Merge git://git.kernel.org/pub/scm/linux/kernel/git/mason/btrfs-unstable
[linux-2.6/mini2440.git] / arch / ia64 / mm / init.c
blobc0f3bee690424da0ed3f7489fd57b832b8d622cc
1 /*
2 * Initialize MMU support.
4 * Copyright (C) 1998-2003 Hewlett-Packard Co
5 * David Mosberger-Tang <davidm@hpl.hp.com>
6 */
7 #include <linux/kernel.h>
8 #include <linux/init.h>
10 #include <linux/bootmem.h>
11 #include <linux/efi.h>
12 #include <linux/elf.h>
13 #include <linux/mm.h>
14 #include <linux/mmzone.h>
15 #include <linux/module.h>
16 #include <linux/personality.h>
17 #include <linux/reboot.h>
18 #include <linux/slab.h>
19 #include <linux/swap.h>
20 #include <linux/proc_fs.h>
21 #include <linux/bitops.h>
22 #include <linux/kexec.h>
24 #include <asm/dma.h>
25 #include <asm/ia32.h>
26 #include <asm/io.h>
27 #include <asm/machvec.h>
28 #include <asm/numa.h>
29 #include <asm/patch.h>
30 #include <asm/pgalloc.h>
31 #include <asm/sal.h>
32 #include <asm/sections.h>
33 #include <asm/system.h>
34 #include <asm/tlb.h>
35 #include <asm/uaccess.h>
36 #include <asm/unistd.h>
37 #include <asm/mca.h>
38 #include <asm/paravirt.h>
40 DEFINE_PER_CPU(struct mmu_gather, mmu_gathers);
42 extern void ia64_tlb_init (void);
44 unsigned long MAX_DMA_ADDRESS = PAGE_OFFSET + 0x100000000UL;
46 #ifdef CONFIG_VIRTUAL_MEM_MAP
47 unsigned long vmalloc_end = VMALLOC_END_INIT;
48 EXPORT_SYMBOL(vmalloc_end);
49 struct page *vmem_map;
50 EXPORT_SYMBOL(vmem_map);
51 #endif
53 struct page *zero_page_memmap_ptr; /* map entry for zero page */
54 EXPORT_SYMBOL(zero_page_memmap_ptr);
56 void
57 __ia64_sync_icache_dcache (pte_t pte)
59 unsigned long addr;
60 struct page *page;
62 page = pte_page(pte);
63 addr = (unsigned long) page_address(page);
65 if (test_bit(PG_arch_1, &page->flags))
66 return; /* i-cache is already coherent with d-cache */
68 flush_icache_range(addr, addr + (PAGE_SIZE << compound_order(page)));
69 set_bit(PG_arch_1, &page->flags); /* mark page as clean */
73 * Since DMA is i-cache coherent, any (complete) pages that were written via
74 * DMA can be marked as "clean" so that lazy_mmu_prot_update() doesn't have to
75 * flush them when they get mapped into an executable vm-area.
77 void
78 dma_mark_clean(void *addr, size_t size)
80 unsigned long pg_addr, end;
82 pg_addr = PAGE_ALIGN((unsigned long) addr);
83 end = (unsigned long) addr + size;
84 while (pg_addr + PAGE_SIZE <= end) {
85 struct page *page = virt_to_page(pg_addr);
86 set_bit(PG_arch_1, &page->flags);
87 pg_addr += PAGE_SIZE;
91 inline void
92 ia64_set_rbs_bot (void)
94 unsigned long stack_size = current->signal->rlim[RLIMIT_STACK].rlim_max & -16;
96 if (stack_size > MAX_USER_STACK_SIZE)
97 stack_size = MAX_USER_STACK_SIZE;
98 current->thread.rbs_bot = PAGE_ALIGN(current->mm->start_stack - stack_size);
102 * This performs some platform-dependent address space initialization.
103 * On IA-64, we want to setup the VM area for the register backing
104 * store (which grows upwards) and install the gateway page which is
105 * used for signal trampolines, etc.
107 void
108 ia64_init_addr_space (void)
110 struct vm_area_struct *vma;
112 ia64_set_rbs_bot();
115 * If we're out of memory and kmem_cache_alloc() returns NULL, we simply ignore
116 * the problem. When the process attempts to write to the register backing store
117 * for the first time, it will get a SEGFAULT in this case.
