it. Find all the controllers and register them. I really hate
3881 * stealing all these major device numbers.
3882 * returns the number of block devices registered.
3884 static int __devinit cciss_init_one(struct pci_dev *pdev,
3885 const struct pci_device_id *ent)
3887 int i;
3888 int j = 0;
3889 int rc;
3890 int dac, return_code;
3891 InquiryData_struct *inq_buff = NULL;
3893 if (reset_devices) {
3894 /* Reset the controller with a PCI power-cycle */
3895 if (cciss_hard_reset_controller(pdev) || cciss_reset_msi(pdev))
3896 return -ENODEV;
3898 /* Now try to get the controller to respond to a no-op. Some
3899 devices (notably the HP Smart Array 5i Controller) need
3900 up to 30 seconds to respond. */
3901 for (i=0; i<30; i++) {
3902 if (cciss_noop(pdev) == 0)
3903 break;
3905 schedule_timeout_uninterruptible(HZ);
3907 if (i == 30) {
3908 printk(KERN_ERR "cciss: controller seems dead\n");
3909 return -EBUSY;
3913 i = alloc_cciss_hba();
3914 if (i < 0)
3915 return -1;
3917 hba[i]->busy_initializing = 1;
3918 INIT_HLIST_HEAD(&hba[i]->cmpQ);
3919 INIT_HLIST_HEAD(&hba[i]->reqQ);
3921 if (cciss_pci_init(hba[i], pdev) != 0)
3922 goto clean0;
3924 sprintf(hba[i]->devname, "cciss%d", i);
3925 hba[i]->ctlr = i;
3926 hba[i]->pdev = pdev;
3928 if (cciss_create_hba_sysfs_entry(hba[i]))
3929 goto clean0;
3931 /* configure PCI DMA stuff */
3932 if (!pci_set_dma_mask(pdev, DMA_BIT_MASK(64)))
3933 dac = 1;
3934 else if (!pci_set_dma_mask(pdev, DMA_BIT_MASK(32)))
3935 dac = 0;
3936 else {
3937 printk(KERN_ERR "cciss: no suitable DMA available\n");
3938 goto clean1;
3942 * register with the major number, or get a dynamic major number
3943 * by passing 0 as argument. This is done for greater than
3944 * 8 controller support.
3946 if (i < MAX_CTLR_ORIG)
3947 hba[i]->major = COMPAQ_CISS_MAJOR + i;
3948 rc = register_blkdev(hba[i]->major, hba[i]->devname);
3949 if (rc == -EBUSY || rc == -EINVAL) {
3950 printk(KERN_ERR
3951 "cciss: Unable to get major number %d for %s "
3952 "on hba %d\n", hba[i]->major, hba[i]->devname, i);
3953 goto clean1;
3954 } else {
3955 if (i >= MAX_CTLR_ORIG)
3956 hba[i]->major = rc;
3959 /* make sure the board interrupts are off */
3960 hba[i]->access.set_intr_mask(hba[i], CCISS_INTR_OFF);
3961 if (request_irq(hba[i]->intr[SIMPLE_MODE_INT], do_cciss_intr,
3962 IRQF_DISABLED | IRQF_SHARED, hba[i]->devname, hba[i])) {
3963 printk(KERN_ERR "cciss: Unable to get irq %d for %s\n",
3964 hba[i]->intr[SIMPLE_MODE_INT], hba[i]->devname);
3965 goto clean2;
3968 printk(KERN_INFO "%s: <0x%x> at PCI %s IRQ %d%s using DAC\n",
3969 hba[i]->devname, pdev->device, pci_name(pdev),
3970 hba[i]->intr[SIMPLE_MODE_INT], dac ? "" : " not");
3972 hba[i]->cmd_pool_bits =
3973 kmalloc(DIV_ROUND_UP(hba[i]->nr_cmds, BITS_PER_LONG)
3974 * sizeof(unsigned long), GFP_KERNEL);
3975 hba[i]->cmd_pool = (CommandList_struct *)
3976 pci_alloc_consistent(hba[i]->pdev,
3977 hba[i]->nr_cmds * sizeof(CommandList_struct),
3978 &(hba[i]->cmd_pool_dhandle));
3979 hba[i]->errinfo_pool = (ErrorInfo_struct *)
3980 pci_alloc_consistent(hba[i]->pdev,
3981 hba[i]->nr_cmds * sizeof(ErrorInfo_struct),
3982 &(hba[i]->errinfo_pool_dhandle));
3983 if ((hba[i]->cmd_pool_bits == NULL)
3984 || (hba[i]->cmd_pool == NULL)
3985 || (hba[i]->errinfo_pool == NULL)) {
3986 printk(KERN_ERR "cciss: out of memory");
3987 goto clean4;
3989 spin_lock_init(&hba[i]->lock);
3991 /* Initialize the pdev driver private data.