119 vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL);
120 if (vma) {
121 vma->vm_mm = current->mm;
122 vma->vm_start = current->thread.rbs_bot & PAGE_MASK;
123 vma->vm_end = vma->vm_start + PAGE_SIZE;
124 vma->vm_flags = VM_DATA_DEFAULT_FLAGS|VM_GROWSUP|VM_ACCOUNT;
125 vma->vm_page_prot = vm_get_page_prot(vma->vm_flags);
126 down_write(&current->mm->mmap_sem);
127 if (insert_vm_struct(current->mm, vma)) {
128 up_write(&current->mm->mmap_sem);
129 kmem_cache_free(vm_area_cachep, vma);
130 return;
132 up_write(&current->mm->mmap_sem);
135 /* map NaT-page at address zero to speed up speculative dereferencing of NULL: */
136 if (!(current->personality & MMAP_PAGE_ZERO)) {
137 vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL);
138 if (vma) {
139 vma->vm_mm = current->mm;
140 vma->vm_end = PAGE_SIZE;
141 vma->vm_page_prot = __pgprot(pgprot_val(PAGE_READONLY) | _PAGE_MA_NAT);
142 vma->vm_flags = VM_READ | VM_MAYREAD | VM_IO | VM_RESERVED;
143 down_write(&current->mm->mmap_sem);
144 if (insert_vm_struct(current->mm, vma)) {
145 up_write(&current->mm->mmap_sem);
146 kmem_cache_free(vm_area_cachep, vma);
147 return;
149 up_write(&current->mm->mmap_sem);
154 void
155 free_initmem (void)
157 unsigned long addr, eaddr;
159 addr = (unsigned long) ia64_imva(__init_begin);
160 eaddr = (unsigned long) ia64_imva(__init_end);
161 while (addr < eaddr) {
162 ClearPageReserved(virt_to_page(addr));
163 init_page_count(virt_to_page(addr));
164 free_page(addr);
165 ++totalram_pages;
166 addr += PAGE_SIZE;
168 printk(KERN_INFO "Freeing unused kernel memory: %ldkB freed\n",
169 (__init_end - __init_begin) >> 10);
172 void __init
173 free_initrd_mem (unsigned long start, unsigned long end)
175 struct page *page;
177 * EFI uses 4KB pages while the kernel can use 4KB or bigger.
178 * Thus EFI and the kernel may have different page sizes. It is
179 * therefore possible to have the initrd share the same page as
180 * the end of the kernel (given current setup).
182 * To avoid freeing/using the wrong page (kernel sized) we:
183 * - align up the beginning of initrd
184 * - align down the end of initrd
186 * | |
187 * |=============| a000
188 * | |
189 * | |
190 * | | 9000
191 * |/////////////|
192 * |/////////////|
193 * |=============| 8000
194 * |///INITRD////|
195 * |/////////////|
196 * |/////////////| 7000
197 * | |
198 * |KKKKKKKKKKKKK|
199 * |=============| 6000
200 * |KKKKKKKKKKKKK|
201 * |KKKKKKKKKKKKK|
202 * K=kernel using 8KB pages
204 * In this example, we must free page 8000 ONLY. So we must align up
205 * initrd_start and keep initrd_end as is.
207 start = PAGE_ALIGN(start);
208 end = end & PAGE_MASK;
210 if (start < end)
211 printk(KERN_INFO "Freeing initrd memory: %ldkB freed\n", (end - start) >> 10);
213 for (; start < end; start += PAGE_SIZE) {
214 if (!virt_addr_valid(start))
215 continue;
216 page = virt_to_page(start);
217 ClearPageReserved(page);
218 init_page_count(page);
219 free_page(start);
220 ++totalram_pages;
225 * This installs a clean page in the kernel's page table.