3992 have it point to hba[i]. */
3993 pci_set_drvdata(pdev, hba[i]);
3994 /* command and error info recs zeroed out before
3995 they are used */
3996 memset(hba[i]->cmd_pool_bits, 0,
3997 DIV_ROUND_UP(hba[i]->nr_cmds, BITS_PER_LONG)
3998 * sizeof(unsigned long));
4000 hba[i]->num_luns = 0;
4001 hba[i]->highest_lun = -1;
4002 for (j = 0; j < CISS_MAX_LUN; j++) {
4003 hba[i]->drv[j].raid_level = -1;
4004 hba[i]->drv[j].queue = NULL;
4005 hba[i]->gendisk[j] = NULL;
4008 cciss_scsi_setup(i);
4010 /* Turn the interrupts on so we can service requests */
4011 hba[i]->access.set_intr_mask(hba[i], CCISS_INTR_ON);
4013 /* Get the firmware version */
4014 inq_buff = kzalloc(sizeof(InquiryData_struct), GFP_KERNEL);
4015 if (inq_buff == NULL) {
4016 printk(KERN_ERR "cciss: out of memory\n");
4017 goto clean4;
4020 return_code = sendcmd_withirq(CISS_INQUIRY, i, inq_buff,
4021 sizeof(InquiryData_struct), 0, CTLR_LUNID, TYPE_CMD);
4022 if (return_code == IO_OK) {
4023 hba[i]->firm_ver[0] = inq_buff->data_byte[32];
4024 hba[i]->firm_ver[1] = inq_buff->data_byte[33];
4025 hba[i]->firm_ver[2] = inq_buff->data_byte[34];
4026 hba[i]->firm_ver[3] = inq_buff->data_byte[35];
4027 } else { /* send command failed */
4028 printk(KERN_WARNING "cciss: unable to determine firmware"
4029 " version of controller\n");
4032 cciss_procinit(i);
4034 hba[i]->cciss_max_sectors = 2048;
4036 hba[i]->busy_initializing = 0;
4038 rebuild_lun_table(hba[i], 1);
4039 hba[i]->cciss_scan_thread = kthread_run(scan_thread, hba[i],
4040 "cciss_scan%02d", i);
4041 if (IS_ERR(hba[i]->cciss_scan_thread))
4042 return PTR_ERR(hba[i]->cciss_scan_thread);
4044 return 1;
4046 clean4:
4047 kfree(inq_buff);
4048 kfree(hba[i]->cmd_pool_bits);
4049 if (hba[i]->cmd_pool)
4050 pci_free_consistent(hba[i]->pdev,
4051 hba[i]->nr_cmds * sizeof(CommandList_struct),
4052 hba[i]->cmd_pool, hba[i]->cmd_pool_dhandle);
4053 if (hba[i]->errinfo_pool)
4054 pci_free_consistent(hba[i]->pdev,
4055 hba[i]->nr_cmds * sizeof(ErrorInfo_struct),
4056 hba[i]->errinfo_pool,
4057 hba[i]->errinfo_pool_dhandle);
4058 free_irq(hba[i]->intr[SIMPLE_MODE_INT], hba[i]);
4059 clean2:
4060 unregister_blkdev(hba[i]->major, hba[i]->devname);
4061 clean1:
4062 cciss_destroy_hba_sysfs_entry(hba[i]);
4063 clean0:
4064 hba[i]->busy_initializing = 0;
4065 /* cleanup any queues that may have been initialized */
4066 for (j=0; j <= hba[i]->highest_lun; j++){
4067 drive_info_struct *drv = &(hba[i]->drv[j]);
4068 if (drv->queue)
4069 blk_cleanup_queue(drv->queue);
4072 * Deliberately omit pci_disable_device(): it does something nasty to
4073 * Smart Array controllers that pci_enable_device does not undo
4075 pci_release_regions(pdev);
4076 pci_set_drvdata(pdev, NULL);
4077 free_hba(i);
4078 return -1;
4081 static void cciss_shutdown(struct pci_dev *pdev)
4083 ctlr_info_t *tmp_ptr;
4084 int i;
4085 char flush_buf[4];
4086 int return_code;