227 static struct page * __init
228 put_kernel_page (struct page *page, unsigned long address, pgprot_t pgprot)
230 pgd_t *pgd;
231 pud_t *pud;
232 pmd_t *pmd;
233 pte_t *pte;
235 if (!PageReserved(page))
236 printk(KERN_ERR "put_kernel_page: page at 0x%p not in reserved memory\n",
237 page_address(page));
239 pgd = pgd_offset_k(address); /* note: this is NOT pgd_offset()! */
242 pud = pud_alloc(&init_mm, pgd, address);
243 if (!pud)
244 goto out;
245 pmd = pmd_alloc(&init_mm, pud, address);
246 if (!pmd)
247 goto out;
248 pte = pte_alloc_kernel(pmd, address);
249 if (!pte)
250 goto out;
251 if (!pte_none(*pte))
252 goto out;
253 set_pte(pte, mk_pte(page, pgprot));
255 out:
256 /* no need for flush_tlb */
257 return page;
260 static void __init
261 setup_gate (void)
263 void *gate_section;
264 struct page *page;
267 * Map the gate page twice: once read-only to export the ELF
268 * headers etc. and once execute-only page to enable
269 * privilege-promotion via "epc":
271 gate_section = paravirt_get_gate_section();
272 page = virt_to_page(ia64_imva(gate_section));
273 put_kernel_page(page, GATE_ADDR, PAGE_READONLY);
274 #ifdef HAVE_BUGGY_SEGREL
275 page = virt_to_page(ia64_imva(gate_section + PAGE_SIZE));
276 put_kernel_page(page, GATE_ADDR + PAGE_SIZE, PAGE_GATE);
277 #else
278 put_kernel_page(page, GATE_ADDR + PERCPU_PAGE_SIZE, PAGE_GATE);
279 /* Fill in the holes (if any) with read-only zero pages: */
281 unsigned long addr;
283 for (addr = GATE_ADDR + PAGE_SIZE;
284 addr < GATE_ADDR + PERCPU_PAGE_SIZE;
285 addr += PAGE_SIZE)
287 put_kernel_page(ZERO_PAGE(0), addr,
288 PAGE_READONLY);
289 put_kernel_page(ZERO_PAGE(0), addr + PERCPU_PAGE_SIZE,
290 PAGE_READONLY);
293 #endif
294 ia64_patch_gate();
297 void __devinit
298 ia64_mmu_init (void *my_cpu_data)
300 unsigned long pta, impl_va_bits;
301 extern void __devinit tlb_init (void);
303 #ifdef CONFIG_DISABLE_VHPT
304 # define VHPT_ENABLE_BIT 0
305 #else
306 # define VHPT_ENABLE_BIT 1
307 #endif
310 * Check if the virtually mapped linear page table (VMLPT) overlaps with a mapped
311 * address space. The IA-64 architecture guarantees that at least 50 bits of
312 * virtual address space are implemented but if we pick a large enough page size
313 * (e.g., 64KB), the mapped address space is big enough that it will overlap with
314 * VMLPT. I assume that once we run on machines big enough to warrant 64KB pages,
315 * IMPL_VA_MSB will be significantly bigger, so this is unlikely to become a
316 * problem in practice. Alternatively, we could truncate the top of the mapped
317 * address space to not permit mappings that would overlap with the VMLPT.
318 * --davidm 00/12/06
320 # define pte_bits 3
321 # define mapped_space_bits (3*(PAGE_SHIFT - pte_bits) + PAGE_SHIFT)
323 * The virtual page table has to cover the entire implemented address space within
324 * a region even though not all of this space may be mappable. The reason for
325 * this is that the Access bit and Dirty bit fault handlers perform
326 * non-speculative accesses to the virtual page table, so the address range of the
327 * virtual page table itself needs to be covered by virtual page table.
329 # define vmlpt_bits (impl_va_bits - PAGE_SHIFT + pte_bits)
330 # define POW2(n) (1ULL << (n))
332 impl_va_bits = ffz(~(local_cpu_data->unimpl_va_mask | (7UL << 61)));
334 if (impl_va_bits < 51 || impl_va_bits > 61)
335 panic("CPU has bogus IMPL_VA_MSB value of %lu!\n", impl_va_bits - 1);
337 * mapped_space_bits - PAGE_SHIFT is the total number of ptes we need,
338 * which must fit into "vmlpt_bits - pte_bits" slots. Second half of
339 * the test makes sure that our mapped space doesn't overlap the
340 * unimplemented hole in the middle of the region.
342 if ((mapped_space_bits - PAGE_SHIFT > vmlpt_bits - pte_bits) ||
343 (mapped_space_bits > impl_va_bits - 1))
344 panic("Cannot build a big enough virtual-linear page table"
345 " to cover mapped address space.\n"
346 " Try using a smaller page size.\n");
349 /* place the VMLPT at the end of each page-table mapped region: */
350 pta = POW2(61) - POW2(vmlpt_bits);
353 * Set the (virtually mapped linear) page table address. Bit
354 * 8 selects between the short and long format, bits 2-7 the
355 * size of the table, and bit 0 whether the VHPT walker is
356 * enabled.