4088 tmp_ptr = pci_get_drvdata(pdev);
4089 if (tmp_ptr == NULL)
4090 return;
4091 i = tmp_ptr->ctlr;
4092 if (hba[i] == NULL)
4093 return;
4095 /* Turn board interrupts off and send the flush cache command */
4096 /* sendcmd will turn off interrupt, and send the flush...
4097 * To write all data in the battery backed cache to disks */
4098 memset(flush_buf, 0, 4);
4099 return_code = sendcmd(CCISS_CACHE_FLUSH, i, flush_buf, 4, 0,
4100 CTLR_LUNID, TYPE_CMD);
4101 if (return_code == IO_OK) {
4102 printk(KERN_INFO "Completed flushing cache on controller %d\n", i);
4103 } else {
4104 printk(KERN_WARNING "Error flushing cache on controller %d\n", i);
4106 free_irq(hba[i]->intr[2], hba[i]);
4109 static void __devexit cciss_remove_one(struct pci_dev *pdev)
4111 ctlr_info_t *tmp_ptr;
4112 int i, j;
4114 if (pci_get_drvdata(pdev) == NULL) {
4115 printk(KERN_ERR "cciss: Unable to remove device \n");
4116 return;
4119 tmp_ptr = pci_get_drvdata(pdev);
4120 i = tmp_ptr->ctlr;
4121 if (hba[i] == NULL) {
4122 printk(KERN_ERR "cciss: device appears to "
4123 "already be removed \n");
4124 return;
4127 kthread_stop(hba[i]->cciss_scan_thread);
4129 remove_proc_entry(hba[i]->devname, proc_cciss);
4130 unregister_blkdev(hba[i]->major, hba[i]->devname);
4132 /* remove it from the disk list */
4133 for (j = 0; j < CISS_MAX_LUN; j++) {
4134 struct gendisk *disk = hba[i]->gendisk[j];
4135 if (disk) {
4136 struct request_queue *q = disk->queue;
4138 if (disk->flags & GENHD_FL_UP)
4139 del_gendisk(disk);
4140 if (q)
4141 blk_cleanup_queue(q);
4145 #ifdef CONFIG_CISS_SCSI_TAPE
4146 cciss_unregister_scsi(i); /* unhook from SCSI subsystem */
4147 #endif
4149 cciss_shutdown(pdev);
4151 #ifdef CONFIG_PCI_MSI
4152 if (hba[i]->msix_vector)
4153 pci_disable_msix(hba[i]->pdev);
4154 else if (hba[i]->msi_vector)
4155 pci_disable_msi(hba[i]->pdev);
4156 #endif /* CONFIG_PCI_MSI */
4158 iounmap(hba[i]->vaddr);
4160 pci_free_consistent(hba[i]->pdev, hba[i]->nr_cmds * sizeof(CommandList_struct),
4161 hba[i]->cmd_pool, hba[i]->cmd_pool_dhandle);
4162 pci_free_consistent(hba[i]->pdev, hba[i]->nr_cmds * sizeof(ErrorInfo_struct),
4163 hba[i]->errinfo_pool, hba[i]->errinfo_pool_dhandle);
4164 kfree(hba[i]->cmd_pool_bits);
4166 * Deliberately omit pci_disable_device(): it does something nasty to
4167 * Smart Array controllers that pci_enable_device does not undo
4169 pci_release_regions(pdev);
4170 pci_set_drvdata(pdev, NULL);
4171 cciss_destroy_hba_sysfs_entry(hba[i]);
4172 free_hba(i);
4175 static struct pci_driver cciss_pci_driver = {
4176 .name = "cciss",
4177 .probe = cciss_init_one,
4178 .remove = __devexit_p(cciss_remove_one),
4179 .id_table = cciss_pci_device_id, /* id_table */
4180 .shutdown = cciss_shutdown,
4184 * This is it. Register the PCI driver information for the cards we control
4185 * the OS will call our registered routines when it finds one of our cards.