358 ia64_set_pta(pta | (0 << 8) | (vmlpt_bits << 2) | VHPT_ENABLE_BIT);
360 ia64_tlb_init();
362 #ifdef CONFIG_HUGETLB_PAGE
363 ia64_set_rr(HPAGE_REGION_BASE, HPAGE_SHIFT << 2);
364 ia64_srlz_d();
365 #endif
368 #ifdef CONFIG_VIRTUAL_MEM_MAP
369 int vmemmap_find_next_valid_pfn(int node, int i)
371 unsigned long end_address, hole_next_pfn;
372 unsigned long stop_address;
373 pg_data_t *pgdat = NODE_DATA(node);
375 end_address = (unsigned long) &vmem_map[pgdat->node_start_pfn + i];
376 end_address = PAGE_ALIGN(end_address);
378 stop_address = (unsigned long) &vmem_map[
379 pgdat->node_start_pfn + pgdat->node_spanned_pages];
381 do {
382 pgd_t *pgd;
383 pud_t *pud;
384 pmd_t *pmd;
385 pte_t *pte;
387 pgd = pgd_offset_k(end_address);
388 if (pgd_none(*pgd)) {
389 end_address += PGDIR_SIZE;
390 continue;
393 pud = pud_offset(pgd, end_address);
394 if (pud_none(*pud)) {
395 end_address += PUD_SIZE;
396 continue;
399 pmd = pmd_offset(pud, end_address);
400 if (pmd_none(*pmd)) {
401 end_address += PMD_SIZE;
402 continue;
405 pte = pte_offset_kernel(pmd, end_address);
406 retry_pte:
407 if (pte_none(*pte)) {
408 end_address += PAGE_SIZE;
409 pte++;
410 if ((end_address < stop_address) &&
411 (end_address != ALIGN(end_address, 1UL << PMD_SHIFT)))
412 goto retry_pte;
413 continue;
415 /* Found next valid vmem_map page */
416 break;
417 } while (end_address < stop_address);
419 end_address = min(end_address, stop_address);
420 end_address = end_address - (unsigned long) vmem_map + sizeof(struct page) - 1;
421 hole_next_pfn = end_address / sizeof(struct page);
422 return hole_next_pfn - pgdat->node_start_pfn;
425 int __init
426 create_mem_map_page_table (u64 start, u64 end, void *arg)
428 unsigned long address, start_page, end_page;
429 struct page *map_start, *map_end;
430 int node;
431 pgd_t *pgd;
432 pud_t *pud;
433 pmd_t *pmd;
434 pte_t *pte;
436 map_start = vmem_map + (__pa(start) >> PAGE_SHIFT);
437 map_end = vmem_map + (__pa(end) >> PAGE_SHIFT);
439 start_page = (unsigned long) map_start & PAGE_MASK;
440 end_page = PAGE_ALIGN((unsigned long) map_end);
441 node = paddr_to_nid(__pa(start));
443 for (address = start_page; address < end_page; address += PAGE_SIZE) {
444 pgd = pgd_offset_k(address);
445 if (pgd_none(*pgd))
446 pgd_populate(&init_mm, pgd, alloc_bootmem_pages_node(NODE_DATA(node), PAGE_SIZE));
447 pud = pud_offset(pgd, address);
449 if (pud_none(*pud))
450 pud_populate(&init_mm, pud, alloc_bootmem_pages_node(NODE_DATA(node), PAGE_SIZE));
451 pmd = pmd_offset(pud, address);
453 if (pmd_none(*pmd))
454 pmd_populate_kernel(&init_mm, pmd, alloc_bootmem_pages_node(NODE_DATA(node), PAGE_SIZE));
455 pte = pte_offset_kernel(pmd, address);
457 if (pte_none(*pte))
458 set_pte(pte, pfn_pte(__pa(alloc_bootmem_pages_node(NODE_DATA(node), PAGE_SIZE)) >> PAGE_SHIFT,
459 PAGE_KERNEL));
461 return 0;
464 struct memmap_init_callback_data {
465 struct page *start;
466 struct page *end;
467 int nid;
468 unsigned long zone;
471 static int __meminit
472 virtual_memmap_init (u64 start, u64 end, void *arg)
474 struct memmap_init_callback_data *args;
475 struct page *map_start, *map_end;
477 args = (struct memmap_init_callback_data *) arg;
478 map_start = vmem_map + (__pa(start) >> PAGE_SHIFT);
479 map_end = vmem_map + (__pa(end) >> PAGE_SHIFT);
481 if (map_start < args->start)
482 map_start = args->start;
483 if (map_end > args->end)
484 map_end = args->end;
487 * We have to initialize "out of bounds" struct page elements that fit completely
488 * on the same pages that were allocated for the "in bounds" elements because they
489 * may be referenced later (and found to be "reserved").
491 map_start -= ((unsigned long) map_start & (PAGE_SIZE - 1)) / sizeof(struct page);
492 map_end += ((PAGE_ALIGN((unsigned long) map_end) - (unsigned long) map_end)
493 / sizeof(struct page));
495 if (map_start < map_end)
496 memmap_init_zone((unsigned long)(map_end - map_start),
497 args->nid, args->zone, page_to_pfn(map_start),
498 MEMMAP_EARLY);
499 return 0;
502 void __meminit
503 memmap_init (unsigned long size, int nid, unsigned long zone,
504 unsigned long start_pfn)
506 if (!vmem_map)
507 memmap_init_zone(size, nid, zone, start_pfn, MEMMAP_EARLY);
508 else {
509 struct page *start;
510 struct memmap_init_callback_data args;
512 start = pfn_to_page(start_pfn);
513 args.start = start;
514 args.end = start + size;
515 args.nid = nid;
516 args.zone = zone;
518 efi_memmap_walk(virtual_memmap_init, &args);
523 ia64_pfn_valid (unsigned long pfn)
525 char byte;
526 struct page *pg = pfn_to_page(pfn);
528 return (__get_user(byte, (char __user *) pg) == 0)
529 && ((((u64)pg & PAGE_MASK) == (((u64)(pg + 1) - 1) & PAGE_MASK))
530 || (__get_user(byte, (char __user *) (pg + 1) - 1) == 0));
532 EXPORT_SYMBOL(ia64_pfn_valid);
534 int __init
535 find_largest_hole (u64 start, u64 end, void *arg)
537 u64 *max_gap = arg;
539 static u64 last_end = PAGE_OFFSET;
541 /* NOTE: this algorithm assumes efi memmap table is ordered */
543 if (*max_gap < (start - last_end))
544 *max_gap = start - last_end;
545 last_end = end;
546 return 0;
549 #endif /* CONFIG_VIRTUAL_MEM_MAP */
551 int __init
552 register_active_ranges(u64 start, u64 len, int nid)
554 u64 end = start + len;
556 #ifdef CONFIG_KEXEC
557 if (start > crashk_res.start && start < crashk_res.end)
558 start = crashk_res.end;
559 if (end > crashk_res.start && end < crashk_res.end)
560 end = crashk_res.start;
561 #endif
563 if (start < end)
564 add_active_range(nid, __pa(start) >> PAGE_SHIFT,
565 __pa(end) >> PAGE_SHIFT);
566 return 0;
569 static int __init
570 count_reserved_pages (u64 start, u64 end, void *arg)
572 unsigned long num_reserved = 0;
573 unsigned long *count = arg;
575 for (; start < end; start += PAGE_SIZE)
576 if (PageReserved(virt_to_page(start)))
577 ++num_reserved;
578 *count += num_reserved;
579 return 0;
583 find_max_min_low_pfn (unsigned long start, unsigned long end, void *arg)
585 unsigned long pfn_start, pfn_end;
586 #ifdef CONFIG_FLATMEM
587 pfn_start = (PAGE_ALIGN(__pa(start))) >> PAGE_SHIFT;
588 pfn_end = (PAGE_ALIGN(__pa(end - 1))) >> PAGE_SHIFT;
589 #else
590 pfn_start = GRANULEROUNDDOWN(__pa(start)) >> PAGE_SHIFT;
591 pfn_end = GRANULEROUNDUP(__pa(end - 1)) >> PAGE_SHIFT;
592 #endif
593 min_low_pfn = min(min_low_pfn, pfn_start);
594 max_low_pfn = max(max_low_pfn, pfn_end);
595 return 0;
599 * Boot command-line option "nolwsys" can be used to disable the use of any light-weight
600 * system call handler. When this option is in effect, all fsyscalls will end up bubbling
601 * down into the kernel and calling the normal (heavy-weight) syscall handler. This is
602 * useful for performance testing, but conceivably could also come in handy for debugging
603 * purposes.