4187 static int __init cciss_init(void)
4189 int err;
4192 * The hardware requires that commands are aligned on a 64-bit
4193 * boundary. Given that we use pci_alloc_consistent() to allocate an
4194 * array of them, the size must be a multiple of 8 bytes.
4196 BUILD_BUG_ON(sizeof(CommandList_struct) % 8);
4198 printk(KERN_INFO DRIVER_NAME "\n");
4200 err = bus_register(&cciss_bus_type);
4201 if (err)
4202 return err;
4204 /* Register for our PCI devices */
4205 err = pci_register_driver(&cciss_pci_driver);
4206 if (err)
4207 goto err_bus_register;
4209 return 0;
4211 err_bus_register:
4212 bus_unregister(&cciss_bus_type);
4213 return err;
4216 static void __exit cciss_cleanup(void)
4218 int i;
4220 pci_unregister_driver(&cciss_pci_driver);
4221 /* double check that all controller entrys have been removed */
4222 for (i = 0; i < MAX_CTLR; i++) {
4223 if (hba[i] != NULL) {
4224 printk(KERN_WARNING "cciss: had to remove"
4225 " controller %d\n", i);
4226 cciss_remove_one(hba[i]->pdev);
4229 remove_proc_entry("driver/cciss", NULL);
4230 bus_unregister(&cciss_bus_type);
4233 static void fail_all_cmds(unsigned long ctlr)
4235 /* If we get here, the board is apparently dead. */
4236 ctlr_info_t *h = hba[ctlr];
4237 CommandList_struct *c;
4238 unsigned long flags;
4240 printk(KERN_WARNING "cciss%d: controller not responding.\n", h->ctlr);
4241 h->alive = 0; /* the controller apparently died... */
4243 spin_lock_irqsave(CCISS_LOCK(ctlr), flags);
4245 pci_disable_device(h->pdev); /* Make sure it is really dead. */
4247 /* move everything off the request queue onto the completed queue */
4248 while (!hlist_empty(&h->reqQ)) {
4249 c = hlist_entry(h->reqQ.first, CommandList_struct, list);
4250 removeQ(c);
4251 h->Qdepth--;
4252 addQ(&h->cmpQ, c);
4255 /* Now, fail everything on the completed queue with a HW error */
4256 while (!hlist_empty(&h->cmpQ)) {
4257 c = hlist_entry(h->cmpQ.first, CommandList_struct, list);
4258 removeQ(c);
4259 if (c->cmd_type != CMD_MSG_STALE)
4260 c->err_info->CommandStatus = CMD_HARDWARE_ERR;
4261 if (c->cmd_type == CMD_RWREQ) {
4262 complete_command(h, c, 0);
4263 } else if (c->cmd_type == CMD_IOCTL_PEND)
4264 complete(c->waiting);
4265 #ifdef CONFIG_CISS_SCSI_TAPE
4266 else if (c->cmd_type == CMD_SCSI)
4267 complete_scsi_command(c, 0, 0);
4268 #endif
4270 spin_unlock_irqrestore(CCISS_LOCK(ctlr), flags);
4271 return;
4274 module_init(cciss_init);
4275 module_exit(cciss_cleanup);