606 static int nolwsys __initdata;
608 static int __init
609 nolwsys_setup (char *s)
611 nolwsys = 1;
612 return 1;
615 __setup("nolwsys", nolwsys_setup);
617 void __init
618 mem_init (void)
620 long reserved_pages, codesize, datasize, initsize;
621 pg_data_t *pgdat;
622 int i;
623 static struct kcore_list kcore_mem, kcore_vmem, kcore_kernel;
625 BUG_ON(PTRS_PER_PGD * sizeof(pgd_t) != PAGE_SIZE);
626 BUG_ON(PTRS_PER_PMD * sizeof(pmd_t) != PAGE_SIZE);
627 BUG_ON(PTRS_PER_PTE * sizeof(pte_t) != PAGE_SIZE);
629 #ifdef CONFIG_PCI
631 * This needs to be called _after_ the command line has been parsed but _before_
632 * any drivers that may need the PCI DMA interface are initialized or bootmem has
633 * been freed.
635 platform_dma_init();
636 #endif
638 #ifdef CONFIG_FLATMEM
639 BUG_ON(!mem_map);
640 max_mapnr = max_low_pfn;
641 #endif
643 high_memory = __va(max_low_pfn * PAGE_SIZE);
645 kclist_add(&kcore_mem, __va(0), max_low_pfn * PAGE_SIZE);
646 kclist_add(&kcore_vmem, (void *)VMALLOC_START, VMALLOC_END-VMALLOC_START);
647 kclist_add(&kcore_kernel, _stext, _end - _stext);
649 for_each_online_pgdat(pgdat)
650 if (pgdat->bdata->node_bootmem_map)
651 totalram_pages += free_all_bootmem_node(pgdat);
653 reserved_pages = 0;
654 efi_memmap_walk(count_reserved_pages, &reserved_pages);
656 codesize = (unsigned long) _etext - (unsigned long) _stext;
657 datasize = (unsigned long) _edata - (unsigned long) _etext;
658 initsize = (unsigned long) __init_end - (unsigned long) __init_begin;
660 printk(KERN_INFO "Memory: %luk/%luk available (%luk code, %luk reserved, "
661 "%luk data, %luk init)\n", (unsigned long) nr_free_pages() << (PAGE_SHIFT - 10),
662 num_physpages << (PAGE_SHIFT - 10), codesize >> 10,
663 reserved_pages << (PAGE_SHIFT - 10), datasize >> 10, initsize >> 10);
667 * For fsyscall entrpoints with no light-weight handler, use the ordinary
668 * (heavy-weight) handler, but mark it by setting bit 0, so the fsyscall entry
669 * code can tell them apart.
671 for (i = 0; i < NR_syscalls; ++i) {
672 extern unsigned long sys_call_table[NR_syscalls];
673 unsigned long *fsyscall_table = paravirt_get_fsyscall_table();
675 if (!fsyscall_table[i] || nolwsys)
676 fsyscall_table[i] = sys_call_table[i] | 1;
678 setup_gate();
680 #ifdef CONFIG_IA32_SUPPORT
681 ia32_mem_init();
682 #endif
685 #ifdef CONFIG_MEMORY_HOTPLUG
686 int arch_add_memory(int nid, u64 start, u64 size)
688 pg_data_t *pgdat;
689 struct zone *zone;
690 unsigned long start_pfn = start >> PAGE_SHIFT;
691 unsigned long nr_pages = size >> PAGE_SHIFT;
692 int ret;
694 pgdat = NODE_DATA(nid);
696 zone = pgdat->node_zones + ZONE_NORMAL;
697 ret = __add_pages(nid, zone, start_pfn, nr_pages);
699 if (ret)
700 printk("%s: Problem encountered in __add_pages() as ret=%d\n",
701 __func__, ret);
703 return ret;
705 #endif
708 * Even when CONFIG_IA32_SUPPORT is not enabled it is
709 * useful to have the Linux/x86 domain registered to
710 * avoid an attempted module load when emulators call
711 * personality(PER_LINUX32). This saves several milliseconds
712 * on each such call.
714 static struct exec_domain ia32_exec_domain;
716 static int __init
717 per_linux32_init(void)
719 ia32_exec_domain.name = "Linux/x86";
720 ia32_exec_domain.handler = NULL;
721 ia32_exec_domain.pers_low = PER_LINUX32;
722 ia32_exec_domain.pers_high = PER_LINUX32;
723 ia32_exec_domain.signal_map = default_exec_domain.signal_map;
724 ia32_exec_domain.signal_invmap = default_exec_domain.signal_invmap;
725 register_exec_domain(&ia32_exec_domain);
727 return 0;
730 __initcall(per_linux32_init);